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Formal reasoning about systems

e Requirements

1. Language
2. Semantics
3. Deductive system for carrying out proofs

e Metatheorems relate these, e.g., soundness and completeness

» We focus on (1) and (3) and only comment briefly on (2)
» Most of this should be a review (logic/discrete math)

e Proofs are essential for both parts of the course

Some formality now allows (slightly) less formality later
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I=" Natural deduction
e Propositional logic
e First-order logic

e Equality

Functional Programming

Road map
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An abstract example of a formal proof
e Language L ={D,®, X, +}.

e Rules:

a: If +, then ®.

g If +, then x.

v: If ® and X, then .
0: + holds.

e Prove @l
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An abstract example of a formal proof
e Language L ={D,®, X, +}.

e Rules:

a: If +, then ®.

g If +, then x.

v: If ® and X, then .
0: + holds.

e Prove @l

1. + holds by 0.

2. ® holds by o with 1.

3. X holds by 8 with 1.

4. & holds by v with 2 and 3.
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An abstract example of a formal proof
e Language £ ={®,®, x,+}. o Deductive proof system:

e Rules:

a: If +, then ®. i o — R
B: If +, then x. )

v: If ® and X, then @. R X
0: + holds.

e Prove @l

1. + holds by 0.

2. ® holds by o with 1.

3. X holds by 8 with 1.

4. & holds by v with 2 and 3.
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An abstract example of a formal proof
e Language £ ={®,®, x,+}. o Deductive proof system:

e Rules:

a: If +, then ®. h o — 7
B: If +, then x. )

v: If ® and X, then @. R X
0: + holds.

e Prove @ e Derivation tree:

1. + holds by 0.

2. ® holds by o with 1.

3. X holds by 8 with 1.

4. @ holds by v with 2 and 3. D
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An abstract example of a formal proof
e Language £ ={®,®, x,+}. o Deductive proof system:
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An abstract example of a formal proof

e Language £ ={®,®, x,+}. o Deductive proof system:

e Rules:
a: If +, then ®. ° o t &
B: If +, then x. ) X
v: If ® and X, then @. R X
: — 9
0: + holds. S 8 n
e Prove ¢! e Derivation tree:
1. + holds by 0. S
2. ® holds by o with 1. -,
3. X holds by 8 with 1. X X

4. @ holds by v with 2 and 3. D !
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An abstract example of a formal proof

e Language £ ={®,®, x,+}. o Deductive proof system:

e Rules:
a: If 4+, then ®. - o - 15
B If 4, then x. @ X
~v: If ® and %, then &. R X
. — 9
d: + holds. S Y n
e Prove @l e Derivation tree:
1. + holds by 0. S
2. ® holds by o with 1. + . T 5
3. X holds by 3 with 1. & X

4. @ holds by v with 2 and 3. D !
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An abstract example of a formal proof

e Language £ ={®,®, x,+}. o Deductive proof system:

e Rules:
a: If +, then ®. ° o t &
B: If +, then x. ) X
v: If ® and X, then @. R X

: — 0

0: + holds. S 8 n

e Prove ¢! e Derivation tree:
1. + holds by 0. — 0 — 0
2. ® holds by o with 1. -, T 5
3. X holds by 8 with 1. X X

4. @ holds by v with 2 and 3. D !
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Natural deduction: an abstract example

e Language L ={D,®, X, +}.

e Rules:

a: If +, then ®.

B: If 4+, then x.

~v: If ® and %, then &.

0: We may assume +
only when proving .

e Prove @l

1. Assume + holds by 9.
2. ® holds by o with 1.
3. X holds by 3 with 1.
4. & holds by v with 2 and 3.

Functional Programming

e Deductive proof system:

axiom
LA L FA
' =+ '+
' ® ' x
I'-® I'kF x F,+|—@5
e | I'Feo

e Derivation tree:
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
g If +, then x. F|_®O‘ Fl—xﬁ

v: If ® and X, then .
d: We may assume -+ I'-® F'_XW F,+|—@5

only when proving @. I'E& I'-&

e Prove @ e Derivation tree:

1. Assume + holds by 9.
2. ® holds by o with 1.
3. X holds by 3 with 1.
4. & holds by v with 2 and 3.

=D
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
g If +, then x. F|_®O‘ Fl—xﬁ

v: If ® and X, then .
d: We may assume -+ I'-® F'_XW F,+|—@5

only when proving @. I'E& I'-&

e Prove @ e Derivation tree:

1. Assume + holds by 9.
2. ® holds by o with 1.
3. X holds by 8 with 1.
4. @ holds by v with 2 and 3. +F&

0
=D
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
g If +, then x. F|_®O‘ Fl—xﬁ

v: If ® and X, then .
d: We may assume -+ I'-® F'_XW F,+|—@5

only when proving @. I'E& I'-&

e Prove @ e Derivation tree:

1. Assume + holds by 9.

2. ® holds by o with 1.

3. x holds by 3 with 1. +F® + X
4. @ holds by v with 2 and 3. +F& 5

=D
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
g If +, then x. F|_®O‘ Fl—xﬁ

v: If ® and X, then .

