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Efficiency

• Up to now: focus on elegant, abstract code

• Now: An introduction to programming with efficiency in mind.

• How do we measure efficiency?

Time
� Number of evaluation steps O(n2 ·m)

� Execution time of compiled program 0.34 ms on computer X

Space
� Size of the largest expression during execution

� Amount of memory the computation requires
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Strictness

• A function f :: a -> b is strict if it evaluates its argument.

I.e., f propagates nontermination and exceptions.

neverFalse x = (x == x) strict alwaysTrue _ = True lazy

? neverFalse divZero ? alwaysTrue divZero
*** Exception: divide by zero True

• Strict function application $! evaluates the argument first.

? alwaysTrue $! divZero -- divZero = 1 ‘div‘ 0
*** Exception: divide by zero

• $! evalutes the argument only to the first constructor or

abstraction \x -> . Sub-terms may still be unevaluated.

? alwaysTrue $! [divZero] -- $! [divZero]  (divZero : [])
True
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Strict left folds
foldl f z [] = z
foldl f z (x:xs) =

foldl f (f z x) xs

maximum (x:xs) = foldl max x xs

maximum [1,2,3]
= foldl max 1 [2,3]
= foldl max (max 1 2) [3]
= foldl max (max (max 1 2) 3) []
= max (max 1 2) 3
= max 2 3
= 3

? maximum [0..20000000]
*** Exception: stack overflow

• Builds up huge unevaluated term.

• max :: Int->Int->Int is strict,
so should be evaluated eagerly.

foldl’ f z [] = z -- defined in
foldl’ f z (x:xs) = -- Data.List

(foldl’ f $! f z x) xs

maximum’ (x:xs) = foldl’ max x xs

maximum’ [1,2,3]
= foldl’ max 1 [2,3]
= (foldl’ max $! max 1 2) [3]
= foldl’ max 2 [3]
= (foldl’ max $! max 2 3) []
= foldl’ max 3 []
= 3

? maximum’ [0..20000000]
20000000

• Evaluates intermediate terms immediat.

• May fail if f is not strict enough.
Examples?
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Left folds vs. right folds: strict

foldl’ f z [] = z foldr f z [] = z
foldl’ f z (x:xs) = foldr f z (x:xs) =

(foldl’ f $! f z x) xs f x (foldr f z xs)

Rule of thumb: If f is strict, prefer foldl’ if possible.

length = foldl’ g 0 length = foldr h 0
where g l _ = l + 1 where h _ l -> 1 + l

length [4,5,6] length [4,5,6]
= foldl’ g 0 [4,5,6] = foldr h 0 [4,5,6]
= (foldl’ g $! g 0 4) [5,6] = 1 + (foldr h 0 [5,6])
= foldl’ g 1 [5,6] = 1 + (1 + (foldr h 0 [6]))
= (foldl’ g $! g 1 5) [6] = 1 + (1 + (1 + (foldr h 0 [])))
= foldl’ g 2 [6] = 1 + (1 + (1 + 0))
= (foldl’ g $! g 2 6) [] = 1 + (1 + 1)
= foldl’ g 3 [] = 1 + 2
= 3 = 3

danger of stack overflow
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Left folds vs. right folds: lazy

foldl’ f z [] = z foldr f z [] = z
foldl’ f z (x:xs) = foldr f z (x:xs) =

(foldl’ f $! f z x) xs f x (foldr f z xs)

Rule of thumb: If f is lazy in the second argument, prefer foldr.

and = foldl’ (&&) True and = foldr (&&) True

and [True,False,True] and [True,False,True]

= foldl’ (&&) True [True,False,True] = foldr (&&) True [True,False,True]

= (foldl’ (&&) $! (True && True)) [False,True] = True && foldr (&&) True [False,True]

= foldl’ (&&) True [False,True] = foldr (&&) True [False,True]

= (foldl’ (&&) $! (True && False)) [True] = False && foldr (&&) True [True]

= foldl’ (&&) False [True] = False

= (foldl’ (&&) $! (False && True)) []

= False Laziness allows to immediately execute &&.

Left folds always process the whole list; right folds may stop early.
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Left folds vs. right folds: infinite lists

• Strict left folds produce complete result, but only at the end.

They are strict in the list structure.

• Right folds produce result incrementally.

