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Overview

• Review of higher-order functions

� Functions as arguments

� Functions as results

• Case study: matrix operations

• Haskell’s type system
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First-order versus higher-order functions

• First-order functions

fo1 :: Int -> Int
fo1 x = x + 3

fo2 :: Int -> Int -> Int
fo2 x y = x + y + x * y

• Higher-order functions

ho1 :: (Int -> Int) -> Int
ho1 f = f 2

ho2 :: (Int -> a) -> a
ho2 f = f 2

? ho2 (\x->x+3)
5 :: Int

• Which order is the function: mystery x = x ?
Functional Programming Spring Semester, 2012
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Examples: map, filter, and fold

map :: (a→ b)→ [a]→ [b]

map f [] = []
map f (x:xs) = f x : map f xs

filter :: (a→ Bool)→ [a]→ [a]

filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

foldr :: (a→ b→ b)→ b→ [a]→ b

foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)
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These abstract general operations

Map: iteratively apply a function to each element

? map (2*) [1 .. 5]
[2, 4, 6, 8, 10] :: [Int]

? map (>2) [1 .. 5]
[False, False, True, True, True] :: [Bool]

Filter: selection

? filter (>2) [1 .. 5]
[3, 4, 5] :: [Int]

? filter (2>) [1 .. 5]
[1] :: [Int]

Fold: use function to “combine” elements

? foldr (+) 0 [1 .. 5]
15 :: Int
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Examples with filter

• Remove elements with property p (i.e., select those with ¬p)

remove p = filter (not . p)

? remove (>2) [1 .. 5]
[1, 2] :: [Int]

• Partition lists using p

part p xs = (filter p xs, remove p xs)

? part (>2) [1 .. 5]
([3, 4, 5],[1, 2]) :: ([Int],[Int])

• Which partitioning function is better? In what sense?

partition p [] = ([],[])
partition p (x:xs)

| p x = (x:yesses, nos)
| otherwise = (yesses, x:nos)
where (yesses, nos) = partition p xs
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Quick sort (again)

• Quick sort with partition

quicksort [] = []
quicksort (x:xs) = quicksort left ++ [x] ++ quicksort right

where (left,right) = partition (<= x) xs

• Which program is better?

q [] = []
q (x:xs) = q [y | y<-xs, y <= x] ++ [x] ++ q [y | y<-xs, y > x]

r [] = []
r (x:xs) = r left ++ (x : r right)

where (left,right) = partition (<= x) xs
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Map and filter versus list comprehension

• map and filter can be implemented using list comprehension

map f xs = [f x | x <- xs]
filter p xs = [x | x <- xs, p x]

• Converse holds too: [expr | p <- s] implemented as1

let fun p = expr in map fun s

Example

? [2*x | (x,_) <- [(1,2),(3,4),(5,6)]]
[2, 6, 10] :: [Int]

? let fun (x,_) = 2*x in map fun [(1,2),(3,4),(5,6)]
[2, 6, 10] :: [Int]

1Equal only when pattern matching with p succeeds on all elements of s. Exercise: generalize to allow for failure.
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Comprehension (cont.)

• Guards require filter: [expr | p <- xs, guard] translated as

let fun p = expr
pred p = guard

in map fun (filter pred xs)

• Example

? [2 * x | x <- [1 .. 5], x > 2]
[6, 8, 10] :: [Int]

becomes

? let fun x = 2 * x
pred x = (x>2)

in map fun (filter pred [1 .. 5])
[6, 8, 10] :: [Int]
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An example with fold

• foldr: right-associative fold

foldr (⊕) e [l1, l2, . . . , ln] = l1 ⊕ (l2 ⊕ . . .⊕ (ln ⊕ e))

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

• foldl: left-associative fold

foldl (⊕) e [l1, l2, . . . , ln] = ((e⊕ l1)⊕ l2)⊕ . . .⊕ ln

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e
foldl f e (x:xs) = foldl f (f e x) xs
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Fold (cont.)

• No difference for associative functions (and e is neutral element)

? foldl (+) 0 [1,2,3] -- ((0 + 1) + 2) + 3
6 :: Int

? foldr (+) 0 [1,2,3] -- 1 + (2 + (3 + 0))
6 :: Int

• But not all (binary) functions are associative

? foldl (-) 0 [1,2,3] -- ((0 - 1) - 2) - 3
-6 :: Int

? foldr (-) 0 [1,2,3] -- 1 - (2 - (3 - 0))
2 :: Int

• How does one implement length with foldr and with foldl?

