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List type

• Types we have seen

� Basis types: Int, Char, Bool, . . .

� Type constructors: (T1, . . . , Tk)

• List types, a new type constructor

If T is a type, then [T ] is a type

• Elements of [T ]

� Empty list [ ] :: [T ]

� If x :: T and xs :: [T ], then (x : xs) :: [T ]

• Short hand: 1 : (2 : (3 : [ ])) written as [1, 2, 3]
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Examples and notation
? [’a’,’a’,’b’] :: [Char]
"aab" :: [Char]

? [’a’,’a’,’b’] == "aab"
True

Haskell supports various abbreviations

? [3..6]
[3, 4, 5, 6] :: [Int]

? [6..3]
[] :: [Int]

[n, p..m] means count from n to m in steps of p− n
? [7,6..3]
[7, 6, 5, 4, 3] :: [Int]

? [0.0, 0.3 .. 1.0]
[0.0, 0.3, 0.6, 0.9] :: [Double]
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Functions on lists — sumList

• Function sumList :: [Int] -> Int must specify:

� how to compute with the empty list [ ]

� how to compute with the non-empty list (x : xs)

• Computation

Empty list [ ] : 0

Non-empty list (x : xs) : x + sum of list xs

sumList [] = 0
sumList (x:xs) = x + sumList xs

? sumList [1..100] -- 100 * 101 / 2
5050 :: Int
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Standard functions on lists
• length

length [] = 0
length (x:xs) = 1 + length xs

• append (not only for strings!)

[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

N.B.: (++) and (:) have different types!

? [2] ++ [3,4,5] == [2,3,4,5]
True

? 2 : [3,4,5] == [2,3,4,5]
True

? [2] : [3,4,5]
... Error ...
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Patterns (lists and in general)

• Pattern matching has two purposes

� checks if an argument has the proper form

� binds values to variables

• Example: (x : xs) matches with [2, 3, 4] (= 2 : 3 : 4 : [] = 2 : [3, 4])

x = 2

xs = [3, 4]

• Another example (pattern matching during let-binding)

? let ([x,y,z],t) = ([1,2,3],(20,30)) in x + y
3 :: Int

? let ([x,y,z],t) = ([1,2,3,4],(20,30)) in x + y
Pattern match fails...
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Patterns — details

• Patterns are inductively defined (additional constructors later)

Constants: −2, ′1′, True, [ ]

Variables: x, foo

Wild card:
Tuples: (p1, p2, . . . , pk), where pi are patterns

Lists: (p1 : p2), where pi are patterns

• Moreover, patterns required to be linear.

This means that each variable can occur at most once

• Examples: [(x, foo), ], ((x, y), ), and 1 : (2 : (x, y))

• Counterexamples: (x ++ y, z) and [x, y, z, x]
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Pattern matching

• Define pattern p matches term a by recursion on p.

Constant p = c: succeeds if c = a

Variable p = x: succeeds and with binding x = a

Wild card p = : succeeds but no binding

Tuple p = (p1, . . . , pk): succeeds if a = (a1, . . . , ak) and pi
matches ai, for i ∈ {1, . . . , k}

List p = (p1 : p2): succeeds if a is a nonempty list a1 : a2 and p1
matches a1 and p2 matches a2

• Successful or not?

� ([x], y) matches ([1], 2 + 3)

� [x] matches [1, 2]? [x, y] matches [1]?

� x : y matches [1, 2]? x : (y : z) matches [1, 2]?

� [x, x] matches [1, 1]
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Examples

• Zipper function

zip [2, 3, 4] [4, 5, 78] = [(2, 4), (3, 5), (4, 78)]

zip [2, 3] [1, 2, 3] = [(2, 1), (3, 2)]

N.B.: extra elements in a longer list are discarded.

• Implementing zip

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

• Which functions are implemented here?

f (False, False) = False g (True, _ ) = True
f (_, _ ) = True g (_, True) = True

g (_, _ ) = False
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Intermezzo — advice on recursion
“Defining recursive functions is like riding a bicycle: it looks easy when someone else is

doing it; it may seem impossible when you first try to do it yourself, but becomes simple

and natural with practice.” — G. Hutton, Programming in Haskell

Function drop removes the first n elements of a list.

