
Martin Vechev

Software Architecture and
Engineering: Part II

ETH Zurich, Spring 2015
Prof. Martin Vechev

Martin Vechev

SAE: Part II

 Static
Analysis

 Second
 Project

 Alias
Analysis

Relational
 Analysis

Interval
Analysis

Semantics
 &
 Theory

Assertions

 Framework

 SMT
solver

 Symbolic
 Reasoning

Synthesis

 Concolic
 Execution

 Symbolic
 Execution

 Web &
 Mobile
 Apps

 Race
Detection

 Context
Bounded Dynamic

 Analysis

2

Today

Martin Vechev

Dynamic Race Detection

• A popular kind of dynamic analysis

• Highly effective for finding concurrency bugs

• Many different variants

– Trade-off between asymptotic complexity and
precision of the analysis

Martin Vechev

Today

We will illustrate the key concepts of race
detection on a rich application domain that is
quite prevalent today, namely event-driven
applications such as Web pages and Android

All concepts we study today apply to other
settings: e.g. regular concurrent Java programs.

Martin Vechev 5

~ 640 million web pages

~ 1 billion smartphones

Reacts to events: user clicks, arrival of network requests

Motivation: Event-Driven Applications

Martin Vechev

Wanted: fast response time

Highly Asynchronous,
Complex control flow

Event-Driven Applications

Martin Vechev 7

Looks Like This

Martin Vechev 8

This is what Runs

Martin Vechev 9

This is what Runs

Martin Vechev 10

This is what Runs

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

11

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

12

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

13

fetch img2.png

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

14

fetch img2.png

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

15

fetch img2.png

Non-determinism: network latency

great

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

16

fetch img2.png

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

17

fetch img2.png

img1.png loaded

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

18

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

fetch img1.png

19

fetch img2.png

img1.png loaded

img2.png is loaded

Non-determinism: network latency

poor

Martin Vechev

Non-determinism: user interaction

20

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

Martin Vechev

Non-determinism: user interaction

21

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

 parse <input>

Martin Vechev

Non-determinism: user interaction

22

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

 parse <input>

click button
 read(“f”),
 crash

Martin Vechev

Non-determinism: user interaction

23

<html><body>

// Lots of code

 <input type="button" id="b1"
 onclick="javascript:f()">

// Lots of code

 <script>
 f = function() {
 alert(“hello”);
 }
 </script>

...
</body></html>

User

 parse <input>

click button
 read(“f”),
 crash

parse/exec
<script>,
write (“f”)

Martin Vechev

What do we learn from these?

Asynchrony + Shared Memory

24

Non-Determinism

Unwanted Behavior

Martin Vechev

What do we learn from these?

Asynchrony + Shared Memory

25

 Can we phrase the problem as data race detection ?

Non-Determinism

Unwanted Behavior

Martin Vechev

What is a Data Race ?

Martin Vechev

What is a Data Race ?

Semantically, a data race occurs when we have a reachable
program state where:

• we have two outgoing transitions by two different threads
• the two threads access the same memory location
• one of the accesses is a write

Martin Vechev

Examples

 Thread T1: Thread T2:

 fork T2
 X = 1 X = 2

Data Race on X Program has No Data Races

 Thread T1: Thread T2:

 X = 1 X = 2
 fork T2

The program has a reachable state
where both X = 1 and X = 2
are enabled

The program does not have a reachable
state where both X = 1 and X = 2
are enabled

Martin Vechev

Wanted

29

race 1
race 2
race 3
….
race N

Race Detector

Martin Vechev

Naïve Algorithm

The definition of a data race suggests a naïve algorithm
which finds all races of a program given some input states.
The algorithm simply enumerates all reachable states of the
concurrent program from the initial input states and checks
the definition on each such reachable state.

Martin Vechev

Naïve Algorithm

Does Not Scale to Real-World Programs

The definition of a data race suggests a naïve algorithm
which finds all races of a program given some input states.
The algorithm simply enumerates all reachable states of the
concurrent program from the initial input states and checks
the definition on each such reachable state.

Martin Vechev

In Practice
In practice, algorithms aim to scale to large programs by being more
efficient and not keeping program states around. To accomplish that,
they weaken their guarantees.

We will see the guarantees they provide a little later, but at this point it
is sufficient to mention that a typical guarantee is that the first race the
algorithm repots is a real race, but any subsequent reported races after
the first race are not guaranteed to exist, that is, they may be false
positives, a major issue to deal with for any modern analyzer.

False positives exist because of user-defined synchronization.

