Formal Methods

and Functional Programming
Modelling

Peter Muller

Chair of Programming Methodology
ETH Zurich

The slides in this section are partly based on the course Automata-based System Analysis by
Felix Klaedtke

Example 1: Protocol Verification

@ Protocol for file access with primitives open, close, and write

@ Task: verify that a program obeys the following (informal) rules:

A. All opened files must be closed eventually
B. An opened file must be closed before the next open and vice versa
C. All files must be opened before executing a write operation

There is only one file, which is initially closed

@ Problem is typical for verification of protocols

o Locking (acquire, access, release)
o Authentication (authenticate, access)

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 219

Example 1: Encoding in IMP

@ File is represented by variable f
e Write is encoded by assignment to £
e Variable o counts how often file was opened/closed

@ Encoding of primitives:

@ open: o:=0+1
@ close: o:=0-1
@ write: f:=e

@ Informal rules:

A. After o has been set to one, it must eventually be re-set to zero
B. In all execution states, o is zero or one
C. When £ is being assigned to, o must be greater than zero

Variable o is initially zero

Peter Miller—Formal Methods and Functional Programming, SS12 p. 220

Example 1: Specification in NS and Hoare Logic

A. For a terminating program s, o must be zero in the terminal state
(s,0) > o’ and o(0) =0 then o'(0) =0

{o=0}s{0o=0}

Property cannot be expressed for non-terminating programs

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 221

Example 1: Specification in NS and Hoare Logic

A. For a terminating program s, o must be zero in the terminal state

(s,0) > o’ and o(0) =0 then o'(0) =0

{o=0}s{0o=0}

Property cannot be expressed for non-terminating programs

B. In all execution states, o is zero or one

e Natural semantics and Hoare logic can express properties of initial and
terminal states, but not of intermediate states

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 221

Example 1: Specification in NS and Hoare Logic

A. For a terminating program s, o must be zero in the terminal state

(s,0) > o’ and o(0) =0 then o'(0) =0

{o=0}s{0o=0}

Property cannot be expressed for non-terminating programs

B. In all execution states, o is zero or one

e Natural semantics and Hoare logic can express properties of initial and
terminal states, but not of intermediate states

C. When £ is being assigned to, o must be greater than zero

e Natural semantics and Hoare logic can express properties of initial and
terminal states, but not of intermediate states

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 221

Example 1: Specification in SOS (A)

@ A: After o has been set to one, it must eventually be re-set to zero

e For a terminating program s

(s,0) >7 ¢ and o(0) =0 then ¢'(0) =0

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 222

Example 1: Specification in SOS (A)

@ A: After o has been set to one, it must eventually be re-set to zero

e For a terminating program s

(s,0) >7 ¢ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) =7 (s’,0") and 6(0) =0 and ¢'(0) = 1 then there exist
s"",o" such that (s’,0') =] (s"",0"”) and 0" (0) =0

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 222

Example 1: Specification in SOS (A)

@ A: After o has been set to one, it must eventually be re-set to zero

e For a terminating program s

(s,0) >7 ¢ and o(0) =0 then ¢'(0) =0

e For a deterministic, non-terminating program s

(s,0) =7 (s’,0") and 6(0) =0 and ¢'(0) = 1 then there exist
s"",o" such that (s’,0') =] (s"",0"”) and 0" (0) =0

e For a non-deterministic, non-terminating program s

wc : Stm x State x N — Bool

wc(s,o,n) < o(o) =0V
(for all s",0":if (s,0) =1 (s’,0") then there exists
m € N such that m < n and wc(s’,0', m))

(s,0) »1 (s’,0") and (o) =0 and ¢'(0) =1 then
there exists n € N such that wc(s’, o', n)

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 222

Example 1: Specification in SOS (B and C)

@ B: In all execution states, o is zero or one
(s,0) =7 (s',0") and o(0) =0 then 0'(0) =0 or 6'(0) =1

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 223

Example 1: Specification in SOS (B and C)

@ B: In all execution states, o is zero or one
(s,0) =7 (s',0") and 0(0) =0 then 0’'(0) =0 or 0'(0) =1