They can work with laziness and infinite lists.

aBs = "AB" : aBs -- aBs = ["AB", "AB", ...]

take 3 (concat aBs) -- concat = foldl (++) []
= take 3 (foldl (++) [] aBs)
= take 3 (foldl (++) ([] ++ "AB") aBs)
= take 3 (foldl (++) (([] ++ "AB") ++ "AB") aBs)
= ... nontermination

take 3 (concat aBs) -- concat = foldr (++) []
= take 3 (foldr (++) [] aBs)
= take 3 ("AB" ++ foldr (++) [] aBs)
= ’A’ : ’B’ : take 1 (foldr (++) [] aBs)
= ’A’ : ’B’ : take 1 ("AB" ++ foldr (++) [] aBs)
= ’A’ : ’B’ : ’A’ : []
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Measuring time

What is wrong with the following?

import System.CPUTime -- getCPUTime :: IO Integer

main = do
start <- getCPUTime

//////////////////////////////////////////let bs = sum [1..2000000] -- bs is never used
_ <- return $! sum [1..2000000] -- $! works for primitive values
stop <- getCPUTime
putStrLn (show ((stop - start) ‘div‘ 10^9) -- in milliseconds

? main
0584

Always compile with ghc. Do not measure in ghci.

> ghc -O timeSum.hs -O tells ghc to optimize.
> ./timeSum
48
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Measuring space

• Garbage collector reclaims memory only when program runs out of

memory.

• Limit heap size with runtime option +RTS -Msize to force GC.

• Find threshold for which program no longer runs out of memory.

maximum (x:xs) = foldl max x xs
main = putStrLn (show (maximum [1..20000]))

maximum’ (x:xs) = foldl’ max x xs
main = putStrLn (show (maximum’ [1..20000]))

> ghc -rtsopts space.hs > ghc -rtsopts space’.hs
> ./space +RTS -M1255k > ./space’ +RTS -M575k
Heap exhausted; Heap exhausted;
> ./space +RTS -M1256k > ./space’ +RTS -M576k
20000 20000
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Tail-recursion
A function f is tail-recursive
if the recursive call is the last action in every recursive equation.

Examples:

foldl’ f z [] = []
foldl’ f z (x:xs) = (foldl’ f $! f z x) xs -- tail-recursive

foldr f z [] = []
foldr f z (x:xs) = f x (foldr f z xs) -- not tail-recursive

gcd x y
| x == y = x
| x > y = gcd (x - y) y -- tail-recursive
| otherwise = gcd x (y - x) -- tail-recursive

Tail-recursive functions can be compiled into loops. At recursive call,

• overwrite old parameters with new ones,

• then jump back to start of function code.
prevents

stack overflows
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Accumulators
Accumulators are additional function parameters that store

intermediate results. Accumulators are usually strict ($!).

They can be used to make a function tail-recursive.

Order of composition and association is reversed.

fac2 = aux 1 -- (...((1*n)*(n-1))*...)*1
fac 0 = 1 where
fac n = n * fac (n - 1) aux acc 0 = acc
-- n*((n-1)*(...*1*1)...) aux acc n = (aux $! acc * n) (n - 1)

length = aux 0 -- (...((0+1)+1)+...)+1
length [] = 0 where
length (x:xs) = 1+length xs aux acc [] = acc
-- 1+(1+...(1+(1+0))...) aux acc (x:xs) = (aux $! acc + 1) xs

qrev = aux []
rev [] = [] where No need for ($!). Why?
rev (x:xs) = rev xs ++ [x] aux acc [] = acc

aux acc (x:xs) = aux (x:acc) xs
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Accumulators (cont.)
Use accumulator to avoid repeated concatenation:
data Tree t = Leaf | Node t (Tree t) (Tree t)

inorder :: Tree t -> [t]
inorder Leaf = []
inorder (Node x l r) = inorder l ++ ([x] ++ inorder r)

inorder t = go t []
where go :: Tree t -> [t] -> [t]

go Leaf acc = acc
go (Node x l r) acc = go l ([x] ++ go r acc)

We have seen this before: difference lists type DList t = [t] -> [t]

-- toList xs = xs []
inorder t = toList (go t) -- empty = \xs -> xs

where -- sngl x = \xs -> x : xs
go :: Tree t -> DList t -- ys ‘app‘ zs = \xs -> ys (zs xs)
go Leaf = empty
go (Node x l r) = go l ‘app‘ (sngl x ‘app‘ go r)
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Tail recursion is not lazy

• Tail recursive functions return complete result upon termination,

i.e., no intermediate results and no laziness (cf. foldl).