0: We may assume + I'F® I'Fx FH—'_@é

~
only when proving @. I'E& I'-&
e Prove ¢! e Derivation tree:
1. Assume + holds by 9.
2. ® holds by a with 1. th+
3. x holds by 3 with 1. +F® +Fx7
4. @ holds by v with 2 and 3. +F&

0
=D
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
B: It +, then Xx. FI—@a Fl—xﬁ
v: If ® and X, then .
5: We may assume + 'F® F'_XV F>+|_@5
only when proving @. I'E& I'-&
e Prove ¢! e Derivation tree:
1. Assume + holds by 9. axiom
2. ® holds by o with 1. th+
3. X holds by 3 with 1. +F® + F X
4. @& holds by v with 2 and 3. +F & !

0
=D
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
g If +, then x. F|_®O‘ Fl—xﬁ
v: If ® and X, then .
0: We may assume + I'F® F'—XV FH—'_@é
only when proving @. I'E& I'-&
e Prove ¢! e Derivation tree:
1. Assume + holds by 0. axiom
2. ® holds by o with 1. tE+ +F+5
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Natural deduction: an abstract example

e Language £ ={®,®, x,+}. o Deductive proof system:

axiom
e Rules: LA EA
a: If +, then ®. ' =+ ' =+
g If +, then x. F|_®O‘ Fl—xﬁ

v: If ® and X, then .

0: We may assume + I'F® I'Fx FH—'_@é

~

only when proving @. I'E& I'-&
e Prove ¢! e Derivation tree:
1. Assume + holds by 9. axiom axiom
2. ® holds by o with 1. th+ Ty
3. X holds by 3 with 1. +F® +va
4. @& holds by v with 2 and 3. +F &
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Natural deduction

e Developed by Gentzen (1930s) and Prawitz (1960s)

e Rules are used to construct derivations under assumptions.

Aq,..., A, F A reads as “A follows from A4, ..., A"

e Derivations are trees

axiom axiom
ABF A ABFB

A, B+ ANAB )

AFB S AANB

\

FA—-B—-AANDB

e A proof is a derivation whose root has no assumptions

Functional Programming Spring Semester, 2014
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e Natural deduction
=" Propositional logic
e First-order logic

e Equality

Functional Programming

Road map
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Propositional logic: syntax

e Propositions are built from a collection of variables and closed
under disjunction, conjunction, implication, . . .

e More formally: Let a set ) of variables be given. Lp, the
language of propositional logic, is the smallest set where:

» X e lpif X eV.

» le Lp.

» ANBeLpifAe Lpand B € Lp.
» AVBeLpifAe Lpand B € Lp.
» A—-BeLlpifAe Lpand B € Lp.

e In the following: X ranges over variables, A and B over formulae

Functional Programming Spring Semester, 2014
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Propositional logic: semantics

e A valuation o : V — {True, False} is a function mapping
variables to truth values (truth assignment).
Let Valuations be the set of valuations.

» Valuations are simple kinds of models (interpretations).

e Satisfiability: smallest relation = C Valuations x Lp such that

> O
> O
> O
> O

_ X, iff 0(X) = True
— AANB,iffo=Aand c = B
— AV B,iffc=Aoroc =B

— A — B, iff whenever ¢ = A then 0 = B

e Note that o (= L, for every o € Valuations

Functional Programming Spring Semester, 2014
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Propositional logic: semantics (cont.)

e A formula A € Lp is satisfiable if

o = A, for some valuation o

e A formula A € Lp is valid (a tautology) if

o = A, for all valuations o

e Semantic entailment: A,... A, = A if
forall o, if o = Ay,...,0 = A, thenoc = A

e Examples:

» XAY

Functional Programming Spring Semester, 2014
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Propositional logic: semantics (cont.)

e A formula A € Lp is satisfiable if

o = A, for some valuation o

e A formula A € Lp is valid (a tautology) if

o = A, for all valuations o

e Semantic entailment: A,... A, = A if
forall o, if o = Ay,...,0 = A, thenoc = A

e Examples:

» X AY satisfiable, asc = X A Y for 0(X) =o(Y) = True
> X = X

Functional Programming Spring Semester, 2014
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Propositional logic: semantics (cont.)

e A formula A € Lp is satisfiable if

o = A, for some valuation o

e A formula A € Lp is valid (a tautology) if

o = A, for all valuations o

e Semantic entailment: A,... A, = A if
forall o, if o = Ay,...,0 = A, thenoc = A

e Examples:

» X AY satisfiable, asc = X A Y for 0(X) =o(Y) = True
» X — X valid
» X, XVY Y
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Propositional logic: semantics (cont.)

e A formula A € Lp is satisfiable if

o = A, for some valuation o

e A formula A € Lp is valid (a tautology) if

o = A, for all valuations o

e Semantic entailment: A,... A, = A if
forall o, if o = Ay,...,0 = A, thenoc = A

e Examples:

» X AY satisfiable, as 0 = X AY for o(X) = o(Y) = True

» X — X valid

» X, XVY =Y holds, asoc = —X and ¢ = X VY constrain ¢
to (X ) = False and o(Y) = True, so 0 =Y.
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Requirements for a deductive system

e Syntactic entailment - (derivation rules) and
semantic entailment = (truth tables) should agree

e This requirement has two parts:

Soundness: If H - A can be derived, then H = A
Completeness: If H = A, then H - A can be derived

For H = A4,..., A, some collection of formulae.
e These are key requirements for any logic

e Decidability is another important property

What is the complexity of determining if a proposition is
satisfiable? A tautology?

