
Formal Methods
and Functional Programming

Axiomatic Semantics

Peter Müller

Chair of Programming Methodology
ETH Zurich

Program Correctness

Formal semantics can be used to prove the correctness of a program

Partial correctness expresses that if a program terminates then there
will be a certain relationship between the initial and the final state

Total correctness expresses that a program will terminate and there will
be a certain relationship between the initial and the final state

The relationship is expressed by a formal specification

total correctness = partial correctness + termination

Peter Müller—Formal Methods and Functional Programming, SS14 p. 158

4. Axiomatic Semantics

4.1 Motivation

4.2 Hoare Logic

4.3 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 159

Program Correctness: Example

Consider the factorial statement

y := 1;
while not x = 1 do
y := y * x;
x := x - 1

end

Specification:
The final value of y is the factorial of the initial value of x

The statement is partially correct

It does not terminate for x < 1

Peter Müller—Formal Methods and Functional Programming, SS14 p. 160



Formal Specification

Specification:
The final value of y is the factorial of the initial value of x

We can express the specification formally based on a formal semantics

∀σ,σ′.
⊢ ⟨y := 1;while not x = 1 do y := y * x;x := x - 1 end, σ⟩ → σ′

⇒ σ′(y) = σ(x)! ∧ σ(x) > 0

This specification expresses partial correctness using big-step semantics

We could have used small-step semantics to formulate the property,
instead

Peter Müller—Formal Methods and Functional Programming, SS14 p. 161

Correctness Proof

We prove partial correctness in three steps

Step 1: The body of the loop satisfies

∀σ,σ′′. ⊢ ⟨y := y*x;x := x-1, σ⟩ → σ′′ ∧ σ′′(x) > 0⇒
σ(y) × σ(x)! = σ′′(y) × σ′′(x)! ∧ σ(x) > 0

Step 2: The loop satisfies

∀σ,σ′′. ⊢ ⟨while not x = 1 do y := y*x;x := x-1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

Step 3: The whole statement is partially correct

∀σ,σ′. ⊢ ⟨y := 1;while not x = 1 do y := y*x;x := x-1 end, σ⟩ → σ′ ⇒
σ′(y) = σ(x)! ∧ σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS14 p. 162

Proof: Step 1—Loop Body

Let σ and σ′′ be arbitrary. To prove the implication, we assume the
left-hand-side and prove the right.

Since we have ⊢ ⟨y := y*x;x := x-1, σ⟩ → σ′′, we can assume that
both ⊢ ⟨y := y*x, σ⟩ → σ′ and ⊢ ⟨x := x-1, σ′⟩ → σ′′ for some σ′ (the
last rule applied in the original derivation must be SeqNS)

Since these two derivations must end in the AssNS rule, we must have
σ′ = σ[y↦ A[[y*x]]σ] and σ′′ = σ′[x↦ A[[x-1]]σ′], which together
imply that σ′′ = σ[y↦ σ(y) × σ(x)][x↦ σ(x)-1]

By σ′′(x) > 0, we calculate

σ′′(y) × σ′′(x)! =
σ(y) × σ(x) × (σ(x)-1)! = σ(y) × σ(x)!

Finally, by σ′′(x) = σ(x)-1, we get σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS14 p. 163

Proof: Step 2—Loop

Step 2: The loop satisfies

∀σ,σ′′. ⊢ ⟨while not x = 1 do y := y*x;x := x-1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

We prove this property by induction on the shape of the derivation tree:

Define P(T ):

P(T ) ≡ ∀σ,σ′′.
root(T ) = ⟨while not x = 1 do y := y*x;x := x-1 end, σ⟩ → σ′′ ⇒
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

We prove P(T ) for arbitrary T , with the induction hypothesis
∀T ′ ⊏ T .P(T ′) (i.e., we can assume the property for all subderivations
of the derivation tree T ).

Peter Müller—Formal Methods and Functional Programming, SS14 p. 164



Proof: Step 2—Loop (Case WhFNS)

We prove P(T ) for arbitrary T , with the induction hypothesis
∀T ′ ⊏ T .P(T ′) (i.e., we can assume the property for all subderivations
of the derivation tree T .

Let σ, σ′′ be arbitrary. We assume the equality above for root(T ), and
need to show that σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

We consider the two possible cases for the last rule applied in T :
WhFNS and WhTNS

Case WhFNS :

From the form of the rule, we must have σ(x) = 1 and σ = σ′′

Since 1 = 1!, we get σ(y) × σ(x)! = σ(y) = σ′′(y)

We also immediately get σ′′(x) = 1 and σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS14 p. 165

Proof: Step 2—Loop (Case WhTNS)

From the form of the rule, we know that two subderivations exist: for
some σ′′′,

(1) ⊢ ⟨y := y*x;x := x-1, σ⟩ → σ′′′

(2) ⊢ ⟨while not x = 1 do y := y*x;x := x-1 end, σ′′′⟩ → σ′′

Applying the induction hypothesis to (2) yields
σ′′′(y) × σ′′′(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ′′′(x) > 0

