
Formal Methods
and Functional Programming

Operational Semantics

Peter Müller

Chair of Programming Methodology
ETH Zurich

Operational Semantics of Statements

Evaluation of an expression in a state yields a value

x + 2 * y A ∶ Aexp→ State→ Val

Execution of a statement modifies the state

x := 2 * y

Operational semantics describe how the state is modified during the
execution of a statement

Peter Müller—Formal Methods and Functional Programming, SS12 p. 73

Big-Step and Small-Step Semantics

Big-step semantics describe how the overall results of the executions
are obtained

Natural semantics

Small-step semantics describe how the individual steps of the
computations take place

Structural operational semantics
Abstract state machines

Peter Müller—Formal Methods and Functional Programming, SS12 p. 74

2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 75

Transition Systems

A transition system is a tuple (Γ,T ,→)

Γ: a set of configurations
T : a set of terminal configurations, T ⊆ Γ
→: a transition relation, → ⊆ Γ × Γ

Example: Finite automaton

a b

c

2

3

41

a

Γ = {⟨w ,S⟩ ∣ w ∈ {a,b, c}∗,S ∈ {1,2,3,4}}
T = {⟨ε,S⟩ ∣ S ∈ {1,2,3,4}}
→ = {(⟨aw ,1⟩ → ⟨w ,2⟩), (⟨aw ,1⟩ → ⟨w ,3⟩),

(⟨bw ,2⟩ → ⟨w ,4⟩), (⟨cw ,3⟩ → ⟨w ,4⟩) ∣ w ∈ {a,b, c}∗}

Peter Müller—Formal Methods and Functional Programming, SS12 p. 76

Transitions in Natural Semantics

Two types of configurations for operational semantics
1. ⟨s, σ⟩, which represents that the statement s is to be executed in state σ
2. σ, which represents a terminal state

The transition relation → describes how executions take place
Typical transition: ⟨s, σ⟩ → σ′

Example: ⟨skip, σ⟩ → σ

Γ = {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} ∪ State
T = State
→ ⊆ {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} × State

Peter Müller—Formal Methods and Functional Programming, SS12 p. 77

Rules

We specify the transition relation by rules of the form

Name
ϕ1, . . . , ϕn

ψ
if Condition

where ϕ1, . . . , ϕn and ψ are transitions

Meaning of the rule

If Condition and ϕ1, . . . , ϕn then ψ

Terminology
ϕ1, . . . , ϕn are called the premises of the rule
ψ is called the conclusion of the rule
A rule without premises is called axiom

Peter Müller—Formal Methods and Functional Programming, SS12 p. 78

Natural Semantics of IMP

skip does not modify the state

SkipNS
⟨skip, σ⟩ → σ

x:=e assigns the value of e to variable x

AssNS
⟨x:=e, σ⟩ → σ[x ↦ A[[e]]σ]

Sequential composition s1;s2
First, s1 is executed in state σ, leading to σ′

Then s2 is executed in state σ′, leading to σ′′

SeqNS

⟨s1, σ⟩ → σ′ ⟨s2, σ
′
⟩ → σ′′

⟨s1;s2, σ⟩ → σ′′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 79

Natural Semantics of IMP (cont’d)

Conditional statement if b then s1 else s2 end
If b holds, s1 is executed
If b does not hold, s2 is executed

IfTNS

⟨s1, σ⟩ → σ′

⟨if b then s1 else s2 end, σ⟩ → σ′
if B[[b]]σ = tt

IfFNS

⟨s2, σ⟩ → σ′

⟨if b then s1 else s2 end, σ⟩ → σ′
if B[[b]]σ = ff

Peter Müller—Formal Methods and Functional Programming, SS12 p. 80

Natural Semantics of IMP (cont’d)

Loop statement while b do s end

If b holds, s is executed once, leading to state σ′

Then the whole while-statement is executed again in σ′

WhTNS

⟨s, σ⟩ → σ′ ⟨while b do s end, σ′⟩ → σ′′

⟨while b do s end, σ⟩ → σ′′
if B[[b]]σ = tt

If b does not hold, the while-statement does not modify the state

WhFNS
⟨while b do s end, σ⟩ → σ

if B[[b]]σ = ff

Peter Müller—Formal Methods and Functional Programming, SS12 p. 81

Rule Instantiations

Rules are actually rule schemes
Meta-variables stand for any concrete variable, expression, statement,
state, etc.
To apply rules, they have to be instantiated by selecting particular
variables, expressions, statements, states, etc.