Functional Programming Spring Semester, 2014
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Natural deduction for propositional formulae

e A sequent is an assertion (judgement) of the form
Ay, ..., A, FA
where all A, A{,... A,, are propositional formulae

e Intuitively: A follows from the A;s

If logic is sound, this means A;s semantically entail A

e Axiom: starting point for building derivation trees

axiom

AL FA

e A proof of A is a derivation tree with root - A.

If logic is sound, then A is a tautology

Functional Programming Spring Semester, 2014
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Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'FAAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B

e Example derivation

XANYNZ)FXNZ

Functional Programming Spring Semester, 2014
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Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'-AANB
N-1 N-EL N-ER
I'-AANB I'-A I'-B
e Example derivation
I'-X FI—Z/\I
XNYANZ)FXNZ

=I
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Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B

e Example derivation

XA 777
N-EL
I'-X I'-2Z2
XNYANZ)FXNZ

=T
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Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B

e Example derivation

axiom
I'-XA(YANZ)
N-EL

I'-X I'-2Z2
XNYANZ)FXNZ

=T

N-1
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Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B

e Example derivation

axiom

I'-XA(YANZ) ' ?7AZ
N-EL N-ER

I'-X I'-Z2

XNYANZ)FXNZ

=T

N-1

Functional Programming Spring Semester, 2014



Andreas Lochbihler 12

Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B
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axiom
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=T
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Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B

e Example derivation

axiom
_ '-XA(YANZ)
axiom N-ER
I'-XA(YANZ) 'Y ANZ
N-EL N-ER
I'-X I'-Z2

XNYANZ)FXNZ

=T
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Conjunction (cont.)

e Rules of two kinds: introduce and eliminate connectives

I'-A I'-B I'-AAB I'FAAB
N-1 N-EL
I'FAAB I'-A I'-B

e Each rule is sound in that it preserves semantic entailment.
E.g., for A-/

fl'=Aand ' = Bthenl' =AAB

e If all rules preserve semantic entailment, logic is sound. (proof?)

e Can we prove anything with just these three rules?

Equivalently: which (purely conjunctive) formulae are tautologies?

Functional Programming Spring Semester, 2014
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Implication

e Rules
I''AFB I'-A— B ' A

S~

'A—-B I'+B

m

e Application of —-/ turns last derivation into a proof

ANBNC)FANC
FAAN(BAC)— ANC

e Examples: (— right associative and A binds stronger than —)

X =Y =X
FX=>Y—>2) > (X—=Y) > X—>Z
F(XAY)—= (Y AX)

Functional Programming Spring Semester, 2014
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Disjunction

Rul
° HIes - A - B

V- V-IR
I'FAVEB I'FAVEB

'-AvB T,A-C T,BFC
T'+C

V-E

e Elimination rule formalizes proof by cases

e Example: formalize and prove

When it rains then | wear my jacket.
When it snows then | wear my jacket.
It is raining or snowing.

Therefore | wear my jacket.

Functional Programming Spring Semester, 2014
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Falsity and negation

e Falsity
'L
— 1-E
I'-A
e Negation: define -A as A —_L.
A—1
-4 TFA derved by A4 TEA o
- —-E derived by e >-
I'-B

Functional Programming Spring Semester, 2014
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Intuitionistic versus classical logic

e Peirce’s Law: ((A — B) — A) — A. s this valid? Provable?

e We have only intuitionistic logic. Classical logic requires either

- - TND X " 1
> axiom of excluded middle ~— ( “tertium non datur”)
I, —AFL ) _ )
» or rule RAA (“reductio ad absurdum’)
I+ A

e Example: There exist irrationals a and b such that a® is rational
Proof: Let b be /2 and consider whether or not ¥° is rational
Case 1: If rational, let a = b = /2
Case 2: If irrational, let a = \/5\/§ then

3 |
b = (\/iﬁ) _aYEYD L 5 o

Functional Programming Spring Semester, 2014
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Finding ND proofs

e Prove statement on paper first, then translate to formal proof.

Functional Programming Spring Semester, 2014
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Finding ND proofs
e Prove statement on paper first, then translate to formal proof.

e Heuristic for backwards proofs: Apply safe rules first.

» Rule is safe if we only enlarge I' or can get the conclusion back.

I'-AADB I'-AAB
_ AN-EL AN-ER
» A-lis safe: '~ A I'+-B

I'-AAB

N-1

Functional Programming Spring Semester, 2014
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Finding ND proofs
e Prove statement on paper first, then translate to formal proof.

e Heuristic for backwards proofs: Apply safe rules first.

» Rule is safe if we only enlarge I' or can get the conclusion back.

I'-AAB I'-AAB
. AN-EL AN-ER
» A-lis safe: ' A I'FB
A-1
I'-AAB
axiom
» V-E + axiom is safe: '-AVB ARC I''BEC

V-E

I'=C
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Finding ND proofs
e Prove statement on paper first, then translate to formal proof.

e Heuristic for backwards proofs: Apply safe rules first.

» Rule is safe if we only enlarge I' or can get the conclusion back.

I'-AAB I'-AAB
. AN-EL N-ER
» A-lis safe: '~ A I'+-B
A-1
I'-AAB
axiom
» V-E + axiom is safe: '-AVB ARC F,Bl_c\/E
r-cC
'~ A '+ B |
/\_
» A-EL is unsafe: I'-AAB
N-EL

I'-A
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Finding ND proofs
e Prove statement on paper first, then translate to formal proof.

e Heuristic for backwards proofs: Apply safe rules first.

