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Monads: What’s it all about?

• Model various computational features in a uniform way.

E.g. partiality, state, exceptions, non-determinism, I/O, ...

• Idea: separate values from computations producing the values:

f :: a → b ordinary function, returns value of type b

f :: a → M b monadic function, returns computation M b

• M is a type constructor satisfying certain properties (monad laws).

By varying M, we can model different notions of computation.

• Every monad supports two basic operations: embedding a value

into a computation and the composing computations.

• Explains side-effects in a functional context and helps designing

controlled side effects.
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Outline

Part I – A gentle introduction to monads by examples

• Partial functions

• Monad type class and monad laws

• Input/output

• Stateful computations

Part II – Case study: monadic interpreters

• Standard and monadic interpreter for mini-Haskell

• Variant 1: improved error handling

• Variant 2: counting the number of evaluation steps

• Variant 3: non-deterministic computation

• Variant 4: tracing intermediate results
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Motivation: partial functions
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Example: partial functions

• Consider integer division:

10 ‘div‘ 2 = 5 -- OK
10 ‘div‘ 0 = .. -- exception
*** Exception: divide by zero

• This partiality can be captured with the Maybe type:

data Maybe a = Nothing | Just a

safeDiv :: Int -> Int -> Maybe Int
safeDiv n d
| d /= 0 = Just (n ‘div‘ d)
| otherwise = Nothing

• A similar construction makes head safe:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:_) = Just x
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Computing with Maybe’s

Suppose we are given two Int lists xs and ys.

We would like to safely compute “(head xs) ‘div‘ (head ys) + 1”.

Direct implementation Using some Haskell magic

foo1 :: [Int] -> [Int] -> Maybe Int
foo1 xs ys = case safeHead xs of
Just a -> case safeHead ys of
Just b -> case safeDiv a b of
Just c -> Just (c + 1)
Nothing -> Nothing

Nothing -> Nothing
Nothing -> Nothing

foo2 :: ..(same type)..
foo2 xs ys = do
a <- safeHead xs;
b <- safeHead ys;
c <- safeDiv a b;
return (c + 1)

Many case distinctions. To be explained here
Ugly and scales poorly. and now!
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Composition is the magic

• Key observation is that we would like to compose partial functions.

maybe1; maybe2 ↪→ ?

• Possible interpretation:

Nothing; maybe2 ↪→ Nothing
maybe1; Nothing ↪→ Nothing
Just x1; Just x2 ↪→ Just x2

• We define maybe1; maybe2 by maybe1 ‘semi‘ maybe2 where

semi :: Maybe a -> Maybe b -> Maybe b
semi Nothing = Nothing
semi Nothing = Nothing
semi (Just x1) (Just x2) = Just x2

• Problem: the computation of x2 may depend on x1.
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Composition with value bindings

• Second computation needs to bind result of first.

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing _ = Nothing
bind (Just x1) f = f x1

• We also define a function embedding a value in the Maybe type:

return :: a -> Maybe a
return x = Just x

• Thus we can now write foo2 as

foo2 :: [Int] -> [Int] -> Maybe Int
foo2 xs ys =

safeHead xs ‘bind‘ (\a ->
safeHead ys ‘bind‘ (\b ->
safeDiv a b ‘bind‘ (\c ->
return (c + 1))))
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The Monad type class

• The Monad typeclass abstractly specifies bind and return

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b -- bind

• The type constructor Maybe instantiates this class.

instance Monad Maybe where
return x = Just x
Nothing >>= = Nothing
(Just x) >>= f = f x

• Hence our function foo2 becomes
foo2 xs ys = foo2’ xs ys = do

safeHead xs >>= (\a -> a <- safeHead xs
safeHead ys >>= (\b -> b <- safeHead ys
safeDiv a b >>= (\c -> c <- safeDiv a b
return (c + 1)))) return (c + 1)

The do-notation is just syntactic sugar to improve readability.
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The monad laws

• Monads are mathematical objects with additional properties.

• The monad operations must satisfy the following laws.

(1) return x >>= f = f x (left unit)
(2) m >>= return = m (right unit)
(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g)) (associativity)

These laws enable equational reasoning about monadic programs.