Step 1: Define the type: drop :: Int -> [Int] -> [Int]

Step 2: Enumerate the cases:

drop 0 [] = ...
drop 0 (x:xs) = ...
drop n [] = ...
drop n (x:xs) = ...

Step 3: Define the simple cases:
drop 0 [] = []
drop 0 (x:xs) = x:xs
drop n [] = []

Step 4: Define the other cases: drop n (x:xs) = drop (n-1) xs

Step 5: Generalize and simplify. Suggestions?
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Example: insertion sort

• Insertion sort: [7, 3, 9, 2]

� First sort rest: [2, 3, 9]

� Insert head: [2, 3, 7,9]

isort :: [Int] -> [Int] isort [3,9,2]
isort [] = [] = ins 3 (isort [9,2])
isort (x:xs) = ins x (isort xs) = ins 3 (ins 9 (isort [2]))

= ins 3 (ins 9 (ins 2 (isort [])))
ins :: Int -> [Int] -> [Int] = ins 3 (ins 9 (ins 2 []))
ins a [] = [a] = ins 3 (ins 9 ([2]))
ins a (x:xs) = ins 3 (2: (ins 9 []))

| a <= x = a : (x : xs) = ins 3 [2, 9]
| otherwise = x : ins a xs = 2 : (ins 3 [9])

= 2 : [3,9] = [2,3,9]
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Insertion sort — complexity

• Processing list [x1, . . . , xn] of size n results in

ins x1 (ins x2 (. . . (ins xn [ ]) . . .))

• Complexity of computing ins a [x1, x2, . . . , xn]

Best case: a ≤ x1: 1 step

Worst case: a > xn: n steps

Average: n/2 steps (assuming all input sequences equally likely)

• Complexity of insertion sort:

Best case: n steps, i.e., O(n)

Worst case: 1 + 2 + . . .+ n = n(n+ 1)/2, i.e., O(n2)

Average: 1/2 + 2/2 + . . .+ (n− 1)/2 + n/2, also O(n2)
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Quick sort
• Quick sort: [7, 3, 8, 2, 9]

� Split into head and tail: 7 and [3, 8, 2, 9]

� Partition tail into parts ≤ 7 and > 7: [3, 2] and [8, 9]

� Recursively sort: [2, 3] and [8, 9]

� Concatenate with head in the middle: [2, 3] ++ [7] ++ [8, 9] = [2, 3, 7, 8, 9]

qsort [] = []
qsort (x:xs) =

qsort (lesseq x xs) ++ [x] ++ qsort (greater x xs)
where

lesseq _ [] = []
lesseq x (y:ys)

| (y <= x) = y : lesseq x ys
| otherwise = lesseq x ys

greater _ [] = []
greater x (y:ys)

| (y > x) = y : greater x ys
| otherwise = greater x ys

• Complexity: O(n log n) on average. Worst case?
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List comprehension

• Notation for sequential processing of list elements

� Analogous to set comprehension in set theory {2 · x | x ∈ X}
� Haskell notation: [2*x | x <- xs]

? [2*x | x <- [1,2,3,4,5]]
[2, 4, 6, 8, 10]

? [n ‘mod‘ 2 == 0 | n <- [2,4,7]]
[True,True,False]

• Can be augmented with guards: [2*x | x <- xs, pred1(x), ...]

? [2*x | x <- [0,1,2,3,4,5,6], x ‘mod‘ 2 == 0, x > 3]
[8, 12]

• What is computed here?

q [] = []
q (p:xs) = q [x | x<-xs, x <= p] ++ [p] ++ q [x | x<-xs, x > p]
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Program development with lists
A larger example

• Objective: a (mini-)library database

• A design method for programs “in the small”

1. Specify the requirements

2. Fix the types (input/output representation)

3. Implement each function

• For systems “in the large”, design is substantially more difficult

Topic for software engineering courses
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Step 1: requirements analysis

Which functionality is required?

