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Software is Everywhere
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Bad Software is Everywhere
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The Patriot Accident

 The Patriot missile air defense 

system tracks and intercepts 

incoming missiles

 On February 25, 1991, a Patriot 

system ignored an incoming Scud 

missile

 28 soldiers died; 98 were injured
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Patriot Bug – Rounding Error

 The tracking algorithm measures time in 1/10s

 Time is stored in a 24-bit register

- Precise binary representation of 1/10 (non-terminating): 

0.00011001100110011001100110011001… 

- Truncated value in 24-bit register:

0.00011001100110011001100

- Rounding error: ca. 0.000000095s every 1/10s

 After 100 hours of operation error is 

0.000000095s × 10 × 3600 × 100 = 0.34s

 A Scud travels at about 1.7km/s, and so travels 

more than 0.5km in this time
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Analysis of the Patriot Accident

 Changed requirements were not considered

- System was originally designed for much slower missiles 

(MACH 2 instead of MACH 5)

- System was designed to be mobile (to avoid detection) 

and to operate only for a few hours at a time

 Maintenance was inadequate

- A conversion routine with 48-bit precision was defined to 

cope with faster missiles, but was not called in all 

necessary places
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The Therac-25 Accident

 Therac-25 is a medical linear accelerator

 High-energy 

X-ray and 

electron beams 

destroy tumors

 Six people died 

between 1985 

and 1987
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Therac-25 System Design

 Therac-25 is completely computer-controlled
- Software written in assembler code

- Therac-25 has its own real-time operating system

 Software partly taken from ancestor machines
- Software functionality limited

- Hardware safety features and interlocks

 Hazard analysis
- Extensive testing on hardware simulator

- Program software does not degrade due to wear, fatigue, 
or reproduction process

- Computer errors are caused by hardware or by alpha 
particles

1. Introduction – Software Failures
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Therac-25 Software Design
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Analysis of the Therac-25 Accident

 Changed requirements were not considered

- In Therac-25 software is safety-critical

 Design is too complex

- Concurrent system, shared variables (race conditions)

 Code is buggy

- Check for changes done at wrong place

 Testing was insufficient

- System test only, almost no separate software test

 Maintenance was poor

- Correction of bug instead of re-design (root cause)
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The Windows 98 Accident

1. Introduction – Software Failures



14

14 Years Later
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http://www.youtube.com/watch?v=4QRWa68MtLc&feature=player_detailpage
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Software – a Poor Track Record

 Software bugs cost the U.S. economy an estimated 

$59.5 billion annually, or about 0.6 percent of the 

gross domestic product 

31%

53%16%

 84% of all software projects are 

unsuccessful

- Late, over budget, less features than 

specified, cancelled

 The average unsuccessful project

- 222% longer than planned

- 189% over budget 

- 61% of originally specified features

1. Introduction – Software Failures
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Why is Software so Difficult to Get Right?
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Complexity

 Modern software 

systems are huge

- Created by many 

developers over 

several years
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Size of software systems in MLOC

 They have a very high number of:

- Discrete states (infinite if the memory is not bounded)

- Execution paths (infinite if the system may not terminate)
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Complexity (cont’d)

 Small programs tend to 

be simple

 Big programs tend to 

be complex

- Complexity grows worse 

than linearly with size
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Change

 Since software is (perceived as being) easy to 

change, software systems often deviate from their 

initial design

 Typical changes include

- New features (requested by customers or management)

- New interfaces (new hardware, new or changed 

interfaces to other software systems)

- Bug fixing, performance tuning

 Changes often erode the structure of the system
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Competing Objectives: Design Goals
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Competing Objectives: Typical Trade-Offs
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Constraints

 Software development (like 

all projects) is constrained 

by limited resources

 Budget

- Marketing, 

management priorities

 Time

- Market opportunities, 

external deadlines

 Staff

- Available skills
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Software Engineering

 A collection of techniques, 

methodologies, and tools 

that help with the 

production of

- a high quality software 

system

- with a given budget

- before a given deadline

- while change occurs

[Brügge]
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Course Outline (tentative)

 We will study 

various principles of 

software engineering

 We will cover both

established 

practices and 

innovative 

approaches

 We will emphasize 

software reliability
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Part II: Testing