» Rule is safe if we only enlarge I' or can get the conclusion back.

I'-AAB I'-AAB
_ AN-EL A-ER
» A-lis safe: '~ A I'+-B
A-1
I'-AAB
axiom
» V-E + axiom is safe: I'-AvV B IAEC FaB'_CvE
r-cC
'~ A '+ B |
/\_
» A-EL is unsafe: I'-AAB
AN-EL
» How about the other rules? - A

Functional Programming Spring Semester, 2014
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Summary of derivation rules for propositional logic

I'-A I'-B I'FAAB I'FAAB

A- A-EL A-ER
I'AAB I'FA I'+RB
I A B / 'YA—-B TFA -
'-4—B I'+RB a
T' A I'+B
V- V-IR
I'AVB I'-AV B
r~AVB T,AFC anCvE
T'+C )
FFLL '-4 TF+A

I'-A I'-B

Functional Programming Spring Semester, 2014
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Road map

e Natural deduction
e Propositional logic

I=" First-order logic

» Syntax: variables over domain + functions, relations, quantifiers
» Semantics: interpreting domain, functions, and relations

e Equality

Functional Programming Spring Semester, 2014
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First-Order Logic: Syntax

e Two syntactic categories: terms and formulae

e A signature consists of a set of function symbols F and a set of
predicate symbols P (and their arities)

Write f* [or p] to indicate function symbol f [predicate symbol p]
has arity 1 € N/

N.B. constants are 0-ary function symbols
e Let V be a set of variables

e Term, the terms of first-order logic, is the smallest set where

1. x € Termif x € ), and
2. f"(t1,...,tn) € Termif f* € Fandt; € Term, forall 1< j<n

Functional Programming Spring Semester, 2014
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Syntax (cont.)

e form, the formulae of first-order logic, is the smallest set where

1. 1€ Form,

2. p"(t1,...,tn)EFormif p™ € P and t; € Term, for all 1< j < n,
3. Ao B € Formif A € Form, B € Form, and o € {A,V,—}, and
4. Qx. A€ Formif A€ Form, x €V, and € {Vv,3}

e Each occurrence of each variable in a formula is bound or free.
(q(x) vV Iz.Vy.p(f(x),2) ANqla)) VVz.7r(z, 2, 9(2))

A variable occurrence x in a formula A is bound if x occurs
within a subformula of A of the form dx.B or V2. B
e Analog from mathematics: 22 + fcd:z; cydy or Z?:Ox )

Functional Programming Spring Semester, 2014
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Binding and a-conversion

e Names of bound variables are irrelevant,
they just encode the binding structure.

dr.Vy.p(f(x),y) Aq(x,z) stands for % Yp(f(l), T) A q(l7 2)

e We can rename bound variables at any time («a-conversion).

» Must preserve binding structure.

Functional Programming Spring Semester, 2014
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Binding and a-conversion

e Names of bound variables are irrelevant,
they just encode the binding structure.

dr.Vy.p(f(x),y) Aq(x,z) stands for % Yp(f(l), T) A q(l7 2)

e We can rename bound variables at any time («a-conversion).

» Must preserve binding structure.

e Examples: a-convertible?
V. Jy. p(z,y) vy. 3z. p(y, z)
Jz2.Vy.p(z, f(y)) Jy.Vy.p(y, f(y))

(Vo.p(x)) VvV (z.q(x)) (V2.p(2)) V (Fy.q(y))
p(x) — Va.p(x) p(y) — Vy.p(y)
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Binding and a-conversion

e Names of bound variables are irrelevant,
they just encode the binding structure.

dr.Vy.p(f(x),y) Aq(x,z) stands for % Yp(f(l), T) A q(l7 2)

e We can rename bound variables at any time («a-conversion).

» Must preserve binding structure.

e Examples: a-convertible?
Va. Jy. p(x,y) Vy.dx. p(y, x) yes
Jz.Vy. p(z, f(y)) Fy.Vy. p(y, f(y))

(Vo.p(x)) VvV (z.q(x)) (V2.p(2)) V (Fy.q(y))
p(x) — Va.p(x) p(y) — Vy.p(y)
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e Names of bound variables are irrelevant,
they just encode the binding structure.

dr.Vy.p(f(x),y) Aq(x,z) stands for % Yp(f(l), T) A q(l7 2)

e We can rename bound variables at any time («a-conversion).

» Must preserve binding structure.

e Examples: a-convertible?
Va. Jy. p(x,y) Vy.dx. p(y, x) yes
Jz.Vy. p(z, f(y)) Fy.Vy. p(y, f(y)) no

(Vo.p(x)) VvV (z.q(x)) (V2.p(2)) V (Fy.q(y))
p(x) — Va.p(x) p(y) — Vy.p(y)
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Binding and a-conversion

e Names of bound variables are irrelevant,
they just encode the binding structure.

dr.Vy.p(f(x),y) Aq(x,z) stands for % Yp(f(l), T) A q(l7 2)

e We can rename bound variables at any time («a-conversion).

