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Motivation

Many interesting properties relate several states

Example: all opened files must be closed eventually

For a terminating program s

⟨s, σ⟩ →∗1 σ′ and σ(o) = 0 then σ′(o) = 0

For a deterministic, non-terminating program s

⟨s, σ⟩ →∗1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then there exist
s ′′, σ′′ such that ⟨s ′, σ′⟩ →∗1 ⟨s ′′, σ′′⟩ and σ′′(o) = 0

For a non-deterministic, non-terminating program s

wc ∶ Stm × State ×N→ Bool
wc(s, σ,n) ⇔ σ(o) = 0 ∨

(for all s ′, σ′ ∶ if ⟨s, σ⟩ →1 ⟨s ′, σ′⟩ then there exists
m ∈ N such that m < n and wc(s ′, σ′,m))

⟨s, σ⟩ →∗1 ⟨s ′, σ′⟩ and σ(o) = 0 and σ′(o) = 1 then
there exists n ∈ N such that wc(s ′, σ′,n)
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5. Linear Temporal Logic

5.1 Linear-Time Properties

5.2 Linear Temporal Logic

5.3 LTL Model Checking
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Transition Systems Revisited

We use a slightly different definition here

A finite transition system is a tuple (Γ, σI ,→)
Γ: a finite set of configurations
σI : an initial configuration, σI ∈ Γ
→: a transition relation, →⊆ Γ × Γ

We add an initial configuration

Transition system models only one system, not all programs of a
programming language

We omit terminal configurations

Simplifies theory
Termination can be modelled by special sink state
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Transition System of a Promela Model

Configurations: states (see previous section)

Global variables, global channels
Per active process: local variables, local channels, location counter

Initial configuration: initial state (see previous section)

Transition relation: defined by operational semantics of statements

We keep semantics informal

A Promela model has a finite number of states

Finite number of active processes (limited to 255)
Finite number of variables and channels
Finite ranges of variables
Finite buffers of channels

Therefore, it is possible to enumerate all possible states

How many states are there?
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State Space of Sequential Programs

Number of states

#program locations × ∏
variable x

∣ dom(x) ∣

where ∣ dom(x) ∣ denotes the number of possible values of variable x

Example: sequential program with 10 locations and 3 boolean variables

10 × 2 × 2 × 2 = 10 × 23 = 80

Adding two integer variables yields 80 × 232 × 232 = 80 × 264

Number of states grows exponentially in the number of variables

State space explosion
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State Space of Concurrent Programs

The number of states of P ≡ P1∥ . . . ∥PN is at most

#states of P1 × . . . × #states of PN =
N

∏
i=1

(#program locationsi × ∏
variable xi

∣ dom(xi) ∣)

Number of states grows exponentially in the number of processes

State space explosion
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State Space of Promela Models

The number of states of a system with N processes and K channels is
at most

N

∏
i=1

(#program locationsi × ∏
variable xi

∣ dom(xi) ∣) ×
K

∏
j=1

∣ dom(cj) ∣cap(cj)

∣ dom(c) ∣ denotes the number of possible messages of channel c
cap(c) is the capacity (buffer size) of channel c

Number of states grows exponentially in the number and capacity of
channels

State space explosion
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Computations

Infinite sequences

Sω is the set of infinite sequences of elements of set S
si denotes the i-th element of the sequence s ∈ Sω

γ ∈ Γω is a computation of a transition system if:

γ0 = σI

γi → γi+1

C(TS) is the set of all computations of a transistion system TS
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Linear-Time Properties

Linear-time properties (LT-properties) specify the admissible
computations of a transition system

A linear-time property over Γ is a subset of Γω

TS satisfies LT-property P (over Γ)

TS ⊧ P if and only if C(TS) ⊆ P

All computations of TS are admissible

By contrast: branching-time properties can also express the existence of
a computation

Example: “It is always possible to return to the initial state”
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LT-Properties: Example

