
Project: From Alloy to C#

Description
This project consists of two parts. For the first part, you will generate C#
code annotated with Code Contracts1 from Alloy models written in a subset
of the Alloy language. For the second part, you will generate C# object
structures from the instances produced by the Alloy analyzer. These object
structures will subsequently be used to test the code generated in the first
part.

Note that your implementation must strictly follow all guidelines de-
scribed here to enable its automatic evaluation.

Deadlines and Grading
Initial submission: Sunday, 6 April 2014, 23:59
Final submission: Thursday, 17 April 2014, 23:59

These deadlines are strict; any submissions received later will not be evalu-
ated.

The purpose of the initial submission is to give you feedback on your
solution. We will automatically evaluate your submission on a small test
suite, which will be made available to you after the deadline. The score of
the initial submission will not count toward your final grade for the project,
but enable the teaching assistant of your exercise session to offer you feedback
on your implementation. You will then have time until the final deadline to
correct and complete your project.

Your final submission will be evaluated automatically on a larger test
suite, which will include all test cases from the first smaller test suite. The
grade for this second submission will be your grade for the project, which is
20% of your final grade for the course.

1http://research.microsoft.com/en-us/projects/contracts/

1

http://research.microsoft.com/en-us/projects/contracts/


Deliverables
To submit your solution, you must send an email to your teaching assistant
with the URL of the Bitbucket2 Git repository containing your code. Note
that the repository should be visible only to you, your team members, and
your teaching assistant.

It is your responsibility to ensure that the teaching assistant receives the
email with the URL before the deadline. Claims of lost emails, emails caught
in SPAM filters, etc. will not be considered. You should, therefore, send the
email a few days in advance and request a confirmation from the teaching
assistant.

For each submission, we will not consider any changes committed after
the corresponding deadline.

Guidelines
1. Your implementation for the project must be in Java. Your code should

extend the Alloy implementation found at the following Git repository:

https://github.com/mariachris/AlloyAnalyzer.git

Instructions for building the project can be found in the README.md
file. After building the project, the dist directory contains two .jar
files. The alloy4.2.jar file launches the Alloy user interface, and the
alloy4.2tests.jar file runs the test suite of your project. Both .jar
files may be executed with the following command:

java –jar <name of .jar file>

You may find a description of the Alloy API at:

http://alloy.mit.edu/alloy/documentation/alloy-api/

2. A template for your implementation is found under the following di-
rectory:

edu\mit\csail\sdg\alloy4compiler\generator

Note that you must not make any changes to this template.
2https://bitbucket.org

2

https://github.com/mariachris/AlloyAnalyzer.git
http://alloy.mit.edu/alloy/documentation/alloy-api/
https://bitbucket.org


The CodeGenerator.writeCode method should generate a single C#
file containing the code generated from all signatures, relations, func-
tions, predicates, and expressions found in the input Alloy file. The
generated C# code should be annotated with the strongest Code Con-
tracts that characterize all types of the input file (that is, the types of
all relations defined in signatures and the types of function or predicate
parameters and return values). We call this C# file the code file.
The TestGenerator.writeTest method should generate a single C#
file containing a Main method. You should assume that the input
Alloy file contains at least one assertion for which there exists a check
command. If the Alloy analyzer finds a counterexample instance for the
first checked assertion in the input file, the Main method should first
create the C# object structures corresponding to this counterexample.
The Main method should then contain all assertions for which there
exists a check command in the input file. Note that you should ignore
the scopes of check commands. We call this C# file the test file.
The CSharpGeneratorTests.java file implements the way in which
your project will be evaluated. You may use this implementation only
to add more test cases to the test suite of your project. You should
also make sure that all of your test cases succeed when run with this
implementation, which will be used to evaluate your project. For the
evaluation of your project, we will replace this file with a different
version of it that runs our own test suite. Note that we will not evaluate
the generated source code files, but rather the generated executable
files.
You may implement a visitor design pattern3 in the Visitor.java
file. In brief, the visitor pattern allows you to define operations to be
performed on the elements of an object structure without changing the
classes of these elements.
The tests0.als file is an example Alloy file. For this Alloy file, your
implementation should generate the code in answer files answer0.cs
and answer0.tests.cs, which represent the code and test files, re-
spectively. Note that in the answer0.cs file the bodies of methods
Helper.Closure and Helper.RClosure have been removed but your
implementation should generate them correctly. You should strictly
follow all naming conventions used in the answer files.

3Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns: Ele-
ments of Reusable Object-Oriented Software”, Addison-Wesley, 1994

3



3. You may execute your implementation through the Alloy user interface
as follows.
After opening an Alloy file, you may select Generate C# of the Execute
menu to generate the code file. Method CodeGenerator.writeCode is
called in the following file:

edu\mit\csail\sdg\alloy4whole\SimpleGUI.java

When clicking on the Execute button, the test file is generated. Method
TestGenerator.writeTest is called in the following file:

edu\mit\csail\sdg\alloy4whole\SimpleReporter.java

4. Your implementation should only support relations of arity less than
or equal to three when these are defined in a signature, and relations of
arity less than or equal to two when these are passed to or returned from
a function or predicate. The C# types generated for these relations
should be defined as in files answer0.cs and answer0.tests.cs.

5. Your implementation need not support the following operators:

• for ExprBinary: ISSEQ_ARROW_LONE, JOIN, DOMAIN, RANGE,
PLUSPLUS, SHL, SHA, SHR;
(Note that you should handle the JOIN operator only when its
right operand is a relation defined in a signature.)

• for ExprConstant: IDEN, NEXT, EMPTYNESS;
• for ExprList: DISJOINT, TOTALORDER;
• for ExprUnary: EXACTLYOF, NO, SOME, LONE, ONE.

6. Your implementation for the generation of the code file should:

• generate Code Contracts specifying the strongest properties of all
supported types using only object invariants, pre-, and postcon-
ditions;

• make all classes, fields, and methods public;
• support abstract signatures and inheritance (with the extends

keyword);
(Note that you are not required to generate any Code Contracts
within abstract classes.)

4



• define all methods in a public, static class FuncClass as in files
answer0.cs and answer0.tests.cs;

• define two custom methods for computing the transitive and re-
flexive transitive closures in a public, static class Helper as in files
answer0.cs and answer0.tests.cs;

• not support multiplicities of signatures except for multiplicity one,
which should be implemented using the singleton design pattern4

as in files answer0.cs and answer0.tests.cs;
(In brief, the singleton pattern uses static state to ensure that
there exists only a single instance of a class.)

• not support quantification expressions (ExprQt).

7. Your implementation for the generation of the test file should sup-
port quantification expressions (ExprQt) except for operators SUM and
COMPREHENSION.

Questions
We encourage you to ask any general questions you might have through
the mailing list of the course (sae2014@sympa.ethz.ch). For more specific
questions, please contact the teaching assistant of your exercise session.

4Erich Gamma, Richard Helm, Ralph Johnson, John Vlissides, “Design Patterns: Ele-
ments of Reusable Object-Oriented Software”, Addison-Wesley, 1994

5


