
Software Architecture

and Engineering
Introduction

Spring Semester 2015

Peter Müller

Chair of Programming Methodology

2

Peter Müller – Software Architecture and Engineering

1. Introduction

1.1 Software Failures

1.2 Challenges

1.3 Solution Approaches (Course Outline)

1. Introduction – Software Failures

3

Software is Everywhere

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

4

Bad Software is Everywhere

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

5

The Patriot Accident

 The Patriot missile air defense

system tracks and intercepts

incoming missiles

 On February 25, 1991, a Patriot

system ignored an incoming Scud

missile

 28 soldiers died; 98 were injured

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

6

Patriot Bug – Rounding Error

 The tracking algorithm measures time in 1/10s

 Time is stored in a 24-bit register

- Precise binary representation of 1/10 (non-terminating):

0.00011001100110011001100110011001…

- Truncated value in 24-bit register:

0.00011001100110011001100

- Rounding error: ca. 0.000000095s every 1/10s

 After 100 hours of operation error is

0.000000095s × 10 × 3600 × 100 = 0.34s

 A Scud travels at about 1.7km/s, and so travels

more than 0.5km in this time

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

7

Analysis of the Patriot Accident

 Changed requirements were not considered

- System was originally designed for much slower missiles

(MACH 2 instead of MACH 5)

- System was designed to be mobile (to avoid detection)

and to operate only for a few hours at a time

 Maintenance was inadequate

- A conversion routine with 48-bit precision was defined to

cope with faster missiles, but was not called in all

necessary places

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

8

Peter Müller – Software Architecture and Engineering

The Therac-25 Accident

 Therac-25 is a medical linear accelerator

 High-energy

X-ray and

electron beams

destroy tumors

 Six people died

between 1985

and 1987

1. Introduction – Software Failures

9

Peter Müller – Software Architecture and Engineering

Therac-25 System Design

 Therac-25 is completely computer-controlled
- Software written in assembler code

- Therac-25 has its own real-time operating system

 Software partly taken from ancestor machines
- Software functionality limited

- Hardware safety features and interlocks

 Hazard analysis
- Extensive testing on hardware simulator

- Program software does not degrade due to wear, fatigue,
or reproduction process

- Computer errors are caused by hardware or by alpha
particles

1. Introduction – Software Failures

10

Peter Müller – Software Architecture and Engineering

Therac-25 Software Design

Keyboard

Controller

Treatment

Controller

Mode and

Energy

Data Entry

Complete

Mode and energy

level stored in

shared variable

Beamer set to

energy level

(takes 8 secs)

Cursor in lower

right corner of

screen

Proceed if data

entry complete

Check for changes

1. Introduction – Software Failures

11

Peter Müller – Software Architecture and Engineering

Accident

Keyboard

Controller

Treatment

Controller

Mode and

Energy

Data Entry

Complete

X-Ray mode

entered (sets

default energy)

Beamer set to

high energy level

(takes 8 secs)

Cursor in lower

right corner of

screen

Overdose (100x)

Patient dies

Mode switched

to electron

Check for changes

contains bug

1. Introduction – Software Failures

12

Peter Müller – Software Architecture and Engineering

Analysis of the Therac-25 Accident

 Changed requirements were not considered

- In Therac-25 software is safety-critical

 Design is too complex

- Concurrent system, shared variables (race conditions)

 Code is buggy

- Check for changes done at wrong place

 Testing was insufficient

- System test only, almost no separate software test

 Maintenance was poor

- Correction of bug instead of re-design (root cause)

1. Introduction – Software Failures

13

Peter Müller – Software Architecture and Engineering

The Windows 98 Accident

1. Introduction – Software Failures

14

14 Years Later

Peter Müller – Software Architecture and Engineering

1. Introduction – Software Failures

http://www.youtube.com/watch?v=4QRWa68MtLc&feature=player_detailpage
http://www.youtube.com/watch?v=4QRWa68MtLc&feature=player_detailpage

15

Peter Müller – Software Architecture and Engineering

Software – a Poor Track Record

 Software bugs cost the U.S. economy an estimated

$59.5 billion annually, or about 0.6 percent of the

gross domestic product

31%

53%16%

 84% of all software projects are

unsuccessful

- Late, over budget, less features than

specified, cancelled

 The average unsuccessful project

- 222% longer than planned

- 189% over budget

- 61% of originally specified features

1. Introduction – Software Failures

16

Peter Müller – Software Architecture and Engineering

1. Introduction

1.1 Software Failures

1.2 Challenges

1.3 Solution Approaches (Course Outline)

1. Introduction – Challenges

17

Why is Software so Difficult to Get Right?

