
Introduction∗

Andreas Lochbihler

Department of Computer Science
ETH Zurich

∗Thanks to David Basin for slide material

Functional Programming

Andreas Lochbihler 1

Course setup

• Course in two parts

1. Andreas Lochbihler (until April 1st): Functional Programming

2. Peter Müller (from April 3rd): Formal Methods

• Instruction in English. You may use German on assignments.

• Course times: Tuesday 10–12 and Thursday 10–12

• Tutorials: Tuesday 13–15 and Wednesday 15–17

� Starts this week

Functional Programming Spring Semester, 2014

Andreas Lochbihler 2

Tutorials, homework, and grading

• Tutorial registration

� Takes place during today’s break

� Those absent should contact omaric@inf.ethz.ch

• Weekly homework available on the web each Tuesday

� Deadline is Monday the following week (before 11:00 am)

� Submit to tutor by email with subject: [FMFP] Exercise <n>

or use drop box behind the glass door at CNB F

� Starts this week

• Homework is optional but very strongly encouraged

• Grade determined by final exam, during break (Sessionsprüfung)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 3

Additional resources

• Course web page contains numerous resources

� Course announcements

� Slides and exercises

� Lots of helpful links, e.g., www.haskell.org

• Us!

Functional Programming Spring Semester, 2014

www.haskell.org

Andreas Lochbihler 4

Recommended books

• “Learn You a Haskell for Great Good” (M. Lipovača)
Freely available beginner’s guide to programming in Haskell

• “Programming in Haskell” (G. Hutton)
Concise introduction to programming in Haskell

• “Haskell – the craft of functional programming” (S. Thompson)
Beginners text book with a focus on testing and some induction proofs

• “Purely Functional Data Structures” (C. Okasaki)
Advanced topics in functional programming

Functional Programming Spring Semester, 2014

Andreas Lochbihler 5

Why formal methods and functional programming?

• Apples and Oranges? Yes but ...

Studies program groups topics together in modules

when this makes sense

• Combination FM+FP is somewhat unusual, but sensible

� Both focus on how to formalize & reason about programs

� I.e., programs as mathematical objects

• Fundamental topic in computer science

Functional Programming Spring Semester, 2014

Andreas Lochbihler 6

What else should you know?

Both parts start out slow, but become increasingly abstract.

Some ideas presented first informally and later formally.

Material will be new to most of you and hopefully exciting.

But it takes work, too. Be prepared for new ways of thinking!

If you have taken FMFP before, beware that the lecturer has changed.

⇒ some topics are new!

Functional Programming Spring Semester, 2014

Andreas Lochbihler 7

Overview to part I

1. Introduction, syntax

2. Logic, proofs, correctness

3. Lists

4. Abstraction, higher-order programming

5. Type classes and polymorphism

6. Algebraic data types

7. Lazy evaluation and efficiency

8. Monads, conclusions

Focus on idiomatic programs and provable correctness

Functional Programming Spring Semester, 2014

Andreas Lochbihler 8

Correctness

Ariane 5: $500+ million development, 1 arithmetic overflow
Functional Programming Spring Semester, 2014

Andreas Lochbihler 9

This week and next

• Introduction: basic concepts and some history

• Syntax and base types

� Boring but necessary. Explained only in parts

� Read manuals outside of lectures

EXCITING!

• Proofs and correctness. Exciting, necessary material

� The advantage of functional languages is not just

that you can write clear, concise programs, but

that you can easily understand and demonstrate

what your programs actually do.

� Requires some logic. I will provide a brief refresher.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 10

Does language make a difference?

• Algorithm: a precise recipe describing computation steps.

• Can be presented as:

� a Turing machine

� a register machine

� a Java program

� an executable function description

• Difference in level of abstraction

Which operations are available to model and solve problems?

• Difference in whether reasoning is stateful

Compute values versus update memory

Functional Programming Spring Semester, 2014

Andreas Lochbihler 11

Example: GCD

• The problem
Compute the greatest common divisor of two natural numbers

• Specification
Let x, y ∈ N be given. The number z is the greatest common
divisor of x and y iff z|x and z|y and there is no z′, with z′ > z,

such that z′|x, and z′|y.

