Natural Deduction

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

Formal reasoning about systems

e Requirements

1. Language
2. Semantics
3. Deductive system for carrying out proofs

e Metatheorems relate these, e.g., soundness and completeness

» We focus on (1) and (3) and only comment briefly on (2)
» Most of this should be a review (logic/discrete math)

e Proofs are essential for both parts of the course

Some formality now allows (slightly) less formality later

Functional Programming Spring Semester, 2012

David Basin

I=" Natural deduction
e Propositional logic
e First-order logic

e Equality

Functional Programming

Road map

Spring Semester, 2012

David Basin

Natural Deduction

e Developed by Gentzen (1930s) and Prawitz (1960s)

e Rules are used to construct derivations under assumptions.

Aq,..., A, F A denotes that A follows from A4, ..., A,,.

e Derivations are trees

A BFA A B+FB
A BFAANB \
AFB—-AANB

-A—B—~AAB

N-1

\

e A proof is a derivation where root has no assumptions

Functional Programming Spring Semester, 2012

David Basin

Natural Deduction: an abstract example

e Language £ ={®,®, xX,+}

e Deductive system given by rules of proof:

I' =4
—
I'-®

'+ TF® T'Fx T,+Fa

.., A ...FA axiom

y)

[' = X I'-® I'=®

Last rule says that assumption + may be discharged

e Proof of @&

Functional Programming

+ F 4+ +F +
Q
+F® + F x
~
++ &
)

- @

Spring Semester, 2012

David Basin

e Natural deduction
=" Propositional logic
e First-order logic

e Equality

Functional Programming

Road map

Spring Semester, 2012

David Basin 6

Propositional Logic: syntax

e Propositions are built from a collection of variables and closed
under disjunction, conjunction, implication, . . .

e More formally: Let a set V of variables be given. Lp, the
language of propositional logic, is the smallest set where:

» Xelpif XeV.

> Le L,

» ANBelLpifAe Lpand B € Lp.
» AVBeLpifAe Lpand B € Lp.
» A—-BeLpifAe Lpand B € Lp.

e In following, X ranges over variables and A and B over formulae

Functional Programming Spring Semester, 2012

David Basin 7

Propositional Logic: semantics

e A valuation o : V — {True, False} is a function mapping
variables to truth values. Let Valuations be the set of valuations.

Valuations are simple kinds of models (interpretations).
e Satisfiability: smallest relation = C Valuations x Lp such that
» 0 = X, if 0(X) = True
» co=AANB, ifc=Aand o =B
» coFAVB, ifco=Aoroc =B
» 0 = A — B, if whenever ¢ = A then 0 = B

e A formula A € Lp is valid (a tautology) if

o = A, for all valuations o

e Semantic entailment: A;,.. A, F Aif
forall o, if o = Ay, ..., 0 = A, theno = A

Functional Programming Spring Semester, 2012

David Basin 8

Requirements for a deductive system

e Syntactic entailment F and semantic entailment = should agree

e [his requirement has two parts:

Soundness: If H - A can be derived, then H = A
Completeness: If H = A, then H - A can be derived

For H = A4,..., A, some collection of formulae.
e These are key requirements for any logic

e Decidability is another important property

What is the complexity of determining if a proposition is
satisfiable? A tautology?

Functional Programming Spring Semester, 2012

David Basin 9

Natural Deduction: basics

e A sequent is an assertion (judgement) of the form
Ay, ..., A, FA
where all A, Aq,... A,, are propositional formulae

e Intuitively: A follows from the A;

If logic is sound, this means A; semantically entail A

e Axiom: starting point for building derivation trees

LA, ...FA axiom

e A proof of A is a derivation tree with root - A.

If logic is sound, then A is a tautology

Functional Programming Spring Semester, 2012

David Basin 10

Conjunction

e Rules of two kinds: introduce and eliminate connectives

I'-A I'+B I'FAAB I'FAAB
N-1 N-EL N-ER
I'FAAB I'-A I'-B

e Each rule is sound in that it preserves semantic entailment.
E.g., for A-/

'=Aand'=BthenT'=AAB

e If all rules preserve semantic entailment, logic is sound. (proof?)

Functional Programming Spring Semester, 2012

David Basin

Conjunction (cont.)

I'-A I'B I'FAAB I'FAAB

I'FAAB I'-A I'-B

e Example derivation where ' = A A (B A C)

'-AAN(BAC)
N-ER
'-AAN(BAC) '-BAC
N-EL N-ER
- A FFC/\I

I'EFAANC

Note implicit use of axiom at derivation’s leaves

e Can we prove anything with just these three rules?

N-1 N-EL N-ER

11

Equivalently: which (purely conjunctive) formulae are tautologies?

