Formal Methods

and Functional Programming
Linear Temporal Logic

Peter Muller

Chair of Programming Methodology
ETH Zurich

The slides in this section are partly based on the course Automata-based System Analysis by
Felix Klaedtke

Motivation
@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

E"HZUI‘/Ch Peter Miuller—Formal Methods and Functional Programming, SS14 p. 271

Motivation
@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

e For a terminating program s

(s,0) = ¢’ and o(0) =0 then ¢'(0) =0

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 271

Motivation
@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

e For a terminating program s

(s,0) = ¢’ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) =7 (s’,0") and o(0) =0 and o'(0) =1 then there exist
s" o" such that (s’,0") =7 (s"",0”) and ¢"(0) =0

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 271

Motivation

@ Many interesting properties relate several states

@ Example: all opened files must be closed eventually

e For a terminating program s

(s,0) = ¢’ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) =7 (s’,0") and o(0) =0 and o'(0) =1 then there exist
s".a" such that (s’,0') =7 (s”,0") and ¢"(0) =0

@ For a non-deterministic, non-terminating program s

ETH:zurich

wc : Stm x State x N — Bool

wc(s,o,n) < o(o0) =0V
(for all s", 0" :if (s,0) =1 (s’,0") then there exists
m € N such that m < n and we(s’, o', m))

(s,0) =7 (s’,0") and o(0) =0 and o’(0) =1 then
there exists n € N such that we(s’, o', n)

Peter Muller—Formal Methods and Functional Programming, SS14

p. 271

6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

E"HZUI‘/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 272

Transition Systems Revisited
@ We use a slightly different definition here (than earlier in the course)

@ A finite transition system is a tuple (I, 0/, —)

e [: a finite set of configurations
@ 0y: an initial configuration, oy €[
e —: a transition relation, -c [x [

@ Difference: we have a fixed initial configuration

o In this section, transition systems model only one program /system, not
all programs of a programming language

@ Difference: we omit terminal configurations from the definition

e Simplifies theory
e Termination can be modelled by transition to a special extra sink state
(which allows further transitions only back to itself)

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 273

Transition System of a Promela Model

o Configurations: states (see previous section)

e Global variables, global channels
e Per active process: local variables, local channels, location counter

@ Initial configuration: initial state (see previous section)

@ Transition relation: defined by operational semantics of statements

e We keep semantics informal

@ A Promela model has a finite number of states

o Finite number of active processes (limited to 255)
e Finite number of variables and channels

e Finite ranges of variables

e Finite buffers of channels

@ Therefore, it is technically possible to enumerate all possible states

e How many states are there?

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 274

State Space of Sequential Programs

@ Number of states

#program locations x [[| dom(x) |
variable x

o where | dom(x) | denotes the number of possible values of variable x

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 275

State Space of Sequential Programs

@ Number of states

#program locations x [[| dom(x) |
variable x

o where | dom(x) | denotes the number of possible values of variable x

@ Example: sequential program with 10 locations and 3 boolean variables

10x2x2x2=10x23=80

o Adding two integer variables yields 80 x 232 x 232 = 80 x 2°4

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 275

State Space of Sequential Programs

@ Number of states

#program locations x [[| dom(x) |
variable x

o where | dom(x) | denotes the number of possible values of variable x

@ Example: sequential program with 10 locations and 3 boolean variables

10x2x2x2=10x23=80

o Adding two integer variables yields 80 x 232 x 232 = 80 x 2°4
@ Number of states grows exponentially in the number of variables

@ State space explosion

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 275

State Space of Concurrent Programs

@ The number of states of P = Py||... | Py is at most

#states of P; x ... x #states of Py =

N
[[(#program locations; x [T | dom(x)])

i=1 variable x;

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 276

State Space of Concurrent Programs

@ The number of states of P = Py||... | Py is at most

#states of P; x ... x #states of Py =

N
[[(#program locations; x [][| dom(x;)])

i=1 variable x;

