
Software Architecture and
Engineering: Part II

ETH Zurich, Spring 2015
Prof. Martin Vechev

Martin Vechev

SAE: Part II

 Static
Analysis

 Second
 Project

 Alias
Analysis

Relational
 Analysis

Interval
Analysis

Semantics
 &
 Theory

Assertions

 Framework

 SMT
solver

 Symbolic
 Reasoning

Synthesis

 Concolic
 Execution

 Symbolic
 Execution

 Web &
 Mobile
 Apps

 Race
Detection

 Context
Bounded Dynamic

 Analysis

2

Today

Martin Vechev

 Mathematical Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

3

Martin Vechev

Structures: Motivation

 Structures are important as they define
 the concrete and abstract domains

4

Martin Vechev

Partially Ordered Sets (posets)
A partial order is a binary relation   L  L on a set L with
these properties:

– Reflexive: p  L: p  p
– Transitive: p,q,r  L: (p  q ∧ q  r)  p  r
– Anti-symmetric: p,q  L: (p  q ∧ q  p)  p = q

A poset (L, ) is a set L equipped with a partial ordering 

– For example: ((L), ) is a poset, where denotes powerset

Intuition: captures implication between facts

– p  q intuitively means that p  q
– Later, we will say that if p  q , then p is “more precise” than

q (that is, p represents fewer concrete states than q)

5

Martin Vechev

Posets shown as Hasse Diagrams

6

 b

T

 a

 c

given the set { a,b,c, T, }

the Hasse diagram shows the order:

 { (,a), (,c), (a, b), (b, T), (c, T),
 (a, a), (b, b), (c, c), (T, T), (,),
 (,b), (, T), (a, T) }

Martin Vechev

Least / Greatest in Posets

Given a poset (L, ) , an element  L is called
the least element if it is smaller than all other
elements of the poset: p  L:  p. The greatest
element is an element T if p  L: p  T.

The least and greatest elements may not exist, but
if they do they are unique.

7

Martin Vechev

Least / Greatest: example

8

 b

 a

 c

 b

T

 a

 c

No greatest element No least element

Example where both do not exist ?

Martin Vechev

Bounds in Posets
Given a poset (L, ) and Y  L:
 u  L is an upper bound of Y if p  Y: p  u
 l  L is a lower bound of Y if p  Y: p  l

 note that the bounds for Y may not exist

• Y  L is a least upper bound of Y if Y is an upper bound of

Y and Y  u whenever u is another upper bound of Y.
• Y  L is greatest lower bound of Y if Y is a lower bound of

Y and Y  l whenever l is another lower bound of Y

– Note that Y and  Y need not be in Y.
– We often write p  q for {p, q} and p  q for { p, q}

9

Martin Vechev

Bounds: example

10

 b

 a

 c {b, c} has no upper bound

{b, c} has 2 lower bounds: a and

where  {b, c} = a

No T element

Martin Vechev

Bounds: example

11

 is there a  for ‘a’ and ‘b’ ?

is there a  for ‘c’ and ‘d’ ?

 a b

 c d

Martin Vechev

Bounds: example

12

 is there a  for ‘a’ and ‘b’ ?

 a b

 c d

 e

Martin Vechev

Complete Lattices

A complete lattice (L, , ) is a poset where Y and
Y exist for any Y  L.

For example, for a set L, ((L), , , ) is a complete
lattice.

 13

Martin Vechev

 Is this a complete lattice ?

14

 a b

 c d

 e

 f

Martin Vechev

Complete Lattices: Examples

15



{1}
{2}

{3}

{1,2}
{1,3}

{2,3}

{1,2,3}



- +



0

Martin Vechev

Complete Lattices: Examples

16 

[0,0] [-1,-1] [-2,-2]

[-2,-1]

[-2,0]

[1,1] [2,2]

[-1,0] [0,1] [1,2]

[-1,1] [0,2]

[-2,1] [-1,2]

[-2,2]

… …

[2,]

[1,]

[0,]

[-1,]

[-2,]

[- ,]

…

[- ,-2]

[-,-1]

[- ,0]

[-,1]

[- ,2]

Martin Vechev

Later we will see that the set of traces
P also belongs to a complete lattice

17

Martin Vechev

Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

18

Martin Vechev

Functions

A function f: A  B between two posets (A, ) and (B, ) is
increasing (monotone): a,b  A: a  b  f(a)  f(b)

Often, we use the special case where the function is
between elements in the same poset. That is, f: A  A.
Then a monotone function is: a,b  A: a  b  f(a)  f(b)

19

Martin Vechev

Fixed Points

For a poset (L, ) , function f: L  L, and element x  L:
– x is a fixed point iff f(x) = x
– x is a post-fixedpoint iff f(x)  x

Fix(f) denotes the set of all fixed points
Red(f) = set of all post-fixedpoints

20

Martin Vechev

Least Fixed Points

For a poset (L,) and a function f: L  L, we say that
lfp f  L is a least fixed point of f if:

– lfp f is a fixed point
– It is the least fixed point: a  L: a = f(a)  lfp f  a

Note that the least fixed point may not exist.

