
Formal Methods and
Functional Programming

Operational Semantics

Peter Müller

Chair of Programming Methodology
ETH Zurich



Operational Semantics of Statements

Recall: evaluation of an expression in a state yields a value

x + 2 * y A ∶ Aexp→ State→ Val

Execution of a statement modifies the state

x := 2 * y

Operational semantics describe how the state is modified during the
execution of a statement
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Big-Step and Small-Step Semantics

Big-step semantics describe how the overall results of the executions
are obtained

The system in this course is also called Natural Semantics

Small-step semantics describe how the individual steps of the
computations take place

The system in this course is called Structural Operational Semantics
Alternative approaches exist, e.g., abstract state machines

Peter Müller—Formal Methods and Functional Programming, SS14 p. 70



3. Operational Semantics

3.1 Big-Step Semantics

3.1.1 Natural Semantics of IMP
3.1.2 Proving Properties of the Semantics
3.1.3 Extensions of IMP

3.2 Small-Step Semantics

3.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS14 p. 71



Transition Systems

A transition system is a tuple (Γ,T ,→)

Γ: a set of configurations

T : a set of terminal configurations, T ⊆ Γ

→: a transition relation, → ⊆ Γ × Γ

Operational semantics includes two types of configurations
1. ⟨s, σ⟩, which represents that the statement s is to be executed in state σ
2. σ, which represents a final state (terminal configuration)

The transition relation → describes how executions take place
Big-step transititions are of the form ⟨s, σ⟩ → σ′

Example: ⟨skip, σ⟩ → σ

Γ = {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} ∪ State
T = State
→ ⊆ {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} × State
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Inference Rules

We specify the transition relation by rules of the form

ϕ1 . . . ϕn
(Name)∗

ψ
∗(optional: side-condition)

where ϕ1, . . . , ϕn and ψ are transitions

Meaning of the rule

If ϕ1, . . . , ϕn are transitions
(and side-condition is true)

then ψ is a transition

Terminology

ϕ1, . . . , ϕn are called the premises of the rule
ψ is called the conclusion of the rule
A rule without premises is sometimes called an axiom rule
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Big-Step Semantics of IMP

skip does not modify the state

(SkipNS)
⟨skip, σ⟩ → σ

x := e assigns the value of e to variable x

(AssNS)
⟨x := e, σ⟩ → σ[x ↦ A[[e]]σ]

Sequential composition s;s ′

First, s is executed in state σ, leading to σ′

Then s ′ is executed in state σ′, leading to σ′′

⟨s, σ⟩ → σ′ ⟨s ′, σ′⟩ → σ′′

(SeqNS)
⟨s;s ′, σ⟩ → σ′′
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Big-Step Semantics of IMP (cont’d)

Conditional statement if b then s else s ′ end
If b holds, s is executed
If b does not hold, s ′ is executed

⟨s, σ⟩ → σ′

(IfTNS)
⟨if b then s else s ′ end, σ⟩ → σ′

if B[[b]]σ = tt

⟨s ′, σ⟩ → σ′

(IfFNS)
⟨if b then s else s ′ end, σ⟩ → σ′

if B[[b]]σ = ff
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Big-Step Semantics of IMP (cont’d)

Loop statement while b do s end

If b holds, s is executed once, leading to state σ′

Then the whole while-statement is executed again in σ′

⟨s, σ⟩ → σ′ ⟨while b do s end, σ′⟩ → σ′′

(WhTNS)
⟨while b do s end, σ⟩ → σ′′

if B[[b]]σ = tt

If b does not hold, the while-statement does not modify the state

(WhFNS)
⟨while b do s end, σ⟩ → σ

if B[[b]]σ = ff
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Rule Schemes and Instantiations
Inference rule definitions are actually rule schemes

Meta-variables in rule definitions are placeholders for statements, states,
etc.

A rule scheme describes infinitely many rule instances

A rule is instantiated when all meta-variables are replaced with
syntactic elements

By convention, we write meta-variables in rule schemes with underlines

Assignment rule scheme

(AssNS)
⟨x := e, σ⟩ → σ[x ↦ A[[e]]σ]

Assignment rule instance

(AssNS)
⟨v := v+1, σzero⟩ → σzero[v↦ 1]

Peter Müller—Formal Methods and Functional Programming, SS14 p. 77



Derivation Trees

Rule instances can be combined to derive a transition ⟨s, σ⟩ → σ′

The result is a derivation tree T

The root of T is ⟨s, σ⟩ → σ′, written as root(T ) = ⟨s, σ⟩ → σ′

The leaves of T are axiom rule instances
The internal nodes of T are conclusions of rule instances and have the
corresponding premises as immediate children
The side-conditions of all instantiated rules must be satisfied

The transition system permits a transition ⟨s, σ⟩ → σ′, written as
⊢ ⟨s, σ⟩ → σ′, if and only if there exists a finite derivation tree ending in
⟨s, σ⟩ → σ′

⊢ ⟨s, σ⟩ → σ′ ⇔ ∃T .root(T ) = ⟨s, σ⟩ → σ′

Peter Müller—Formal Methods and Functional Programming, SS14 p. 78



Derivations: Example

What is the result of executing statement

(z:=x; x:=y); y:=z

in state σzero[x↦ 5][y↦ 7][z↦ 0] (abbreviated by [5,7,0])?

(AssNS )
⟨z:=x, [5, 7, 0]⟩ → [5, 7, 5]

(AssNS )
⟨x:=y, [5, 7, 5]⟩ → [7, 7, 5]

(SeqNS )
⟨z:=x; x:=y, [5, 7, 0]⟩ → [7, 7, 5]

(AssNS )
⟨y:=z, [7, 7, 5]⟩ → [7, 5, 5]

(SeqNS )
⟨(z:=x; x:=y); y:=z, [5, 7, 0]⟩ → [7, 5, 5]

In the above derivation, we assume some properties of state updates
(such as σ[x ↦ v1][y ↦ v2] = σ[y ↦ v2][x ↦ v1] if x /≡ y), which will
be proved in the exercises

Peter Müller—Formal Methods and Functional Programming, SS14 p. 79



Termination

For an IMP statement s we define termination in the context of
big-step semantics as follows

The execution of a statement s in state σ

terminates successfully iff there exists a state σ′ such that ⊢ ⟨s, σ⟩ → σ′

fails to terminate iff there is no state σ′ such that ⊢ ⟨s, σ⟩ → σ′

For example, while true do skip end fails to terminate

Peter Müller—Formal Methods and Functional Programming, SS14 p. 80



3. Operational Semantics

3.1 Big-Step Semantics

3.1.1 Natural Semantics of IMP
3.1.2 Proving Properties of the Semantics
3.1.3 Extensions of IMP

3.2 Small-Step Semantics

3.3 Equivalence
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Semantic Equivalence

Definition

Two statements s1 and s2 are semantically equivalent
(written s1 ≃ s2) if:

∀σ,σ′. ( ⊢ ⟨s1, σ⟩ → σ′ ⇔ ⊢ ⟨s2, σ⟩ → σ′ )

