
Software Architecture

and Engineering
Modularity

Peter Müller

Chair of Programming Methodology

Spring Semester 2015

2

Mastering Complexity

 The technique of mastering complexity has been

known since ancient times: Divide et impera

(Divide and Rule). [Dijkstra, 1965]

 Benefits of decomposition

- Partition the overall development effort

- Support independent testing and analysis

- Decouple parts of a system so that changes to one part

do not affect other parts

- Permit system to be understood as a composition of

mind-sized chunks with one issue at a time

- Enable reuse of components

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications

3

Coupling

 Coupling measures interdependence between

different modules

 Tightly-coupled modules cannot be developed,

tested, changed, understood, or reused in isolation

Peter Müller – Software Architecture and Engineering

High

coupling

Low

coupling

4. Modularity – Coupling

4

Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.1.1 Data Coupling

4.1.2 Procedural Coupling

4.1.3 Class Coupling

4.2 Adaptation

4. Modularity – Coupling

5

class Coordinate {

public double radius, angle;

public double getX() {

return Math.cos(angle) * radius;

}

}

Representation Exposure

 Modules that expose

their internal data

representation become

tightly coupled to their

clients

Peter Müller – Software Architecture and Engineering

class Item {

private int id;

protected static int nextId;

public Item(…) {

id = Item.nextId;

Item.nextId++; … }

}

4. Modularity – Coupling

6

Problems of Representation Exposure

 Data representation

is difficult to change

during maintenance

 Modules cannot

maintain strong

invariants

 Concurrency

requires complex

synchronization

Peter Müller – Software Architecture and Engineering

class Coordinate {

public double x,y;

public double getX() { return x; }

}

class Coordinate {

public double radius, angle;

public double getX() {

return Math.cos(angle) * radius;

}

}

class Coordinate {

public double radius, angle;

invariant 0 <= radius;

public double getX() {

return Math.cos(angle) * radius;

}

}

class Coordinate {

public double radius, angle;

invariant 0 <= radius;

public double getX() {

synchronized(this) {

return Math.cos(angle) * radius;

}

}

}

4. Modularity – Coupling

7

Representation Exposure (cont’d)

 The data representation often

includes sub-objects or entire

sub-object structures

 In addition to the problems

above, exposing sub-objects

may lead to unexpected side

effects

Peter Müller – Software Architecture and Engineering

class List<E> {

E[] elems;

int len;

void set(int index, E e)

{ elems[index] = e; }

E[] toArray()

{ return elems; }

}

elems:

2len:

list

f:

client

array

4. Modularity – Coupling

8

Shared Data Structures

 Modules get coupled by

operating on shared data

structures

- Including databases and files

 Problems caused by

- Changes in data structure

- Unexpected side effects

- Concurrency

Peter Müller – Software Architecture and Engineering

Parser

Type

Checker

Optimizer

Code

Generator

4. Modularity – Coupling

9

Approach 1: Restricting Access to Data

 Force clients to

access the data

representation

through a narrow

interface

 Information hiding:

Hide implementation

details behind

interface

 Use interface for

necessary checks

Peter Müller – Software Architecture and Engineering

class Coordinate {

private double radius, angle;

invariant 0 <= radius;

public void setRadius(double r)

requires 0 <= r;

{ synchronized(this) { radius = r; } }

public double getX() {

synchronized(this) {

return Math.cos(angle) * radius;

}

}

}

4. Modularity – Coupling

10

 Avoid exposure of sub-objects

 No leaking: Do not return

references to sub-objects

 No capturing: Do not store

arguments as sub-objects

 Clone objects if necessary

Restricting Access to Data (cont’d)

Peter Müller – Software Architecture and Engineering

class List<E> {

E[] elems;

int len;

E[] toArray() {

E[] res = new E[len];

System.arraycopy(…);

return res;

}

}

elems:

2len:

list

f:

client

array

4. Modularity – Coupling

11

Design Patterns

 Design patterns are

general, reusable solutions

to commonly occurring

design problems

 They capture best practices

in detailed design

 They describe relationships

and interactions among

classes and objects

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

12

Facade Pattern

 Facade objects provide a single, simplified interface

to the more general facilities of a module without

hiding the details completely

 Example: Access scanner, parser, AST node, etc.

