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LTL Model Checking Problem

Given a finite transition system TS and an LTL formula ¢,
decide whether t = ¢ for all t € T(TS)

@ We need to check inclusion of traces

o LTL formula ¢ describes a set of traces P(¢)
o We need to determine whether or not 7(TS) c P(¢)

@ Naively searching all traces is not an option (infinite length)
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Checking Regular Safety Properties

@ A safety property is regular if its bad prefixes are described by a regular
language over the alphabet P(AP)

@ Every invariant over AP is a regular safety property

e For the property defined by Op, all bad prefixes start with $* T where S
describes any subset of P(AP) that contains p, and T any subset that
does not contain p

e For example, bad prefixes for Oopen are described by
({open} | {open, closed})* ({} | {closed})

@ Non-regular safety properties also exist

e Vending machine: at least as many coins inserted as drinks dispensed
e Bad prefixes: regular languages “cannot count”
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Checking Regular Safety Properties: Approach

@ Look at all finite prefixes T5,(TS) of the traces T(TS) of a transition
system TS

@ Check whether T5,(TS) contains a bad prefix
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Checking Regular Safety Properties: Approach

@ Look at all finite prefixes T7,(TS) of the traces T(TS) of a transition
system TS

@ Check whether T5,(TS) contains a bad prefix

1. Describe finite prefixes T5,( TS) by finite automaton FArs

2. Describe bad prefixes of regular safety property P by finite automaton
FAp

3. Construct finite automaton for product of F Ars and F Az

4. Check if the resulting automaton has any reachable accepting states

e If not, the property P is never violated by computations of TS

@ If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)
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Reminder: Finite Automata

@ A finite automaton (FA) is a tuple (@, X%, Q, 9, qo, F)
e : a finite set of states
e X: a finite alphabet
@ O: a transition relation, 0 C Q@ x ~ x @
@ (o: an initial state
o [ c Q: a set of accepting states
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Step 1: Finite Automaton for Finite Prefixes

@ Given a transition system TS = (I, 0/, —), propositions AP, and
labeling function L

@ The automaton FA7s = (Q, X, 0, qo, F) accepts T7,(TS)
Q=Tu{og}, where og ¢ I

¥ = P(AP)

6={(0,p,0") | o0 >0c"and peL(c’)}u{(0o,p,01) | peL(cr)}

do = 0o
F = Q (accept any prefix of a computation)

®© 6 6 6 ¢

@ Example: o:=0+1; while * do o:=0-1; o:=o+1 end; o:=o+1

- { open } I { closed }
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Step 2: Finite Automaton for Bad Prefixes

@ By definition, bad prefixes are described by a regular language
@ Apply standard construction to obtain FA F. Az from regular expression

@ Example: O((open v closed)A = (open A closed)

e Bad prefixes start with
({open} | {closed})*({} | {open, closed})

{open }

1}

A) all

{ open, closed }
{ closed }
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Step 3: Finite Automaton for Product

@ Construct FA FA;¢ p that accepts the intersection of the languages
accepted by F Ars and FAp

@ Apply standard construction for product of two FA

@ Example
{ open }

{}
{ open } . { closed } A ) all
{ open, closed }

{ closed }:j { open }> {} >  closedl]

{ open } { closed }
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Step 4: Check Emptiness

o If F A, s p accepts a word w then

o we Ts,(TS) because it is accepted by FArs and
e w is a bad prefix because it is accepted by FAp
e Therefore, P is not satisfied, and w is a counterexample

@ Apply standard algorithm to check emptiness of FA

@ Example

{ open } { closed }

o Accepts {closed}{open}({closed} | {open})*{}
o Smallest counterexample: {closed}{open}{}
e Counterexample can be mapped back to transition system
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Buchi Automata

@ Biuchi automata are similar to finite automata, but accept infinite words

@ A Biichi automaton (BA) is a tuple (Q, %, Q,9, qo, F)

e : a finite set of states

> : a finite alphabet

d: a transition relation, 0 € Q x > x @
go: an initial state

o
("
o
o [ c Q: a set of accepting states

@ A run of a BA accepts its input if it passes infinitely often through an
accepting state
@ Buchi automata enjoy many of the properties of finite automata

e We can construct the product of two BA
e Emptiness is decidable
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LTL Model Checking: Approach

1. Describe traces T(TS) by Biichi automaton BArs

e Construction is analogous to FAts
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LTL Model Checking: Approach

1. Describe traces T(TS) by Biichi automaton BArs

e Construction is analogous to FAts

2. For an LTL formula ¢, construct Buchi automaton BAﬁgb that accepts
the traces characterized by —¢ (bad traces)

e We omit the details here

3. Construct BA for product of BAts and BA_,

4. Check whether intersection is empty

e If intersection is non-empty, property ¢ is violated
e Each word in the intersection is a counterexample
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Complexity Results

For a finite transition system TS and an LTL formula ¢,
the model checking problem TS E ¢ is solvable in

O(] TS | x2)

@ | TS | is the size of the transition system (which grows exponentially in
the number of variables, processes, and channels)

@ | ¢ | is the size of ¢; exponential complexity comes from the
construction of BA_,
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Advanced Model Checking Techniques

@ On-the-fly model checking

e Often violation of a property can be detected without checking all
possible states or traces (for instance, Op)

e Generate transition system and check property step-by-step

e Implemented in Spin

@ Partial order reduction

e Remove redundancy from different interleavings of concurrent executions

e Code segments that operate only on local state are not affected by
interleaving

e Implemented in Spin
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Advanced Model Checking Techniques (cont’d)

@ Bounded model checking

e Check only prefixes of traces up to a certain length
e Closer to testing than verification
e Very effective in practice

@ Symbolic model checking

e Uses sets of states rather than individual states

e Sets of states are represented through boolean functions

o Very efficient data structure: binary decision diagram (BDDs)
e Typically used to check branching-time properties

e Can deal with larger models
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Conclusions

@ Variety of approaches

e Best method depends on application area

@ Tool support is essential

e Proofs are tedious and error-prone
e Some tools have reached maturity for industrial applications
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