@ C: When f is being assigned to, o must be greater than zero
e SOS cannot express properties of occurrences of statements

e Work-around: Enrich state and make sure write changes the state

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 223

Example 1: Verification

A. For a terminating program s

s,o) =7 o’ and o(o) =0 then ¢'(0) =0
1

o Proof needs to consider all possible derivations of (s,0) -7 ¢’ to find
all possible terminal states
e Problematic in the presence of non-determinism or parallelism

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 224

Example 1: Verification

A. For a terminating program s

s,0) =7 o and o(o) =0 then ¢'(0) =0
1

o Proof needs to consider all possible derivations of (s,0) -7 ¢’ to find
all possible terminal states
e Problematic in the presence of non-determinism or parallelism

For a deterministic, non-terminating program s

(s,0) =1 (s’,0") and 0(0) =0 and o'(0) = 1 then there exist
s"",o" such that (s, 0"} -7 (s”,0") and 0" (0) =0

e Proof about infinite derivation sequence requires invariant, which
cannot be found automatically

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 224

Example 1: Verification

A. For a terminating program s

s,0) =7 o and o(o) =0 then ¢'(0) =0
1

o Proof needs to consider all possible derivations of (s,0) -7 ¢’ to find
all possible terminal states
e Problematic in the presence of non-determinism or parallelism

For a deterministic, non-terminating program s

(s,0) =1 (s’,0") and 0(0) =0 and o'(0) = 1 then there exist
s"",o" such that (s, 0"} -7 (s”,0") and 0" (0) =0

e Proof about infinite derivation sequence requires invariant, which
cannot be found automatically

B. In all execution states, o is zero or one

s,0) =7 (s',0’) and o(0) =0 then ¢’(0) =0 or o'(0) =1
1

e Prove needs to consider all possible derivations

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 224

Example 2: Verification of Parallel Programs

@ A (simplified) Java program

class Cell {
int x = 0;

static void main(...) {
Cell ¢ = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
tl.start(); t2.start(Q);
tl.join(); t2.join();
System.out.println(c.x);

class Even extends Thread {
Cell c;

Even(Cell c¢) {
this.c = c;

+

void run() {
c.Xx =c.x + 1;
c.x = c.x + 1;
+
}

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 225

Example 2: Verification of Parallel Programs

@ A (simplified) Java program

class Cell {
int x = 0;

static void main(...) {
Cell ¢ = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
tl.start(); t2.start(Q);
tl.join(); t2.join();
System.out.println(c.x);

class Even extends Thread {
Cell c;

Even(Cell c) {
this.c = c;

+

void run() {
c.Xx = c.Xx + 1;
c.x = c.x + 1;

+
+

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 225

Example 2: Encoding in IMP

@ The following program s represents the core of the Java program
@ X represents shared variable c.x
e y and z represent thread-local state

(y :=%x; y:=y+1; x :=7y;

y :=x; y:=y+1; x :=7y)
par

(z :=x; zZz:=2+1; x := z;

z :=x; Z:=2z+1; x := 2)

@ Desired property:
If x is zero in the initial state then x is even in the terminal state
e NS and Hoare logic cannot handle parallelism

e SOS specification:

(s,0) >] ¢’ and o(x) =0 then ¢'(x) mod 2 =0

Peter Miller—Formal Methods and Functional Programming, SS12 p. 226

Example 2: Verification

@ In this case, spotting the counterexample is easy, but how to attempt a
formal proof?

@ Induction does not work because there i1s no suitable induction
hypothesis
e Observation also holds for corrected example

@ Proof strategy: enumerate all possible derivations of (s,o) -7 ¢’ and
inspect terminal state o’

e Number of derivations grows exponentially in number of executed
statements

e Here, 6!172!6! = 924 possible derivations!

e Manual enumeration not feasible, especially for programs with loops

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 227

Examples: Observations

@ Specification challenge
e How to specify properties of sequences of states concisely

@ Verification challenges

e Concurrent systems: How to prove properties of all possible program
executions

e Reactive systems: How to prove automatically properties of infinite
derivation sequences

Peter Miller—Formal Methods and Functional Programming, SS12 p. 228

Model Checking

Model checking is an automated technique that, given
a finite-state model of a system and a formal property,
systematically checks whether this property holds for

(a given state in) that model. [Baier and Katoen]

