
Higher-order Programming
and Types

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

Overview

• Review of higher-order functions

� Functions as arguments

� Functions as results

• Case study: matrix operations

• Haskell’s type system

Functional Programming Spring Semester, 2012

David Basin 2

First-order versus higher-order functions

• First-order functions

fo1 :: Int -> Int
fo1 x = x + 3

fo2 :: Int -> Int -> Int
fo2 x y = x + y + x * y

• Higher-order functions

ho1 :: (Int -> Int) -> Int
ho1 f = f 2

ho2 :: (Int -> a) -> a
ho2 f = f 2

? ho2 (\x->x+3)
5 :: Int

• Which order is the function: mystery x = x ?
Functional Programming Spring Semester, 2012

David Basin 3

Examples: map, filter, and fold

map :: (a→ b)→ [a]→ [b]

map f [] = []
map f (x:xs) = f x : map f xs

filter :: (a→ Bool)→ [a]→ [a]

filter p [] = []
filter p (x:xs)

| p x = x : filter p xs
| otherwise = filter p xs

foldr :: (a→ b→ b)→ b→ [a]→ b

foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

Functional Programming Spring Semester, 2012

David Basin 4

These abstract general operations

Map: iteratively apply a function to each element

? map (2*) [1 .. 5]
[2, 4, 6, 8, 10] :: [Int]

? map (>2) [1 .. 5]
[False, False, True, True, True] :: [Bool]

Filter: selection

? filter (>2) [1 .. 5]
[3, 4, 5] :: [Int]

? filter (2>) [1 .. 5]
[1] :: [Int]

Fold: use function to “combine” elements

? foldr (+) 0 [1 .. 5]
15 :: Int

Functional Programming Spring Semester, 2012

David Basin 5

Examples with filter

• Remove elements with property p (i.e., select those with ¬p)

remove p = filter (not . p)

? remove (>2) [1 .. 5]
[1, 2] :: [Int]

• Partition lists using p

part p xs = (filter p xs, remove p xs)

? part (>2) [1 .. 5]
([3, 4, 5],[1, 2]) :: ([Int],[Int])

• Which partitioning function is better? In what sense?

partition p [] = ([],[])
partition p (x:xs)

| p x = (x:yesses, nos)
| otherwise = (yesses, x:nos)
where (yesses, nos) = partition p xs

Functional Programming Spring Semester, 2012

David Basin 6

Quick sort (again)

• Quick sort with partition

quicksort [] = []
quicksort (x:xs) = quicksort left ++ [x] ++ quicksort right

where (left,right) = partition (<= x) xs

• Which program is better?

q [] = []
q (x:xs) = q [y | y<-xs, y <= x] ++ [x] ++ q [y | y<-xs, y > x]

r [] = []
r (x:xs) = r left ++ (x : r right)

where (left,right) = partition (<= x) xs

Functional Programming Spring Semester, 2012

David Basin 7

Map and filter versus list comprehension

• map and filter can be implemented using list comprehension

map f xs = [f x | x <- xs]
filter p xs = [x | x <- xs, p x]

• Converse holds too: [expr | p <- s] implemented as1

let fun p = expr in map fun s

Example

? [2*x | (x,_) <- [(1,2),(3,4),(5,6)]]
[2, 6, 10] :: [Int]

? let fun (x,_) = 2*x in map fun [(1,2),(3,4),(5,6)]
[2, 6, 10] :: [Int]

1Equal only when pattern matching with p succeeds on all elements of s. Exercise: generalize to allow for failure.

Functional Programming Spring Semester, 2012

David Basin 8

Comprehension (cont.)

• Guards require filter: [expr | p <- xs, guard] translated as

let fun p = expr
pred p = guard

in map fun (filter pred xs)

• Example

? [2 * x | x <- [1 .. 5], x > 2]
[6, 8, 10] :: [Int]

becomes

? let fun x = 2 * x
pred x = (x>2)

in map fun (filter pred [1 .. 5])
[6, 8, 10] :: [Int]

Functional Programming Spring Semester, 2012

David Basin 9

An example with fold

• foldr: right-associative fold

foldr (⊕) e [l1, l2, . . . , ln] = l1 ⊕ (l2 ⊕ . . .⊕ (ln ⊕ e))

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e [] = e
foldr f e (x:xs) = f x (foldr f e xs)

• foldl: left-associative fold

foldl (⊕) e [l1, l2, . . . , ln] = ((e⊕ l1)⊕ l2)⊕ . . .⊕ ln

foldl :: (b -> a -> b) -> b -> [a] -> b

foldl f e [] = e
foldl f e (x:xs) = foldl f (f e x) xs

Functional Programming Spring Semester, 2012

David Basin 10

Fold (cont.)

