
Natural Deduction∗

Andreas Lochbihler

Department of Computer Science
ETH Zurich

∗Thanks to David Basin for slide material

Functional Programming

Andreas Lochbihler 1

Formal reasoning about systems

• Requirements

1. Language

2. Semantics

3. Deductive system for carrying out proofs

• Metatheorems relate these, e.g., soundness and completeness

� We focus on (1) and (3) and only comment briefly on (2)

� Most of this should be a review (logic/discrete math)

• Proofs are essential for both parts of the course

Some formality now allows (slightly) less formality later

Functional Programming Spring Semester, 2014

Andreas Lochbihler 2

Road map

+ Natural deduction

• Propositional logic

• First-order logic

• Equality

Functional Programming Spring Semester, 2014

Andreas Lochbihler 3

An abstract example of a formal proof

• Language L = {⊕,⊗,×,+}. • Deductive proof system:

• Rules:

α: If +, then ⊗.

β: If +, then ×.

γ: If ⊗ and ×, then ⊕.

δ: + holds.

+
α

⊗
+

β
×

⊗ ×
γ

⊕
δ

+

• Prove ⊕!

1. + holds by δ.

2. ⊗ holds by α with 1.

3. × holds by β with 1.

4. ⊕ holds by γ with 2 and 3.

• Derivation tree:

δ
+

α
⊗

δ
+

β
×

γ
⊕

Functional Programming Spring Semester, 2014

Andreas Lochbihler 4

Natural deduction: an abstract example

• Language L = {⊕,⊗,×,+}. • Deductive proof system:

• Rules:

α: If +, then ⊗.

β: If +, then ×.

γ: If ⊗ and ×, then ⊕.

δ: We may assume +

only when proving ⊕.

axiom
. . . , A, . . . ` A

Γ ` +
α

Γ ` ⊗
Γ ` +

β
Γ ` ×

Γ ` ⊗ Γ ` ×
γ

Γ ` ⊕
Γ,+ ` ⊕

δ
Γ ` ⊕

• Prove ⊕!

1. Assume + holds by δ.

2. ⊗ holds by α with 1.

3. × holds by β with 1.

4. ⊕ holds by γ with 2 and 3.

• Derivation tree:

axiom
+ ` +

α
+ ` ⊗

axiom
+ ` +

β
+ ` ×

γ
+ ` ⊕

δ
` ⊕

Functional Programming Spring Semester, 2014

Andreas Lochbihler 5

Natural deduction

• Developed by Gentzen (1930s) and Prawitz (1960s)

• Rules are used to construct derivations under assumptions.

A1, ..., An ` A reads as “A follows from A1, ..., An”

• Derivations are trees

axiom
A,B ` A

axiom
A,B ` B

∧-I
A,B ` A ∧B

→-I
A ` B → A ∧B

→-I
` A→ B → A ∧B

• A proof is a derivation whose root has no assumptions

Functional Programming Spring Semester, 2014

Andreas Lochbihler 6

Road map

• Natural deduction

+ Propositional logic

• First-order logic

• Equality

Functional Programming Spring Semester, 2014

Andreas Lochbihler 7

Propositional logic: syntax

• Propositions are built from a collection of variables and closed

under disjunction, conjunction, implication, . . .

• More formally: Let a set V of variables be given. LP , the

language of propositional logic, is the smallest set where:

� X ∈ LP if X ∈ V.

� ⊥∈ LP .

� A ∧B ∈ LP if A ∈ LP and B ∈ LP .

� A ∨B ∈ LP if A ∈ LP and B ∈ LP .

� A→ B ∈ LP if A ∈ LP and B ∈ LP .

• In the following: X ranges over variables, A and B over formulae

Functional Programming Spring Semester, 2014

Andreas Lochbihler 8

Propositional logic: semantics

• A valuation σ : V → {True,False} is a function mapping

variables to truth values (truth assignment).

Let Valuations be the set of valuations.

� Valuations are simple kinds of models (interpretations).