Examples

while false do s end ≃ skip

while b do s end ≃

if b then s; while b do s end end

Peter Müller—Formal Methods and Functional Programming, SS14 p. 82



Unfolding Loops in C, C++, and Java

int i = 0;
while(i < 2 ) {

while(i < 1)
if(i == 0) break;

i = i + 1;
}

printf("i = %d", i);

i = 2

int i = 0;
while(i < 2 ) {

if(i < 1) {
if(i == 0) break;
while(i < 1)
if(i == 0) break;

}
i = i + 1;

}

printf("i = %d", i);

i = 0

Equivalence does not hold in these languages
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Unfolding Loops in IMP

We prove the equivalence in the big-step semantics for IMP

∀b, s.( while b do s end ≃

if b then s; while b do s end end )

∀b, s, σ, σ′.( ⊢ ⟨while b do s end, σ⟩ → σ′⇔
⊢ ⟨if b then s; while b do s end end, σ⟩ → σ′)

Proof idea

Prove the equivalence by showing implication in both directions

In each direction, consider the derivation tree for one transition

Show that there is a derivation tree for the other transition

We show only the ⇒ direction of the proof here (⇐ in exercises)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 84



Proof (“⇒” direction only)

Let b, s, σ, σ′ be arbitrary.

We assume ⊢ ⟨while b do s end, σ⟩ → σ′. That is, there is some
derivation tree T such that root(T ) = ⟨while b do s end, σ⟩ → σ′

The last rule application in T must be one of the (two) rules for while

(Case: WhTNS is the last rule applied) i.e., T is of the form:

⟨s, σ⟩ → σ′′ ⟨while b do s end, σ′′⟩ → σ′

(WhTNS)
⟨while b do s end, σ⟩ → σ′

Thus, we know that (for some σ′′):

1. There is a derivation tree T1 with root(T1) = ⟨s, σ⟩ → σ′′

2. There is a derivation tree T2 with
root(T2) = ⟨while b do s end, σ′′⟩ → σ′

3. B[[b]]σ = tt (from the side-condition)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 85



Proof: Case “⇒” (cont’d)

Using T1 and T2, we can construct the derivation tree

A
A
A

�
�
�

T1

⟨s, σ⟩ → σ′′

A
A
A

�
�
�

T2

⟨while b do s end, σ′′⟩ → σ′

(SeqNS)

⟨s;while b do s end, σ⟩ → σ′

Since B[[b]]σ = tt we can use the rule IfTNS to obtain a derivation for
the “unfolded” loop, as required:

A
A
A

�
�
�

T1

⟨s, σ⟩ → σ′′

A
A
A

�
�
�

T2

⟨while b do s end, σ′′⟩ → σ′

(SeqNS)

⟨s;while b do s end, σ⟩ → σ′

(IfTNS)

⟨if b then s;while b do s end else skip end, σ⟩ → σ′
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Proof: Case “⇒” (cont’d)

(Case: WhFNS is the last rule applied in T ) i.e., T is of the form:

(WhFNS)
⟨while b do s end, σ⟩ → σ

Therefore, we know that

1. σ = σ′

2. B[[b]]σ = ff

We can construct the derivation tree

(SkipNS)

⟨skip, σ⟩ → σ′

(IfFNS)

⟨if b then s;while b do s end else skip end, σ⟩ → σ′

Thus, we have a derivation of
⟨if b then s;while b do s end else skip end, σ⟩ → σ′, as required

Peter Müller—Formal Methods and Functional Programming, SS14 p. 87



Deterministic Semantics

Lemma: The big-step semantics of IMP is deterministic

We prove

∀s, σ, σ′, σ′′.( ⊢ ⟨s, σ⟩ → σ′ ∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′ )

Peter Müller—Formal Methods and Functional Programming, SS14 p. 88



Proof Attempt: Structural Induction

Reminder: abstract syntax of statements

data Stm = Skip

| Assign String Aexp

| Seq Stm Stm

| If Bexp Stm Stm

| While Bexp Stm

Structural induction for statements (for x ,e,b,s,s1,s2 not free in Γ):

Γ ⊢ P(skip) Γ ⊢ P(x := e)
Γ,P(s1),P(s2) ⊢ P(s1;s2)

Γ,P(s1),P(s2) ⊢ P(if b then s1 else s2 end)

Γ,P(s) ⊢ P(while b do s end)

Γ ⊢ ∀s ∈ Stm.P(s)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 89



Proof Attempt: Structural Induction (2)

Define P(s) ≡

∀σ,σ′, σ′′.( ⊢ ⟨s, σ⟩ → σ′ ∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′ )

(Case: s ≡ skip)

Let σ,σ′,σ′′ be arbitrary
We assume ⊢ ⟨s, σ⟩ → σ′ and ⊢ ⟨s, σ⟩ → σ′′ and seek to prove that
σ′ = σ′′

Our assumption tells us that there exists a derivation tree for
⟨skip, σ⟩ → σ′. The only tree with this consequence is simply an
instantiation of the (SkipNS) rule. Thus, we must have σ = σ′

Analogously, from ⊢ ⟨skip, σ⟩ → σ′′, we can deduce σ = σ′′

(Case: s ≡ x:=e)

Analogously to the previous case.
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Proof Attempt: Structural Induction (3)

(Case: s ≡ while b do s ′ end)

Let σ,σ′,σ′′ be arbitrary
We assume there is a derivation tree for ⟨while b do s ′ end, σ⟩ → σ′

There are two last rules that could have been applied in this derivation
In the case for WhT, we conclude that (for some σ1) we have
⊢ ⟨s ′, σ⟩ → σ1 and ⊢ ⟨while b do s ′ end, σ1⟩ → σ′

Analogously, we derive from ⊢ ⟨while b do s ′ end, σ⟩ → σ′′ that
⊢ ⟨s ′, σ⟩ → σ2 and ⊢ ⟨while b do s ′ end, σ2⟩ → σ′′

s ′ is a proper sub-statement of s. Therefore, we can apply the induction
hypothesis (P(s ′)), which allows us to conclude from ⊢ ⟨s ′, σ⟩ → σ1 and
⊢ ⟨s ′, σ⟩ → σ2 that σ1 = σ2
It remains to show that ⊢ ⟨while b do s ′ end, σ1⟩ → σ′ and
⊢ ⟨while b do s ′ end, σ1⟩ → σ′′ imply σ′ = σ′′

But while b do s ′ end is obviously not a proper sub-statement of s!

So we cannot apply the induction hypothesis

The proof is stuck; our goal even seems similar to the original one

Structural induction does not work since the transition relation is not
defined inductively over the structure of the statements

Peter Müller—Formal Methods and Functional Programming, SS14 p. 91
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Induction on Derivation Trees

New proof technique: induction on the shape of derivation trees
To prove a property P(T ) for all derivation trees T , prove that P(T )

holds for an arbitrary derivation tree T under the assumption (I.H.)
that P(T ′

) holds for all sub-trees T ′ of T .