Martin Vechev

Example of a False Positive Race
 (on variable X)

 Initially: X = Y = 0

 Thread T1: || Thread T2:

 while(Y == 0); X = 0
 X = 1 Y = 1

A state of the art race detector may report a race on X and Y

Martin Vechev

Modern Dynamic Race Detection: 5 Steps
Step 1: Define Memory locations (on which races can happen)
 Usually easy but there can be issues (framework vs. user-code)

Step 2: Define Happens-Before Model (how operations are ordered)
 Can be tricky to get right due to subtleties of concurrency

Step 3: Come up with an Algorithm to detect races

 Hard to get good asymptotic complexity + correctness

Step 4: Come up with techniques (algorithm, filters) to remove harmless races
 Needs to answer what harmless means

Step 5: Implement Algorithm and Evaluate
 Important to have low instrumentation overhead

Martin Vechev

Dynamic Race Detection: Flow

Program Build HB
trace Find

Races
HB graph

obtained by
running the
program

Here, we use
the definition of
happens-before

A directed
acyclic graph
(DAG)

Query the graph for pairs of
mutually unreachable nodes.
Reduces to a reachability
problem on graphs. Need
space/time efficient algorithms

Here, we may also apply
algorithms to classify races

(some of these boxes will become clear later in the slides)

Martin Vechev

Let us now discuss these 5 steps in our
example domain: event-driven applications

These 5 steps need to be taken for any
other domain

Martin Vechev

Difficulties…

37

Requires going over the HTML5 specification…

…and experimenting with browsers…

Martin Vechev

• "Normal", C-like, memory locations for
JavaScript variables

• Functions are treated like "normal" locations

• HTML DOM elements

• Event, event-target and event-handler tuple
38

Memory
Locations Step 1:

Martin Vechev

 Memory Locations: Example

39

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

Martin Vechev

 … is a partial order (A, ≼)

40

Happens-
Before
Model

 Step 2:

Martin Vechev

 … is a partial order (A, ≼)

41

Happens-
Before
Model

First, define the contents of A, i.e. atomic action
 E.g.: parsing a single HTML element, executing a script, processing an

event handler

 Step 2:

Martin Vechev

 … is a partial order (A, ≼)

42

Happens-
Before
Model

First, define the contents of A, i.e. atomic action
 E.g.: parsing a single HTML element, executing a script, processing an

event handler

Then, define ≼ , i.e. how to order actions
 E.g.: parsing of HTML elements of the web page is ordered

 Step 2:

Martin Vechev

<html>
<head></head>
<body>

<script>
var Gates = “great”;
</script>

</body>
</html>

 Happens-Before: Example

43

a data race on Gates

Martin Vechev

Happens-
Before
Model

Memory
Locations

Steps 3 and 4 : Define Race Detection Algorithm

44

 ? ?

Martin Vechev

Dynamic Race Detection: Theorems
(that an analyzer should ensure)

No false positives: if the Analysis reports a race for a given
execution then the execution for sure contains a race

45

No false negatives: if the Analysis reports no races on an
execution, then the execution must not contain a race

Martin Vechev

Synchronization done with read/writes
 quickly leads to thousands of false races

Massive number of event handlers
 quickly causes space blow-up in analysis data structures

46

Two Challenges Affecting Steps 3 and 4

Martin Vechev

False Positives: Example
<html><body>

<script>
 var init = false, y = null;
 function f() {
 if (init)
 alert(y.g);
 else
 alert("not ready");
 }
</script>

<input type="button“ id="b1“
 onclick="javascript:f()">

<script>
 y = { g:42 };
 init = true;
</script>

</body></html>

• 3 variables with races:
init
y
y.g

• some races are synchronization:
init

• reports false races on variables:
y
y.g

Martin Vechev

 Wanted: “guaranteed” races

48

Intuition: identify races that are
guaranteed to exist.

We report races on variable
 init

But not on:

y
y.g

Because races on y and y.g are
covered by the race on init

<html><body>

<script>
 var init = false, y = null;
 function f() {
 if (init)
 alert(y.g);
 else
 alert("not ready");
 }
</script>

<input type="button“ id="b1“
 onclick="javascript:f()">

<script>
 y = { g:42 };
 init = true;
</script>

</body></html>

Martin Vechev

Synchronization with read/writes
 race coverage eliminates false races

Massive number of event handlers
 quickly causes space blow-up in analysis data structures

49

Two Challenges Affecting Steps 3 and 4

Martin Vechev 50

A race detector should compute races. The basic query is whether
two operations a and b are ordered:
 a ≼ b
Observation: represent ≼ (the happens-before of an execution
trace) as a directed acyclic graph and perform graph connectivity
queries to answer a ≼ b

Report a race if a and b are not reachable from one another, they
teach the same memory location and one is a write.

Computing Races

Martin Vechev

Example ≼ built from a trace

51

A

B C

D

E

The DAG representing ≼
 (Hasse diagram) Lets take the trace: ABCDE.