By (1), σ′′′(x) > 0, and Proof Step 1, we get
σ(y) × σ(x)! = σ′′′(y) × σ′′′(x)! ∧ σ(x) > 0

Combining these results yields, as required:
σ(y) × σ(x)! = σ′′(y) ∧ σ′′(x) = 1 ∧ σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS14 p. 166

Proof: Step 3—Factorial Statement
Step 3: The whole statement is partially correct:

∀σ,σ′. ⊢ ⟨y := 1;while not x = 1 do y := y*x;x := x-1 end, σ⟩ → σ′ ⇒
σ′(y) = σ(x)! ∧ σ(x) > 0

Let σ, σ′ be arbitrary. The last rule applied in the assumed derivation
must be SeqNS .

From the form of the rule, we get, for some σ′′:

(1) ⊢ ⟨y := 1, σ⟩ → σ′′

(2) ⊢ ⟨while not x = 1 do y := y*x;x := x-1 end, σ′′⟩ → σ′

By (1), we get σ′′ = σ[y↦ 1] and, thus, σ′′(x) = σ(x)

By (2), and Proof Step 2, we get
σ′′(y) × σ′′(x)! = σ′(y) ∧ σ′(x) = 1 ∧ σ′′(x) > 0

We conclude, as required: 1 × σ(x)! = σ′(y) ∧ σ(x) > 0

Peter Müller—Formal Methods and Functional Programming, SS14 p. 167

Verification Example: Observations

We can prove correctness of a program based on a formal semantics

The proof would also be possible with the small-step semantics, but even
more complicated

Proofs are too detailed to be practical

We have to consider how whole states are modified
We would like to focus on certain properties of states
We need to manually decompose the proof into suitable parts
For each loop, we need to formulate a separate induction on derivations

Axiomatic Semantics provides a way of constructing these proofs
conveniently

Proofs can focus only on essential properties of interest
Decomposing the program into smaller parts happens naturally
The induction for reasoning about loops is “built” into the semantic rule
for loops

Peter Müller—Formal Methods and Functional Programming, SS14 p. 168



4. Axiomatic Semantics

4.1 Motivation

4.2 Hoare Logic

4.2.1 Hoare Triples and Assertions
4.2.2 Derivation System
4.2.3 Proving Properties of the Semantics
4.2.4 Total Correctness (Termination)

4.3 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 169

Hoare Triples

Properties of programs are specified as Hoare triples

{ P } s { Q }

where s is a statement and P and Q are assertions (about the state)

Terminology

The assertion P is called the precondition of a triple { P } s { Q }

The assertion Q is called the postcondition of a triple { P } s { Q }

Assertions are boolean expressions, with some additional features
(explained shortly). We use P, Q, R as meta-variables over assertions.

Peter Müller—Formal Methods and Functional Programming, SS14 p. 170

Meaning of Hoare Triples

The informal meaning of { P } s { Q } is

If P evaluates to true in an initial state σ, and
if the execution of s from σ terminates in a state σ′

then Q will evaluate to true in σ′

This meaning describes partial correctness, that is, termination is not
an essential property

It is also possible to assign different meanings to Hoare Triples
Total correctness interpretation (see later)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 171

Hoare Triples: Example

Attempted specification of the factorial statement:

{ true }
y := 1;while not x = 1 do y := y*x;x := x-1 end

{ y = x! ∧ x > 0 }

In general, this Hoare triple is not correct. For example:

Consider an initial state { x↦ 2,y↦ 0 }

The final state will be { x↦ 1,y↦ 2 }

We need to express that y in the final state is the factorial of x in the
initial state

We need a way for assertions to describe properties not just of the
current state, but also of the initial state

Peter Müller—Formal Methods and Functional Programming, SS14 p. 172



Logical Variables

We allow assertions to contain logical variables

Logical variables may occur only in assertions (pre- and postconditions)

Logical variables are not program variables and may, thus, not be
accessed in programs; in particular, they are never assigned to

Logical variables can be used to “save” values in the initial state, so
that they can be referred to later

{ x = N }
y := 1;while not x = 1 do y := y*x;x := x-1 end

{ y = N! ∧N > 0 }

States map logical variables (and program variables) to their values

Peter Müller—Formal Methods and Functional Programming, SS14 p. 173

Assertion Language

Pre- and postconditions are assertions, that is, boolean expressions plus
logical variables

In particular, we will use program boolean expressions b as assertions

It is common in practice to use a richer set of expressions for assertions,
for instance, to include quantification

We will use additional expressions when it is convenient (e.g., x!)