 Functional and structural testing

 Automatic test case generation

 Dynamic program analysis

Part III: Static Analysis

 Mathematical foundations

 Abstract interpretation

 Practical applications

Part I: Software Design

 Modeling

 Design principles

 Architectural & design patterns

1. Introduction – Solution Approaches (Course Outline)
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Lecturers

 First half of the course is taught by Peter Müller

- Design, functional and structural testing

 Second half is taught by Martin Vechev

- Automatic test case generation, 

static and dynamic analysis
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Projects

 There will be two projects to help you master the 

techniques introduced in lectures:

1. Design and analyze a social media application

2. Apply advanced testing techniques

 Done in a group of 2 or 3, never 1

- Select your team soon and enter it by Wednesday:  

http://goo.gl/forms/qUJsY9EMf5

 Details will be explained later

1. Introduction – Solution Approaches (Course Outline)
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Organization of the Course

 Prerequisites

- Course is self-contained

- But it combines well with other courses: 

• Formal Methods and Functional Programming

• Compiler Design

• Software Engineering Seminar

 Grading

- 30% project

- 70% final exam

29
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Course Infrastructure

 Web page: 

www.pm.inf.ethz.ch/education/courses/sae

- Slides will be available on the web page two days before 

the lecture (Thursday and Monday)

- Check regularly for announcements

 Submit anonymous feedback at 

http://goo.gl/forms/vdQE4UujZz

1. Introduction – Solution Approaches (Course Outline)
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Exercise Sessions

 Monday, 15:00-18:00 

- Pavol Bielik (CHN G22)

- Lucas Brutschy (CHN D48)

- Dimitar Dimitrov (HG D5.1)

- Petar Tsankov (NO D11)

 We will sign you up

 Exercises start next week (Feb. 23)!

1. Introduction – Solution Approaches (Course Outline)
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Overview: Modeling

 For non-trivial systems, 

source code is too 

complex to reason 

about

 Abstract models may 

simplify communication 

and reasoning
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Overview: Formal Modeling

 In contrast to informal models, formal models 

enable precision and better tool support
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ListNode
nextprev

LinkedList

head

sig LinkedList {

head: ListNode

}

sig ListNode {

next: ListNode,

prev: ListNode

}

fact { all n: ListNode | n.next.prev = n }

pred show { }

run show for 5 but 2 LinkedList
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Overview: Patterns

 Design problem: 

How to fit a reused class into a class hierarchy?

 Patterns are general, reusable solutions to 

commonly occurring design problems
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Overview: Functional Testing 

 Functional testing focuses on input/output behavior

 Given the desired functionality of a program, how to 

select input values to test it?

 Try at least:

- Arrays with one, more than one, and no matching strings

- Corner cases: null, arrays containing null, “Foo=“
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public static string ParseLines( string[ ] lines )

Specification: 

Search for the first occurrence of 

"Foo=VALUE" in lines and return VALUE.
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Overview: Structural Testing 

 Use design knowledge about algorithms and data 

structures to determine test cases that exercise a 

large portion of the code
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public static string ParseLines( string[ ] lines ) {

for( int i = 0; i < lines.Length; i++ ) {

string line = lines[ i ];

int index = line.IndexOf( '=‘ );

string key = line.Substring( 0, index );

if( key.Equals("Foo") ) {

return line.Substring( index + 1 );

}

}

return "??";

}

Test this

case

and this

case

Test 0, 1, and 

more iterations
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Overview: Automatic Test Case Generation

 Automatically determine inputs that execute a given 

path through the program

 Suitable test input: [ “Bar=XX”, null ]
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public static string ParseLines( string[ ] lines ) {

for( int i = 0; i < lines.Length; i++ ) {

string line = lines[ i ];

int index = line.IndexOf( '=‘ );

string key = line.Substring( 0, index );

if( key.Equals("Foo") ) {

return line.Substring( index + 1 );

}

}

return "??";

}
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Overview: Dynamic Program Analysis

 Dynamic analyses focus on a subset of program 

behaviors and prove they are correct

 Testing is a special case of dynamic analysis

 More interesting cases include data race detection, 

memory safety, and API usage rules
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Overview: Static Program Analysis

 Static analyses capture all possible program 

behaviors in a mathematical model and prove 

properties of this model
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Don’t Forget!

 Select your project team and enter it at 

http://goo.gl/forms/qUJsY9EMf5

Peter Müller – Software Architecture and Engineering

1. Introduction – Solution Approaches (Course Outline)