• Use tail recursion for strict functions, not everywhere!

• Example: Don’t do map tail-recursively!

map f [] = [] not tail-recursive,
map f (x:xs) = f x : map f xs but lazy and O(n)

map f = go []
where tail-recursive,

go acc [] = acc but not lazy and O(n2)
go acc (x:xs) = go (acc ++ [f x]) xs repeated concatenation

map f = go []
where tail-recursive and O(n),

go acc [] = reverse acc but not lazy
go acc (x:xs) = go (f x : acc) xs and traverses the list twice
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Sharing

isPrime p = trace "p" ([x | x <- [1 .. p], p ‘mod‘ x == 0] == [1,p])

silly m n
| isPrime m && m < n = n * m
| isPrime m && even n = n + m
| otherwise = n - m

How often is isPrime called?

? silly 101 10
p
p twice
111

silly’ m n
| primeM && m < n = n * m
| primeM && even n = n + m
| otherwise = n - m
where primeM = isPrime m

? silly’ 101 10
p once
111

• GHC does not eliminate redundant recomputations,

just in some cases if run with -O.

• Manually factor out common subexpressions with let and where.
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Drawbacks of sharing
sublists [] = [[]]
sublists (x:xs) = sublists xs ++ map (x:) (sublists xs)

sublists’ [] = [[]]
sublists’ (x:xs) = ys ++ map (x:) ys

where ys = sublists’ xs

Memory consumption of length (sublists [1..n]) in kB:

n 10 11 12 13 14 15 20
sublists 164k 164k 172k 172k 172k 228k 228k

sublists’ 164k 172k 220k 352k 568k 1048k 29172k

but sublists’ is twice as fast as sublists.

ys must be kept in memory while length traverses ys.
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Visualizing sharing

unshared n = last [1..n] + head [1..n]
shared n = let xs = [1..n] in last xs + head xs

last (x:[]) = x head (x:xs) = x
last (x:xs) = last xs

last • + head •unshared 3 =

[1..3] = :

1 [2..3] = :

2 [3..3] = :

3 [4..3] = []

[1..3] = :

1 [2..3]

evaluate [1..3]

once more

memory freed by

the garbage collector

Memory consumption of unshared: O(1)
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Avoid sharing with unit closures

• Function parameters are always shared. How can we avoid it?

shared :: [Int] -> Int > ghci +RTS -M10m
shared xs = last xs + head xs ? shared [1..1000000]

Heap exhausted

• Idea: Function applications cannot be shared.

Turn parameters into functions (unit closures)!

unshared :: (() -> [Int]) -> Int
unshared xs = last (xs ()) + head (xs ())

> ghci +RTS -M10m
? unshared (\_ -> [1..1000000])
1000001

• Disable sharing transformation with -fno-full-laziness in

GHC mode -O.
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Cyclic structures

• Recursion + sharing can lead to cycles in graph.

ones = 1 : ones ones = :

1Generator for infinite list of 1s running

in constant space.

• How would you implement the infinite list of x?

repeat x = x:repeat x repeat’ x = let many=x:many in many
twos = repeat 2 twos’ = repeat’ 2

twos = repeat •
= :

2

repeat • = :

repeat • = ...

Applications are not shared!

twos’ = repeat’ • = many2 = :

2

Constant memory no matter

how deep twos’ is evaluated.
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Dynamic programming

• Dynamic programming computes solution bottom-up.

Remember results and reuse them for larger instances.

• Example: Naive Fibonacci recomputes fib(n−k) many times.

fib 0 = 0
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2) -- exponential runtime

• Fibonacci with dynamic programming: Build the list of fib(i).

0 1 1 2 3 5 8 . . .

