Higher-order Programming
and Types

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

Overview

e Review of higher-order functions

» Functions as arguments
» Functions as results

e Case study: matrix operations

e Haskell's type system

Functional Programming Spring Semester, 2012

David Basin 2

First-order versus higher-order functions

e First-order functions
fol :: Int -> Int

fol x =x + 3

fo2 :: Int -> Int -> Int
fo2 xy=x+y+x*xy

e Higher-order functions
hol :: (Int -> Int) -> Int

hol £f =f 2
ho2 :: (Int -> a) -> a
ho2 £f = f 2

? ho2 (\x->x+3)
5 :: Int

e Which order is the function: mystery x = x 7

Functional Programming Spring Semester, 2012

David Basin

Examples: map, filter, and fold

map :: (a — b) — |a] — D]

map f [] =[]
map f (x:xs) = f x : map f xs

filter :: (a — Bool) — |a] — |a]

filter p [1 = []
filter p (x:xs)

| p x

foldr :: (a —>b—b) - b—|a] > b

foldr f e []
foldr f e (x:xs)

e

Functional Programming

x : filter p xs
| otherwise = filter p xs

f x (foldr f e xs8)

Spring Semester, 2012

David Basin 4

These abstract general operations

Map: iteratively apply a function to each element
? map (2%) [1 .. 5]
[2, 4, 6, 8, 10] :: [Int]

? map (>2) [1 .. 5]
[False, False, True, True, True] :: [Bool]

Filter: selection
? filter (>2) [1 .. 5]
[3, 4, 5] :: [Int]

? filter (2>) [1 .. 5]
[1] :: [Int]

Fold: use function to “combine” elements

? foldr (+) 0 [1 .. 5]
15 :: Int

Functional Programming Spring Semester, 2012

David Basin

Examples with filter

e Remove elements with property p (i.e., select those with —p)

remove p = filter (not . p)

? remove (>2) [1 .. 5]
[1, 2] :: [Int]

e Partition lists using p

part p xs = (filter p xs, remove p Xs)

? part (>2) [1 .. 5]
(L3, 4, 5],[1, 2]) :: ([Int],[Int])

e Which partitioning function is better? In what sense?

partition p [1 = ([1,[1)
partition p (x:xs)
| p x = (x:yesses, nos)
| otherwise = (yesses, x:nos)

where (yesses, nos) = partition p xs

Functional Programming Spring Semester, 2012

David Basin 6

Quick sort (again)

e Quick sort with partition

quicksort [] =[]
quicksort (x:xs) = quicksort left ++ [x] ++ quicksort right
where (left,right) = partition (<= x) xs

e Which program is better?

q [= [
q (x:xs) =q [y | y<—=xs, vy <= x] ++ [x] ++ q [y | y<-xs, y > x]

r [] = []

r (x:xs) =1 left ++ (x : r right)
where (left,right) = partition (<= x) xs

Functional Programming Spring Semester, 2012

David Basin

Map and filter versus list comprehension

e map and filter can be implemented using list comprehension

map f xs = [f x | x <= xs]
filter p xs = [x | x <~ xs, p X]

e Converse holds too: [expr | p <- s] implemented as'

let fun p = expr in map fun s

Example

7 [2xx | (x,_) <= [(1,2),(3,4),(5,6)]]
[2, 6, 10] :: [Int]

7?7 let fun (x,_) = 2*x in map fun [(1,2),(3,4),(5,6)]
[2, 6, 10] :: [Int]

1Equal only when pattern matching with p succeeds on all elements of s. Exercise: generalize to allow for failure.

