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Monads: What’s it all about?

• Model various computational features in a uniform way.

E.g. partiality, state, exceptions, non-determinism, I/O, ...

• Idea: separate values from computations producing the values:

f :: a -> b ordinary function, returns value of type b

f :: a -> M b monadic function, returns computation M b

• M is a type constructor satisfying certain properties (monad laws).

By varying M, we can model different notions of computation.

• Every monad supports two basic operations: embedding a value

into a computation and composing computations.

• Explains side effects in a functional context and helps designing

controlled side effects.
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Motivation: partial functions
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Example: partial functions

• Consider integer division:

10 ‘div‘ 2 = 5 -- OK
10 ‘div‘ 0 = .. -- exception
*** Exception: divide by zero

• This partiality can be captured with the Maybe type:

data Maybe a = Nothing | Just a

safeDiv :: Int -> Int -> Maybe Int
safeDiv n d
| d /= 0 = Just (n ‘div‘ d) -- successful computation
| otherwise = Nothing -- failure

• A similar construction makes head safe:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing -- failure
safeHead (x:_) = Just x -- successful computation
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Computing with Maybe

Suppose we are given two Int lists xs and ys.

We would like to safely compute “(head xs) ‘div‘ (head ys) + 1”.

Direct implementation Using some Haskell magic

foo1 :: [Int] -> [Int] -> Maybe Int
foo1 xs ys = case safeHead xs of

Just a -> case safeHead ys of
Just b -> case safeDiv a b of

Just c -> Just (c + 1)
Nothing -> Nothing

Nothing -> Nothing
Nothing -> Nothing

foo2 :: ..(same type)..
foo2 xs ys = do

a <- safeHead xs;
b <- safeHead ys;
c <- safeDiv a b;
return (c + 1)

Many case distinctions. To be explained
Ugly and scales poorly. here and now!
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Composition is the magic

• Key observation is that we would like to compose partial functions.

maybe1; maybe2  ?

• Possible interpretation:

Nothing; maybe2  Nothing
maybe1; Nothing  Nothing
Just x1; Just x2  Just x2

• We define maybe1; maybe2 by maybe1 ‘semi‘ maybe2 where

semi :: Maybe a -> Maybe b -> Maybe b
semi _ Nothing = Nothing
semi Nothing _ = Nothing
semi (Just x1) (Just x2) = Just x2

• Problem: the computation of x2 may depend on x1.
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Composition with value bindings

• Second computation needs to bind result of first.

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing _ = Nothing
bind (Just x1) f = f x1

• We also define a function embedding a value in the Maybe type:

return :: a -> Maybe a
return x = Just x

• Thus we can now write foo2 as

foo2 :: [Int] -> [Int] -> Maybe Int
foo2 xs ys =

safeHead xs ‘bind‘ (\a ->
safeHead ys ‘bind‘ (\b ->
safeDiv a b ‘bind‘ (\c ->
return (c + 1))))
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The Monad type class

• The Monad typeclass abstractly specifies bind and return

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b -- bind

• The type constructor Maybe instantiates this class.

instance Monad Maybe where
return x = Just x
Nothing >>= _ = Nothing
(Just x) >>= f = f x

• Hence our function foo2 becomes

foo2 xs ys = foo2’ xs ys = do
safeHead xs >>= (\a -> a <- safeHead xs
safeHead ys >>= (\b -> b <- safeHead ys
safeDiv a b >>= (\c -> c <- safeDiv a b
return (c + 1)))) return (c + 1)

The do-notation is just syntactic sugar to improve readability.
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The monad laws

• Monads are mathematical objects with additional properties.

• The monad operations must satisfy the following laws.

(1) return x >>= f = f x (left unit)
(2) m >>= return = m (right unit)
(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g)) (associativity)

These laws enable equational reasoning about monadic programs.

• Exercise: check that these laws hold for the Maybe monad.

Also check this for all other monads in this lecture.
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The monad type class — full story
Two additional ingredients

class Monad m where

-- return and bind are the mathematical core
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

-- shortcut for convenience; when second computation
-- does not depend on result of first
(>>) :: m a -> m b -> m b
m1 >> m2 = m1 >>= (\_ -> m2)

-- not part of mathematical concept of a monad
-- called on pattern matching errors in do-notation
fail :: String -> m a
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Input/Output
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IO revisited

• IO tags expressions that interact with the Real World.

main :: IO () -- putStrLn :: String -> IO ()
main = do -- getLine :: IO String

putStrLn "Enter your name:"
name <- getLine
putStrLn ("Hi, " ++ name ++ "!")

• You can think of IO a as an abstract datatype

data IO a = IO (RealWorld -> (a, RealWorld))

• The functions getLine and putStrLn transform the RealWorld.