• No difference for associative functions (and e is neutral element)

? foldl (+) 0 [1,2,3] -- ((0 + 1) + 2) + 3
6 :: Int

? foldr (+) 0 [1,2,3] -- 1 + (2 + (3 + 0))
6 :: Int

• But not all (binary) functions are associative

? foldl (-) 0 [1,2,3] -- ((0 - 1) - 2) - 3
-6 :: Int

? foldr (-) 0 [1,2,3] -- 1 - (2 - (3 - 0))
2 :: Int

• How does one implement length with foldr and with foldl?

Functional Programming Spring Semester, 2012

David Basin 11

Implementing length with foldr

foldr (⊕) e [l1, l2, l3] = l1 ⊕ (l2 ⊕ (l3 ⊕ e))

Solution with 1 + (1 + (1 + 0))

length xs = foldr (_ y -> 1+y) 0 xs

? length [’a’, ’b’, ’c’]
3 :: Int

Compare with the “standard” definition

length [] = 0
length (x:xs) = 1 + length xs

where

length [’a’,’b’,’c’] = 1 + length [’b’,’c’] = ... = 1+(1+(1+0))

Solution with foldl: Exercise!
Functional Programming Spring Semester, 2012

David Basin 12

Functions as “first-class objects”

• Simple examples (ignoring complications of type classes):

? :type \x -> x
a -> a

? :type \x -> x + 1
Int -> Int

• Composition as example:

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

twice f = f . f

? :type twice (1+)
Int -> Int

? twice (1+) 7
9 :: Int

Functional Programming Spring Semester, 2012

David Basin 13

Partial application

g :: Int -> Int -> Int
g x y = x + 2 * y

h :: Int -> Int
h = g 1

? h 10
21 :: Int

? map (g 10) [1,2,3,4,5] -- Partial application
[12, 14, 16, 18, 20] :: [Int]

? map (10 ‘g‘) [1,2,3,4,5] -- Left section
[12, 14, 16, 18, 20] :: [Int]

? map (‘g‘ 10) [1,2,3,4,5] -- Right section
[21, 22, 23, 24, 25] :: [Int]

? map (\x -> g x 10) [1,2,3,4,5]
[21, 22, 23, 24, 25] :: [Int]
Functional Programming Spring Semester, 2012

David Basin 14

Reminder

• Zipper function

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

• Example zip [2, 3, 4] [4, 5, 78] = [(2, 4), (3, 5), (4, 78)]

zip [2, 3] [1, 2, 3] = [(2, 1), (3, 2)]

• Uncurry

uncurry :: (a -> b -> c) -> (a,b) -> c
uncurry g = f

where f (x,y) = g x y

• Example

g x y = x * y + 17

? uncurry g (3,4)
29 :: Int

Functional Programming Spring Semester, 2012

David Basin 15

Case study: operations on matrices and vectors

• Vectors and matrices over Int

type Vector = [Int]
type Matrix = [Vector]

• Vector addition

vecAdd :: Vector -> Vector -> Vector
vecAdd v1 v2 = map (uncurry (+)) (zip v1 v2)

? vecAdd [1,2,3] [2,2,4]
[3, 4, 7] :: [Int]

• Combination of zip and binary functions is common

zipWith :: (a -> b -> c) -> [a] -> [b] -> [c]
zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ = []

vecAdd :: Vector -> Vector -> Vector
vecAdd = zipWith (+)

Functional Programming Spring Semester, 2012

David Basin 16

Matrix case study (cont.)