• Satisfiability: smallest relation |= ⊆ Valuations × LP such that

� σ |= X, iff σ(X) = True

� σ |= A ∧B, iff σ |= A and σ |= B

� σ |= A ∨B, iff σ |= A or σ |= B

� σ |= A→ B, iff whenever σ |= A then σ |= B

• Note that σ 6|= ⊥, for every σ ∈ Valuations

Functional Programming Spring Semester, 2014

Andreas Lochbihler 9

Propositional logic: semantics (cont.)

• A formula A ∈ LP is satisfiable if

σ |= A, for some valuation σ

• A formula A ∈ LP is valid (a tautology) if

σ |= A, for all valuations σ

• Semantic entailment: A1, . . . , An |= A if

for all σ, if σ |= A1, . . . , σ |= An then σ |= A

• Examples:

� X ∧ Y satisfiable, as σ |= X ∧ Y for σ(X) = σ(Y) = True
� X → X valid

� ¬X,X ∨ Y |= Y holds, as σ |= ¬X and σ |= X ∨ Y constrain σ

to σ(X) = False and σ(Y) = True, so σ |= Y .

Functional Programming Spring Semester, 2014

Andreas Lochbihler 10

Requirements for a deductive system

• Syntactic entailment ` (derivation rules) and

semantic entailment |= (truth tables) should agree

• This requirement has two parts:

Soundness: If H ` A can be derived, then H |= A

Completeness: If H |= A, then H ` A can be derived

For H ≡ A1, . . . , An some collection of formulae.

• These are key requirements for any logic

• Decidability is another important property

What is the complexity of determining if a proposition is

satisfiable? A tautology?

Functional Programming Spring Semester, 2014

Andreas Lochbihler 11

Natural deduction for propositional formulae

• A sequent is an assertion (judgement) of the form

A1, . . . , An ` A

where all A,A1, . . . An are propositional formulae

• Intuitively: A follows from the Ais

If logic is sound, this means Ais semantically entail A

• Axiom: starting point for building derivation trees

axiom
. . . , A, . . . ` A

• A proof of A is a derivation tree with root ` A.

If logic is sound, then A is a tautology
Functional Programming Spring Semester, 2014

Andreas Lochbihler 12

Conjunction

• Rules of two kinds: introduce and eliminate connectives

Γ ` A Γ ` B
∧-I

Γ ` A ∧B
Γ ` A ∧B

∧-EL
Γ ` A

Γ ` A ∧B
∧-ER

Γ ` B

• Example derivation

axiom
Γ ` X ∧ (Y ∧ Z)

∧-EL
Γ ` X

axiom
Γ ` X ∧ (Y ∧ Z)

∧-ER
Γ ` Y ∧ Z

∧-ER
Γ ` Z

∧-I
X ∧ (Y ∧ Z)︸ ︷︷ ︸

≡Γ

` X ∧ Z

Functional Programming Spring Semester, 2014

Andreas Lochbihler 13

Conjunction (cont.)

• Rules of two kinds: introduce and eliminate connectives

Γ ` A Γ ` B
∧-I

Γ ` A ∧B
Γ ` A ∧B

∧-EL
Γ ` A

Γ ` A ∧B
∧-ER

Γ ` B

• Each rule is sound in that it preserves semantic entailment.

E.g., for ∧-I

if Γ |= A and Γ |= B then Γ |= A ∧B

• If all rules preserve semantic entailment, logic is sound. (proof?)

• Can we prove anything with just these three rules?

Equivalently: which (purely conjunctive) formulae are tautologies?
Functional Programming Spring Semester, 2014

Andreas Lochbihler 14

Implication

• Rules

Γ, A ` B
→-I

Γ ` A→ B

Γ ` A→ B Γ ` A
→-E

Γ ` B

• Application of →-I turns last derivation into a proof

...

A ∧ (B ∧ C) ` A ∧ C
→-I

` A ∧ (B ∧ C)→ A ∧ C

• Examples: (→ right associative and ∧ binds stronger than →)

` X → Y → X

` (X → Y → Z)→ (X → Y)→ X → Z

` (X ∧ Y)→ (Y ∧X)
Functional Programming Spring Semester, 2014

Andreas Lochbihler 15

Disjunction

• Rules
Γ ` A

∨-IL
Γ ` A ∨B

Γ ` B
∨-IR

Γ ` A ∨B

Γ ` A ∨B Γ, A ` C Γ, B ` C
∨-E

Γ ` C

• Elimination rule formalizes proof by cases

• Example: formalize and prove

When it rains then I wear my jacket.

