Formal Methods

and Functional Programming
Model Checking

Peter Muller

Chair of Programming Methodology
ETH Zurich

Checking Regular Safety Properties

@ A safety property is regular if its bad prefixes are described by a regular
language over the alphabet P(AP)

@ Every invariant over AP is a regular safety property

e For the property defined by Op, all bad prefixes start with S* T where S
describes any subset of P(AP) that contains p, and T any subset that
does not contain p

e For example, bad prefixes for Dopen are described by

({open} | {open, closed})* ({} | {closed})

@ Non-regular safety properties also exist

e Vending machine: at least as many coins inserted as drinks dispensed
o Bad prefixes: regular languages “cannot count”

ETHzlirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 296

LTL Model Checking Problem

Given a finite transition system TS and an LTL formula ¢,
decide whether t & ¢ for all t € T(TS)

@ We need to check inclusion of traces

o LTL formula ¢ describes a set of traces P(¢)
o We need to determine whether or not T(TS) € P(¢)

e Naively searching all traces is not an option (infinite length)

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 295

Checking Regular Safety Properties: Approach

@ Look at all finite prefixes Ty, (TS) of the traces T(TS) of a transition
system TS

@ Check whether T5,(TS) contains a bad prefix

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 297

Checking Regular Safety Properties: Approach

@ Look at all finite prefixes Ty, (TS) of the traces T(TS) of a transition
system TS

@ Check whether T5,(TS) contains a bad prefix

1. Describe finite prefixes Tg,(TS) by finite automaton FArs

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 297

Checking Regular Safety Properties: Approach

e Look at all finite prefixes T, (TS) of the traces T(TS) of a transition
system TS

@ Check whether T5,(TS) contains a bad prefix

1. Describe finite prefixes Tg,(TS) by finite automaton FAts

2. Describe bad prefixes of regular safety property P by finite automaton
FAp

3. Construct finite automaton for product of F Ars and FAp

ETHziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 297

Checking Regular Safety Properties: Approach

@ Look at all finite prefixes Ty, (TS) of the traces T(TS) of a transition
system TS

@ Check whether 75,(TS) contains a bad prefix

1. Describe finite prefixes Tg,(TS) by finite automaton FAts

2. Describe bad prefixes of regular safety property P by finite automaton
FAp

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 297

Checking Regular Safety Properties: Approach

e Look at all finite prefixes T, (TS) of the traces T(TS) of a transition
system TS

@ Check whether T5,(TS) contains a bad prefix

1. Describe finite prefixes Tg,(TS) by finite automaton FAts

2. Describe bad prefixes of regular safety property P by finite automaton
FAp

3. Construct finite automaton for product of F Ars and FAp

4. Check if the resulting automaton has any reachable accepting states

o If not, the property P is never violated by computations of TS

o If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 297

Reminder: Finite Automata

@ A finite automaton (FA) is a tuple (Q, X, Q, 6, qo, F)
e Q: a finite set of states

3. a finite alphabet

0: a transition relation, §C Q@ x X x Q

go: an initial state

F € Q: a set of accepting states

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 298

Step 2: Finite Automaton for Bad Prefixes

@ By definition, bad prefixes are described by a regular language
@ Apply standard construction to obtain FA F.Ap from regular expression

e Example: O((open v closed)A + (open A closed)

o Bad prefixes start with
({open} | {closed})*({} | {open, closed})

{open}
{} R
A) Z(@ all
{ open, closed } ~
{closed }

ETHzlirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 300

Step 1: Finite Automaton for Finite Prefixes

e Given a transition system TS = (I, 0/, —), propositions AP, and
labeling function L

@ The automaton FA1s = (Q,X,0, qo, F) accepts Tgn(TS)
Q@=Tu{og}, where g ¢ T

Y = P(AP)

6={(o,p,0') | 0 >0"and pe L(c")} u{(0o,p,01) | peL(c))}
do = 00

F = Q (accept any prefix of a computation)

@ Example: o:=0o+1; while * do o:=o0-1; o:=o+1 end; o:=o+1

({oosea)
- {open} . {closed }
Cosed = toven)—C 01 ¥y o (Ut o Wy

&/

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 299

Step 3: Finite Automaton for Product

@ Construct FA F A1 p that accepts the intersection of the languages
accepted by FAts and FAp