• Exercise: check that these laws hold for the Maybe monad.

Also check this for all other monads in this lecture.
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The monad type class – The full story
Two additional ingredients

class Monad m where

-- return and bind are the mathematical core
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

-- shortcut for convenience; when second computation
-- does not dependent on result of first one
(>>) :: m a -> m b -> m b
m1 >> m2 = m1 >>= (\ -> m2)

-- not part of mathematical concept of a monad
-- called on pattern matching errors in do-notation
fail :: String -> m a
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Input/Output
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Why is IO problematic?

• How would we write a program like the following in Haskell?

void main () {
char name[20];
printf ("Hi, I am HAL. Who are you?");
scanf ("%19s", name);
printf ("Hello %s!", name);

}

• Assume there would be functions like inputInt :: Int in Haskell

� What is the value of inputInt - inputInt?

� Equational reasoning would no longer be sound

� Result depends on order in which the arguments are evaluated

• This function is not side-effect free! So which state changes?
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The IO type constructor

• Haskell uses a monad to distinguish between pure expressions and

expressions that interact with The World.

IO a type of computations performing I/O operations

and returning a value of type a

• Examples:

inputInt :: IO Int
inputString :: IO String
outputInt :: Int -> IO () -- () is the unit type in Haskell

• You can think of IO a as the Haskell type

data IO a = InOut (TheWorld -> (a, TheWorld))
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David Basin 14

Basic actions

• Haskell (see Prelude.hs) provides IO primitives

� getChar :: IO Char

The action getChar reads a character from the keyboard,

echoes it to the screen, and returns the character as its result

value.

� putChar :: Char -> IO ()

The action putChar c writes the character c to the screen and

returns no result value.

� return :: a -> IO a

The action return v simply returns the value v, without

performing any interaction.

• . . . and many others (reading & writing files, etc.)
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Sequencing

• The order of the actions matters

read2 = do c1 <- getChar read2’ = do c2 <- getChar
c2 <- getChar c1 <- getChar
return (c1:c2:[]) return (c1:c2:[])

What is the type of read2?

• Previous lecture: order of applying parsers also matters

pexpr = do token "(" pexpr’ = do token "("
e <- expr token ")"
token ")" e <- expr
return e return e

• The IO type constructor cannot be “opened”. Hence, any

function doing I/O will have range IO a for some type a.

• For example, inputInt - inputInt is incorrect. Why?

Functional Programming Spring Semester, 2012
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IO examples

• Printing a string on the screen:

putString :: String -> IO ()
putString "" = return ()
putString (x:xs) = do putChar x; putString xs

• Reading a string from the keyboard:

getString :: IO String
getString = do c <- getChar

if c == ’\n’
then return ""
else do cs <- getString

return (c:cs)

• A “hello world” program in Haskell:

main :: IO ()
main = do putString "Hi, I am HAL. Who are you?\n"

name <- getString
putString ("Hello " ++ name ++ "!\n")
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Stateful computation

Functional Programming Spring Semester, 2012



David Basin 18

Example: renaming of tree nodes

• We want to consistently rename tree nodes in preorder fashion.

• New names are given as a list that is assumed to be long enough.

• Idea: Use an accumulator to keep track of two things: the list of

remaining names and a table of current name translations.
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Implementation of tree node renaming

The type of accumulator (names, table) is ([b],[(a,b)]).

rename :: Eq a => [b] -> Tree a -> Tree b
rename names = fst . go (names, [])

go :: Eq a => ([b],[(a,b)]) -> Tree a -> (Tree b, ([b],[(a,b)]))
go state Leaf = (Leaf, state)
go (names, table) (Node x l r) =
case lookup x table of
Nothing -> let x’ = head names

state’ = (tail names, (x, x’):table)
(l’, state’’) = go state’ l
(r’, state’’’) = go state’’ r

in (Node x’ l’ r’, state’’’)

Just x’ -> let (l’, state’) = go state l
(r’, state’’) = go state’ r

in (Node x’ l’ r’, state’’)

Ugly plumbing needed to thread state through two recursive calls.
Functional Programming Spring Semester, 2012
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Constructing the state monad

Type constructor for stateful computations

data State s a = State (s -> (a, s))

Idea: computation takes a state of type s and transforms it into a

result of type a and a successor state of type s.

