
Formal Methods and
Functional Programming
Introduction to Language Semantics

Peter Müller

Chair of Programming Methodology
ETH Zurich

2. Introduction to Language Semantics

2.1 The Language IMP

2.2 Semantics of IMP Expressions

2.3 Properties of the Expression Semantics

Peter Müller—Formal Methods and Functional Programming, SS14 p. 40

The Language IMP

Expressions
Boolean and arithmetic expressions
No side-effects in expressions

Variables
All variables range over integers
All variables are initialized

IMP does not include
Heap allocation and pointers
Variable declarations
Procedures
Concurrency
(But, we will discuss some as extensions later)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 41

Syntax of IMP: Example

y := 1;
while x > 1 do

y := y * x;
x := x - 1

end

Peter Müller—Formal Methods and Functional Programming, SS14 p. 42

Concrete Syntax of IMP: Characters and Tokens

Characters

Letter = ’A’ | . . . | ’Z’ | ’a’ | . . . | ’z’
Digit = ’0’ | ’1’ | ’2’ | ’3’ | ’4’ | ’5’ | ’6’ | ’7’ | ’8’ | ’9’

Tokens

Ident = Letter { Letter | Digit }*
Numeral = Digit | Numeral Digit
Var = Ident

Peter Müller—Formal Methods and Functional Programming, SS14 p. 43

Concrete and Abstract Syntax of IMP: Expressions

Arithmetic expressions

Aexp = ’(’ Aexp Op Aexp ’)’
| Var
| Numeral

Op = ’+’ | ’-’ | ’*’

data Aexp = Bin Op Aexp Aexp

| Var String

| Num Integer

data Op = Add | Sub | Mul

Boolean expressions

Bexp = ’(’ Bexp ’or’ Bexp ’)’
| ’(’ Bexp ’and’ Bexp ’)’
| ’not’ Bexp
| Aexp Rop Aexp

Rop = ’=’ | ’#’ | ’<’
| ’<=’ | ’>’ | ’>=’

data Bexp = Or Bexp Bexp

| And Bexp Bexp

| Not Bexp

| Rel Rop Aexp Aexp

data Rop = Eq | Neq | Le

| Leq | Ge | Geq

Peter Müller—Formal Methods and Functional Programming, SS14 p. 44

Concrete and Abstract Syntax of IMP: Statemens

Stm = ’skip’
| Var ’:=’ Aexp
| ’(’ Stm ’;’ Stm ’)’
| ’if’ Bexp ’then’ Stm ’else’ Stm ’end’
| ’while’ Bexp ’do’ Stm ’end’

data Stm = Skip

| Assign String Aexp

| Seq Stm Stm

| If Bexp Stm Stm

| While Bexp Stm

We omit parentheses if permitted by the usual operator precedence

Peter Müller—Formal Methods and Functional Programming, SS14 p. 45

Meta-variables vs. Program Variables

In proofs, we often need to reason about program variables without
specifying their concrete name

For example, “∀x.P(x)” doesn’t make sense since x is a fixed symbol in
the source language syntax

We use meta-variables to denote some program variable (concrete
name unspecified)

We write ≡ for syntactic equality on variables, statements, etc.

For program variables x and y, x = y might evaluate to true in some
states, but x ≡ y is always false (not syntactically equal)

For meta-variables x and y , x ≡ y might be true (i.e., they both could
denote the same program variable)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 46

Meta-variables vs. Program Variables

In proofs, we often need to reason about program variables without
specifying their concrete name

For example, “∀x.P(x)” doesn’t make sense since x is a fixed symbol in
the source language syntax

We use meta-variables to denote some program variable (concrete
name unspecified)

We write ≡ for syntactic equality on variables, statements, etc.

For program variables x and y, x = y might evaluate to true in some
states, but x ≡ y is always false (not syntactically equal)

For meta-variables x and y , x ≡ y might be true (i.e., they both could
denote the same program variable)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 46

Notation

We follow naming conventions for meta-variables:

n for numerals (Numeral)
x , y , z for variables (Var)
e, e′, e1, e2 for arithmetic expressions (Aexp)
b, b1, b2 for boolean expressions (Bexp)
s, s ′, s1, s2 for statements (Stm)

Meta-variables are written in math font (e.g., x , y , e, . . .)

Program variables are written in typewriter font

We use the naming conventions to avoid the need for explicit types
(especially in proofs)

For example, when we write ∀x .P(x), we mean ∀x ∈ Var.P(x)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 47

2. Introduction to Language Semantics

2.1 The Language IMP

2.2 Semantics of IMP Expressions

2.3 Properties of the Expression Semantics

Peter Müller—Formal Methods and Functional Programming, SS14 p. 48

Semantic Functions

Syntactic category: Numeral Semantic category: Val = Z

101 - 5

101 - 101

Semantic functions map elements of syntactic categories to elements of
semantic categories

To define the semantics of IMP, we need semantic functions for

Numerals (syntactic category Numeral)

Arithmetic expressions (syntactic category Aexp)

Arithmetic operators (syntactic category Op)

Boolean expressions (syntactic category Bexp)

Relational operators (syntactic category Rop)

Statements (syntactic category Stm)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 49

Semantics of Numerals

The semantic function

N ∶ Numeral→ Val

maps a numeral n to an integer value N [[n]]

N [[0]] = 0 N [[1]] = 1
. . .
N [[8]] = 8 N [[9]] = 9

N [[n 0]] = N [[n]] × 10 + 0 N [[n 1]] = N [[n]] × 10 + 1
. . .
N [[n 8]] = N [[n]] × 10 + 8 N [[n 9]] = N [[n]] × 10 + 9

Peter Müller—Formal Methods and Functional Programming, SS14 p. 50

States

x+1 - ??

