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  Mathematical Concepts 

• Structures: posets, lattices 
 
• Functions: monotone, fixed points 

 
• Approximating functions 
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Structures: Motivation 

 
 
 Structures are important as they define  
 the concrete and abstract domains 
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Partially Ordered Sets (posets) 
A partial order is a binary relation     L  L on a set L with 
these properties: 

– Reflexive:  p  L: p  p 
– Transitive: p,q,r  L: (p  q ∧ q  r)  p  r 
– Anti-symmetric: p,q  L: (p  q ∧ q  p)  p = q 

 
A poset (L, ) is a set L equipped with a partial ordering  

– For example: ((L), )  is a poset, where denotes powerset 

 
Intuition: captures implication between facts 

– p  q intuitively means that p  q 
– Later, we will say that if p  q , then p is “more precise” than 

q (that is, p represents fewer concrete states than q) 
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Posets shown as Hasse Diagrams 
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 b 

T 

 a 

 c 

given the set { a,b,c, T,     }  
 
the Hasse diagram shows  the order: 

 { (    ,a), (    ,c), (a, b), (b, T), (c, T), 
   (a, a), (b, b), (c, c), (T, T), (    ,   ), 
   (    ,b), (    , T), (a, T) } 
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Least / Greatest in Posets 

Given a poset (L, ) , an element       L is called 
the least element if it is smaller than all other 
elements of the poset: p  L:      p. The greatest 
element is an element T if p  L:  p  T. 
 
The least and greatest elements may not exist, but 
if they do they are unique. 
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Least / Greatest: example 
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 c 

No greatest element No least element 

Example where both do not exist ? 
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Bounds in Posets 
Given a poset (L, )  and  Y   L: 
   u  L is an upper bound of  Y if p  Y: p  u 
   l  L is a lower bound of Y if  p  Y: p  l 
 
   note that the bounds for Y may not exist 
 
• Y  L is a least upper bound of Y if Y  is an upper bound of  

Y and Y  u whenever u is another upper bound of  Y.   
• Y  L is greatest lower bound of Y if Y  is a lower bound of  

Y and Y  l whenever l is another lower bound of  Y 
  
– Note that Y and  Y need not be in Y. 
– We often write p  q for {p, q} and  p  q for { p, q} 
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Bounds: example 
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 b 

 a 

 c {b, c} has no upper bound 
 
{b, c} has 2 lower bounds: a and  
 
where  {b, c} = a 
 
No T element 
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Bounds: example 
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 is there a   for ‘a’ and ‘b’ ?  
  
is there a    for ‘c’ and ‘d’ ?   

 a  b 

 c  d 
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Bounds: example 
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 is there a   for ‘a’ and ‘b’ ?  
 

 a  b 

 c  d 
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Complete Lattices 

 
A complete lattice (L, , ) is a poset where Y and  
Y exist for any Y  L.  
 
For example, for a set L, ((L), , , )  is a complete 
lattice. 
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 Is this a complete lattice ? 
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Complete Lattices: Examples 
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 

{1} 
{2} 

{3} 

{1,2} 
{1,3} 

{2,3} 

{1,2,3} 

 

- + 

 
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Complete Lattices: Examples 

16  

[0,0] [-1,-1] [-2,-2] 

[-2,-1] 

[-2,0] 

[1,1] [2,2] 

[-1,0] [0,1] [1,2] 

[-1,1] [0,2] 

[-2,1] [-1,2] 

[-2,2] 

… … 

[2,] 

[1,] 

[0,] 

[-1,] 

[-2,] 

[- ,] 

… 

[- ,-2] 

[-,-1] 

[- ,0] 

[-,1] 

[- ,2] 
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Later we will see that the set of traces  
P  also belongs to a complete lattice 
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Concepts 

• Structures: posets, lattices 
 
• Functions: monotone, fixed points 

 
• Approximating functions 
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Functions 
 
