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Today 
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Dynamic Race Detection 

• A popular kind of dynamic analysis 
 
• Highly effective for finding concurrency bugs 

 
• Many different variants 

– Trade-off between asymptotic complexity and  
precision of the analysis 
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Today 

We will illustrate the key concepts of race 
detection on a rich application domain that is 
quite prevalent today, namely event-driven 
applications such as Web pages and Android 
 
All concepts we study today apply to other 
settings: e.g. regular concurrent Java programs. 
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~ 640 million web pages 
 

 
 

 
 
 

~ 1 billion smartphones 
 
 

 
 
 

Reacts to events: user clicks,  arrival of network requests 
 

Motivation: Event-Driven Applications 
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Wanted: fast response time 

 
Highly Asynchronous, 
Complex control flow 

  

Event-Driven Applications 
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Looks Like This 
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This is what Runs 
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This is what Runs 
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This is what Runs 
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<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png” onload=“Gates=‘poor’;”> 
<img src=“img2.png” onload=“alert(Gates);”> 
 
</body> 
</html> 

11 

Non-determinism: network latency 



Martin Vechev 

<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png” onload=“Gates=‘poor’;”> 
<img src=“img2.png” onload=“alert(Gates);”> 
 
</body> 
</html> 

fetch img1.png 

12 

Non-determinism: network latency 



Martin Vechev 

<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png” onload=“Gates=‘poor’;”> 
<img src=“img2.png” onload=“alert(Gates);”> 
 
</body> 
</html> 

fetch img1.png 

13 

fetch img2.png 

Non-determinism: network latency 



Martin Vechev 

<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png” onload=“Gates=‘poor’;”> 
<img src=“img2.png” onload=“alert(Gates);”> 
 
</body> 
</html> 

fetch img1.png 

14 

fetch img2.png 

Non-determinism: network latency 



Martin Vechev 

<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png” onload=“Gates=‘poor’;”> 
<img src=“img2.png” onload=“alert(Gates);”> 
 
</body> 
</html> 

fetch img1.png 

15 

fetch img2.png 

Non-determinism: network latency 

great 
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fetch img2.png 

img1.png loaded 

Non-determinism: network latency 
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fetch img2.png 

img1.png loaded 
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fetch img2.png 

img1.png loaded 

img2.png is loaded 

Non-determinism: network latency 

poor 
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Non-determinism: user interaction 
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<html><body> 
 
// Lots of code 
 
  <input type="button" id="b1" 
      onclick="javascript:f()"> 
 
// Lots of code 
 
  <script> 
    f = function() { 
      alert(“hello”); 
    } 
  </script> 
 
... 
</body></html> 

User 
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Non-determinism: user interaction 
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User 

  parse <input> 
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Non-determinism: user interaction 
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<html><body> 
 
// Lots of code 
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      onclick="javascript:f()"> 
 
// Lots of code 
 
  <script> 
    f = function() { 
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    } 
  </script> 
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</body></html> 

User 

  parse <input> 

click button 
  read(“f”),  
    crash 
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Non-determinism: user interaction 
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<html><body> 
 
// Lots of code 
 
  <input type="button" id="b1" 
      onclick="javascript:f()"> 
 
// Lots of code 
 
  <script> 
    f = function() { 
      alert(“hello”); 
    } 
  </script> 
 
... 
</body></html> 

User 

  parse <input> 

click button 
  read(“f”),  
    crash 
 

parse/exec      
<script>, 
write (“f”) 
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What do we learn from these? 

Asynchrony  +  Shared Memory         
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Non-Determinism 

Unwanted Behavior 
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What do we learn from these? 

Asynchrony  +  Shared Memory         

25 

 Can we phrase the problem as data race detection ? 

Non-Determinism 

Unwanted Behavior 
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What is a Data Race ? 
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What is a Data Race ? 

