
Lazy Evaluation∗

Andreas Lochbihler

Department of Computer Science
ETH Zurich

∗Thanks to David Basin for slide material

Functional Programming

Andreas Lochbihler 1

Evaluation Strategy

• Evaluation strategy has, until now, been unimportant

• Example: map (\x -> x * x) ([1,2,3] ++ [2*2])

[1, 4, 9, 16]

• Haskell is lazy: expressions evaluated only when necessary

loop x = (loop x) + 1 ? f (*2) (loop 0)
14

divZero = 1 ‘div‘ 0 ? divZero
*** Exception: divide by zero

f g x = g 7 ? f (+1) divZero
8

• Subtle consequences such as data-driven computation

Functional Programming Spring Semester, 2014

Andreas Lochbihler 2

Lazy evaluation

• Evaluation based on function application and substitution

f x = ...x...x... ⇒ f a = ...a...a...

• Example for f x y = x+ y

f (9− 3) (f 34 3) = (9− 3) + (f 34 3)

� In Haskell, substitution occurs without argument evaluation

� Evaluation of arguments is postponed

· · · = 6 + (f 34 3) = 6 + (34 + 3) = 6 + 37 = 43

• Sometimes expressions are never evaluated

This can save arbitrarily large amounts of time

Functional Programming Spring Semester, 2014

Andreas Lochbihler 3

Example in ghc

g :: Int -> Int -> Int
g x y = x + 12

switch :: Bool -> Int -> Int -> Int
switch True x _ = x
switch False _ y = y

? g 7 (loop 0)
19 :: Int

? switch True 8 (loop 0)
8 :: Int

? switch False 8 (loop 0)
*** Exception: stack overflow

? switch False 0 divZero
*** Exception: divide by zero

Functional Programming Spring Semester, 2014

Andreas Lochbihler 4

Lazy evaluation (cont.)

• Potential problem: duplicated computation, e.g., square x = x * x

square (9-3) = (9-3) * (9-3) = 6 * (9-3) = 6 * 6 = 36

The same expression 9− 3 is evaluated twice here

• Duplication avoided by simultaneously reducing both occurrences

Implementation based on sharing:

terms represented as directed graphs square = \ -> • * •

square (9-3) (\ -> • * •) (9-3) • * •

9-3

• * •

6

36

• Summary: function arguments are evaluated only when needed

and at most once
Functional Programming Spring Semester, 2014

Andreas Lochbihler 5

Evaluation — further details

Typical function

f p1 p2 ... pk
| g1 = e1
| g2 = e2

:
| otherwise = en
where v1 ... = r1

:
f pi ... pj

| gm = em
:

where ...

Built using patterns, guards, and local definitions

Functional Programming Spring Semester, 2014

Andreas Lochbihler 6

Evaluation — pattern matching

• Arguments evaluated as far as needed to determine pattern match

f [] _ = 0 -- (f.1)
f _ [] = 0 -- (f.2)
f (a:_) (b:_) = a + b -- (f.3)

• Haskell notation: [n .. m] == enumFromTo n m

? enumFromTo 1 10
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] :: [Int]

• f [1 .. 3] [4 .. 6] executes as follows:

f [1 .. 3] [4 .. 6] -- Does (f.1) match?
= f (1 : [2 .. 3]) [4 .. 6] -- No. Does (f.2) match?
= f (1 : [2 .. 3]) (4 : [5 .. 6]) -- No. Does (f.3) match?
= 1 + 4 -- Yes!
= 5

Functional Programming Spring Semester, 2014

Andreas Lochbihler 7

Evaluation — guards

Execution proceeds sequentially, until success
f a b c

| a >= b && a >= c = a
| b >= a && a >= c = b
| otherwise = c

Example
f (2+3) (4-1) (3+9)

?? (2+3) >= (4-1) && (2+3) >= (3+9) -- try 1st guard
?? = 5 >= 3 && 5 >= (3+9)
?? = True && 5 >= (3+9)
?? = 5 >= (3+9)
?? = 5 >= 12
?? = False
?? 3 >= 5 && 5 >= 12 -- try 2nd guard, already partially evaluated
?? = False && 5 >= 12
?? = False
?? otherwise -- try final guard (= True)

= 12

Functional Programming Spring Semester, 2014

Andreas Lochbihler 8

Evaluation — local definitions

Local definitions (with where) are also lazily evaluated

f a b f 3 5
| notNil l = front l ?? notNil l
| otherwise = b ?? where l = [3 .. 5]
where ?? = notNil ([3 .. 5])

l = [a .. b] ?? = notNil (3:[4 .. 5])
?? = True

front (c:d:_) = c+d = front l
front [c] = c where

l = 3:[4 .. 5]
notNil [] = False = 3:4:[5]
notNil _ = True = 3+4

= 7

Functional Programming Spring Semester, 2014

Andreas Lochbihler 9

Evaluation — misc.