» Must preserve binding structure.

e Examples: a-convertible?
Va. Jy. p(x,y) Vy.dx. p(y, x) yes
Jz.Vy.p(z, f(y)) Fy.Vy. p(y, f(y)) no
(Ve.p(x)) V (. q(x)) (Vz.p(2)) V (y.q(y)) yes

p(x) — Va.p(x) p(y) — Vy.p(y)
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Binding and a-conversion

e Names of bound variables are irrelevant,
they just encode the binding structure.

dr.Vy.p(f(x),y) Aq(x,z) stands for % Yp(f(l), T) A q(l7 2)

e We can rename bound variables at any time («a-conversion).

» Must preserve binding structure.

e Examples: a-convertible?
Va. Jy. p(x,y) Vy.dx. p(y, x) yes
Jz.Vy.p(z, f(y)) Fy.Vy. p(y, f(y)) no
(Ve.p(x)) V (. q(x)) (Vz.p(2)) V (y.q(y)) yes

p(x) — Va.p(x) p(y) — Vy.p(y) no
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Omitting parentheses

e Binary operators:

» A binds stronger than V stronger than —.
» A, V, and — associate to the right.

e Negation binds stronger than binary operators.

e Quantifiers extend to the right as far as possible: end of line or ).
They override the binding of binary operators!

AVBA-C — AV B (AV(B/\(i))>—>(AVB)
A—-BVA—-C A—><(B_\/A)—>C)
ANVz.B(zx)VC AN (V:r;. (B(a:)VC’))

V. A(x) AVz. (B(x) AC(z)) AD  —|Va. (A(:v) A <Vx.((B(:U) C(x ) A D)))

Functional Programming
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Semantics

e A structure is a pair S = (Ug, Is) where Ug is an nonempty set,
the universe, and Is is a mapping where

1. Is(p™) is an n-ary relation on Ug, for p™ € P, and
2. Is(f™) is an m-ary (total) function on Usg, for f* € F

As shorthand, write p° for Is(p) and S for Is(f)

e An interpretation is a pair Z = (S, v), where S = (Ug, Is) is a
structure and v : YV — Ug a valuation.

e The value of a term ¢ under the interpretation Z = (S, v) is
written as Z(t) and defined by

1. Z(x) = v(x), for z € V, and
2. Z(f(t1,. ... tn)) = fO(Z(t1),...,Z(t,))
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Semantics (cont.)

Semantic entailment = C Interpretations x Form is the smallest
relation satisfying

(S,v) Eplty,....tn) if (Z(t1),...,Z(tn)) € p°, where T = (S, v)

(S,v) EVx. A if (S,v[r—a]) EA, forallacUg
(S,v) =dx. A if (S,v|x > a]) E A, for some a € Ug

Here v[x+>al is the valuation v’ identical to v, except that v'(x)=a

Functional Programming Spring Semester, 2014
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Semantics (cont.)

e When (S,v) = A we say A is satisfied with respect to (S, v) or
(S§,v) is a model of A.

e Note that if A does not have free variables, satisfaction does not
depend on the valuation v. We write § = A.

e When every suitable interpretation is a model, we write = A and
say A is valid.

e A is satisfiable if there is at least one model for A4
(and contradictory otherwise)

e Complexity of these problems?
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An example

V. p(x, s(x))
e A model:
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An example

Va.p(x,s(z))

e A model:
Us = N
p° = {(m,n)|m,n € Us and m < n}
s® = the successor function on Usg

= ie,s°(x)=x+1

e Not a model:
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An example

Va.p(x,s(z))

e A model:
Us = N
p° = {(m,n)|m,n € Us and m < n}
s® = the successor function on Usg

= ie,s°(x)=x+1

e Not a model:

o
|

{a,b,c}
p° = {(a,b),(a,c)}

s® = the identity function
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More examples
Which of following are satisfiable? Valid?

o Vr.dy.yx2 ==
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More examples
Which of following are satisfiable? Valid?

e Vr.dy.yx2 ==z

satisfied WRT rationals
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More examples
Which of following are satisfiable? Valid?

e Vr.dy.yx2 ==z

satisfied WRT rationals

eV Vy.r<y—dzax<zAz<y

Functional Programming Spring Semester, 2014



Andreas Lochbihler 29

More examples
Which of following are satisfiable? Valid?

e Vr.dy.yx2 ==z

satisfied WRT rationals

eV Vy.r<y—dzax<zAz<y

satisfied WRT any dense order
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More examples
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eV Vy.r<y—dzax<zAz<y

satisfied WRT any dense order
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More examples
Which of following are satisfiable? Valid?

e Vr.dy.yx2 ==z

satisfied WRT rationals

eV Vy.r<y—dzax<zAz<y

satisfied WRT any dense order

e dz.x # 0

satisfied WRT structures S with > 2 elements in Ug
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More examples
Which of following are satisfiable? Valid?

e Vr.dy.yx2 ==z

satisfied WRT rationals

eV Vy.r<y—dzax<zAz<y

satisfied WRT any dense order

e dz.x # 0

satisfied WRT structures S with > 2 elements in Ug

o (Vz.p(x,x)) — pla,a)
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More examples
Which of following are satisfiable? Valid?

e Vr.dy.yx2 ==z

satisfied WRT rationals

eV Vy.r<y—dzax<zAz<y

satisfied WRT any dense order

e dz.x # 0

satisfied WRT structures S with > 2 elements in Ug

o (Vz.p(x,x)) — pla,a)
valid
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Substitution

e Replace in A all occurrences of a free variable x with some term t.

e We write A(x) to indicate that we want to substitute for x,
and A(t) for substituting t for .

e Example: A(x)=3dy.yxx =xx%2

A2—-1)=y.yx(2—-1)=2—-1)xz
Alz)=dy.yxz=2%z
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Substitution

e Replace in A all occurrences of a free variable x with some term t.

e We write A(x) to indicate that we want to substitute for x,
and A(t) for substituting t for .

e Example: A(x)=3dy.yxx =xx%2
A2—-1)=y.yx(2—-1)=2—-1)xz

Alz)=dy.yxz=2%z

e All free variables of ¢ must still be free in A(t). Avoid capture!
If necessary, a-convert A before substitution.