Functional Programming Spring Semester, 2012

David Basin 12

Implication

e Rules
I''AFB I'MHrA— B T'HA

S -

'A—B I'B

~

e Application of —-/ turns last derivation into a proof

ANBANC)FANC
FAAN(BAC)— ANC

e Examples: (— right associative and A binds stronger than —)

~FA—+B— A
F(A—-B—-C)—-(A—B)—-A—=C
F(AAB) — (BANA)

Functional Programming Spring Semester, 2012

David Basin 13

Disjunction

e Rules
' A I'-B
V- V-IR
I'HAvV B I'-AvV B
I'-rAvB T''’AFC T'BFC
V-E

I'=cC

e Elimination rule formalizes proof by cases

e Example: formalize and prove

When it rains then | wear my jacket
When it snows then | wear my jacket
It Is raining or snowing

Therefore | wear my jacket

Functional Programming Spring Semester, 2012

David Basin 14

Falsity and Negation

e Falsity
' =1
— |-E
I'-A

e Negation: define ~A as A — 1.

I'-—A T'HA
I'-—A T'FHA i s-FE
derived by 'L
I'-AB —— | -E
I'-RB

Functional Programming Spring Semester, 2012

David Basin 15

Intuitionistic versus Classical Logic

e Peirce’s Law: ((A — B) — A) — A. s this valid? Provable?

e \We have only intuitionistic logic. Classical logic requires either:

» Axiom of excluded middle: AV —A [-AFL PAA
» or rule “Reductio ad absurdum” ' A

e Example: There exist irrationals a and b such that a® is rational
Proof: Let b be v/2 and consider whether or not b is rational

Case 1: If rational, let a = b = /2
Case 2: If irrational, let a = \/§ﬂ then

\/5 k
ab:\/?/§ :\/5(\/5\@):\/52:2

Functional Programming Spring Semester, 2012

David Basin 16

Road map

e Natural deduction
e Propositional logic

I=" First-order logic

» Syntax: variables over domain + functions, relations, quantifiers
» Semantics: interpreting domain, functions, and relations

e Equality

Functional Programming Spring Semester, 2012

David Basin 17

First-order Logic: Syntax

e Two syntactic categories: terms and formulae

e Let a finite collection of function symbols F and predicates P be
given (a signature) as well as a set V' of variables

Write f* [or p'] to indicate function symbol f [predicate p] has
arity t €¢ N
e Term, the terms in first-order logic, is the smallest set where

1. x € Termif x €), and
2. f™(t1,...,tn) € Termif f* € F and t; € Term, for all

1<j)<n

N.B. constants are 0-ary function symbols

Functional Programming Spring Semester, 2012

David Basin 18

Syntax (cont.)

e form, the formulae in first-order logic, is the smallest set where

1. 1€ Form,
2. p"(t1,...,ty) € Form if p" € P and t; € Term, for all
1 <7 <n,
3. = € Form if ¢ € Form,
4. pop € Formif ¢ € Form, b € Form and o € {A,V,—1},
5. Vx.¢ € Form and dz.¢ € Form if ¢ € Form and x € V

e All occurrences of a variable in a formula are bound or free.

(q(x) V 3o Vy.p(f(x),2) Nqla)) VVz.r(x, 2,9(7))

A variable occurrence x in a formula ¢ is bound if x occurs within
a subformula of ¢ of the form dx.v or Vx.

Functional Programming Spring Semester, 2012

David Basin 19

Semantics

e A structure is a pair A = (U4, I 4) where U4 is an nonempty set,
the universe, and I 4 is a mapping where

1. T4(p™) is an m-ary relation on Uy, for p™ € P,
2. TA(f™) is an n-ary (total) function on Uy, for f™* € F, and
3. I4(x) is an element of Uy, for each x € V

As shorthand, write p™ for I 4(p), etc.

e For A a structure, define the value of a term ¢ under A, written

A(t) by

1. A(z) = x4, for x € V, and
2. A(f(t1, ..., tn) = fAA(t), ..., A(tn))

Functional Programming Spring Semester, 2012

David Basin

20

Semantics (cont.)

Define the (truth-)value of formula ¢, written A(¢) under A as:

A(L) = False
[True
A(p(tla SR 7tn)) _ <\ False
" True
Al=9) = <\ False
(True
Alvz.¢) = <\ False
(True
ATz ¢) = False

\

Here Ay, /4 is the structure A’

Functional Programming

if (A(t1),...,A(tn)) € pA

otherwise
if A(¢) = False
if A(¢) = True

if for all u € Uy, Apy/2(¢) = True
otherwise

if for some u € Ua, Ay, /z)(¢) = True
otherwise

identical to A, except A = .

Spring Semester, 2012

David Basin 21

Semantics (cont.)

e When A(¢) = True, we write A = ¢ and say ¢ is satisfied with
respect to A or A is a model of . When every suitable
structure is a model, we write = ¢ and say ¢ is valid.

e If there is at least one model for ¢, ¢ is satisfiable
(and contradictory otherwise).

e Complexity of these problems?