To compute the next fib number, the last two values suffice.

fibDP n = go 0 1 n -- linear runtime
where go a b 0 = a

go a b i = (go b $! a + b) (i - 1)

Prove: go (fib (n− i)) (fib ((n− i) + 1)) i = fib n
Functional Programming Spring Semester, 2014
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Editing distance revisited

Goal: find “cheapest” sequence of editing steps using operations

Change a character cost 1

Copy a character without change cost 0

Delete a character cost 1

Insert a character cost 1

data Edit = Change Char | Copy | Delete | Insert Char

transform :: String -> String -> [Edit]
cost :: [Edit] -> Int

? transform "Hello" "help"
[Change ’h’, Copy, Copy, Change ’p’, Delete]

? cost $ transform "Hello" "help"
3

Functional Programming Spring Semester, 2014



Andreas Lochbihler 37

Transform performs redundant computations
• Implementation of transform:

transform [] [] = []
transform xs [] = map (\_ -> Delete) xs
transform [] ys = map Insert ys
transform (x:xs) (y:ys)

| x == y = Copy : transform xs ys
| otherwise = best [ Delete : transform xs (y:ys)

, Insert y : transform (x:xs) ys
, Change y : transform xs ys ]

• transform repeatedly computed on the same subsequences:

transform "ac" "bd"
Delete -> transform "c" "bd"

Insert ’b’ -> transform "c" "d"
Insert ’b’ -> transform "ac" "c"

Delete -> transform "c" "d"
Change ’b’ -> transform "c" "d"

Results in exponential run-time.
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Editing distance with dynamic programming

Dynamic programming: Store sub-computations in a table.

h e l p ""

H • • • • •

e • • • • •

l • • • • •

l • • • • •

o • • • • •

"" • • • • •

transform "lo" into "elp"

To transform "Hello" into "help", we can

delete H and transform "ello" into "help",
insert h and transform "Hello" into "elp", or
change H to h and transform "ello" into "elp".

To transform "ello" into "elp", we
copy e and transform "llo" into "lp".

Fill table from bottom right to top left.

01234

11234

22123

33223

44323

55433
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Table cells as an ADT

Every cell stores the sequence of edits and their costs.

module Cell (Edit(..), Cell, edits, cost,
empty, change, copy, insert, delete) where

data Edit = Change Char | Copy | Delete | Insert Char
deriving (Eq,Show)

data Cell = Cell [Edit] Int deriving (Show)

edits (Cell e _) = e
cost (Cell _ c) = c

-- ADT ensures invariant cost c == length (filter (/= Copy) (edits c))

empty = Cell [] 0
change c (Cell edits cost) = Cell (Change c : edits) $! (cost + 1)
copy (Cell edits cost) = Cell (Copy : edits) cost
delete (Cell edits cost) = Cell (Delete : edits) $! (cost + 1)
insert c (Cell edits cost) = Cell (Insert c : edits) $! (cost + 1)
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The last row of the table I
In the last row, each cell is a foldr of insert over the suffix.

h e l p ""

"" 4 3 2 1 0

Cell (Insert ’h’:Insert ’e’:Insert ’l’:Insert ’p’:[]) 4

Cell (Insert ’e’:Insert ’l’:Insert ’p’:[]) 3

Cell (Insert ’l’:Insert ’p’:[]) 2

Cell (Insert ’p’:[]) 1
Cell [] 0

tails [] = [[]]
tails (x:xs) = (x:xs) : tails xs

lastRow ys = map (foldr insert empty) (tails ys)

? lastRow "lp"
[Cell [Insert ’l’,Insert ’p’] 2,Cell [Insert ’p’] 1,Cell [] 0]

Suffixes of edits are not shared, i.e., time and space O(n2).
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The last row of the table II
In the last row, each cell is a foldr of insert over the suffix.

h e l p ""

"" 4 3 2 1 0

Cell (Insert ’h’:• ) 4

Cell (Insert ’e’:• ) 3

Cell (Insert ’l’:• ) 2

Cell (Insert ’p’:• ) 1
Cell [] 0

scanr f computes list of right-folds of f with sharing.

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f z [] = [z]
scanr f z (x:xs) = f x (head bs) : bs where bs = scanr f z xs

lastRow = scanr insert empty runs in space and time O(n)

foldr :: (a -> b -> b) -> b -> [a] -> b
foldr f z (x:xs) = f x (foldr f z xs) foldr f z [] = z
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Visualizing scanr

scanr :: (a -> b -> b) -> b -> [a] -> [b]
scanr f z [] = [z]
scanr f z (x:xs) = f x (head bs) : bs where bs = scanr f z xs

scanr f z [1, 2, 3] = [f 1 (f 2 (f 3 z)), f 2 (f 3 z), f 3 z, z]

:

1 :

2 :

