
Formal Methods
and Functional Programming

Linear Temporal Logic

Peter Müller

Chair of Programming Methodology
ETH Zurich

The slides in this section are partly based on the course Automata-based System Analysis by
Felix Klaedtke



Motivation

Many interesting properties relate several states

Example: all opened files must be closed eventually

For a terminating program s

⟨s, σ⟩ →∗

1 σ
′ and σ(o) = 0 then σ′(o) = 0

For a deterministic, non-terminating program s

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then there exist
s ′′, σ′′ such that ⟨s ′, σ′⟩ →∗

1 ⟨s ′′, σ′′⟩ and σ′′(o) = 0

For a non-deterministic, non-terminating program s

wc ∶ Stm × State ×N→ Bool
wc(s, σ,n) ⇔ σ(o) = 0 ∨

(for all s ′, σ′ ∶ if ⟨s, σ⟩ →1 ⟨s ′, σ′⟩ then there exists
m ∈ N such that m < n and wc(s ′, σ′,m))

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then
there exists n ∈ N such that wc(s ′, σ′,n)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 271



Motivation

Many interesting properties relate several states

Example: all opened files must be closed eventually

For a terminating program s

⟨s, σ⟩ →∗

1 σ
′ and σ(o) = 0 then σ′(o) = 0

For a deterministic, non-terminating program s

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then there exist
s ′′, σ′′ such that ⟨s ′, σ′⟩ →∗

1 ⟨s ′′, σ′′⟩ and σ′′(o) = 0

For a non-deterministic, non-terminating program s

wc ∶ Stm × State ×N→ Bool
wc(s, σ,n) ⇔ σ(o) = 0 ∨

(for all s ′, σ′ ∶ if ⟨s, σ⟩ →1 ⟨s ′, σ′⟩ then there exists
m ∈ N such that m < n and wc(s ′, σ′,m))

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then
there exists n ∈ N such that wc(s ′, σ′,n)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 271



Motivation

Many interesting properties relate several states

Example: all opened files must be closed eventually

For a terminating program s

⟨s, σ⟩ →∗

1 σ
′ and σ(o) = 0 then σ′(o) = 0

For a deterministic, non-terminating program s

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then there exist
s ′′, σ′′ such that ⟨s ′, σ′⟩ →∗

1 ⟨s ′′, σ′′⟩ and σ′′(o) = 0

For a non-deterministic, non-terminating program s

wc ∶ Stm × State ×N→ Bool
wc(s, σ,n) ⇔ σ(o) = 0 ∨

(for all s ′, σ′ ∶ if ⟨s, σ⟩ →1 ⟨s ′, σ′⟩ then there exists
m ∈ N such that m < n and wc(s ′, σ′,m))

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then
there exists n ∈ N such that wc(s ′, σ′,n)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 271



Motivation

Many interesting properties relate several states

Example: all opened files must be closed eventually

For a terminating program s

⟨s, σ⟩ →∗

1 σ
′ and σ(o) = 0 then σ′(o) = 0

For a deterministic, non-terminating program s

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then there exist
s ′′, σ′′ such that ⟨s ′, σ′⟩ →∗

1 ⟨s ′′, σ′′⟩ and σ′′(o) = 0

For a non-deterministic, non-terminating program s

wc ∶ Stm × State ×N→ Bool
wc(s, σ,n) ⇔ σ(o) = 0 ∨

(for all s ′, σ′ ∶ if ⟨s, σ⟩ →1 ⟨s ′, σ′⟩ then there exists
m ∈ N such that m < n and wc(s ′, σ′,m))

⟨s, σ⟩ →∗

1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then
there exists n ∈ N such that wc(s ′, σ′,n)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 271



6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

Peter Müller—Formal Methods and Functional Programming, SS14 p. 272



Transition Systems Revisited

We use a slightly different definition here (than earlier in the course)

A finite transition system is a tuple (Γ, σI ,→)
Γ: a finite set of configurations
σI : an initial configuration, σI ∈ Γ
→: a transition relation, →⊆ Γ × Γ

Difference: we have a fixed initial configuration

In this section, transition systems model only one program/system, not
all programs of a programming language