through a compiler object

Peter Müller – Software Architecture and Engineering

Module 1

Module 2

Module 1

Module 2

Facade

4. Modularity – Coupling

13

Approach 2: Making Shared Data Immutable

 Some drawbacks of shared

data apply only to mutable

shared data

- Maintaining invariants

- Thread synchronization

- Unexpected side effects

 Changing the data

representation remains a

problem

 Copies can lead to run-time

and memory overhead

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

Parser

Type

Checker

Pretty

Printer

Code

Generator

14

Flyweight Pattern

 The flyweight pattern maximizes sharing of

immutable objects

Peter Müller – Software Architecture and Engineering

FlyweightFactory

get(key)

Client

Flyweight
*

*

*
*

if(pool contains flyweight for key) {

return existing flyweight;

} else {

create new flyweight;

add it to the pool;

return it;

}

pool

4. Modularity – Coupling

15

Flyweight Pattern: Example

 Java uses the flyweight pattern for constant strings

“Hello“

String

String

Class

String

Constant

Pool

“Abort“

String

““

String

Client Client Client

4. Modularity – Coupling

16

Approach 3: Avoiding Shared Data

 Working with immutable shared data is often

cumbersome

 Sorting a selection is not supported directly

because Sort does not handle the output of Select

 Sort and Select can be combined flexibly

Peter Müller – Software Architecture and Engineering

perm: int[] from, to: int

Table

rows: String[]

Sort Select

sort(String[]): String[] select(String[], int, int): String[]

Table

rows: String[]

Sort Select

4. Modularity – Coupling

17

Architectural Styles

 Architectural styles are

idiomatic patterns of system

organization

 They capture best practices

in system design

 They describe the

components and connectors

of a software architecture

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

18

Peter Müller – Software Architecture and Engineering

Pipe-and-Filter Style

 Data flow is the only form of communication

between components

- No shared state

 Components (Filters)

- Read data from input ports, compute, write data to output

ports

 Connectors (Pipes)

- Streams (typically asynchronous first-in-first-out buffers)

- Split-join connectors

Filter

Filter
Filter

Filter

Filter

4. Modularity – Coupling

19

Peter Müller – Software Architecture and Engineering

Pipe-and-Filter Style: Properties

 Data is processed incrementally as it arrives

 Output usually begins before input is consumed

 Filters must be independent, no shared state

 Filters don’t know upstream or downstream filters

 Examples

- Unix pipes

grep search-text file | sort

- Stream processing

sort file | grep search-text

4. Modularity – Coupling

20

Pipe-and-Filter Style: Example

 For a stream of stock quotes, compute the 30-days

and 200-days simple moving average (SMA) and

determine trend

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

21

Pipe-and-Filter Style: Example (cont’d)

 Architecture

 We sketch an implementation in

MIT’s StreamIt language

- http://groups.csail.mit.edu/cag/streamit/

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Averager(30)

Join

Round-Robin

Averager(200)

Trender

4. Modularity – Coupling

22

StreamIt Language: Filters

Peter Müller – Software Architecture and Engineering

Averager(n)

int->int filter Averager(int n) {

work pop 1 push 1 peek n {

int sum = 0;

for (int i = 0; i < n; i++)

sum += peek(i);

push(sum/n);

pop();

}

}

n

Input and

output streams

are typed
Parameter is

provided when

filter is instantiated

Filters may

look ahead

Filters may have

local state

Each work

function declares

its data rate

work function

is executed

repeatedly

4. Modularity – Coupling

23

StreamIt Language: SplitJoins

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Join

Round-Robin

Split

Round-Robin

4. Modularity – Coupling

24

StreamIt Language: SplitJoin Example

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Averager(30)

Join

Round-Robin

Averager(200)

int -> int splitjoin

dualAverager(int n, int m) {

split duplicate;

add Averager(n);

add Averager(m);

join roundrobin;

}

4. Modularity – Coupling

25

StreamIt Language: Composition Example

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Averager(30)

Join

Round-Robin

Averager(200)

