
Monads∗

Andreas Lochbihler

Department of Computer Science
ETH Zurich

∗Thanks to David Basin, Christoph Sprenger and Simon Meier for slide material

Functional Programming

Andreas Lochbihler 1

Monads: What’s it all about?

• Model various computational features in a uniform way.

E.g. partiality, state, exceptions, non-determinism, I/O, ...

• Idea: separate values from computations producing the values:

f :: a -> b ordinary function, returns value of type b

f :: a -> M b monadic function, returns computation M b

• M is a type constructor satisfying certain properties (monad laws).

By varying M, we can model different notions of computation.

• Every monad supports two basic operations: embedding a value

into a computation and composing computations.

• Explains side effects in a functional context and helps designing

controlled side effects.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 2

Motivation: partial functions

Functional Programming Spring Semester, 2014

Andreas Lochbihler 3

Example: partial functions

• Consider integer division:

10 ‘div‘ 2 = 5 -- OK
10 ‘div‘ 0 = .. -- exception
*** Exception: divide by zero

• This partiality can be captured with the Maybe type:

data Maybe a = Nothing | Just a

safeDiv :: Int -> Int -> Maybe Int
safeDiv n d
| d /= 0 = Just (n ‘div‘ d) -- successful computation
| otherwise = Nothing -- failure

• A similar construction makes head safe:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing -- failure
safeHead (x:_) = Just x -- successful computation

Functional Programming Spring Semester, 2014

Andreas Lochbihler 4

Computing with Maybe

Suppose we are given two Int lists xs and ys.

We would like to safely compute “(head xs) ‘div‘ (head ys) + 1”.

Direct implementation Using some Haskell magic

foo1 :: [Int] -> [Int] -> Maybe Int
foo1 xs ys = case safeHead xs of

Just a -> case safeHead ys of
Just b -> case safeDiv a b of

Just c -> Just (c + 1)
Nothing -> Nothing

Nothing -> Nothing
Nothing -> Nothing

foo2 :: ..(same type)..
foo2 xs ys = do

a <- safeHead xs;
b <- safeHead ys;
c <- safeDiv a b;
return (c + 1)

Many case distinctions. To be explained
Ugly and scales poorly. here and now!

Functional Programming Spring Semester, 2014

Andreas Lochbihler 5

Composition is the magic

• Key observation is that we would like to compose partial functions.

maybe1; maybe2 ?

• Possible interpretation:

Nothing; maybe2 Nothing
maybe1; Nothing Nothing
Just x1; Just x2 Just x2

• We define maybe1; maybe2 by maybe1 ‘semi‘ maybe2 where

semi :: Maybe a -> Maybe b -> Maybe b
semi _ Nothing = Nothing
semi Nothing _ = Nothing
semi (Just x1) (Just x2) = Just x2

• Problem: the computation of x2 may depend on x1.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 6

Composition with value bindings

• Second computation needs to bind result of first.

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing _ = Nothing
bind (Just x1) f = f x1

• We also define a function embedding a value in the Maybe type:

return :: a -> Maybe a
return x = Just x

• Thus we can now write foo2 as

foo2 :: [Int] -> [Int] -> Maybe Int
foo2 xs ys =

safeHead xs ‘bind‘ (\a ->
safeHead ys ‘bind‘ (\b ->
safeDiv a b ‘bind‘ (\c ->
return (c + 1))))

Functional Programming Spring Semester, 2014

Andreas Lochbihler 7

The Monad type class

• The Monad typeclass abstractly specifies bind and return

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b -- bind

• The type constructor Maybe instantiates this class.

instance Monad Maybe where
return x = Just x
Nothing >>= _ = Nothing
(Just x) >>= f = f x

• Hence our function foo2 becomes

foo2 xs ys = foo2’ xs ys = do
safeHead xs >>= (\a -> a <- safeHead xs
safeHead ys >>= (\b -> b <- safeHead ys
safeDiv a b >>= (\c -> c <- safeDiv a b
return (c + 1)))) return (c + 1)

The do-notation is just syntactic sugar to improve readability.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 8

The monad laws

• Monads are mathematical objects with additional properties.