We assume that the substitution lemma from the exercises still holds
when we use an extended assertion language:

B[[P[x ↦ e]]]σ = B[[P]]σ[x ↦ A[[e]]σ]

We will use the following convenient notations

“P1 ∧ P2” for “P1 and P2”

“P1 ∨ P2” for “P1 or P2”

“¬P” for “not P”

Peter Müller—Formal Methods and Functional Programming, SS14 p. 174

4. Axiomatic Semantics

4.1 Motivation

4.2 Hoare Logic

4.2.1 Hoare Triples and Assertions
4.2.2 Derivation System
4.2.3 Proving Properties of the Semantics
4.2.4 Total Correctness (Termination)

4.3 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 175

Axiomatic Semantics: Derivation System

We formalize an axiomatic semantics of IMP by describing the valid
Hoare triples

This is done by a derivation system

The derivation rules specify which triples can be derived for each
statement
The premises and conclusions of the derivation rules are Hoare triples

{ P } s { Q }

Derivation trees (using the rules presented next) are defined as before

Similarly to the other derivation systems we have studied, we write
⊢ { P } s { Q } if and only if there exists a (finite) derivation tree
ending in { P } s { Q }

⊢ { P } s { Q } ⇔ ∃T .root(T ) = { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 176



Axiomatic Semantics of IMP

skip does not modify the state

(SkipAx)
{ P } skip { P }

x := e assigns the value of e to variable x

(AssAx)
{ P[x ↦ e] } x := e { P }

Let σ be the initial state

Precondition: B[[P[x ↦ e]]]σ, which is equivalent to
B[[P]]σ[x ↦ A[[e]]σ] (substitution lemma)

Final state: σ[x ↦ A[[e]]σ]
Consequently, B[[P]] holds in the final state

Reminder: these are rule schemes (they can be instantiated by
replacing meta-variables)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 177

Axiomatic Semantics of IMP (cont’d)

Sequential composition s;s ′

{ P } s { Q } { Q } s ′ { R }
(SeqAx)

{ P } s;s ′ { R }

Conditional statement if b then s1 else s2 end

{ b ∧P } s { Q } { ¬b ∧P } s ′ { Q }
(IfAx)

{ P } if b then s else s ′ end { Q }

Loop statement while b do s end

{ b ∧P } s { P }
(WhAx)

{ P } while b do s end { ¬b ∧P }

The assertion P is the loop invariant

Peter Müller—Formal Methods and Functional Programming, SS14 p. 178

Axiomatic Semantics of IMP (cont’d)

The rules so far manipulate assertions syntactically

For example, so far, we cannot derive the triple
{ x = 4 ∧ y = 5 } skip { y = 5 ∧ x = 4 }
(assertions are not identical, so this is not an instance of the SkipAx rule)

During proofs, we often need to perform semantic reasoning (e.g.,
applying mathematical properties of factorial, arithmetic rules, etc.)

Semantic entailment expresses these reasoning steps:
we write P ⊧ Q iff “for all states σ, B[[P]]σ = tt implies B[[Q]]σ = tt”

The rule of consequence allows semantic entailments in derivations

{ P′ } s { Q′ }
(ConsAx)

{ P } s { Q }
if P ⊧ P′ and Q′ ⊧ Q

We can strengthen preconditions (P cannot be weaker than P′)
We can weaken postconditions (Q cannot be stronger than Q′)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 179

Axiomatic Semantics of IMP (cont’d)

The rules so far manipulate assertions syntactically

For example, so far, we cannot derive the triple
{ x = 4 ∧ y = 5 } skip { y = 5 ∧ x = 4 }
(assertions are not identical, so this is not an instance of the SkipAx rule)

During proofs, we often need to perform semantic reasoning (e.g.,
applying mathematical properties of factorial, arithmetic rules, etc.)

Semantic entailment expresses these reasoning steps:
we write P ⊧ Q iff “for all states σ, B[[P]]σ = tt implies B[[Q]]σ = tt”

The rule of consequence allows semantic entailments in derivations

{ P′ } s { Q′ }
(ConsAx)

{ P } s { Q }
if P ⊧ P′ and Q′ ⊧ Q

We can strengthen preconditions (P cannot be weaker than P′)
We can weaken postconditions (Q cannot be stronger than Q′)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 179



Axiomatic Semantics of IMP (cont’d)

The rules so far manipulate assertions syntactically

For example, so far, we cannot derive the triple
{ x = 4 ∧ y = 5 } skip { y = 5 ∧ x = 4 }
(assertions are not identical, so this is not an instance of the SkipAx rule)

During proofs, we often need to perform semantic reasoning (e.g.,
applying mathematical properties of factorial, arithmetic rules, etc.)