1. Given a person p, which books has p borrowed?

2. Given a book b, who has borrowed b?

Assumption: many-to-many relation between (copies of) books

and persons

3. Is a book lent out?
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Step 2: types

• We define two types to represent books and people

type Person = String -- Note: types always start with
type Book = String -- a capital letter

• Database: list of (Person, Book)-pairs

type Database = [(Person,Book)]

• Example

myDB = [("Alice", "Postman Pat"), ("Anna", "All Alone"),
("Alice", "Spot"), ("Rory", "Postman Pat")]
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Types (cont.)

• Each kind of functionality implemented by a separate function

1. Which books has person p borrowed?

books :: Database -> Person -> [Book]

2. Who has borrowed book b?

borrowers :: Database -> Book -> [Person]

3. Is a book b on loan?

borrowed :: Database -> Book -> Bool

• Further functionality could also be specified

E.g., checking out or returning a book
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Step 3: implementation

• books:: Database -> Person -> [Book]

books db p = [bk | (per,bk) <- db, per == p]

• borrowers :: Database -> Book -> [Person]

borrowers db b = [per | (per,bk) <- db, bk == b]

• borrowed :: Database -> Book -> Bool

borrowed [] _ = False
borrowed ((_,bk):rest) b = bk == b || borrowed rest b
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Complete program and examples

type Person = String
type Book = String
type Database = [(Person,Book)]

myDB = [("Alice", "Postman Pat"), ("Anna", "All Alone"),
("Alice", "Spot"), ("Rory", "Postman Pat")]

books db p = [bk | (per,bk) <- db, per == p]
borrowers db b = [per | (per,bk) <- db, bk == b]

borrowed [] _ = False
borrowed ((_,bk):rest) b = bk == b || borrowed rest b

? books myDB "Alice"
["Postman Pat", "Spot"]
? borrowers myDB "All Alone"
["Anna"]
? borrowed myDB "Postman Pat"
True
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Correctness — Induction
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Review: induction over natural numbers

• Rule for induction over N .

Proof by induction: to prove P (n) for all natural numbers n.

Base case: prove P (0)

Step case: prove P (n)→ P (n+ 1) for an arbitrary n ∈ N , i.e.,

Induction hypothesis: P (n)
To prove: P (n+ 1)

• Once proven, we know, for example, P (17) since

� P (0) holds, and

� P (0)→ P (1) . . . and. . . P (16)→ P (17)

� since all n ∈ N are reachable in finitely many steps, we know

that P (n), for every n ∈ N .

• Reflects that N is the least set such that 0 ∈ N and if n ∈ N ,

then so is n+ 1 ∈ N .
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Induction over lists

• How are elements in [T ] constructed?

[ ] :: [T ] and (x : xs) :: [T ], if x :: T and xs :: [T ]

• Corresponds to following rule

Proof by induction: to prove P (xs) for all xs in [T ]

Base case: prove P ([ ])

Step case: prove P (x : xs) under the assumption P (xs), for an

arbitrary xs :: [T ] and x :: T , i.e.,

Induction hypothesis: xs :: [T ], x :: T , and P (xs)

To prove: P (x : xs)

• Like with numbers: induction can be seen as a “machine” that

establishes a property for all lists.

E.g., P ([3, 20]) follows since P ([ ])→ P (20 : [ ])→ P (3 : 20 : [ ]).
Functional Programming Spring Semester, 2012
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Example 1: sum and double

sumList [] = 0 double [] = []
sumList (x:xs) = x + sumList xs double (x:xs) = (2*x) : double xs

Proof by induction: P (xs) ≡ sumList (double xs) = 2 · sumList xs

Base case: P ([ ])
sumList (double [ ]) = sumList [ ] = 0

2 · sumList [ ] = 2 · 0 = 0

Step case: P (xs)→ P (x : xs)

Induction hypothesis: sumList (double xs) = 2 · sumList xs

To prove: sumList (double (x : xs)) = 2 · sumList (x : xs)

sumList (double (x : xs)) = sumList ((2 · x) : double xs)

= 2 · x+ sumList (double xs)