Induction on derivation trees is a special case of well-founded
(Noetherian) induction

Define T ′
⊏ T (where T ,T ′ are derivation trees) to mean that T ′ is a

proper sub-tree of T
⊏ is a well-founded ordering, since derivation trees are finite
We call T ′ a sub-derivation of T if T ′

⊏ T

Hint: proofs by induction on the shape of derivation trees typically
proceed by case distinction on the rule applied at the root of the
arbitrary derivation tree T . This provides us more information about
the structure of the derivation; in particular, it may tell us about
sub-derivations, to which our induction hypothesis applies.

Peter Müller—Formal Methods and Functional Programming, SS14 p. 92
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New Proof Attempt:
Induction on Shape of Derivation Tree

Recall that we want to prove:

∀s, σ, σ′, σ′′. ⊢ ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′

This can be written more explicitly (using ⊢ definition) as:

∀s, σ, σ′, σ′′.(∃T .root(T ) = ⟨s, σ⟩ → σ′)∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′

This is logically equivalent to:

∀T .∀s, σ, σ′, σ′′.(root(T ) = ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′)

Thus, induction can be applied

We define:

P(T ) ≡ (∀s, σ, σ′, σ′′.root(T ) = ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′)

and prove ∀T .P(T ) by induction on the shape of the derivation T

Peter Müller—Formal Methods and Functional Programming, SS14 p. 93
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∀s, σ, σ′, σ′′.(∃T .root(T ) = ⟨s, σ⟩ → σ′)∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′

This is logically equivalent to:

∀T .∀s, σ, σ′, σ′′.(root(T ) = ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′)

Thus, induction can be applied

We define:

P(T ) ≡ (∀s, σ, σ′, σ′′.root(T ) = ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′)

and prove ∀T .P(T ) by induction on the shape of the derivation T
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New Proof Attempt:
Induction on Shape of Derivation Tree (2)

P(T ) ≡ (∀s, σ, σ′, σ′′.root(T ) = ⟨s, σ⟩ → σ′∧ ⊢ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′)

Let T be an arbitrary derivation tree, and let s,σ,σ′,σ′′ be arbitrary

We assume root(T ) = ⟨s, σ⟩ → σ′ and ⊢ ⟨s, σ⟩ → σ′′

We now need to prove that σ′ = σ′′

We perform a case distinction on the last rule applied in T ; this yields
seven different cases
(one for each of the seven rules of the big-step semantics)
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New Proof Attempt:
Induction on Shape of Derivation Tree (3)

(Case SkipNS): From the form of the rule, we know:

s = skip
σ′ = σ

Therefore, the derivation of ⟨s, σ⟩ → σ′′ is actually a derivation of
⟨skip, σ⟩ → σ′′. The last rule applied in this derivation must also have
been the SkipNS rule, from which we obtain σ′′ = σ

(Case AssNS): From the form of the rule, we know:

s = x := e for some x and e
σ′ = σ[x ↦ A[[e]]σ]

Therefore, the derivation of ⟨s, σ⟩ → σ′′ is actually a derivation of
⟨x := e, σ⟩ → σ′′. The last rule applied in this derivation must also
have been the AssNS rule, from which we obtain σ′′ = σ[x ↦ A[[e]]σ]

(Case WhFNS): Analogously
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New Proof Attempt:
Induction on Shape of Derivation Tree (4)

(Case SeqNS): From the form of the rule, we know:

s = s1;s2 for some s1 and s2
⊢ ⟨s1, σ⟩ → σ0 and ⊢ ⟨s2, σ0⟩ → σ′, for some state σ0
(where these are sub-derivations of T )

Analogously to the previous cases, we can conclude from ⊢ ⟨s, σ⟩ → σ′′

that the same last rule must be applied, and so ⊢ ⟨s1, σ⟩ → σ1 and
⊢ ⟨s2, σ1⟩ → σ′′ for some state σ1

The derivation tree for ⟨s1, σ⟩ → σ0 is a proper sub-tree of T .
Therefore, we can apply the induction hypothesis to ⊢ ⟨s1, σ⟩ → σ0
(with ⊢ ⟨s1, σ⟩ → σ1) to obtain σ0 = σ1. By this equality, we conclude
⊢ ⟨s2, σ0⟩ → σ′′

Analogously, we can apply the induction hypothesis to ⊢ ⟨s2, σ0⟩ → σ′

(with ⊢ ⟨s2, σ0⟩ → σ′′) to obtain σ′ = σ′′
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New Proof Attempt:
Induction on Shape of Derivation Tree (5)

(Case IfTNS): From the form of the rule, we know:

s = if b then s1 else s2 end for some b, s1, and s2
B[[b]]σ = tt
There is a derivation tree for ⟨s1, σ⟩ → σ′ (and it is a subderivation of T )

Therefore, the last rule applied in the derivation tree for ⟨s, σ⟩ → σ′′

must also have been the IfTNS rule

Consequently, we also have ⊢ ⟨s1, σ⟩ → σ′′

Since the derivation tree for ⟨s1, σ⟩ → σ′ is a proper sub-derivation of
T , we can apply the induction hypothesis to this subderivation (with
⊢ ⟨s1, σ⟩ → σ′′) to obtain σ′ = σ′′.

(Case IfFNS): Analogously
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New Proof Attempt:
Induction on Shape of Derivation Tree (6)

(Case WhTNS): From the form of the rule, we know:

s = while b do s ′ end for some b and s ′

B[[b]]σ = tt
There are sub-derivations of T for ⟨s ′, σ⟩ → σ0 and
⟨while b do s ′ end, σ0⟩ → σ′, for some state σ0

Therefore, the last rule applied in the derivation tree for ⟨s, σ⟩ → σ′′ must also
have been the WhTNS rule Consequently, we know that ⊢ ⟨s ′, σ⟩ → σ1 and
⊢ ⟨while b do s ′ end, σ1⟩ → σ′′, for some state σ1

The derivation tree for ⟨s ′, σ⟩ → σ0 is a proper sub-derivation of the derivation
T . Therefore, we can apply the induction hypothesis to this sub-derivation
(with ⊢ ⟨s ′, σ⟩ → σ1) to obtain σ0 = σ1. By this equality, we conclude that
⊢ ⟨while b do s ′ end, σ0⟩ → σ′′

Analogously, we can apply the induction hypothesis to
⟨while b do s ′ end, σ0⟩ → σ′ (with ⊢ ⟨while b do s ′ end, σ0⟩ → σ′′) to
obtain σ′ = σ′′
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3. Operational Semantics

3.1 Big-Step Semantics

3.1.1 Natural Semantics of IMP
3.1.2 Proving Properties of the Semantics
3.1.3 Extensions of IMP

3.2 Small-Step Semantics

3.3 Equivalence
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Extensions of IMP

We examine several language extensions for IMP

For each, we then consider appropriate big-step semantics rules

Language extensions explored here:

Local variables / scopes

Procedure declarations / calls

Abrupt termination (“abort”)

Non-deterministic choice

Parallel composition (attempt)

More in the exercises

We will compare other semantics for these extensions later in the course

Note: these extensions are not part of the core IMP language

In particular, when we speak of “IMP”, we still mean the language
without extensions, unless we mention extensions explicitly
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Local Variable Declarations

Idea: statement var x:=e in s end declares a local variable that is
visible in the sub-statement of the declaration, s

Semantics
Expression e is evaluated in the initial state
Statement s is executed in a state in which x has the value of e
After the execution of s, the initial value of x is restored

Big-step semantics rule:

⟨s, σ[x ↦ A[[e]]σ]⟩ → σ′

(LocNS)
⟨var x:=e in s end, σ⟩ → σ′[x ↦ σ(x)]
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Procedure Declarations and Calls

procedure p(x1, . . . , xn; y1, . . . , ym) begin s end

Formal parameters
x1, . . . , xn are value parameters

y1, . . . , ym are variable parameters; they can be used to assign values
back to the procedure caller.