When it snows then I wear my jacket.

It is raining or snowing.

Therefore I wear my jacket.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 16

Falsity and negation

• Falsity
Γ `⊥

⊥-E
Γ ` A

• Negation: define ¬A as A→⊥.

Γ ` ¬A Γ ` A
¬-E

Γ ` B
derived by

Γ `
A→⊥︷︸︸︷
¬A Γ ` A

→-E
Γ `⊥

⊥-E
Γ ` B

Functional Programming Spring Semester, 2014

Andreas Lochbihler 17

Intuitionistic versus classical logic

• Peirce’s Law: ((A→ B)→ A)→ A. Is this valid? Provable?

• We have only intuitionistic logic. Classical logic requires either

� axiom of excluded middle TND
Γ ` A ∨ ¬A

(“tertium non datur”)

� or rule
Γ,¬A `⊥

RAA
Γ ` A

(“reductio ad absurdum”)

• Example: There exist irrationals a and b such that ab is rational

Proof: Let b be
√

2 and consider whether or not bb is rational

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√

2
then

ab =
(√

2

√
2
)√2

=
√

2
(
√

2·
√

2)
=
√

2
2

= 2

Functional Programming Spring Semester, 2014

Andreas Lochbihler 18

Finding ND proofs

• Prove statement on paper first, then translate to formal proof.

• Heuristic for backwards proofs: Apply safe rules first.

� Rule is safe if we only enlarge Γ or can get the conclusion back.

� ∧-I is safe:

Γ ` A ∧B
∧-EL

Γ ` A

Γ ` A ∧B
∧-ER

Γ ` B
∧-I

Γ ` A ∧B

� ∨-E + axiom is safe:
axiom

Γ ` A ∨B Γ, A ` C Γ, B ` C
∨-E

Γ ` C

� ∧-EL is unsafe:

Γ ` A Γ ` B
∧-I

Γ ` A ∧B
∧-EL

Γ ` A� How about the other rules?
Functional Programming Spring Semester, 2014

Andreas Lochbihler 19

Summary of derivation rules for propositional logic

Γ ` A Γ ` B
∧-I

Γ ` A ∧B
Γ ` A ∧B

∧-EL
Γ ` A

Γ ` A ∧B
∧-ER

Γ ` B

Γ, A ` B
→-I

Γ ` A→ B

Γ ` A→ B Γ ` A
→-E

Γ ` B

Γ ` A
∨-IL

Γ ` A ∨B
Γ ` B

∨-IR
Γ ` A ∨B

Γ ` A ∨B Γ, A ` C Γ, B ` C
∨-E

Γ ` C

Γ `⊥
⊥-E

Γ ` A
Γ ` ¬A Γ ` A

¬-E
Γ ` B

Functional Programming Spring Semester, 2014

Andreas Lochbihler 20

Road map

• Natural deduction

• Propositional logic

+ First-order logic

� Syntax: variables over domain + functions, relations, quantifiers

� Semantics: interpreting domain, functions, and relations

• Equality

Functional Programming Spring Semester, 2014

Andreas Lochbihler 21

First-Order Logic: Syntax

• Two syntactic categories: terms and formulae

• A signature consists of a set of function symbols F and a set of

predicate symbols P (and their arities)

Write f i [or pi] to indicate function symbol f [predicate symbol p]

has arity i ∈ N

N.B. constants are 0-ary function symbols

• Let V be a set of variables

• Term, the terms of first-order logic, is the smallest set where

1. x ∈ Term if x ∈ V, and

2. fn(t1, . . . , tn) ∈ Term if fn ∈ F and tj ∈ Term, for all 1≤ j≤ n

Functional Programming Spring Semester, 2014

Andreas Lochbihler 22

Syntax (cont.)

