
Formal Methods
and Functional Programming

Model Checking

Peter Müller

Chair of Programming Methodology
ETH Zurich



LTL Model Checking Problem

Given a finite transition system TS and an LTL formula φ,
decide whether t ⊧ φ for all t ∈ T (TS)

We need to check inclusion of traces

LTL formula φ describes a set of traces P(φ)
We need to determine whether or not T (TS) ⊆ P(φ)

Näıvely searching all traces is not an option (infinite length)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 295



Checking Regular Safety Properties

A safety property is regular if its bad prefixes are described by a regular
language over the alphabet P(AP)

Every invariant over AP is a regular safety property

For the property defined by ◻p, all bad prefixes start with S∗T where S
describes any subset of P(AP) that contains p, and T any subset that
does not contain p
For example, bad prefixes for ◻open are described by
({open} ∣ {open, closed})∗({} ∣ {closed})

Non-regular safety properties also exist

Vending machine: at least as many coins inserted as drinks dispensed
Bad prefixes: regular languages “cannot count”

Peter Müller—Formal Methods and Functional Programming, SS14 p. 296



Checking Regular Safety Properties: Approach

Look at all finite prefixes Tfin(TS) of the traces T (TS) of a transition
system TS

Check whether Tfin(TS) contains a bad prefix

1. Describe finite prefixes Tfin(TS) by finite automaton FATS

2. Describe bad prefixes of regular safety property P by finite automaton
FAP̄

3. Construct finite automaton for product of FATS and FAP̄

4. Check if the resulting automaton has any reachable accepting states

If not, the property P is never violated by computations of TS
If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 297



Checking Regular Safety Properties: Approach

Look at all finite prefixes Tfin(TS) of the traces T (TS) of a transition
system TS

Check whether Tfin(TS) contains a bad prefix

1. Describe finite prefixes Tfin(TS) by finite automaton FATS

2. Describe bad prefixes of regular safety property P by finite automaton
FAP̄

3. Construct finite automaton for product of FATS and FAP̄

4. Check if the resulting automaton has any reachable accepting states

If not, the property P is never violated by computations of TS
If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 297



Checking Regular Safety Properties: Approach

Look at all finite prefixes Tfin(TS) of the traces T (TS) of a transition
system TS

Check whether Tfin(TS) contains a bad prefix

1. Describe finite prefixes Tfin(TS) by finite automaton FATS

2. Describe bad prefixes of regular safety property P by finite automaton
FAP̄

3. Construct finite automaton for product of FATS and FAP̄

4. Check if the resulting automaton has any reachable accepting states

If not, the property P is never violated by computations of TS
If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 297



Checking Regular Safety Properties: Approach

Look at all finite prefixes Tfin(TS) of the traces T (TS) of a transition
system TS

Check whether Tfin(TS) contains a bad prefix

1. Describe finite prefixes Tfin(TS) by finite automaton FATS

2. Describe bad prefixes of regular safety property P by finite automaton
FAP̄

3. Construct finite automaton for product of FATS and FAP̄

4. Check if the resulting automaton has any reachable accepting states

If not, the property P is never violated by computations of TS
If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 297



Checking Regular Safety Properties: Approach

Look at all finite prefixes Tfin(TS) of the traces T (TS) of a transition
system TS

Check whether Tfin(TS) contains a bad prefix

1. Describe finite prefixes Tfin(TS) by finite automaton FATS

2. Describe bad prefixes of regular safety property P by finite automaton
FAP̄

3. Construct finite automaton for product of FATS and FAP̄

4. Check if the resulting automaton has any reachable accepting states

If not, the property P is never violated by computations of TS
If yes, the property P is violated
Each word in the accepted language of the product automaton is a
counterexample
(i.e., a bad prefix of P that is a prefix of a computation of TS)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 297



Reminder: Finite Automata

A finite automaton (FA) is a tuple (Q,Σ,Q, δ,q0,F )
Q: a finite set of states
Σ: a finite alphabet
δ: a transition relation, δ ⊆ Q ×Σ ×Q
q0: an initial state
F ⊆ Q: a set of accepting states

Peter Müller—Formal Methods and Functional Programming, SS14 p. 298



Step 1: Finite Automaton for Finite Prefixes

Given a transition system TS = (Γ, σI ,→), propositions AP, and
labeling function L

The automaton FATS = (Q,Σ, δ,q0,F ) accepts Tfin(TS)

Q = Γ ∪ {σ0}, where σ0 /∈ Γ
Σ = P(AP)
δ = {(σ,p, σ′) ∣ σ → σ′ and p ∈ L(σ′)} ∪ {(σo ,p, σI ) ∣ p ∈ L(σI )}

q0 = σ0

F = Q (accept any prefix of a computation)

Example: o:=o+1; while * do o:=o-1; o:=o+1 end; o:=o+1

{ closed }

{ closed } { }{ open }

3

{ closed } { open } { }

{ open } { closed }

0 1 2

{ } { } { }
4

Peter Müller—Formal Methods and Functional Programming, SS14 p. 299



Step 2: Finite Automaton for Bad Prefixes

By definition, bad prefixes are described by a regular language

Apply standard construction to obtain FA FAP̄ from regular expression

Example: ◻((open ∨ closed)∧ ≠ (open ∧ closed)

Bad prefixes start with
({open} ∣ {closed})∗({} ∣ {open, closed})