All opened files must be closed eventually

P = {γ ∈ Γω ∣ ∀i ≥ 0 ∶ γi(o) = 1⇒ ∃n > 0 ∶ γi+n(o) = 0}

LT-properties elegantly express properties of computations

Non-termination is handled by infinite sequences
Non-determinism is handled by considering each computation separately

Logical formalism needed to simplify specification of LT-properties
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From States to Propositions

For a transition system TS , we specify the set AP of atomic
propositions

An atomic proposition is a proposition containing no logical connectives
Example: AP = {open, closed}

We define a labeling function that maps configurations to sets of
atomic propositions

L ∶ Γ→ P(AP)

Example: L(σ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

{open} if σ(o) = 1
{closed} if σ(o) = 0
{} otherwise

We call L(σ) an abstract state

From now on, we consider AP and L to be part of the transition system
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Traces

A trace is an abstraction of a computation

Observe only the propositions of each state, not the concrete state itself
Infinite sequence of abstract states (P(AP)ω)

t ∈ P(AP)ω is a trace of a transition system TS if
t = L(γ0)L(γ1)L(γ2), . . . and γ is a computation of TS

T (TS) is the set of all traces of a transistion system TS

LT-properties are typically specified on traces

P = {t ∈ P(AP)ω ∣ ∀i ≥ 0 ∶ open ∈ ti ⇒ ∃n > 0 ∶ closed ∈ ti+n}
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Safety Properties

Intuition

“nothing bad ever happens”
“if something bad happens then it is irremediable”

An LT-property P is a safety property if for all infinite sequences
t ∈ P(AP)ω:
if t /∈ P then there is a finite prefix t̂ of t such that for every infinite
sequence t ′ with prefix t̂, t ′ /∈ P

t̂ is called a bad prefix

Safety properties are violated in finite time and cannot be repaired

Examples

State properties, for instance, invariants

P = {t ∈ P(AP)ω ∣ ∀i ≥ 0 ∶ open ∈ ti ∨ closed ∈ ti}

“Money can be withdrawn only after correct PIN has been entered”
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Liveness Properties

Intuition

“something good will happen eventually”
“if the good thing has not happened yet, it will happen in the future”

An LT-property P is a liveness property if every finite sequence
t̂ ∈ P(AP)∗ is a prefix of an infinite sequence t ∈ P

A liveness property does not rule out any prefix
Every finite prefix can be extended to an infinite sequence that is in P

Liveness properties are violated in infinite time

Examples

All opened files must be closed eventually

P = {t ∈ P(AP)ω ∣ ∀i ≥ 0 ∶ open ∈ ti ⇒ ∃n > 0 ∶ closed ∈ ti+n}

“The program terminates eventually”
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5. Linear Temporal Logic

5.1 Linear-Time Properties

5.2 Linear Temporal Logic

5.3 LTL Model Checking
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Linear Temporal Logic

Linear Temporal Logic (LTL) allows us to formalize LT-properties of
traces

We will discuss syntax and semantics, but not inference rules

Whether the traces of a finite transition system satisfy an LTL formula
is decidable
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LTL: Basic Operators

Syntax

φ = p ∣ ¬φ ∣ φ ∧ φ ∣ φUφ ∣ ◯φ

where p is a proposition in AP ≠ ∅

Intuitive meaning of temporal operators

p
p

p

   
U

   





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LTL: Semantics

t ⊧ φ expresses that trace t ∈ P(AP)ω satisfies LTL formula φ

t ⊧ p iff p ∈ t0

t ⊧ ¬φ iff not t ⊧ φ
t ⊧ φ ∧ ψ iff t ⊧ φ and t ⊧ ψ
t ⊧ φUψ iff there is a k ≥ 0 with t≥k ⊧ ψ and

t≥j ⊧ φ for 0 ≤ j < k
t ⊧ ◯φ iff t≥1 ⊧ φ

where t≥i is the suffix of t starting at ti

p
p

p

   
U

   





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Derived Operators

true, false,∨,⇒ as usual

Eventually: ◇φ ≡ true Uφ

Generally: ◻φ ≡ ¬◇ ¬φ

Intuitive meaning






  