Here z|x ≡ ∃a ∈ N . a · z = x

• The problem specification is not constructive

� It does not describe how GCD should be computed

� Euclid gave an algorithm to solve this, ca. 300 BC

Functional Programming Spring Semester, 2014

Andreas Lochbihler 12

GCD as imperative program

public static int gcd (int x, int y) {
while (x != y) {

if (x > y) x = x - y;
else y = y - x;

}
return x;

}

• Consists of control flow and assignment

Assignment changes computer’s state

• To understand program, one must understand how state changes

� Poor man’s reasoning: simulate, tracking memory content

� Better: Hoare logic: {P} prog {Q}
� Formal reasoning possible, but not so easy! See part II

Functional Programming Spring Semester, 2014

Andreas Lochbihler 13

GCD as functional program

gcd x y
| x == y = x
| x > y = gcd (x - y) y
| otherwise = gcd x (y - x)

• Formalizes what should be computed, rather than how

• Is this an algorithm?

Yes, provided we have also specified how functions are executed

• Examples

� 3 + (7− 2) ; 3 + 5 ; 8

� gcd 4 6 ; gcd 4 2 ; gcd 2 2 ; 2

Functional Programming Spring Semester, 2014

Andreas Lochbihler 14

Basic concepts in functional programming

• Functions and values

� Functions compute values

� Functions are values: can compute and return them

• No side effects: f(x) always returns the same value. Compare

class test {
static int y = 0; /* class variable: shared by all objects */
static int f(int x) {

y = y + 1;
return y;

}

public static void main(String[] args) {
System.out.println(f(0));
System.out.println(f(0));

}
}

Functional Programming Spring Semester, 2014

Andreas Lochbihler 15

Basic concepts (cont.)

• Since no side effects, can reason as in mathematics

Example: if f(0) = 2 then f(0) + f(0) = 2 + 2 = 4

• This property is called referential transparency:

an expression evaluates to the same value in every context.

� No assignments

� No global variables

� . . .

• Easy to parallelize as computations cannot interfere.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 16

More basic concepts

• Recursion instead of iteration
gcd x y

| x == y = x
| x > y = gcd (x-y) y
| otherwise = gcd x (y-x)

public static int gcd (int x, int y) {
while (x != y) {

if (x > y) x = x - y;
else y = y - x;

}
return x;

}

• Flexible type system

� Avoids many kinds of programming errors

(e.g., no runtime errors: 3 + True)

� Polymorphism supports reusability

sort [5,3,4]
sort ["hello", "there", "world"]

Functional Programming Spring Semester, 2014

Andreas Lochbihler 17

Functional programming: a short history

• Lambda calculus: Church, 1930s

� Provides a theoretical framework for describing

functions and their evaluation

� Equivalent to Turing machines in terms of computational power

� Church-Turing thesis

• LISP: McCarthy, 1960s

� LISP = List processor. Lists as basic data structure

Example: (”+”, 3, (”–”, 7, 2))

� Developed for symbolic computing/AI applications

� Untyped

� Although primitive, still actively used by AI programmers

� Basis for OS, hardware, . . . (e.g. Symbolics Inc.)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 18

Short history (cont.)

• FP: Backus 1978 (Turing Award Winning Lecture)

� “Can Programming Be Liberated From the von Neumann Style”

� Programming based on building blocks and combinators

� Ideas still relevant!

How does one construct reusable software libraries?

• ML: Milner 1980s

� Powerful (polymorphic, static) type system

� Sophisticated module system, for structuring “in the large”

� Serious industrial applications using successor languages SML

and OCaml. Competitive with OO-approach for complex

software-engineering tasks.

Functional Programming Spring Semester, 2014

Andreas Lochbihler 19

Short history (cont.)

• Miranda: Turner 1985
Similar to ML but features lazy evaluation.

Can compute with representations of

� finite data, like [1,2,3,4,5] or [1 .. 5]

� infinite data [1 ..]

• Haskell: 1992 – present

� State of the art in functional programming languages

with lazy evaluation.