Procedures can be declared (syntax as above) as part of a source
program, and called (in a statement). We apply the following
restrictions:

In a procedure declaration, the formal parameter names
x1, . . . , xn, y1, . . . , ym must be distinct from each other

x1, . . . , xn and y1, . . . , ym are the only free variables in s
(local variables declared in s are permitted since they are bound)

For procedure calls p(e1, . . . , en; z1, . . . , zm), the actual variable
parameters z1, . . . , zm have to be distinct from each other (no aliasing)
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Procedures: Example

procedure fac(n; res)
begin

if n <= 1 then
res := 1

else
fac( n-1; res );
res := n * res

end
end
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Natural Semantics of Procedure Calls

Procedure call p(e1, . . . , en;z1, . . . , zm) in state σ, with declaration
procedure p(x1, . . . , xn;y1, . . . , ym) begin s end

The value arguments Ð⇀ei = e1, . . . , en are evaluated in the initial state σ to
values A[[e1]]σ, . . . ,A[[en]]σ

The body of the procedure, s, is executed in a state, in which the value
parameters Ð⇀xi = x1, . . . , xn are initialized with the values
A[[e1]]σ, . . . ,A[[en]]σ, and the variable parameters Ð⇀yj = y1, . . . , ym are

initialized with the values of Ð⇀zj = z1, . . . , zm in the initial state

After termination of p, execution continues in the initial state with the
values of Ð⇀yj assigned to the variables Ð⇀zj

⟨s, σzero[
Ð⇀xi ↦

ÐÐÐÐÐ⇀

A[[ei ]]σ][
Ð⇀yj ↦

ÐÐ⇀

σ(zj)]⟩ → σ′

(CallNS)

⟨p(Ð⇀ei ;
Ð⇀zj ), σ⟩ → σ[Ð⇀zj ↦

ÐÐÐ⇀

σ′(yj)]

The notation σ[Ð⇀xi ↦
Ð⇀vi ] abbreviates σ[x1 ↦ v1][x2 ↦ v2] . . . [xn ↦ vn]
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Abort

Idea: statement abort stops the execution of the complete program

Aborting is modeled in the operational semantics by ensuring that the
configurations ⟨abort, σ⟩ are stuck, that is, that there is no state σ′

such that ⟨abort, σ⟩ → σ′

There is no additional rule for abort in the natural semantics
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Abort: Observations

abort and skip are not semantically equivalent since there is a
derivation tree for ⟨skip, σ⟩ → σ, but not for ⟨abort, σ⟩ → σ′

abort and while true do skip end are semantically equivalent!

Big-step semantics cannot distinguish between non-termination and
abnormal termination (being stuck)

Natural semantics is only concerned with programs that terminate
successfully (reach a final state)
Aborting could be modeled by “successful termination” in a special error
configuration
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Non-determinism

Idea: for the statement s s ′ either s or s ′ is non-deterministically
chosen to be executed

The statement

x:=1 (x:=2; x:=x+2)

will result in a state in which x either has the value 1 or 4

Rules

⟨s, σ⟩ → σ′

(ND1NS)
⟨s s ′, σ⟩ → σ′

⟨s ′, σ⟩ → σ′

(ND2NS)
⟨s s ′, σ⟩ → σ′
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Non-determinism: Observations

There are derivation trees for

⟨x:=1 (x:=2; x:=x+2), σ⟩ → σ[x↦ 1] and

⟨x:=1 (x:=2; x:=x+2), σ⟩ → σ[x↦ 4]

There is a derivation tree for
⟨while true do skip end (x:=2; x:=x+2), σ⟩ → σ[x↦ 4]

Because big-step semantics cannot accurately describe non-terminating
computations, if only one non-deterministic branch terminates
successfully, we will only “see” that result

In big-step semantics, non-determinism suppresses non-termination, if
possible
σ[x ↦ 4] is the only possible final state in the above example
In fact, while true do skip end (x:=2; x:=x+2) is semantically
equivalent to (x:=2; x:=x+2) in the big-step semantics

In a sense, the big-step semantics only shows the behavior of “correct”
choice(s). But this means that we miss some possible behaviors
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Termination Revisited

Recall: for an IMP statement s we defined termination in the context
of big-step semantics as follows:

The execution of a statement s in state σ

terminates successfully iff there is a state σ′ such that ⊢ ⟨s, σ⟩ → σ′

fails to terminate iff there is no state σ′ such that ⊢ ⟨s, σ⟩ → σ′

According to these definitions

while true do skip end skip terminates successfully

while true do skip end fails to terminate

abort fails to terminate

but we cannot give a more precise definition with our big-step semantics
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Parallelism

Idea: for the statement s par s ′ both statements s and s ′ are executed,
but execution can be interleaved

The statement

x:=1 par (x:=2; x:=x+2)

could result in a state in which x has the value 4, 1, or 3

Execute x:=1, then x:=2, and then x:=x+2

Execute x:=2, then x:=x+2, and then x:=1

Execute x:=2, then x:=1, and then x:=x+2
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Parallelism: Observations

Attempt to define rules:

⟨s, σ⟩ → σ′ ⟨s ′, σ′⟩ → σ′′

(Par1NS)
⟨s par s ′, σ⟩ → σ′′

⟨s ′, σ⟩ → σ′ ⟨s, σ′⟩ → σ′′

(Par2NS)
⟨s par s ′, σ⟩ → σ′′

But, these rules do not allow interleaving execution!

In big-step semantics rules, the executions expressed by premises are
reasoned about as atomic steps; therefore, we cannot express
interleaving of computations
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Problems with Natural Semantics

Properties of non-terminating programs cannot be expressed

No distinction between aborting (abnormal termination) and
non-termination

Non-determinism suppresses non-termination (when possible)

Parallelism (interleaving) cannot be modeled

Definition of semantic equivalence is coarse (but no reasonable
alternative notions are available)

All sorting programs are equivalent

All non-terminating programs are equivalent
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Reminder: Big-Step and Small-Step Semantics

Big-step semantics describe how the overall results of the executions
are obtained

Natural semantics (now finished!)

Small-step semantics describe how the individual steps of the
computations take place

Structural operational semantics (SOS)
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3. Operational Semantics

3.1 Big-Step Semantics

3.2 Small-Step Semantics

3.2.1 Structural Operational Semantics of IMP
3.2.2 Proving Properties of the Semantics
3.2.3 Extensions of IMP

3.3 Equivalence
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Structural Operational Semantics (SOS)

Small-step semantics focuses attention on the individual steps of an
execution

Execution of assignments

Execution of if-conditions, while-iterations, etc.