Trender

int -> int filter Trender {

work pop 2 push 1 {

int a = pop();

int b = pop();

if(a > b) { push(1); }

else { push(0); }

}

}

int -> int pipeline System {

add dualAverager(30, 200);

add Trender;

}

4. Modularity – Coupling

26

Fusion and Fission

 Fusion reduces

communication cost at

the expense of

parallelism

 Fission is profitable if

the benefits of

parallelization

outweigh the overhead

introduced by fission

Peter Müller – Software Architecture and Engineering

…
Pipeline

Fission

Pipeline

Fusion

…
SplitJoin

Fission

SplitJoin

Fusion

4. Modularity – Coupling

27

Peter Müller – Software Architecture and Engineering

Pipe-and-Filter Style: Discussion

Strengths

 Reuse: any two filters can
be connected if they agree
on that data format that is
transmitted

 Ease of maintenance:
filters can be added or
replaced

 Potential for parallelism:
filters implemented as
separate tasks, consuming
and producing data
incrementally

Weaknesses

 Sharing global data is
expensive or limiting

 Can be difficult to design
incremental filters

 Not appropriate for
interactive applications

 Error handling is Achilles
heel, e.g., some
intermediate filter crashes

 Often smallest common
denominator on data
transmission, e.g., ASCII in
Unix pipes

4. Modularity – Coupling

28

Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.1.1 Data Coupling

4.1.2 Procedural Coupling

4.1.3 Class Coupling

4.2 Adaptation

4. Modularity – Coupling

29

class Controller {

Sensor sensor;

public boolean selfTest() {

List<LogEntry> log = sensor.log();

for(LogEntry e: log)

if(e.isError()) return false;

return true;

}

}

Problems of Procedural Coupling: Reuse

 Modules are

coupled to other

modules whose

methods they call

 Callers cannot be

reused without

callee modules

Peter Müller – Software Architecture and Engineering

class Sensor {

List<LogEntry> logData;

List<LogEntry> log() { return logData; }

}

4. Modularity – Coupling

class LogEntry {

…

boolean isError() { … }

}

30

Problems of Procedural Coupling: Adaptation

 When modules are

procedurally coupled,

any change in the

callees may require

changes in the caller

- Change in signatures

- Adding or removing

callees

 Example: Display stack

trace when breakpoint

is reached

Peter Müller – Software Architecture and Engineering

class Debugger {

Editor editor;

…

void processBreakPoint(…) {

…

editor.showContext(…);

}

}

class Editor {

void showContext(…) { … }

}

class StackViewer {

void showStackTrace(…) { … }

}

4. Modularity – Coupling

31

Approach 1: Moving Code

Peter Müller – Software Architecture and Engineering

class Controller {

Sensor sensor;

boolean selfTest() {

List<LogEntry> log = sensor.log();

for(LogEntry e: log)

if(e.isError()) return false;

return true;

}

}

class Sensor {

List<LogEntry> logData;

List<LogEntry> log() { return logData; }

}

class LogEntry {

…

boolean isError() { … }

}

Loop does not

use data from

Controller

4. Modularity – Coupling

32

Approach 1: Moving Code (cont’d)

 Moving code may reduce

procedural coupling

 It is common to even

duplicate functionality to

avoid dependencies on

code from other projects

or companies

Peter Müller – Software Architecture and Engineering

class Controller {

Sensor sensor;

boolean selfTest()

{ return sensor.hasError(); }

}

class Sensor {

List<LogEntry> logData;

boolean noError() {

for(LogEntry e: logData)

if(e.isError()) return false;

return true;

}

}

class LogEntry {

…

boolean isError() { … }

}

4. Modularity – Coupling

33

Approach 2: Event-Based Style

 Components may
- Generate events

- Register for events of other components with a callback

 Generators of events do not know which

components will be affected by their events

 Examples

- Programming environment tool integration

- User interfaces, web sites, Android

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

34

Peter Müller – Software Architecture and Engineering

Observer Pattern: Structure

Observer

Update()*
Subject

Attach(Observer)

Detach(Observer)

Notify()

observers

ConcreteSubject

GetState()