Use the monad operators to compose them.
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IO’s Monad instance

The combinator “bind” passes the world around.

data IO a = IO (RealWorld -> (a, RealWorld))

unIO :: IO a -> RealWorld -> (a, RealWorld) -- not exported
unIO (IO f) = f

instance Monad IO where
(>>=) :: IO a -> (a -> IO b) -> IO b
(f >>= g) = IO (\w -> let (a, w’) = unIO f w in unIO (g a) w’)

return :: a -> IO a
return x = IO (\w -> (x, w))

fail = ...

(>>=) ensures that each world is used exactly once.
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IO monad example
data IO a = IO (RealWorld -> (a, RealWorld))
unIO (IO f) = f
(f >>= g) = IO (\w -> let (a, w’) = unIO f w in unIO (g a) w’)

• main = do
putStrLn "Enter your name:"
name <- getLine
putStrLn ("Hello, " ++ name ++ "!")

• Desugar to (>>=)

main =
putStrLn "Enter your name:" >>= (\_ ->
getLine >>= (\name ->
putStrLn ("Hello, " ++ name ++ "!")))

• Unfold definition of (>>=)
main = IO (\w1 ->

let (_, w2) = unIO (putStrLn "Enter your name:") w1
in unIO (IO (\w2 ->

let (name, w3) = unIO getLine w2
in unIO (putStrLn ("Hello, " ++ name ++ "!")) w3)) w2)
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More IO actions

• Haskell (see Prelude.hs) provides IO primitives

� getLine :: IO String

Read a line from the keyboard, echo it to the screen and return

the string.

� putStrLn :: Char -> IO ()

Write a string and a newline to the screen.

� readFile :: FilePath -> IO String

Read a file and return contents as a lazy string.

� writeFile :: FilePath -> String -> IO ()

Write a string to a file.

• The Haskell libraries provide many others

(sockets, concurrency, . . . )
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Stateful computation
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Example: collecting type inference constraints

Var
. . . , x : τ, . . . ` x :: τ

Γ, x : σ ` t :: τ
Abs

Γ ` λx. t :: σ → τ

Γ ` t1 :: σ → τ Γ ` t2 :: σ
App

Γ ` t1 t2 :: τ

1. Start with judgement ` t :: τ0 with type variable τ0.

2. Build derivation tree bottom-up by applying the matching rule.

Introduce fresh type variables and collect constraints if needed.

Var
z : τ2 ` z :: τ3

Abs
` λz. z :: τ1→ τ0

Var
x : τ4 ` x :: τ5

Abs
` λx. x :: τ1

App
` (λz. z) (λx. x) :: τ0

τ2→ τ3 = τ1→ τ0
τ2 = τ3
τ1 = τ4→ τ5
τ4 = τ5

Idea: use an accumulator to keep track of used indices
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Type inference: fixing the types

• Terms are built from variables, abstractions, and applications.

type Variable = String
data Term = Var Variable

| Lam Variable Term
| App Term Term

data Type = TVar Int
| Fun Type Type

• Model constraints as a pair of left- and right-hand side.

type Constraint = (Type, Type)
collectConstraints :: Term -> [Constraint]

• It suffices to store the highest used index in the accumulator.

type Context = [(Variable, Type)]
collect :: Context -> Term -> Type -> Int -> ([Constraint], Int)
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Implementing constraint collection

Var
. . . , x : τ, . . . ` x :: τ

Γ, x : σ ` t :: τ
Abs

Γ ` λx. t :: σ → τ

Γ ` t1 :: σ → τ Γ ` t2 :: σ
App

Γ ` t1 t2 :: τ

collectConstraints :: Term -> [Constraint]
collectConstraints t = collect [] t (TVar 0) 0 Start with ` t :: τ0

collect :: Context -> Term -> Type -> Int -> ([Constraint], Int)
collect gamma (Var x) ty n =

case lookup gamma x of -- lookup defined in Prelude
Just tyX -> ([(tyX, ty)], n) add equality constraint

collect gamma (Lam x t) ty n =
let sigma = TVar (n + 1) generate fresh

tau = TVar (n + 2) type variables
(cs, n’) = collect ((x, sigma) : gamma) t tau (n + 2)

in ((ty, Fun sigma tau) : cs, n’) add equality constraint

collect gamma (App t1 t2) ty n =
let sigma = TVar (n + 1) fresh type variable σ

(cs1, n1) = collect gamma t1 (Fun sigma ty) (n + 1)
(cs2, n2) = collect gamma t2 sigma n1

in (cs1 ++ cs2, n2)
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Example: collecting type inference constraints
type Variable = String
data Term = Var Variable | Lam Variable Term | App Term Term
data Type = TVar Int | Fun Type Type
type Context = [(Variable, Type)]
type Constraint = (Type, Type)

collectConstraints :: Term -> [Constraint]
collectConstraints t = collect [] t (TVar 0) 0

collect :: Context -> Term -> Type -> Int -> ([Constraint], Int)
collect gamma (Var x) ty n =

case lookup gamma x of Just tyX -> ([(tyX, ty)], n)
collect gamma (Lam x t) ty n =

let sigma = TVar (n + 1)
tau = TVar (n + 2)
(cs, n’) = collect ((x, sigma) : gamma) t tau (n + 2)

in ((ty, Fun sigma tau) : cs, n’)
collect gamma (App t1 t2) ty n =

let sigma = TVar (n + 1)
(cs1, n1) = collect gamma t1 (Fun sigma ty) (n + 1)
(cs2, n2) = collect gamma t2 sigma n1

in (cs1 ++ cs2, n2)

Ugly plumbing needed to thread state through recursive calls.
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Constructing the state monad

Type constructor for stateful computations

data State s a = State (s -> (a, s))

Idea: computation takes a state of type s and transforms it into a

result of type a and a successor state of type s.