@ Model checkers enumerate all possible states of a system:

e Explicit state model checking:
represent state explicitly through concrete values

e Symbolic model checking:
represent state through (boolean) formulas

@ We focus on explicit state model checking

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 229

Model Checking

O(p — €Q)

Property
Specification

Model
Checker

Eidgendssische Technische Hochschule Zarich

Swiss Federal institute of Technology Zurich Peter Miiller—Formal Methods and Functional Programming, SS12 p. 230

Model Checking Process

@ Modelling phase

e Model the system under consideration using the description language of
your model checker (possibly a programming language)
e Formalize the properties to be checked

@ Running phase

e Run the model checker to check the validity of the property in the
system model

@ Analysis phase
o If property is satisfied, celebrate and move on to next property
e If property is violated, analyze counterexample
e If out of memory, reduce model and try again

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 231

Main Purposes of Model Checking

@ Model checking is mainly used to analyze system designs (as opposed
to implementations)

@ Typical properties to be analyzed include

e Deadlocks
e Reachability of undesired states
e Protocol violations

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 232

Modelling Concurrent Systems

@ Systems are modelled as finite transition systems

@ We model systems as communicating sequential processes (agents)

e Finite number of processes
e Interleaved process execution

@ Processes can communicate via:

e Shared variables
e Synchronous message passing
@ Asynchronous message passing

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 233

Protocol Meta Language Promala

@ Input language of the Spin model checker
@ Main objects are processes, channels, and variables

@ C-like syntax

init {
printf ("Hello World!\n")
+

@ Spin can “execute” (simulate) models

@ References

e Quick reference: www.spinroot.com/spin/Man/Quick.html
o Further references: www.spinroot.com/spin/Man/index.html

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 234

www.spinroot.com/spin/Man/Quick.html
www.spinroot.com/spin/Man/index.html

Promela Programs

@ Constant declarations

#define N 5
mtype = { ack, req };

@ Structure declarations

typedef vector { int x; int y };

@ Global channel declarations
chan buf = [2] of { int };

@ Global variable declarations

byte counter;

@ Process declarations

proctype myProc(int p) { ... }

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 235

Promela Process Declarations

@ Simple form

proctype myProc(int p) { ... }

e Body consists of a sequence of variable declarations, channel
declarations, and statements
e No arrays as parameters

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 236

Promela Process Declarations

@ Simple form

proctype myProc(int p) { ... }

e Body consists of a sequence of variable declarations, channel
declarations, and statements
e No arrays as parameters

@ General form

active [N] proctype myProc(...) provided(E) priority M { ... }

e active: Start N instances of myProc in the initial state
e provided: E is an enabling condition, evaluated in the inital state
e priority: M indicates probability during random simulation (M > 1)

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 236

Promela Process Declarations

@ Simple form

proctype myProc(int p) { ... }

e Body consists of a sequence of variable declarations, channel
declarations, and statements
e No arrays as parameters

@ General form

active [N] proctype myProc(...) provided(E) priority M { ... }

e active: Start N instances of myProc in the initial state
e provided: E is an enabling condition, evaluated in the inital state
e priority: M indicates probability during random simulation (M > 1)

@ Init process is started in the initial state

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 236

Promela Process Declarations

@ Simple form

proctype myProc(int p) { ... }

e Body consists of a sequence of variable declarations, channel
declarations, and statements
e No arrays as parameters

@ General form

active [N] proctype myProc(...) provided(E) priority M { ... }

e active: Start N instances of myProc in the initial state
e provided: E is an enabling condition, evaluated in the inital state
e priority: M indicates probability during random simulation (M > 1)

@ Init process is started in the initial state

@ Deterministic processes lead to extra check during model analysis

D_proctype myProc(int p) { ... }

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 236

Promela Types

@ Primitive types

Type Value range
bit or bool | 0...1

byte 0...255
short Solo ol
int 231 231

e No floats and mathematical integers

@ Used-defined types

e Arrays: int name [4]
e Structures
e Type of symbolic constants: mtype

@ Channel type: chan

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 237

Promela Variable and Channel Declarations

@ Variable declarations

byte a, b = 5, c;
int d[3], e[4] = 3;
mtype msg = ack;
vector v;

e Variables are initialized to zero-equivalent values

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 238

Promela Variable and Channel Declarations

@ Variable declarations

byte a, b = 5, c;
int d[3], e[4] = 3;
mtype msg = ack;
vector v;

e Variables are initialized to zero-equivalent values

@ Channel declarations

chan cl1
chan c2
chan c3;