A function f: A  B between two posets (A, ) and (B, ) is 
increasing  (monotone):    a,b  A: a  b  f(a)  f(b) 

 
Often, we use the special case where the function is 
between elements in the same poset. That is,  f: A  A. 
Then a monotone function is:   a,b  A: a  b  f(a)  f(b) 
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Fixed Points 

For a poset (L, ) , function f: L  L, and element x  L: 
– x is a fixed point iff f(x) = x 
– x is a post-fixedpoint iff f(x)  x 

 
Fix(f) denotes the set of all fixed points 
Red(f) = set of all post-fixedpoints 
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Least Fixed Points 

 
For a poset (L,) and a function f: L  L, we say that  
lfp f  L is a least fixed point of f if: 

– lfp f is a fixed point 
– It is the least fixed point: a  L: a = f(a)  lfp f  a 

 
Note that the least fixed point may not exist. 
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  Fixed Points: Examples 

22 

• monotone function 
• with no fixed point 

• not monotone function 
• with 2 fixed points 
• no least fixed point 

• monotone function  
• with one fixed point 
• has a least fixed point 

• monotone function 
• with 2 fixed points 
• no least fixed point 

• monotone function 
• 4 fixed points 
• least fixed point 

there exists a  post-fixedpoint  
that is less than some fixed point 
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Tarski’s fixed point theorem (part of it) 

 
If (L,,,,,) is a complete lattice and f: L  L is 
a monotone function, then 
 
  lfp f exists, and  
  lfp f  = Red(f)  Fix(f) 
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Note: the complete lattice can be of infinite height 



Martin Vechev 

Tarski’s theorem tells us that a fixed point exists, 
but does not actually suggest an algorithm for 
computing it. 
 
Next: we look at ways to compute a fixed point 
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Function Iterates 

For a poset (L, ) , a function f: L  L , an element a  L, 
the iterates of the function from a are: 
 
   f0(a), f1(a),f2(a)… 
 
           where fn+1(a) = f(fn(a)) 
 
Note that f0(a) = a 
 
In program analysis, we usually take a to be   
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A useful fixed point theorem 

Given a poset of finite height, a least element , a monotone f. 
 
Then the iterates  f0(), f1(), f2()… form an increasing 
sequence which eventually stabilizes from some n  N, that is: 
fn() = fn+1()  and: 
 
          lfp f = fn () 
 
This leads to a simple algorithm for computing lfp f  
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Concepts 

• Structures: posets, lattices 
 
• Functions: monotone, fixed points 

 
• Approximating functions 
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Over-approximate P 

The trace semantics:  
   
P = { c0  c1  …  cn-1   |  n  1   c0   I   i  [0 , n - 2]: ci  ci+1 } 

 
 
Consider the function F:  

 

  F(S) =  I      {   c  c’  |     c ∈ S    c  c’ }  
 
P  is a least fixed point of F:  

 

            F(P) = P 
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The Art of Approximation: 
Static Program Analysis 

– Define a function F such that F approximates  F.  This is 
typically done manually and can be tricky but is done once 
and for a programming language. 
 

– Then, use existing theorems which state that the least 
fixed point of F , e.g. some V, approximates the least fixed 
point of F, e.g. P 

 
– Finally, automatically compute a fixed point of F, that is a 

V  where F (V) = V 
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Approximating a Function 

given functions: 
       F: C  C  

     F : C   C  

 
what does it mean for F to approximate F ? 
 
   x  C  : F(x) c F(x) 

30 
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Approximating a Function 

What about when:  
        F: C  C  

      F : A  A  

 

We need to connect  the concrete C and the abstract A 
We will connect them via two functions  α  and   
      α : C  A   is called the abstraction function 
        : A  C   is called the concretization function 
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 

Connecting Concrete with Abstract 
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       (C, c)          (A, A) 

α 
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Approximating a Function: Definition 1 

So we have the 2 functions: 
        F: C  C  

      F : A  A  

 
If we know that α and  form a Galois Connection, then 
we can use the following definition of approximation: 
 
      z  A : α(F((z))) A F(z) 
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For the course, it is not important to know what 
Galois Connections are.  
 