• n×m matrix 
a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
...

an,1 an,2 . . . an,m



Can be represented column-wise using lists

[[a1,1, a2,1, . . . , an,1], [a1,2, a2,2, . . . , an,2], . . . , [a1,m, a2,m, . . . , an,m]]

• Addition of matrices

matAdd :: Matrix -> Matrix -> Matrix
matAdd = zipWith vecAdd

? matAdd [[1,2,3],[4,5,6]] [[7,8,9],[10,11,12]]
[[8,10,12],[14,16,18]] :: [[Int]]

Functional Programming Spring Semester, 2012

David Basin 17

Transposing a matrix

• A list of columns is converted to a list of rows
a1,1 a1,2 . . . a1,m

a2,1 a2,2 . . . a2,m
...

an,1 a2,2 . . . an,m

 →


a1,1 a2,1 . . . an,1

a1,2 a2,2 . . . an,2
...

a1,m a2,m . . . an,m



tr :: Matrix -> Matrix
tr [] = []
tr [v] = map (\x -> [x]) v
tr (v:vs) = zipWith (:) v (tr vs)

tr [[1,2]]
[[1], [2]] :: [[Int]]

? tr [[1,2],[3,4]]
[[1, 3], [2, 4]] :: [[Int]]

Functional Programming Spring Semester, 2012

David Basin 18

Example of transposition

tr [[1, 2], [3, 4]] = zipWith (:) [1, 2] (tr[[3, 4]])

= zipWith (:) [1, 2] (map (λx. [x]) [3, 4])

= zipWith (:) [1, 2] [[3], [4]]

= (1 : [3]) : zipWith (:) [2][[4]]

= (1 : [3]) : ((2 : [4]) : zipWith (:) [] [])

= (1 : [3]) : ((2 : [4]) : [])

= [[1, 3], [2, 4]]

Functional Programming Spring Semester, 2012

David Basin 19

Scalar (dot) product of two vectors

• Sum of product of vectors v and w: v · w =
∑

i viwi

• Program

skProd :: Vector -> Vector -> Int
skProd v w = sum (zipWith (*) v w)

? skProd [1,2,3] [4,5,6]
32 :: Int

Functional Programming Spring Semester, 2012

David Basin 20

Matrix multiplication

• We first multiply an n×m matrix with an m× 1 column vector

vecMult :: Matrix -> Vector -> Vector
vecMult m v = map (‘skProd‘ v) (tr m)

? vecMult [[1,2,3],[4,5,6]] [7,8]
[39,54,69] :: [Int]

• Matrix multiplication iterates this operation over an m× k matrix

matMult :: Matrix -> Matrix -> Matrix
matMult m1 m2 = map (vecMult m1) m2

? matMult [[1,2,3],[4,5,6]] [[7,8],[9,10]]
[[39,54,69],[49,68,87]] :: [[Int]]

Functional Programming Spring Semester, 2012

David Basin 21

Conclusion

• First-order programming

� Programming with elements of base types, like True or 13

� Close to machine architecture

• Higher-order programming

� Functions are first-class objects

• Increases abstraction and ways of constructing programs

• Other advantages like reusability and rapid prototyping

Functional Programming Spring Semester, 2012

David Basin 22

Functional Programming Spring Semester, 2012

David Basin 23

Typing

Functional Programming Spring Semester, 2012

David Basin 24

Type checking: an overview

• Type checking should prevent “dangerous expressions”,

e.g., 2 + True

• Dangerous expressions =⇒ runtime error

• Undecidable problem!

Bad Expressions

Expressions
Typeable

Slack

Functional Programming Spring Semester, 2012

David Basin 25

Typing overview (cont.)

Bad Expressions

Expressions
Typeable

Slack• Objectives for a type checker

� quick, decidable, static analysis

� permit as much generality/re-usability as possible

� prevent runtime errors: subject reduction

If e ↪→ e′ and ` e :: τ , then ` e′ :: τ .