Functional Programming Spring Semester, 2012

David Basin 8

Comprehension (cont.)

e Guards require filter: [expr | p <- xs, guard] translated as

let fun p = expr
pred p = guard
in map fun (filter pred xs)

e Example

?[2*xx | x<-[1..65], x> 2]
[6, 8, 10] :: [Int]

becomes

? let fun x = 2 * x
pred x = (x>2)
in map fun (filter pred [1 .. 5])
[6, 8, 10] :: [Int]

Functional Programming Spring Semester, 2012

David Basin 9

An example with fold

e foldr: right-associative fold

foldr (®) e [l1,la,...,ln] =11 D (oD ... D (I, De))
foldr c: (a->b->b) >b->[a] > Db

foldr f e []
foldr f e (x:x8)

e
f x (foldr f e xs8)

e foldl: left-associative fold

foldl () e [l1,1la,...,lx] = ((e®l1) Dlo) D ... DI,
foldl c: (b->a->b) >b->[al] > b

foldl f e []
foldl f e (x:x8)

e
foldl f (f e x) xs

Functional Programming Spring Semester, 2012

David Basin 10

Fold (cont.)

e No difference for associative functions (and e is neutral element)

? foldl (+) 0 [1,2,3] — ((0+1) +2) +3
6 :: Int
? foldr (+) 0 [1,2,3] — 1+ (2 + (3 + 0))
6 :: Int

e But not all (binary) functions are associative

? foldl (-) 0 [1,2,3] — ((0-1) -2 -3
-6 :: Int

? foldr (-) 0 [1,2,3] — 1 -2 - (3 -0))
2 :: Int

e How does one implement 1ength with foldr and with fold1?

Functional Programming Spring Semester, 2012

David Basin 11

Implementing length with foldr

foldr (@) & [ll, l2, 13] — ll D (12 D (13 D 6))

Solution with 1+ (1 + (14 0))

length xs = foldr (_ y -> 1+y) 0 xs

? length [’a’, ’b’, ’c’]
3 :: Int

Compare with the “standard” definition

length []
length (x:xs)

0
1 + length xs

where

length [’a’,’b’,’c’] = 1 + length [’b’,’c’] = ... 1+(1+(1+0))

Solution with foldl: Exercise!

Functional Programming Spring Semester, 2012

David Basin 12

Functions as “first-class objects”

e Simple examples (ignoring complications of type classes):

7 type \x -> X
a —> a

7 :type \x > x + 1
Int -> Int

e Composition as example:

(.) . (b->c¢c) > (a->b) > (a > c)
(f . g x=1f (g x)

twice f = f . £

7 :type twice (1+)
Int -> Int

? twice (1+) 7
9 :: Int

Functional Programming Spring Semester, 2012

David Basin 13

Partial application

Int -> Int -> Int
Xy=x+2 %y

0] 0-

Int -> Int

? map (g 10) [1,2,3,4,5] —-— Partial application
[12, 14, 16, 18, 20] :: [Int]

? map (10 ‘g) [1,2,3,4,5] -— Left section
[12, 14, 16, 18, 20] :: [Int]

?map (‘g 10) [1,2,3,4,5] -— Right section
[21, 22, 23, 24, 25] :: [Int]

? map (\x -> g x 10) [1,2,3,4,5]
[21, 22, 23, 24, 25] :: [Int]

Functional Programming Spring Semester, 2012

David Basin 14

Reminder

e /Zipper function

zip (x:xs) (y:ys) (x,y) : zip xs ys
zip _ _ []

e Example =zip [2,3,4] [4,5,78] = [(2,4),(3,5),(4,78)]
zip [2,3] [1,2,3]

]
~—~
o

—_
~—
—~
o

DO
= 3

e Uncurry

uncurry :: (a => b -> c) -> (a,b) > ¢
uncurry g = £
where f (x,y) = g xy

e Example
gxy=x*xy+ 17

? uncurry g (3,4)
29 :: Int

Functional Programming Spring Semester, 2012

David Basin 15

Case study: operations on matrices and vectors

e Vectors and matrices over Int

type Vector = [Int]
type Matrix = [Vector]

e Vector addition

vecAdd :: Vector -> Vector -> Vector
vecAdd v1 v2 = map (uncurry (+)) (zip vl v2)

? vecAdd [1,2,3] [2,2,4]
[3, 4, 7] :: [Int]

e Combination of zip and binary functions is common
zipWith :: (a -=> b -> ¢) -> [a] -> [b] -> [c]

zipWith f (x:xs) (y:ys) = f x y : zipWith f xs ys
zipWith f _ _ =[]

vecAdd :: Vector -> Vector -> Vector
vecAdd = zipWith (+)

Functional Programming Spring Semester, 2012

David Basin 16

Matrix case study (cont.)