Semantic entailment expresses these reasoning steps:
we write P ⊧ Q iff “for all states σ, B[[P]]σ = tt implies B[[Q]]σ = tt”

The rule of consequence allows semantic entailments in derivations

{ P′ } s { Q′ }
(ConsAx)

{ P } s { Q }
if P ⊧ P′ and Q′ ⊧ Q

We can strengthen preconditions (P cannot be weaker than P′)
We can weaken postconditions (Q cannot be stronger than Q′)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 179

Derivation Trees: Example 1

Prove that the following statement swaps the values in the variables x

and y

(z:=x; x:=y); y:=z

We can build the following derivation tree

(AssAx )
{ P } z:=x { z = X0 ∧ y = Y0 }

(ConsAx )
∗

{ P } z:=x { y = Y0 ∧ z = X0 }
(AssAx )

{ y = Y0 ∧ z = X0 } x:=y { Q
′
}
(SeqAx )

{ P } z:=x; x:=y { Q
′
}

(AssAx )
{ Q
′
} y:=z { Q }

(SeqAx )
{ P } (z:=x; x:=y); y:=z { Q }

∗since P ⊧ P and z = X0 ∧ y = Y0 ⊧ y = Y0 ∧ z = X0

where we write:

P for x = X0 ∧ y = Y0

Q for x = Y0 ∧ y = X0

Q′ for x = Y0 ∧ z = X0

Peter Müller—Formal Methods and Functional Programming, SS14 p. 180

Derivation Trees: Example 2

Consider the non-terminating loop

while true do skip end

We can build the following derivation tree

(SkipAx)
{ true } skip { true }

(ConsAx)1
{ true ∧ true } skip { true }

(WhAx)
{ true } while true do skip end { ¬true ∧ true }

(ConsAx)2
{ true } while true do skip end { ¬true }

1true ∧ true ⊧ true
2¬true ∧ true ⊧ ¬true

This proof illustrates that we have partial correctness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 181

Proof Outlines

Derivation trees tend to get very large and are, thus, inconvenient to
write

Most statements are written many times
Many assertions are written many times

An alternative is to group the assertions around the program text

We write assertions before and after each statement to indicate which
properties hold in the states before and after the execution of this
statement

Peter Müller—Formal Methods and Functional Programming, SS14 p. 182



Proof Outlines: Notation

We write instances of the SkipAx and AssAx rules as:

{ P }
skip

{ P }

{ P[x ↦ e] }
x := e

{ P }

We write an instance of the rule for sequential composition as:

{ P }
s1;

{ Q }
s2

{ R }

This expresses ⊢ { P } s1 { Q }, ⊢ { Q } s2 { R }, and ⊢ { P } s1;s2 { R }
Note: we write each statement and the intermediate assertion Q once

Peter Müller—Formal Methods and Functional Programming, SS14 p. 183

Proof Outlines: Notation (cont’d)

We write an instance of the rule
for conditional statements as:

{ P }
if b then

{ b ∧P }
s1

{ Q }
else

{ ¬b ∧P }
s2

{ Q }
end

{ Q }

We write an instance of the
rule for loops as:

{ P }
while b do

{ b ∧P }
s

{ P }
end

{ ¬b ∧P }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 184

Proof Outlines: Notation (cont’d)

We write an instance of the rule of consequence as:

{ P }
⊧
{ P′ }

s
{ Q′ }
⊧
{ Q }

We omit the entailment step when P and P′ or Q and Q′ are
syntactically identical. For example, we may also write:

{ P }
s

{ Q′
}

⊧

{ Q }

{ P }
⊧

{ P′
}

s
{ Q }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 185

Proof Outlines: Example

Back to our swap-example:

(z:=x; x:=y); y:=z

Proof outline:

{ x = X0 ∧ y = Y0 }
⊧
{ y = Y0 ∧ x = X0 }

z := x;

{ y = Y0 ∧ z = X0 }
x := y;

{ x = Y0 ∧ z = X0 }
y := z

{ x = Y0 ∧ y = X0 }

Proof outlines are often best developed bottom-up

Peter Müller—Formal Methods and Functional Programming, SS14 p. 186



Verification of Factorial Statement

{ x = N }
y := 1;while not x = 1 do y := y*x;x := x-1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Invariant: x > 0⇒ y*x! = N! ∧N ≥ x

Peter Müller—Formal Methods and Functional Programming, SS14 p. 187

Verification of Factorial Statement

{ x = N }
y := 1;while not x = 1 do y := y*x;x := x-1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Iteration 0 1 2 i N-1
x N N-1 N-2 N-i 1
y 1 N N*(N-1) N*(N-1)* . . .*(N-i + 1) N!

Invariant: x > 0⇒ y*x! = N! ∧N ≥ x

Peter Müller—Formal Methods and Functional Programming, SS14 p. 187

Verification of Factorial Statement

{ x = N }
y := 1;while not x = 1 do y := y*x;x := x-1 end

{ y = N! ∧N > 0 }

Determining the loop invariant

Iteration 0 1 2 i N-1
x N N-1 N-2 N-i 1
y 1 N N*(N-1) N*(N-1)* . . .*(N-i + 1) N!