= 2 · x+ 2 · sumList xs

= 2 · (x+ sumList xs)

= 2 · (sumList (x : xs))
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Example 2: associativity of append

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Proof by induction:
Q(xs) ≡ (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Base case: ([ ] ++ ys) ++ zs = ys ++ zs = [ ] ++ (ys ++ zs)

Step case:

Induction hypothesis: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

To prove: ((x : xs) ++ ys) ++ zs = (x : xs) ++ (ys ++ zs)

((x : xs) ++ ys) ++ zs = (x : (xs ++ ys)) ++ zs

= x : ((xs ++ ys) ++ zs)

= x : (xs ++ (ys ++ zs))

= (x : xs) ++ (ys ++ zs)
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Induction: difficulties

• How do we select an induction variable?

P (xs) ≡ sumList (double xs) = 2 · sumList xs

Q(???) ≡ (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

� Induction on ys or zs fails, e.g., Q(zs)

� In step case we must show Q(z : zs)

(xs ++ ys) ++ (z : zs) = xs ++ (ys ++ (z : zs))

Not possible either to further simplify or to use Q(zs).

• Requires planning in order to use the induction hypothesis

• Auxiliary lemmas are sometimes also needed.
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Example: rev and qrev

rev [] = [] qrev xs = aux (xs, [])
rev (x:xs) = rev xs ++ [x] aux ([], ys) = ys

aux ((x:xs), ys) = aux (xs, x:ys)

• Append is O(n) in first argument

[a1, a2, . . . , an] ++ x = a1 : ([a2, . . . , an] ++ x)

= . . . n− 1 times . . .

= a1 : (a2 : . . . : (an : x) . . .)

• rev is O(n2) (average append: n/2 steps)

rev [a1, a2, . . . , an] = rev [a2, . . . , an] ++ [a1]

= . . . n− 1 times . . .

= (. . . ([ ] ++ [an]) ++ . . . ++ [a2]) ++ [a1]
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Example (cont.)

• qrev is O(n)

qrev [a1, . . . , an] = aux ([a1, . . . , an], [ ])

= aux ([a2, . . . , an], [a1])

= . . . n− 2 times . . .

= aux ([ ], [an, . . . , a2, a1])

= [an, . . . , a2, a1]
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Relationship between rev and qrev

• Is rev xs = qrev xs ?

Base case: P ([ ])

rev [ ] = [ ] = aux ([ ], [ ]) = qrev [ ]

Step case: P (xs)→ P (x : xs)

Induction hypothesis: rev xs = qrev xs

To prove: rev (x : xs) = qrev (x : xs)

rev (x : xs) = rev xs ++ [x]

qrev (x : xs) = aux (x : xs, [ ]) = aux (xs, [x])

• No proof!

� We require rev xs ++ [x] = aux (xs, [x])

� Induction hypothesis only says rev xs = qrev xs = aux (xs, [ ])
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Next induction
• To prove: rev xs ++ [x] = aux (xs, [x]). Let’s try induction again

Base case: P ([ ])
rev [ ] ++ [x] = [ ] ++ [x] = [x] = aux ([ ], [x])

Step case: P (xs)→ P (a : xs)

Induction hypothesis: rev xs ++ [x] = aux (xs, [x])

To prove: rev (a : xs) ++ [x] = aux (a : xs, [x])

rev (a : xs) ++ [x] = (rev xs ++ [a]) ++ [x]

= rev xs ++ ([a] ++ [x])

= rev xs ++ [a, x]

aux (a : xs, [x]) = aux (xs, [a, x])

• Problem: Induction hypothesis only proven for accumulator [x].