Peter Müller – Software Architecture and Engineering

Complexity

Constraints
Competing

Objectives

Change

1. Introduction – Challenges

18

Complexity

 Modern software

systems are huge

- Created by many

developers over

several years

Peter Müller – Software Architecture and Engineering

0

10

20

30

40

50

60

70

80

90

100

Size of software systems in MLOC

 They have a very high number of:

- Discrete states (infinite if the memory is not bounded)

- Execution paths (infinite if the system may not terminate)

1. Introduction – Challenges

19

Complexity (cont’d)

 Small programs tend to

be simple

 Big programs tend to

be complex

- Complexity grows worse

than linearly with size

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

20

Change

 Since software is (perceived as being) easy to

change, software systems often deviate from their

initial design

 Typical changes include

- New features (requested by customers or management)

- New interfaces (new hardware, new or changed

interfaces to other software systems)

- Bug fixing, performance tuning

 Changes often erode the structure of the system

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

21

Peter Müller – Software Architecture and Engineering

Competing Objectives: Design Goals

Scalability

Repairability

Portability

Reusability

Understandability

Maintainability

Security

Usability

Reliability

Robustness

Performance

Correctness

Interoperability

Verifiability

Evolvability

1. Introduction – Challenges

Backward Comp.

22

Peter Müller – Software Architecture and Engineering

Competing Objectives: Typical Trade-Offs

Portability

Understandability

Usability

Robustness

Performance

ReusabilityCost

Functionality

Cost

Backward Compatibility

1. Introduction – Challenges

23

Constraints

 Software development (like

all projects) is constrained

by limited resources

 Budget

- Marketing,

management priorities

 Time

- Market opportunities,

external deadlines

 Staff

- Available skills

Peter Müller – Software Architecture and Engineering

1. Introduction – Challenges

24

Software Engineering

 A collection of techniques,

methodologies, and tools

that help with the

production of

- a high quality software

system

- with a given budget

- before a given deadline

- while change occurs

[Brügge]

Peter Müller – Software Architecture and Engineering

Complexity

Constraints
Competing

Objectives

Change

1. Introduction – Challenges

25

Peter Müller – Software Architecture and Engineering

1. Introduction

1.1 Software Failures

1.2 Challenges

1.3 Solution Approaches (Course Outline)

1. Introduction – Solution Approaches (Course Outline)

26

Course Outline (tentative)

 We will study

various principles of

software engineering

 We will cover both

established

practices and

innovative

approaches

 We will emphasize

software reliability
Peter Müller – Software Architecture and Engineering

Part II: Testing

 Functional and structural testing

 Automatic test case generation

 Dynamic program analysis

Part III: Static Analysis

 Mathematical foundations

 Abstract interpretation

 Practical applications

Part I: Software Design

 Modeling

 Design principles

 Architectural & design patterns

1. Introduction – Solution Approaches (Course Outline)

27

Lecturers

 First half of the course is taught by Peter Müller

- Design, functional and structural testing

 Second half is taught by Martin Vechev

- Automatic test case generation,

static and dynamic analysis

Peter Müller – Software Architecture and Engineering

1. Introduction – Solution Approaches (Course Outline)

28

Peter Müller – Software Architecture and Engineering

Projects

 There will be two projects to help you master the

techniques introduced in lectures:

1. Design and analyze a social media application

2. Apply advanced testing techniques

 Done in a group of 2 or 3, never 1

- Select your team soon and enter it by Wednesday:

http://goo.gl/forms/qUJsY9EMf5

 Details will be explained later

1. Introduction – Solution Approaches (Course Outline)

29

Organization of the Course

 Prerequisites

- Course is self-contained

- But it combines well with other courses:

• Formal Methods and Functional Programming

• Compiler Design

• Software Engineering Seminar

 Grading

- 30% project

- 70% final exam

29

1. Introduction – Solution Approaches (Course Outline)

Peter Müller – Software Architecture and Engineering

30

Peter Müller – Software Architecture and Engineering

Course Infrastructure

 Web page:

www.pm.inf.ethz.ch/education/courses/sae

- Slides will be available on the web page two days before

the lecture (Thursday and Monday)

- Check regularly for announcements

 Submit anonymous feedback at

http://goo.gl/forms/vdQE4UujZz

1. Introduction – Solution Approaches (Course Outline)

31

Peter Müller – Software Architecture and Engineering

Exercise Sessions

 Monday, 15:00-18:00

- Pavol Bielik (CHN G22)

- Lucas Brutschy (CHN D48)

- Dimitar Dimitrov (HG D5.1)

- Petar Tsankov (NO D11)

 We will sign you up

 Exercises start next week (Feb. 23)!