Assignment rule scheme

AssNS
⟨x:=e, σ⟩ → σ[x ↦ A[[e]]σ]

Assignment rule instance

AssNS
⟨v:=v+1, σzero⟩ → σzero[v↦ 1]

Peter Müller—Formal Methods and Functional Programming, SS12 p. 82

Derivation Trees

Rule instances can be combined to derive a transition ⟨s, σ⟩ → σ′

The result is a derivation tree
The root is the transition ⟨s, σ⟩ → σ′

The leaves are axiom instances
The internal nodes are conclusions of rule instances and have the
corresponding premises as immediate children
The conditions of all instantiated rules must be satisfied

⟨s, σ⟩ → σ′ is a transition in the transition system if and only if there is
a finite derivation tree for ⟨s, σ⟩ → σ′

There can be several derivations for one transition (non-deterministic
semantics)

Peter Müller—Formal Methods and Functional Programming, SS12 p. 83

Derivations: Example

What is the result of executing statement

(z:=x; x:=y); y:=z

in state σzero[x↦ 5][y↦ 7][z↦ 0] (abbreviated by [5,7,0])?

Seq

Seq

Ass
⟨z:=x, [5, 7, 0]⟩ → [5, 7, 5]

Ass
⟨x:=y, [5, 7, 5]⟩ → [7, 7, 5]

⟨z:=x; x:=y, [5, 7, 0]⟩ → [7, 7, 5]
Ass

⟨y:=z, [7, 7, 5]⟩ → [7, 5, 5]

⟨(z:=x; x:=y); y:=z, [5, 7, 0]⟩ → [7, 5, 5]

In the above derivation, we assume some properties of state updates
(such as σ[x ↦ vx][y ↦ vy] = σ[y ↦ vy][x ↦ vx] if x ≠ y), which will
be proved in the exercises

Peter Müller—Formal Methods and Functional Programming, SS12 p. 84

Termination

For an IMP statement s we define termination in the context of natural
semantics as follows

The execution of a statement s in state σ

terminates successfully iff there is a state σ′ such that ⟨s, σ⟩ → σ′

loops iff there is no state σ′ such that ⟨s, σ⟩ → σ′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 85

2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 86

Semantic Equivalence

Definition

Two statements s1 and s2 are semantically equivalent (denoted
by s1 ≡ s2) if the following property holds for all states σ,σ′:

⟨s1, σ⟩ → σ′⇔ ⟨s2, σ⟩ → σ′

In definitions, lemmas, and proofs, we use a transition ⟨s, σ⟩ → σ′ as a
predicate that expresses there is a derivation tree for this transition

Here: there is a derivation tree for ⟨s1, σ⟩ → σ′ if and only if
there is a derivation tree for ⟨s2, σ⟩ → σ′

Example

while b do s end ≡

if b then s; while b do s end end

Peter Müller—Formal Methods and Functional Programming, SS12 p. 87

Unfolding Loops in C, C++, and Java

int i = 0;
while(i < 2) {

while(i < 1)
if(i == 0) break;

i = i + 1;
}

printf("i = %d", i);

i = 2

int i = 0;
while(i < 2) {

if(i < 1) {
if(i == 0) break;
while(i < 1)
if(i == 0) break;

}
i = i + 1;

}

printf("i = %d", i);

i = 0

Equivalence does not hold in these languages

Peter Müller—Formal Methods and Functional Programming, SS12 p. 88

Unfolding Loops in IMP

We prove the equivalence based on the natural semantics

⟨while b do s end, σ⟩ → σ′′⇔ (∗)

⟨if b then s; while b do s end end, σ⟩ → σ′′ (∗∗)

Proof idea

Consider the derivation tree for one transition

Show that there is a derivation tree for the other transition

Peter Müller—Formal Methods and Functional Programming, SS12 p. 89

Proof: Case “⇒”