AB+y) Z . yxB+y)=B3+y)*xz
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Substitution

e Replace in A all occurrences of a free variable x with some term t.

e We write A(x) to indicate that we want to substitute for x,
and A(t) for substituting t for .

e Example: A(x)=3dy.yxx =xx%2
A2—-1)=y.yx(2—-1)=2—-1)xz
Alz)=dy.yxz=2%z

e All free variables of ¢ must still be free in A(t). Avoid capture!
If necessary, a-convert A before substitution.

AB+y) Z . yxB+y)=B3+y)*xz
AB+y)=Tdw.wxB3+y) =B +y) *xz
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Universal quantification

e Rules '+ A(x) Y ' V. A(x)
' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Example derivation:

- (Vo A(z)) — (Vy. A(f(v)))
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Universal quantification

e Rules '+ A(x) . ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Example derivation:

Va. A(x) = Vy. A(f(y))

— Vr A@) = (W AGG))

e N.B. we continue to use rules from propositional logic,
but now for first-order formulae.
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Universal quantification

e Rules '+ A(x) Y ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Example derivation:

V. A(z) = A(f(y))
Va. A(x) = Vy. A(f(y))

= (Vo. A(z)) — (Vy. A(f(y)))

V-1 y not free in Vx. A(x)
>-1

e N.B. we continue to use rules from propositional logic,
but now for first-order formulae.
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Universal quantification

e Rules '+ A(x) Y ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Example derivation:

V. A(x) FVz. Az
va. A(z) = A(f(y)
vz, Az) - Vy. A(f(y))
- (Vo Az)) — (Vy. A(f(y)))

X

)) V-E with t = f(y)
V-1 y not free in Vx. A(x)
>-1

e N.B. we continue to use rules from propositional logic,
but now for first-order formulae.
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Universal quantification

e Rules '+ A(x) Y ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Example derivation:

) axiom  implicit a-conversion
) V-E with t = f(y)

V-1 y not free in Vx. A(x)
>-1

V. A(x) FVz. Az
va. A(z) = A(f(y)
vz, Az) - Vy. A(f(y))
- (Vo Az)) — (Vy. A(f(y)))

X

e N.B. we continue to use rules from propositional logic,
but now for first-order formulae.
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition?

Functional Programming
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)
' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

FVe. (r=0— Vo.x =0)
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

Fr=0—Vr.z=0

V-1
FVe. (r=0— Vo.x =0)
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

r=0FVYz.2 =0
Fr=0—Vr.z=0
FVe. (r=0— Vo.x =0)

-
V-1
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

r=0Fx=0
r=0FVr.z2=0
Fr=0—>Vr.z=0
FVe. (r=0— Vo.x =0)

V-1

-
V-1
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)
' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

axiom
r=0F2x=0
V-1
r=0FVYz.z2 =0 |
Fr=0—=Vr.z=0
V-1

FVe. (r=0— Vo.x =0)
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

axiom
V-1

r=0Fx=0
r=0FVr.z2=0
Fr=0—>Vr.z=0
FVe. (r=0— Vo.x =0)
F0=0— (Vz.x =0)

-
V-1
V-E
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

axiom
V-1

r=0Fx=0
r=0FVr.z2=0
Fr=0—>Vr.z=0 o]
I—Vx.(x:O%Va:.a::O)V_E
F0=0— (Vz.x =0) F0=0
FVr.x =0

-

m
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Universal quantification (cont.)

e Rules '+ A(x) T ' V. A(x)

' V. A(x) ' = A(t)

Side condition *: x not free in any assumption in I'.

e Why this side condition? Consider the following “derivation™:

axiom
V-1

r=0Fx=0
r=0FVe.x =0
Frx=0—=>Ve.x =20 o]
FVe. (r=0— Vo.x =0)
vV-E ref (see later)
F0=0— (Vz.x =0) F0=0 F
—Vr.x =0 /

-
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

Functional Programming
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

axiom
Vx.ﬂy.x#yl-‘v’x.ﬂy.az;éyVE
Ve.dy.x Ayt 3dy.yF£y ]

- (V. Jy.x #y) = (Fy.y #y)

Functional Programming
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

axiom
Vx.ﬂy.x#yl-‘v’x.ﬂy.az;éyVE
Ve.dy.x Ayt 3dy.yF£y ]

- (V. Jy.x #y) = (Fy.y #y)

e Conclusion is not valid. Reason:
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

axiom
Vx.ﬂy.x#yl-‘v’x.ﬂy.az;éyVE
Ve.dy.x Ayt 3dy.yF£y ]

- (V. Jy.x #y) = (Fy.y #y)

e Conclusion is not valid. Reason: false if Us has > 2 elements.

e Proof incorrect. Reason:
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

Ve.dy.x Ayt 3dy.yF£y
- (Vo.3y.x #y) = Gy.y #y)

e Conclusion is not valid. Reason: false if Us has > 2 elements.