[2] of { mtype, bit, chan };
[0] of { int };

e cl can store up to two messages
Messages sent via c1 consist of three parts (triples)
e c2 models rendez-vous communication
e c3 is uninitialized; must be assigned an initialized channel before usage

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 238

Promela Variable and Channel Declarations

@ Variable declarations

byte a, b = 5, c;
int d[3], e[4] = 3;
mtype msg = ack;
vector v;

e Variables are initialized to zero-equivalent values

@ Channel declarations

chan ci
chan c2
chan c3;

[2] of { mtype, bit, chan };
[0] of { int };

e cl can store up to two messages
Messages sent via c1 consist of three parts (triples)
e c2 models rendez-vous communication
e c3 is uninitialized; must be assigned an initialized channel before usage

@ Variable and channel declarations are local to a process or global

ETH

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 238

State Space of a Promela System

x=1 y=0 z=3

Global Variables

buf (0[|6]2|0

Active Processes

Location counter

. I Local Variables t

— 2
/

"

Sk of Technoogy i Peter Miiller—Formal Methods and Functional Programming, SS12 p. 239

Initial State

Specified initial value
or default value

Global Variables

~

Channels are empty

J

=~ =)
Active Processes Init and processes

‘ declared active)

)

Location counter a
first statement

Local Variables

Shut fTechnology Fuch. Peter Miiller—Formal Methods and Functional Programming, SS12 p. 240

State Transitions

@ A statement can be executable or blocked

e Send is blocked if channel is full
@ s1;s2 is blocked if s1 is blocked
e timeout is executable if all other statements are blocked

A transition is made in three steps:

@ Determine all executable statements of all active processes
e If no executable statement exists, transition system gets stuck

@ Choose non-deterministically one of the executable statements
e Non-determinism models concurrency through interleaving

@ Change the state according to the chosen statement

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 241

Promela Expressions

@ Variables, constants, and literals
@ Structure and array accesses

@ Unary and binary expressions with operators

+ - * / A >
& | | && | - >>
<< - ++ ——

@ Function applications

len() empty() mnempty() nfull() full()
run eval() enabled() pcvalue()

@ Conditional expressions: (E1 -> E2 : E3)

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 242

Promela Statements

@ skip

e Does not change the state
e Always executable

@ timeout

e Does not change the state
e Executable if all other statements in the system are blocked

@ assert(E)

e Aborts execution if expression E evaluates to zero; otherwise equivalent
to skip
e Always executable

@ Assignment

e x = E assigns the value of E to variable x
e a[n] = E assigns the value of E to array element a[n]
e Always executable

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 243

Promela Statements (cont’d)

@ Sequential composition
@ s1;s2 is executable if s1 is executable

@ Expression statement

e Evaluates expression E

e Executable if E evaluates to value different from zero
o E must not change state (no side effects)

e Common case: function applications

e Examples:

printf ("Hello World!\n");
run myProcess;
x > 0;

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 244

Motivation: Verification of Parallel Programs

@ A (simplified) Java program

class Cell {
int x = 0;

static void main(...) {
Cell ¢ = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
tl.start(); t2.start(Q);
tl.join(); t2.join();
System.out.println(c.x);

class Even extends Thread {
Cell c;

Even(Cell c) {
this.c = c;

+

void run() {
c.Xx = c.Xx + 1;
c.x = c.x + 1;

+
+

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 245

Example: Modelling Even.run

class Even extends Thread {
Cell c;

Even(Cell c¢c) {
this.c = c;

+

void run() {
c.x = c.x + 1;
c.x = c.x + 1;

+
+

ssssssssssssssssss o Tcanolgy L Peter Miiller—Formal Methods and Functional Programming, SS12

int x;

proctype EvenRun() {

int

MNN< K<

y = %
y +1;
=y-|-1;