@ Number of states grows exponentially in the number of processes

@ State space explosion

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 276

State Space of Promela Models

@ The number of states of a system with N processes and K channels is
at most

i K
[T(#program locations; x] | dom(x;) |) x [T | dom(c;) |<P(<)

i=1 variable x; Jj=1

o | dom(c) | denotes the number of possible messages of channel ¢
o cap(c) is the capacity (buffer size) of channel ¢

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 277

State Space of Promela Models

@ The number of states of a system with N processes and K channels is
at most

i K
[T(#program locations; x] | dom(x;) |) x [T | dom(c;) |<P(<)

i=1 variable x; Jj=1

o | dom(c) | denotes the number of possible messages of channel ¢
o cap(c) is the capacity (buffer size) of channel ¢

@ Number of states grows exponentially in the number and capacity of
channels

@ State space explosion

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 277

Limiting the Impact of State-Space Explosion

@ Only examine configurations actually reachable by the transition system

@ Modeling step is important (omit unimportant details)

e Can drastically reduce state-space of the transition system

@ Spin employs many techniques/heuristics for efficiency

o Explore certain paths first (can be customized)
o Ignore certain interleavings (local state)

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 278

Computations

@ Infinite sequences

e SY is the set of infinite sequences of elements of set S
o 5] denotes the i-th element of the sequence s € 5%

@ vel™ is a computation of a transition system if:

@ Y[o] = 01

o Vi1 = 7i+1] (for all i >0)

e Note: we use o to range over the states [of a transition system
o Note (notation above): if v = 0go10203. .. then vy = o;

@ C(TS) is the set of all computations of a transition system TS

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 279

Linear-Time Properties

@ Linear-time properties (LT-properties) can be used to specify the
permitted computations of a transition system

@ A linear-time property P over [is a subset of %
e P specifies a particular set of infinite sequences of configurations

@ TS satisfies LT-property P (over I')
TS= P ifand only if C(TS)cP

e All computations of TS belong to the set P

@ By contrast: branching-time properties (not in this course) can also
express the existence of a computation

e Example: “lt is always possible to return to the initial state”

ETH:zurich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 280

LT-Properties: Example

@ All opened files must be closed eventually

P={yel|Vi20:v(0)=1=3n>0:7(,,(0) =0}

@ LT-properties precisely express properties of computations

e Non-termination is handled by infinite sequences
@ Non-determinism is handled by considering each computation separately

@ However, the explicit representation above (defining the set of
sequences) is not convenient

@ Logical formalism needed to simplify specification of LT-properties

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 281

From Configurations to (Sets of) Propositions
@ For a transition system TS, we additionally specify a set AP of atomic
propositions (of our choice)

e An atomic proposition is a proposition containing no logical connectives
o Example: AP = {open, closed} (for files)
o Example: AP={x>0,y < x}

@ We must provide a labeling function that maps configurations to sets of
atomic propositions from AP

o L:T - P(AP)

{open} ifo(o)=1
o Example: L(0) =4 {closed} if o(0o)=0
{} otherwise

@ We call L(o) an abstract state

@ From now on, we consider AP and L to be part of the transition system

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 282

Traces

@ A trace is an abstraction of a computation

e Observe only the propositions of each state, not the concrete state itself
o Infinite sequence of abstract states (P(AP)%)

@ t ¢ P(AP)¥ is a trace of a transition system TS if
t = L(v01)L(7111)L(7727), - - - and 7y is a computation of TS

@ T(TS) is the set of all traces of a transition system TS

@ LT-properties are typically specified over infinite sequences of abstract
states, rather than over sequences of configurations:

P={teP(AP)“|Vi>0:openct;=3In>0:closed € tf;,,}

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 283

Safety Properties

@ Intuition

e “Something bad is never allowed to happen (and can't be fixed)"

@ An LT-property P is a safety property if for all infinite sequences
t e P(AP)“:
if t ¢ P then there is a finite prefix t of t such that for every infinite
sequence t’ with prefix t, t' ¢ P

o tis called a bad prefix; essentially, this finite sequence of steps already
violates the property (whatever happens afterwards)