• Form, the formulae of first-order logic, is the smallest set where

1. ⊥∈ Form,

2. pn(t1, . . . , tn)∈Form if pn ∈ P and tj ∈ Term, for all 1≤ j≤ n,

3. A ◦B ∈ Form if A ∈ Form, B ∈ Form, and ◦ ∈ {∧,∨,→}, and

4. Qx.A ∈ Form if A ∈ Form, x ∈ V, and Q ∈ {∀,∃}

• Each occurrence of each variable in a formula is bound or free.

(q(x) ∨ ∃x.∀y. p(f(x), z) ∧ q(a)) ∨ ∀x. r(x, z, g(x))

A variable occurrence x in a formula A is bound if x occurs

within a subformula of A of the form ∃x.B or ∀x.B

• Analog from mathematics: x2 +
∫ d

c
x · y dy or

∑5
i=0 x · i

Functional Programming Spring Semester, 2014

Andreas Lochbihler 23

Binding and α-conversion

• Names of bound variables are irrelevant,

they just encode the binding structure.

∃x.∀y. p(f(x), y) ∧ q(x, z) stands for ∃ ∀ p(f(•), •) ∧ q(•, z)

• We can rename bound variables at any time (α-conversion).

� Must preserve binding structure.

• Examples: α-convertible?

∀x.∃y. p(x, y) ∀y.∃x. p(y, x) yes

∃z.∀y. p(z, f(y)) ∃y.∀y. p(y, f(y)) no

(∀x. p(x)) ∨ (∃x. q(x)) (∀z. p(z)) ∨ (∃y. q(y)) yes

p(x)→ ∀x. p(x) p(y)→ ∀y. p(y) no
Functional Programming Spring Semester, 2014

Andreas Lochbihler 24

Omitting parentheses

• Binary operators:

� ∧ binds stronger than ∨ stronger than →.

� ∧, ∨, and → associate to the right.

• Negation binds stronger than binary operators.

• Quantifiers extend to the right as far as possible: end of line or).

They override the binding of binary operators!

A ∨B ∧ ¬C → A ∨B
(
A ∨

(
B ∧ (¬C)

))
→ (A ∨B)

A→ B ∨A→ C A→
(

(B ∨A)→ C
)

A ∧ ∀x.B(x) ∨ C A ∧
(
∀x.

(
B(x) ∨ C

))

¬∀x.A(x) ∧ ∀x. (B(x) ∧ C(x)) ∧D ¬

∀x.
A(x) ∧

(
∀x.
((
B(x) ∧ C(x)

)
∧D

))

Functional Programming Spring Semester, 2014

Andreas Lochbihler 25

Semantics

• A structure is a pair S = 〈US, IS〉 where US is an nonempty set,

the universe, and IS is a mapping where

1. IS(pn) is an n-ary relation on US, for pn ∈ P, and

2. IS(fn) is an n-ary (total) function on US, for fn ∈ F

As shorthand, write pS for IS(p) and fS for IS(f)

• An interpretation is a pair I = 〈S, v〉, where S = 〈US, IS〉 is a

structure and v : V → US a valuation.

• The value of a term t under the interpretation I = 〈S, v〉 is

written as I(t) and defined by

1. I(x) = v(x), for x ∈ V, and

2. I(f(t1, . . . , tn)) = fS(I(t1), . . . , I(tn))

Functional Programming Spring Semester, 2014

Andreas Lochbihler 26

Semantics (cont.)

Semantic entailment |= ⊆ Interpretations× Form is the smallest

relation satisfying

〈S, v〉 |= p(t1, . . . , tn) if
(
I(t1), . . . , I(tn)

)
∈ pS, where I = 〈S, v〉

...

〈S, v〉 |= ∀x.A if 〈S, v[x 7→ a]〉 |= A, for all a ∈ US
〈S, v〉 |= ∃x.A if 〈S, v[x 7→ a]〉 |= A, for some a ∈ US

Here v[x 7→a] is the valuation v′ identical to v, except that v′(x)=a

Functional Programming Spring Semester, 2014

Andreas Lochbihler 27

Semantics (cont.)

• When 〈S, v〉 |= A we say A is satisfied with respect to 〈S, v〉 or

〈S, v〉 is a model of A.

• Note that if A does not have free variables, satisfaction does not

depend on the valuation v. We write S |= A.

• When every suitable interpretation is a model, we write |= A and

say A is valid.

