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Mastering Complexity 

 The technique of mastering complexity has been 

known since ancient times: Divide et impera

(Divide and Rule). [ Dijkstra, 1965 ]

 Benefits of decomposition

- Partition the overall development effort

- Support independent testing and analysis

- Decouple parts of a system so that changes to one part 

do not affect other parts

- Permit system to be understood as a composition of 

mind-sized chunks with one issue at a time

- Enable reuse of components

Peter Müller – Software Architecture and Engineering

3. Modeling and Specifications



3

Coupling

 Coupling measures interdependence between

different modules

 Tightly-coupled modules cannot be developed, 

tested, changed, understood, or reused in isolation

Peter Müller – Software Architecture and Engineering

High 

coupling

Low 

coupling

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.1.1 Data Coupling

4.1.2 Procedural Coupling

4.1.3 Class Coupling 

4.2 Adaptation

4. Modularity – Coupling
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class Coordinate {

public double radius, angle;

public double getX( ) { 

return Math.cos( angle ) * radius; 

}

}

Representation Exposure

 Modules that expose 

their internal data 

representation become 

tightly coupled to their 

clients

Peter Müller – Software Architecture and Engineering

class Item {

private int id;

protected static int nextId;

public Item( … ) { 

id = Item.nextId; 

Item.nextId++; … }

}

4. Modularity – Coupling
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Problems of Representation Exposure

 Data representation 

is difficult to change 

during maintenance

 Modules cannot 

maintain strong 

invariants

 Concurrency 

requires complex 

synchronization 

Peter Müller – Software Architecture and Engineering

class Coordinate {

public double x,y;

public double getX( ) { return x; }

}

class Coordinate {

public double radius, angle;

public double getX( ) { 

return Math.cos( angle ) * radius; 

}

}

class Coordinate {

public double radius, angle;

invariant 0 <= radius;

public double getX( ) { 

return Math.cos( angle ) * radius; 

}

}

class Coordinate {

public double radius, angle;

invariant 0 <= radius;

public double getX( ) { 

synchronized( this ) {

return Math.cos( angle ) * radius; 

}

}

}

4. Modularity – Coupling
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Representation Exposure (cont’d)

 The data representation often 

includes sub-objects or entire 

sub-object structures

 In addition to the problems 

above, exposing sub-objects 

may lead to unexpected side 

effects

Peter Müller – Software Architecture and Engineering

class List<E> {

E[ ] elems;

int len;

void set( int index, E e ) 

{ elems[ index ] = e; }

E[ ] toArray( )

{ return elems; }

}

elems:

2len:

list

f:

client

array

4. Modularity – Coupling
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Shared Data Structures

 Modules get coupled by 

operating on shared data 

structures

- Including databases and files

 Problems caused by

- Changes in data structure

- Unexpected side effects

- Concurrency

Peter Müller – Software Architecture and Engineering

Parser

Type

Checker

Optimizer

Code

Generator

4. Modularity – Coupling
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Approach 1: Restricting Access to Data

 Force clients to 

access the data 

representation 

through a narrow 

interface

 Information hiding: 

Hide implementation 

details behind 

interface

 Use interface for 

necessary checks

Peter Müller – Software Architecture and Engineering

class Coordinate {

private double radius, angle;

invariant 0 <= radius;

public void setRadius( double r )

requires 0 <= r;

{ synchronized( this ) { radius = r; } }

public double getX( ) { 

synchronized( this ) {

return Math.cos( angle ) * radius;

} 

}

}

4. Modularity – Coupling
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 Avoid exposure of sub-objects

 No leaking: Do not return 

references to sub-objects

 No capturing: Do not store 

arguments as sub-objects

 Clone objects if necessary

Restricting Access to Data (cont’d)

Peter Müller – Software Architecture and Engineering

class List<E> {

E[ ] elems;

int len;

E[ ] toArray( ) { 

E[ ] res = new E[ len ];

System.arraycopy( … );

return res; 

}

}

elems:

2len:

list

f:

client

array

4. Modularity – Coupling
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Design Patterns

 Design patterns are 

general, reusable solutions 

to commonly occurring 

design problems

 They capture best practices

in detailed design

 They describe relationships 

and interactions among 

classes and objects

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Facade Pattern

 Facade objects provide a single, simplified interface 

to the more general facilities of a module without 

hiding the details completely

 Example: Access scanner, parser, AST node, etc. 

through a compiler object

Peter Müller – Software Architecture and Engineering

Module 1

Module 2

Module 1

Module 2

Facade

4. Modularity – Coupling
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Approach 2: Making Shared Data Immutable

 Some drawbacks of shared 

data apply only to mutable 

shared data

- Maintaining invariants

- Thread synchronization

- Unexpected side effects

 Changing the data 

representation remains a 

problem

 Copies can lead to run-time 

and memory overhead

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

Parser

Type

Checker

Pretty

Printer

Code

Generator
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Flyweight Pattern

 The flyweight pattern maximizes sharing of 

immutable objects

Peter Müller – Software Architecture and Engineering

FlyweightFactory

get( key )

Client

Flyweight
*

*

*
*

if( pool contains flyweight for key ) {

return existing flyweight;

} else {

create new flyweight;

add it to the pool;

return it;

}

pool

4. Modularity – Coupling
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Flyweight Pattern: Example

 Java uses the flyweight pattern for constant strings

“Hello“

String

String

Class

String

Constant

Pool

“Abort“

String

““

String

Client Client Client

4. Modularity – Coupling
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Approach 3: Avoiding Shared Data

 Working with immutable shared data is often 

cumbersome

 Sorting a selection is not supported directly 

because Sort does not handle the output of Select

 Sort and Select can be combined flexibly

Peter Müller – Software Architecture and Engineering

perm: int[ ] from, to: int

Table

rows: String[ ]

Sort Select

sort(String[ ]): String[ ] select(String[ ], int, int): String[ ]

Table

rows: String[ ]

Sort Select

4. Modularity – Coupling
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Architectural Styles

 Architectural styles are 

idiomatic patterns of system 

organization

 They capture best practices 

in system design

 They describe the 

components and connectors 

of a software architecture

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Pipe-and-Filter Style

 Data flow is the only form of communication 

between components

- No shared state

 Components (Filters)

- Read data from input ports, compute, write data to output 

ports

 Connectors (Pipes)

- Streams (typically asynchronous first-in-first-out buffers)

- Split-join connectors

Filter

Filter
Filter

Filter

Filter

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Pipe-and-Filter Style: Properties

 Data is processed incrementally as it arrives

 Output usually begins before input is consumed 

 Filters must be independent, no shared state

 Filters don’t know upstream or downstream filters

 Examples

- Unix pipes

grep search-text file | sort

- Stream processing

sort file | grep search-text

4. Modularity – Coupling
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Pipe-and-Filter Style: Example

 For a stream of stock quotes, compute the 30-days 

and 200-days simple moving average (SMA) and 

determine trend

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Pipe-and-Filter Style: Example (cont’d)

 Architecture

 We sketch an implementation in 

MIT’s StreamIt language

- http://groups.csail.mit.edu/cag/streamit/

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Averager(30)

Join

Round-Robin

Averager(200)

Trender

4. Modularity – Coupling
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StreamIt Language: Filters

Peter Müller – Software Architecture and Engineering

Averager(n)

int->int filter Averager( int n ) {

work pop 1 push 1 peek n {

int sum = 0;

for ( int i = 0; i < n; i++ )

sum += peek( i );

push( sum/n );

pop( );

}

}

n

Input and 

output streams 

are typed
Parameter is 

provided when 

filter is instantiated

Filters may 

look ahead

Filters may have 

local state

Each work 

function declares 

its data rate

work function 

is executed 

repeatedly

4. Modularity – Coupling
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StreamIt Language: SplitJoins

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Join

Round-Robin

Split

Round-Robin

4. Modularity – Coupling
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StreamIt Language: SplitJoin Example

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Averager(30)

Join

Round-Robin

Averager(200)

int -> int splitjoin

dualAverager( int n, int m ) {

split duplicate;

add Averager( n );

add Averager( m );

join roundrobin;