• The monad operations must satisfy the following laws.

(1) return x >>= f = f x (left unit)
(2) m >>= return = m (right unit)
(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g)) (associativity)

These laws enable equational reasoning about monadic programs.

• Exercise: check that these laws hold for the Maybe monad.

Also check this for all other monads in this lecture.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 9

The monad type class — full story
Two additional ingredients

class Monad m where

-- return and bind are the mathematical core
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

-- shortcut for convenience; when second computation
-- does not depend on result of first
(>>) :: m a -> m b -> m b
m1 >> m2 = m1 >>= (_ -> m2)

-- not part of mathematical concept of a monad
-- called on pattern matching errors in do-notation
fail :: String -> m a

Functional Programming Spring Semester, 2014

Andreas Lochbihler 10

Input/Output

Functional Programming Spring Semester, 2014

Andreas Lochbihler 11

IO revisited

• IO tags expressions that interact with the Real World.

main :: IO () -- putStrLn :: String -> IO ()
main = do -- getLine :: IO String

putStrLn "Enter your name:"
name <- getLine
putStrLn ("Hi, " ++ name ++ "!")

• You can think of IO a as an abstract datatype

data IO a = IO (RealWorld -> (a, RealWorld))

• The functions getLine and putStrLn transform the RealWorld.

Use the monad operators to compose them.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 12

IO’s Monad instance

The combinator “bind” passes the world around.

data IO a = IO (RealWorld -> (a, RealWorld))

unIO :: IO a -> RealWorld -> (a, RealWorld) -- not exported
unIO (IO f) = f

instance Monad IO where
(>>=) :: IO a -> (a -> IO b) -> IO b
(f >>= g) = IO (\w -> let (a, w’) = unIO f w in unIO (g a) w’)

return :: a -> IO a
return x = IO (\w -> (x, w))

fail = ...

(>>=) ensures that each world is used exactly once.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 13

IO monad example
data IO a = IO (RealWorld -> (a, RealWorld))
unIO (IO f) = f
(f >>= g) = IO (\w -> let (a, w’) = unIO f w in unIO (g a) w’)

• main = do
putStrLn "Enter your name:"
name <- getLine
putStrLn ("Hello, " ++ name ++ "!")

• Desugar to (>>=)

main =
putStrLn "Enter your name:" >>= (_ ->
getLine >>= (\name ->
putStrLn ("Hello, " ++ name ++ "!")))

• Unfold definition of (>>=)
main = IO (\w1 ->

let (_, w2) = unIO (putStrLn "Enter your name:") w1
in unIO (IO (\w2 ->

let (name, w3) = unIO getLine w2
in unIO (putStrLn ("Hello, " ++ name ++ "!")) w3)) w2)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 14

More IO actions

• Haskell (see Prelude.hs) provides IO primitives

� getLine :: IO String

Read a line from the keyboard, echo it to the screen and return

the string.

� putStrLn :: Char -> IO ()

Write a string and a newline to the screen.

� readFile :: FilePath -> IO String

Read a file and return contents as a lazy string.

� writeFile :: FilePath -> String -> IO ()

Write a string to a file.

• The Haskell libraries provide many others

(sockets, concurrency, . . .)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 15

Stateful computation

Functional Programming Spring Semester, 2014

Andreas Lochbihler 16

Example: collecting type inference constraints

Var
. . . , x : τ, . . . ` x :: τ

Γ, x : σ ` t :: τ
Abs

Γ ` λx. t :: σ → τ

Γ ` t1 :: σ → τ Γ ` t2 :: σ
App

Γ ` t1 t2 :: τ

1. Start with judgement ` t :: τ0 with type variable τ0.

2. Build derivation tree bottom-up by applying the matching rule.

Introduce fresh type variables and collect constraints if needed.