Difference: we omit terminal configurations from the definition

Simplifies theory
Termination can be modelled by transition to a special extra sink state
(which allows further transitions only back to itself)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 273



Transition System of a Promela Model

Configurations: states (see previous section)

Global variables, global channels
Per active process: local variables, local channels, location counter

Initial configuration: initial state (see previous section)

Transition relation: defined by operational semantics of statements

We keep semantics informal

A Promela model has a finite number of states

Finite number of active processes (limited to 255)
Finite number of variables and channels
Finite ranges of variables
Finite buffers of channels

Therefore, it is technically possible to enumerate all possible states

How many states are there?

Peter Müller—Formal Methods and Functional Programming, SS14 p. 274



State Space of Sequential Programs

Number of states

#program locations × ∏
variable x

∣ dom(x) ∣

where ∣ dom(x) ∣ denotes the number of possible values of variable x

Example: sequential program with 10 locations and 3 boolean variables

10 × 2 × 2 × 2 = 10 × 23 = 80

Adding two integer variables yields 80 × 232 × 232 = 80 × 264

Number of states grows exponentially in the number of variables

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 275



State Space of Sequential Programs

Number of states

#program locations × ∏
variable x

∣ dom(x) ∣

where ∣ dom(x) ∣ denotes the number of possible values of variable x

Example: sequential program with 10 locations and 3 boolean variables

10 × 2 × 2 × 2 = 10 × 23 = 80

Adding two integer variables yields 80 × 232 × 232 = 80 × 264

Number of states grows exponentially in the number of variables

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 275



State Space of Sequential Programs

Number of states

#program locations × ∏
variable x

∣ dom(x) ∣

where ∣ dom(x) ∣ denotes the number of possible values of variable x

Example: sequential program with 10 locations and 3 boolean variables

10 × 2 × 2 × 2 = 10 × 23 = 80

Adding two integer variables yields 80 × 232 × 232 = 80 × 264

Number of states grows exponentially in the number of variables

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 275



State Space of Concurrent Programs

The number of states of P ≡ P1∥ . . . ∥PN is at most

#states of P1 × . . . × #states of PN =
N

∏
i=1

(#program locationsi × ∏
variable xi

∣ dom(xi) ∣)

Number of states grows exponentially in the number of processes

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 276



State Space of Concurrent Programs

The number of states of P ≡ P1∥ . . . ∥PN is at most

#states of P1 × . . . × #states of PN =
N

∏
i=1

(#program locationsi × ∏
variable xi

∣ dom(xi) ∣)

Number of states grows exponentially in the number of processes

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 276



State Space of Promela Models

The number of states of a system with N processes and K channels is
at most

N

∏
i=1

(#program locationsi × ∏
variable xi

∣ dom(xi) ∣) ×
K

∏
j=1

∣ dom(cj) ∣cap(cj)

∣ dom(c) ∣ denotes the number of possible messages of channel c
cap(c) is the capacity (buffer size) of channel c

Number of states grows exponentially in the number and capacity of
channels

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 277



State Space of Promela Models

The number of states of a system with N processes and K channels is
at most

N

∏
i=1

(#program locationsi × ∏
variable xi

∣ dom(xi) ∣) ×
K

∏
j=1

∣ dom(cj) ∣cap(cj)

∣ dom(c) ∣ denotes the number of possible messages of channel c
cap(c) is the capacity (buffer size) of channel c

Number of states grows exponentially in the number and capacity of
channels

State space explosion

Peter Müller—Formal Methods and Functional Programming, SS14 p. 277



Limiting the Impact of State-Space Explosion

Only examine configurations actually reachable by the transition system

Modeling step is important (omit unimportant details)

Can drastically reduce state-space of the transition system

Spin employs many techniques/heuristics for efficiency

Explore certain paths first (can be customized)
Ignore certain interleavings (local state)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 278



Computations

Infinite sequences

Sω is the set of infinite sequences of elements of set S
s[i] denotes the i-th element of the sequence s ∈ Sω

γ ∈ Γω is a computation of a transition system if:

γ[0] = σI
γ[i] → γ[i+1] (for all i ≥ 0)
Note: we use σ to range over the states Γ of a transition system
Note (notation above): if γ = σ0σ1σ2σ3 . . . then γ[i] = σi

C(TS) is the set of all computations of a transition system TS

Peter Müller—Formal Methods and Functional Programming, SS14 p. 279



Linear-Time Properties

Linear-time properties (LT-properties) can be used to specify the
permitted computations of a transition system

A linear-time property P over Γ is a subset of Γω

P specifies a particular set of infinite sequences of configurations

TS satisfies LT-property P (over Γ)

TS ⊧ P if and only if C(TS) ⊆ P

All computations of TS belong to the set P

By contrast: branching-time properties (not in this course) can also
express the existence of a computation

Example: “It is always possible to return to the initial state”

Peter Müller—Formal Methods and Functional Programming, SS14 p. 280



LT-Properties: Example

All opened files must be closed eventually

P = {γ ∈ Γω ∣ ∀i ≥ 0 ∶ γ
[i](o) = 1⇒ ∃n > 0 ∶ γ

[i+n](o) = 0}

LT-properties precisely express properties of computations

Non-termination is handled by infinite sequences
Non-determinism is handled by considering each computation separately

However, the explicit representation above (defining the set of
sequences) is not convenient

Logical formalism needed to simplify specification of LT-properties

Peter Müller—Formal Methods and Functional Programming, SS14 p. 281



From Configurations to (Sets of) Propositions

For a transition system TS , we additionally specify a set AP of atomic
propositions (of our choice)

An atomic proposition is a proposition containing no logical connectives
Example: AP = {open, closed} (for files)
Example: AP = {x > 0, y ≤ x}

We must provide a labeling function that maps configurations to sets of
atomic propositions from AP

L ∶ Γ→ P(AP)

Example: L(σ) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

{open} if σ(o) = 1
{closed} if σ(o) = 0
{} otherwise

We call L(σ) an abstract state

From now on, we consider AP and L to be part of the transition system

Peter Müller—Formal Methods and Functional Programming, SS14 p. 282



Traces

A trace is an abstraction of a computation

Observe only the propositions of each state, not the concrete state itself
Infinite sequence of abstract states (P(AP)ω)

t ∈ P(AP)ω is a trace of a transition system TS if
t = L(γ

[0])L(γ[1])L(γ[2]), . . . and γ is a computation of TS

T (TS) is the set of all traces of a transition system TS

LT-properties are typically specified over infinite sequences of abstract
states, rather than over sequences of configurations:

P = {t ∈ P(AP)ω ∣ ∀i ≥ 0 ∶ open ∈ t
[i] ⇒ ∃n > 0 ∶ closed ∈ t

[i+n]}

Peter Müller—Formal Methods and Functional Programming, SS14 p. 283



Safety Properties
Intuition

“Something bad is never allowed to happen (and can’t be fixed)”

An LT-property P is a safety property if for all infinite sequences
t ∈ P(AP)ω:
if t /∈ P then there is a finite prefix t̂ of t such that for every infinite
sequence t ′ with prefix t̂, t ′ /∈ P

t̂ is called a bad prefix; essentially, this finite sequence of steps already
violates the property (whatever happens afterwards)

Safety properties are violated in finite time and cannot be repaired

Examples

State properties, for instance, invariants

P = {t ∈ P(AP)ω ∣ ∀i ≥ 0 ∶ open ∈ t[i] ∨ closed ∈ t[i]}

“Money can be withdrawn only after correct PIN has been entered”

Peter Müller—Formal Methods and Functional Programming, SS14 p. 284



Liveness Properties

Intuition

“Something good will happen eventually”
“If the good thing has not happened yet, it could happen in the future”

An LT-property P is a liveness property if every finite sequence
t̂ ∈ P(AP)∗ is a prefix of an infinite sequence t ∈ P

A liveness property does not rule out any prefix
Every finite prefix can be extended to an infinite sequence that is in P

Liveness properties are violated in infinite time

Examples

All opened files must be closed eventually

P = {t ∈ P(AP)ω ∣ ∀i ≥ 0 ∶ open ∈ t[i] ⇒ ∃n > 0 ∶ closed ∈ t[i+n]}

“The program terminates eventually”

Peter Müller—Formal Methods and Functional Programming, SS14 p. 285



6. Linear Temporal Logic

6.1 Linear-Time Properties

6.2 Linear Temporal Logic

Peter Müller—Formal Methods and Functional Programming, SS14 p. 286



Linear Temporal Logic

Linear Temporal Logic (LTL) allows us to formalize LT-properties of
traces in a convenient and succinct way

We will see syntax and semantics for LTL (no inference rules, etc.)