Rather than another induction, let’s try a generalization!
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Generalization

• To prove rev xs ++ [x] = aux (xs, [x]), we prove

rev xs ++ ys = aux (xs, ys)

I.e., prove ∀xs. P (xs), where

P (xs) ≡ ∀ys. rev xs ++ ys = aux (xs, ys)

• Recall proof rules for ∀x.Q(x)

� ∀-Introduction

To prove: ∀x.Q(x)

Prove: Q(x), where x is arbitrary

� ∀-Elimination

From ∀x.Q(x) we can conclude Q(t), for every t
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Prove: ∀xs.∀ys. rev xs ++ ys = aux (xs,ys)

Proof by induction: ∀xs. P (xs) by induction

P (xs) ≡ ∀ys. rev xs ++ ys = aux (xs, ys)

Base case: P ([ ])

∀ys. rev [ ] ++ ys = aux ([ ], ys)

Using ∀-Introduction, it is sufficient to prove:

rev [ ] ++ ys = aux ([ ], ys)

Holds as rev [ ] ++ ys = [ ] ++ ys = ys = aux ([ ], ys)
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Proof (cont.)

Step case: P (xs)→ P (x : xs)

Induction hypothesis: ∀ys. rev xs ++ ys = aux (xs, ys)

To prove: ∀ys. rev (x : xs) ++ ys = aux (x : xs, ys)

Using ∀-introduction, we reduce the goal (for ys arbitrary) to

rev (x : xs) ++ ys = aux (x : xs, ys)

From the definition and associativity of ++, we know that

rev (x : xs) ++ ys = (rev xs ++ [x]) ++ ys

= rev xs ++ ([x] ++ ys) = rev xs ++ (x : ys)

aux (x : xs, ys) = aux (xs, x : ys)

But an instance of the induction hypothesis (∀-Elimination) is

rev xs ++ (x : ys) = aux (xs, x : ys) QED
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Abstraction
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Until now . . .

• We have only seen simple structuring techniques

� sufficient though to construct all programs

• Difference: language expressiveness versus usability/eloquence

� Assembler versus modern programming languages

� Quick sort with/without comprehension
q [] = []
q (p:xs) = q [x | x<-xs, x <= p] ++ [p] ++ q [x | x<-xs, x > p]

• We will now examine different ways of

� structuring programs

� simplifying programs

� improving their reusability

Functional Programming Spring Semester, 2012



David Basin 35

Higher-order functions

First order: Arguments are basis types or constructor types

Int -> [Int]

Second order: Arguments can be themselves functions

(Int -> Int) -> [Int]

Third order: Arguments may be functions, whose arguments are

functions

((Int -> Int) -> Int) -> [Int]

Higher-order functions: Functions of arbitrary order
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Example: map

double :: [Int] -> [Int]
double [] = []
double (x:xs) = (2*x) : double xs

triple :: [Int] -> [Int]
triple [] = []
triple (x:xs) = (3*x) : triple xs

Same control structure, only different function application

double [x1, . . . , xn] = [2·x1, . . . , 2·xn]
triple [x1, . . . , xn] = [3·x1, . . . , 3·xn]
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Control structure can be abstracted

map f [] = [] -- higher order
map f (x:xs) = f x : map f xs -- (function f is an argument)

times2 x = 2 * x
times3 x = 3 * x

double xs = map times2 xs
triple xs = map times3 xs

Example of execution

map times2 [2,3]
= times2 2 : map times2 [3]
= 4 : map times2 [3]
= 4 :(times2 3 : map times2 [])
= 4 : (6 : map times2 [])
= 4 : (6 : [])
= [4,6]
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Visualizing map

map f [] = []
map f (x:xs) = f x : map f xs

map f [1, 2, 3] = [f 1, f 2, f 3]

[]

1

2

3

:

[]

:

:

map f 
:

:
:

f 1

f 3

f 2

Note similarity to list comprehension: map f xs = [f x | x <- xs]
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Why functions as arguments?

-- without map
double [] = []
double (x:xs) = (2*x) : double xs

-- with map
double xs = map times2 xs

Advantages:

1. Definition is easier to understand

2. Parts are easier to modify

3. Parts are easier to reuse

4. Correctness is simpler to understand and show
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Example: folding

• Consider sumList [1,2,3] = 1+2+3

sumList [] = 0
sumList (x:xs) = x + sumList xs

Is this an instance of map?

• Generalization

f [x1, x2, . . . , xk] = f(x1, f(x2, . . . , f(xk, 0) . . .))