Var
z : τ2 ` z :: τ3

Abs
` λz. z :: τ1→ τ0

Var
x : τ4 ` x :: τ5

Abs
` λx. x :: τ1

App
` (λz. z) (λx. x) :: τ0

τ2→ τ3 = τ1→ τ0
τ2 = τ3
τ1 = τ4→ τ5
τ4 = τ5

Idea: use an accumulator to keep track of used indices
Functional Programming Spring Semester, 2014

Andreas Lochbihler 17

Type inference: fixing the types

• Terms are built from variables, abstractions, and applications.

type Variable = String
data Term = Var Variable

| Lam Variable Term
| App Term Term

data Type = TVar Int
| Fun Type Type

• Model constraints as a pair of left- and right-hand side.

type Constraint = (Type, Type)
collectConstraints :: Term -> [Constraint]

• It suffices to store the highest used index in the accumulator.

type Context = [(Variable, Type)]
collect :: Context -> Term -> Type -> Int -> ([Constraint], Int)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 18

Implementing constraint collection

Var
. . . , x : τ, . . . ` x :: τ

Γ, x : σ ` t :: τ
Abs

Γ ` λx. t :: σ → τ

Γ ` t1 :: σ → τ Γ ` t2 :: σ
App

Γ ` t1 t2 :: τ

collectConstraints :: Term -> [Constraint]
collectConstraints t = collect [] t (TVar 0) 0 Start with ` t :: τ0

collect :: Context -> Term -> Type -> Int -> ([Constraint], Int)
collect gamma (Var x) ty n =

case lookup gamma x of -- lookup defined in Prelude
Just tyX -> ([(tyX, ty)], n) add equality constraint

collect gamma (Lam x t) ty n =
let sigma = TVar (n + 1) generate fresh

tau = TVar (n + 2) type variables
(cs, n’) = collect ((x, sigma) : gamma) t tau (n + 2)

in ((ty, Fun sigma tau) : cs, n’) add equality constraint

collect gamma (App t1 t2) ty n =
let sigma = TVar (n + 1) fresh type variable σ

(cs1, n1) = collect gamma t1 (Fun sigma ty) (n + 1)
(cs2, n2) = collect gamma t2 sigma n1

in (cs1 ++ cs2, n2)
Functional Programming Spring Semester, 2014

Andreas Lochbihler 19

Example: collecting type inference constraints
type Variable = String
data Term = Var Variable | Lam Variable Term | App Term Term
data Type = TVar Int | Fun Type Type
type Context = [(Variable, Type)]
type Constraint = (Type, Type)

collectConstraints :: Term -> [Constraint]
collectConstraints t = collect [] t (TVar 0) 0

collect :: Context -> Term -> Type -> Int -> ([Constraint], Int)
collect gamma (Var x) ty n =

case lookup gamma x of Just tyX -> ([(tyX, ty)], n)
collect gamma (Lam x t) ty n =

let sigma = TVar (n + 1)
tau = TVar (n + 2)
(cs, n’) = collect ((x, sigma) : gamma) t tau (n + 2)

in ((ty, Fun sigma tau) : cs, n’)
collect gamma (App t1 t2) ty n =

let sigma = TVar (n + 1)
(cs1, n1) = collect gamma t1 (Fun sigma ty) (n + 1)
(cs2, n2) = collect gamma t2 sigma n1

in (cs1 ++ cs2, n2)

Ugly plumbing needed to thread state through recursive calls.
Functional Programming Spring Semester, 2014

Andreas Lochbihler 20

Constructing the state monad

Type constructor for stateful computations

data State s a = State (s -> (a, s))

Idea: computation takes a state of type s and transforms it into a

result of type a and a successor state of type s.