Describing small steps of the execution allows one to express the order
of execution of individual steps

Can be used to express interleaving computations

Evaluation order for expressions (not shown in the course)

Always describing the next small step allows one to express properties
of non-terminating programs
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Transitions in SOS

The configurations are the same as for natural semantics (⟨s, σ⟩ or σ)
We use γ as meta-variable for (terminal or non-terminal) configurations

The transition relation →1 can have two forms

⟨s, σ⟩ →1 ⟨s ′, σ′⟩: the execution of s from σ is not completed and the
remaining computation is expressed by the intermediate configuration
⟨s ′, σ′⟩

⟨s, σ⟩ →1 σ
′: the execution of s from σ has terminated and the final

state is σ′

A transition ⟨s, σ⟩ →1 γ describes the first step of the execution of s in
state σ
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Transition System

Γ = {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} ∪ State
T = State
→1 ⊆ {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} × Γ

We say that a non-terminal configuration ⟨s, σ⟩ is stuck if there does
not exist a configuration γ such that ⟨s, σ⟩ →1 γ

Note: terminal configurations (final states) σ are never stuck.

We will again define the transition relation →1 using a derivation
system, and write ⊢ ⟨s, σ⟩ →1 γ to mean that there exists a finite
derivation tree ending in ⟨s, σ⟩ →1 γ

⊢ ⟨s, σ⟩ →1 γ ⇔ ∃T .root(T ) = ⟨s, σ⟩ →1 γ
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SOS of IMP

skip does not modify the state

(SkipSOS)
⟨skip, σ⟩ →1 σ

x := e assigns the value of e to variable x

(AssSOS)
⟨x := e, σ⟩ →1 σ[x ↦ A[[e]]σ]

skip and assignment require only one step to reach a final state

Rules are analogous to natural semantics; recall:

(SkipNS)
⟨skip, σ⟩ → σ

(AssNS)
⟨x := e, σ⟩ → σ[x ↦ A[[e]]σ]
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SOS of IMP: Sequential Composition

Sequential composition s;s ′

First step of executing s;s ′ is the first step of executing s

Either: s executes completely in one step

⟨s, σ⟩ →1 σ
′

(Seq1SOS)
⟨s;s ′, σ⟩ →1 ⟨s ′, σ′⟩

Or: s is not executed completely after one step

⟨s, σ⟩ →1 ⟨s ′′, σ′⟩
(Seq2SOS)

⟨s;s ′, σ⟩ →1 ⟨s ′′;s ′, σ′⟩
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SOS of IMP: Conditional Statement

The first step of executing if b then s1 else s2 end is to determine
the outcome of the test b, and thereby, which branch to select

(IfTSOS)
⟨if b then s else s ′ end, σ⟩ →1 ⟨s, σ⟩

if B[[b]]σ = tt

(IfFSOS)
⟨if b then s else s ′ end, σ⟩ →1 ⟨s ′, σ⟩

if B[[b]]σ = ff

These are the standard rules that we will use for our small-step if

semantics (unless otherwise specified)
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Alternative Rules for Conditional Statement

The first step of executing if b then s1 else s2 end is the first step of
the branch determined by the outcome of the test b

⟨s, σ⟩ →1 σ
′

(IfT1SOS)
⟨if b then s else s ′ end, σ⟩ →1 σ

′
if B[[b]]σ = tt

⟨s, σ⟩ →1 ⟨s ′′, σ′⟩
(IfT2SOS)

⟨if b then s else s ′ end, σ⟩ →1 ⟨s ′′, σ′⟩
if B[[b]]σ = tt

and two analogous rules for the case B[[b]]σ = ff

The choice between the two rules of the previous slide, and the (four)
alternative rules here results in equivalent semantics for IMP

But the choice can make a difference for languages with parallel
execution (different granularity for interleaving)
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SOS of IMP: While Statement

The first step is to unroll the loop

(WhileSOS)
⟨while b do s end, σ⟩ →1

⟨if b then s;while b do s end else skip end, σ⟩

Recall that while b do s end and
if b then s;while b do s end else skip end are semantically
equivalent in the big-step semantics

This is the standard rule, that we will use for our small-step while

semantics (unless otherwise specified)
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Alternative Rules for While Statement

The first step is to decide the outcome of the test and thereby whether
to unroll the body of the loop or to terminate

(WhTSOS)
∗

⟨while b do s end, σ⟩ →1 ⟨s;while b do s end, σ⟩

∗if B[[b]]σ = tt

(WhFSOS)
⟨while b do s end, σ⟩ →1 σ

if B[[b]]σ = ff

Or combine with the alternative semantics of the conditional statement

Alternatives are equivalent for IMP (without extensions)
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Multi-Step Executions
Our binary relation ⟨s, σ⟩ →1 γ is defined by the derivation rules shown

A transition ⟨s, σ⟩ →1 γ belongs to our transition relation iff ⊢ ⟨s, σ⟩ →1 γ

We now use this to define a relation, k-step execution, written γ →k
1 γ

′

Intuitive meaning: there is an execution from γ to γ′ in exactly k steps
k is a natural number (no negative-length executions)

We define the relation γ →k
1 γ

′ (inductively over k) as follows:

γ →0
1 γ

′ if and only if γ = γ′

For k > 0, γ →k
1 γ

′ if and only if there exists γ′′ such that both
⊢ γ →1 γ

′′ and γ′′ →k−1
1 γ′

Note: γ →1
1 γ

′ if and only if ⊢ γ →1 γ
′ (apply definition for k = 1)

Note: γ →k1+k2
1 γ′ if and only if ∃γ′′. γ →k1

1 γ′′ ∧ γ′′ →k2
1 γ′ (proof?)

We also define γ →∗

1 γ
′ to mean ∃k . γ →k

1 γ
′

γ →∗

1 γ
′ means there is an execution from γ to γ′ in some finite number

of steps
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Intuitive meaning: there is an execution from γ to γ′ in exactly k steps
k is a natural number (no negative-length executions)

We define the relation γ →k
1 γ

′ (inductively over k) as follows:

γ →0
1 γ

′ if and only if γ = γ′

For k > 0, γ →k
1 γ

′ if and only if there exists γ′′ such that both
⊢ γ →1 γ

′′ and γ′′ →k−1
1 γ′

Note: γ →1
1 γ

′ if and only if ⊢ γ →1 γ
′ (apply definition for k = 1)

Note: γ →k1+k2
1 γ′ if and only if ∃γ′′. γ →k1

1 γ′′ ∧ γ′′ →k2
1 γ′ (proof?)

We also define γ →∗

1 γ
′ to mean ∃k . γ →k

1 γ
′

γ →∗

1 γ
′ means there is an execution from γ to γ′ in some finite number

of steps
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Derivation Sequences

A derivation sequence is a (non-empty, finite or infinite) sequence of
configurations γ0, γ1, γ2, . . . , for which:

γi →
1
1 γi+1 for each 0 ≤ i such that i + 1 is in the range of the sequence

if the derivation sequence is finite then the last configuration in the
sequence is either a terminal configuration or a stuck configuration

Intuitively, a derivation sequence shows a sequence of transitions which
cannot be extended with further transitions

Note: if γ0, γ1, γ2, . . . is a derivation sequence, then, for all i in the
range of the sequence, γ →i

1 γi (proof?)