Compare with IO:

data IO a = IO (RealWorld -> (a, RealWorld))

State access read current value of state without changing it

get :: State s s
get = State (\s -> (s, s))

State update write a new state value, ignoring the current state

put :: s -> State s ()
put t = State (\s -> ((), t))
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Return and bind

Run is an auxiliary function that opens the monad and runs the

computation from the initial state s0

runState :: (State s a) -> s -> (a, s)
runState (State m) s0 = m s0

Return embeds a value into a stateful computation

return :: a -> State s a
return x = State (\s -> (x, s))

Bind composes two stateful computations with value binding

(>>=) :: State s a -> (a -> State s b) -> State s b
m >>= k = State (\s -> let (x, t) = runState m s

in runState (k x) t)

Note: The operator (>>) defined as m1 >> m2 = m1 >>= (\_ -> m2) is
essentially the sequential composition (;) in imperative programming languages.
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Understanding the state monad
• x := x + 1 in state monad with explicit bind

tick :: State Int () tick :: State Int ()
tick = do tick =

x <- get get >>= (\x ->
put (x + 1) put (x + 1))

• Stepwise evaluation of tick

tick = State (\s ->
let (x, t) = runState get s
in runState (put (x + 1)) t)

= State (\s ->
let (x, t) = (\s -> (s, s)) s
in (\s -> ((), x + 1)) t)

= State (\s -> ((), s + 1))

� The state monad encapsulates program composition.

� To run the program: invoke runState tick s0 where s0 is

some initial state.
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Constraint collection using the state monad
freshTVar = do We only ever need to

n <- get get a fresh type variable.
let n’ = n + 1 Thanks to the state monad,
put n’ we can encapsulate this in
return (TVar n’) an operation.

collectConstraints :: Term -> [Constraint]
collectConstraints t = fst (runState (collect [] t (TVar 0)) 0)

collect :: Context -> Term -> Type -> State Int [Constraint]
collect gamma (Var x) ty =

case lookup gamma x of Just tyX -> return [(tyX, ty)]
collect gamma (Lam x t) ty = do

sigma <- freshTVar
tau <- freshTVar
cs <- collect ((x, sigma) : gamma) t tau
return ((ty, Fun sigma tau) : cs)

collect gamma (App t1 t2) ty = do
sigma <- freshTVar
cs1 <- collect gamma t1 (Fun sigma ty)
cs2 <- collect gamma t2 sigma
return (cs1 ++ cs2)
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A zoo of monads

Monad Type constructor

Partiality Maybe a = Nothing | Just a

Exceptions Exc e a = Exception e | Success a

State State s a = State (s -> (a, s))

Input/Output IO a = IO (RealWorld -> (a, RealWorld))

Nondeterminism [a] = [] | a : [a]

Parsers Parser a = Parser (String -> [(a, String)])
... ...
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Conclusions

Summary Using monads we can ...

• write functional programs with a variety of controlled side

effects in a uniform, abstract, and flexible way

• obtain a deeper understanding of the meaning of side effects

Combining monads

• Q: How can I model language AFX (All Fancy effeXts)?

• A: Use monad transformers to modularly combine monads.

E.g., the parser monad is a non-deterministic state monad, we

can also define state-exception monads, etc.

Reasoning about monads two possibilities:

• equational reasoning using definitions of monadic functions and

monad laws (verify these for any monads you may invent), or

• pre-/post-condition reasoning using a monadic Hoare logic
Functional Programming Spring Semester, 2014



Andreas Lochbihler 26

Bibliography

• Monad tutorials recommended at http:

//www.haskell.org/haskellwiki/Tutorials#Using_monads

• Philip Wadler, The essence of functional programming, POPL 92,

1992. [Nice series of interpreters with monadic effects.]

• Sheng Liang, Paul Hudak, and Mark Jones, Monad transformers

and modular interpreters, POPL 95, 1995. [Series of interpreters

obtained in a modular fashion using monad transformers. This

goes beyond this course, but is very readable.]

• Nick Benton, John Hughes, and Eugenio Moggi, Monads and

Effects, 2002. [Covers both theoretical aspects and programming.]

Functional Programming Spring Semester, 2014

http://www.haskell.org/haskellwiki/Tutorials#Using_monads
http://www.haskell.org/haskellwiki/Tutorials#Using_monads