� Many features like an advanced type system, efficient

interpreters and compilers, huge library, . . .

� Influenced other programming languages

(e.g., Curry, Java, Python, C#, F#, Scala)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 20

Using Haskell

• We will use GHC, the Glasgow Haskell Compiler

• Features

� Public domain

� Easy to install on many systems

� Has an interactive interpreter: ghci (fine for assignments)

� Has a compiler producing optimized code

• Actively supported and used in many real-world projects

• See www.haskell.org for binaries, libraries, documentation, ...

Functional Programming Spring Semester, 2014

www.haskell.org

Andreas Lochbihler 21

Introduction to functional programming

• Idea based on computing with expressions

3 + (7− 2) ; 8

The computer functions like an ordinary calculator

• Functions can be defined

? :load gcd.hs

• and executed

? gcd 4 6
2

Functional Programming Spring Semester, 2014

Andreas Lochbihler 22

ghci — demo

? 3 + (7 - 2)
8

? 2 + 4 == 1 + 2 + 3
True

? 2 + True
ERROR: ...

? head [1,2,3]
1

? tail [1,2,3]
[2,3]

? :load gcd.hs
? gcd 10 15
5

Functional Programming Spring Semester, 2014

Andreas Lochbihler 23

Expression evaluation

• In mathematics, e.g., f(x, y) = x− y.

Compute f(5, 7) by substituting 5 for x and 7 for y and

continue evaluation.

f(5, 7) = 5− 7

= −2

gcd x y

| x == y = x

| x > y = gcd (x-y) y

| otherwise = gcd x (y-x)

• Same holds for Haskell:

gcd 10 15 = gcd 10 (15− 10) case 3 (otherwise)

= gcd 10 5 as 5 = 15− 10

= gcd (10− 5) 5 case 2 (10 > 5)

= gcd 5 5 as 5 = 10− 5

= 5 case 1 (5 == 5)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 24

Evaluation: strategies

For the program:

diff x y = x - y

diff (1 + 2) (3 + 4)

diff 3 (3 + 4) diff (1 + 2) 7 (1 + 2)− (3 + 4)

diff 3 7 3− (3 + 4) (1 + 2)− 7

3− 7

−4
• Eager evaluation: evaluate arguments first

� Also called “call-by-value”

� Corresponds to left path in picture

• Lazy evaluation: used in Haskell

� Also called “call-by-need” or “left-most/outermost”

� Certain functions force evaluation, e.g., arithmetic

� We will study this in detail later
Functional Programming Spring Semester, 2014

Andreas Lochbihler 25

Syntax and Types

Functional Programming Spring Semester, 2014

Andreas Lochbihler 26

Introduction to syntax
gcd x y -- functions and arguments start with lower-case letter

| x == y = x
| x > y = gcd (x-y) y -- arguments written in sequence &
| otherwise = gcd x (y-x) -- separated by whitespace

• Function consists of different cases:

functionName x1 ... xn
| guard1 = expr1

:
| guardm = exprm

• Program consists of several definitions:

myConstant = 5

aFunction y1 ... ym
| guard1 = expr1
| guard2 = expr2

anotherFunction z1 ... zk = ...

Functional Programming Spring Semester, 2014

Andreas Lochbihler 27

2D layout
• Indentation determines separation of definitions:

� All function definitions must start at same indentation level.

� If a definition runs over n lines, indent lines 2 to n further.

• Recommended layout:

f1 x1 x2
| a long guard which may go over

a number of lines
= a long expression that also can go over

several lines
| g2 = e2

f2 x1 x2 x3 = ...

• Erroneous layout:

square x = x * x
cube x = x * x * x -- parse error on input ‘=’

• Spaces are important. Do not use TABs!
Functional Programming Spring Semester, 2014

Andreas Lochbihler 28

Types

• Haskell is a strongly typed language

• Types avoid runtime errors, like 3 + True

• Either programmer provides types along with function definition

gcd :: Int -> Int -> Int

or system computes types itself

• Function/argument types must “match” (formal account later)

? gcd 3 True

<interactive>:1:0:
No instance for (Integral Bool)

arising from a use of ‘gcd’

Functional Programming Spring Semester, 2014

Andreas Lochbihler 29

Type Int

• Values: 0, 1, 2, . . . ,−1,−2, . . .