The length of a derivation sequence γ0, γ1, . . . is the number of
transitions γi →

1
1 γi+1 (with i and i + 1 in the range of the sequence)

A finite derivation sequence γ0, γ1, . . . , γk has length k

Derivation sequences of length k correspond to k-step executions
γ0 →

k
1 γk in which the final configuration γk is either stuck or terminal

Peter Müller—Formal Methods and Functional Programming, SS14 p. 125



Derivation Sequences

A derivation sequence is a (non-empty, finite or infinite) sequence of
configurations γ0, γ1, γ2, . . . , for which:

γi →
1
1 γi+1 for each 0 ≤ i such that i + 1 is in the range of the sequence

if the derivation sequence is finite then the last configuration in the
sequence is either a terminal configuration or a stuck configuration

Intuitively, a derivation sequence shows a sequence of transitions which
cannot be extended with further transitions

Note: if γ0, γ1, γ2, . . . is a derivation sequence, then, for all i in the
range of the sequence, γ →i

1 γi (proof?)

The length of a derivation sequence γ0, γ1, . . . is the number of
transitions γi →

1
1 γi+1 (with i and i + 1 in the range of the sequence)

A finite derivation sequence γ0, γ1, . . . , γk has length k

Derivation sequences of length k correspond to k-step executions
γ0 →

k
1 γk in which the final configuration γk is either stuck or terminal

Peter Müller—Formal Methods and Functional Programming, SS14 p. 125



Derivation Sequences

A derivation sequence is a (non-empty, finite or infinite) sequence of
configurations γ0, γ1, γ2, . . . , for which:

γi →
1
1 γi+1 for each 0 ≤ i such that i + 1 is in the range of the sequence

if the derivation sequence is finite then the last configuration in the
sequence is either a terminal configuration or a stuck configuration

Intuitively, a derivation sequence shows a sequence of transitions which
cannot be extended with further transitions

Note: if γ0, γ1, γ2, . . . is a derivation sequence, then, for all i in the
range of the sequence, γ →i

1 γi (proof?)

The length of a derivation sequence γ0, γ1, . . . is the number of
transitions γi →

1
1 γi+1 (with i and i + 1 in the range of the sequence)

A finite derivation sequence γ0, γ1, . . . , γk has length k

Derivation sequences of length k correspond to k-step executions
γ0 →

k
1 γk in which the final configuration γk is either stuck or terminal

Peter Müller—Formal Methods and Functional Programming, SS14 p. 125



Derivation Sequences: Example

What is the final state if statement

(z:=x; x:=y); y:=z

is executed in state σzero[x↦ 5][y↦ 7][z↦ 0]?

⟨(z:=x; x:=y); y:=z, σzero[x↦ 5][y↦ 7][z↦ 0]⟩
→

1
1 ⟨x:=y; y:=z, σzero[x↦ 5][y↦ 7][z↦ 0][z↦ 5]⟩

→
1
1 ⟨y:=z, σzero[x↦ 5][y↦ 7][z↦ 0][z↦ 5][x↦ 7]⟩

→
1
1 σzero[x↦ 5][y↦ 7][z↦ 0][z↦ 5][x↦ 7][y↦ 5]

= σzero[x↦ 7][y↦ 5][z↦ 5]

The three transitions can be justified by appropriate derivation trees

The last equality is justified by properties of state updates (proved on
Exercise Sheet 9)

The first four configurations above make up a derivation sequence (of
length 3)
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Derivation Trees

Derivation trees explain why single-step transitions take place

For the first step

⟨(z:=x; x:=y); y:=z, σ⟩ →1
1 ⟨x:=y; y:=z, σ[z↦ 5]⟩

where σ = σzero[x↦ 5][y↦ 7][z↦ 0]

the derivation tree is

(AssSOS)

⟨z:=x, σ⟩ →1 σ[z↦ 5]
(Seq1SOS)

⟨z:=x; x:=y, σ⟩ →1 ⟨x:=y, σ[z↦ 5]⟩
(Seq2SOS)

⟨(z:=x; x:=y); y:=z, σ⟩ →1 ⟨x:=y; y:=z, σ[z↦ 5]⟩

Note: if our statement were instead z:=x; (x:=y; y:=z), the
corresponding first transition would have a simpler derivation tree with
only two rule applications (AssSOS and Seq1SOS)
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Derivation Sequences and Trees

Natural (big-step) semantics
The execution of a statement is described by one big transition
The big transition can be seen as trivial derivation sequence with exactly
one transition
The derivation tree explains why this transition takes place

Structural operational (small-step) semantics
The execution of a statement is described by one or more transitions
Derivation sequences explain how a statement is executed
Derivation trees justify each individual step in a derivation sequence

Peter Müller—Formal Methods and Functional Programming, SS14 p. 128



Termination

The execution of a statement s in state σ

terminates iff there is a finite derivation sequence starting with ⟨s, σ⟩

runs forever iff there is an infinite derivation sequence starting with ⟨s, σ⟩

The execution of a statement s in state σ

terminates successfully iff ∃σ′. ⟨s, σ⟩ →∗

1 σ
′

Note: in IMP, an execution terminates successfully iff it terminates; there
are no stuck configurations for IMP (proof?)

Note: these are properties of configurations and not statements alone.
while x # 0 do x := x - 1 end terminates successfully in some
states, and runs forever in others

We will see later that adding non-determinism to the language can
result in statements that both terminate and run forever in a state σ
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3. Operational Semantics

3.1 Big-Step Semantics

3.2 Small-Step Semantics

3.2.1 Structural Operational Semantics of IMP
3.2.2 Proving Properties of the Semantics
3.2.3 Extensions of IMP

3.3 Equivalence
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Proving Properties of Derivation Sequences

A finite derivation sequence, has a length which is a natural number.

Recall: a finite derivation sequence γ0, γ1, . . . , γn has length n

When reasoning about finite derivation sequences, we usually use
strong induction on the length of a derivation sequence

More generally, we reason about a multi-step execution γ →k
1 γ

′ by
strong induction on the number of steps k

Define P(k) ≡ “for all executions of length k , our property holds”.