@ Apply standard construction for product of two FA

@ Example

{open}
{open }{ closed } ’°I all

. { open, closed }
losed C
O{COS }©{ ope } Q {} O { |05ed}

{open} . {closed }

_)Q{closed }/—\{open} @ {} B

ETH:zlirich Peter Miiller—Formal Methods and Functional Programming, $S14 p. 301

Step 4: Check Emptiness

o If FA;s,p accepts a word w then

o w e Ts,(TS) because it is accepted by FAts and
e w is a bad prefix because it is accepted by FAp
o Therefore, P is not satisfied, and w is a counterexample

@ Apply standard algorithm to check emptiness of FA

@ Example

{open} I {closed }
{}

losed
_)@{cose }@{open} @ B

o Accepts {closed }{open}({closed} | {open})*{}
o Smallest counterexample: {closed}{open}{}
e Counterexample can be mapped back to transition system

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 302

LTL Model Checking: Approach

1. Describe traces T (TS) by Biichi automaton BAts

e Construction is analogous to FAts

ETHziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 304

Buchi Automata

@ Biichi automata are similar to finite automata, but accept infinite words

@ A Biichi automaton (BA) is a tuple (Q,X, Q,d, go, F)
o Q: a finite set of states

3 a finite alphabet

d: a transition relation, 6 € Q@ x X x Q

go: an initial state

F € Q: a set of accepting states

@ A run of a BA accepts its input if it passes infinitely often through an
accepting state

@ Biichi automata enjoy many of the properties of finite automata

e We can construct the product of two BA
e Emptiness is decidable

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 303

LTL Model Checking: Approach

1. Describe traces T (TS) by Bliichi automaton BAts

e Construction is analogous to FAts

2. For an LTL formula ¢, construct Biichi automaton B.A_g4 that accepts
the traces characterized by —¢ (bad traces)

o We omit the details here

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 304

LTL Model Checking: Approach

1. Describe traces T(TS) by Biichi automaton BAvs

e Construction is analogous to F Ars

2. For an LTL formula ¢, construct Biichi automaton BA_, that accepts
the traces characterized by —¢ (bad traces)

o We omit the details here

3. Construct BA for product of BAts and BA_,

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 304

Complexity Results

For a finite transition system TS and an LTL formula ¢,
the model checking problem TS & ¢ is solvable in
O(] TS | x214)

@ | TS | is the size of the transition system (which grows exponentially in
the number of variables, processes, and channels)

@ | ¢ | is the size of ¢; exponential complexity comes from the
construction of BA_,

ETHzlirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 305

LTL Model Checking: Approach

1. Describe traces T(TS) by Biichi automaton BAts

e Construction is analogous to F Ars

2. For an LTL formula ¢, construct Biichi automaton BA_, that accepts
the traces characterized by —¢ (bad traces)

o We omit the details here

3. Construct BA for product of BAts and BA_,

4. Check whether intersection is empty

e If intersection is non-empty, property ¢ is violated
e Each word in the intersection is a counterexample

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 304

Advanced Model Checking Techniques

@ On-the-fly model checking

e Often violation of a property can be detected without checking all
possible states or traces (for instance, Op)

o Generate transition system and check property step-by-step

e Implemented in Spin

@ Partial order reduction

e Remove redundancy from different interleavings of concurrent executions

e Code segments that operate only on local state are not affected by
interleaving

e Implemented in Spin

ETH:zlirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 306

Advanced Model Checking Techniques (cont’d) Conclusions

@ Bounded model checking

e Check only prefixes of traces up to a certain length
o Closer to testing than verification @ Variety of approaches

o Very effective in practice o Best method depends on application area

Tool ti tial
@ Symbolic model checking ¢ 1007 sUpport 1s essentia

e Proofs are tedious and error-prone

Uses sets of states rather than individual states e Some tools have reached maturity for industrial applications

Sets of states are represented through boolean functions
Very efficient data structure: binary decision diagram (BDDs)
Typically used to check branching-time properties

Can deal with larger models

ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, SS14 p. 307 ETH:ziirich Peter Miiller—Formal Methods and Functional Programming, S514 p. 308