e 1 X 1M matrix

a1 air2 ... Q1m
a1 a2 . e a2 m
An,1 An,2 ... An,m

Can be represented column-wise using lists

Hal,la az iy - - ,an,l], [a1,2, az 2, ... 7%,2]7 ceey [al,ma a2 my - - - 7an,m“

e Addition of matrices

matAdd :: Matrix -> Matrix -> Matrix
matAdd = zipWith vecAdd

? matAdd [[1,2,3],[4,5,6]1] [[7,8,9],[10,11,12]]
[[8,10,12],[14,16,18]1] :: [[Int]]

Functional Programming Spring Semester, 2012

David Basin

Transposing a matrix

e A list of columns is converted to a list of rows

a1 ai2 ... QAi1m ai i az 1
a?,l CL2-72 ... CLQ.’m % CL%’Q CL2-72
an,1 az 2 R An,m a1 m a2 m

tr :: Matrix -> Matrix

tr [] = []

tr [v] = map (\x —> [x]) v

tr (v:vs) = zipWith (:) v (tr vs)

tr [[1,2]]
[[1], [2]] :: [[Int]]

? tr [[1,2],1[3,4]]
[[1, 3], [2, 4]] :: [[Int]]

Functional Programming

17

an,1
An,2

Spring Semester, 2012

18

Example of transposition

tr |1, 2], [3, 4]]

zipWith (:) [1,2] (tr[[3, 4]])

zipWith (:) [1,2] (map (Ax. |z]) [3,4])
zipWith (:) [1,2] [[3], [4]]

(1:[3]) = zipWith () [2][[4]

(1:3]) = (2 [4]) = zipWith (:) [| [])
(1:[3]) - ((2:[4]) - [])
11, 3], 2, 4]]

Spring Semester, 2012

David Basin 19

Scalar (dot) product of two vectors

e Sum of product of vectors v and w: v-w =) . v;w;

e Program

skProd :: Vector -> Vector -> Int
skProd v w = sum (zipWith (*) v w)

? skProd [1,2,3] [4,5,6]
32 :: Int

Functional Programming Spring Semester, 2012

David Basin 20

Matrix multiplication

e We first multiply an n X m matrix with an m x 1 column vector

vecMult :: Matrix -> Vector -> Vector
vecMult m v = map (‘skProd‘ v) (tr m)

? vecMult [[1,2,3],[4,5,6]] [7,8]
[39,54,69] :: [Int]

e Matrix multiplication iterates this operation over an m x k matrix

matMult :: Matrix -> Matrix -> Matrix
matMult ml m2 = map (vecMult ml) m2

? matMult [[1,2,3],[4,5,6]] [[7,8],[9,10]]
[[39,54,69],[49,68,87]] :: [[Int]]

Functional Programming Spring Semester, 2012

David Basin 21

Conclusion

e First-order programming

» Programming with elements of base types, like True or 13
» Close to machine architecture

e Higher-order programming

» Functions are first-class objects
e Increases abstraction and ways of constructing programs

e Other advantages like reusability and rapid prototyping

Functional Programming Spring Semester, 2012

David Basin 22

USE: @ F"’j‘ ¥ or

re fe re n c e 5 'I higher-order

s 3 N 0 side effe
£V R ﬁi!lt’:ﬂﬂﬂs”

ATYPES!IE ¢ ..-.I.{_I_E_NDS

Functional Programming Spring Semester, 2012

David Basin 23

Typing

Functional Programming Spring Semester, 2012

David Basin 24

Type checking: an overview

e Type checking should prevent “dangerous expressions”,
e.g., 2+ 1True

e Dangerous expressions = runtime error

e Undecidable problem!