Consider the derivation tree for ⟨while b do s end, σ⟩ → σ′′

The last rule application is one of the rules for while

For the case WhTNS

WhTNS

⟨s, σ⟩ → σ′ ⟨while b do s end, σ′⟩ → σ′′

⟨while b do s end, σ⟩ → σ′′
if B[[b]]σ = tt

we know

1. There is a derivation tree T1 with root ⟨s, σ⟩ → σ′

2. There is a derivation tree T2 with root ⟨while b do s end, σ′⟩ → σ′′

3. B[[b]]σ = tt

Peter Müller—Formal Methods and Functional Programming, SS12 p. 90

Proof: Case “⇒” (cont’d)

We can construct the derivation tree

SeqNS

T1 T2

⟨s;while b do s end, σ⟩ → σ′′

Since B[[b]]σ = tt we can use the rule for if to derive

IfTNS

SeqNS

T1 T2

⟨s;while b do s end, σ⟩ → σ′′

⟨if b then s;while b do s end else skip end, σ⟩ → σ′′

We have a derivation tree for (∗∗), which completes this case

Peter Müller—Formal Methods and Functional Programming, SS12 p. 91

Proof: Case “⇒” (cont’d)

For the case WhFNS

WhFNS
⟨while b do s end, σ⟩ → σ

if B[[b]]σ = ff

we know

1. σ = σ′′

2. B[[b]]σ = ff

We can construct the derivation tree

IfFNS

SkipNS
⟨skip, σ⟩ → σ′′

⟨if b then s;while b do s end else skip end, σ⟩ → σ′′

We have a derivation tree for (∗∗), which completes Case “⇒”

Case “⇐” will be discussed in the exercises

Peter Müller—Formal Methods and Functional Programming, SS12 p. 92

Deterministic Semantics

Lemma: The natural semantics of IMP is deterministic

We prove
⟨s, σ⟩ → σ′ ∧ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 93

Proof Attempt: Structural Induction

Reminder: abstract syntax of statements

data Stm = Skip

| Assign String Aexp

| Seq Stm Stm

| If Bexp Stm Stm

| While Bexp Stm

Structural induction for statements

Γ ⊢ P(Skip) Γ ⊢ P(Assign x e)
Γ,P(s1),P(s2) ⊢ P(Seq s1 s2)
Γ,P(s1),P(s2) ⊢ P(If b s1 s2)

Γ,P(s) ⊢ P(While b s)

Γ ⊢ ∀s ∈ Stm.P(s)
s not free in Γ

Peter Müller—Formal Methods and Functional Programming, SS12 p. 94

Proof Attempt: Structural Induction (2)

Case s ≡ skip
We know there is a derivation tree for ⟨skip, σ⟩ → σ′. The only tree with
this consequence is an instantiation of the skip-axiom. Thus, we have
σ = σ′

Analogously, from ⟨skip, σ⟩ → σ′′, we get σ = σ′′

Case s ≡ x:=e
Analogous

Peter Müller—Formal Methods and Functional Programming, SS12 p. 95

Proof Attempt: Structural Induction (3)

Case s ≡ while b do s ′ end:
There is a derivation tree for ⟨while b do s ′ end, σ⟩ → σ′

There are two possibilities to derive this transition, depending on B[[b]]σ.
The case for B[[b]]σ = ff is analogous to the case for skip
In the case for B[[b]]σ = tt, we conclude that there are derivation trees
for ⟨s ′, σ⟩ → σ1 and ⟨while b do s ′ end, σ1⟩ → σ′

Analogously, we derive from ⟨while b do s ′ end, σ⟩ → σ′′ that there are
derivation trees for ⟨s ′, σ⟩ → σ2 and ⟨while b do s ′ end, σ2⟩ → σ′′

s ′ is a proper sub-statement of s. Therefore, we can apply the induction
hypothesis to conclude from ⟨s ′, σ⟩ → σ1 and ⟨s ′, σ⟩ → σ2 that σ1 = σ2
It remains to show that ⟨while b do s ′ end, σ1⟩ → σ′ and
⟨while b do s ′ end, σ1⟩ → σ′′ imply σ′ = σ′′

while b do s ′ end is obviously not a proper sub-statement of s!
So we cannot apply the induction hypothesis
The proof is stuck because the remaining proof goal is identical to the
initial lemma