Functional Programming Spring Semester, 2012

David Basin 22

An example

Va.p(z, s(x))

e A model:
Us = N
pt = {(m,n) | m,ne Uy, and m < n}
s = the successor function on Uy

= je,sMz)=x+1

e Not a model:
Ug = {a,b,c}

pA — {(&7 b)v (av C)}

s”* = the identity function

Functional Programming Spring Semester, 2012

David Basin 23

More examples
Which of following are satisfiable? Valid?

o Vx.dyyx2==x

satisfied WRT rationals

o r <y—dzx<zAz<y

satisfied WRT any dense order

e dr.x #0

satisfied WRT domains with > 2 elements

o (Vz.p(x,x)) — pla,a)
valid

Functional Programming Spring Semester, 2012

David Basin 24

Universal quantification

e Rules '+ P(x) ['Vz. P(x)

'+ Vz. P(x) ' P(t)

%k

Side condition (*): x not free in any assumptions in T'.

e Why the side condition? Consider the following “derivation”.

r=0Fx=0
r=0FVr.2=0
Fr=0—>Vr.z=0
FVe.(xr =0— Ve.x =0)

V-1

V-1

e N.B. we continue to use rules from propositional logic, but now
for first-order formulas.

Functional Programming Spring Semester, 2012

David Basin 25

Universal quantification (cont.)

e |s the following a proof?

Ve.dy.x #y - Ve.dy.x # vy

Ve.dy.x £y Jyy £y
- (Ve.dyx #y) = (Jyy # y)

V-E
-

e Conclusion is not valid. Reason: false if U4 has > 2 elements.

e Proof incorrect. Reason: substitution must be capture-avoiding.

l.e., ¥y must not occur free in substituted term ¢, where here t = y.

e This detail concerns substitution (and renaming of bound
variables), not V-E.

Functional Programming Spring Semester, 2012

David Basin

Universal quantification (cont.)

e Prove: Vz. A(z) A B(x) — Vx. A(z) A V. B(x)

e Proof: LetI' =Vzx. A(z) A B(x)

['FVe. A(x) A B(x) [Ve A(x) A B(x)
[+ A(z) A B(z) vE [+ A(z) A B(z) vE
T A AEL '+ B NER
(@) (@)
'V, A(x) ['-Vz. B(x)

N-1

\

' -Vx. A(x) AVx. B(x)
- (Vx. A(z) A B(x)) — (Vo. A(x) A V. B(x))

e Is it correct? Yes, check side conditions of V-/

26

Functional Programming Spring Semester, 2012

David Basin 27

Existential quantification

e Rules

LEA®) o, Tr3rA@ TA@FB_
[+ 3z. Az) [+ B '

Side condition (*): x not free in B or I.

e Sample derivation, assuming x does not occur free in B
Let ' =Vx.A(x) — B,3dz. A(z), A(x)
['+Vx.A(x) — B
V-E
I'-A(z) - B '+ A(x)
Ve A(x) — B,3z. A(x) - 3x. A(x) I'+-B
Ve.A(x) - B,3z. A(x) - B
Vo.A(z) — BF (3z. A(z)) — B
- (Vz. A(z) — B) — ((3z. A(z)) — B)

Functional Programming Spring Semester, 2012

—-E

3-E

—-1

s-|

David Basin 28

Road map

e Natural deduction
e Propositional logic
e First-order logic

Iz Equality

Functional Programming Spring Semester, 2012

David Basin 29

FOL with equality

e Equality is a logical symbol with associated proof rules

One speaks of first-order logic with equality rather than
equality being “just another predicate”

e Extended language: t1 =ty € Form if t1,t5 € Term

e Semantics: recall a structure is a pair A = (U4, I 4) and [4(2) is
the interpretation of ¢.

True [4(s) = 14(1)
False otherwise

 Ials =)= {

Note the three completely different uses of “=" here!

Functional Programming Spring Semester, 2012

David Basin 30

Equality

e Equality is an equivalence relation

I'Ft= I'Ft=s I'ks=
I'Ft=1t ref Ssym = i trans

e Equality is also a congruence on terms and all (definable) relations

Fl—tlzsl F"tn:Sn
C'Er(ty,...,th) =7(81,...,8n)

cong;

Fl—tlzsl F"tn:Sn Fl‘A(tl,,tn)
' A(s1,...,85)

cong,

e Soundness: equality in I 4 is a congruence

Functional Programming Spring Semester, 2012

David Basin 31

On the shape of proofs

o Let I' =a(b) =d(e), f(d(e)) = g(h). Prove I' - f(a(b)) = g(h)

cong

e In general, any equality proof can be converted into such a linear
style. We will usually carry out equality reasoning this linear way.

e We will see many examples shortly, e.g., in proofs by induction.

Functional Programming Spring Semester, 2012

David Basin 32

What next?

e We consider the correctness question for functional programs.
e | will usually not write formal proofs using these rules.

e However, all proofs given can be translated to formal ones.

e You should check this, also for your own proofs.

e Topic is also of central importance in course’'s second half.

Functional Programming Spring Semester, 2012