Invariant: x > 0⇒ y*x! = N! ∧N ≥ x

Peter Müller—Formal Methods and Functional Programming, SS14 p. 187

Proof Outline for Factorial Statement

{ x = N }
⊧
{ x > 0⇒ 1*x! = N! ∧N ≥ x }

y := 1;

{ x > 0⇒ y*x! = N! ∧N ≥ x }
while not x = 1 do

{ x ≠ 1 ∧ (x > 0⇒ y*x! = N! ∧N ≥ x) }
⊧
{ x-1 > 0⇒ y*x*(x-1)! = N! ∧N ≥ x-1 }

y := y*x;

{ x-1 > 0⇒ y*(x-1)! = N! ∧N ≥ x-1 }
x := x-1

{ x > 0⇒ y*x! = N! ∧N ≥ x }
end

{ x = 1 ∧ (x > 0⇒ y*x! = N! ∧N ≥ x) }
⊧
{ y = N! ∧N > 0 }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 188



Verification of Zune Example

{ . . . }
year := 1980;

days := D;

while L(year) and 366 < days or

not L(year) and 365 < days do

if L(year) then days := days - 366

else days := days - 365

end

year := year + 1

end

{ year-1980 ≤ D/365 }

Determining the loop invariant: After i iterations, we have

year = 1980 + i
days ≤ D-i × 365

Invariant: year-1980 ≤ (D-days)/365 ∧ 0 ≤ days

Peter Müller—Formal Methods and Functional Programming, SS14 p. 189

Verification of Zune Example

{ . . . }
year := 1980;

days := D;

while L(year) and 366 < days or

not L(year) and 365 < days do

if L(year) then days := days - 366

else days := days - 365

end

year := year + 1

end

{ year-1980 ≤ D/365 }

Determining the loop invariant: After i iterations, we have

year = 1980 + i
days ≤ D-i × 365

Invariant: year-1980 ≤ (D-days)/365 ∧ 0 ≤ days

Peter Müller—Formal Methods and Functional Programming, SS14 p. 189

Verification of Zune Example

{ . . . }
year := 1980;

days := D;

while L(year) and 366 < days or

not L(year) and 365 < days do

if L(year) then days := days - 366

else days := days - 365

end

year := year + 1

end

{ year-1980 ≤ D/365 }

Determining the loop invariant: After i iterations, we have

year = 1980 + i
days ≤ D-i × 365

Invariant: year-1980 ≤ (D-days)/365 ∧ 0 ≤ days
Peter Müller—Formal Methods and Functional Programming, SS14 p. 189

Proof Outline for Zune Example
{ 0 ≤ D }
⊧

{ 1980-1980 ≤ (D-D)/365 ∧ 0 ≤ D }
year := 1980;

{ year-1980 ≤ (D-D)/365 ∧ 0 ≤ D }

days := D;

{ year-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

while L(year) and 366 < days or not L(year) and 365 < days do

{ (L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) ∧ year-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

⊧

{ year-1980 ≤ (D-days)/365 ∧ (L(year) ⇒ 366 < days) ∧ 365 < days }

if L(year) then

{ L(year) ∧ year-1980 ≤ (D-days)/365 ∧ (L(year) ⇒ 366 < days) ∧ 365 < days }

⊧

{ year + 1-1980 ≤ (D-(days-366))/365 ∧ 0 ≤ (days-366) }

days := days-366

{ year + 1-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

else

{ ¬L(year) ∧ year-1980 ≤ (D-days)/365 ∧ (L(year) ⇒ 366 < days) ∧ 365 < days }

⊧

{ year + 1-1980 ≤ (D-(days-365))/365 ∧ 0 ≤ days-365 }

days := days-365;

{ year + 1-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

end;

{ year + 1-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

year := year + 1

{ year-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

end

{ ¬(L(year) ∧ 366 < days ∨ ¬L(year) ∧ 365 < days) ∧ year-1980 ≤ (D-days)/365 ∧ 0 ≤ days }

⊧

{ year-1980 ≤ D/365 }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 190



4. Axiomatic Semantics

4.1 Motivation

4.2 Hoare Logic

4.2.1 Hoare Triples and Assertions
4.2.2 Derivation System
4.2.3 Proving Properties of the Semantics
4.2.4 Total Correctness (Termination)

4.3 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 191

Induction on the Shape of Derivation Trees

Properties of the axiomatic semantics are typically proved by induction
on the shape of the derivation tree

Same technique as used earlier with big-step semantics

Note: structural induction on IMP statements is often insufficient for
reasoning about derivations, because of the rule of consequence

Reminder: induction on the shape of derivation trees
To prove a property P(T ) for all derivation trees T , prove that P(T )
holds for an arbitrary derivation tree T under the assumption (I.H.)
that P(T ′) holds for all sub-derivations T ′ of T

Proofs by induction on the shape of derivation trees typically proceed
by case distinction on the rule applied at the root of the arbitrary
derivation tree T . In each case, one may assume that:

the condition of the rule is satisfied
there is a derivation tree T ′ for each premise of the last-rule in T
for each of these, P(T ′) holds, since T ′ is a proper sub-tree of T

Peter Müller—Formal Methods and Functional Programming, SS14 p. 192

Proving Properties: Example

We prove the following lemma for skip statements:

∀P,Q. ⊢ { P } skip { Q } ⇒ P ⊧ Q

If there exists an derivation tree for { P } skip { Q } then P ⊧ Q

We perform induction on the shape of the derivation tree for
{ P } skip { Q }

Thus, we need to prove P(T ) for some arbitrary T , with the induction
hypothesis ∀T ′ ⊏ T .P(T ′), where:

P(T ) ≡ ∀P,Q. root(T ) = { P } skip { Q } ⇒ P ⊧ Q

To prove P(T ), let P,Q be arbitrary. We assume
root(T ) = { P } skip { Q } and need to show that P ⊧ Q

We consider the cases for the last rule applied in T ; given that
root(T ) = { P } skip { Q }, there are two cases: SkipAx and ConsAx

Peter Müller—Formal Methods and Functional Programming, SS14 p. 193

Proving Properties: Example (cont’d)

Case SkipAx :

From the form of the rule, we get P ≡ Q and, thus, P ⊧ Q trivially
(recall the definition of semantic entailment)

Case ConsAx :

From the form of the rule, we know that, for some P′ and Q′:

There exists T ′
⊏ T such that root(T ′

) = { P′
} skip { Q′

}

P ⊧ P′ (from the side-condition)

Q′
⊧ Q (from the side-condition)

Our induction hypothesis allows us to assume P(T ′), and thus, we
deduce P′ ⊧ Q′

Now we have P ⊧ P′, P′ ⊧ Q′, and Q′ ⊧ Q and, thus, P ⊧ Q

Peter Müller—Formal Methods and Functional Programming, SS14 p. 194



Semantic Equivalence

Two statements s1 and s2 are provably equivalent if:

∀P,Q. ⊢ { P } s1 { Q } ⇔ ⊢ { P } s2 { Q }

Example: s and s;skip are equivalent, for all statements s

Let s be arbitrary. We prove the “⇒” direction (for arbitrary P,Q):

We assume that there is a derivation tree T with
root(T ) = { P } s { Q }, and need to show ⊢ { P } s;skip { Q }
We extend that tree using the rule for skip and the rule for sequential
composition:

A
A
A

�
�
�

T

{ P } s { Q }
(SkipAx)

{ Q } skip { Q }
(SeqAx)

{ P } s;skip { Q }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 195

Semantic Equivalence: Proof for “⇐” direction

Note: to construct the required derivation tree for s, we decompose the
assumed one for s;skip. This suggests a proof by induction on the
structure of this derivation tree.

We define
P(T ) ≡ ∀P,Q. root(T ) = { P } s;skip { Q } ⇒ ⊢ { P } s { Q }
We prove ∀T .P(T ) by induction on the shape of the derivation tree; so
we need to show P(T ) for arbitrary T , with the I.H. ∀T ′ ⊏ T .P(T ′)

Let P,Q be arbitrary. We assume root(T ) = { P } s;skip { Q } and
need to show ⊢ { P } s { Q }

As usual, we consider the cases for the last rule applied in the
derivation tree T :

Only two rules may produce { P } s;skip { Q }: SeqAx and ConsAx

Peter Müller—Formal Methods and Functional Programming, SS14 p. 196

Semantic Equivalence: Proof for “⇐” direction

Case SeqAx

We know there are derivation trees for the premises; i.e., we have
⊢ { P } s { R } and ⊢ { R } skip { Q } for some assertion R

Applying the lemma from slide 193 to ⊢ { R } skip { Q } lets us deduce
R ⊧ Q

We extend the derivation tree for { P } s { R } using ConsAx to obtain
⊢ { P } s { Q }

Case ConsAx

From the form of the rule, we know that there exists a derivation tree
T ′ ⊏ T with root(T ′) = { P′ } s;skip { Q′ } for some P′ and Q′ such
that P ⊧ P′ and Q′ ⊧ Q

By applying the induction hypothesis to T ′, we deduce that there is a
derivation tree for { P′ } s { Q′ }

We extend the tree for { P′ } s { Q′ } using ConsAx (using P ⊧ P′ and
Q′ ⊧ Q) to obtain a derivation tree for { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 197

4. Axiomatic Semantics

4.1 Motivation

4.2 Hoare Logic

4.2.1 Hoare Triples and Assertions
4.2.2 Derivation System
4.2.3 Proving Properties of the Semantics
4.2.4 Total Correctness (Termination)

4.3 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 198



Total Correctness

We introduce an alternative form of Hoare triple { P } s { ⇓ Q }

The informal meaning of { P } s { ⇓ Q } is

If P evaluates to true in the initial state σ
then the execution of s from σ terminates
and Q will evaluate to true in the final state

This meaning describes total correctness, that is, termination is required

We do not mix these triples with those of partial correctness; the two
form two separate axiomatic semantics (and corresponding derivation
systems)

However, all total correctness derivation rules are analogous to those
for partial correctness, except for the rule for loops

Peter Müller—Formal Methods and Functional Programming, SS14 p. 199

Loop Variants

Termination is proved using loop variants

A loop variant is an expression that evaluates to a value in a
well-founded set (for instance, N) before each iteration