Typeable
Expressions

Bad Expressions

Functional Programming Spring Semester, 2012

David Basin 25

Typing overview (cont.)

e Objectives for a type checker

Bad Expressions

» quick, decidable, static analysis
» permit as much generality /re-usability as possible

» prevent runtime errors: subject reduction
fe—>¢e and e :: 7, thent¢' :: 7.

e Typing is a very rich topic (theory of programming)

» We examine here a simplified language: "Mini-Haskell’

Functional Programming Spring Semester, 2012

David Basin 26

Mini-Haskell — syntax
e Programs are terms (let variables V and integers Z be given)
t o= V| (Az.t) | (tit2) |
True | False | (iszerot) |
Z | (t1 +t2) | (t1 xt2) | (if o then ¢, else) |
(t1,t2) | (fstt) | (sndt)

e Small but powerful language. Corresponds to fragment of Haskell

iszero :: Int -> Bool
1szero X = X ==

? (if (iszero (2%0)) then (fst (2,3)) else (snd (2,3)))
2 :: Int

?7 ((\f x => (if (iszero x) then (f 2) else (f 3)))
(\xy ->y +x) 2) 5)
5 :: Int

e Not all terms are meaningful, e.g. (iszero (A\z.x))

Functional Programming Spring Semester, 2012

David Basin 27

Mini-Haskell — comments

e Core is A-calculus: variables, abstraction, and application
(Az. ((zy) (Ay. (zy))))

e Additional syntax and types can be easily added, e.g.,
&, ||, Strings, . . .
e We will also employ syntactic sugar, like omitting parenthesis
ryz instead ((xy)z)

T1 — T2 — T3 Instead (’7'1 — (7'2 — 7'3))

e A substantial simplification of Haskell — but the central core!

Functional Programming Spring Semester, 2012

David Basin 28

Typing
e Types (V7 is a set of type variables: a, b, . . .)

T = Vr | Bool | Int | (1,7) | (T — 7)

e Examples: a, Int, (Int, Bool), ((a — Int) — (a,a)), ...

e Type system notation based on typing judgement: At :: 7

» A is a set of bindings x; : 7;, mapping variables to types.
Intuitively A represents a kind of typing “symbol table”.

» t1s a term

> T Is a type

e Intuition: given symbol table A, then ¢ has type 7

x:Int-x+2: Int x:Int, f: Bool — Boolt/ fx :: Bool

Functional Programming Spring Semester, 2012

David Basin 29

Typing — proof system

e Proof rules formulated in terms of type judgements J

J ... Jn
J

e Example axiom (n € {...,—1,0,1,...}): Abn: Int
e Example rule (op € {+, x}):

Aty Int AbFty:: Int
AF (tl op tg) o Int

e Proofs built from rules and axioms

x:Intk2: Int a::]ntl—(x:+1) :: Int
r:IntE (24 (x+1)):: Int

Functional Programming Spring Semester, 2012

David Basin 30
Rules for core)\-calculus
e Axiom: ...,z:7,...FxuT

Ax:obFtaT
e Abstraction (z € A): AF (A\x.t):o—T

Abtio—>1 Abity o

e Application: AF (t1te) =T
e Examples:
r:a,y:b-x:a
x:al—x::a I:al_)\y.x::b%a
—Ar.x:ia—a —Ar. A\y.xa—b—a

e Exercise:
Az Ay Az (z2)(yz) s (a— (b—¢)) = (a—b) = (a — ¢)

Functional Programming Spring Semester, 2012

David Basin 31

Examples in ghc

7 1type \x -> X
\'x > x :: a -> a

7 :type \x y -> X
\ Xy ->x::a->b->a

7 :type \x y z > x z (y 2)
\xyz->xz((yz) :: (a->b->c) >(@->b) >a->c

? :type (\z -> z) (\x y —> x)
(\z >2z) (\xy->%x) ::a->b->a

Functional Programming Spring Semester, 2012

David Basin 32

Curry-Howard isomorphism

e Propositions as types

» Type constructor “—" corresponds to propositional logic
connective "=
» Atomic types correspond to propositional variables

e Rules correspond to those for (minimal) propositional logic

AorT ArFo=1 Al o
T, ... T AFo=rT AbFT
e Example T,0F T
THo=T1T
T =0=T

e Correspondence actually quite deep

Functional Programming Spring Semester, 2012

David Basin 33

Further typing rules for mini-Haskell

e Base types

AFn:Int AF True :: Bool AF False :: Bool

e Operations (op € {+, *}):