Int type with at least the range {−229, . . . , 229 − 1}
Support for arbitrary bit numbers and arithmetic: Integer

• Functions: +, *, ^, -, div, mod, abs

? mod 7 2
1

• An infix binary function is also called an “operator”

? 7 ‘mod‘ 2
1

• Operators can also be written in prefix notation

? + 3 4
<interactive>:1:0: parse error on input ‘+’
? (+) 3 4
7

Functional Programming Spring Semester, 2014

Andreas Lochbihler 30

Type Int (cont.)

• Operators have different binding strength

? 2 + 3 ^ 4 -- ^ binds stronger than +
83
? (2 + 3) ^ 4
625

• Order and equality return True or False of type Bool
> greater than

>= greater than or equal

== equal

/= unequal

<= less than or equal

< less than

Functional Programming Spring Semester, 2014

Andreas Lochbihler 31

Type Bool

• Values: True, False

• Binary operators &&, ||, and unary function not as expected

? True && False
False

? (10 < 1) || (10 == 1) || (10 > 1)
True

? not (9 >= 7) || (3 /= 3) -- not binds stronger than && and ||
False

? (3 > 5) == (7 < 6) -- (==) on Bool is "if and only if"
True

Functional Programming Spring Semester, 2014

Andreas Lochbihler 32

Examples of function definition — XOR

• xor defined using other operators:

xor x y = (x || y) && not (x && y)

• xor defined using guards:

xor x y
| x = not y
| otherwise = y

• xor defined using cases (new):

xor True True = False
xor True False = True
xor False True = True
xor False False = False

• Cases can contain variables (“patterns”):

xor True y = not y
xor False y = y

Functional Programming Spring Semester, 2014

Andreas Lochbihler 33

Types Char, String, and Double

Char: ’a’, ’b’, ..., ’0’, ’1’, ..., ’\t’, ’\n’.

? ord ’a’ --- requires Char module loaded with :module Data.Char
97
? chr 97
’a’

String: "hello", "123", "a".

? "Hello " ++ "there"
"Hello there"

Double: 0.3456, -2.85e03 = −2.85 ∗ 103, . . .

Functions like +, -, *, /, abs, acos, asin, ceiling, ...

For documentation see:
www.haskell.org/ghc/docs/latest/html/libraries
Functional Programming Spring Semester, 2014

www.haskell.org/ghc/docs/latest/html/libraries

Andreas Lochbihler 34

Type tuple

• Name reflects: pair, triple, 4-tuple, ...

� Used to model composite objects (“records”)

• Example: Student has name, ID number, starting year

Record type (String, Int, Int)

with element ("Ueli Naef", 1234, 2011)

• First example of a type constructor

� if T1, . . . , Tn are types, then (T1, . . . , Tn) is a (tuple) type.

e.g., (Int, String, Bool)

� if v1 :: T1, . . . , vn :: Tn then (v1, . . . , vn) :: (T1, . . . , Tn)

e.g., (3, "hi", True) :: (Int, String, Bool)

� N.B.: n ≥ 2, i.e., ("foo") is not a tuple.

� We can nest tuples: (3, ("hi", True)) :: (Int, (String, Bool))
Functional Programming Spring Semester, 2014

Andreas Lochbihler 35

Tuples

• Functions can take tuples as arguments or return tupled values

addPair :: (Int, Int) -> Int
addPair (x, y) = x + y
? addPair (3, 4)
7

• Patterns can be nested

shift :: ((Int, Int), Int) -> (Int, (Int, Int))
shift ((x, y), z) = (x, (y, z))

• Pattern matching can be used to decompose tuples

name (s, id, y) = s
studentNumber (s, id, y) = id
year (s, id, y) = y

or (probably not sensible)

silly (s, id, y) = id + 2 * y
Functional Programming Spring Semester, 2014

Andreas Lochbihler 36

Patterns and function definition

• Function definition built from both patterns mi and guards gi

fun m1 m2 ... mn
| g1 = e1

:
| gm = em
| otherwise = e -- optional!