SetState(…)

subjectState

ConcreteObserver

Update()

observerState

subject

forall o in

observers:

o.Update()

return

subjectState

observerState =

subject.GetState()

4. Modularity – Coupling

35

Peter Müller – Software Architecture and Engineering

Observer Pattern: Collaborations

aConcreteSubject concreteObserver1 concreteObserver2

setState(…)

notify()

update()

getState()

update()

getState()

4. Modularity – Coupling

36

Peter Müller – Software Architecture and Engineering

Observer Pattern: Example

 Debugger has a

generic list of

observers

 Debugger generates

event when breakpoint

is reached

 Observers decide how

to handle this event

(no control by

debugger)

class Debugger extends Subject {

…

void processBreakPoint(…) {

…

notify(…);

}

}

class Editor
implements Observer {

void showContext(…) { … }

void update (…) {

showContext(…);

}

}

4. Modularity – Coupling

37

Peter Müller – Software Architecture and Engineering

Adaptation: Add StackViewer

 New requirement:

Display stack trace

when breakpoint is

reached

 StackViewer is just

another observer

 Debugger does not

have to be adapted

class StackViewer
implements Observer {

…

void showStackTrace(…)

{ … }

void update (…) {

showStackTrace(…);

}

}

4. Modularity – Coupling

38

Peter Müller – Software Architecture and Engineering

Model-View-Controller Architecture

 Components

- Model contains the core functionality and data

- One or more views display information to the user

- One or more controllers handle user input

 Communication

- Change-propagation mechanism via events ensures

consistency between user interface and model

- If the user changes the model through the controller of

one view, the other views will be updated automatically

4. Modularity – Coupling

39

Peter Müller – Software Architecture and Engineering

Model-View-Controller Example

0

10

20

30

40

50

60

a b c

a b c

X 60 30 10

Y 50 30 20

Z 80 10 10

a

b

c

a = 50%

b = 30%

c = 20%

Change notification

Requests, modifications

4. Modularity – Coupling

40

Peter Müller – Software Architecture and Engineering

View
View

Model-View-Controller Architecture

View
View

Model

(Application Interface)

Send events

Update view

Report

change

events

Change

state

View

Controller

4. Modularity – Coupling

41

Peter Müller – Software Architecture and Engineering

Event-Based Style: Discussion

Strengths

 Strong support for reuse:

plug in new components by

registering it for events

 Adaptation: add, remove,

and replace components

with minimum effect on

other components in the

system

Weaknesses

 Loss of control
- What components will

respond to an event?

- In which order will
components be invoked?

- Are invoked components
finished?

 Ensuring correctness is
difficult because it depends
on context in which invoked

4. Modularity – Coupling

42

request a.html

request b.html

set Messi

to “great”

Loss of Control: Example

great

<html><body>

<script>document.Messi = “great”;</script>

<iframe src="a.html" ></iframe>

<iframe src="b.html" ></iframe>

</body></html>

<html><body>

<script>parent.document.Messi = “poor”;

</script>

</body></html>

<html><body>

<script>alert(parent.document.Messi);</script>

</body></html>

great

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

43

request a.html

request b.html

set Messi

to “great”

Loss of Control: Example (cont’d)

great

<html><body>

<script>document.Messi = “great”;</script>

<iframe src="a.html" ></iframe>

<iframe src="b.html" ></iframe>

</body></html>

<html><body>

<script>parent.document.Messi = “poor”;

</script>

</body></html>

<html><body>

<script>alert(parent.document.Messi);</script>

</body></html>

poor

a.html is loaded

b.html is loaded

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

44

Peter Müller – Software Architecture and Engineering

Approach 3: Restricting Calls

 Enforce a policy that restricts which other modules

a module may call

 Example: Layered architectures

- A layer depends only on lower layers

- Has no knowledge of higher layers

- Layers can be exchanged

4. Modularity – Coupling

45

Example: Three-Tier Architecture

Peter Müller – Software Architecture and Engineering

Data Tier

(persistent storage)

Logic Tier

(business functionality)

Presentation Tier

(user interface)