-

e Proof incorrect. Reason:
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

Ve.dy.x Ayt 3dy.yF£y
- (Vo.3y.x #y) = Gy.y #y)

e Conclusion is not valid. Reason: false if Us has > 2 elements.

- correct

e Proof incorrect. Reason:
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

Ve.dy.x #y - Ve.dy.x #y
Ve.dy.x Ayt 3dy.yF£y

V-E

e Conclusion is not valid. Reason: false if Us has > 2 elements.

e Proof incorrect. Reason:
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Universal quantification (cont.)
e Rules '+ A(x) | ' V. A(x)

' V. A(x) ' A(t)

Side condition *: x not free in any assumption in I".

e |s the following a proof?

Ve.dy.x #y - Ve.dy.x #y

V-E wrong
Ve.dy.x Ayt 3dy.yF£y

e Conclusion is not valid. Reason: false if Us has > 2 elements.

e Proof incorrect. Reason: Substitution must avoid capture.
Here: A(z) = dy.x # y
When substituting ¢ = y for , we must rename bound 3 in Al
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

= (Vo p(z) A gq(z)) = (Vo.p(z)) A (V. q(x))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

34
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

LEpl@)
' V. p(x) ' V. g(x) A
Fop(o) K@) F (o (@) A (Foa(a)
= (Vo.p(x) A g(z)) = (Va. p(z)) A (Vo q(z))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

C'Eplz) AN 7
I'F p(a)
[ Va:.p(x)

A\

Y. p(x )

N-EL
V-1

' V. g(x)

N-1

:1:'3 A

q(z) = (Vo.p(z))

(V. q(z))

|_
= (Vx.p(x) A g(x)) — (Va. p(x '

) A (V. q(z))

Functional Programming
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

= Vy.p(y) A7(y)

T+ p(z) A?(z) A_V;
' p(x) oy
' V. p(x) ' V. g(x) A
) A (Vo ple) A (Vale)
= (Vo. p(z) Ag(z)) = (V. p(x)) A (Vo g(z))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

' Vy.p(y) Ag(y) ;)_(Zm
LEpl@)Aelz) o
LEpl@)
[ Vm.pﬁx) ' V. g(x) A
Fap(@) A q(@) - (V2. p@) A (Vag@)
= (Vo. p(z) Ag(z)) = (V. p(x)) A (Vo g(z))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

' Vy.p(y) Ag(y) ;)_(Zm
LEpl@)Aelz) o
LEpl) LFql@)
' V. p(x) ' V. g(x)
i A-1
Fap(@) A q(@) - (V2. p@) A (Vag@)
- (Vz.p(z) A g(z)) = (Vo p(2)) A (Vo ¢(x))
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

' Vy.p(y) Ag(y) ;)_(Zm
' p(x) A q(x) L C'E 77 Agqx) ~ER
Chpl@) Lkl
' V. p(x) ' V. g(x) N
Top @ A+ (Vo plo) A (ag@)
= (Vo. p(z) Ag(z)) = (V. p(x)) A (Vo g(z))

34
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

axiom
I'EYy.p(y) A q(y) o E I'EV2.77(2) A q(2) o-E
' p(x) A q(x) I'F77(x) A gq(x)
N-EL N-ER
' p(x) vt ['Fq(z) |
' V. p(x) ' V. g(x) N
=T

Vo p(x) A q(x) F (Vo p(x)) A (Va. g(z)) .
- ,

= (Vo.p(z) A q(x)) = (Vo.p(z)) A (V. q())

Functional Programming Spring Semester, 2014



Andreas Lochbihler

Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

axiom axiom
LEvy-ply) Naly) |, LFVvz pl)Aalz)
I'Fp(x) Ag(x) I'E plz) A g(z)
N-EL N-ER
' p(x) vt ['Fq(z) |
'+ V. p(x) [ V. q(x) N
=T

Vo p(x) A q(x) F (Vo p(x)) A (Va. g(z)) .
- ,

= (Vo.p(z) A q(x)) = (Vo.p(z)) A (V. q())

34
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Universal quantification (cont.)

e Prove (Vx.p(x) A q(x)) = (Vx.p(xz)) A (Vx.q(x))

axiom axiom
LEvy-ply) Naly) |, LFVvz pl)Aalz)
I' = A [' = A
p)Aal@) o p)Na(@) g
' p(x) ['Fq(z)
V-1 V-1
' V. p(x) ' V. g(x) N
=TI

A\

Va.p(z) Ag(z) - (V. p(z)) A (Va. g(z))
= (Vo p(z) A gq(z)) = (Vo.p(z)) A (V. q(x))

-

e Generalise proof:

» Can use any formulae A and B instead of relations p and g.