� Patterns mi are variables, constants, or built from data

constructors (like tuples)

� Guards gi are Boolean expressions

• Example:

silly b (x, y)
| b = x + y
| otherwise = x * y

Functional Programming Spring Semester, 2014

Andreas Lochbihler 37

Functions: scope

• Global scope: a function can be called from any other

f x y = ...
g x = ... h ...
h z = ... f ... g ...

• Local scope with “let” and “where”

let x1 = e1
:

xn = en
in e

• let builds one expression from others:

� xi can bind a variable or a (local) function

� Local definitions may refer to each other

Functional Programming Spring Semester, 2014

Andreas Lochbihler 38

Functions: scope (cont.)

• Example:

f x = let sq y = y * y
in sq x + sq x

We can evaluate f 10, but not sq 10

let y = a * b
f x = (x + y) / 2

in f c + f d

Functional Programming Spring Semester, 2014

Andreas Lochbihler 39

WHERE: local scope after a function definition

f p1 p2 ... pm
| g1 = e1
| g2 = e2

:
| gk = ek
where

v1 a1 ... an = r1
v2 = r2
:

N.B.

• “where” comes directly after a function definition

• Bindings defined over all guards

Functional Programming Spring Semester, 2014

Andreas Lochbihler 40

Program definition with local definitions

• Let’s define a function that takes three numbers and returns the

largest and how often it occurs

maxThreeOccurs :: Int -> Int -> Int -> (Int, Int)

• Top-down development

maxThreeOccurs n m p = (maxVal, maxCount)
where

maxVal = max3 n m p
maxCount = count maxVal n m p

• Then write the new subroutines

max3 a b c = max a (max b c)

count val n m p = isval n + isval m + isval p
where

isval x
| x == val = 1
| otherwise = 0

Functional Programming Spring Semester, 2014

Andreas Lochbihler 41

Example (cont.)

• Alternative structure where all definitions are local

maxThreeOccurs n m p = (maxVal, maxCount)
where

maxVal = max3 n m p
maxCount = count maxVal n m p
count val n m p = ...
max3 a b c = max a (max b c)

• Which program is better?

� No general answer

� Depends on how general the defined functions are

Functional Programming Spring Semester, 2014

Andreas Lochbihler 42

2D layout for let and where

• let and where open blocks for local definitions.

Layout rule applies here, too.

� First definition determines indentation for all definitions in block.

� Multi-line definitions must indent more.

� Less indentation closes block.

maxThreeOccurs n m p = (maxVal, maxCount)
where
maxVal = max3 n m p
maxCount = count maxVal n m p
count val n m p = isval n + isval m + isval p
where
isval n -- isval local to count
| n == val = 1
| otherwise = 0

max3 a b c = max a (max b c)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 42

2D layout for let and where

• let and where open blocks for local definitions.

Layout rule applies here, too.

� First definition determines indentation for all definitions in block.

� Multi-line definitions must indent more.

� Less indentation closes block.

maxThreeOccurs n m p = (maxVal, maxCount)
where
maxVal = max3 n m p
maxCount = count maxVal n m p
count val n m p = isval n + isval m + isval p
where
isval n -- isval local to count
| n == val = 1
| otherwise = 0

max3 a b c = max a (max b c)

• Spaces are important. Do not use TABs!
Functional Programming Spring Semester, 2014

Andreas Lochbihler 43

Converting to/from String

• show converts values to Strings

? show 23
"23"

? show True
"True"

? show (17, ’a’)
"(17,’a’)"

? show (17 + 42)
"59"

Functional Programming Spring Semester, 2014

Andreas Lochbihler 43

Converting to/from String

• show converts values to Strings

? show 23
"23"

? show True
"True"

? show (17, ’a’)
"(17,’a’)"

? show (17 + 42)
"59"

• read converts Strings to values

always specify desired type

? read "23" :: Integer
23

? read "23" :: Double
23.0

? read "(17, ’a’)" :: (Int, Char)
(17,’a’)