Semantically, a data race occurs when we have a reachable 
program state where: 
 
• we have two outgoing transitions by two different threads 
• the two threads access the same memory location 
• one of the accesses is a write 
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Examples 

 Thread T1:              Thread T2:  
 
    fork T2 
     X = 1                         X = 2 

Data Race on X Program has No Data Races 

 Thread T1:           Thread T2:  
 
     X = 1                            X = 2 
     fork T2                         

The program has a reachable state 
where both X = 1 and X = 2  
are enabled 

The program does not have a reachable  
state where both X = 1 and X  = 2  
are enabled 
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Wanted 
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race 1 
race 2 
race 3 
…. 
race N 

Race Detector 
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Naïve Algorithm 

The definition of a data race suggests a naïve algorithm 
which finds all races of a program given some input states. 
The algorithm simply enumerates all reachable states of the 
concurrent program from the initial input states and checks 
the definition on each such reachable state. 
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Naïve Algorithm 

Does Not Scale to Real-World Programs 

The definition of a data race suggests a naïve algorithm 
which finds all races of a program given some input states. 
The algorithm simply enumerates all reachable states of the 
concurrent program from the initial input states and checks 
the definition on each such reachable state. 
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In Practice 
In practice, algorithms aim to scale to large programs by being more 
efficient and not keeping program states around. To accomplish that, 
they weaken their guarantees.  
 
We will see the guarantees they provide a little later, but at this point it 
is sufficient to mention that a typical guarantee is that the first race the 
algorithm repots is a real race, but any subsequent reported races after 
the first race are not guaranteed to exist, that is, they may be false 
positives, a major issue to deal with for any modern analyzer. 
 
False positives exist because of user-defined synchronization. 
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Example of a False Positive Race 
 (on variable X) 

                        Initially: X = Y = 0 
 
        Thread T1:              ||            Thread T2:  
 
     while(Y == 0);                                 X = 0 
     X = 1                                                Y = 1 
 

A state of the art race detector may report a race on X and Y 
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Modern Dynamic Race Detection: 5 Steps 
Step 1: Define Memory locations (on which races can happen) 
               Usually easy but there can be issues (framework vs. user-code) 

 
Step 2: Define Happens-Before Model (how operations are ordered) 
              Can be tricky to get right due to subtleties of concurrency 

 
Step 3: Come up with an Algorithm to detect races 

       Hard to get good asymptotic complexity  + correctness 
 

Step 4: Come up with techniques (algorithm, filters) to remove harmless races 
              Needs to answer what harmless means 
 
Step 5: Implement Algorithm and Evaluate 
              Important to have low instrumentation overhead 
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Dynamic Race Detection: Flow 

Program Build HB 
trace  Find  

Races 
HB graph 

obtained by  
running the  
program 

Here, we use  
the  definition of 
happens-before 

A directed 
acyclic graph 
(DAG) 

Query the graph for pairs of 
mutually unreachable nodes. 
Reduces to a reachability 
problem on graphs. Need 
space/time efficient algorithms 

Here, we may also apply 
algorithms to classify races 

(some of these  boxes will become clear later in the slides) 
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Let us now discuss these 5 steps in our 
example domain: event-driven applications 
 
These 5 steps need to be taken for any 
other domain 
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Difficulties… 
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Requires going over the HTML5 specification… 

…and experimenting with browsers… 
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• "Normal", C-like, memory locations for 
JavaScript variables 
 

• Functions are treated like "normal" locations 
 

• HTML DOM elements 
 

• Event, event-target and event-handler tuple 
38 

Memory 
Locations            Step 1: 
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  Memory Locations: Example 
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<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png”                    onload=“Gates=‘poor’;”> 
 
<img src=“img2.png”                   onload=“alert(Gates);”> 
 
</body> 
</html> 
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  … is a partial order (A, ≼ )  
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Happens-
Before 
Model 

           Step 2: 
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  … is a partial order (A, ≼ )  
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Happens-
Before 
Model 

First, define the contents of A, i.e. atomic action 
 E.g.:  parsing a single HTML element, executing a script, processing an 

event handler 

 
 

 

           Step 2: 
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  … is a partial order (A, ≼ )  
 