Functional Programming Spring Semester, 2012
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Implementing length with foldr

foldr (⊕) e [l1, l2, l3] = l1 ⊕ (l2 ⊕ (l3 ⊕ e))

Solution with 1 + (1 + (1 + 0))

length xs = foldr (\_ y -> 1+y) 0 xs

? length [’a’, ’b’, ’c’]
3 :: Int

Compare with the “standard” definition

length [] = 0
length (x:xs) = 1 + length xs

where

length [’a’,’b’,’c’] = 1 + length [’b’,’c’] = ... = 1+(1+(1+0))

Solution with foldl: Exercise!
Functional Programming Spring Semester, 2012
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Functions as “first-class objects”

• Simple examples (ignoring complications of type classes):

? :type \x -> x
a -> a

? :type \x -> x + 1
Int -> Int

• Composition as example:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

twice f = f . f

? :type twice (1+)
Int -> Int

? twice (1+) 7
9 :: Int
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Partial application

g :: Int -> Int -> Int
g x y = x + 2 * y

h :: Int -> Int
h = g 1

? h 10
21 :: Int

? map (g 10) [1,2,3,4,5] -- Partial application
[12, 14, 16, 18, 20] :: [Int]

? map (10 ‘g‘) [1,2,3,4,5] -- Left section
[12, 14, 16, 18, 20] :: [Int]

? map (‘g‘ 10) [1,2,3,4,5] -- Right section
[21, 22, 23, 24, 25] :: [Int]

? map (\x -> g x 10) [1,2,3,4,5]
[21, 22, 23, 24, 25] :: [Int]
Functional Programming Spring Semester, 2012
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Reminder

• Zipper function

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

• Example zip [2, 3, 4] [4, 5, 78] = [(2, 4), (3, 5), (4, 78)]

zip [2, 3] [1, 2, 3] = [(2, 1), (3, 2)]

• Uncurry

uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry g = f

where f (x,y) = g x y

• Example

g x y = x * y + 17

? uncurry g (3,4)
29 :: Int

Functional Programming Spring Semester, 2012
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Case study: operations on matrices and vectors

• Vectors and matrices over Int

type Vector = [Int]
type Matrix = [Vector]

• Vector addition

vecAdd :: Vector -> Vector -> Vector
vecAdd v1 v2 = map (uncurry (+)) (zip v1 v2)

? vecAdd [1,2,3] [2,2,4]
[3, 4, 7] :: [Int]

• Combination of zip and binary functions is common

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ = []

vecAdd :: Vector -> Vector -> Vector
vecAdd = zipWith (+)
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Matrix case study (cont.)

• n×m matrix 
a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
... ... ...

an,1 an,2 . . . an,m



Can be represented column-wise using lists

[[a1,1, a2,1, . . . , an,1], [a1,2, a2,2, . . . , an,2], . . . , [a1,m, a2,m, . . . , an,m]]

• Addition of matrices

matAdd :: Matrix -> Matrix -> Matrix
matAdd = zipWith vecAdd

? matAdd [[1,2,3],[4,5,6]] [[7,8,9],[10,11,12]]
[[8,10,12],[14,16,18]] :: [[Int]]
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Transposing a matrix

• A list of columns is converted to a list of rows
a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
... ... ...

an,1 a2,2 . . . an,m

 →


a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2
... ... ...

a1,m a2,m . . . an,m



tr :: Matrix -> Matrix
tr [] = []
tr [v] = map (\x -> [x]) v
tr (v:vs) = zipWith (:) v (tr vs)

tr [[1,2]]
[[1], [2]] :: [[Int]]

? tr [[1,2],[3,4]]
[[1, 3], [2, 4]] :: [[Int]]
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Example of transposition

tr [[1, 2], [3, 4]] = zipWith (:) [1, 2] (tr[[3, 4]])

= zipWith (:) [1, 2] (map (λx. [x]) [3, 4])

= zipWith (:) [1, 2] [[3], [4]]

= (1 : [3]) : zipWith (:) [2][[4]]

= (1 : [3]) : ((2 : [4]) : zipWith (:) [] [])

= (1 : [3]) : ((2 : [4]) : [])

= [[1, 3], [2, 4]]

Functional Programming Spring Semester, 2012
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Scalar (dot) product of two vectors

• Sum of product of vectors v and w: v · w =
∑

i viwi

• Program

skProd :: Vector -> Vector -> Int
skProd v w = sum (zipWith (*) v w)

