Assignment 2

Exercise 1

You have seen different ways of documenting the effects of a method in the
lecture (e.g., checked exceptions, read and write effects). Purity annotations
are a specific kind of write effect specification: a pure method i) does not
modify any object that already existed in the pre-state (but it can modify
newly created objects), and ii) for given set of arguments (including the
receiver) the return value (if any) is always the same. For instance, in the
code below method equals and method hashcode are probably pure, while
method getImage is definitely not pure since it modifies the current object
by initializing the image field.

class ImageFile {
String file;
Image image;

public Image getImage() {
if (image == null) {
Image tmp = Image();
// load the image
image = tmp;
3
return image;

3

boolean equals(Object o) {
if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

}

int hashcode() {
if (image == null) {
return file.hashcode();

} else {
return image.hashcode() + file.hashcode();
}
}
}

1. Why are method equals and method hashcode probably pure? Under
which circumstances are they not pure? Is is possible to change the
class design such that they are pure under all circumstances?

2. Can you think of a practical solution that would catch (at runtime)
violations of the first requirement? Apply the instrumentation to the
code from above.

3. How would your instrumentation deal with commonly used designs,
such as lazy initialization of data structures or caching?

Exercise 2
Write down documentation in the form of contracts for the code below:

class ImageFile {
private final String file;
private Image image;

ImageFile(String f) {
file = £;
image = null;

}

public Image getImage() {
if (image == null) {
Image tmp = Image();
// load the image
image = tmp;

}
return image;
}
public boolean equals(Object o) {
if(o.getClass() != getClass()) return false;
return file.equals(((ImageFile) o).file);

}

public int hashcode() {
return getImage().hashcode() + file.hashcode();

}
}

Exercise 3

1. Draw a UML class diagram for the system described below:
(a) every student is either undergraduate or graduate student. No
student is both undergraduate and graduate student;

(b) a student should register at a university, and only registered stu-
dents are legal students;

(c) every student has a unique student ID, and he or she has only one
major;

(d) students with the same major are regarded as classmates, students
can have several classmates.

2. Which properties of the system above cannot be captured using UML
class diagrams?

Exercise 4

You are given a class diagram for the Dictaphone system below:

1. Read the sequence diagram below and write down pseudo-code for

method PlayMessage.

L<<boundary>>| <<control>> battery:Battery <<entity>> msg:Message :Speaker
! serInterfaceI :Controller :MessageMemory
T T T T T T
User 1: Play ith message |) I, | | | |
2: PlayMessage(ith): void | LL | !
3: isSufficient § IsSufficientlyHigh(): bogj | |
PLY [issufficient]		
4: msg = GetMesshge(ith): Message		
' »L 1 1		
I:I		
T T T T
[Loop, [[[[
[msg has more remaining blocks] : : :
5. = i Jy. i | |
L5 block = GetAudioBlock(l) : AudioBlock il |
] I gt |
| 6: PlayAudioBlock(): voidI| | |
+ + + | gb
| | |
t t t t
| | | |
| | | |
7: Display(-): void : : : :
| | | |
| | | |
a T T T
[else] ! : : :
8: Display(-): void I I ! !
| | | |
T T | | | |
T T T T T T
U | | | | | |

2. Write down a sequence diagram for the following use cases:

e Use case 1: Delete message
User

System

1. User asks the system to
delete the i-th message.

2. The system checks if the sys-
tem is locked (extension point).
3. Message is not locked, it
deletes the message and notifies
the user.

e Use case 2: Fail to delete message (extends use case 1)

User

System

3. Message is locked and the
system displays an error to the
user.