• Typing is a very rich topic (theory of programming)

� We examine here a simplified language: ‘Mini-Haskell’

Functional Programming Spring Semester, 2012

David Basin 26

Mini-Haskell — syntax

• Programs are terms (let variables V and integers Z be given)
t ::= V

∣∣ (λx. t) ∣∣ (t1 t2) ∣∣
True

∣∣ False ∣∣ (iszero t)
∣∣

Z
∣∣ (t1 + t2)

∣∣ (t1 ∗ t2) ∣∣ (if t0 then t1 else t2)
∣∣

(t1, t2)
∣∣ (fst t)

∣∣ (snd t)

• Small but powerful language. Corresponds to fragment of Haskell

iszero :: Int -> Bool
iszero x = x == 0

? (if (iszero (2*0)) then (fst (2,3)) else (snd (2,3)))
2 :: Int

? ((\f x -> (if (iszero x) then (f 2) else (f 3)))
((\x y -> y + x) 2) 5)

5 :: Int

• Not all terms are meaningful, e.g. (iszero (λx. x))
Functional Programming Spring Semester, 2012

David Basin 27

Mini-Haskell — comments

• Core is λ-calculus: variables, abstraction, and application

(λx. ((x y) (λy. (x y))))

• Additional syntax and types can be easily added, e.g.,

&&, ||, Strings, . . .

• We will also employ syntactic sugar, like omitting parenthesis

x y z instead ((x y) z)

τ1→ τ2→ τ3 instead (τ1→ (τ2→ τ3))

• A substantial simplification of Haskell — but the central core!

Functional Programming Spring Semester, 2012

David Basin 28

Typing

• Types (VT is a set of type variables: a, b, . . .)

τ ::= VT | Bool | Int | (τ, τ) | (τ → τ)

• Examples: a, Int, (Int,Bool), ((a→ Int)→ (a, a)), . . .

• Type system notation based on typing judgement: A ` t :: τ

� A is a set of bindings xi : τi, mapping variables to types.

Intuitively A represents a kind of typing “symbol table”.

� t is a term

� τ is a type

• Intuition: given symbol table A, then t has type τ

x : Int ` x+ 2 :: Int x : Int, f : Bool→ Bool 6` f x :: Bool
Functional Programming Spring Semester, 2012

David Basin 29

Typing — proof system

• Proof rules formulated in terms of type judgements J

J1 . . . Jn
J

• Example axiom (n ∈ {. . . ,−1, 0, 1, . . .}): A ` n :: Int

• Example rule (op ∈ {+, ∗}):

A ` t1 :: Int A ` t2 :: Int
A ` (t1 op t2) :: Int

• Proofs built from rules and axioms

x : Int ` 2 :: Int
...

x : Int ` (x+ 1) :: Int
x : Int ` (2 + (x+ 1)) :: Int

Functional Programming Spring Semester, 2012

David Basin 30

Rules for core λ-calculus

• Axiom: . . . , x : τ, . . . ` x :: τ

• Abstraction (x 6∈ A):
A, x : σ ` t :: τ

A ` (λx. t) :: σ → τ

• Application:
A ` t1 :: σ → τ A ` t2 :: σ

A ` (t1 t2) :: τ

• Examples:

x : a ` x :: a
` λx. x :: a→ a

x : a, y : b ` x :: a
x : a ` λy. x :: b→ a
` λx. λy. x :: a→ b→ a

• Exercise:

` λx. λy. λz. (xz)(yz) :: (a→ (b→ c))→ (a→ b)→ (a→ c)
Functional Programming Spring Semester, 2012

David Basin 31

Examples in ghc

? :type \x -> x
\x -> x :: a -> a

? :type \x y -> x
\x y -> x :: a -> b -> a

? :type \x y z -> x z (y z)
\x y z -> x z (y z) :: (a -> b -> c) -> (a -> b) -> a -> c

? :type (\z -> z) (\x y -> x)
(\z -> z) (\x y -> x) :: a -> b -> a

Functional Programming Spring Semester, 2012

David Basin 32

Curry-Howard isomorphism

• Propositions as types

� Type constructor “→” corresponds to propositional logic

connective “⇒”

� Atomic types correspond to propositional variables

• Rules correspond to those for (minimal) propositional logic

. . . , τ, . . . ` τ
A, σ ` τ
A ` σ ⇒ τ

A ` σ ⇒ τ A ` σ
A ` τ

• Example τ, σ ` τ
τ ` σ ⇒ τ
` τ ⇒ σ ⇒ τ

• Correspondence actually quite deep

Functional Programming Spring Semester, 2012

David Basin 33

Further typing rules for mini-Haskell

• Base types

A ` n :: Int A ` True :: Bool A ` False :: Bool

• Operations (op ∈ {+, ∗}):

