
Assignment 1 (solution)

Exercise 1 (Requirements Elicitation)

There is no authoritative solution to this exercise since it depends on the dis-
cussion in the exercise session. The following should be mainly seen as hints:

� Actors:

� Customer

� Flower Shop Manager

� Messenger

� Some open issues:

� How does the messenger communicate with the web browser?

� How are undelivered �ower orders handled?

� Can he use the system to "push" �owers that will expire soon?

� Who is going to host the system?

� Scenarios:

� Scenario 1 (normal)

1. Jill wishes to purchase some �owers.

2. She logs into the internet browser with her user name and pass-
word.

3. She selects the �owers of her choosing and presses check-out.

4. For the address, she selects her home address.

5. Jill pays with her credit card.

6. The system o�ers her a receipt for the delivery and her credit
card is charged.

� Scenario 2 (exceptional)

1. Bob wants to become a frequent customer for the web shop.

2. He enters the URL of the shop and selects new customer.

3. Bob gives his preferred username.

4. The system �nds that there is already a username existing, and
noti�es Bob that he cannot have this username.

� Scenario 3 (unspeci�ed)

* Sarah has already checked out and printed her receipt.

1

* She realizes that the address she selected was incorrect.

* She immediately logs back in and selects her last order.

* The system tells her that it hasn't been prepared yet and that
she is able to modify the order.

* She changes the address to the correct one and prints out the
new receipt.

� Non-functional requirements:

� Client should be able to use standard web browsers.

� Respond time of the system should be within 3 seconds.

� The system should support at least 400 clients.

� The system should use the existing point of sales system.

Exercise 2 (Design and Documentation)

One could cache the shortest path by recomputing it lazily or eagerly (question
4):

� Lazily:

class Graph

{

List<Edge> edges;

Node source;

Node destination;

private List<Node> sp;

void addEdge(Edge e)

{

edges.Add(e);

sp = null;

}

List<Node> shortestPath()

{

if (sp != null)

{

return sp;

}

else

{

...

}

}

}

� This should not in�uence the client-visible documentation.

2

� One could add the following documentation:

1. postcondition for addEdge: sp == null

2. postcondition for shortestPath: old(sp == null) || result == sp

� Eagerly:

class Graph

{

List<Edge> edges;

Node source;

Node destination;

private List<Node> sp;

void addEdge(Edge e)

{

edges.Add(e);

sp = computeShortestPath();

}

private computeShortestPath()

{

...

}

List<Node> shortestPath()

{

return sp;

}

}

� This should not in�uence the client-visible documentation.

� One could add the following documentation:

1. class invariant for class Graph: sp != null

2. postcondition for shortestPath: result == sp

Exercise 3 (Design)

1. This is one possible scenario:

(a) A new list 'a' is created.

(b) This list is cloned to create a list 'b'.

(c) List 'b' is modi�ed by calling method set.

(d) List 'a' is modi�ed by calling method set and a new ListRep object
is created even though the list is technically not shared anymore.

2. You could use actual reference counting instead of using the boolean �eld
shared.

3

3. Yes, for instance:

(a) A new list 'a' is created.

(b) This list is cloned to create a list 'b'.

(c) List 'b' is not used anymore and is removed from the heap by the
garbage collector.

(d) List 'a' is modi�ed by calling method set and a new ListRep object
is created even though the list is technically not shared anymore.

4. You could implement a �nalizer that decreases the shared counter before
the object is eventually removed from the heap.

4