}

4. Modularity – Coupling
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StreamIt Language: Composition Example

Peter Müller – Software Architecture and Engineering

Split

Duplicate

Averager(30)

Join

Round-Robin

Averager(200)

Trender

int -> int filter Trender {

work pop 2 push 1 {

int a = pop( );

int b = pop( );

if(a > b) { push( 1 ); }

else { push( 0 ); }

}

}

int -> int pipeline System {

add dualAverager( 30, 200 );

add Trender;

}

4. Modularity – Coupling
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Fusion and Fission

 Fusion reduces 

communication cost at 

the expense of 

parallelism

 Fission is profitable if 

the benefits of 

parallelization 

outweigh the overhead 

introduced by fission

Peter Müller – Software Architecture and Engineering

…
Pipeline 

Fission

Pipeline 

Fusion

…
SplitJoin 

Fission

SplitJoin

Fusion

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Pipe-and-Filter Style: Discussion

Strengths

 Reuse: any two filters can 
be connected if they agree 
on that data format that is 
transmitted

 Ease of maintenance: 
filters can be added or 
replaced

 Potential for parallelism: 
filters implemented as 
separate tasks, consuming 
and producing data 
incrementally

Weaknesses

 Sharing global data is 
expensive or limiting

 Can be difficult to design 
incremental filters

 Not appropriate for 
interactive applications

 Error handling is Achilles 
heel, e.g., some 
intermediate filter crashes

 Often smallest common 
denominator on data 
transmission, e.g., ASCII in 
Unix pipes

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.1.1 Data Coupling

4.1.2 Procedural Coupling

4.1.3 Class Coupling 

4.2 Adaptation

4. Modularity – Coupling
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class Controller {

Sensor sensor;

public boolean selfTest( ) {

List<LogEntry> log = sensor.log( );

for( LogEntry e: log )

if( e.isError( ) ) return false;

return true;

}

}

Problems of Procedural Coupling: Reuse

 Modules are 

coupled to other 

modules whose 

methods they call

 Callers cannot be 

reused without 

callee modules

Peter Müller – Software Architecture and Engineering

class Sensor {

List<LogEntry> logData;

List<LogEntry> log( ) { return logData; }

}

4. Modularity – Coupling

class LogEntry {

…

boolean isError( ) { … }

}
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Problems of Procedural Coupling: Adaptation

 When modules are 

procedurally coupled, 

any change in the 

callees may require 

changes in the caller

- Change in signatures

- Adding or removing 

callees

 Example: Display stack 

trace when breakpoint 

is reached

Peter Müller – Software Architecture and Engineering

class Debugger {

Editor editor;

…

void processBreakPoint( … ) {

…

editor.showContext( … );

}

}

class Editor {

void showContext( … ) { … }

}

class StackViewer {

void showStackTrace( … ) { … }

}

4. Modularity – Coupling
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Approach 1: Moving Code

Peter Müller – Software Architecture and Engineering

class Controller {

Sensor sensor;

boolean selfTest( ) {

List<LogEntry> log = sensor.log( );

for( LogEntry e: log )

if( e.isError( ) ) return false;

return true;

}

}

class Sensor {

List<LogEntry> logData;

List<LogEntry> log( ) { return logData; }

}

class LogEntry {

…

boolean isError( ) { … }

}

Loop does not 

use data from 

Controller

4. Modularity – Coupling
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Approach 1: Moving Code (cont’d)

 Moving code may reduce 

procedural coupling

 It is common to even 

duplicate functionality to 

avoid dependencies on 

code from other projects 

or companies

Peter Müller – Software Architecture and Engineering

class Controller {

Sensor sensor;

boolean selfTest( ) 

{ return sensor.hasError( ); }

}

class Sensor {

List<LogEntry> logData;

boolean noError( ) {

for( LogEntry e: logData )

if( e.isError( ) ) return false;

return true;

}

}

class LogEntry {

…

boolean isError( ) { … }

}

4. Modularity – Coupling
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Approach 2: Event-Based Style

 Components may
- Generate events

- Register for events of other components with a callback

 Generators of events do not know which 

components will be affected by their events

 Examples

- Programming environment tool integration

- User interfaces, web sites, Android

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Observer Pattern: Structure

Observer

Update( )*
Subject

Attach( Observer )