Prove P(k) for arbitrary k, with the induction hypothesis ∀k ′ < k . P(k ′)
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Using Induction on Multi-Step Executions

After setting up the induction, the proof often proceeds by:

Dealing with the case of a 0-step execution specially (if applicable)

Dealing with all other cases by “splitting off” the first execution step

For this first step, we often get more information by considering either:

the structure of the statement in the initial configuration, or

the derivation tree validating the first step of the execution

The remaining steps (after the first) form an execution with fewer
steps, to which our induction hypothesis applies

Example: we will prove the Lemma

∀k , s1, s2, σ, σ
′′. ⟨s1;s2, σ⟩ →

k
1 σ

′′
⇒

∃σ′, k1, k2. ⟨s1, σ⟩ →
k1
1 σ′ ∧ ⟨s2, σ

′
⟩ →

k2
1 σ′′ ∧ k1 + k2 = k
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Proof

We define

P(k) ≡ ∀s1, s2, σ, σ
′′. ⟨s1;s2, σ⟩ →

k
1 σ

′′
⇒

∃σ′, k1, k2. ⟨s1, σ⟩ →
k1
1 σ′∧ ⟨s2, σ

′
⟩ →

k2
1 σ′′ ∧ k1 + k2 = k

We prove ∀k .P(k) by strong induction on k . Thus, we need to show
P(k) for arbitrary k , and get the induction hypothesis ∀m < k .P(m)

In our desired conclusion P(k), let s1, s2, σ, σ
′′ be arbitrary

To prove the desired implication, we assume ⟨s1;s2, σ⟩ →
k
1 σ

′′ and need
to show ∃σ′, k1, k2. ⟨s1, σ⟩ →

k1
1 σ′ ∧ ⟨s2, σ

′
⟩ →

k2
1 σ′′ ∧ k1 + k2 = k

Consider the case k = 0. This immediately gives a contradiction, since,
by the definition of →0

1 we conclude ⟨s1;s2, σ⟩ = σ
′′

Consider the case k > 0. Then the execution ⟨s1;s2, σ⟩ →
k
1 σ

′′ can be
split up as: ⟨s1;s2, σ⟩ →

1
1 γ →

k−1
1 σ′′ for some configuration γ

Peter Müller—Formal Methods and Functional Programming, SS14 p. 133



Proof (cont’d)

⟨s1;s2, σ⟩ →
1
1 γ →

k−1
1 σ′′

Consider the derivation tree justifying the step ⟨s1;s2, σ⟩ →
1
1 γ

There are two possible last rules in this derivation:

Case 1 (rule Seq1SOS - recall:)

⟨s, σ⟩ →1 σ
′

(Seq1SOS)
⟨s;s ′, σ⟩ →1 ⟨s ′, σ′⟩

Case 2: (rule Seq2SOS - recall:)

⟨s, σ⟩ →1 ⟨s ′′, σ′⟩
(Seq2SOS)

⟨s;s ′, σ⟩ →1 ⟨s ′′;s ′, σ′⟩
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Proof: Case 1

From the form of the rule Seq1SOS we obtain, for some state σ1:
⊢ ⟨s1, σ⟩ →1 σ1 and γ = ⟨s2, σ1⟩.

Thus, we have both ⟨s1, σ⟩ →
1
1 σ1 and ⟨s2, σ1⟩ →

k−1
1 σ′′

Choosing σ′ = σ1 and k1 = 1 and k2 = k − 1, we obtain the required
result: ∃σ′, k1, k2. ⟨s1, σ⟩ →

k1
1 σ′ ∧ ⟨s2, σ

′
⟩ →

k2
1 σ′′ ∧ k1 + k2 = k
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Proof: Case 2

From the form of the rule Seq2SOS we obtain, for some s ′1 and σ1:
⊢ ⟨s1, σ⟩ →1 ⟨s ′1, σ1⟩ and γ = ⟨s ′1;s2, σ1⟩

Thus, we have ⟨s1, σ⟩ →
1
1 ⟨s ′1, σ1⟩

From γ →k−1
1 σ′′ we also get ⟨s ′1;s2, σ1⟩ →

k−1
1 σ′′

By applying the induction hypothesis (since k − 1 < k), we get
∃σ2, l1, l2 ∶ ⟨s

′

1, σ1⟩ →
l1
1 σ2 ∧ ⟨s2, σ2⟩ →

l2
1 σ

′′
∧ l1 + l2 = k − 1

From

⟨s1, σ⟩ →
1
1 ⟨s ′1, σ1⟩ and ⟨s ′1, σ1⟩ →

l1
1 σ2

we get ⟨s1, σ⟩ →
l1+1
1 σ2

This, by taking σ′ = σ2, k1 = (l1 + 1) and k2 = l2, we obtain the required
result: ∃σ′, k1, k2. ⟨s1, σ⟩ →

k1
1 σ′ ∧ ⟨s2, σ

′
⟩ →

k2
1 σ′′ ∧ k1 + k2 = k
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Semantic Equivalence

Under the small-step semantics, two statements s1 and s2 are
semantically equivalent if for all states σ, both:

for all stuck or terminal configurations γ, we have
⟨s1, σ⟩ →

∗

1 γ if and only if ⟨s2, σ⟩ →
∗

1 γ, and

there is an infinite derivation sequence starting in ⟨s1, σ⟩
if and only if there is one starting in ⟨s2, σ⟩

Note: in the first case, the lengths of the two derivation sequences may
be different

Note: the intermediate configurations making up the derivation
sequences may also be different
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Determinism

Lemma: The small-step semantics of IMP is deterministic.
That is, for all s,σ,γ, and γ′ we have that
⊢ ⟨s, σ⟩ →1 γ ∧ ⊢ ⟨s, σ⟩ →1 γ

′
⇒ γ = γ′

The proof runs by induction on the shape of the derivation tree for the
transition ⟨s, σ⟩ →1 γ

Corollary: There is exactly one derivation sequence starting in
a configuration ⟨s, σ⟩
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3. Operational Semantics

3.1 Big-Step Semantics

3.2 Small-Step Semantics

3.2.1 Structural Operational Semantics of IMP
3.2.2 Proving Properties of the Semantics
3.2.3 Extensions of IMP

3.3 Equivalence
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Local Variable Declarations

Local variable declaration var x:=e in s end

The steps are
1. Assign e to x
2. Execute s (possibly in several steps)
3. Restore the initial value of x

(necessary if x exists in the enclosing scope)

The first small step could be easily defined:

⟨var x:=e in s end, σ⟩ →1 ⟨s, σ[x ↦ A[[e]]σ]⟩

But: when s terminates, how should we restore the initial value of x?

How do we recognize the termination of s?
How do we preserve the original value of x?
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Artificial End Marker

We extend the syntactic category Stm with a restore statement

Stm = . . . | ’restore’ (Var,Val)

Note that the restore statement contains a value, not an expression

The restore statement is used internally by the semantics but must not
occur in source programs.

Now we can use the restore statement to mark the end of the scope of
a local variable and remember its original value:

(LocSOS)

⟨var x:=e in s end, σ⟩ →1 ⟨s;restore (x , σ(x)), σ[x ↦ A[[e]]σ]⟩

(RetSOS)

⟨restore (x , v), σ⟩ →1 σ[x ↦ v]

A more general solution is to model execution stacks
Stacks are useful to handle procedure calls
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Abort Statement

Statement abort stops the execution of the complete program

Aborting is modeled by ensuring that the configurations ⟨abort, σ⟩ are
stuck

There is no additional rule for abort in the structural operational
semantics

abort and skip are not semantically equivalent

⟨abort, σ⟩ is the only derivation sequence for abort starting in σ

⟨skip, σ⟩ →1
1 σ is the only derivation sequence for skip starting in σ

skip terminates successfully in all states, whereas abort terminates in
all states, but not successfully
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Abort: Observations

abort and while true do skip end are not semantically equivalent:

⟨while true do skip end, σ⟩ →1
1

⟨if true then skip;while true do skip end end, σ⟩ →1
1

⟨skip;while true do skip end, σ⟩ →1
1

⟨while true do skip end, σ⟩ →1
1 . . .