Structural induction does not work since the transition relation is not
defined inductively over the structure of the statements

Peter Müller—Formal Methods and Functional Programming, SS12 p. 96

Induction on Derivation Trees

Induction on the shape of derivation trees
To prove a property P(t) for all derivation trees t, prove that P(t)
holds for an arbitrary derivation tree t under the assumption that P(t ′)
holds for all proper sub-trees t ′ of t

Induction on derivations is a special case of well-founded (Noetherian)
induction (derivation trees are finite)

Proofs by induction on the shape of derivation trees typically proceed
by case distinction on the rule applied at the root of the arbitrary
derivation tree t. In each case, one may assume that:

the condition of the rule is satisfied
there is a derivation tree t ′ for each premise of t
P(t ′) holds since t ′ is a proper sub-tree of t

Peter Müller—Formal Methods and Functional Programming, SS12 p. 97

New Proof Attempt:
Induction on Shape of Derivation Tree

We prove
⟨s, σ⟩ → σ′ ∧ ⟨s, σ⟩ → σ′′ ⇒ σ′ = σ′′

by induction on the shape of the derivation tree for ⟨s, σ⟩ → σ′

We perform a case distinction on the rule applied at the root of the
derivation tree for ⟨s, σ⟩ → σ′, which yields seven cases for the seven
rules of the natural semantics

We could also do an induction on the shape of the derivation tree for
⟨s, σ⟩ → σ′′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 98

New Proof Attempt:
Induction on Shape of Derivation Tree (2)

Case SkipNS : From the form of the rule, we know:
s = skip
σ′ = σ

Therefore, the derivation of ⟨s, σ⟩ → σ′′ is actually a derivation of
⟨skip, σ⟩ → σ′′. The last rule applied in this derivation must also have
been the SkipNS rule, from which we obtain σ′′ = σ

Case AssNS : From the form of the rule, we know:
s = x:=e for some x and e
σ′ = σ[x ↦ A[[e]]σ]

Therefore, the derivation of ⟨s, σ⟩ → σ′′ is actually a derivation of
⟨x:=e, σ⟩ → σ′′. The last rule applied in this derivation must also have
been the AssNS rule, from which we obtain σ′′ = σ[x ↦ A[[e]]σ]

Case WhFNS : Analogously

Peter Müller—Formal Methods and Functional Programming, SS12 p. 99

New Proof Attempt:
Induction on Shape of Derivation Tree (3)

Case SeqNS : From the form of the rule, we know:
s = s1;s2 for some s1 and s2
There are derivation trees for ⟨s1, σ⟩ → σ0 and ⟨s2, σ0⟩ → σ′ for some
state σ0

Analogously to the previous cases, we can conclude from ⟨s, σ⟩ → σ′′

that there are derivation trees for ⟨s1, σ⟩ → σ1 and ⟨s2, σ1⟩ → σ′′ for
some state σ1

The derivation tree for ⟨s1, σ⟩ → σ0 is a proper sub-tree of the tree for
⟨s1;s2, σ⟩ → σ′. Therefore, we can apply the induction hypothesis to
⟨s1, σ⟩ → σ0 (with ⟨s1, σ⟩ → σ1) to obtain σ0 = σ1. By this equality, we
conclude that there is a derivation tree for ⟨s2, σ0⟩ → σ′′

Analogously, we can apply the induction hypothesis to ⟨s2, σ0⟩ → σ′

(with ⟨s2, σ0⟩ → σ′′) to obtain σ′ = σ′′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 100

New Proof Attempt:
Induction on Shape of Derivation Tree (4)

Case IfTNS : From the form of the rule, we know:
s = if b then s1 else s2 end for some b, s1, and s2
B[[b]]σ = tt
There is a derivation tree for ⟨s1, σ⟩ → σ′

Therefore, the last rule applied in the derivation tree for ⟨s, σ⟩ → σ′′

must also have been the IfTNS rule

Consequently, there is a derivation tree for ⟨s1, σ⟩ → σ′′

The derivation tree for ⟨s1, σ⟩ → σ′ is a proper sub-tree of the tree for
⟨if b then s1 else s2 end, σ⟩ → σ′. Therefore, we can apply the
induction hypothesis to ⟨s1, σ⟩ → σ′ (with ⟨s1, σ⟩ → σ′′) to obtain
σ′ = σ′′.