Each loop iteration must decrease the value of the loop variant

The loop has to terminate when a minimal value of the well-founded
set is reached (or earlier than this)

For example:

x := 5;
while x # 0 do x := x - 1 end

x is a possible loop variant for this loop

Peter Müller—Formal Methods and Functional Programming, SS14 p. 200

While Rule for Total Correctness

For simplicity, we consider loop variants that evaluate to values in N
We use arithmetic expressions e of IMP to represent loop variants

We prove explicitly that the value of e will be non-negative before each
loop iteration

Intuition: a correct loop variant provides an upper bound on the number
of loop iterations

Total correctness derivation rule for loops:

{ b ∧P ∧ e = Z } s { ⇓ P ∧ e < Z }
(WhTotAx)

{ P } while b do s end { ⇓ ¬b ∧P }
if b ∧P ⊧ 0 ≤ e

where Z is a fresh logical variable (not used in P)

Note: in practice, other well-founded sets and orderings can be useful

Peter Müller—Formal Methods and Functional Programming, SS14 p. 201

Total Correctness of Factorial

{ x = N ∧ x > 0 }
y := 1;while not x = 1 do y := y*x;x := x-1 end

{ ⇓ y = N! }

Invariant: P ≡ x > 0 ∧ y*x! = N!

Variant: x

In the proof outline (on the next slide) we explicitly note the
side-condition for the while-rule, concerning the loop variant

Peter Müller—Formal Methods and Functional Programming, SS14 p. 202



Proof Outline for Factorial Statement

{ x = N ∧ x > 0 }
⊧
{ x > 0 ∧ 1*x! = N! }

y := 1;

{ x > 0 ∧ y*x! = N! }
while not x = 1 do ∗

{ x ≠ 1 ∧ x > 0 ∧ y*x! = N! ∧ x = Z }
⊧
{ x-1 > 0 ∧ (y*x)*(x-1)! = N! ∧ x-1 < Z }

y := y*x;

{ x-1 > 0 ∧ y*(x-1)! = N! ∧ x-1 < Z }
x := x-1

{ ⇓ x > 0 ∧ y*x! = N! ∧ x < Z }
end

{ ⇓ x = 1 ∧ x > 0 ∧ y*x! = N! }
⊧
{ ⇓ y = N! }

∗x ≠ 1 ∧ x > 0 ∧ y*x! = N! ⊧ 0 ≤ x

Peter Müller—Formal Methods and Functional Programming, SS14 p. 203

Zune Bug Revisited

//--------------------------
// Split total days since
// Jan. 01, ORIGINYEAR
// into year, month and day
//--------------------------
BOOL ConvertDays(UINT32 days, ...) {

int year = ORIGINYEAR; /* =1980 */

while (365 < days) {
if (IsLeapYear(year)) {

if (366 < days) {
days -= 366; year += 1;

}
} else {

days -= 365; year += 1;
}

}
... }

Invariant: P ≡ true

Variant: days

Side condition:
365 < days ∧ true ⊧
0 ≤ days

Because of the
termination bug in
the original code, a
total correctness
proof will fail

Peter Müller—Formal Methods and Functional Programming, SS14 p. 204

(Failing) Proof Attempt for Zune Bug
{ true }

while 365 < days do

{ 365 < days ∧ days = Z }

if L(year) then

{ L(year) ∧ 365 < days ∧ days = Z }
if 366 < days then

{ 366 < days ∧ L(year) ∧ 365 < days ∧ days = Z }
⊧

{ days-366 < Z }

days := days − 366;year := year + 1

{ ⇓ days < Z }
else

{ ¬(366 < days) ∧ L(year) ∧ 365 < days ∧ days = Z }
/⊧

{ days < Z }
skip

{ ⇓ days < Z }
end

{ ⇓ days < Z }
else

{ ¬L(year) ∧ 365 < days ∧ days = Z }
⊧

{ days-365 < Z }

days := days − 365; year := year + 1

{ ⇓ days < Z }
end

{ ⇓ days < Z }
end

{ ⇓ ¬(365 < days) }

⊧

{ ⇓ true }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 205

4. Axiomatic Semantics

4.1 Motivation

4.2 Hoare Logic

4.3 Soundness and Completeness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 206



Motivation

Developing an axiomatic semantics is difficult

Soundness:
If a property can be proved then it does indeed hold

An unsound derivation system is useless

Completeness:
If a property does hold then it can be proved

With an incomplete derivation system, a program might be correct, but
we cannot prove it

Peter Müller—Formal Methods and Functional Programming, SS14 p. 207

Unsoundness: Example

{ b ∧P ∧ e = Z } s { ⇓ P ∧ e < Z }
(WhUAx)

{ P ∧ 0 ≤ e } while b do s end { ⇓ ¬b ∧P }

With e ≡ x, we can derive:

(AssAx)
{ true ∧ x-1 < Z } x := x-1 { ⇓ true ∧ x < Z }

(ConsAx)
{ true ∧ true ∧ x = Z } x := x-1 { ⇓ true ∧ x < Z }

(WhUAx)
{ true ∧ 0 ≤ x } while true do x := x-1 end { ⇓ ¬true ∧ true }

(ConsAx)
{ 0 ≤ x } while true do x := x-1 end { ⇓ true }

This derivation is not sound (the derived triple does not hold)

The rule does not ensure that the loop variant is non-negative before
each loop iteration

Peter Müller—Formal Methods and Functional Programming, SS14 p. 208

Incompleteness: Example

{ b ∧P ∧ e = Z } s { ⇓ P ∧ e < Z }
(WhIAx)

{ P } while b do s end { ⇓ ¬b ∧P }
if P ⊧ 0 ≤ e

With this rule, we cannot prove that the following loop always
terminates

while 0 < x do
x := x - 1

end

The loop variant is x

The strongest possible loop invariant is true (because we want to show
termination for all initial states)

This loop invariant is not strong enough to show the side condition

Peter Müller—Formal Methods and Functional Programming, SS14 p. 209

Soundness and Completeness

Soundess and completeness can be proved w.r.t. an operational
semantics (here, big-step semantics)

The partial correctness triple { P } s { Q } is valid,
written as ⊧ { P } s { Q }, iff:

∀σ,σ′. B[[P]]σ = tt ∧ ⊢ ⟨s, σ⟩ → σ′ ⇒ B[[Q]]σ′ = tt

This is the intuitive interpretation of triples: ⊧ { P } s { Q } is true if,
whenever we start execution of s from a state in which P holds, if the
execution terminates, then Q will hold in the final state

Conversely, recall that ⊢ { P } s { Q } is defined purely in terms of the
derivation rules of the axiomatic semantics

Soundness: ⊢ { P } s { Q } ⇒ ⊧ { P } s { Q }

Completeness: ⊧ { P } s { Q } ⇒ ⊢ { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 210



Theorem

Soundess and Completeness Theorem (Partial Correctness):

For all partial correctness triples { P } s { Q } of
IMP we have

⊢ { P } s { Q } ⇔ ⊧ { P } s { Q }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 211

Soundness Proof

We prove ⊢ { P } s { Q } ⇒ ⊧ { P } s { Q }

That is, we have to show

⊢ { P } s { Q } ∧ B[[P]]σ = tt ∧ ⊢ ⟨s, σ⟩ → σ′ ⇒ B[[Q]]σ′ = tt

The proof runs by induction on the shape of the derivation tree for
{ P } s { Q }

See the Nielson & Nielson book for the full proof

Peter Müller—Formal Methods and Functional Programming, SS14 p. 212

Weakest (Liberal) Preconditions

The weakest precondition of a statement s and a postcondition Q is
the weakest predicate that has to hold in the initial state of an
execution of s to guarantee that Q holds in the final state

The weakest precondition wp(s,Q) guarantees termination

The weakest liberal precondition wlp(s,Q) does not guarantee
termination

B[[wp(s,Q)]]σ = tt ⇔ ∃σ′.(⟨s, σ⟩ → σ′ ∧ B[[Q]]σ′)
B[[wlp(s,Q)]]σ = tt ⇔ ∀σ′.(⟨s, σ⟩ → σ′ ⇒ B[[Q]]σ′)

In the following, we consider partial correctness

Peter Müller—Formal Methods and Functional Programming, SS14 p. 213

Weakest Preconditions Lemma

Lemma: there exists a function wlp from pairs of statements
and assertions to assertions, such that, for every statement
s and predicate Q, we have:

1. ⊧ { wlp(s,Q) } s { Q }
2. ⊧ { P } s { Q } ⇒ (P ⊧ wlp(s,Q))

Note that we require a semantic notion of being “weakest”, here,
defined in terms of ⊧

See the Nielson & Nielson book for the definition of wlp which satisfies
this property (and the proof of this lemma)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 214



Completeness Proof

We need to prove ⊧ { P } s { Q } ⇒ ⊢ { P } s { Q }

It suffices to infer ⊢ { wlp(s,Q) } s { Q }, because:

By ⊧ { P } s { Q }, the wlp-lemma on the previous slide implies
P ⊧ wlp(s,Q)

Therefore, if we can show ⊢ { wlp(s,Q) } s { Q }, we can conclude
⊢ { P } s { Q } using the rule of consequence:

{ wlp(s,Q) } s { Q }
(ConsAx)

{ P } s { Q }

The property ⊢ { wlp(s,Q) } s { Q } is proved by structural induction
on s (see the Nielson & Nielson book for the definitions and full proof)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 215

Summary: Axiomatic Semantics

Axiomatic semantics

is concerned with specific properties of the effect of executing programs
allows for succinct proofs about program properties

Axiomatic semantics is used to verify programs
Partial correctness
Total correctness
Other properties, e.g., resource consumption

The derivation system for partial correctness of IMP programs

Peter Müller—Formal Methods and Functional Programming, SS14 p. 216