1. Introduction – Solution Approaches (Course Outline)

32

Overview: Modeling

 For non-trivial systems,

source code is too

complex to reason

about

 Abstract models may

simplify communication

and reasoning

Peter Müller – Software Architecture and Engineering

ListNode
nextprev

LinkedList

head

1. Introduction – Solution Approaches (Course Outline)

33

Overview: Formal Modeling

 In contrast to informal models, formal models

enable precision and better tool support

Peter Müller – Software Architecture and Engineering

ListNode
nextprev

LinkedList

head

sig LinkedList {

head: ListNode

}

sig ListNode {

next: ListNode,

prev: ListNode

}

fact { all n: ListNode | n.next.prev = n }

pred show { }

run show for 5 but 2 LinkedList

1. Introduction – Solution Approaches (Course Outline)

34

Overview: Patterns

 Design problem:

How to fit a reused class into a class hierarchy?

 Patterns are general, reusable solutions to

commonly occurring design problems

Peter Müller – Software Architecture and Engineering

Line

BoundingBox()

DrawingEditor

TextShape

BoundingBox()

Shape

BoundingBox()

TextEditor

GetExtent()

Legacy

code

Reused

code

return text.GetExtent()

text

1. Introduction – Solution Approaches (Course Outline)

35

Overview: Functional Testing

 Functional testing focuses on input/output behavior

 Given the desired functionality of a program, how to

select input values to test it?

 Try at least:

- Arrays with one, more than one, and no matching strings

- Corner cases: null, arrays containing null, “Foo=“

Peter Müller – Software Architecture and Engineering

public static string ParseLines(string[] lines)

Specification:

Search for the first occurrence of

"Foo=VALUE" in lines and return VALUE.

1. Introduction – Solution Approaches (Course Outline)

36

Overview: Structural Testing

 Use design knowledge about algorithms and data

structures to determine test cases that exercise a

large portion of the code

Peter Müller – Software Architecture and Engineering

public static string ParseLines(string[] lines) {

for(int i = 0; i < lines.Length; i++) {

string line = lines[i];

int index = line.IndexOf('=‘);

string key = line.Substring(0, index);

if(key.Equals("Foo")) {

return line.Substring(index + 1);

}

}

return "??";

}

Test this

case

and this

case

Test 0, 1, and

more iterations

1. Introduction – Solution Approaches (Course Outline)

37

Overview: Automatic Test Case Generation

 Automatically determine inputs that execute a given

path through the program

 Suitable test input: [“Bar=XX”, null]

Peter Müller – Software Architecture and Engineering

public static string ParseLines(string[] lines) {

for(int i = 0; i < lines.Length; i++) {

string line = lines[i];

int index = line.IndexOf('=‘);

string key = line.Substring(0, index);

if(key.Equals("Foo")) {

return line.Substring(index + 1);

}

}

return "??";

}

1. Introduction – Solution Approaches (Course Outline)

38

Overview: Dynamic Program Analysis

 Dynamic analyses focus on a subset of program

behaviors and prove they are correct

 Testing is a special case of dynamic analysis

 More interesting cases include data race detection,

memory safety, and API usage rules

Peter Müller – Software Architecture and Engineering

All behaviors in the universe

Possible

Program

Behaviors

Under-

approximation

1. Introduction – Solution Approaches (Course Outline)

39

Overview: Static Program Analysis

 Static analyses capture all possible program

behaviors in a mathematical model and prove

properties of this model

Peter Müller – Software Architecture and Engineering

All behaviors in the universe

Possible

Program

Behaviors

Over-

approximation

1. Introduction – Solution Approaches (Course Outline)

40

Don’t Forget!

 Select your project team and enter it at

http://goo.gl/forms/qUJsY9EMf5

Peter Müller – Software Architecture and Engineering

1. Introduction – Solution Approaches (Course Outline)