Detach( Observer )

Notify( )

observers

ConcreteSubject

GetState( )

SetState( … )

subjectState

ConcreteObserver

Update( )

observerState

subject

forall o in 

observers: 

o.Update( )

return

subjectState

observerState = 

subject.GetState( )

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Observer Pattern: Collaborations

aConcreteSubject concreteObserver1 concreteObserver2

setState( … )

notify( )

update( )

getState( )

update( )

getState( )

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Observer Pattern: Example

 Debugger has a 

generic list of

observers

 Debugger generates 

event when breakpoint 

is reached

 Observers decide how 

to handle this event 

(no control by

debugger)

class Debugger extends Subject {

…

void processBreakPoint( … ) {

…

notify( … );

}

}

class Editor
implements Observer {

void showContext( … ) { … }

void update ( … ) {

showContext( … );

}

}

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Adaptation: Add StackViewer

 New requirement: 

Display stack trace 

when breakpoint is 

reached

 StackViewer is just 

another observer

 Debugger does not

have to be adapted

class StackViewer 
implements Observer {

…

void showStackTrace( … ) 

{ … }

void update ( … ) {

showStackTrace( … );

}

}

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Model-View-Controller Architecture

 Components

- Model contains the core functionality and data

- One or more views display information to the user

- One or more controllers handle user input

 Communication

- Change-propagation mechanism via events ensures 

consistency between user interface and model

- If the user changes the model through the controller of 

one view, the other views will be updated automatically

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Model-View-Controller Example

0

10

20

30

40

50

60

a b c

a b c

X 60 30 10

Y 50 30 20

Z 80 10 10

a

b

c

a = 50%

b = 30%

c = 20%

Change notification

Requests, modifications

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

View
View

Model-View-Controller Architecture

View
View

Model

(Application Interface)

Send events

Update view

Report

change

events

Change

state

View

Controller

4. Modularity – Coupling



41

Peter Müller – Software Architecture and Engineering

Event-Based Style: Discussion

Strengths

 Strong support for reuse:  

plug in new components by 

registering it for events

 Adaptation: add, remove, 

and replace components 

with minimum effect on 

other components in the 

system

Weaknesses

 Loss of control
- What components will 

respond to an event?

- In which order will 
components be invoked?

- Are invoked components 
finished?

 Ensuring correctness is 
difficult because it depends 
on context in which invoked

4. Modularity – Coupling
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request a.html

request b.html

set Messi

to “great”

Loss of Control: Example

great

<html><body>

<script>document.Messi = “great”;</script>

<iframe src="a.html" ></iframe>

<iframe src="b.html" ></iframe>

</body></html>

<html><body>

<script>parent.document.Messi = “poor”; 

</script>

</body></html>

<html><body>

<script>alert(parent.document.Messi);</script>

</body></html>

great

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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request a.html

request b.html

set Messi

to “great”

Loss of Control: Example (cont’d)

great

<html><body>

<script>document.Messi = “great”;</script>

<iframe src="a.html" ></iframe>

<iframe src="b.html" ></iframe>

</body></html>

<html><body>

<script>parent.document.Messi = “poor”; 

</script>

</body></html>

<html><body>

<script>alert(parent.document.Messi);</script>

</body></html>

poor

a.html is loaded

b.html is loaded

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Approach 3: Restricting Calls

 Enforce a policy that restricts which other modules 

a module may call

 Example: Layered architectures

- A layer depends only on lower layers

- Has no knowledge of higher layers

- Layers can be exchanged

4. Modularity – Coupling
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Example: Three-Tier Architecture

Peter Müller – Software Architecture and Engineering

Data Tier

(persistent storage)

Logic Tier

(business functionality)

Presentation Tier

(user interface)

Front-end

web server

Back-end 

application

server

Database

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

Layered Style: Discussion

Strengths

 Increasing levels of 

abstraction as we move up 

through layers: partitions 

complex problems

 Maintenance: in theory, a 

layer only interacts with 

layer below (low coupling)