The only point to keep in mind that is that they 
place some restrictions on what α and   can be. 
 
For instance, among other things, they require α 
to be monotone. 
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 

z 

 Visualizing Definition 1 
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  (C, c)          (A, A) 

F(z) 

α 

x 

F(x) 

F 
F 
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 Approximating a Function 

 
 
 
 
 

36 

what this equation: 
 
  z  A : α(F((z))) A F(z) 
 
says is that if we have some function in the abstract that we 
think should approximate the concrete function, then to 
check that this is indeed true, we need to prove that for any 
abstract element, concretizing it, applying the concrete 
function and abstracting back again is less than applying the 
function in the abstract directly. 
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Least precise approximation 
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To approximate F, we can always define F(z) = T 
 
 
This solution is always sound as: z  A : α(F((z))) A T 
 
 
However, it is not practically useful as it is too imprecise 
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Most precise approximation 
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What if F(z)  = α(F((z))) ?  This is the best abstract function.   
 
The problem is that we often cannot implement such a F(z) 
algorithmically.   
 
However, we can come up with a F(z) that has the same behavior 
as α(F((z)))  but a different implementation.   
 
Any such F(z) is referred to as the best transformer.   
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Key Theorem I: Least Fixed Point Approximation 
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1. monotone functions    F: C  C     and   F : A  A  

2. α : C  A  and  : A  C  forming a Galois Connection 
3. z  A : α(F((z))) A F(z)   (that is, F approximates F) 

 
 
 
 
 

 
 α (lfp(F)) A lfp (F) 

This is important as it goes from local function approximation to 
global approximation. This is a key theorem in program analysis. 

If we have: 

then: 
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Least Fixed Point Approximation 

40 

The 3 premises to the theorem are usually proved 
manually. 
 
Once proved, we can now automatically compute a 
least fixed point in the abstract and be sure that our 
result is sound ! 
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Approximating a Function: Definition 2 

So we have the 2 functions: 
        F: C  C  

      F : A  A  

 
But what if  α and  do not form a Galois Connection ? For 
instance, α  is not monotone.  Then, we can use the 
following definition of approximation: 
    
          z  A : F((z))   c   (F(z)) 
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 

z 

 Visualizing Definition 2 
(concretization-based) 
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  (C, c)          (A,A) 

F(z) 

x 

F(x) 

F 
F 
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1. monotone functions    F: C  C     and   F : A  A  

2.  : A  C  is monotone 
3. z  A : F((z))   c   (F(z)) (that is, F approximates F) 

 
 
 
 
 

 
 lfp(F)  c  (lfp (F)) 

This is important as it goes from local function approximation to 
global approximation. Another key theorem in program analysis. 

If we have: 

then: 

Key Theorem II: Least Fixed Point Approximation 
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 So what is F  then ? 
 

F is to be defined for the particular abstract 
domain A that we work with. The domain A can be 
Sign, Parity, Interval, Octagon, Polyhedra, and so on.  
 
In our setting and commonly, we simply keep a map 
from every label (program counter) in the program 
to an abstract element in A 
 
Then  F simply updates the mapping from labels to 
abstract elements. 
 

44 
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(’,action, ) 

 action(m( ’))              

T 
F(m)   = 

if  is initial label 

otherwise 

       F 
   F: (Lab  A)(Lab  A) 

action : A  A 

action is the key ingredient here. It captures the effect of a language 
statement on the abstract domain A. Once we define it, we have F 
 

action is often referred to as the abstract transformer. 
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  what is  (’,action, ) ?  

foo (int i) {  
 
1: int x := 5; 
2: int y := 7; 
 
3: if (0 ≤ i) { 
4:   y := y + 1; 
5:   i := i - 1; 
6:   goto 3; 
   } 
7:} 

Actions: 
 