If the happens-before tells us that B and C
need not be ordered, but all others are ordered,
then we obtain the following graph on the right,
also written in text as:

This graph captures that we not only have ABCDE
as a trace but we also have ACBDE as a trace

In this example, we would have a race between B and C
if actions B and C were touching the same memory location
and one of them was writing to that location.

≼ = { (A, B), (A, C), (B, D), (C, D), (D, E) }

Martin Vechev

a ≼ b via BFS

52

A

B C

D

E

M - number of edges
N - number of nodes

Query Time: O(M)
Space : O(N)

?

Martin Vechev

A

B C

D

E

A vector clock vc is a map:

 vc Nodes Nat

associate a vector clock
with each node

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

1,0,0,0,0 ⊑ 1,1,1,1,0
it follows that A ≼ D

1,1,0,0,0 ⋢ 1,0,1,0,0
it follows that B ⋠ C

 a ≼ b via vector clocks

53

In this example graph, Nodes = {A,B,C,D,E}

?

Martin Vechev

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

 a ≼ b via vector clocks

54

At a given node, its vector clock
captures who can reach that node.

For example, for node C, its vector
clock vc-C1,0,1,0,0 denotes that:

A can reach C: because vc-C(A) = 1
B cannot reach C: because vc-C (B) = 0
C can reach C: because vc-C (C) = 1
D cannot reach C: because vc-C (D) = 0
E cannot reach C: because vc-C (E) = 0

Given two nodes, say B and C, we
can determine whether they are
mutually unreachable by just checking:

whether vc-C(B) = 0 and vc-B(C) = 0

This is constant-time work.

?

Martin Vechev

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

 a ≼ b via vector clocks

55

To compute the vector clocks, simply
process each edge of the graph and join
the vector clocks.

For instance, to compute the vector
clock for node D, we may first process
the edge from to B -> D, thereby
copying the vector clock 1,1,0,0,0
from B to D.

Then, when we process the edge C ->
D, we will join (take the max) of the
current vector clock at D (1,1,0,0,0
) and the vector clock coming from C
(1,0,1,0,0).

That is, for each edge we process, we
do O(N) work (as we need to iterate
over each entry in the vector clock and
the number of such entries is N).

?

Martin Vechev

 a ≼ b via vector clocks

56

A

B C

D

E

1,0,0,0,0

1,1,0,0,0 1,0,1,0,0

1,1,1,1,0

1,1,1,1,1

Space Explosion

?

Pre-computation Time: O(M N)
 (to obtain all vector clocks)

 Query Time: O(1)
 (for a pair of nodes)

 Space: O(N2)

Martin Vechev

A

B C

D

E

Key idea: Re-discover threads by
partitioning the nodes into chains.

 computes a map:

 c Nodes ChainIDs

associate a chain with each node

 a ≼ b via combining chain
decomposition with vector clocks

57

?

Martin Vechev

A

B C

D

E

Key idea: Re-discover threads by
partitioning the nodes into chains.

 computes a map:

 c Nodes ChainIDs

associate a chain with each node

 a ≼ b via combining chain
decomposition with vector clocks

58

?

Martin Vechev

A

B C

D

E

C = number of chains

Chain Computation Time: O(N3 + C M)

Vector clock computation: O(C M)

 Query Time: O(1)

 Space: O(C N)

Improved

 a ≼ b via combining chain
 decomposition with vector clocks

 (optimal version)

59

Martin Vechev

A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(N3 + C M)

Vector clock computation: O(C M)

 Query Time: O(1)

 Space: O(C N)

Improved
60

 a ≼ b via combining chain
 decomposition with vector clocks

 (optimal version)

?

Martin Vechev 61

A

B C

D

E

1,0

2,0 1,1

2,2

2,3

C = number of chains

Chain Computation Time: O(C M)

Vector clock computation: O(C M)

 Query Time: O(1)

 Space: O(C N)

Improved

Improved

 a ≼ b via combining chain
 decomposition with vector clocks

 (greedy version)

?

Martin Vechev

Synchronization with read/writes
 race coverage eliminates all false races

Massive number of event handlers
 greedy chain decomposition + vector clocks

 space: O(C N) where C << N

62

Two Challenges Affecting Steps 3 and 4

Martin Vechev

 Race Detection: Web

63

Happens-
Before
Model

Memory
Locations

 ?

race
coverage

chain
decomposition

vector
clocks

Race Detector

Pre-computation Time: O(C M)
 Query Time: O(1)
 Space: O(C N)

Martin Vechev

• Based on WebKit Browser

– Used by Apple’s Safari and Google’s Chrome

• Quite robust, Demo:
– http://www.eventracer.org

64

Step 5: Implement and Evaluate

http://www.eventracer.org/

Martin Vechev

We evaluate algorithm performance and
precision

Hopefully algorithm is fast and does not report
too many false positives on a wide range of
applications