A ` t :: Int
A ` (iszero t) :: Bool

A ` t1 :: Int A ` t2 :: Int
A ` (t1 op t2) :: Int

A ` t0 :: Bool A ` t1 :: τ A ` t2 :: τ
A ` (if t0 then t1 else t2) :: τ

• Tuples

A ` t1 :: τ1 A ` t2 :: τ2
A ` (t1, t2) :: (τ1, τ2)

A ` t :: (τ1, τ2)
A ` (fst t) :: τ1

A ` t :: (τ1, τ2)
A ` (snd t) :: τ2

Example
x : Int ` x :: Int x : Int ` 2 :: Int

x : Int ` x+ 2 :: Int
` λx. x+ 2 :: Int→ Int

Functional Programming Spring Semester, 2012

David Basin 34

Examples (cont.)

• A larger example

x : Int ` x :: Int x : Int ` 2 :: Int
x : Int ` x+ 2 :: Int
` λx. x+ 2 :: Int→ Int

` 2 :: Int ` True :: Bool
` (2, T rue) :: (Int,Bool)
` fst (2, T rue) :: Int

` (λx. x+ 2) (fst (2, T rue)) :: Int

• Examples in ghc

? :t (\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True)))
(\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True))) :: Int
? (\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True)))
8 :: Int

? :t \p-> (snd p) (fst p)
\p -> snd p (fst p) :: (a,a -> b) -> b

Functional Programming Spring Semester, 2012

David Basin 35

Type Classes

Functional Programming Spring Semester, 2012

David Basin 36

Monomorphic versus polymorphic

• Some functions are monomorphic

xor x y = (x || y) && (not (x && y))

? :type xor
xor :: Bool -> Bool -> Bool

• Others are polymorphic

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

? :type (++)
(++) :: [a] -> [a] -> [a]

• Monomorphic or polymorphic?

allEqual x y z = (x == y) && (y == z)

Functional Programming Spring Semester, 2012

David Basin 37

Example (cont.)

• Type of allEqual x y z = (x == y) && (y == z) ?

? allEqual 4 (2 + 2) (1+3)
True :: Bool

? allEqual "hi there" ("hi " ++ "there") (’h’:("i there"))
True :: Bool

? allEqual (\x -> x + 1) (1+) (+1)
ERROR: ...

• Haskell type

allEqual :: Eq a => a -> a -> a -> Bool

Functional Programming Spring Semester, 2012

David Basin 38

Type classes — a “middle way”

• Polymorphism restricted using class constraints

allEqual :: Eq a => a -> a -> a-> Bool
allEqual x y z = (x == y) && (y == z)

Functions for precisely those types a that belong to the class Eq

• A class defines a set of types. E.g., Eq is the equality class

� Int ∈ Eq
? allEqual 3 (2+1) (1+2)
True :: Bool

� Int→ Int 6∈ Eq
? allEqual (\x -> x + 1) (1+) (+1)
ERROR: a -> a is not an instance of class "Eq"

Functional Programming Spring Semester, 2012

David Basin 39

Definition of the Eq class

• Definition (from Prelude.hs)

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

• Definition includes

Class name: Eq
Signature: List of function names and types

(Optional Standard-)Definitions: can be overwritten later

• Elements of the class are called instances

Functional Programming Spring Semester, 2012

David Basin 40

Examples of Eq constrained types

• Classes allow restricted form of type generalization

allEqual :: Int -> Int -> Int -> Bool
allEqual n m p = (n == m) && (m == p)

• Most general type

allEqual :: Eq t => t -> t -> t -> Bool

• Element of a list

elem :: Eq t => t -> [t] -> Bool

elem _ [] = False
elem a (x:xs) = (a == x) || elem a xs

Functional Programming Spring Semester, 2012

David Basin 41

Instances

class Eq a where
(==), (/=) :: a -> a -> Bool
x /= y = not (x==y)

• instance builds instances by “interpreting” signature functions

instance Eq Bool where
True == True = True
False == False = True
_ == _ = False

• Instances of primitive types like Int or Float use built-in

(primitive) equalities

Functional Programming Spring Semester, 2012

David Basin 42

Example: visible (and measurable) types

class Visible t where
toString :: t -> String
size :: t -> Int

instance Visible Char where
toString ch = [ch]
size _ = 1

instance Visible Bool where
toString True = "Wahr"
toString False = "Falsch"
size b = 1

? (toString ’e’) ++ "ine " ++ (toString True) ++ "e Aussage"
"eine Wahre Aussage" :: [Char]

Functional Programming Spring Semester, 2012

David Basin 43

Example (cont.)