Compare with IO:

data IO a = IO (RealWorld -> (a, RealWorld))

State access read current value of state without changing it

get :: State s s
get = State (\s -> (s, s))

State update write a new state value, ignoring the current state

put :: s -> State s ()
put t = State (\s -> ((), t))

Functional Programming Spring Semester, 2014

Andreas Lochbihler 21

Return and bind

Run is an auxiliary function that opens the monad and runs the

computation from the initial state s0

runState :: (State s a) -> s -> (a, s)
runState (State m) s0 = m s0

Return embeds a value into a stateful computation

return :: a -> State s a
return x = State (\s -> (x, s))

Bind composes two stateful computations with value binding

(>>=) :: State s a -> (a -> State s b) -> State s b
m >>= k = State (\s -> let (x, t) = runState m s

in runState (k x) t)

Note: The operator (>>) defined as m1 >> m2 = m1 >>= (_ -> m2) is
essentially the sequential composition (;) in imperative programming languages.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 22

Understanding the state monad
• x := x + 1 in state monad with explicit bind

tick :: State Int () tick :: State Int ()
tick = do tick =

x <- get get >>= (\x ->
put (x + 1) put (x + 1))

• Stepwise evaluation of tick

tick = State (\s ->
let (x, t) = runState get s
in runState (put (x + 1)) t)

= State (\s ->
let (x, t) = (\s -> (s, s)) s
in (\s -> ((), x + 1)) t)

= State (\s -> ((), s + 1))

� The state monad encapsulates program composition.

� To run the program: invoke runState tick s0 where s0 is

some initial state.
Functional Programming Spring Semester, 2014

Andreas Lochbihler 23

Constraint collection using the state monad
freshTVar = do We only ever need to

n <- get get a fresh type variable.
let n’ = n + 1 Thanks to the state monad,
put n’ we can encapsulate this in
return (TVar n’) an operation.

collectConstraints :: Term -> [Constraint]
collectConstraints t = fst (runState (collect [] t (TVar 0)) 0)

collect :: Context -> Term -> Type -> State Int [Constraint]
collect gamma (Var x) ty =

case lookup gamma x of Just tyX -> return [(tyX, ty)]
collect gamma (Lam x t) ty = do

sigma <- freshTVar
tau <- freshTVar
cs <- collect ((x, sigma) : gamma) t tau
return ((ty, Fun sigma tau) : cs)

collect gamma (App t1 t2) ty = do
sigma <- freshTVar
cs1 <- collect gamma t1 (Fun sigma ty)
cs2 <- collect gamma t2 sigma
return (cs1 ++ cs2)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 24

A zoo of monads

Monad Type constructor

Partiality Maybe a = Nothing | Just a

Exceptions Exc e a = Exception e | Success a

State State s a = State (s -> (a, s))

Input/Output IO a = IO (RealWorld -> (a, RealWorld))

Nondeterminism [a] = [] | a : [a]

Parsers Parser a = Parser (String -> [(a, String)])
... ...

Functional Programming Spring Semester, 2014

Andreas Lochbihler 25

Conclusions

Summary Using monads we can ...

• write functional programs with a variety of controlled side

effects in a uniform, abstract, and flexible way

• obtain a deeper understanding of the meaning of side effects

Combining monads

• Q: How can I model language AFX (All Fancy effeXts)?

• A: Use monad transformers to modularly combine monads.

E.g., the parser monad is a non-deterministic state monad, we

can also define state-exception monads, etc.

Reasoning about monads two possibilities:

• equational reasoning using definitions of monadic functions and

monad laws (verify these for any monads you may invent), or

• pre-/post-condition reasoning using a monadic Hoare logic
Functional Programming Spring Semester, 2014

Andreas Lochbihler 26

Bibliography

• Monad tutorials recommended at http:

//www.haskell.org/haskellwiki/Tutorials#Using_monads

• Philip Wadler, The essence of functional programming, POPL 92,

1992. [Nice series of interpreters with monadic effects.]

• Sheng Liang, Paul Hudak, and Mark Jones, Monad transformers

and modular interpreters, POPL 95, 1995. [Series of interpreters

obtained in a modular fashion using monad transformers. This

goes beyond this course, but is very readable.]

• Nick Benton, John Hughes, and Eugenio Moggi, Monads and

Effects, 2002. [Covers both theoretical aspects and programming.]

Functional Programming Spring Semester, 2014

http://www.haskell.org/haskellwiki/Tutorials#Using_monads
http://www.haskell.org/haskellwiki/Tutorials#Using_monads

