
Assignment 11

1. For the �ow-sensitive pointer analysis from the lecture, write down the
abstract transformer for �eld updates.

2. You are given the following program:

0: c = newObject T;

1: t = c;

2: i = 0;

3: while (i < count) {

4: n = newObject T;

5: c.f = n;

6: c = n;

7: i++;

8: }

9: c.f = t;

10: assert t != n;

(a) Run the �ow-sensitive pointer analysis from the lecture on it.

(b) Can you prove the assertion on line 10 using the results of the anal-
ysis?

3. Write a program for which the �ow-sensitive pointer analysis from the
lecture infers the following abstract state at the end of the program:

{ a->{A0}, b->{A0,A1}, A0.f->{A0}, A1.f->{A0} }

4. Run both the �ow-sensitive and the �ow-insensitive pointer analysis on
the following program:

0: a = newObject T;

1: b = a;

2: if (a == b) {

3: b = newObject T;

4: } else {

5: }

5. Suppose we execute the following function symbolically with the two sym-
bolic variables b0 and e0 for b and e.

int pow(int b, int e)

{

int r = b;

1



for (int i = 0; i < e; i++)

{

r = r * b;

}

if (e % 2 == 0)

{

if (r < 0)

{

ERROR;

}

}

return r;

}

(a) Enumerate all path constraints that reach the ERROR statement
when unrolling the loop at most 2 times.

(b) Use the concolic test-generation tool Pex to �nd inputs that satisfy
these path constraints by manually unrolling the original program.
Go to http://www.pexforfun.com/, click on "New", and start from
the following program:

using System;

using System.Diagnostics.Contracts;

public class Program

{

public static int Puzzle(int b, int e)

{

int r = b;

for (int i = 0; i < e; i++)

{

r = r * b;

}

if (e % 2 == 0)

{

if (r < 0)

{

Contract.Assert(false);

}

}

return r;

}

}

2

http://www.pexforfun.com/