Akt Int AbtyaInt AbtoInt Abtyg::Bool Abty:1 AbtyuT
A F (iszerot) :: Bool AF (t; op t3) :: Int A (if tg then t; else t5) :: 7
® Tuples
Al_tl o T1 Al_tQZZTQ Akt (7_177_2) ARt (7_177_2)
AF (t1,t2) 2 (11, 72) AF (fstt) o7y AF (sndt) ::
Example

x:IntEx o Int x:Intk2:: Int
rz:IntkFx+2::Int
FAr.x+ 2 Int — Int

Functional Programming Spring Semester, 2012

David Basin 34

Examples (cont.)
e A larger example

c:IntbFaxInt x:IntF2:Int B2:Int = True:: Bool
r:IntEx+2:: Int = (2, True) :: (Int, Bool)
FAx.x+ 2 Int — Int - fst (2, True) :: Int

- (Ax.x + 2) (fst (2, True)) :: Int

e Examples in ghc

? :t (\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True)))
(\n—> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True))) :: Int
? (\n-> if iszero n then 1 else 2*n) ((\x-> x+2) (fst (2,True)))

8 :: Int

7?7 :t \p~> (snd p) (fst p)
\p -> snd p (fst p) :: (a,a > b) > b

Functional Programming Spring Semester, 2012

David Basin 35

Type Classes

Functional Programming Spring Semester, 2012

David Basin 36

Monomorphic versus polymorphic

e Some functions are monomorphic
xor x y = (x || y) && (not (x && y))

? :type xor
xor :: Bool -> Bool -> Bool

e Others are polymorphic

[] ++ ys = ys
(x:x8) ++ ys = x : (xs ++ ys)

7 :type (++)
(++) :: [a] —> [a] —> [a]

e Monomorphic or polymorphic?
allEqual x y z = (x ==y) & (y == z)

Functional Programming Spring Semester, 2012

David Basin 37

Example (cont.)

e Type of allEqual x y z = (x == y) && (y == 2z) 7

7 allEqual 4 (2 + 2) (1+3)
True :: Bool

7?7 allEqual "hi there" ("hi " ++ "there") (’h’:("i there"))
True :: Bool

7 allEqual (\x -> x + 1) (1+) (+1)
ERROR:

e Haskell type

allEqual :: Eq a => a -> a -> a -> Bool

Functional Programming Spring Semester, 2012

David Basin 38

Type classes — a “middle way”

e Polymorphism restricted using class constraints

allEqual :: Eq a => a -> a -> a-> Bool
allEqual x y z = (x == y) & (y == z)

Functions for precisely those types a that belong to the class Eq

e A class defines a set of types. E.g., Eq is the equality class

» Int € Eq
7 allEqual 3 (2+1) (1+2)
True :: Bool

» Int — Int ¢ Eq
7 allEqual (\x -> x + 1) (1+) (+1)
ERROR: a -> a 1s not an instance of class "Eq"

Functional Programming Spring Semester, 2012

David Basin 39

Definition of the Eq class

e Definition (from Prelude.hs)

class Eq a where
(==), (/=) :: a -> a -> Bool
x /=y = not (x==y)

e Definition includes

Class name: Eq
Signature: List of function names and types
(Optional Standard-)Definitions: can be overwritten later

e Elements of the class are called instances

Functional Programming Spring Semester, 2012

David Basin 40

Examples of Eq constrained types

e Classes allow restricted form of type generalization

allEqual :: Int -> Int -> Int -> Bool
allEqual nm p = (n == m) & (m == p)

e Most general type

allEqual :: Eq t => t -> t -> t -> Bool

e Element of a list

elem :: Eq t => t -> [t] -> Bool

elem _ [] = False
elem a (x:xs) = (a == x) || elem a xs

Functional Programming Spring Semester, 2012

David Basin

class Eq a where

(==), (/=)

x /=y

Instances

. a —-> a —> Bool
= not (x==y)

41

e instance builds instances by “interpreting” signature functions

instance Eq Bool

True ==
False ==

True

False =

where

True
True
False

e Instances of primitive types like Int or Float use built-in
(primitive) equalities

Functional Programming

Spring Semester, 2012

David Basin

Example: visible (and measurable) types

class Visible t where
toString :: t -> String
size .t -> Int

instance Visible Char where
toString ch = [ch]
size _ =1

instance Visible Bool where
toString True = "Wahr"
toString False = "Falsch"
size b =1