Case IfFNS : Analogously

Peter Müller—Formal Methods and Functional Programming, SS12 p. 101

New Proof Attempt:
Induction on Shape of Derivation Tree (5)

Case WhTNS : From the form of the rule, we know:

s = while b do s ′ end for some b and s ′

B[[b]]σ = tt
There are derivation trees for ⟨s ′, σ⟩ → σ0 and
⟨while b do s ′ end, σ0⟩ → σ′ for some state σ0

Therefore, the last rule applied in the derivation tree for ⟨s, σ⟩ → σ′′ must also
have been the WhTNS rule Consequently, there are derivation trees for
⟨s ′, σ⟩ → σ1 and ⟨while b do s ′ end, σ1⟩ → σ′′ for some state σ1

The derivation tree for ⟨s ′, σ⟩ → σ0 is a proper sub-tree of the derivation tree
for ⟨while b do s ′ end, σ⟩ → σ′. Therefore, we can apply the induction
hypothesis to ⟨s ′, σ⟩ → σ0 (with ⟨s ′, σ⟩ → σ1) to obtain σ0 = σ1. By this
equality, we conclude that there is a derivation tree for
⟨while b do s ′ end, σ0⟩ → σ′′

Analogously, we can apply the induction hypothesis to
⟨while b do s ′ end, σ0⟩ → σ′ (with ⟨while b do s ′ end, σ0⟩ → σ′′) to obtain
σ′ = σ′′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 102

2. Operational Semantics

2.1 Big-Step Semantics

2.1.1 Natural Semantics of IMP
2.1.2 Properties of the Semantics
2.1.3 Extensions of IMP

2.2 Small-Step Semantics

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 103

Local Variable Declarations

Statement var x:=e in s end declares a new variable that is visible in
the sub-statement of the declaration, s

Semantics
Expression e is evaluated in the initial state
Statement s is executed in a state in which x has the value of e
After the execution of s, the initial value of x is restored

Rule

LocNS

⟨s, σ[x ↦ A[[e]]σ]⟩ → σ′

⟨var x:=e in s end, σ⟩ → σ′[x ↦ σ(x)]

Peter Müller—Formal Methods and Functional Programming, SS12 p. 104

Procedure Declarations and Calls

procedure p(x1, . . . , xn; y1, . . . , ym) begin s end

Formal parameters
x1, . . . , xn are value parameters (call-by-value)

y1, . . . , ym are variable parameters (call-by-name)

Rules of the static semantics
The variables x1, . . . , xn, y1, . . . , ym are distinct from each other

x1, . . . , xn and y1, . . . , ym are the only free variables in s (no global
variables; local variables declared in s are permitted since they are bound)

For calls p(e1, . . . , en; z1, . . . , zm), the actual variable parameters zk have
to be pairwise disjoint (no aliasing)

Peter Müller—Formal Methods and Functional Programming, SS12 p. 105

Procedures: Example

procedure fac(n; res)
begin

if n <= 1 then
res := 1

else
fac(n-1; res);
res := n * res

end
end

Peter Müller—Formal Methods and Functional Programming, SS12 p. 106

Natural Semantics of Procedure Calls

Procedure call p(e1, . . . , en;z1, . . . , zm) with declaration
procedure p(x1, . . . , xn;y1, . . . , ym) begin s end

The call-by-value arguments e1, . . . , en are evaluated in the initial state to
values v1, . . . , vn

The body of the procedure, s, is executed in a state σinit , in which the
value parameters are initialized with the values v1, . . . , vn, and the
variable parameters are initialized with the values of z1, . . . , zm in the
initial state

After termination of p, execution continues in the initial state with the
values of y1, . . . , ym assigned to the variables z1, . . . , zm