? (read "17" :: Int) + (read "42" :: Int)
59

? read "17+42" :: Int
*** Exception: Prelude.read: no parse

Functional Programming Spring Semester, 2014

Andreas Lochbihler 44

Input and Output
• How would we write a program like the following in Haskell?

void f(String out) {
String inp1 = Console.readLine();
String inp2 = Console.readLine();
if (inp2.equals(inp1))

System.out.println(out); }

Functional Programming Spring Semester, 2014

Andreas Lochbihler 44

Input and Output
• How would we write a program like the following in Haskell?

void f(String out) {
String inp1 = Console.readLine();
String inp2 = Console.readLine();
if (inp2.equals(inp1))

System.out.println(out); }

• Assume there would be functions

getLine :: String

putStrLn :: String -> () -- () is the unit type in Haskell

f :: String -> ()
f out = let

inp1 = getLine
inp2 = getLine

in if inp2 == inp1
then putStrLn out
else ()

Functional Programming Spring Semester, 2014

Andreas Lochbihler 44

Input and Output
• How would we write a program like the following in Haskell?

void f(String out) {
String inp1 = Console.readLine();
String inp2 = Console.readLine();
if (inp2.equals(inp1))

System.out.println(out); }

• Assume there would be functions

getLine :: String

putStrLn :: String -> () -- () is the unit type in Haskell

f :: String -> ()
f out = let

inp1 = getLine
inp2 = getLine

in if inp2 == inp1
then putStrLn out
else ()

� What does inp2 == inp1 evaluate to?

� In which order are arguments evaluated?

� These functions cause side-effects!
Which state changes?

Functional Programming Spring Semester, 2014

Andreas Lochbihler 45

IO: Input and Output

• Cannot use normal functions putStrLn and getLine

• Tag types with IO to capture side effects
getLine :: IO String
putStrLn :: String -> IO ()

• Syntax for IO type:

� do block sequences side effects

� <- extracts values from IO

� return tags values with IO

f :: String -> ()
f out = let

inp1 = getLine
inp2 = getLine

in if inp2 == inp1
then putStrLn out
else ()

f :: String -> IO ()
f out = do

inp1 <- getLine
inp2 <- getLine
if inp2 == inp1

then putStrLn out
else return ()

Functional Programming Spring Semester, 2014

Andreas Lochbihler 46

main

• main :: IO () is the entry function for Haskell programs

main :: IO ()
main = do

putStrLn "Enter your name:"
name <- getLine
putStrLn ("Hello, " ++ name ++ "!")

• compile with GHC

> ghc hello.hs
> ./hello
Enter your name:
Andreas
Hello, Andreas!

• run within GHCi

> ghci
? :load hello.hs
? main
Enter your name:
Andreas
Hello, Andreas!

Functional Programming Spring Semester, 2014

Andreas Lochbihler 47

No escape from IO

• IO tag sticks to values

Can compute with IO values only in do blocks

� Clumsier than with pure expressions

� Results are tagged, too.

• Stay out of IO as long as possible

• Separate computations from user interface

Side effects

main :: IO ()
main = do

n <- getLine
m <- getLine
let x = gcd (read n) (read m)
putStrLn (show x)

Pure

gcd :: Int -> Int -> Int
gcd x y

| x == y = x
| x > y = gcd (x-y) y
| otherwise = gcd x (y-x)

Functional Programming Spring Semester, 2014

Andreas Lochbihler 47

No escape from IO

• IO tag sticks to values

Can compute with IO values only in do blocks

� Clumsier than with pure expressions

� Results are tagged, too.

NB:
Inside a do block,
let needs no in

• Stay out of IO as long as possible

• Separate computations from user interface

Side effects

main :: IO ()
main = do

n <- getLine
m <- getLine
let x = gcd (read n) (read m)
putStrLn (show x)

Pure

gcd :: Int -> Int -> Int
gcd x y

| x == y = x
| x > y = gcd (x-y) y
| otherwise = gcd x (y-x)

Functional Programming Spring Semester, 2014