? (toString ’e’) ++ "ine " ++ (toString True) ++ "e Aussage"
"eine Wahre Aussage" :: [Char]

Functional Programming

42

Spring Semester, 2012

David Basin 43

Example (cont.)

e If ¢ is visible, then a list of type [t] is also visible

instance Visible t => Visible [t] where
toString xs = concat (map toString xs)
size xs = foldr (+) O (map size xs)

? size [True,Falsel]
2 :: Int

? toString [True,False]
"WahrFalsch" :: [Char]

So class membership can depend on membership for other types

e Equality over lists

instance Eq a => Eq [a] where
[] == [] = True
(x:x8) == (y:ys) = x==y && xs==ys
== = False

Functional Programming Spring Semester, 2012

David Basin 44

Derived classes

e Classes themselves can also depend on type conditions

class Eq a => Ord a where
<),), k=), (>=) :: a -> a —> Bool
max, min :: a —-> a —-> a

x <y=x<=y&& x /=y
X):y‘:y(:X
X >y =y<=x&& x /=y

max x y | x <=y =y
| otherwise = x
min x y | x <=y X
| otherwise =y

e If a belongs to Ord, then a must also belong to Eq

e Functions for Eq are inherited and some new ones must be given.

instance Ord Int where (<=) = primLelnt

Functional Programming Spring Semester, 2012

David Basin

Class hierarchies

e Classes can be hierarchically structured

class Eq a where
class Eq a => Ord a where

class Ord a => Bounded a where
minBound, maxBound :: a

class (Eq a, Show a) => Num a where
(+), (=), (x) :: a->a->a

class (Num a, Ord a) => Real a where
toRational :: a -> Ratiomnal

class (Real a, Enum a) => Integral a where
quot, rem, div, mod :: a -> a —-> a

e Inheritance hierarchies like in OO-programming

e Other similarities, like defaults and overriding

Functional Programming

45

Spring Semester, 2012

David Basin 46

Quick sort (again)

e Which type?

sort [] =[]
sort (a:x) = sort [y | y<-x, y<=al ++ [a] ++ sort [y | y<-x, y>al

e Operations <= and > require Ord a => [a] -> [a]

e Ord instances for many Haskell types defined in Haskell Prelude

? sort [5,4,7]
[4, 5, 7] :: [Int]

? sort ["banana", "apple", "carrot"]
["apple", "banana", "carrot"] :: [[Char]]

? sort [True, False, Truel]
[False, True, Truel] :: [Booll]

Functional Programming Spring Semester, 2012

David Basin 47

Example (cont.)

e Parameterization allows further orders (per type)

[]
sort’ ord [y | y<-x, ord y a]
++ [a] ++ sort’ ord [y | y<-x, not(ord y a)l

sort’ ord []
sort’ ord (a:x)

7 sort’ () [2,5,3]
[2, 3, 5] :: [Int]

? sort’ (>) [2,5,3]
[5, 3, 2] :: [Int]

7?7 sort’ (\x y -> x ‘mod‘ 10 < y ‘mod‘ 10) [21,55,30,8,92,15]
[30, 21, 92, b5, 15, 8] :: [Int]

7 sort’ (\x y -> reverse x < reverse y) ["apple","banana","peach"]
["banana", "apple", "peach"] :: [[Char]]

Functional Programming Spring Semester, 2012

David Basin 48

Type classes and resolution of overloading

e Execution of (parametric) polymorphic functions is independent of
type of arguments

e Classes implement “ad hoc” polymorphism

» Operation depends on argument types

e Selection of the actual function:

During compilation: if argument types are statically known.
Run time: using “look-up” tables. Analogous to method look-up.

Functional Programming Spring Semester, 2012

David Basin 49

Conclusion: typing in Haskell

e Haskell features a powerful type system

» Parametric polymorphic functions

» Overloading of functions using type classes
e Type checking is automatic

» No proofs, but instead type inference

e Secure type system

» prevents runtime errors, e.g., 2+ T'rue
» and offers considerable flexibility, e.g., quick sort

Functional Programming Spring Semester, 2012