» Side conditions of V-/ are trivial:  not free in T.
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Existential quantification

e Rules

' A(t) o [+ dx. A(z) I, A(x) I—B3 .
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation:
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Existential quantification

e Rules

' A(t) o [+ dx. A(z) I, A(x) I—B3 .
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation:

- (Vz. A(x) = B) — ((Jy. A(y)) — B)
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Existential quantification

e Rules

' A(t) o [+ dx. A(z) I, A(x) I—B3 .
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation:

Vr.A(x) - B+ (Jy. A(y)) — B
- (Vz. A(x) — B) — ((Jy. A(y)) — B)

-
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Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation:

Vr. A(x) — B,3y. A(y) - B
Vr.A(x) - B+ (Jy. A(y)) — B
- (Vz. A(x) — B) — ((Jy. A(y)) — B)

-

-

Functional Programming Spring Semester, 2014



Andreas Lochbihler

Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation, assuming z does not occur free in B:

' dz.7(2) [,7(z2) B
V. A(z) - B,3y. A(y) - B

Ve. A(z) - B+ (Jy. A(y)) — B

- (Vz. A(x) — B) — ((Jy. A(y)) — B)

J3-E

-

-

where I' =Vx. A(x) — B, 3y. A(y)
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Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation, assuming z does not occur free in B:

axiom
' dz. A(2) ['VA(z) - B o
V. A(z) - B,3y. A(y) - B | _
Vo, A(z) — BF (3y. A(y)) = B /

- (Vz. A(x) = B) — ((Fy. A(y)) — B)

where I' =Vx. A(x) — B, 3y. A(y)

35
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Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation, assuming z does not occur free in B:

r'- 77 —B ' 77
axiom »-E
' dz. A(2) ['VA(z) - B o
V. A(z) - B,3y. A(y) - B
Ve. A(z) - B+ (Jy. A(y)) — B

- (Vz. A(x) = B) — ((Fy. A(y)) — B)

-

-

where I' =Vz.A(x) — B,3y. A(y) and IV =T, A(z2)
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Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation, assuming z does not occur free in B:

I+ Vw.??(w)— B

V-E
IME=77(777) — B = 272(777)
axiom »-E
' dz. A(2) ['VA(z) - B o
V. A(z) - B,3y. A(y) - B | _
Vo, A(z) — BF (3y. A(y)) = B /

- (Vz. A(x) = B) — ((Fy. A(y)) — B)

where I' =Vz.A(x) — B,3y. A(y) and IV =T, A(z2)
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Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation, assuming z does not occur free in B:

axiom
'+ Vw. A(w) — BV -
' A(777) = B ' - A(777)
axiom »-E
' dz. A(2) ['VA(z) - B o
V. A(z) - B,3y. A(y) - B | _
Vo, A(z) — BF (3y. A(y)) = B /

- (Vz. A(x) = B) — ((Fy. A(y)) — B)

where I' =Vz.A(x) — B,3y. A(y) and IV =T, A(z2)
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Existential quantification

e Rules

CEAM) _,  T'F3eA@) LA@EB.,
[+ 3z. Az) T+ B '

Side condition *: z is neither free in B nor free in T.

e Sample derivation, assuming z does not occur free in B:

axiom
I+ Vw. A(w) — B
V-E axiom
I+ A(z) — B I A(2)
axiom s-F
['Fdz. A(2) I'VA(z) - B o

Vr. A(x) — B,3y. A(y) - B
Vr.A(x) - B+ (Jy. A(y)) — B
- (Vz. A(x) — B) — ((Jy. A(y)) — B)

-

-

where I' =Vz.A(x) — B,3y. A(y) and IV =T, A(z2)
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e Natural deduction
e Propositional logic
e First-order logic

Iz Equality

Functional Programming

Road map

36
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FOL with equality

e Equality is a logical symbol with associated proof rules

One speaks of first-order logic with equality rather than
equality being “just another predicate”

e Extended language: t1 =ty € Form if t1,t5 € Term
e Extend definition of semantic entailment |=:
TEti=ty if Z(t1) = Z(t2)

» Recall Z(t) is the value of ¢ under the interpretation Z = (S, v)

» Note the two completely different uses of “=" herel!
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Equality

e Equality is an equivalence relation

I'Ft=s I'Ft=s I'Fs=r

ref sym trans
I'Ft=t I'Fs=t I'Et=r

e Equality is also a congruence on terms and all (definable) relations

Fl—tlzsl F"tn:Sn
cong
Th f(t1, .. tn) = f(S1,.. ., 80)
Fl—tlzsl F"tn:Sn F"]?(tl,...,tn)

con
I'Fp(siy...,8n) 52

e Soundness:
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Equality

e Equality is an equivalence relation

I'Ft=s I'Ft=s I'Fs=r

ref sym trans
I'Ft=t I'Fs=t I'Et=r

e Equality is also a congruence on terms and all (definable) relations

Fl—tlzsl F"tn:Sn
cong
Th f(t1, .. tn) = f(S1,.. ., 80)
Fl—tlzsl F"tn:Sn F"]?(tl,...,tn)

con
I'Fp(siy...,8n) 52

e Soundness: equality on Ug is a congruence
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On the shape of proofs

o Let I' =a(b) =d(e), f(d(e)) = g(h). Prove I' - f(a(b)) = g(h)

axiom

' a(b)
'+ f(a(d))

d(e
(©) cong axiom

fld(e)) '+ f(d(e)) = g(h)
'+ f(a(b)) = g(h)

trans

e Compare with following linear equational derivation

e In general, any equality proof can be converted into such a linear
style. We will usually carry out equality reasoning this linear way.

e \We will see many examples shortly, e.g., in proofs by induction.
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What next?

e We consider the correctness question for functional programs.
e | will usually not write formal proofs using these rules.

e However, all proofs given can be translated to formal ones.

e You should check this, also for your own proofs.

e Topic is also of central importance in course’'s second half.
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