E.g. sumList [1,2,3] = f(1,f(2,f(3,0))), for f = (+)

• Program

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

sumList xs = foldr (+) 0 xs
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Visualizing foldr

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr f e [1, 2, 3] = f(1, f(2, f(3, e))

:
1

2

3 e

foldr f e 1

2

3

:
f

f

f

[]

:
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Examples of foldr

We can now easily define some standard Haskell functions:

concat xs = foldr (++) [] xs
? concat [[1,2,3],[4],[5,6]]
[1,2,3,4,5,6] :: [Int]

and bs = foldr (&&) True bs
? and [True,True,False]
False :: Bool

or bs = foldr (||) False bs
? or [True,True,False]
True :: Bool

pcons (x,y) (xs,ys) = (x:xs, y:ys)
unzip xs = foldr pcons ([],[]) xs
? unzip [(1,2),(3,4),(5,6)]
([1,3,5],[2,4,6]) :: ([Int],[Int])
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Example: reverse
rev [] = []
rev (x:xs) = rev xs ++ [x]

rev [1, 2, 3] = rev [2, 3] ++ [1]

= (rev [3] ++ [2]) ++ [1]

= ((rev [ ] ++ [3]) ++ [2]) ++ [1]

= (([ ] ++ [3]) ++ [2]) ++ [1]

= . . .

= [3, 2, 1]

atEnd

1

2

3

:

[]

:

:
1

2

3

atEndfoldr atEnd []

[] [3]

++ [2]

++

++

[1]

[]

atEnd
Suggests program:

atEnd x xs = xs ++ [x]
rv xs = foldr atEnd [] xs
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Example execution

atEnd x xs = xs ++ [x] foldr f z [] = z
rv xs = foldr atEnd [] xs foldr f z (x:xs) = f x (foldr f z xs)

Executes as follows:

rv [1, 2, 3] = foldr atEnd [ ] [1, 2, 3]

= atEnd 1 (foldr atEnd [ ] [2, 3])

= (foldr atEnd [ ] [2, 3]) ++ [1]

= (atEnd 2 (foldr atEnd [ ] [3])) ++ [1]

= ((foldr atEnd [ ] [3]) ++ [2]) ++ [1]

= (atEnd 3 (foldr atEnd [ ] [ ]) ++ [2]) ++ [1]

= (((foldr atEnd [ ] [ ]) ++ [3]) ++ [2]) ++ [1]

= ([ ] ++ [3]) ++ [2]) ++ [1]

= . . .

= [3, 2, 1]

Correctness: prove ∀xs. rev xs = rv xs
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Example: composition and iteration

• Pattern and control structure for function application

fapp f g x = f (g x)

iter 0 f x = x
iter n f x = f (iter (n-1) f x)

• Examples

times2 x = 2 * x
times3 x = 3 * x

? fapp times2 times3 5
30 :: Int

? iter 4 times2 1
16 :: Int

? iter 4 times3 1
81 :: Int
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Polymorphic types and reusability

• Consider following example:

length [] = 0
length (x:xs) = 1 + length xs

? length [17,3,149]
3 :: Int

? length ["eat","the","potato","Jane"]
4 :: Int

• What is type? [Int] -> Int, [String] -> Int, ...

� The type is polymorphic: [t] -> Int, for all types t.

• Often called parametric polymorphism. Differs from subtyping
polymorphism (e.g., in Java), where methods can be applied to

objects only of sub-classes.
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Types and reusability (cont.)

• Polymorphic types contain type variables

length :: [t] -> Int

• Function typeable for all instances.

Definition: A type w for f is a most general (also called

principal) type iff for all types s for f , s is an instance of w.

• Haskell has algorithms for type checking and type reconstruction

� Haskell computes the principal type w, given a function f

� If user provides a type t, then t must be an instance of w.