Whether or not the traces of a finite transition system satisfy an LTL
formula is decidable (see next section)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 287



LTL: Basic Operators

Syntax

φ = p ∣ ¬φ ∣ φ ∧ φ ∣ φUφ ∣ ◯φ

where p is a proposition from a chosen set of atomic propositions AP ≠ ∅

Intuitive meaning of temporal logic formulas

p
p

p

   
U

   






Peter Müller—Formal Methods and Functional Programming, SS14 p. 288



LTL: Semantics
t ⊧ φ expresses that trace t ∈ P(AP)ω satisfies LTL formula φ

t ⊧ p iff p ∈ t[0]
t ⊧ ¬φ iff not t ⊧ φ
t ⊧ φ ∧ ψ iff t ⊧ φ and t ⊧ ψ
t ⊧ φUψ iff there is a k ≥ 0 with t(≥k) ⊧ ψ and

t(≥j) ⊧ φ for 0 ≤ j < k
t ⊧ ◯φ iff t(≥1) ⊧ φ

where t(≥i) is the suffix of t starting at ti

p
p

p

   
U

   






p true “now”

φ “until” ψ

“next” φ

Peter Müller—Formal Methods and Functional Programming, SS14 p. 289



Derived Operators

true, false,∨,⇒,⇔ defined as usual

Eventually: ◇φ ≡ (true Uφ)

Always (from now): ◻φ ≡ ¬◇ ¬φ






  


  

“eventually” φ

“always” φ

Precedence: unary operators always have highest precedence. So,
◇φ⇒ ψ means (◇φ) ⇒ ψ. We will usually use parentheses to
explicitly clarify other ambiguities.

Peter Müller—Formal Methods and Functional Programming, SS14 p. 290



Useful Specification Patterns

Strong invariant: ◻ψ
ψ always holds
A file is always open or closed: ◻(open ∨ closed)
Safety property

Monotone invariant: ◻(ψ⇒ ◻ψ)
Once ψ is true, then ψ is always true
For example, once information is public, it can never become secret again
(but it may always stay secret): ◻(public⇒ ◻public)
Safety property

Establishing an invariant: ◇◻ ψ
Eventually ψ will always hold
For example, system initialization starts server: ◇◻ serverRunning
Liveness property

Peter Müller—Formal Methods and Functional Programming, SS14 p. 291



Useful Specification Patterns (cont’d)

Responsiveness: ◻(ψ⇒◇φ)
E very time that ψ holds, φ will eventually hold
For example, all opened files must be closed eventually:
◻(open⇒◇closed)
Liveness property

Fairness: ◻◇ ψ

ψ holds infinitely often
For example, producer does not wait infinitely long before entering the
critical section: ◻◇ critical
Liveness property

Peter Müller—Formal Methods and Functional Programming, SS14 p. 292



Needham-Schroeder Protocol

If Alice and Bob have completed their protocol runs then Alice should
believe her partner to be Bob if and only if Bob believes to talk to Alice

◻(statusA = 1 ∧ statusB = 1⇒
(partnerA = agentB⇔ partnerB = agentA))

If Alice completed her protocol run with Bob, the intruder should not
have learned Alice’s nonce

◻(statusA = 1 ∧ partnerA = agentB ⇒ knows nonceA = 0)

If Bob completed his protocol run with Alice, the intruder should not
have learned Bob’s nonce

◻(statusB = 1 ∧ partnerB = agentA⇒ knows nonceB = 0)

Peter Müller—Formal Methods and Functional Programming, SS14 p. 293