  
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Specification Patterns

Strong invariant

◻p: p always holds
A file is always open or closed: ◻(open ∨ closed)
Safety property

Monotone invariant

◻(p⇒ ◻p): once p, always p
Once information is public, it can never become secret again (but it may
always stay secret): ◻(public ⇒ ◻public)
Safety property

Establishing an invariant

◇◻ p: eventually p will always hold
System initialization starts daemon process: ◇◻ daemonRunning
Liveness property
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Specification Patterns (cont’d)

Responsiveness

◻(p⇒◇q): everytime p holds, q will eventually hold
All opened files must be closed eventually: ◻(open⇒◇closed)
Liveness property

Fairness

◻◇ p: p holds infinitely often
Producer does not wait infinitely long before entering the critical section:
◻◇ crit
Liveness property
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Needham-Schroeder Protocol

If Alice and Bob have completed their protocol runs then Alice should
believe her partner to be Bob if and only if Bob believes to talk to Alice

◻(statusA = 1 ∧ statusB = 1⇒
(partnerA = agentB⇔ partnerB = agentA))

If Alice completed her protocol run with Bob, the intruder should not
have learned Alice’s nonce

◻(statusA = 1 ∧ partnerA = agentB ⇒ knows nonceA = 0)

If Bob completed his protocol run with Alice, the intruder should not
have learned Bob’s nonce

◻(statusB = 1∧partnerB = agentA⇒ knows nonceB = 0)
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5.1 Linear-Time Properties

5.2 Linear Temporal Logic

5.3 LTL Model Checking

Peter Müller—Formal Methods and Functional Programming, SS12 p. 294



LTL Model Checking Problem

Given a finite transition system TS and an LTL formula φ,
decide whether t ⊧ φ for all t ∈ T (TS)

We need to check inclusion of traces

LTL formula φ describes set of traces P(φ)
We need to determine whether T (TS) ⊆ P(φ)
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A Simpler Problem: Regular Safety Properties

A safety property is regular if its bad prefixes are described by a regular
language

Every invariant over AP is a regular safety property

Invariant ◻p
Bad prefixes start with q∗r where p ∈ q and p /∈ r

Regular safety property that is not an invariant

Traffic light: red is immediately preceeded by yellow
◻(¬yellow ⇒◯¬red)
Bad prefixes have the form (green ∣ yellow ∣ red)∗ (red ∣ green) red

Non-regular safety property

Vending machine: at least as many coins inserted as drinks dispensed
Cannot be expressed in LTL with AP = {pay ,drink} (“LTL cannot
count”)
Bad prefixes: regular languages cannot count
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Checking Regular Safety Properties

Safety properties are violated in finite time

Look at all finite prefixes Tfin(TS) of the traces T (TS) of a transition
system TS
Check whether Tfin(TS) contains a bad prefix

Approach

1. Describe finite prefixes Tfin(TS) by finite automaton FATS

2. Describe bad prefixes of regular safety property P by finite automaton
FAP̄

3. Construct finite automaton for intersection of FATS and FAP̄

4. Check whether intersection is empty

If intersection is non-empty, property P is violated
Each word in the intersection is a counterexample

Peter Müller—Formal Methods and Functional Programming, SS12 p. 297
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Reminder: Finite Automata

A finite automaton (FA) is a tuple (Q,Σ,Q, δ,q0,F )
Q: a finite set of states
Σ: a finite alphabet
δ: a transition relation, δ ⊆ Q ×Σ ×Q
q0: an initial state
F ⊆ Q: a set of accepting states
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Step 1: Finite Automaton for Finite Prefixes

Given a transition system TS = (Γ, σI ,→), propositions AP, and
labeling function L

The automaton FATS = (Q,Σ, δ,q0,F ) accepts Tfin(TS)
Q = Γ ∪ {σ0}, where σ0 /∈ Γ
Σ = P(AP)
δ = {(σ,p, σ′) ∣ σ → σ′ and p ∈ L(σ′)} ∪ {(σo ,p, σI ) ∣ p ∈ L(σI )}
q0 = σ0