=y;

p. 246

Example: Modelling Cell.main

class Cell {
int x = 0;

static void main(...) {
Cell ¢ = new Cell();
Thread t1 = new Even(c);
Thread t2 = new Even(c);
tl.start(); t2.start();
tl.join(); t2.join(Q);
System.out.println(c.x);

+

}

init {

+

x = 0;

run EvenRun() ;
run EvenRun() ;

/* wait for termination */
_nr_pr == 1;

printf("x: %d\n", x);
assert x % 2 == 0;

@ _nr_pr is a predefined global variable that yields the number of active

ProcCesses

@ Simulation in Spin shows the possible outcomes 2, 3, and 4

(like Java program)

ETH

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 247

Promela Statements: Selection

if
:: s1 /% option 1 */

:: sn /* option n */
fi

@ Executable if at least one of its options it executable
@ Chooses an option non-deterministically and executes it

if /* Move a sprite */

. x <maxX > x =x + 1;
x> minX > x =x - 1;
::y <maxY ->y =y + 1;
:ry > minY >y =y - 1;
color = color + 1;

fi

@ Statement else is executable if no other option is executable (may

occur at most in one option)
ETH

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 248

Promela Statements: Repetition

do
:: s1 /% option 1 */

sn /* option n */

od

@ Executable if at least one of its options it executable
@ Chooses repeatedly an option non-deterministically and executes it
@ Terminates when a break or goto Is executed

/* compute factorial of n */
int r = 1;

do

::n>1->r =r1r%xn; n = n-1;
: else -> break

od

/* deadlock detection */
active proctype watchDog() {
do
:: timeout ->
/* reset the state */
od
+

Eidgenbsslichs Techiksthe Hochschul
Swiss Federal 1 |

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 249

Promela Statements:

Atomic

@ Basic statements are executed atomically

e No interleaving during execution of statement

e skip, timeout, assert,

assignment, expression statement

@ atomic { s } executes s atomically

e If any statement within s blocks, atomicity is lost, and other processes
are then allowed to execute statements

@ Example: Binary semaphores (locks)

bit locked; /* global */

Eidgendssische Technische Hochschule Zarich
Swiss Federal institiute of Technology Zurich

/* lock *x/
atomic {
locked == 0;
locked = 1;
+
/* critical section */
locked = 0; /* unlock */

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 250

Promela Macros

@ Promela does not contain procedures

@ Effect can often be achieved using macros

inline lock() {
atomic {
locked == 0;
locked = 1
+
}

inline swap(a, b) {
int tmp;
tmp = a,;
a = b;
b = tmp
+

@ A macro just defines a replacement text for a symbolic name, possibly

with parameters

The inline call 1ock() is replaced by the body of the definition

No recursion

o
e No new variable scope
o
e No return values

@ Define macro globally before its first use

ETH

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 251

Motivation: Deadlock

@ Threads are
synchronized via

class Account {
locks int balance;

@ Interleaved

. void transfer(Account to, int amount) {
execution of

acquire this;

a.transfer(b,n) acquire to;
and this.balance -= amount;
b.transfer(a,m) to.balance += amount;

release this;
release to;

might deadlock

@ Multi-threaded }
programs are +
extremely hard
to test

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 252

Promela Model: Account

@ We need to model accounts and clients
e General approach: omit all irrelevant details to reduce complexity

@ Account
e Balance is not relevant for potential deadlocks
e Only model the locks of accounts

#define N 5
bit Account_locks[N];

inline lock(n) {
atomic {
Account_locks[n] == 0;
Account_locks[n] = 1;

+
}

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 253

Promela Model: Client

@ ldea: model the most generic client and run several instances in parallel

e Pick two arbitrary accounts non-deterministically
e Lock both accounts
e Unlock both accounts

@ Choosing accounts

inline choose(a, 1, u) { inline chooseAccounts(f, t) {
a = 1; do
do :: (f !'=t) -> break
(a < u) -> a++ :: (f == t) -> choose(f, 0, N-1);
:: break choose(t, 0, N-1)
od od
} +

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 254

Promela Model: Client Process

active [C] proctype transfer() {
byte from, to;

/* choose accounts non-deterministically */
chooseAccounts (from, to);

/* acquire locks */
lock(from) ;
lock(to);

/* actual transfer omitted */

/* release locks *x/
Account_locks|[from]

=O;
Account_locks[to] = 0;

