
Conclusion

David Basin

Department of Computer Science
ETH Zurich

Functional Programming



David Basin 1

Programming paradigms

• Haskell is a so-called pure functional programming language

� It is “pure” in that functions have by default no side effects

� Features list comprehension, higher-order functions, strong type

system, algebraic data types, lazy evaluation, . . .

• Other FP languages: LISP, Scheme, SML, Ocaml, F#, Scala, . . .

� None of their type systems guarantees side-effect freeness

• Other programming paradigms

imperative: e.g., Pascal, C, and FORTRAN

object-oriented: e.g., Smalltalk, Java, and C++

logic: e.g., Prolog

• From computer scientists one can expect some “multi-linguality”

Functional Programming Spring Semester, 2012



David Basin 2

Programming languages: why study another one?

• All general-purpose programming languages are equivalent

Formally: they are Turing complete and can express the same

class of (partial, recursive) functions

• Although the same functions can be computed, algorithms are

formalized differently

Formalization as a RAM is different from formalization in Java,

which is different from formalization in Haskell . . .

• Approaches have their pros and cons

We summarize some of the important differences

Functional Programming Spring Semester, 2012



David Basin 3

Values versus states (I)

• A functional program describes values

sumSquares :: Int -> Int
sumSquares 0 = 0 -- Direct description
sumSquares n = n*n + sumSquares (n-1) --

Described by equations constituting the function definition.

Functional Programming Spring Semester, 2012



David Basin 4

Values versus states (II)

• An imperative program describes how memory is updated.

s = 0;
i = 0;
while (i < n) {

i = i+1;
s = i*i + s;

}

� Consists of commands that update the content of memory.

� Memory models primitive data.

� No analogy to data-driven solutions where computation driven

by need to generate data rather than explicitly by programmer.

sumSquares’ n = sum (map (^2) [1 .. n])

Functional Programming Spring Semester, 2012



David Basin 5

Functions and variables

• Functional programs

� Function returns value depending only on input

sumSquares n = n ∗ n+ sumSquares (n− 1)

sumSquares 6 = 6 ∗ 6 + sumSquares (6− 1)

� Analogous to functions in mathematics

f(x, y) = 2 · x− y

f(6, 3) = 2 · 6− 3

• This referential transparency fails for imperative programs

• Critical difference: variables in functional programs do not vary!

Functional Programming Spring Semester, 2012



David Basin 6

Program verification (functional)

• Functional programs describe their properties

sumSquares 0 = 0

or for n > 0,

sumSquares n = n ∗ n+ sumSquares(n− 1)

• Proofs through equational reasoning or by induction

sumSquares 1 = 1 ∗ 1 + sumSquares (1− 1) = 1 + 0 = 1

Functional Programming Spring Semester, 2012



David Basin 7

Program verification (imperative)

• Imperative programs lack referential transparency

class test {
static int y=0;

static int f(int x) {
y = y+1;
return(y); };

public static void main (String args[]){
System.out.println(f(0));
System.out.println(f(0)); }

}

• Verification with respect to program points using

pre-/postconditions describing sets of states

• It is (relatively) difficult to verify non-trivial programs

Functional Programming Spring Semester, 2012



David Basin 8

Compositionality

• Functional programs

� Functions serve both as building blocks and as glue

� Referential transparency enables compositional reasoning

• Imperative programs

� Control-structures such as if-then-else are glue that construct

commands from commands

if b then c1 else c2 while b do c

� Glue is fixed!

� Less compositional reasoning due to lack of referential

transparency

Functional Programming Spring Semester, 2012



David Basin 9

Types and abstraction

• Functional programs

� Strong type system ⇒ fewer errors at runtime

� Polymorphism and type classes (Haskell/ghc)

� Abstraction over data and control

• Imperative programs

� Typically a weaker type system ⇒ more runtime errors

� Abstraction over data through object orientation and generics

� Cumbersome abstraction over control

Functional Programming Spring Semester, 2012



David Basin 10

Efficiency

• Functional programs

� Programs are high-level and far from machine architecture,

but referential transparency enables further optimizations.

� Lazy evaluation more difficult to implement

• Imperative programs

� Complexity is easier to assess and control

� Closer to hardware level

� Direct influence on representation of data in memory

• Haskell programs can often be optimized to ≤ 2 ∗ speed of C

• Other factors are often more important than efficiency, e.g.,

developer productivity, correctness, safety (no buffer overflows),

libraries, . . .

Functional Programming Spring Semester, 2012



David Basin 11

Haskell Outlook

Functional Programming Spring Semester, 2012



David Basin 12

Haskell usage

• Haskell has a thriving and exceptionally friendly user community

Website: www.haskell.org
Maling List: haskell-cafe@haskell.org
Blogs: planet.haskell.org
IRC: #haskell on freenode.net

Reddit: http://www.reddit.com/r/haskell/
Libraries: hackage.haskell.org

• Commercial users of functional programming

� Website: cufp.org (includes a job board)

� Credit Suisse: Modeling and analysis of financial products

� Galois: High-assurance applications (e.g., for the US DoD)

� Bluespec: Hardware design languages and automation

Functional Programming Spring Semester, 2012

www.haskell.org
haskell-cafe@haskell.org
planet.haskell.org
freenode.net
http://www.reddit.com/r/haskell/
hackage.haskell.org
cufp.org


David Basin 13

Haskell research

• Functional programming is an active research topic

Conferences: ICFP, Haskell Symposium, IFL, POPL

Abstraction: embedded languages, generic programming

Concurrency: Data Parallel Haskell, STM

Efficiency: compilation techniques, data structures

Correctness: type and proof systems, testing

⇒ Haskell is likely to become even better in the future

Functional Programming Spring Semester, 2012



David Basin 14

Research highlight: the L4.verified project

• A truly trustworthy, high-performance operating system kernel

with a machine-checked proof of its functional correctness w.r.t.

a high level, formal description of its expected behaviour.

http://ertos.nicta.com.au/research/l4.verified/

Functional Programming Spring Semester, 2012

http://ertos.nicta.com.au/research/l4.verified/


David Basin 15

Mechanized theorem proving

• Complex formal proofs are constructed using proof assistants

• In our research group, we use the Isabelle/HOL proof assistant

• Chance for an exciting student project, bachelor/master thesis
Functional Programming Spring Semester, 2012



David Basin 16

End of part I

• Starting next class: part II on Formal Methods

Peter Müller takes over.

• If you are interested in a student project, bachelors thesis, or

masters thesis using functional programming or logic, please

contact one of the organizers of this course.

Functional Programming Spring Semester, 2012