State access read current value of state without changing it

get :: State s s
get = State (\s -> (s, s))

State update write a new state value, ignoring the current state

put :: s -> State s ()
put t = State (\s -> ((), t))
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Return and bind

Run is an auxiliary function that opens the monad and runs the

computation from the initial state s0

runState :: (State s a) -> (s -> (a, s))
runState (State m) s0 = m s0

Return embeds a value into a stateful computation

return :: a -> State s a
return x = State (\s -> (x, s))

Bind composes two stateful computations with value binding

(>>=) :: State s a -> (a -> State s b) -> State s b
m >>= k = State (\s -> let (x, t) = runState m s

in runState (k x) t)

Note: The operator (>>) defined as m1 >> m2 = m1 >>= (\_ -> m2) is
essentially the sequential composition (;) in imperative programming languages.
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Understanding the state monad

x := x + 1 in state monad Stepwise evaluation of tick

tick :: State Int ()
tick = do
x <- get
put (x + 1)

with explicit binding

tick :: State Int ()
tick =
get >>= (\x->
put (x + 1))

tick

↪→ State (\s ->
let (x, t) = runState get s
in runState (put (x + 1)) t

)

↪→ State (\s ->
let (x, t) = (\s -> (s, s)) s
in (\s -> ((), x + 1)) t

)

↪→ State (\s -> ((), s + 1))

• The state monad encapsulates program composition.

• To run the program: invoke runState tick s0 where s0 is some

initial state.

Functional Programming Spring Semester, 2012
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Tree renaming using the state monad

rename :: Eq a => [b] -> Tree a -> Tree b
rename names t = fst $ runState (renameTree t) (names, [])

renameTree :: Eq a => Tree a -> State ([b],[(a,b)]) (Tree b)
renameTree Leaf = return Leaf
renameTree (Node x l r) = do
(names, table) <- get
case lookup x table of
Nothing -> do
let x’ = head names
put (tail names, (x, x’):table)
l’ <- renameTree l
r’ <- renameTree r
return (Node x’ l’ r’)

Just x’ -> do
l’ <- renameTree l
r’ <- renameTree r
return (Node x’ l’ r’)

The state monad takes care of all the plumbing!
Functional Programming Spring Semester, 2012
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Tree renaming the way you want it

• Renaming can be made a bliss ...

renameTree’ :: Eq a => Tree a -> State ([b],[(a,b)]) (Tree b)
renameTree’ Leaf = return Leaf
renameTree’ (Node x l r) = do
x’ <- translate x
l’ <- renameTree’ l
r’ <- renameTree’ r
return (Node x’ l’ r’)

• ... by abstracting the pattern of looking up a translation

translate :: Eq a => a -> State ([b],[(a,b)]) b
translate x = do
(names, table) <- get
case lookup x table of
Nothing -> do
let x’ = head names
put (tail names, (x, x’):table)
return x’

Just x’ -> do
return x’

Functional Programming Spring Semester, 2012
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Summary (Part I)

• Monads are a powerful concept which helps understanding and

modeling computations with side effects.

• Contrary to imperative languages, where side effects are the rule,

monads promote the use of side effects in a controlled way (you

usually have a good reason to use a monad).

• Construct, combine, and use monads that exactly fit the structure

of your problem (fine-grained control of side effects).

• New monads can model computational effects that are not present

in imperative languages (e.g., non-determinism, continuations)

• Monadic computations are first-class values that can be composed

as needed.
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Case study: Monadic Interpreters
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Language: A variant of mini-Haskell

• Language we consider here:

Term ::= Identifier | Number |
λx.Term | Term Term | Term + Term

This core language could be extended with other arithmetic operations,
predicates, if-then-else, recursion, ...