@ Safety properties are violated in finite time and cannot be repaired

@ Examples

e State properties, for instance, invariants

P={teP(AP)* |Vi>0:opence tyV closed € tj;1}

e "“Money can be withdrawn only after correct PIN has been entered”

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 284

Liveness Properties

@ Intuition

e "“Something good will happen eventually”
e "“If the good thing has not happened yet, it could happen in the future”

@ An LT-property P is a liveness property if every finite sequence
t e P(AP)* is a prefix of an infinite sequence t € P

e A liveness property does not rule out any prefix
e Every finite prefix can be extended to an infinite sequence that is in P

@ Liveness properties are violated in infinite time

@ Examples

e All opened files must be closed eventually

P={teP(AP)*|Vi>0:openct;; = 3n>0: closed € t[j,y)}

e “The program terminates eventually”

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 285

6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

E"HZUI‘/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 286

Linear Temporal Logic

@ Linear Temporal Logic (LTL) allows us to formalize LT-properties of
traces in a convenient and succinct way

@ We will see syntax and semantics for LTL (no inference rules, etc.)

@ Whether or not the traces of a finite transition system satisfy an LTL
formula is decidable (see next section)

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 287

LTL: Basic Operators
@ Syntax

p=p| ¢ | ord | oUd | O

e where p is a proposition from a chosen set of atomic propositions AP # &

@ Intuitive meaning of temporal logic formulas

@O O s

¢ ¢ ¢ v
by O—O—0O—0O—0->

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 2388

LTL: Semantics
@ tF ¢ expresses that trace t € P(AP)% satisfies LTL formula ¢

tEp iff P € o]

tE @ iff nottk o

teEony Iff tE@gand tEY

tEoUy iff thereis a k >0 with t4) = and
t(zj)l=¢fOI’OSj<k

te Q¢ iff te)F o

o where t5 is the suffix of t starting at t;

P
p @—0O—0O—0O—0- “
p true now
o ¢ ¢ v
oy O—O—O—0O—0-> o “until”
¢
o) O—O—O—0O—0r-> “next” ¢

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 289

Derived Operators

@ true, false,v,=, < defined as usual
e Eventually: &¢ = (trueU)

e Always (from now): O¢ = = & —¢

¢
00 (O—(O—=O—0O—-> “eventually’ ¢

A N N
1 O—0—0—-0—-0-> ‘awy ¢

@ Precedence: unary operators always have highest precedence. So,
OS¢ = 1 means (O¢) = 1. We will usually use parentheses to
explicitly clarify other ambiguities.

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 290

Useful Specification Patterns

@ Strong invariant: O

e 1 always holds
o A file is always open or closed: TO(open v closed)
e Safety property

@ Monotone invariant: O(y = 0Ov)

e Once 7 is true, then v is always true

e For example, once information is public, it can never become secret again
(but it may always stay secret): O(public = TOpublic)

e Safety property

@ Establishing an invariant: & O

e Eventually ¥ will always hold
e For example, system initialization starts server: <& O serverRunning
e Liveness property

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 291

Useful Specification Patterns (cont’d)

@ Responsiveness: O(y = &)

e E very time that ¢ holds, ¢ will eventually hold

e For example, all opened files must be closed eventually:
0(open = <closed)

e Liveness property

@ Fairness: OC Y

e 7 holds infinitely often

e For example, producer does not wait infinitely long before entering the
critical section: O < critical

e Liveness property

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 292

Needham-Schroeder Protocol

@ If Alice and Bob have completed their protocol runs then Alice should
believe her partner to be Bob if and only if Bob believes to talk to Alice

O(statusA = 1 A statusB = 1 =
(partnerA = agentB < partnerB = agentA))

@ If Alice completed her protocol run with Bob, the intruder should not
have learned Alice’'s nonce

O(statusA = 1 A partnerA = agentB = knows_nonceA = 0)

@ If Bob completed his protocol run with Alice, the intruder should not
have learned Bob's nonce

O(statusB = 1 A partnerB = agentA = knows_nonceB = 0)

E"HZUI’/Ch Peter Muller—Formal Methods and Functional Programming, SS14 p. 293