I.e., one can only restrict the type

• We will look at this in more detail later
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Polymorphic types — examples

• Functions over lists, e.g. (++) :: [t] -> [t] -> [t]

• Functions defined by gluing together other functions

? :type iter
Int -> (a -> a) -> a -> a

? :type fapp
(a -> b) -> (c -> a) -> c -> b

• Or applying functions to data

? :type map
(a -> b) -> [a] -> [b]
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Functions as values

• Functions can be returned as values

• Example: function composition (fapp)

(f ◦ g)x = f (g x)

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

• Examples

twice :: (t -> t) -> (t -> t)
twice f = f . f

? twice times3 1
9 :: Int
? (twice . twice) times3 1 -- 3^4 = 81
81 :: Int
? twice (times3 . times3) 1
81 :: Int
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Functions as values (cont.)

• Iter (higher-order argument)

iter 0 f x = x
iter n f x = f (iter (n-1) f x)

• Iter (higher-order argument and result)

id x = x

iter :: Int -> (a -> a) -> a -> a
iter 0 f = id
iter n f = f . (iter (n-1) f)

• Functions cannot be displayed, but they can be applied

? iter 2 times2
... Error ...

? let f = iter 2 times2 in f 5
20 :: Int
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Evaluation example

iter 0 f = id
iter n f = f . (iter (n-1) f)

let f = iter 2 times2 in f 5

Can be calculated as follows

let f = iter 2 times2 in f 5 = (iter 2 times2) 5

= (times2 . (iter 1 times2)) 5

= (times2 . (times2 . (iter 0 times2))) 5

= (times2 . (times2 . id )) 5

= times2 ((times2 . id ) 5)

= times2 (times2 ( id 5))

= times2 (times2 5)

= times2 10

= 20
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λ-expressions
• Consider the following functions

times2 x = 2 * x
double xs = map times2 xs

• Haskell provides notation to write functions like times2 in-line

? map (\x -> x * 2) [2,3,4]
[4,6,8] :: Int

? foldr (\x y -> x * y) 1 [1,2,3,4]
24 :: Int

N.B.: \x y -> x * y is a shorthand for \x -> \y -> x * y

• Church’s λ-notation (character “\” used instead of “λ”)

usual λ-calculus
Declaration f(x) = x+ 3 λx. x+ 3
Application f(5) (λx. x+ 3)(5)
Reduction (x+ 3)[x← 5] (x+ 3)[x← 5]
Result 8 8
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Partial application

• Functions of multiple arguments . . .

multiply :: Int -> Int -> Int
multiply a b = a * b

• . . . can be partially applied

? :type multiply 7
Int -> Int

? :type map
(a -> b) -> [a] -> [b]

? map (multiply 7) [1,2,3,4]
[7, 14, 21, 28] :: [Int]

• Application and types

If f :: t1→ t2→ . . .→ tn→ t and e1 :: t1, . . . , ek :: tk
then f e1 . . . ek :: tk+1→ . . .→ tn→ t
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How many arguments do functions have?

• Each function takes exactly one argument

� multiply :: Int -> Int -> Int means

multiply :: Int -> (Int -> Int)
� Application multiply 2 3 means (multiply 2) 3

� Partial application is consistent with the view (= illusion) that

functions take multiple arguments

• Operator sections: if ⊕ is an infix binary operator

(a⊕) ≡ λx. a⊕ x
(⊕ a) ≡ λx. x⊕ a

• Example

? map ((2*).(3*)) [1,2,3]
[6,12,18]
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Multiple arguments versus tupling

f :: (Int,Int) -> Int g :: Int -> Int -> Int
f (x,y) = x * y + 17 g x y = x * y + 17

• Tuple arguments: no partial application

• But equivalent in the following sense:

curry :: ((a,b) -> c) -> a -> b -> c
uncurrry :: (a -> b -> c) -> (a,b) -> c

curry f = f’ where f’ x1 x2 = f (x1,x2)
uncurrry f’ = f where f (x1,x2) = f’ x1 x2

• “Curry” like “Haskell Brooks Curry”
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Examples

f :: (Int,Int) -> Int g :: Int -> Int -> Int
f (x,y) = x * y + 17 g x y = x * y + 17

? f (3,4)
29 :: Int

? curry f 3 4
29 :: Int

? g (3,4)
... Error ...

? g 3 4
29 :: Int

? uncurry g (3,4)
29 :: Int
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