 Reuse: different 

implementations of the 

same level can be 

interchanged

Weaknesses

 Performance:  

communicating down 

through layers and back 

up, hence bypassing may 

occur for efficiency reasons

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.1.1 Data Coupling

4.1.2 Procedural Coupling

4.1.3 Class Coupling 

4.2 Adaptation

4. Modularity – Coupling
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Inheritance

 Inheritance couples 

the subclass to the 

superclass

Peter Müller – Software Architecture and Engineering

class SymbolTable

extends TreeMap<Ident, Type> {

}

 Changes in the superclass may break the subclass

- Fragile baseclass problem

 Limits options for other inheritance relations

- Not possible in single-inheritance languages

- May cause conflicts with multiple inheritance

4. Modularity – Coupling
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Approach 1: Replacing Inheritance w/ Aggreg. 

 Inheritance can be replaced by Subtyping, 

aggregation, and delegation

 The same technique can

be used to avoid coupling

through inheritance

Peter Müller – Software Architecture and Engineering

Person

Programmer

Subject Person

Programmer

ISubject

Subject

class SymbolTable {

TreeMap<Ident, Type> types;

Type getType( Ident id ) 

{ return types.get( id ); } 

}

4. Modularity – Coupling
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class SymbolTable {

TreeMap<Ident, Type> types;

TreeMap<Ident, Type> getTypes( ) {

return types.clone( );

}

}

Type declarations

 Using class names in 

declarations of 

methods, fields, and 

local variables 

couples the client to 

the used classes

 Data structures are 

difficult to change 

during maintenance

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Approach 2: Using Interfaces

 Replace occurrences 

of class names by 

supertypes

 Use the most general 

supertype that offers 

all required operations

 Data structures can be 

changed without 

affecting the code

Peter Müller – Software Architecture and Engineering

class SymbolTable {

TreeMap<Ident, Type> types;

TreeMap<Ident, Type> getTypes( ) {

return types.clone( );

}

}

class SymbolTable {

Map<Ident, Type> types;

Map<Ident, Type> getTypes( ) {

return types.clone( );

}

}

4. Modularity – Coupling
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class SymbolTable {

Map<Ident, Type> types;

SymbolTable( ) {

types = new TreeMap<Ident, Type>( );

}

}

Object Allocation

 Allocations couple 

clients to the 

instantiated class

 Interfaces do not 

solve this problem

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling



53

Approach 3: Delegating Allocations

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

 Delegate allocations to a dedicated class called an 

abstract factory

 Different concrete factory classes make objects of 

different classes

 The concrete factory to be used is chosen by the 

client
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Peter Müller – Software Architecture and Engineering

Abstract Factory Pattern

Client

Abstract

Product

Abstract

Factory

Concrete

Product1

Concrete

Product2

Concrete

Factory2

Concrete

Factory1

Creates 

object

make( )

make( )make( )

4. Modularity – Coupling
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class SymbolTable {

MapFactory<Ident, Type> factory;

Map<Ident, Type> types;

SymbolTable( MapFactory<Ident, Type> f ) {

factory = f;

types = factory.make( );

}

}

Abstract Factory Example

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling

class TreeMapFactory implements MapFactory<K,V> {

Map<K,V> make( ) { return new TreeMap<K,V>( ); }

}

interface MapFactory<K,V> { Map<K,V> make( ); }

Symboltable is no 

longer coupled to 

TreeMap
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Coupling: Summary

 Low coupling is a general design goal

 However, there are trade-offs

- Cohesion: each module has a clear responsibility

- Performance and convenience 

(e.g., List and Iterator access nodes)

- Adaptability: some design patterns increase coupling to 

improve adaptability

- Code duplication

 Coupling to stable classes is less critical

- For example, using or inheriting from library classes

Peter Müller – Software Architecture and Engineering

4. Modularity – Coupling
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Peter Müller – Software Architecture and Engineering

4. Modularity

4.1 Coupling

4.2 Adaptation

4.2.1 Parameterization

4.2.2 Specialization

4. Modularity – Adaptation
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Change

 Since software is (perceived as being) easy to 

change, software systems often deviate from their 

initial design

 Typical changes include

- New features (requested by customers or management)

- New interfaces (new hardware, new or changed 

interfaces to other software systems)

- Bug fixing, performance tuning

 Changes often erode the structure of the system

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges
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Parameterization

 Modules can be prepared for change by allowing 

clients to influence their behavior

 Make modules parametric in:

- The values they manipulate

- The data structures they operate on

- The types they operate on

- The algorithms they apply

 One man’s constant is another man’s variable. 