(1, x := 5, 2)  
(2, y := 7, 3)  
(3, 0 ≤ i, 4)     
(3, 0 > i, 7) 
(4, y = y + 1, 5)  
(5, i := i – 1, 6)  
(6, goto 3, 3) 

Multiple (two) actions reach label 3 
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An action can be: 
  

• b   BExp    boolean expression in a conditional 
• x:= a        here,  a   AExp     
• skip   

 
In performing an action, the assignment and the boolean expression 
of a conditional is fully evaluated 

{x2, y0}      {x4, y0} 
x:=y+x 

{x2, y0}    
if (x > 5) … 

       what is  action ? 
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Defining action  
As we said, action captures the abstract 
semantics of the language for a particular abstract 
domain.  
 
In later lectures we will see precise definitions for 
some actions in the Interval domain. Defining 
action for complex domains such as say Octagon 
can be quite tricky.  
 
Lets just have a brief example now to what it entails 
even for Intervals… 
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      Example: what is  x  y for Intervals ? 

Suppose we have the program: 
  
    // Here, x is [0,4] and y is [3,5]      
    if (x  y){ 
      1: … 
    } 
 
What does x  y  produce at label 1 ? 
 
That is, what are  x and y at label 1 ? 
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   Relational Abstractions 
The Interval domain is an example of a non-relational 
domain. It does not explicitly keep the relationship between 
variables. 
 
In some cases however, it may be necessary to keep this 
relationship in order to be more precise. Next, we show two 
examples of abstractions (Octagon and Polyhedra) where the 
relationship is kept. These domains are called relational 
domains. 
 
In the project, you will use the Polyhedra domain, already 
implemented as part of the Apron library.  
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    Octagon Domain 

x 

y 

2 y  2 

8 y  8 

7 

x  7 

1 

x  1 

15 

x+y  15 

5 

x+y  5 

3 

x-y  3 
x-y  -20 

constraints  are of 
the following form:  
 + - + - x y  c 

an abstract state is a map 
from labels to conjunction 
of constraints 

x - y  3     
y  8         
y  2        
x + y  15    
x + y  5     
x  1        
x – y  -20    
x  7 

The slope is fixed 
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   Polyhedra Domain 

x 

y 

5 

x+y  5 

2 

x-3y  2 

x-y  -20 
constraints  are of the following form:  

c1x1 + c2x2 … + cnxn  c 

an abstract state is again a map 
from labels to conjunction of 
constraints: 

x - y  -20   
x - 3  y  2   
x + y  5 

  the slope can vary  


	Slide Number 1
	Slide Number 2
	  Mathematical Concepts
	Structures: Motivation
	Partially Ordered Sets (posets)
	Posets shown as Hasse Diagrams
	Least / Greatest in Posets
	Least / Greatest: example
	Bounds in Posets
	Bounds: example
	Bounds: example
	Bounds: example
	Complete Lattices
		Is this a complete lattice ?
	Complete Lattices: Examples
	Complete Lattices: Examples
	Slide Number 17
	Concepts
	Functions
	Fixed Points
	Least Fixed Points
	  Fixed Points: Examples
	Tarski’s fixed point theorem (part of it)
	Slide Number 24
	Function Iterates
	A useful fixed point theorem
	Concepts
	Over-approximate P
	The Art of Approximation:�Static Program Analysis
	Approximating a Function
	Approximating a Function
	Connecting Concrete with Abstract
	Approximating a Function: Definition 1
	Slide Number 34
	 Visualizing Definition 1
	 Approximating a Function
	Least precise approximation
	Most precise approximation
	Key Theorem I: Least Fixed Point Approximation
	Least Fixed Point Approximation
	Approximating a Function: Definition 2
	 Visualizing Definition 2 (concretization-based)
	Key Theorem II: Least Fixed Point Approximation
	 So what is F  then ?�
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Defining action 
	Slide Number 49
	Slide Number 50
	Slide Number 51
	Slide Number 52