? skProd [1,2,3] [4,5,6]
32 :: Int
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Matrix multiplication

• We first multiply an n×m matrix with an m× 1 column vector

vecMult :: Matrix -> Vector -> Vector
vecMult m v = map (‘skProd‘ v) (tr m)

? vecMult [[1,2,3],[4,5,6]] [7,8]
[39,54,69] :: [Int]

• Matrix multiplication iterates this operation over an m× k matrix

matMult :: Matrix -> Matrix -> Matrix
matMult m1 m2 = map (vecMult m1) m2

? matMult [[1,2,3],[4,5,6]] [[7,8],[9,10]]
[[39,54,69],[49,68,87]] :: [[Int]]

Functional Programming Spring Semester, 2012
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Conclusion

• First-order programming

� Programming with elements of base types, like True or 13

� Close to machine architecture

• Higher-order programming

� Functions are first-class objects

• Increases abstraction and ways of constructing programs

• Other advantages like reusability and rapid prototyping
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Typing
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Type checking: an overview

• Type checking should prevent “dangerous expressions”,

e.g., 2 + True

• Dangerous expressions =⇒ runtime error

• Undecidable problem!

Bad Expressions

Expressions
Typeable

Slack

Functional Programming Spring Semester, 2012
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Typing overview (cont.)

Bad Expressions

Expressions
Typeable

Slack• Objectives for a type checker

� quick, decidable, static analysis

� permit as much generality/re-usability as possible

� prevent runtime errors: subject reduction

If e ↪→ e′ and ` e :: τ , then ` e′ :: τ .

• Typing is a very rich topic (theory of programming)

� We examine here a simplified language: ‘Mini-Haskell’

Functional Programming Spring Semester, 2012
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Mini-Haskell — syntax

• Programs are terms (let variables V and integers Z be given)
t ::= V

∣∣ (λx. t) ∣∣ (t1 t2) ∣∣
True

∣∣ False ∣∣ (iszero t)
∣∣

Z
∣∣ (t1 + t2)

∣∣ (t1 ∗ t2) ∣∣ (if t0 then t1 else t2)
∣∣

(t1, t2)
∣∣ (fst t)

∣∣ (snd t)

• Small but powerful language. Corresponds to fragment of Haskell

iszero :: Int -> Bool
iszero x = x == 0

? (if (iszero (2*0)) then (fst (2,3)) else (snd (2,3)))
2 :: Int

? ((\f x -> (if (iszero x) then (f 2) else (f 3)))
((\x y -> y + x) 2) 5)

5 :: Int

• Not all terms are meaningful, e.g. (iszero (λx. x))
Functional Programming Spring Semester, 2012
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Mini-Haskell — comments

• Core is λ-calculus: variables, abstraction, and application

(λx. ((x y) (λy. (x y))))

• Additional syntax and types can be easily added, e.g.,

&&, ||, Strings, . . .

• We will also employ syntactic sugar, like omitting parenthesis

x y z instead ((x y) z)

τ1→ τ2→ τ3 instead (τ1→ (τ2→ τ3))

• A substantial simplification of Haskell — but the central core!

Functional Programming Spring Semester, 2012
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Typing

• Types (VT is a set of type variables: a, b, . . . )

τ ::= VT | Bool | Int | (τ, τ) | (τ → τ)

• Examples: a, Int, (Int,Bool), ((a→ Int)→ (a, a)), . . .

• Type system notation based on typing judgement: A ` t :: τ

� A is a set of bindings xi : τi, mapping variables to types.

Intuitively A represents a kind of typing “symbol table”.

� t is a term

� τ is a type

• Intuition: given symbol table A, then t has type τ

x : Int ` x+ 2 :: Int x : Int, f : Bool→ Bool 6` f x :: Bool
Functional Programming Spring Semester, 2012
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Typing — proof system

• Proof rules formulated in terms of type judgements J

J1 . . . Jn
J

• Example axiom (n ∈ {. . . ,−1, 0, 1, . . .}): A ` n :: Int

• Example rule (op ∈ {+, ∗}):

A ` t1 :: Int A ` t2 :: Int
A ` (t1 op t2) :: Int

• Proofs built from rules and axioms

x : Int ` 2 :: Int
...

x : Int ` (x+ 1) :: Int
x : Int ` (2 + (x+ 1)) :: Int

Functional Programming Spring Semester, 2012
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Rules for core λ-calculus