• Functions are evaluated top-down (outermost operator first)

f e1 (f e2 17)

• and otherwise usually from left to right, depending on operator

precedence
f e1 + f e2

f e1 + f e2 ∗ f e3

• This kind of evaluation is as natural as “eager evaluation”

But the consequences (and possibilities) are surprising

Functional Programming Spring Semester, 2014

Andreas Lochbihler 10

Tracing evaluation

• trace :: String -> a -> a (in module Debug.Trace)

prints a message when it evaluates and returns second argument.

• Use only for debugging! It breaks referential transparency.

import Debug.Trace (trace) ? g (f 5)
called g

f x = trace "called f" (x * 2) called f
g y = trace "called g" (y + 3) 13

• Tracing can change the evaluation order

import Debug.Trace (trace) ? g (f 5)
called f

f x = trace "called f" (x * 2) called g 10
g y = trace ("called g " ++ show y) (y + 3) 13

Functional Programming Spring Semester, 2014

Andreas Lochbihler 11

Application 1: data-driven programming

• Data can be generated lazily (on demand)

The result is improved runtime complexity

• Example: sum the 4th powers of the numbers 1 through n

• Data-driven solution

� Construct the list of numbers [1 .. n]

� Compute each 4th power, resulting in [1, 16, . . . , n4]

� Sum the list of powers

• Resulting program: sumFourthPowers n = sum (map (^4) [1 .. n])

Would a loop (e.g., in Java) be better?

Functional Programming Spring Semester, 2014

Andreas Lochbihler 12

Example (cont.)
sum [] = 0 map f [] = []
sum (x:xs) = x + sum xs map f (x:xs) = f x : map f xs

sumFourthPowers n = sum (map (^4) [1 .. n])

Execution as follows

sumFourthPowers n
= sum (map (^4) [1 .. n])
= sum (map (^4) (1:[2 .. n]))
= sum ((^4) 1 : map (^4) [2 .. n])
= (^4) 1 + sum (map (^4) [2 .. n])
= 1 + sum (map (^4) [2 .. n])
= 1 + ((^4) 2 + map (^4) [3 .. n])
= 1 + (16 + sum (map (^4) [3 .. n]))
:
= 1 + (16 + (81 + ... + n^4))

Intermediate lists are not fully constructed,
head is immediately turned into an addition.
Functional Programming Spring Semester, 2014

Andreas Lochbihler 13

Data-driven programming

• Example 2: list minimum

isort [] = [] ins a [] = [a]
isort (x:xs) = ins x (isort xs) ins a (x:xs)

| a <= x = a : (x:xs)
lmin = head . isort | otherwise = x : ins a xs

• lmin [8,1,7,6] executes as follows (focusing on isort)

isort [8,1,7,6]
= ins 8 (isort [1,7,6])
= ins 8 (ins 1 (isort [7,6]))
= ins 8 (ins 1 (ins 7 (isort [6])))
= ins 8 (ins 1 (ins 7 (ins 6 (isort []))))
= ins 8 (ins 1 (ins 7 (ins 6 [])))
= ins 8 (ins 1 (ins 7 [6]))
= ins 8 (ins 1 (6 : ins 7 [])) -- next evaluation step
= ins 8 (1 : (6 : ins 7 [])) -- suspended evaluation
= 1 : ins 8 (6 : ins 7 []) -- remains unevaluated

• Thus lmin l executes in linear time!
Functional Programming Spring Semester, 2014

Andreas Lochbihler 14

Application 2: infinite data

• Lazy evaluation enables finite representation of infinite data

• Example: infinite lists (streams)

ones = 1 : ones
from n = n : from (n+1)

? ones
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ^C{Interrupted!}

? from 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ^C{Interrupted!}

• Example: infinite trees

data Tree a = Leaf | Node a (Tree a) (Tree a) deriving (Show, Eq)
t = Node 1 t t

? t
Node 1 (Node 1 (Node 1 (Node 1 ^C{Interrupted!}

Functional Programming Spring Semester, 2014

Andreas Lochbihler 15

Infinite data (cont.)

• One can compute with infinite data in finite time

addFirstTwo (a:b:_) = a + b

? addFirstTwo ones
2 :: Int

• Executes as follows

addFirstTwo ones -- ones = 1 : ones
= addFirstTwo (1:ones)
= addFirstTwo (1:1:ones)
= 1 + 1
= 2

• Conceptually elegant: we describe an infinite stream (tree, etc.)

and compute with arbitrarily large finite prefixes of it

Functional Programming Spring Semester, 2014

Andreas Lochbihler 16

Example: prime numbers

• One of the oldest algorithms: the Sieve of Eratosthenes

1. Generate the list of all natural numbers, starting with 2

2. Mark the first unmarked number

3. Cross out all multiples of the last marked number

4. Go to step 2

• N.B.

