
Assignment 4

Exercise 1

Consider the following Allow model of a counter:

module util/integer

sig Counter {

n: Int

}

pred inc[c, c’: Counter] {

c’.n = c.n.add[Int[1]]

}

The predicate inc models the increment operation of the counter.

1. Use the abstract machine pattern that you have seen in the lecture to
define the traces of the counter; see slides 148-149. For this task you
must use the Alloy library util/ordering. Initially, the value of n
must be 0. Define the initial state of the counter using the predicate
init[c: Counter].

2. Encode the following two invariants using assertions:

inv1: For any counter, n ≥ 0.

inv2: The value of a counter never decreases.

Note that inv1 is a state invariant. You must check whether it holds
for all states. The second invariant inv2 is a temporal invariant. You
must check whether for any two states c and c′ where c is a predecessor
of c′, c.n ≤ c′.n holds. You can use the predicate lt[c,c’] to check
whether c is a predecessor of c′.

1

Exercise 2

Recall the two ImageFile class implementations from the lecture. You are
given the Alloy model for the ImageFile implementation with eager ini-
tialization; see the file imagefile_eager.als. Consider the following two
invariants:

inv1: getImage() returns a non-null value.

inv2: getImage() returns the same value for an entire trace.

You have two tasks:

1. Define the initial state and the traces for the ImageFile model. Model
the two invariants as assertions and check whether they hold.

2. Create an Alloy model for the alternative implementation of ImageFile,
which uses lazy initialization:

class ImageFile {

String file;

Image image;

ImageFile(String f) {

file = f;

}

Image getImage() {

if(image == null) {

// load the image

}

return image;

}

}

Observe several traces to ensure that your model has the intended
behavior. Check whether the invariants that you defined in (1) hold
for your model.

Hint: You must model getImage() as a predicate as it may change
the state. Note that we modeled getImage() in the eager version as
a function as it does not change the state.

Exercise 3

Consider the following Allow model:

2

sig Node {

next: Node

}

assert demo {

all n: Node | some m: Node | m.next = n

}

An assertion a is valid iff it evaluates to true in all instances that satisfy
the models’ constraints c. Note that for the given Alloy model, the constraint
c is satisfied by instances where each node has exactly one next node. Recall
that to check an assertion, Alloy checks whether there exists a counter-
example; namely, an instance where the constraints are satisfied and the
assertion is violated (c ∧ ¬a).

1. Encode the constraint and the assertion that correspond to checking
check demo for 1 into a boolean formula.

Hint: Treat the universal and existential quantifiers as conjunction
and disjunction, respectively.

Check if the boolean formula has a satisfying assignment. If the
boolean formula is satisfiable, then give a counter-example where the
assertion is violated.

2. Repeat step (1) for check demo for 2.

3. Add a field prev: Node to the signature of Node.

Add the fact all n: Node | n.next.prev = n to the Alloy model.

Repeat steps (1) and (2).

Does there exist a scope, possibly larger than 2, where the assertion is
violated?

3