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 255

Alternative Account Selection

@ Idea: instead of looping until two different accounts are found, restrict
range for second choice

do choose(f, 0, N-2);
(f '= t) -> break choose(t, f+1, N-1)

(f == t) -> choose(f, 0, N-1);
choose(t, 0, N-1)
od

Peter Miller—Formal Methods and Functional Programming, SS12 p. 256

Alternative Account Selection

@ Idea: instead of looping until two different accounts are found, restrict
range for second choice

do choose(f, O, N-2);
(f '= t) -> break choose(t, f+1, N-1)

(f == t) -> choose(f, 0, N-1);
choose(t, 0, N-1)

od

@ Alternative model is less general

o It guarantees from < to
e So locks are acquired in order and deadlock is prevented!

Peter Miller—Formal Methods and Functional Programming, SS12 p. 256

Alternative Account Selection

@ Idea: instead of looping until two different accounts are found, restrict
range for second choice

do choose(f, O, N-2);
(f '= t) -> break choose(t, f+1, N-1)

(f == t) -> choose(f, 0, N-1);
choose(t, 0, N-1)

od

@ Alternative model is less general

o It guarantees from < to
e So locks are acquired in order and deadlock is prevented!

@ General strategy

e Start with most general model
o If model contains errors that cannot occur in real system (spurious

error), revise model

Peter Miller—Formal Methods and Functional Programming, SS12 p. 256

Promela Channels

@ chan ch = [d] of { t1, ..., tn } declares a channel

@ Channel can buffer up to d messages
o d > 0: buffered channel (FIFO)
o d = 0: unbuffered channel (rendez-vous)

@ Each message is a tuple whose elements have types t1, ..., tn

@ Example

mtype = { req, ack, err };

chan ch = [6] of { mtype, int }

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 257

Send and Receive: Buffered Channels

chan ch = [5] of { mtype, int }

@ ch ! el, ..., en sends message

e Type of ei must correspond to ti in channel declaration
e Send is executable iff buffer is not full

@ ch 7 al, ..., an receives message
e ai is a variable or constant of type ti
e Receive is executable iff buffer is not empty and the oldest message in

the buffer matches the constants ai
e Variables ai are assigned values of the message

ch ! req, 7; int n;

ch ! ack, 1 ch 7 req, n;

printf ("Received: %d\n", n);
ch 7 req, n;

printf ("Received: %d\n", n);

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 258

Send and Receive: Unbuffered Channels

chan ch = [0] of { int };

@ ch ! el, ..., en sends message

e Send is executable if there is a receive operation that can be executed
simultaneously

@ ch 7 al, ..., an recelves message

e Receive is executable if there is a send operation that can be executed
simultaneously

@ Unbuffered channels model synchronous communication (rendez-vous)

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 259

Motivation: Needham-Schroeder Protocol

@ Establish a common secret over an insecure channel

1. Alice sends random number N, to Bob, encrypted with Bob's public key:
<A7 NA)B
2. Bob sends random number Npg to Alive, encrypted with Alice's public
key: <NA7NB>A
3. Alice responds with (Ng)g
1. <AN,>5

BF®

3. <Ng>g

@ Intruders may:

e Intercept, store, and replay messages
e Initiate or participate in runs of the protocol
e Decrypt messages only if encrypted with intruder’s public key

@ Error: intruder can pretend to be another party

ETH
Sutes Federalimsiute o Technology Zuich Peter Miiller—Formal Methods and Functional Programming, SS12 p. 260

Promela Model: Network

1. <AN,>g

BF®

3. <Ng>g

@ We model the protocol for two agents plus intruder

@ Agents communicate synchronously

chan network = [0] of {

mtype, /* tag: msgl, msg2, msg3 * /
mtype, /* intended receiver: agentA, agentB, agentI */
Crypt /* message */

+;

@ We use enumeration type mtype for all constants

e Spin treats mtype constants as symbols, not values
e Speeds up model checking

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 261

Promela Model: Messages

@ Message consists of key and up to two contents

typedef Crypt {
mtype key, /* public key used to encrypt */
contentl, /* agent or nonce */
content2 /* nonce or don’t care */
¥

@ We model encryption by putting the public key into the message

e Agent a will only look at message content if message key is a's public key
e No need to model private keys and encryption