65

Step 5: Implement and Evaluate

Martin Vechev

 ~17 per
web site

Experiments: Fortune 100 web sites

66

Happens-
Before
Model

Memory
Locations

race
coverage

chain
decomposition

vector
clocks

Race Detector

Martin Vechev

Race coverage: benefit

67

Metric

Mean
race vars

Max
race vars

All 634.6 3460

Only uncovered races 45.3 331

Filtering methods

Writing same value 0.75 12

Only local reads 3.42 43

Late attachment of event handler 16.7 117

Lazy initialization 4.3 61

Commuting operations - className, cookie 4.0 80

Race with unload 1.1 33

Remaining after all filters 17.8 261

Martin Vechev

 314 uncovered races: manual inspection

68

synchronization races: many idoms

 e.g. conditionals, try-catch, …

57% 25%

18%

harmful races: many cases of
reading from undefined,
new bugs:UI glitches, broken
functionality after a race, needs
page refresh, missing event
handlers, broken analytics, …

harmless races

Martin Vechev

Metric

Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition 544MB 25181MB

Vector clocks + chain decomposition 5MB 171MB

69

Algorithm: Space

Martin Vechev 70

Metric

Mean Max

Number of event actions 5868 114900

Number of chains 175 792

Graph connectivity algorithm

Vector clocks w/o chain decomposition >0.1sec OOM

Vector clocks + chain decomposition 0.04sec 2.4sec

Breadth-first search >22sec TIMEOUT

Algorithm: Time

Martin Vechev

Modern Dynamic Race Detection: 5 Steps
Step 1: Define Memory locations (on which races can happen)
 Usually easy but there can be issues (framework vs. user-code)

Step 2: Define Happens-Before Model (how operations are ordered)
 Can be tricky to get right due to subtleties of concurrency

Step 3: Come up with an Algorithm to detect races

 Hard to get good asymptotic complexity + correctness

Step 4: Come up with techniques (algorithm, filters) to remove harmless races
 Needs to answer what harmless means

Step 5: Implement Algorithm and Evaluate
 Important to have low instrumentation overhead

Martin Vechev

Check it Out

72

http://www.eventracer.org

http://www.eventracer.org/android

Web:

Android:

https://github.com/eth-srl/

All Open Source:

http://www.eventracer.org/
http://www.eventracer.org/
https://github.com/eth-srl/

	Slide Number 1
	Slide Number 2
	Dynamic Race Detection
	Today
	Motivation: Event-Driven Applications
	Event-Driven Applications
	Looks Like This
	This is what Runs
	This is what Runs
	This is what Runs
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: network latency
	Non-determinism: user interaction
	Non-determinism: user interaction
	Non-determinism: user interaction
	Non-determinism: user interaction
	What do we learn from these?
	What do we learn from these?
	What is a Data Race ?
	What is a Data Race ?
	Examples
	Wanted
	Naïve Algorithm
	Naïve Algorithm
	In Practice
	Example of a False Positive Race� (on variable X)
	Modern Dynamic Race Detection: 5 Steps
	Dynamic Race Detection: Flow
	Slide Number 36
	Difficulties…
	 Step 1:
	 Memory Locations: Example
	 Step 2:
	 Step 2:
	 Step 2:
	 Happens-Before: Example
	Steps 3 and 4 : Define Race Detection Algorithm
	Dynamic Race Detection: Theorems�(that an analyzer should ensure)
	Two Challenges Affecting Steps 3 and 4
	False Positives: Example
		Wanted: “guaranteed” races
	Two Challenges Affecting Steps 3 and 4
	Computing Races
	Example ≼ built from a trace
	a ≼ b via BFS
	 a ≼ b via vector clocks
	 a ≼ b via vector clocks
	 a ≼ b via vector clocks
	 a ≼ b via vector clocks
	 a ≼ b via combining chain decomposition with vector clocks
	 a ≼ b via combining chain decomposition with vector clocks
	 a ≼ b via combining chain � decomposition with vector clocks 		 (optimal version)	
	 a ≼ b via combining chain � decomposition with vector clocks 		 (optimal version)	
	 a ≼ b via combining chain � decomposition with vector clocks 		 (greedy version)	
	Two Challenges Affecting Steps 3 and 4
		Race Detection: Web
	Step 5: Implement and Evaluate
	Step 5: Implement and Evaluate
	Experiments: Fortune 100 web sites
	Race coverage: benefit
	 314 uncovered races: manual inspection
	Algorithm: Space
	Algorithm: Time
	Modern Dynamic Race Detection: 5 Steps
	Check it Out