F = Q

Example: o:=o+1; while * do o:=o-1; o:=o+1 end; o:=o+1

{ closed }

{ closed } { }{ open }

3

{ closed } { open } { }

{ open } { closed }

0 1 2

{ } { } { }
4
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Step 2: Finite Automaton for Bad Prefixes

By definition, bad prefixes are described by a regular language

Apply standard construction to obtain FA FAP̄ from regular expression

Example: ◻(open ∨ closed)
Bad prefixes start with
({open} ∣ {closed})∗({} ∣ {open, closed})

{ }
{ open }

A B
{ open, closed }

{ l d }

all

{ closed }
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Step 3: Finite Automaton for Intersection

Construct FA FATS∩P̄ that accepts the intersection of the languages
accepted by FATS and FAP̄

Apply standard construction for product of two FA

Example

3

{ closed } { open } { }

{ open } { closed }

0 1 2

{ } { } { }
4

{ }
{ open }

A B
{ open, closed }

{ l d }

all

{ closed }

3A

A A A
{ closed } { open } { }

{ open } { closed }

B0A 1A 2A
{ } { } { }

4B
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Step 4: Check Emptiness

If FATS∩P̄ accepts a word w then

w ∈ Tfin(TS) because it is accepted by FATS and
w is a bad prefix because it is accepted by FAP̄

Therefore, P is not satisfied, and w is a counterexample

Apply standard algorithm to check emptiness of FA

Example

3A

A A A
{ closed } { open } { }

{ open } { closed }

B0A 1A 2A
{ } { } { }

4B

Accepts {closed}{open}({closed} ∣ {open})∗{}
Smallest counterexample: {closed}{open}{}
Counterexample can be mapped back to transition system
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Büchi Automata

Büchi automata are similar to finite automata, but accept infinite words

A Büchi automaton (BA) is a tuple (Q,Σ,Q, δ,q0,F )
Q: a finite set of states
Σ: a finite alphabet
δ: a transition relation, δ ⊆ Q ×Σ ×Q
q0: an initial state
F ⊆ Q: a set of accepting states

A run of a BA accepts its input if it passes infinitely often through an
accepting state

Büchi automata enjoy many of the properties of finite automata

We can construct the product of two BA
Emptiness is decidable
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LTL Model Checking: Approach

1. Describe traces T (TS) by Büchi automaton BATS

Construction is analogous to FATS

2. For an LTL formula φ, construct Büchi automaton BA¬φ that accepts
the traces characterized by ¬φ (bad traces)

We omit the details here

3. Construct BA for intersection of BATS and BA¬φ

4. Check whether intersection is empty

If intersection is non-empty, property φ is violated
Each word in the intersection is a counterexample
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Complexity Results

For a finite transition system TS and an LTL formula φ,
the model checking problem TS ⊧ φ is solvable in

O(∣ TS ∣ ×2∣φ∣)

∣ TS ∣ is the size of the transition system (which grows exponentially in
the number of variables, processes, and channels)

∣ φ ∣ is the size of φ; exponential complexity comes from the
construction of BA¬φ
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Advanced Model Checking Techniques

On-the-fly model checking

Often violation of a property can be detected without checking all
possible states or traces (for instance, ◻p)
Generate transition system and check property step-by-step
Implemented in Spin

Partial order reduction

Remove redundancy from different interleavings of concurrent executions
Code segments that operate only on local state are not affected by
interleaving
Implemented in Spin
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Advanced Model Checking Techniques (cont’d)

Bounded model checking

Check only prefixes of traces up to a certain length
Closer to testing than verification
Very effective in practice

Symbolic model checking

Uses sets of states rather than individual states
Sets of states are represented through boolean functions
Very efficient data structure: binary decision diagram (BDDs)
Typically used to check branching-time properties
Can deal with larger models
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Conclusions

Variety of approaches

Best method depends on application area

Tool support is essential

Proofs are tedious and error-prone
Some tools have reached maturity for industrial applications
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