� Infinitely many prime numbers: but each is eventually marked

� Strictly speaking, this is not an algorithm since the steps cannot

be carried out to completion in finite time

• Note that careful analysis of the complexity of the sieve presented

on the next slide leads to doubt about its faithfulness.
Functional Programming Spring Semester, 2014

Andreas Lochbihler 17

Implementing the Sieve of Eratosthenes

1. Generate list: [2 ..]

2. Marking: function head :: [a] -> a determines first element

3. Cross out all multiples: dropMults

dropMults x ys = filter (\y -> y ‘mod‘ x /= 0) ys

4. Repetition via recursion:

sieve xs = head xs : sieve (dropMults (head xs) (tail xs))

The result

primes = sieve [2 ..]

? take 50 primes
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67,71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229] :: [Int]

Functional Programming Spring Semester, 2014

Andreas Lochbihler 18

Example: Newton’s algorithm

Problem: compute square roots

Input: The radicand r ∈ R, with r ≥ 0, and the first approximation

a0 ∈ R, where a0 > 0

Output:
√
r ∈ R

Procedure: The sequence of approximations is defined by

ai+1 = (ai + r/ai)/2

If the sequence of ai converges to a, then a = (a+ r/a)/2.

I.e., a =
√
r.

Numerical test: If
∣∣∣ai+1−ai

ai

∣∣∣ < ε, then ai+1 is the result.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 19

Newton (cont.)

• Example: a0 = 5, r = 2,
√
r = 1.4142135623 . . .

• Iterative search for root

of f(x) = x2 − 2

3

2

1

x

f(x)

Sequence of approximations is

[5.0, 2.7, 1.72037, 1.44146, 1.41447, 1.41421, . . .]

• For correctness, convergence criteria, etc. see other courses.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 20

Traditional implementations

Imperative

static double EPS = 0.001;

double root(double r, double a0) {
double a, a’;
a’ = a0;
do {

a = a’;
a’ = (a + r / a) / 2.0;

} while (!(abs((a’-a)/a)<EPS));
return a’;

}

Functional (cf. exercise sheet 2)

eps :: Double
eps = 0.001

root :: Double -> Double -> Double
root r a0 = iter a0

where
iter a

| goodEnough a’ a = a’
| otherwise = iter a’
where a’ = (a + r / a) / 2.0

goodEnough a’ a =
abs ((a’ - a) / a) < eps

Correct implementation, but as a monolithic unit!

Functional Programming Spring Semester, 2014

Andreas Lochbihler 21

Implementation — Haskell

eps = 0.001

improve r x = (x + r / x) / 2 --- a[i+1] = (a[i] + r/a[i]) / 2

iterate f x = x : iterate f (f x) --- [x, f x, f(f x), ...]

within (x:(x’:xs))
| goodEnough x’ x = x’
| otherwise = within (x’:xs)
where

goodEnough x’ x = abs ((x’ - x) / x) < eps

root x0 r = within (iterate (improve r) x0)

Direct implementation: generate and test

Program simpler to understand and modify
(e.g. with other convergence tests)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 22

Correctness

• Lazy evaluation is powerful.

But it complicates analyzing program complexity and correctness

• Types like [Int] actually include

1. Finite, everywhere defined lists like [1, 3, 5]

2. Finite lists with “undefined” elements
undef :: t
undef = undef

? [1,2,undef]
[1,2,^C{Interrupted!}]

3. Infinite lists with defined or undefined elements

e.g. [1..] or [1, undef, 2, undef, 3, undef, . . .]

Functional Programming Spring Semester, 2014

Andreas Lochbihler 23

Correctness of lazy programs

• Induction is only sound for (1): finite, everywhere defined data.

� When we show by induction that

∀xs ys :: [t].map f (xs ++ ys) = map f xs ++ map f ys

we have proven the equality only for all finite lists!

� But data of kind (2) and (3) also belong to [t]

• We will not consider this correctness question further in this class.

Thus, when we prove a proposition by induction, we mean
only for all data of kind (1).

Functional Programming Spring Semester, 2014

Andreas Lochbihler 24

Summary

• Lazy evaluation enables new ways of writing programs

Data is created or further evaluated only on demand!

• We can describe algorithms that (potentially) produce and

operate on infinite data

� Infinite data of course is never generated

� But arbitrarily large quantities can be produced on demand

• Lazy evaluation is simple but exciting and has wide scope

� Many real programs are not algorithms in the strict sense

� E.g. reactive systems, operating systems, . . . shouldn’t

terminate

� Such systems can be implemented as (lazy) stream processors!

� Establishing correctness requires, however, other techniques

Functional Programming Spring Semester, 2014