@ Constants for message tag, public keys, agents, and nonces

mtype = { msgl, msg2, msg3,
keyA, keyB, keyl,
agentA, agentB, agentI,
noncelA, nonceB, noncel 7};

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 262

Promela Model: Alice

@ Protocol runs are always started by Alice

mtype partnerA;
bit statusA; /* 1 = success */

active proctype Alice() {

mtype pkey; /* the partner’s public key */
mtype pnonce; /* nonce that we receive from partner */
Crypt message; /* our message to the partner */
Crypt data; /* received message */

if /* choose a partner for this run */
:: partnerA = agentB; pkey = keyB;

:: partnerA = agentl; pkey = keyl,;

fi;

/* Protocol run below */
statusA = 1; /* Success */

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 263

Promela Model: Alice’s Protocol Run

/* Prepare and send first message */ 1. <AN,>g
build(message, pkey, agentA, noncel); ///’—-*
network ! msgl, partnerA, message; <::>(21<NNN§1‘<E§>
/* Wait for answer */ 3. <Ng>g

network 7 (msg2, agentA, data);

/* Proceed only if the key matches keyA and the
nonce is the one that we have sent earlier */
(data.key == keyA) && (data.contentl == noncel);

/* Obtain partner’s nonce */
pnonce = data.content2;

/* Prepare and send the last message */
build (message, pkey, pnonce, 0);
network ! msg3, partnerA, message;

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 264

Intruder

@ Intruders may:

e Intercept messages

Store one message

Replay messages

Initiate or participate in runs of the protocol

Decrypt messages only if encrypted with intruder’s public key

@ How can we model the most powerful attack using these capabilities?

@ Solution: Model intruder fully non-deterministically

e Intruder has no intellegence whatsoever
e Model checker will explore all possible behaviors of intruder

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 265

Promela Model: Intruder

bool knows_noncelA, knows_nonceB;

active proctype Intruder() {

mtype tag; /* message tag */
mtype recpt; /* recipient for our message */
Crypt data /* received message */
Crypt intercepted; /* stored message */

do
:: /* Receive and learn */

:: /* Replay or send */
od

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 266

Promela Model: Intruder Receives

do
:: network 7 (tag, _, data) ->
if /* perhaps store the message */
copy(data, intercepted);
skip;
fi;
if /* record newly learnt nonces */
(data.key == keyIl) ->
knows_noncelA = knows_nonceA ||

(data.contentl == nonceld) ||
(data.content2 == noncel);
knows_nonceB = knows_nonceB ||
(data.contentl == nonceB) ||
(data.content2 == nonceB);
else -> skip;
fi;
/* Replay or send */

od

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 267

Promela Model: Intruder Sends

do
:: /* Receive and learn */
/* Replay or send */
if /* choose message type */

:: tag = msgl;
11 tag = msg2;
;1 tag = msg3;

fi;

if /* choose recipient */

11 recpt = agentA,;

.. recpt = agentB;

fi;

if /* replay intercepted message or assemble it */
copy(intercepted, data);
/* assemble new message */

fi;

network ! tag, recpt, data;

od

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 268

Promela Model: Intruder Sends (cont’'d)

/ *
if

fi;
if

fi;
if

fi;

assemble new message

data.key = keyA;

data.key = keyB;
data.
data.
data.

knows_nonceA -> data.
knows_nonceB -> data.
data.

knows_nonceA -> data.
knows_nonceB -> data.
data.

*/

contentl =
contentl =
contentl =
= noncel;
= nonceB;
= noncel;

contentl
contentl
contentl

content?2
content?2
content?2

1. <AN,>p

BB

3. <Ng>g

agentA;
agentB;
agentl;

= noncel;
= nonceB;
= noncel;

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 269

Summary

@ Models are abstractions of the real world

@ Omit irrelevant details to reduce complexity
e Example: balance in account example

@ Keep model small to avoid state space explosion

e As few process as possible
e As little data as possible

@ Non-determinism is a powerful modelling tool
e Let model checker explore all options

@ Typical sources of non-determinism are:

e Abstraction
e Modelling of the environment

Peter Miiller—Formal Methods and Functional Programming, SS12 p. 270