• Data types for syntax:

type Name = String
data Term = Var Name

| Lit Int
| Lam Name Term
| App Term Term
| Add Term Term

• Only consider evaluation, for parsing see previous module.
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Standard and Monadic Interpreters

Standard Interpreters Monadic interpreters

Value (:: Value)

Read

Evaluate

Print

Text

Lexical Analysis

Parsing

Abstract Syntax Tree (:: Term)

Semantic Interpretation

Pretty Print Output

Text

Value computation (:: M Value)

Read

Evaluate

Print

Text

Lexical Analysis

Parsing

Abstract Syntax Tree (:: Term)

Semantic Interpretation

Pretty Print Output

Text

- for calculuator in previous lecture: Value = Int ;

- for λ-calculus interpreter: Value = Term.

Functional Programming Spring Semester, 2012
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Standard interpreter

• Comparison with λ-interpreter from previous lecture:

� eager evaluation: evaluate function arguments and under λ’s

� evaluate only closed terms, as is usual in programming

� use Haskell’s substitution instead of implementing it ourselves

• Output: structured type of values

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value -> Value) -- closure

Error + λ-abstractions evaluate to closures.

• An environment binds free variables to values

type Environment = [(Name, Value)]

Functional Programming Spring Semester, 2012
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Auxiliary functions

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value -> Value) -- closure

type Environment = [(Name, Value)]

lookup :: Name -> Environment -> Value
lookup x [] = Wrong
lookup x ((y, v):es) = if x == y then v else lookup x es

add :: Value -> Value -> Value
add (Num x) (Num y) = Num (x + y)
add _ _ = Wrong

apply :: Value -> Value -> Value
apply (Fun k) a = k a
apply _ _ = Wrong
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Standard Evaluation

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value -> Value) -- closure

type Environment = [(Name, Value)]

eval :: Term -> Environment -> Value
eval (Var v) e = lookup v e
eval (Lit x) e = Num x
eval (Lam x t) e = Fun (\a -> eval t ((x, a):e))
eval (App t u) e = apply (eval t e) (eval u e)
eval (Add t u) e = add (eval t e) (eval u e)

run :: Term -> Value
run t = eval t []

instance Show Value where
show Wrong = "<wrong>"
show (Num i) = show i
show (Fun _) = "<function>"

Functional Programming Spring Semester, 2012
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Standard interpreter – Examples

• Consider the terms (in abstract syntax)

t0 = (λx. x+ x) (10 + 11) ↪→ 42
t1 = (λx. x) + 12 ↪→ error
t2 = λx. x+ 1 ↪→ function

• In concrete syntax:

t0 = App (Lam "x" (Add (Var "x") (Var "x"))) (Add (Lit 10) (Lit 11))
t1 = Add (Lam "x" (Var "x")) (Lit 10)
t2 = Lam "x" (Add (Var "x")) (Lit 1)

• Evaluation in ghci:

*Main> run t0
42

*Main> run t1
<wrong>

*Main> run t2
<function>

Functional Programming Spring Semester, 2012



David Basin 33

Example: (λx.x)(1 + 2)
run (App (Lam "x" (Var "x")) (Add (Lit 1) (Lit 2)))

= eval (App (Lam "x" (Var "x")) (Add (Lit 1) (Lit 2))) []

= apply (eval (Lam "x" (Var "x")) []) (eval (Add (Lit 1) (Lit 2)) [])

= apply (Fun (\a -> eval (Var "x") [(x,a)])
(add (eval (Lit 1)[]) (eval (Lit 2) []))

= (\a -> eval (Var "x") [("x",a)]) (add (Num 1) (Num 2))

= eval (Var "x") [("x",(add (Num 1) (Num 2)))]

= lookup "x" [("x",(add (Num 1) (Num 2)))]

= add (Num 1) (Num 2)

= Num 3

N.B. Multiple reductions compressed.

Result Num 3 is output (with show) as 3.
Functional Programming Spring Semester, 2012
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Monadic interpreter – Ideas

• Replace all functions with result type Value by functions with

monadic result type M Value

• Values and function signatures:

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value → M Value) -- closure

eval :: Term → Environment → M Value
run :: Term → M Value

lookup :: Name → Environment → M Value
apply, add :: Value → Value → M Value

• Win: By varying the definition of the monad M, we obtain

different computational effects. (Different defs. upcoming!)
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Monadic interpreter – Auxiliary functions

data Value = Wrong
| Num Int
| Fun (Value -> M Value)

type Environment = [(Name, Value)]

lookup :: Name -> Environment -> M Value
lookup x [] = return Wrong
lookup x ((y, v):es) = if x == y then return v else lookup x es

apply :: Value -> Value -> M Value
apply (Fun k) a = k a
apply = return Wrong

add :: Value -> Value -> M Value
add (Num x) (Num y) = return (Num (x + y))
add = return Wrong

instance Show (M Value) =
show m = ... -- depends on monad M
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Monadic interpreter – Evaluation

data Value = Wrong
| Num Int
| Fun (Value -> M Value)

type Environment = [(Name, Value)]

eval :: Term -> Environment -> M Value
eval (Var v) e = lookup v e
eval (Lit x) e = return (Num x)
eval (Lam x t) e = return (Fun (\a -> eval t ((x, a):e)))
eval (App t u) e = do f <- eval t e

a <- eval u e
apply f a

eval (Add t u) e = do a <- eval t e
b <- eval u e
add a b

run :: Term -> M Value
run t = eval t []
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Monadic interpreter – Instances

• Recall: by varying the monad M we obtain interpreters with

different computational effects.

• We consider the following instances of the monad M:

� Identity monad: recover standard interpreter

� Exception monad: improved error handling

� State monad: count number of evaluation steps

� Nondeterministic monad: compute with choices

� Output monad: output intermediate results

• Abstraction is main benefit of using monads: Only small changes

are necessary in each case, basic structure remains the same.
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Identity monad: Standard interpreter

• The identity monad:

data Id a = Id a

instance Monad Id where
return x = Id x -- identity function
(Id m) >>= k = k m -- function application

• For example, forgetting about the constructor Id, the clauses

eval (Lit i) e = return (Num i)
eval (App t u) e = eval t e >>= (\f ->

eval u e >>= (\a ->
apply f a))

simplify to

eval (Lit i) e = Num i
eval (App t u) e = apply (eval t e) (eval u e)

Functional Programming Spring Semester, 2012
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Improving error handling

• Current solution has a only single error message: <wrong>

• First attempt to improve situation (in standard interpreter):

data Value = Wrong String
| Num Int
| Fun (Value -> Value)

• Specify source of error as argument to Wrong:

lookup x [] = Wrong ("Unbound variable: " ++ x)
apply v = Wrong ("Not a function: " ++ show v)
add v w = Wrong ("Not a number: " ++ show v

++ " or " ++ show w)

• Does not behave as intended:

*Main> run (App (Var "x") (Lit 10))
Not a function: Unbound variable: x
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Exception Monad

• Type constructor and basic monad operations:

data Exc a = Success a
| Exception String

instance Monad Exc where
return x = Success x
(Success a) >>= k = k a -- on success: continue
(Exception e) >>= k = Exception e -- on exception: abort

• Monad-specific operations: throw and catch exceptions

throw :: String -> Exc a
throw e = Exception e -- raise exception

catch :: Exc a -> (a -> Exc a) -> Exc a
catch (Success a) h = (Success a) -- normal execution
catch (Exception e) h = h e -- call exception handler

• Straightforward function show shows value or exception.
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Adapting the interpreter

• Modification of data structures and interpreter

data Value = Num Int -- removed: Wrong
| Fun (Value → ExcM Value)

lookup x [] = throw ("Unbound variable: "++x)
apply v = throw ("Not a function: "++show v)
add v w = throw ("Not a number: "++show v++" or "++show w)

• Examples: (using abstract syntax)

*Main> run (λx. x+ x) (10 + 11)
42

*Main> run (x 10)
Unbound variable: x

*Main> run (λx. x) + 10
Not a number: <function> or 10

*Main> run 99 (λx. x)
Not a function: 99
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State monad: Counting evaluation steps

• The state monad (as seen before):

data State s a = State (s -> (a, s))

instance Monad (State s) where
return x = State (\s -> (x, s))
m >>= k = State (\s -> let (a, t) = runState m s

in runState (k a) t)

• Monad-specific operations for state manipulation:

get :: State s s
get = State (\s -> (s, s)) -- read

put :: s -> State s ()
put t = State (\s -> ((), t)) -- update

• Specific to application: step counting

tick :: State Int ()
tick = do s <- get; put (s + 1) -- increment counter
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Adapting the interpreter

• We add tick’s to addition (and similarly to application):

eval (Add t u) e = do a <- eval t e
b <- eval u e
r <- add a b
tick -- count addition
return r

• The show function runs the monad with counter initialized to 0.

instance Show (State Int Value) where
show m = let (a, c) = runState m 0

in "Value: " ++ show a ++ "; " ++
"Count: " ++ show c ++ "."