[ Alan J. Perlis ]

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation
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Parameterization: Example

Peter Müller – Software Architecture and Engineering

4. Modularity – Adaptation

class Merger {

StringStream f1, f2;

boolean toggle;

String getNext( ) {

String res = null;

do {

res = (toggle ? f1.getNext( )

:  f2.getNext( ));

} while( res == null );

toggle = !toggle;

return res;

}

}

class StringStream {

String getNext( ) { … }

}

Source of data 

is a fixed class

Number of 

sources is fixed

Type of 

data is fixed

Filter criterion is 

fixed
Alternation 

between sources 

is fixed
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Parameterizing Values

 Modules can be made 

parametric by using 

variable values instead 

of constant values

Peter Müller – Software Architecture and Engineering

class Merger {

StringStream[ ] streams;

int next;

String getNext( ) {

String res = null;

do {

res = streams[ next ].getNext( );

} while( res == null );

next = (next + 1) % streams.length;

return res;

}

}

4. Modularity – Adaptation
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Parameterizing Data Structures

 Modules can be made 

parametric by using 

interfaces and factories 

instead of concrete 

classes

Peter Müller – Software Architecture and Engineering

class Merger {

Filter[ ] filters;

int next;

String getNext( ) {

String res = null;

do {

res = filters[ next ].getNext( );

} while( res == null );

next = (next + 1) % filters.length;

return res;

}

}

class StringStream

implements Filter {

String getNext( ) { … }

}

4. Modularity – Adaptation
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Parameterizing Types

 Modules can be made 

parametric by using 

generic types

Peter Müller – Software Architecture and Engineering

class Merger<D> {

Filter<D>[ ] filters;

int next;

D getNext( ) {

D res = null;

do {

res = filters[ next ].getNext( );

} while( res == null );

next = (next + 1) % filters.length;

return res;

}

}

class StringStream

implements Filter<String> {

String getNext( ) { … }

}
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Parameterizing Algorithms

 Modules can be made 

parametric by using 

function objects

- Closures (Scala)

- Delegates (C#)

- Function pointers (C++)

- Agents (Eiffel)

- Strategy pattern (Java)
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class Merger<D> {

Filter<D>[ ] filters;

int next;

Selector<D> s;

D getNext( ) {

D res = null;

do {

res = filters[ next ].getNext( );

} while( !s.select( res ) );

next = (next + 1) % filters.length;

return res;

}

}
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Strategy Pattern

Client Strategy

Strategy2Strategy1

apply( )

apply( )apply( )

interface Selector<D> {

boolean select( D val );

}

class NonNullSelector<D>

implements Selector<D> {

boolean select( D val ) {

return val != null;

}

}
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4. Modularity

4.1 Coupling

4.2 Adaptation

4.2.1 Parameterization

4.2.2 Specialization
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Dynamic Method Binding

 In object-oriented 

programs, behaviors 

can be specialized via 

overriding and dynamic 

method binding

class Merger<D> {

Filter<D>[ ] filters;

int next;

Selector<D> s;

D getNext( ) {

D res = null;

do {

res = filters[ next ].getNext( );

} while( !s.select( res ) );

next = (next + 1) % filters.length;

return res;

}

}
TimeStamp-

Selector

NonNull-

Selector

Selector

Peter Müller – Software Architecture and Engineering
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Dynamic Method Binding as Case Distinction

 Dynamic method binding is a case distinction on 

the dynamic type of the receiver object

 Adding or removing cases (method overrides) does 

not require changes in the caller

- Client code is adaptable

Peter Müller – Software Architecture and Engineering

s.select( res );

if( s instanceof NonNullSelector )

s.NonNullSelector::select( res );

else if( s instanceof TimeStampSelector )

s.TimeStampSelector::select( res );

else if …
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Static vs. Dynamic Method Binding