 

 
 

42 

Happens-
Before 
Model 

First, define the contents of A, i.e. atomic action 
 E.g.:  parsing a single HTML element, executing a script, processing an 

event handler 

 
 

 
Then, define ≼ , i.e. how to order actions 
 E.g.: parsing of HTML elements of the web page is ordered 

 
 

 
 

           Step 2: 
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<html> 
<head></head> 
<body> 
 
<script> 
var Gates = “great”; 
</script> 
 
<img src=“img1.png”                    onload=“Gates=‘poor’;”> 
 
<img src=“img2.png”                   onload=“alert(Gates);”> 
 
</body> 
</html> 

    Happens-Before: Example 
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a data race on Gates 
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Happens-
Before 
Model 

Memory 
Locations 

Steps 3 and 4 : Define Race Detection Algorithm 

44 

 
  
      ? ? 
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Dynamic Race Detection: Theorems 
(that an analyzer should ensure) 

No false positives: if the Analysis reports a race for a given 
execution then the execution for  sure contains a race 
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No false negatives: if the Analysis reports no races on an 
execution, then the execution must not contain a race 
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Synchronization done with read/writes 
 quickly leads to thousands of false races 

 
Massive number of event handlers 
 quickly causes space blow-up in analysis data structures 
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Two Challenges Affecting Steps 3 and 4 
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False Positives: Example 
<html><body> 
 
<script> 
 var init = false, y = null; 
 function f() { 
   if (init)  
     alert(y.g); 
   else  
     alert("not ready"); 
 } 
</script> 
 
<input type="button“ id="b1“ 
 onclick="javascript:f()"> 
 
<script> 
  y = { g:42 }; 
  init = true; 
</script> 
 
</body></html> 

• 3 variables with races: 
init 
y 
y.g 

 
 

• some races are synchronization: 
init  

 
 

• reports false races on variables: 
y 
y.g 
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 Wanted: “guaranteed” races 
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Intuition: identify races that are 
guaranteed to exist.  
 
We  report races on variable  
      init  
 
 
But not on: 

y 
y.g 
 

Because races on y and y.g are 
covered by the race on init 
 

 

<html><body> 
 
<script> 
 var init = false, y = null; 
 function f() { 
   if (init)  
     alert(y.g); 
   else  
     alert("not ready"); 
 } 
</script> 
 
<input type="button“ id="b1“ 
 onclick="javascript:f()"> 
 
<script> 
  y = { g:42 }; 
  init = true; 
</script> 
 
</body></html> 
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Synchronization with read/writes 
 race coverage eliminates false races 

 
Massive number of event handlers 
 quickly causes space blow-up in analysis data structures 
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Two Challenges Affecting Steps 3 and 4 
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A race detector should compute races.  The basic query is whether 
two operations a and b are ordered:  
          a ≼ b 
Observation: represent ≼ (the happens-before of an execution 
trace) as a directed acyclic graph and perform graph connectivity 
queries to answer a ≼ b 
 
Report a race if a and b are not reachable from one another, they 
teach the same memory location and one is a write. 

Computing Races 
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Example ≼ built from a trace 
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A 

B C 

D 

E 

The DAG representing ≼ 
      (Hasse diagram) Lets take the trace: ABCDE.  

If the happens-before tells us that B and C 
need not be ordered, but all others are ordered, 
then we obtain the following graph on the right, 
also written in text as: 
 
 
 
This graph captures that we not only have ABCDE 
as a trace but we also have ACBDE as a trace 

In this example, we would have a race between B and C 
if actions B and C were touching the same memory location 
and one of them was writing to that location. 