The meaning of an expression depends on the values bound to the
variables that occur in it

A state is a total function, associating a value with each program
variable

State ∶ Var→ Val

We use σ as a meta-variable for states

Peter Müller—Formal Methods and Functional Programming, SS14 p. 51

Constructing and Comparing States

We define a designated (constant) state σzero, in which all variables
have the value 0:

σzero(x) = 0 for all x

Updating States: σ[y ↦ v] is the function that overrides the
association of y in σ by y ↦ v .

(σ[y ↦ v])(x) = {
v if x ≡ y
σ(x) if x /≡ y

Two states σ1 and σ2 are equal if they are equal as functions:

σ1 = σ2 ⇔ ∀x .(σ1(x) = σ2(x))

Peter Müller—Formal Methods and Functional Programming, SS14 p. 52

Semantics of Arithmetic Expressions

The semantic function

A ∶ Aexp→ State→ Val

maps an arithmetic expression e and a state σ to a value A[[e]]σ

A[[x]]σ = σ(x)
A[[n]]σ = N [[n]]
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

op is the operation Val ×Val→ Val corresponding to op

Peter Müller—Formal Methods and Functional Programming, SS14 p. 53

Semantics of Boolean Expressions

The semantic function

B ∶ Bexp→ State→ Bool

maps a boolean expression b and a state σ to a truth value B[[b]]σ

B[[e1 op e2]]σ = {
tt if A[[e1]]σ op A[[e2]]σ
ff otherwise

op ∈ Rop; op is the relation Val ×Val corresponding to op

Peter Müller—Formal Methods and Functional Programming, SS14 p. 54

Boolean Expressions (cont’d)

B[[b1 or b2]]σ = {
tt if B[[b1]]σ = tt or B[[b2]]σ = tt
ff otherwise

B[[b1 and b2]]σ = {
tt if B[[b1]]σ = tt and B[[b2]]σ = tt
ff otherwise

B[[not b]]σ = {
tt if B[[b]]σ = ff
ff otherwise

Peter Müller—Formal Methods and Functional Programming, SS14 p. 55

2. Introduction to Language Semantics

2.1 The Language IMP

2.2 Semantics of IMP Expressions

2.3 Properties of the Expression Semantics

Peter Müller—Formal Methods and Functional Programming, SS14 p. 56

Inductive Definitions

The semantics is given by recursive definitions of functions A and B

The values for the basic elements (e.g., x) are defined directly

The values for composite elements are defined inductively in terms of
the immediate constituents

A[[x]]σ = σ(x)
A[[n]]σ = N [[n]]
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

Since the decomposition of the elements is unique, the definition gives
a well-defined function (proof shortly)

Inductive definitions suggest proofs by structural induction

Peter Müller—Formal Methods and Functional Programming, SS14 p. 57

Reminder: Structural Induction

data Nat = Zero | Succ Nat

Induction over structure of terms

Γ ⊢ P(Zero) Γ,P(n) ⊢ P(Succ n)

Γ ⊢ ∀n ∈ Nat.P(n)
n not free in Γ

Sufficient to show P(Zero), P(Succ Zero), . . .

Useful (see first half of the course) to prove theorems like

∀x , y , z ∈ Nat. plus x (plus y z) = plus (plus x y) z

Structural induction on x helps because plus is defined inductively (over
its first argument)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 58

Structural Induction over Programs

Recall: abstract syntax is defined as algebraic data type

data Aexp = Bin Op Aexp Aexp

| Var String

| Num Integer

data Op = Add | Sub | Mul

We can prove properties of syntactic elements via structural induction

In proofs, we will use the concrete syntax instead of the terms of the
abstract syntax to identify the cases

Γ ⊢ P(x) Γ ⊢ P(n)
Γ,P(e1),P(e2) ⊢ P(e1 op e2)

(∗)
Γ ⊢ ∀e ∈ Aexp.P(e)

∗(x ,n, e1, e2,op not free in Γ)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 59

Using Structural Induction

Lemma: The equations for N define a total function
N ∶ Numeral→ Val

To prove the lemma, we show that for each n ∈ Numeral there is exactly
one v ∈ Val such that N [[n]] = v

N is defined inductively over the structure of the numeral:

N [[0]] = 0 N [[1]] = 1
. . .
N [[8]] = 8 N [[9]] = 9

N [[n 0]] = N [[n]] × 10 + 0 N [[n 1]] = N [[n]] × 10 + 1
. . .
N [[n 8]] = N [[n]] × 10 + 8 N [[n 9]] = N [[n]] × 10 + 9

This suggests proving the lemma by structural induction on n

Peter Müller—Formal Methods and Functional Programming, SS14 p. 60

Proof: N is a Total Function

Case: n ≡ d , for some digit d
There are ten further cases for the ten different possible digits.
In each case, N maps d to exactly one value in Val.