3 [ ]

f

1 f

2 f

3 z

foldr f z

:

:

:

:

[ ]

scanr f z

head (scanr f z xs) = foldr f z xs
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Filling the other rows
We only need the row below and the remainder of the current row.

h e l p ""

o • • • 1 1

"" 4 3 2 1 0

type Row = [Cell]

fillRow :: String -> Char -> Row -> Row
fillRow "" x (south: _ ) = [delete south]
fillRow (y:ys) x (south:southEast:restBelow) = cell : east : currRest

where
(east : currRest) = fillRow ys x (southEast : restBelow)
cell

| x == y = copy southEast
| otherwise =

best [ delete south, insert y east, change y southEast ]

best [c] = c
best (c:cs) = if cost c <= cost c’ then c else c’

where c’ = best csFunctional Programming Spring Semester, 2014



Andreas Lochbihler 44

Filling the table

h e l p ""

H • • • • •

e • • • • •

l 3 2 2 3 3

l 3 2 1 2 2

o 4 3 2 1 1

"" 4 3 2 1 0

When one row is finished,

• the current row becomes the next row,

• and we start again filling the row with

fillRow ys

This is again a fold.

The table is the list of folds over the
suffixes, i.e., scanr.

fillTable :: String -> String -> [Row]
fillTable xs ys = scanr (fillRow ys) (lastRow ys) xs

transform :: String -> String -> [Edit]
transform xs ys = edits (head (head (fillTable xs ys)))

Exercise: How can this be simplified?
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The complete code for the table

import Cell

lastRow = scanr insert empty

fillRow "" x (south: _ ) = [delete south]
fillRow (y:ys) x (south:southEast:restBelow) = cell : east : currRest

where
(east : currRest) = fillRow x ys (southEast : restBelow)
cell

| x == y = copy southEast
| otherwise =

best [ delete south, insert y east, change y southEast ]

best [c] = c
best (c:cs) = if cost c <= cost c’ then c else c’

where c’ = best cs

fillTable xs ys = scanr (fillRow ys) (lastRow ys) xs

transform xs ys = edits (head (head (fillTable xs ys)))
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Transform examples

? :set +s

? transform "Hello" "help"
[Change ’h’,Copy,Copy,Delete,Change ’p’]
(0.00 secs, 552704 bytes)

? transform "123456" "654321"
[Delete,Change ’6’,Change ’5’,Copy,Insert ’3’,Change ’2’,Change ’1’]
(0.00 secs, 1061296 bytes)

? transform "12345678" "87654321"
[Delete,Change ’8’,Change ’7’,Change ’6’,Copy,Insert ’4’,Change ’3’,
Change ’2’,Change ’1’]

(0.00 secs, 1134120 bytes) --former impl. took > 1 s

? transform "FMFP is challenging!" "Haskell is cool!"
[Insert ’H’,Insert ’a’,Insert ’s’,Change ’k’,Change ’e’,Change ’l’,
Change ’l’,Copy,Copy,Copy,Copy,Copy,Delete,Change ’o’,Change ’o’,
Copy,Delete,Delete,Delete,Delete,Delete,Delete,Copy]

(0.01 secs, 1580096 bytes)
Functional Programming Spring Semester, 2014



Andreas Lochbihler 47

Deforestation

Recall the sumFourthPowers example and its execution:

foldr f z [] = z map f [] = []
foldr f z (x:xs) = f x (foldr f z xs) map f (x:xs) = f x : map f xs

sumFourthPowers n = foldr (+) 0 (map (^4) [1..n])

sumFourthPowers n
= foldr (+) 0 (map (^4) [1..n])
= foldr (+) 0 (map (^4) (1 : [2..n]))
= foldr (+) 0 (1^4 : map (^4) [2..n])
= 1^4 + foldr (+) 0 (map (^4) [2..n])
= ...

Intermediate lists are not constructed fully thanks to laziness,

but we still allocate the list nodes during the execution.

Deforestation avoids such intermediate allocations.
Functional Programming Spring Semester, 2014



Andreas Lochbihler 48

Foldr Build Fusion

:

1 :

2 :

3 []

:

(^4)

1

:

(^4)

2

:

(^4)

3

[]

+

(^4)

1

+

(^4)

2

+

(^4)

3

0

[1..3]

map (^4) foldr (+) 0

• [1..3] builds list from constructors (:) and [].