• If t is visible, then a list of type [t] is also visible

instance Visible t => Visible [t] where
toString xs = concat (map toString xs)
size xs = foldr (+) 0 (map size xs)

? size [True,False]
2 :: Int

? toString [True,False]
"WahrFalsch" :: [Char]

So class membership can depend on membership for other types

• Equality over lists

instance Eq a => Eq [a] where
[] == [] = True
(x:xs) == (y:ys) = x==y && xs==ys
_ == _ = False

Functional Programming Spring Semester, 2012

David Basin 44

Derived classes

• Classes themselves can also depend on type conditions

class Eq a => Ord a where
(<), (>), (<=), (>=) :: a -> a -> Bool
max, min :: a -> a -> a

x < y = x <= y && x /= y
x >= y = y <= x
x > y = y <= x && x /= y

max x y | x <= y = y
| otherwise = x

min x y | x <= y = x
| otherwise = y

• If a belongs to Ord, then a must also belong to Eq

• Functions for Eq are inherited and some new ones must be given.

instance Ord Int where (<=) = primLeInt

Functional Programming Spring Semester, 2012

David Basin 45

Class hierarchies

• Classes can be hierarchically structured
class Eq a where ...

class Eq a => Ord a where ...

class Ord a => Bounded a where
minBound, maxBound :: a

class (Eq a, Show a) => Num a where
(+), (-), (*) :: a -> a -> a ...

class (Num a, Ord a) => Real a where
toRational :: a -> Rational

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a -> a ...

• Inheritance hierarchies like in OO-programming

• Other similarities, like defaults and overriding
Functional Programming Spring Semester, 2012

David Basin 46

Quick sort (again)

• Which type?

sort [] = []
sort (a:x) = sort [y | y<-x, y<=a] ++ [a] ++ sort [y | y<-x, y>a]

• Operations <= and > require Ord a => [a] -> [a]

• Ord instances for many Haskell types defined in Haskell Prelude

? sort [5,4,7]
[4, 5, 7] :: [Int]

? sort ["banana", "apple", "carrot"]
["apple", "banana", "carrot"] :: [[Char]]

? sort [True, False, True]
[False, True, True] :: [Bool]

Functional Programming Spring Semester, 2012

David Basin 47

Example (cont.)

• Parameterization allows further orders (per type)

sort’ ord [] = []
sort’ ord (a:x) = sort’ ord [y | y<-x, ord y a]

++ [a] ++ sort’ ord [y | y<-x, not(ord y a)]

? sort’ (<) [2,5,3]
[2, 3, 5] :: [Int]

? sort’ (>) [2,5,3]
[5, 3, 2] :: [Int]

? sort’ (\x y -> x ‘mod‘ 10 < y ‘mod‘ 10) [21,55,30,8,92,15]
[30, 21, 92, 55, 15, 8] :: [Int]

? sort’ (\x y -> reverse x < reverse y) ["apple","banana","peach"]
["banana", "apple", "peach"] :: [[Char]]

Functional Programming Spring Semester, 2012

David Basin 48

Type classes and resolution of overloading

• Execution of (parametric) polymorphic functions is independent of

type of arguments

• Classes implement “ad hoc” polymorphism

� Operation depends on argument types

• Selection of the actual function:

During compilation: if argument types are statically known.

Run time: using “look-up” tables. Analogous to method look-up.

Functional Programming Spring Semester, 2012

David Basin 49

Conclusion: typing in Haskell

• Haskell features a powerful type system

� Parametric polymorphic functions

� Overloading of functions using type classes

• Type checking is automatic

� No proofs, but instead type inference

• Secure type system

� prevents runtime errors, e.g., 2 + True

� and offers considerable flexibility, e.g., quick sort

Functional Programming Spring Semester, 2012