 21

Martin Vechev

 Fixed Points: Examples

22

• monotone function
• with no fixed point

• not monotone function
• with 2 fixed points
• no least fixed point

• monotone function
• with one fixed point
• has a least fixed point

• monotone function
• with 2 fixed points
• no least fixed point

• monotone function
• 4 fixed points
• least fixed point

there exists a post-fixedpoint
that is less than some fixed point

Martin Vechev

Tarski’s fixed point theorem (part of it)

If (L,,,,,) is a complete lattice and f: L  L is
a monotone function, then

 lfp f exists, and
 lfp f = Red(f)  Fix(f)

23

Note: the complete lattice can be of infinite height

Martin Vechev

Tarski’s theorem tells us that a fixed point exists,
but does not actually suggest an algorithm for
computing it.

Next: we look at ways to compute a fixed point

24

Martin Vechev

Function Iterates

For a poset (L, ) , a function f: L  L , an element a  L,
the iterates of the function from a are:

 f0(a), f1(a),f2(a)…

 where fn+1(a) = f(fn(a))

Note that f0(a) = a

In program analysis, we usually take a to be 

25

Martin Vechev

A useful fixed point theorem

Given a poset of finite height, a least element , a monotone f.

Then the iterates f0(), f1(), f2()… form an increasing
sequence which eventually stabilizes from some n  N, that is:
fn() = fn+1() and:

 lfp f = fn ()

This leads to a simple algorithm for computing lfp f

26

Martin Vechev

Concepts

• Structures: posets, lattices

• Functions: monotone, fixed points

• Approximating functions

27

Martin Vechev

Over-approximate P

The trace semantics:

P = { c0  c1  …  cn-1 | n  1  c0  I   i  [0 , n - 2]: ci  ci+1 }

Consider the function F:

 F(S) = I  {   c  c’ |   c ∈ S  c  c’ }

P is a least fixed point of F:

 F(P) = P

28

Martin Vechev

The Art of Approximation:
Static Program Analysis

– Define a function F such that F approximates F. This is
typically done manually and can be tricky but is done once
and for a programming language.

– Then, use existing theorems which state that the least
fixed point of F , e.g. some V, approximates the least fixed
point of F, e.g. P

– Finally, automatically compute a fixed point of F, that is a

V where F (V) = V

29

Martin Vechev

Approximating a Function

given functions:
 F: C  C

 F : C  C

what does it mean for F to approximate F ?

 x  C : F(x) c F(x)

30

Martin Vechev 31

Approximating a Function

What about when:
 F: C  C

 F : A  A

We need to connect the concrete C and the abstract A
We will connect them via two functions α and 
 α : C  A is called the abstraction function
  : A  C is called the concretization function

Martin Vechev



Connecting Concrete with Abstract

32

 (C, c) (A, A)

α

Martin Vechev

33

Approximating a Function: Definition 1

So we have the 2 functions:
 F: C  C

 F : A  A

If we know that α and  form a Galois Connection, then
we can use the following definition of approximation:

 z  A : α(F((z))) A F(z)

Martin Vechev

For the course, it is not important to know what
Galois Connections are.

The only point to keep in mind that is that they
place some restrictions on what α and  can be.

For instance, among other things, they require α
to be monotone.

34

Martin Vechev



z

 Visualizing Definition 1

35

 (C, c) (A, A)

F(z)

α

x

F(x)

F
F

Martin Vechev

 Approximating a Function

36

what this equation:

 z  A : α(F((z))) A F(z)

says is that if we have some function in the abstract that we
think should approximate the concrete function, then to
check that this is indeed true, we need to prove that for any
abstract element, concretizing it, applying the concrete
function and abstracting back again is less than applying the
function in the abstract directly.

Martin Vechev

Least precise approximation

37

To approximate F, we can always define F(z) = T

This solution is always sound as: z  A : α(F((z))) A T

However, it is not practically useful as it is too imprecise

Martin Vechev

Most precise approximation

38

What if F(z) = α(F((z))) ? This is the best abstract function.

The problem is that we often cannot implement such a F(z)
algorithmically.

However, we can come up with a F(z) that has the same behavior
as α(F((z))) but a different implementation.

Any such F(z) is referred to as the best transformer.

Martin Vechev

Key Theorem I: Least Fixed Point Approximation

39

1. monotone functions F: C  C and F : A  A

2. α : C  A and  : A  C forming a Galois Connection
3. z  A : α(F((z))) A F(z) (that is, F approximates F)

 α (lfp(F)) A lfp (F)

This is important as it goes from local function approximation to
global approximation. This is a key theorem in program analysis.

If we have:

then:

Martin Vechev

Least Fixed Point Approximation

40

The 3 premises to the theorem are usually proved
manually.

Once proved, we can now automatically compute a
least fixed point in the abstract and be sure that our
result is sound !