• foldr f z replaces (:) with f and [] with z.

• If we replace (:) and [] with f and z when we build the list, we

avoid intermediate allocations.

• Let’s parametrize [1..3] and map over (:) and [].
Functional Programming Spring Semester, 2014



Andreas Lochbihler 49

Parametrizing over (:) and []

• Conventional implementation for [n .. m]:

enumFromTo :: Int -> Int -> [Int]
enumFromTo n m

| n <= m = n : enumFromTo (n + 1) m
| otherwise = []

• Abstract over (:) and []

enumFromToFB :: (Int -> a -> a) -> a -> Int -> Int -> a
enumFromToFB cons nil n m

| n <= m = n ‘cons‘ enumFromToFB (n + 1) m
| otherwise = nil

• We get back the old implementation by providing (:) and []:

build g = g (:) []

enumFromTo n m = build (\cons nil -> enumFromToFB cons nil n m)
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The foldr-build fusion rule

foldr f z (build g) = g f z

Side condition: g is polymorphic in z’s type.

• GHC implements enumFromTo with build enumFromToFB

when it occurs under a foldr and applies the fusion rule.

foldr (+) 0 (enumFromTo n m) -- at compile time
= foldr (+) 0 (build (\cons nil -> enumFromToFB cons nil n m))
= enumFromToFB (+) 0 n m

• No intermediate list at run-time any more!

enumFromToFB (+) 0 1 3 -- at run time
= 1 + enumFromToFB (+) 0 (1+1) 3
= 1 + (2 + enumFromToFB (+) 0 (2+1) 3)
= 1 + (2 + (3 + enumFromToFB (+) 0 (3+1) 3))
= 1 + (2 + (3 + 0))
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Fusion for map

• Write map as foldr:

map :: (a -> b) -> [a] -> [b]
map f = foldr (\x xs -> f x : xs) []

• Abstract over (:) and []

mapFB :: (b -> c -> c) -> c -> (a -> b) -> [a] -> c
mapFB cons nil f = foldr (\x xs -> f x ‘cons‘ xs) nil

map f xs = build (\cons nil -> mapFB cons nil f xs)

• GHC’s optimizer eliminates the intermediate lists.

sumFourthPowers n
= foldr (+) 0 (map (^4) [1..n])
= foldr (+) 0 (build (\cons nil -> mapFB cons nil (^4) [1..n]))
= mapFB (+) 0 (^4) [1..n]
= foldr (\x xs -> x^4 + xs) 0

(build (\cons nil -> enumFromToFB cons nil 1 n))
= enumFromToFB (\x xs -> x^4 + xs) 0 1 n
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Summary on deforestation

• Deforestation eliminates intermediate data structures

� Allows to write programs at a high level of abstraction
without losing efficiency.

� foldr-build is just one example

• Optimized implementations must be provided manually.

Library writers write them and tell GHC how to use them.

• Prefer combinators to manual recursive implementation.

The compiler knows how to optimize the combinators,

but not your own recursive function.
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Summary on efficiency

• Measure first! Optimize only if necessary.

• Strictness annotations force evaluation of arguments

� They cause extra work, so use sparingly.

� $! evaluates only until the first constructor.

• Accumulators and tail recursion

� Accumulators should be strict. Prefer foldl’ over foldl.

� Tail recursion avoids call stack overflows, but destroys laziness.

• Sharing

� To avoid recomputations, extract them as let/where bindings.

� Sharing can cause space leaks.

• Use list combinators! GHC knows them better than your functions.

Functional Programming Spring Semester, 2014



Andreas Lochbihler 54

A word of warning

Before you optimize, double-check that your algorithm is fast!

fib 0 = 0 -- exponential
fib 1 = 1
fib n = fib (n - 1) + fib (n - 2)

fibDP n = go 0 1 n -- linear with DP
where go a b 0 = a

go a b i = (go b $! a + b) (i - 1)

Exploit identities to get faster:

fib (2 · n) = (2 · fib (n+ 1)− fib n) · fib n

fibFast n = fst (aux n) -- logarithmic
where

aux 0 = (0, 1) -- aux n = (fib n, fib (n+1))
aux n | even n = ((2*b-a)*a, b^2 + a^2)

| otherwise = (b^2 + a^2, b*(2*a+b))
where (a, b) = aux (n ‘div‘ 2)
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