Case: n ≡ n1 d , for some numeral n1 and digit d
We show here the case d ≡ 0 (the other nine cases are analogous).

Our induction hypothesis (for n1) tells us:
there is exactly one v1 ∈ Val such that N [[n1]] = v1
The equations for N define N [[n1 0]] = N [[n1]] × 10 + 0
Therefore, N [[n]] = v1 × 10 + 0
Since multiplication and addition are total functions, we can conclude
that there is exactly one value for v1 × 10 + 0 and, thus, for N [[n]]

Peter Müller—Formal Methods and Functional Programming, SS14 p. 61

A is a Total Function

Lemma: The equations for A define a total function
A ∶ Aexp→ State→ Val

To prove the lemma, we show that for each e ∈ Aexp and σ ∈ State
there is exactly one v ∈ Val such that A[[e]]σ = v

A is defined inductively over the structure of the expression:

A[[x]]σ = σ(x)
A[[n]]σ = N [[n]]
A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ for op ∈ Op

This suggests a proof by structural induction on e

Peter Müller—Formal Methods and Functional Programming, SS14 p. 62

Proof: A is a Total Function

1. Case: e ≡ n, for some numeral n
The equations define A[[n]]σ = N [[n]]. By the previous lemma, N is a
total function and, thus, N [[n]] yields exactly one value in Val

2. Case: e ≡ x , for some variable x
The equations define A[[x]]σ = σ(x). σ is a total function, σ(x) ∈ Val

3. Case: e ≡ e1 op e2, for some e1, e2 and op ∈ Op

Our induction hypothesis gives us the property for e1 and e2 (sub-terms
of e
By applying the induction hypothesis for both e1 and e2, we get:
(a) there is exactly one v1 ∈ Val such that A[[e1]]σ = v1 and
(b) there is exactly one v2 ∈ Val such that A[[e2]]σ = v2
The equations for A define A[[e1 op e2]]σ = A[[e1]]σ op A[[e2]]σ
By using (a) and (b), we get: A[[e1 op e2]]σ = v1 op v2
Since op is a total function (addition, subtraction, or multiplication), we
can conclude that there is exactly one value for v1 op v2 and, thus, for
A[[e1 op e2]]σ

Peter Müller—Formal Methods and Functional Programming, SS14 p. 63

Inductive Definitions: Example

New arithmetic expression: -e

Inductive definition of
A[[-e]]σ

A[[-e]]σ = 0-A[[e]]σ

e is a subterm of -e

When proving a property by
structural induction on Aexp,
the case for -e may assume
the induction hypothesis for e

Non-inductive definition of
A[[-e]]σ

A[[-e]]σ = A[[0-e]]σ

0-e is not a subterm of -e

When proving a property by
structural induction on Aexp,
the case for -e must not
assume the induction
hypothesis for 0-e

Peter Müller—Formal Methods and Functional Programming, SS14 p. 64

Free Variables
Arithmetic expressions

FV(e1 op e2) = FV(e1) ∪ FV(e2)
FV(n) = ∅

FV(x) = {x}

Boolean expressions

FV(e1 op e2) = FV(e1) ∪ FV(e2)
FV(not b) = FV(b)
FV(b1 or b2) = FV(b1) ∪ FV(b2)

FV(b1 and b2) = FV(b1) ∪ FV(b2)

Statements

FV(skip) = ∅

FV(x:=e) = {x} ∪ FV(e)
FV(s1;s2) = FV(s1) ∪ FV(s2)
FV(if b then s1 else s2 end) = FV(b) ∪ FV(s1) ∪ FV(s2)
FV(while b do s end) = FV(b) ∪ FV(s)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 65

Substitution
Substitution “ [x ↦ e]” replaces each free occurrence of variable x by e

Arithmetic expressions

(e1 op e2)[x ↦ e] ≡ (e1[x ↦ e] op e2[x ↦ e])
n[x ↦ e] ≡ n

y[x ↦ e] ≡ {
e if x ≡ y
y otherwise

Boolean expressions

(e1 op e2)[x ↦ e] ≡ (e1[x ↦ e] op e2[x ↦ e])
(not b)[x ↦ e] ≡ not (b[x ↦ e])
(b1 or b2)[x ↦ e] ≡ (b1[x ↦ e] or b2[x ↦ e])
(b1 and b2)[x ↦ e] ≡ (b1[x ↦ e] and b2[x ↦ e])

We will use the following substitution lemma (see exercises for proof):

B[[b[x ↦ e]]]σ⇔ B[[b]]σ[x ↦ A[[e]]σ]

Peter Müller—Formal Methods and Functional Programming, SS14 p. 66

Syntactic Abbreviations

if b then s end if b then s else skip end

true 1=1

false 0=1

Peter Müller—Formal Methods and Functional Programming, SS14 p. 67