• A is satisfiable if there is at least one model for A

(and contradictory otherwise)

• Complexity of these problems?

Functional Programming Spring Semester, 2014

Andreas Lochbihler 28

An example

∀x. p(x, s(x))

• A model:

US = N
pS = {(m,n) | m,n ∈ US and m < n}
sS = the successor function on US

= i.e., sS(x) = x+ 1

• Not a model:

US = {a, b, c}
pS = {(a, b), (a, c)}
sS = the identity function

Functional Programming Spring Semester, 2014

Andreas Lochbihler 29

More examples
Which of following are satisfiable? Valid?

• ∀x.∃y. y ∗ 2 = x

satisfied WRT rationals

• ∀x.∀y. x < y → ∃z.x < z ∧ z < y

satisfied WRT any dense order

• ∃x. x 6= 0

satisfied WRT structures S with ≥ 2 elements in US

• (∀x. p(x, x))→ p(a, a)

valid

Functional Programming Spring Semester, 2014

Andreas Lochbihler 30

Substitution

• Replace in A all occurrences of a free variable x with some term t.

• We write A(x) to indicate that we want to substitute for x,

and A(t) for substituting t for x.

• Example: A(x) ≡ ∃y. y ∗ x = x ∗ z

A(2− 1) ≡ ∃y. y ∗ (2− 1) = (2− 1) ∗ z
A(z) ≡ ∃y. y ∗ z = z ∗ z

• All free variables of t must still be free in A(t). Avoid capture!

If necessary, α-convert A before substitution.

A(3 + y) 6≡ ∃y. y ∗ (3 + y) = (3 + y) ∗ z
A(3 + y) ≡ ∃w.w ∗ (3 + y) = (3 + y) ∗ z

Functional Programming Spring Semester, 2014

Andreas Lochbihler 31

Universal quantification

• Rules Γ ` A(x)
∀-I ∗

Γ ` ∀x.A(x)

Γ ` ∀x.A(x)
∀-E

Γ ` A(t)

Side condition *: x not free in any assumption in Γ.

• Example derivation:

axiom implicit α-conversion
∀x.A(x) ` ∀z.A(z)

∀-E with t ≡ f(y)
∀x.A(x) ` A(f(y))

∀-I y not free in ∀x.A(x)
∀x.A(x) ` ∀y.A(f(y))

→-I
` (∀x.A(x))→ (∀y.A(f(y)))

• N.B. we continue to use rules from propositional logic,

but now for first-order formulae.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 32

Universal quantification (cont.)

• Rules Γ ` A(x)
∀-I ∗

Γ ` ∀x.A(x)

Γ ` ∀x.A(x)
∀-E

Γ ` A(t)

Side condition *: x not free in any assumption in Γ.

• Why this side condition? Consider the following “derivation”:

axiom
x = 0 ` x = 0

∀-I
x = 0 ` ∀x. x = 0

→-I
` x = 0→ ∀x. x = 0

∀-I
` ∀x. (x = 0→ ∀x. x = 0)

∀-E
` 0 = 0→ (∀x. x = 0)

ref (see later)
` 0 = 0

→-E
` ∀x. x = 0

Functional Programming Spring Semester, 2014

Andreas Lochbihler 33

Universal quantification (cont.)

• Rules Γ ` A(x)
∀-I ∗

Γ ` ∀x.A(x)

Γ ` ∀x.A(x)
∀-E

Γ ` A(t)

Side condition *: x not free in any assumption in Γ.

• Is the following a proof?

axiom
∀x.∃y. x 6= y ` ∀x.∃y. x 6= y

∀-E wrong
∀x.∃y. x 6= y ` ∃y. y 6= y

→-I correct
` (∀x.∃y. x 6= y)→ (∃y. y 6= y)

• Conclusion is not valid. Reason: false if US has ≥ 2 elements.

• Proof incorrect. Reason: Substitution must avoid capture.

Here: A(x) ≡ ∃y. x 6= y

When substituting t = y for x, we must rename bound y in A!

Functional Programming Spring Semester, 2014

Andreas Lochbihler 34

Universal quantification (cont.)