• Examples:

*Main> run (λx. x+ x) (10 + 11)
Value 42; Count 3.

*Main> run (λx. x+ 1) ((λx. x+ x) (10 + 11))
Value 43; Count 5.
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Nondeterministic monad: Allowing choices

• The nondeterministic monad (aka list monad):

data Alt a = Alt [a]

runAlt :: Alt a -> [a]
runAlt (Alt l) = l

instance Monad Alt where
return a = Alt [a]
m >>= k = Alt [b | a <- runAlt m, b <- runAlt (k a)]

Idea: computation may produce several possible results.

• We also need the following monad-specific operations.

failure :: Alt a
failure = Alt []

choice :: Alt a -> Alt a -> Alt a
choice xs ys = Alt (runAlt xs ++ runAlt ys)
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Adapting the interpreter

• Extend the term language with failure and choice operations:

data Term = ...
| Fail -- written ⊥ below
| Or Term Term -- (Or t u) written t | u below

• The interpreter is extended as follows:

eval Fail e = failure
eval (Or t u) e = eval t e ‘choice‘ eval u e

• Examples:

*Main> run ((λx. x+ x) (10 + 11))
[42]

*Main> run ((λx y. x+ x+ y) (10 | 20) (1 | 5))
[21,25,41,45]

*Main> run ((7 | 10) +⊥)
[]
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Output Monad: Tracing intermediate results

• Output monad chains computations and concatenates output:
data Out a = Out (a, String)

runOut :: Out a -> (a, String)
runOut (Out x) = x

instance Monad Out where
return x = (x, "")
m >>= k = let (a, r) = runOut m; (b, s) = runOut k a

in Out (b, r ++ s)

• Monad-specific output function:
out :: Show a => a -> OutM ()
out a = ((), show a ++ "; ")

• Show monad value:
instance Show a => Show (OutM a) where
show (Out (a, s)) = "Output: " ++ s ++

"Value: " ++ show a
Functional Programming Spring Semester, 2012
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Adapting the interpreter for output tracing

• Extend the term language with a Show operation:

Term = ...
| Show Term -- Show t written #t below

• Extension of the interpreter:

eval (Show t) e = do r <- eval t e -- evaluate t
out r -- display its value
return r -- and return it

• Examples:

*Main> run ((λx. x+ x) #(10 + 11))
Output: 21; Value: 42

*Main> run (#(#(1 + 2) + 3) + 4)
Output: 3; 6; Value: 10

*Main> run (1 + #(2 +#(3 + 4)))
Output: 7; 9; Value: 10
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A zoo of monads

Monad Type constructor

Partiality Maybe a = Nothing

| Just a

Exceptions Exc e a = Exception e

| Success a

State State s a = State (s -> (a, s))

Input/Output IO a =

(*) InOut (TheWorld-> (a, TheWorld))

Nondeterminism Alt a = Alt [a]

Output Out a = Out (a,String)

Parsers Parser a =

Parser (String -> [(a, String)])

(*) The definition of the Haskell IO monad is a conceptual one.
Functional Programming Spring Semester, 2012
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Conclusions

Summary Using monads we can ...

• write functional programs with a variety of controlled side

effects in a uniform, abstract, and flexible way

• obtain a deeper understanding of the meaning of side effects

Combining monads

• Q: How can I model language AFX (All Fancy effeXts)?

• A: Use monad transformers to modularly combine monads.

E.g., the parser monad is a non-deterministic state monad, we

can also define state-exception monads, etc.

Reasoning about monads two possibilities:

• equational reasoning using definitions of monadic functions and

monad laws (verify these for any monads you may invent), or

• pre-/post-condition reasoning using a monadic Hoare logic
Functional Programming Spring Semester, 2012
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