Martin Vechev

41

Approximating a Function: Definition 2

So we have the 2 functions:
 F: C  C

 F : A  A

But what if α and  do not form a Galois Connection ? For
instance, α is not monotone. Then, we can use the
following definition of approximation:

 z  A : F((z)) c (F(z))

Martin Vechev



z

 Visualizing Definition 2
(concretization-based)

42

 (C, c) (A,A)

F(z)

x

F(x)

F
F

Martin Vechev 43

1. monotone functions F: C  C and F : A  A

2.  : A  C is monotone
3. z  A : F((z)) c (F(z)) (that is, F approximates F)

 lfp(F) c  (lfp (F))

This is important as it goes from local function approximation to
global approximation. Another key theorem in program analysis.

If we have:

then:

Key Theorem II: Least Fixed Point Approximation

Martin Vechev

 So what is F then ?

F is to be defined for the particular abstract
domain A that we work with. The domain A can be
Sign, Parity, Interval, Octagon, Polyhedra, and so on.

In our setting and commonly, we simply keep a map
from every label (program counter) in the program
to an abstract element in A

Then F simply updates the mapping from labels to
abstract elements.

44

Martin Vechev 45

(’,action, )

 action(m(’))

T
F(m) =

if  is initial label

otherwise

 F
 F: (Lab  A)(Lab  A)

action : A  A

action is the key ingredient here. It captures the effect of a language
statement on the abstract domain A. Once we define it, we have F

action is often referred to as the abstract transformer.

Martin Vechev 46

 what is (’,action, ) ?

foo (int i) {

1: int x := 5;
2: int y := 7;

3: if (0 ≤ i) {
4: y := y + 1;
5: i := i - 1;
6: goto 3;
 }
7:}

Actions:

(1, x := 5, 2)
(2, y := 7, 3)
(3, 0 ≤ i, 4)
(3, 0 > i, 7)
(4, y = y + 1, 5)
(5, i := i – 1, 6)
(6, goto 3, 3)

Multiple (two) actions reach label 3

Martin Vechev 47

An action can be:

• b  BExp boolean expression in a conditional
• x:= a here, a  AExp
• skip

In performing an action, the assignment and the boolean expression
of a conditional is fully evaluated

{x2, y0}  {x4, y0}
x:=y+x

{x2, y0} 
if (x > 5) …

 what is action ?

Martin Vechev

Defining action
As we said, action captures the abstract
semantics of the language for a particular abstract
domain.

In later lectures we will see precise definitions for
some actions in the Interval domain. Defining
action for complex domains such as say Octagon
can be quite tricky.

Lets just have a brief example now to what it entails
even for Intervals…

48

Martin Vechev 49

 Example: what is x  y for Intervals ?

Suppose we have the program:

 // Here, x is [0,4] and y is [3,5]
 if (x  y){
 1: …
 }

What does x  y produce at label 1 ?

That is, what are x and y at label 1 ?

Martin Vechev 50

 Relational Abstractions
The Interval domain is an example of a non-relational
domain. It does not explicitly keep the relationship between
variables.

In some cases however, it may be necessary to keep this
relationship in order to be more precise. Next, we show two
examples of abstractions (Octagon and Polyhedra) where the
relationship is kept. These domains are called relational
domains.

In the project, you will use the Polyhedra domain, already
implemented as part of the Apron library.

51

 Octagon Domain

x

y

2 y  2

8 y  8

7

x  7

1

x  1

15

x+y  15

5

x+y  5

3

x-y  3
x-y  -20

constraints are of
the following form:
 + - + - x y  c

an abstract state is a map
from labels to conjunction
of constraints

x - y  3 
y  8 
y  2 
x + y  15 
x + y  5 
x  1 
x – y  -20 
x  7

The slope is fixed

52

 Polyhedra Domain

x

y

5

x+y  5

2

x-3y  2

x-y  -20
constraints are of the following form:

c1x1 + c2x2 … + cnxn  c

an abstract state is again a map
from labels to conjunction of
constraints:

x - y  -20 
x - 3  y  2 
x + y  5

 the slope can vary

	Slide Number 1
	Slide Number 2
	 Mathematical Concepts
	Structures: Motivation
	Partially Ordered Sets (posets)
	Posets shown as Hasse Diagrams
	Least / Greatest in Posets
	Least / Greatest: example
	Bounds in Posets
	Bounds: example
	Bounds: example
	Bounds: example
	Complete Lattices
		Is this a complete lattice ?
	Complete Lattices: Examples
	Complete Lattices: Examples
	Slide Number 17
	Concepts
	Functions
	Fixed Points
	Least Fixed Points
	 Fixed Points: Examples
	Tarski’s fixed point theorem (part of it)
	Slide Number 24
	Function Iterates
	A useful fixed point theorem
	Concepts
	Over-approximate P
	The Art of Approximation:�Static Program Analysis
	Approximating a Function
	Approximating a Function
	Connecting Concrete with Abstract
	Approximating a Function: Definition 1
	Slide Number 34
	 Visualizing Definition 1
	 Approximating a Function
	Least precise approximation
	Most precise approximation
	Key Theorem I: Least Fixed Point Approximation
	Least Fixed Point Approximation
	Approximating a Function: Definition 2
	 Visualizing Definition 2 (concretization-based)
	Key Theorem II: Least Fixed Point Approximation
	 So what is F then ?�
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Defining action
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