• Axiom: . . . , x : τ, . . . ` x :: τ

• Abstraction (x 6∈ A):
A, x : σ ` t :: τ

A ` (λx. t) :: σ → τ

• Application:
A ` t1 :: σ → τ A ` t2 :: σ

A ` (t1 t2) :: τ

• Examples:

x : a ` x :: a
` λx. x :: a→ a

x : a, y : b ` x :: a
x : a ` λy. x :: b→ a
` λx. λy. x :: a→ b→ a

• Exercise:

` λx. λy. λz. (xz)(yz) :: (a→ (b→ c))→ (a→ b)→ (a→ c)
Functional Programming Spring Semester, 2012
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Examples in ghc

? :type \x -> x
\x -> x :: a -> a

? :type \x y -> x
\x y -> x :: a -> b -> a

? :type \x y z -> x z (y z)
\x y z -> x z (y z) :: (a -> b -> c) -> (a -> b) -> a -> c

? :type (\z -> z) (\x y -> x)
(\z -> z) (\x y -> x) :: a -> b -> a

Functional Programming Spring Semester, 2012
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Curry-Howard isomorphism

• Propositions as types

� Type constructor “→” corresponds to propositional logic

connective “⇒”

� Atomic types correspond to propositional variables

• Rules correspond to those for (minimal) propositional logic

. . . , τ, . . . ` τ
A, σ ` τ
A ` σ ⇒ τ

A ` σ ⇒ τ A ` σ
A ` τ

• Example τ, σ ` τ
τ ` σ ⇒ τ
` τ ⇒ σ ⇒ τ

• Correspondence actually quite deep
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Further typing rules for mini-Haskell

• Base types

A ` n :: Int A ` True :: Bool A ` False :: Bool

• Operations (op ∈ {+, ∗}):

A ` t :: Int
A ` (iszero t) :: Bool

A ` t1 :: Int A ` t2 :: Int
A ` (t1 op t2) :: Int

A ` t0 :: Bool A ` t1 :: τ A ` t2 :: τ
A ` (if t0 then t1 else t2) :: τ

• Tuples

A ` t1 :: τ1 A ` t2 :: τ2
A ` (t1, t2) :: (τ1, τ2)

A ` t :: (τ1, τ2)
A ` (fst t) :: τ1

A ` t :: (τ1, τ2)
A ` (snd t) :: τ2

Example
x : Int ` x :: Int x : Int ` 2 :: Int

x : Int ` x+ 2 :: Int
` λx. x+ 2 :: Int→ Int
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Examples (cont.)

• A larger example

x : Int ` x :: Int x : Int ` 2 :: Int
x : Int ` x+ 2 :: Int
` λx. x+ 2 :: Int→ Int

` 2 :: Int ` True :: Bool
` (2, T rue) :: (Int,Bool)
` fst (2, T rue) :: Int

` (λx. x+ 2) (fst (2, T rue)) :: Int

• Examples in ghc

? :t (\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True)))
(\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True))) :: Int
? (\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True)))
8 :: Int

? :t \p-> (snd p) (fst p)
\p -> snd p (fst p) :: (a,a -> b) -> b

Functional Programming Spring Semester, 2012
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Type Classes
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Monomorphic versus polymorphic

• Some functions are monomorphic

xor x y = (x || y) && (not (x && y))

? :type xor
xor :: Bool -> Bool -> Bool

• Others are polymorphic

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

? :type (++)
(++) :: [a] -> [a] -> [a]

• Monomorphic or polymorphic?

allEqual x y z = (x == y) && (y == z)
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Example (cont.)

• Type of allEqual x y z = (x == y) && (y == z) ?

? allEqual 4 (2 + 2) (1+3)
True :: Bool

? allEqual "hi there" ("hi " ++ "there") (’h’:("i there"))
True :: Bool

? allEqual (\x -> x + 1) (1+) (+1)
ERROR: ...