In our small-step semantics,

running forever is reflected by infinite derivation sequences

abnormal termination is reflected by finite derivation sequences ending in
a stuck configuration
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Non-determinism

For the statement s s ′ either s or s ′ is non-deterministically chosen to
be executed

The statement

x:=1 (x:=2; x:=x+2)

will result in a state in which x either has the value 1 or 4

Rules

(ND1SOS)
⟨s s ′, σ⟩ →1 ⟨s, σ⟩

(ND2SOS)
⟨s s ′, σ⟩ →1 ⟨s ′, σ⟩
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Non-determinism: Observations

There are two derivation sequences

⟨x:=1 (x:=2; x:=x+2), σ⟩ →∗

1 σ[x↦ 1]

⟨x:=1 (x:=2; x:=x+2), σ⟩ →∗

1 σ[x↦ 4]

There are also two derivation sequences for
⟨while true do skip end (x:=2; x:=x+2), σ⟩

a finite derivation sequence leading to σ[x↦ 4]

an infinite derivation sequence

A small-step semantics can always show the effect of choosing either
branch of a non-deterministic choice

In particular, in the small-step semantics, non-determinism does not
suppress non-termination; we do not lose behaviors
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Parallelism

For the statement s par s ′ both statements s and s ′ are executed, but
execution can be interleaved

⟨s, σ⟩ →1 ⟨s ′′, σ′⟩
(Par1SOS)

⟨s par s ′, σ⟩ →1 ⟨s ′′ par s ′, σ′⟩

⟨s, σ⟩ →1 σ
′

(Par2SOS)
⟨s par s ′, σ⟩ →1 ⟨s ′, σ′⟩

⟨s ′, σ⟩ →1 ⟨s ′′, σ′⟩
(Par3SOS)

⟨s par s ′, σ⟩ →1 ⟨s par s ′′, σ′⟩

⟨s ′, σ⟩ →1 σ
′

(Par4SOS)
⟨s par s ′, σ⟩ →1 ⟨s, σ′⟩
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Example: Interleaving

The statement

x:=1 par (x:=2; x:=x+2)

will result in a state in which x has the value 4, 1, or 3

Execute x:=1, then x:=2, and then x:=x+2

Execute x:=2, then x:=x+2, and then x:=1

Execute x:=2, then x:=1, and then x:=x+2

In a structural operational semantics we can easily express interleaving
of computations
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Example: Derivation Sequences

⟨x:=1 par (x:=2; x:=x+2), σ⟩ →
1
1 ⟨x:=2; x:=x+2, σ[x ↦ 1]⟩

→
1
1 ⟨x:=x+2, σ[x ↦ 2]⟩

→
1
1 σ[x ↦ 4]

⟨x:=1 par (x:=2; x:=x+2), σ⟩ →
1
1 ⟨x:=1 par x:=x+2, σ[x ↦ 2]⟩

→
1
1 ⟨x:=1, σ[x ↦ 4]⟩

→
1
1 σ[x ↦ 1]

⟨x:=1 par (x:=2; x:=x+2), σ⟩ →
1
1 ⟨x:=1 par x:=x+2, σ[x ↦ 2]⟩

→
1
1 ⟨x:=x+2, σ[x ↦ 1]⟩

→
1
1 σ[x ↦ 3]
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Comparison: Summary

Natural Semantics

Local variable declarations and
procedures can be modeled easily

No distinction between aborting
and running forever

Non-determinism suppresses
non-termination (when possible)

Interleaving parallelism cannot be
modeled

Structural Operational Semantics

Local variable declarations (and
procedures) require an explicit
encoding of the original state

Distinction between aborting and
running forever

Non-determinism does not
suppress non-termination

Interleaving parallelism can be
modeled
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3. Operational Semantics

3.1 Big-Step Semantics

3.2 Small-Step Semantics

3.3 Equivalence
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Semantic Functions

The meaning of statements can be expressed as a partial function from
State to State:

SNS ∶ Stm→ (State↪ State)

SNS[[s]]σ = {
σ′ if ⊢ ⟨s, σ⟩ → σ′

undefined otherwise

SSOS ∶ Stm→ (State↪ State)

SSOS[[s]]σ = {
σ′ if ⟨s, σ⟩ →∗

1 σ
′

undefined otherwise

The semantic functions are well-defined because the semantics are
deterministic
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Equivalence Theorem

Theorem: For every statement s of IMP,
SNS[[s]] is defined iff SSOS[[s]] is defined, and

(when defined) SNS[[s]] = SSOS[[s]]

If the execution of s from some state terminates successfully in one of
the semantics then it also terminate successfully in the other, and the
resulting final states will be equal

Note: this also implies that a statement in a state fails to terminate in
the big step semantics if and only if it either gets stuck or runs forever
in the small-step semantics
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Equivalence Lemma 1

Lemma: For every statement s of IMP and states σ and σ′ we
have ⊢ ⟨s, σ⟩ → σ′ ⇒ ⟨s, σ⟩ →∗

1 σ
′

If the execution of s from σ terminates successfully in the big-step
semantics then it will terminate successfully in the same final state in
the small-step semantics

The proof runs by induction on the shape of the derivation tree for
⟨s, σ⟩ → σ′ (see exercises)
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Equivalence Lemma 2

Lemma: For every statement s of IMP, states σ and σ′, and
natural number k we have that ⟨s, σ⟩ →k

1 σ
′
⇒ ⊢ ⟨s, σ⟩ → σ′

If the execution of s from σ terminates successfully in the small-step
semantics then it will terminate successfuly in the same final state in
the big-step semantics

The proof runs by induction on the number of steps k (see exercises)
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Equivalence Theorem: Proof

SNS[[s]]σ = {
σ′ if ⟨s, σ⟩ → σ′ for some σ′

undefined otherwise

SSOS[[s]]σ = {
σ′ if ⟨s, σ⟩ →∗

1 σ
′ for some σ′

undefined otherwise

The combination of the two Equivalence Lemmas shows (for all s, σ, σ′)
that:

If one of SNS[[s]]σ and SSOS[[s]]σ is defined then the other is also
defined
SNS[[s]]σ = σ′ ⇔ SSOS[[s]]σ = σ′

This is sufficient to prove SNS[[s]] = SSOS[[s]]
(i.e., the two are equal as semantic functions)
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Equivalence: Summary

The big-step (natural) and small-step (structural operational) semantics
are equivalent for IMP (when considering complete executions)

Proof of Lemma 1 runs by induction on the shape of the derivation tree

Proof of Lemma 2 runs by induction on the number of execution steps

For extended languages, different formalizations of the equivalence
theorem could be necessary

For non-deterministic languages, above functions are not well-defined
(but we could consider the set of all possible final states)

For properties other than successful termination, different formalisations
of the equivalence theorem and/or semantics could be necessary

Comparing abnormal termination in the two semantics (would require
extending big-step semantics, e.g. with special error states)
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