 Dynamic method binding has drawbacks

- Reasoning: Subclasses share responsibility for 

maintaining invariants

- Testing: Dynamic binding increases the number of 

possible behaviors that need to be tested

- Versioning: Dynamic binding makes it harder to evolve 

code without breaking subclasses

- Performance: Overhead of method look-up at run-time

 Choose binding carefully for each method

- Java: Consider making methods final

- C++, C#: Consider making methods virtual

Peter Müller – Software Architecture and Engineering
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Replacing Case Distinctions by Dyn. Binding

Peter Müller – Software Architecture and Engineering

class Movie {

static final int REGULAR = 0;

static final int CHILDREN = 1;

int _priceCode;

int getCharge( int days ) {

if( _priceCode == REGULAR )

return days * 3;

else

return days * 2;

}

}

abstract class Movie {

abstract int getCharge( int days );

}

class RegularMovie extends Movie {

int getCharge( int days ) {

return days * 3;

}

}

class ChildrenMovie extends Movie {

int getCharge( int days ) {

return days * 2;

}

}

Introducing new 

price codes 

requires changes
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Adaptation to New Cases 

Movie

getCharge( )

RegularMovie

getCharge( )

NewReleaseMovie

getCharge( )

ChildrenMovie

getCharge( )

A movie can 

change its 

classification
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Using Aggregation Plus Dynamic Binding

Price

getCharge( )

RegularPrice

getCharge( )

NewReleasePrice

getCharge( )

ChildrenPrice

getCharge( )

Movie

getCharge( )

return

_price.getCharge( )

_price
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State Pattern

Context

m( param )

ConcreteStateB

m( param )

ConcreteStateA

m( param )

AbstractState

m( param )

state.m( param );

state
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Case Distinction on Several Arguments

 Dynamic method binding is a case distinction on 

the dynamic type of the receiver object

 In some cases, it is useful to select an operation 

based on the dynamic type of the receiver object 

and of the argument(s)

Peter Müller – Software Architecture and Engineering

s.select( res );

if( s instanceof NonNullSelector )

s.NonNullSelector::select( res );

else if( s instanceof TimeStampSelector )

s.TimeStampSelector::select( res );

else if …
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Example: Operations on a Syntax Tree

 Consider a data structures 

with nodes of different types

 The behavior of operations 

depends on the type of 

node it is applied to

 The set of operations is not 

fixed

Peter Müller – Software Architecture and Engineering

Expr

BinaryExprLiteral

2

 Operations

- Type checking

- Evaluation

- Code generation

- Pretty printing
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Double Invocation

abstract class Expr {

abstract void accept( Visitor v );

}

class Literal extends Expr {

int val;

void accept( Visitor v ) {

v.visitLiteral( this ); 

}

}

abstract class Visitor {

abstract void visitLiteral( Literal e );

abstract void visitBinary( Binary e );

}

class Evaluator extends Visitor {

int value;

void visitLiteral( Literal e ) {

value = e.val;

}

void visitBinary( Binary e)  { … }

}
class Binary extends Expr {

void accept( Visitor v ) {

v.visitBinary( this ); 

}

}

class PrettyPrinter extends Visitor {

…

}

Peter Müller – Software Architecture and Engineering
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Visitor Pattern

Client

Visitor

visitElementA( ElementA )

visitElementB( ElementB )

ConcreteVisitor1

visitElementA( ElementA )

visitElementB( ElementB )

ConcreteVisitor2

visitElementA( ElementA )

visitElementB( ElementB )

Element

accept( Visitor v )

ElementA

accept( Visitor v )

ElementB

accept( Visitor v )

v.visitElementA( this )
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Adaptation: Summary

 Designing adaptable modules

- Makes inevitable changes easier

- Facilitates reuse

 Parameterization allows clients to customize the 

behavior by supplying different parameters

 Specialization allows clients to customize behavior 

by adding subclasses and overriding methods

Peter Müller – Software Architecture and Engineering
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