≼ = { ( A, B), (A, C), (B, D), (C, D), (D, E) } 
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a ≼ b via BFS 

52 

A 

B C 

D 

E 

M  - number of edges 
N  - number of nodes 
 
 
Query Time:   O(M) 
Space        :   O(N) 
 
 
 
 

? 
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A 

B C 

D 

E 

A vector clock vc is a map: 
 
        vc   Nodes    Nat 
 
associate a vector clock  
with each node 

1,0,0,0,0 

1,1,0,0,0 1,0,1,0,0 

1,1,1,1,0 

1,1,1,1,1 

1,0,0,0,0 ⊑ 1,1,1,1,0 
it follows that A ≼ D 
 
1,1,0,0,0 ⋢ 1,0,1,0,0  
it follows that B ⋠ C 

 a ≼ b  via vector clocks 
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In this example graph, Nodes = {A,B,C,D,E} 

? 
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A 

B C 

D 

E 

1,0,0,0,0 

1,1,0,0,0 1,0,1,0,0 

1,1,1,1,0 

1,1,1,1,1 

 a ≼ b  via vector clocks 
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At a given node, its vector clock 
captures who can reach that node.  
 
For example, for node C, its vector 
clock vc-C1,0,1,0,0 denotes that: 
 
A can reach C: because vc-C(A) = 1 
B cannot reach C: because vc-C (B) = 0 
C can reach C: because vc-C (C) = 1 
D cannot reach C: because vc-C (D) = 0 
E cannot reach C: because vc-C (E) = 0 
 
Given two nodes, say B and C, we 
can determine whether they are 
mutually unreachable by just checking: 
 
whether vc-C(B) = 0 and vc-B(C) = 0 
 
This is constant-time work. 

? 
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A 

B C 

D 

E 

1,0,0,0,0 

1,1,0,0,0 1,0,1,0,0 

1,1,1,1,0 

1,1,1,1,1 

 a ≼ b  via vector clocks 
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To compute the vector clocks, simply 
process each edge of the graph and join 
the vector clocks. 
 
For instance, to compute the vector 
clock for node D, we may first process 
the edge from to B -> D, thereby 
copying the vector clock 1,1,0,0,0 
from B to D. 
 
Then, when we process the edge C -> 
D, we will join (take the max) of the 
current vector clock at D (1,1,0,0,0 
) and the vector clock coming from C 
(1,0,1,0,0).  
 
That is, for each edge we process, we 
do O(N) work (as we need to iterate 
over each entry in the vector clock and 
the number of such entries is N). 

? 
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 a ≼ b  via vector clocks 
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A 

B C 

D 

E 

1,0,0,0,0 

1,1,0,0,0 1,0,1,0,0 

1,1,1,1,0 

1,1,1,1,1 

Space Explosion 

? 

 
Pre-computation Time:  O(M  N)  
       (to obtain all vector clocks) 
 
               Query  Time:   O(1) 
                (for a pair of nodes) 
 
                        Space:   O(N2) 
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A 

B C 

D 

E 

Key idea: Re-discover threads by 
partitioning the nodes into chains. 

     computes  a map: 
 
        c   Nodes   ChainIDs 
 
associate a chain with each node 

 a ≼ b  via combining chain 
decomposition with vector clocks 

57 

? 
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A 

B C 

D 

E 

Key idea: Re-discover threads by 
partitioning the nodes into chains. 

     computes  a map: 
 
        c   Nodes   ChainIDs 
 
associate a chain with each node 

 a ≼ b  via combining chain 
decomposition with vector clocks 
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? 
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A 

B C 

D 

E 

C = number of chains 
 
Chain Computation Time:  O(N3 + C  M) 
 
Vector clock computation: O(C  M) 
 
                    Query  Time:  O(1) 
 
                             Space:  O(C  N) 

Improved 

 a ≼ b  via combining chain     
       decomposition with vector clocks  

  (optimal version)  

59 
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A 

B C 

D 

E 

1,0 

2,0 1,1 

2,2 

2,3 

C = number of chains 
 
Chain Computation Time:  O(N3 + C  M) 
 
Vector clock computation: O(C  M) 
 
                    Query  Time:  O(1) 
 
                             Space:  O(C  N) 

Improved 
60 

 a ≼ b  via combining chain     
       decomposition with vector clocks  

  (optimal version)  