Front-end

web server

Back-end

application

server

Database

4. Modularity – Coupling

46

Peter Müller – Software Architecture and Engineering

Layered Style: Discussion

Strengths

 Increasing levels of

abstraction as we move up

through layers: partitions

complex problems

 Maintenance: in theory, a

layer only interacts with

layer below (low coupling)

 Reuse: different

implementations of the

same level can be

interchanged

Weaknesses

 Performance:

communicating down

through layers and back

up, hence bypassing may

occur for efficiency reasons

4. Modularity – Coupling

47

Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.1.1 Data Coupling

4.1.2 Procedural Coupling

4.1.3 Class Coupling

4.2 Adaptation

4. Modularity – Coupling

48

Inheritance

 Inheritance couples

the subclass to the

superclass

Peter Müller – Software Architecture and Engineering

class SymbolTable

extends TreeMap<Ident, Type> {

}

 Changes in the superclass may break the subclass

- Fragile baseclass problem

 Limits options for other inheritance relations

- Not possible in single-inheritance languages

- May cause conflicts with multiple inheritance

4. Modularity – Coupling

49

Approach 1: Replacing Inheritance w/ Aggreg.

 Inheritance can be replaced by Subtyping,

aggregation, and delegation

 The same technique can

be used to avoid coupling

through inheritance

Peter Müller – Software Architecture and Engineering

Person

Programmer

Subject Person

Programmer

ISubject

Subject

class SymbolTable {

TreeMap<Ident, Type> types;

Type getType(Ident id)

{ return types.get(id); }

}

4. Modularity – Coupling

50

class SymbolTable {

TreeMap<Ident, Type> types;

TreeMap<Ident, Type> getTypes() {

return types.clone();

}

}

Type declarations

 Using class names in

declarations of

methods, fields, and

local variables

couples the client to

the used classes

 Data structures are

difficult to change

during maintenance

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

51

Approach 2: Using Interfaces

 Replace occurrences

of class names by

supertypes

 Use the most general

supertype that offers

all required operations

 Data structures can be

changed without

affecting the code

Peter Müller – Software Architecture and Engineering

class SymbolTable {

TreeMap<Ident, Type> types;

TreeMap<Ident, Type> getTypes() {

return types.clone();

}

}

class SymbolTable {

Map<Ident, Type> types;

Map<Ident, Type> getTypes() {

return types.clone();

}

}

4. Modularity – Coupling

52

class SymbolTable {

Map<Ident, Type> types;

SymbolTable() {

types = new TreeMap<Ident, Type>();

}

}

Object Allocation

 Allocations couple

clients to the

instantiated class

 Interfaces do not

solve this problem

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

53

Approach 3: Delegating Allocations

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

 Delegate allocations to a dedicated class called an

abstract factory

 Different concrete factory classes make objects of

different classes

 The concrete factory to be used is chosen by the

client

54

Peter Müller – Software Architecture and Engineering

Abstract Factory Pattern

Client

Abstract

Product

Abstract

Factory

Concrete

Product1

Concrete

Product2

Concrete

Factory2

Concrete

Factory1

Creates

object

make()

make()make()

4. Modularity – Coupling

55

class SymbolTable {

MapFactory<Ident, Type> factory;

Map<Ident, Type> types;

SymbolTable(MapFactory<Ident, Type> f) {

factory = f;

types = factory.make();

}

}

Abstract Factory Example

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

class TreeMapFactory implements MapFactory<K,V> {

Map<K,V> make() { return new TreeMap<K,V>(); }

}

interface MapFactory<K,V> { Map<K,V> make(); }

Symboltable is no

longer coupled to

TreeMap

56

Coupling: Summary

 Low coupling is a general design goal

 However, there are trade-offs

- Cohesion: each module has a clear responsibility

- Performance and convenience

(e.g., List and Iterator access nodes)

- Adaptability: some design patterns increase coupling to

improve adaptability

- Code duplication

 Coupling to stable classes is less critical

- For example, using or inheriting from library classes

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

57

Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.2 Adaptation

4.2.1 Parameterization

4.2.2 Specialization

4. Modularity – Adaptation

58

Change

 Since software is (perceived as being) easy to

change, software systems often deviate from their

initial design

 Typical changes include

- New features (requested by customers or management)

- New interfaces (new hardware, new or changed

interfaces to other software systems)

- Bug fixing, performance tuning

 Changes often erode the structure of the system

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

59

Parameterization

 Modules can be prepared for change by allowing

clients to influence their behavior

 Make modules parametric in:

- The values they manipulate

- The data structures they operate on

- The types they operate on

- The algorithms they apply

 One man’s constant is another man’s variable.