• Haskell type

allEqual :: Eq a => a -> a -> a -> Bool
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Type classes — a “middle way”

• Polymorphism restricted using class constraints

allEqual :: Eq a => a -> a -> a-> Bool
allEqual x y z = (x == y) && (y == z)

Functions for precisely those types a that belong to the class Eq

• A class defines a set of types. E.g., Eq is the equality class

� Int ∈ Eq
? allEqual 3 (2+1) (1+2)
True :: Bool

� Int→ Int 6∈ Eq
? allEqual (\x -> x + 1) (1+) (+1)
ERROR: a -> a is not an instance of class "Eq"
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Definition of the Eq class

• Definition (from Prelude.hs)

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

• Definition includes

Class name: Eq
Signature: List of function names and types

(Optional Standard-)Definitions: can be overwritten later

• Elements of the class are called instances

Functional Programming Spring Semester, 2012
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Examples of Eq constrained types

• Classes allow restricted form of type generalization

allEqual :: Int -> Int -> Int -> Bool
allEqual n m p = (n == m) && (m == p)

• Most general type

allEqual :: Eq t => t -> t -> t -> Bool

• Element of a list

elem :: Eq t => t -> [t] -> Bool

elem _ [] = False
elem a (x:xs) = (a == x) || elem a xs
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Instances

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

• instance builds instances by “interpreting” signature functions

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

• Instances of primitive types like Int or Float use built-in

(primitive) equalities
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Example: visible (and measurable) types

class Visible t where
toString :: t -> String
size :: t -> Int

instance Visible Char where
toString ch = [ch]
size _ = 1

instance Visible Bool where
toString True = "Wahr"
toString False = "Falsch"
size b = 1

? (toString ’e’) ++ "ine " ++ (toString True) ++ "e Aussage"
"eine Wahre Aussage" :: [Char]
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Example (cont.)

• If t is visible, then a list of type [t] is also visible

instance Visible t => Visible [t] where
toString xs = concat (map toString xs)
size xs = foldr (+) 0 (map size xs)

? size [True,False]
2 :: Int

? toString [True,False]
"WahrFalsch" :: [Char]

So class membership can depend on membership for other types

• Equality over lists

instance Eq a => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
_ == _ = False

Functional Programming Spring Semester, 2012
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Derived classes

• Classes themselves can also depend on type conditions

class Eq a => Ord a where
(<), (>), (<=), (>=) :: a -> a -> Bool
max, min :: a -> a -> a

x < y = x <= y && x /= y
x >= y = y <= x
x > y = y <= x && x /= y

max x y | x <= y = y
| otherwise = x

min x y | x <= y = x
| otherwise = y

• If a belongs to Ord, then a must also belong to Eq

• Functions for Eq are inherited and some new ones must be given.

instance Ord Int where (<=) = primLeInt
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Class hierarchies

• Classes can be hierarchically structured
class Eq a where ...

class Eq a => Ord a where ...

class Ord a => Bounded a where
minBound, maxBound :: a

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a ...

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a ...

• Inheritance hierarchies like in OO-programming

• Other similarities, like defaults and overriding
Functional Programming Spring Semester, 2012



David Basin 46

Quick sort (again)

• Which type?

sort [] = []
sort (a:x) = sort [y | y<-x, y<=a] ++ [a] ++ sort [y | y<-x, y>a]

• Operations <= and > require Ord a => [a] -> [a]

• Ord instances for many Haskell types defined in Haskell Prelude

? sort [5,4,7]
[4, 5, 7] :: [Int]

? sort ["banana", "apple", "carrot"]
["apple", "banana", "carrot"] :: [[Char]]

? sort [True, False, True]
[False, True, True] :: [Bool]
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Example (cont.)

• Parameterization allows further orders (per type)

sort’ ord [] = []
sort’ ord (a:x) = sort’ ord [y | y<-x, ord y a ]

++ [a] ++ sort’ ord [y | y<-x, not(ord y a)]

? sort’ (<) [2,5,3]
[2, 3, 5] :: [Int]

? sort’ (>) [2,5,3]
[5, 3, 2] :: [Int]

? sort’ (\x y -> x ‘mod‘ 10 < y ‘mod‘ 10) [21,55,30,8,92,15]
[30, 21, 92, 55, 15, 8] :: [Int]

? sort’ (\x y -> reverse x < reverse y) ["apple","banana","peach"]
["banana", "apple", "peach"] :: [[Char]]
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Type classes and resolution of overloading

• Execution of (parametric) polymorphic functions is independent of

type of arguments

• Classes implement “ad hoc” polymorphism

� Operation depends on argument types

• Selection of the actual function:

During compilation: if argument types are statically known.

Run time: using “look-up” tables. Analogous to method look-up.
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Conclusion: typing in Haskell

• Haskell features a powerful type system

� Parametric polymorphic functions

� Overloading of functions using type classes

• Type checking is automatic

� No proofs, but instead type inference

• Secure type system

� prevents runtime errors, e.g., 2 + True

� and offers considerable flexibility, e.g., quick sort

Functional Programming Spring Semester, 2012