• Prove (∀x. p(x) ∧ q(x))→ (∀x. p(x)) ∧ (∀x. q(x))

axiom
Γ ` ∀y. p(y) ∧ q(y)

∀-E
Γ ` p(x) ∧ q(x)

∧-EL
Γ ` p(x)

∀-I
Γ ` ∀x. p(x)

axiom
Γ ` ∀z. p(z) ∧ q(z)

∀-E
Γ ` p(x) ∧ q(x)

∧-ER
Γ ` q(x)

∀-I
Γ ` ∀x. q(x)

∧-I
≡Γ︷ ︸︸ ︷

∀x. p(x) ∧ q(x) ` (∀x. p(x)) ∧ (∀x. q(x))
→-I

` (∀x. p(x) ∧ q(x))→ (∀x. p(x)) ∧ (∀x. q(x))

• Generalise proof:

� Can use any formulae A and B instead of relations p and q.

� Side conditions of ∀-I are trivial: x not free in Γ.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 35

Existential quantification

• Rules

Γ ` A(t)
∃-I

Γ ` ∃x.A(x)

Γ ` ∃x.A(x) Γ, A(x) ` B
∃-E ∗

Γ ` B

Side condition *: x is neither free in B nor free in Γ.

• Sample derivation, assuming z does not occur free in B:

axiom
Γ ` ∃z.A(z)

axiom
Γ′ ` ∀w.A(w)→ B

∀-E
Γ′ ` A(z) → B

axiom
Γ′ ` A(z)

→-E
Γ, A(z) ` B

∃-E
∀x.A(x)→ B, ∃y.A(y) ` B

→-I
∀x.A(x)→ B ` (∃y.A(y))→ B

→-I
` (∀x.A(x)→ B)→ ((∃y. A(y))→ B)

where Γ ≡ ∀x.A(x)→ B, ∃y.A(y) and Γ′ ≡ Γ, A(z)
Functional Programming Spring Semester, 2014

Andreas Lochbihler 36

Road map

• Natural deduction

• Propositional logic

• First-order logic

+ Equality

Functional Programming Spring Semester, 2014

Andreas Lochbihler 37

FOL with equality

• Equality is a logical symbol with associated proof rules

One speaks of first-order logic with equality rather than

equality being “just another predicate”

• Extended language: t1 = t2 ∈ Form if t1, t2 ∈ Term

• Extend definition of semantic entailment |=:

I |= t1 = t2 if I(t1) = I(t2)

� Recall I(t) is the value of t under the interpretation I = 〈S, v〉
� Note the two completely different uses of “=” here!

Functional Programming Spring Semester, 2014

Andreas Lochbihler 38

Equality

• Equality is an equivalence relation

ref
Γ ` t = t

Γ ` t = s
sym

Γ ` s = t

Γ ` t = s Γ ` s = r
trans

Γ ` t = r

• Equality is also a congruence on terms and all (definable) relations

Γ ` t1 = s1 · · · Γ ` tn = sn
cong1Γ ` f(t1, . . . , tn) = f(s1, . . . , sn)

Γ ` t1 = s1 · · · Γ ` tn = sn Γ ` p(t1, . . . , tn)
cong2Γ ` p(s1, . . . , sn)

• Soundness: equality on US is a congruence

Functional Programming Spring Semester, 2014

Andreas Lochbihler 39

On the shape of proofs

• Let Γ ≡ a(b) = d(e), f(d(e)) = g(h). Prove Γ ` f(a(b)) = g(h)

axiom
Γ ` a(b) = d(e)

cong1Γ ` f(a(b)) = f(d(e))
axiom

Γ ` f(d(e)) = g(h)
trans

Γ ` f(a(b)) = g(h)

• Compare with following linear equational derivation

f(a(b)) = f(d(e)) = g(h)

• In general, any equality proof can be converted into such a linear

style. We will usually carry out equality reasoning this linear way.

• We will see many examples shortly, e.g., in proofs by induction.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 40

What next?

• We consider the correctness question for functional programs.

• I will usually not write formal proofs using these rules.

• However, all proofs given can be translated to formal ones.

• You should check this, also for your own proofs.

• Topic is also of central importance in course’s second half.

Functional Programming Spring Semester, 2014