? 
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A 

B C 

D 

E 

1,0 

2,0 1,1 

2,2 

2,3 

C = number of chains 
 
Chain Computation Time:  O(C  M) 
 
Vector clock computation: O(C  M) 
 
                    Query  Time:  O(1) 
 
                             Space:  O(C  N) 

Improved 

Improved 

 a ≼ b  via combining chain     
       decomposition with vector clocks  

  (greedy version)  

? 
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Synchronization with read/writes 
 race coverage eliminates all false races 

 
Massive number of event handlers 
 greedy chain decomposition + vector clocks  

 space:  O(C  N)   where C << N        

62 

 

 

Two Challenges Affecting Steps 3 and 4 
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 Race Detection: Web 

63 

Happens-
Before 
Model 

Memory 
Locations 

 
  
      ? 

race 
coverage 

chain 
decomposition 

vector 
clocks 

Race Detector 

Pre-computation Time:  O(C  M) 
               Query  Time:  O(1) 
                        Space:   O(C  N) 
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• Based on WebKit  Browser 

– Used by Apple’s Safari and Google’s Chrome 

 
 

• Quite robust, Demo:  
– http://www.eventracer.org 
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Step 5: Implement and Evaluate 

http://www.eventracer.org/
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We evaluate algorithm performance and 
precision 
 
Hopefully algorithm is fast and does not report 
too many false positives on a wide range of 
applications 
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Step 5: Implement and Evaluate 
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 ~17 per  
web site 

Experiments: Fortune 100 web sites 
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Happens-
Before 
Model 

Memory 
Locations 

race 
coverage 

chain 
decomposition 

vector 
clocks 

Race Detector 
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Race coverage: benefit 
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Metric 
 
 

Mean 
# race vars 

Max 
# race vars 

All 634.6 3460 

Only uncovered races 45.3 331 

Filtering methods 

Writing same value 0.75 12 

Only local reads 3.42 43 

Late attachment of event handler 16.7 117 

Lazy initialization 4.3 61 

Commuting operations - className, cookie 4.0 80 

Race with unload 1.1 33 

Remaining after all filters 17.8 261 
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  314 uncovered races: manual inspection 

68 

synchronization races: many idoms 

    e.g. conditionals, try-catch, … 

57% 25% 

18% 

harmful races: many cases of 
reading from undefined,  
new bugs:UI glitches, broken 
functionality after a race, needs 
page refresh, missing event 
handlers, broken analytics, … 

 

harmless races 
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Metric 
 
 

Mean Max 

Number of event actions 5868 114900 

Number of chains 175 792 

Graph connectivity algorithm 

Vector clocks w/o chain decomposition 544MB 25181MB 

Vector clocks + chain decomposition 5MB 171MB 

69 

Algorithm: Space 
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Metric 
 
 

Mean Max 

Number of event actions 5868 114900 

Number of chains 175 792 

Graph connectivity algorithm 

Vector clocks w/o chain decomposition >0.1sec OOM 

Vector clocks + chain decomposition 0.04sec 2.4sec 

Breadth-first search >22sec TIMEOUT 

Algorithm: Time 
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Modern Dynamic Race Detection: 5 Steps 
Step 1: Define Memory locations (on which races can happen) 
               Usually easy but there can be issues (framework vs. user-code) 

 
Step 2: Define Happens-Before Model (how operations are ordered) 
              Can be tricky to get right due to subtleties of concurrency 

 
Step 3: Come up with an Algorithm to detect races 

       Hard to get good asymptotic complexity  + correctness 
 

Step 4: Come up with techniques (algorithm, filters) to remove harmless races 
              Needs to answer what harmless means 
 
Step 5: Implement Algorithm and Evaluate 
              Important to have low instrumentation overhead 
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Check it Out 

72 

http://www.eventracer.org 

http://www.eventracer.org/android 

Web:  

Android:  

https://github.com/eth-srl/ 
 

All Open Source: 

http://www.eventracer.org/
http://www.eventracer.org/
https://github.com/eth-srl/
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