[Alan J. Perlis]

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

60

Parameterization: Example

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

class Merger {

StringStream f1, f2;

boolean toggle;

String getNext() {

String res = null;

do {

res = (toggle ? f1.getNext()

: f2.getNext());

} while(res == null);

toggle = !toggle;

return res;

}

}

class StringStream {

String getNext() { … }

}

Source of data

is a fixed class

Number of

sources is fixed

Type of

data is fixed

Filter criterion is

fixed
Alternation

between sources

is fixed

61

Parameterizing Values

 Modules can be made

parametric by using

variable values instead

of constant values

Peter Müller – Software Architecture and Engineering

class Merger {

StringStream[] streams;

int next;

String getNext() {

String res = null;

do {

res = streams[next].getNext();

} while(res == null);

next = (next + 1) % streams.length;

return res;

}

}

4. Modularity – Adaptation

62

Parameterizing Data Structures

 Modules can be made

parametric by using

interfaces and factories

instead of concrete

classes

Peter Müller – Software Architecture and Engineering

class Merger {

Filter[] filters;

int next;

String getNext() {

String res = null;

do {

res = filters[next].getNext();

} while(res == null);

next = (next + 1) % filters.length;

return res;

}

}

class StringStream

implements Filter {

String getNext() { … }

}

4. Modularity – Adaptation

63

Parameterizing Types

 Modules can be made

parametric by using

generic types

Peter Müller – Software Architecture and Engineering

class Merger<D> {

Filter<D>[] filters;

int next;

D getNext() {

D res = null;

do {

res = filters[next].getNext();

} while(res == null);

next = (next + 1) % filters.length;

return res;

}

}

class StringStream

implements Filter<String> {

String getNext() { … }

}

4. Modularity – Adaptation

64

Parameterizing Algorithms

 Modules can be made

parametric by using

function objects

- Closures (Scala)

- Delegates (C#)

- Function pointers (C++)

- Agents (Eiffel)

- Strategy pattern (Java)

Peter Müller – Software Architecture and Engineering

class Merger<D> {

Filter<D>[] filters;

int next;

Selector<D> s;

D getNext() {

D res = null;

do {

res = filters[next].getNext();

} while(!s.select(res));

next = (next + 1) % filters.length;

return res;

}

}

4. Modularity – Adaptation

65

Peter Müller – Software Architecture and Engineering

Strategy Pattern

Client Strategy

Strategy2Strategy1

apply()

apply()apply()

interface Selector<D> {

boolean select(D val);

}

class NonNullSelector<D>

implements Selector<D> {

boolean select(D val) {

return val != null;

}

}

4. Modularity – Adaptation

66

Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.2 Adaptation

4.2.1 Parameterization

4.2.2 Specialization

4. Modularity – Adaptation

67

Dynamic Method Binding

 In object-oriented

programs, behaviors

can be specialized via

overriding and dynamic

method binding

class Merger<D> {

Filter<D>[] filters;

int next;

Selector<D> s;

D getNext() {

D res = null;

do {

res = filters[next].getNext();

} while(!s.select(res));

next = (next + 1) % filters.length;

return res;

}

}
TimeStamp-

Selector

NonNull-

Selector

Selector

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

68

Dynamic Method Binding as Case Distinction

 Dynamic method binding is a case distinction on

the dynamic type of the receiver object

 Adding or removing cases (method overrides) does

not require changes in the caller

- Client code is adaptable

Peter Müller – Software Architecture and Engineering

s.select(res);

if(s instanceof NonNullSelector)

s.NonNullSelector::select(res);

else if(s instanceof TimeStampSelector)

s.TimeStampSelector::select(res);