{ }
{ open }

A B
{ open, closed }

{ l d }

all

{ closed }

Peter Müller—Formal Methods and Functional Programming, SS14 p. 300



Step 3: Finite Automaton for Product

Construct FA FATS∩P̄ that accepts the intersection of the languages
accepted by FATS and FAP̄

Apply standard construction for product of two FA

Example

3

{ closed } { open } { }

{ open } { closed }

0 1 2

{ } { } { }
4

{ }
{ open }

A B
{ open, closed }

{ l d }

all

{ closed }

3A

A A A
{ closed } { open } { }

{ open } { closed }

B0A 1A 2A
{ } { } { }

4B

Peter Müller—Formal Methods and Functional Programming, SS14 p. 301



Step 4: Check Emptiness

If FATS∩P̄ accepts a word w then

w ∈ Tfin(TS) because it is accepted by FATS and
w is a bad prefix because it is accepted by FAP̄

Therefore, P is not satisfied, and w is a counterexample

Apply standard algorithm to check emptiness of FA

Example

3A

A A A
{ closed } { open } { }

{ open } { closed }

B0A 1A 2A
{ } { } { }

4B

Accepts {closed}{open}({closed} ∣ {open})∗{}
Smallest counterexample: {closed}{open}{}
Counterexample can be mapped back to transition system

Peter Müller—Formal Methods and Functional Programming, SS14 p. 302



Büchi Automata

Büchi automata are similar to finite automata, but accept infinite words

A Büchi automaton (BA) is a tuple (Q,Σ,Q, δ,q0,F )
Q: a finite set of states
Σ: a finite alphabet
δ: a transition relation, δ ⊆ Q ×Σ ×Q
q0: an initial state
F ⊆ Q: a set of accepting states

A run of a BA accepts its input if it passes infinitely often through an
accepting state

Büchi automata enjoy many of the properties of finite automata

We can construct the product of two BA
Emptiness is decidable

Peter Müller—Formal Methods and Functional Programming, SS14 p. 303



LTL Model Checking: Approach

1. Describe traces T (TS) by Büchi automaton BATS

Construction is analogous to FATS

2. For an LTL formula φ, construct Büchi automaton BA¬φ that accepts
the traces characterized by ¬φ (bad traces)

We omit the details here

3. Construct BA for product of BATS and BA¬φ

4. Check whether intersection is empty

If intersection is non-empty, property φ is violated
Each word in the intersection is a counterexample

Peter Müller—Formal Methods and Functional Programming, SS14 p. 304



LTL Model Checking: Approach

1. Describe traces T (TS) by Büchi automaton BATS

Construction is analogous to FATS

2. For an LTL formula φ, construct Büchi automaton BA¬φ that accepts
the traces characterized by ¬φ (bad traces)

We omit the details here

3. Construct BA for product of BATS and BA¬φ

4. Check whether intersection is empty

If intersection is non-empty, property φ is violated
Each word in the intersection is a counterexample

Peter Müller—Formal Methods and Functional Programming, SS14 p. 304



LTL Model Checking: Approach

1. Describe traces T (TS) by Büchi automaton BATS

Construction is analogous to FATS

2. For an LTL formula φ, construct Büchi automaton BA¬φ that accepts
the traces characterized by ¬φ (bad traces)

We omit the details here

3. Construct BA for product of BATS and BA¬φ

4. Check whether intersection is empty

If intersection is non-empty, property φ is violated
Each word in the intersection is a counterexample

Peter Müller—Formal Methods and Functional Programming, SS14 p. 304



LTL Model Checking: Approach

1. Describe traces T (TS) by Büchi automaton BATS

Construction is analogous to FATS

2. For an LTL formula φ, construct Büchi automaton BA¬φ that accepts
the traces characterized by ¬φ (bad traces)

We omit the details here

3. Construct BA for product of BATS and BA¬φ

4. Check whether intersection is empty

If intersection is non-empty, property φ is violated
Each word in the intersection is a counterexample

Peter Müller—Formal Methods and Functional Programming, SS14 p. 304



Complexity Results

For a finite transition system TS and an LTL formula φ,
the model checking problem TS ⊧ φ is solvable in

O(∣ TS ∣ ×2∣φ∣)

∣ TS ∣ is the size of the transition system (which grows exponentially in
the number of variables, processes, and channels)

∣ φ ∣ is the size of φ; exponential complexity comes from the
construction of BA¬φ

Peter Müller—Formal Methods and Functional Programming, SS14 p. 305



Advanced Model Checking Techniques

On-the-fly model checking

Often violation of a property can be detected without checking all
possible states or traces (for instance, ◻p)
Generate transition system and check property step-by-step
Implemented in Spin

Partial order reduction

Remove redundancy from different interleavings of concurrent executions
Code segments that operate only on local state are not affected by
interleaving
Implemented in Spin

Peter Müller—Formal Methods and Functional Programming, SS14 p. 306



Advanced Model Checking Techniques (cont’d)

Bounded model checking

Check only prefixes of traces up to a certain length
Closer to testing than verification
Very effective in practice

Symbolic model checking

Uses sets of states rather than individual states
Sets of states are represented through boolean functions
Very efficient data structure: binary decision diagram (BDDs)
Typically used to check branching-time properties
Can deal with larger models

Peter Müller—Formal Methods and Functional Programming, SS14 p. 307



Conclusions

Variety of approaches

Best method depends on application area

Tool support is essential

Proofs are tedious and error-prone
Some tools have reached maturity for industrial applications

Peter Müller—Formal Methods and Functional Programming, SS14 p. 308