else if …

4. Modularity – Adaptation

69

Static vs. Dynamic Method Binding

 Dynamic method binding has drawbacks

- Reasoning: Subclasses share responsibility for

maintaining invariants

- Testing: Dynamic binding increases the number of

possible behaviors that need to be tested

- Versioning: Dynamic binding makes it harder to evolve

code without breaking subclasses

- Performance: Overhead of method look-up at run-time

 Choose binding carefully for each method

- Java: Consider making methods final

- C++, C#: Consider making methods virtual

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

70

Replacing Case Distinctions by Dyn. Binding

Peter Müller – Software Architecture and Engineering

class Movie {

static final int REGULAR = 0;

static final int CHILDREN = 1;

int _priceCode;

int getCharge(int days) {

if(_priceCode == REGULAR)

return days * 3;

else

return days * 2;

}

}

abstract class Movie {

abstract int getCharge(int days);

}

class RegularMovie extends Movie {

int getCharge(int days) {

return days * 3;

}

}

class ChildrenMovie extends Movie {

int getCharge(int days) {

return days * 2;

}

}

Introducing new

price codes

requires changes

4. Modularity – Adaptation

71

Peter Müller – Software Architecture and Engineering

Adaptation to New Cases

Movie

getCharge()

RegularMovie

getCharge()

NewReleaseMovie

getCharge()

ChildrenMovie

getCharge()

A movie can

change its

classification

4. Modularity – Adaptation

72

Peter Müller – Software Architecture and Engineering

Using Aggregation Plus Dynamic Binding

Price

getCharge()

RegularPrice

getCharge()

NewReleasePrice

getCharge()

ChildrenPrice

getCharge()

Movie

getCharge()

return

_price.getCharge()

_price

4. Modularity – Adaptation

73

Peter Müller – Software Architecture and Engineering

State Pattern

Context

m(param)

ConcreteStateB

m(param)

ConcreteStateA

m(param)

AbstractState

m(param)

state.m(param);

state

4. Modularity – Adaptation

74

Case Distinction on Several Arguments

 Dynamic method binding is a case distinction on

the dynamic type of the receiver object

 In some cases, it is useful to select an operation

based on the dynamic type of the receiver object

and of the argument(s)

Peter Müller – Software Architecture and Engineering

s.select(res);

if(s instanceof NonNullSelector)

s.NonNullSelector::select(res);

else if(s instanceof TimeStampSelector)

s.TimeStampSelector::select(res);

else if …

4. Modularity – Adaptation

75

Example: Operations on a Syntax Tree

 Consider a data structures

with nodes of different types

 The behavior of operations

depends on the type of

node it is applied to

 The set of operations is not

fixed

Peter Müller – Software Architecture and Engineering

Expr

BinaryExprLiteral

2

 Operations

- Type checking

- Evaluation

- Code generation

- Pretty printing

4. Modularity – Adaptation

76

Double Invocation

abstract class Expr {

abstract void accept(Visitor v);

}

class Literal extends Expr {

int val;

void accept(Visitor v) {

v.visitLiteral(this);

}

}

abstract class Visitor {

abstract void visitLiteral(Literal e);

abstract void visitBinary(Binary e);

}

class Evaluator extends Visitor {

int value;

void visitLiteral(Literal e) {

value = e.val;

}

void visitBinary(Binary e) { … }

}
class Binary extends Expr {

void accept(Visitor v) {

v.visitBinary(this);

}

}

class PrettyPrinter extends Visitor {

…

}

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

77

Peter Müller – Software Architecture and Engineering

Visitor Pattern

Client

Visitor

visitElementA(ElementA)

visitElementB(ElementB)

ConcreteVisitor1

visitElementA(ElementA)

visitElementB(ElementB)

ConcreteVisitor2

visitElementA(ElementA)

visitElementB(ElementB)

Element

accept(Visitor v)

ElementA

accept(Visitor v)

ElementB

accept(Visitor v)

v.visitElementA(this)

4. Modularity – Adaptation

78

Adaptation: Summary

 Designing adaptable modules

- Makes inevitable changes easier

- Facilitates reuse

 Parameterization allows clients to customize the

behavior by supplying different parameters

 Specialization allows clients to customize behavior

by adding subclasses and overriding methods

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