CallNS

⟨s, σinit⟩ → σ′

⟨p(e1, . . . , en;z1, . . . , zm), σ⟩ → σ[z1 ↦ σ′(y1)] . . . [zm ↦ σ′(ym)]

where

σinit = σzero[x1 ↦ A[[e1]]σ] . . . [xn ↦ A[[en]]σ][y1 ↦ σ(z1)] . . . [ym ↦ σ(zm)]

Peter Müller—Formal Methods and Functional Programming, SS12 p. 107

Abortion

Statement abort stops the execution of the complete program

Abortion is modeled in the operational semantics by ensuring that the
configurations ⟨abort, σ⟩ are stuck, that is, that there is no state σ′

such that ⟨abort, σ⟩ → σ′

There is no additional rule for abort in the natural semantics

Peter Müller—Formal Methods and Functional Programming, SS12 p. 108

Abortion: Observations

abort and skip are not semantically equivalent since there is a
derivation tree for ⟨skip, σ⟩ → σ, but not for ⟨abort, σ⟩ → σ′

abort and while true do skip end are semantically equivalent!

Natural semantics cannot distinguish between looping and abnormal
termination

Natural semantics is only concerned with programs that terminate
normally
Abortion could be modeled by “normal termination” in a special error
configuration

Peter Müller—Formal Methods and Functional Programming, SS12 p. 109

Non-determinism

For the statement s1 s2 either s1 or s2 is non-deterministically chosen
to be executed

The statement

x:=1 (x:=2; x:=x+2)

will result in a state in which x either has the value 1 or 4

Rules

ND1NS

⟨s1, σ⟩ → σ′

⟨s1 s2, σ⟩ → σ′
ND2NS

⟨s2, σ⟩ → σ′

⟨s1 s2, σ⟩ → σ′

Peter Müller—Formal Methods and Functional Programming, SS12 p. 110

Non-determinism: Observations

There are derivation trees for
⟨x:=1 (x:=2; x:=x+2), σ⟩ → σ[x↦ 1] and

⟨x:=1 (x:=2; x:=x+2), σ⟩ → σ[x↦ 4]

There is a derivation tree for

⟨while true do skip end (x:=2; x:=x+2), σ⟩ → σ[x↦ 4]

A natural semantics always chooses the “right” branch of a
non-deterministic choice

In a natural semantics non-determinism will suppress looping, if possible

That is, natural semantics cannot describe the two possible outcomes of
executing a non-deterministic choice in which one sub-statement
terminates and the other one does not

Peter Müller—Formal Methods and Functional Programming, SS12 p. 111

Termination Revisited

For an IMP statement s we define termination in the context of natural
semantics as follows

The execution of a statement s in state σ

terminates successfully iff there is a state σ′ such that ⟨s, σ⟩ → σ′

loops iff there is no state σ′ such that ⟨s, σ⟩ → σ′

According to these definitions

while true do skip end skip terminates

abort loops

but we cannot give a more precise definition in natural semantics

Peter Müller—Formal Methods and Functional Programming, SS12 p. 112

Parallelism

For the statement s1 par s2 both statements s1 and s2 are executed,
but execution can be interleaved

The statement

x:=1 par (x:=2; x:=x+2)

could result in a state in which x has the value 4, 1, or 3

Execute x:=1, then x:=2, and then x:=x+2

Execute x:=2, then x:=x+2, and then x:=1

Execute x:=2, then x:=1, and then x:=x+2

Peter Müller—Formal Methods and Functional Programming, SS12 p. 113

Parallelism: Observations

Attempt to define rules

Par1NS

⟨s1, σ⟩ → σ′, ⟨s2, σ
′
⟩ → σ′′

⟨s1 par s2, σ⟩ → σ′′

Par2NS

⟨s2, σ⟩ → σ′, ⟨s1, σ
′
⟩ → σ′′

⟨s1 par s2, σ⟩ → σ′′

Rules do not allow interleaving execution

In a natural semantics the execution of the immediate constituents is
an atomic entity so we cannot express interleaving of computations

Peter Müller—Formal Methods and Functional Programming, SS12 p. 114

Problems of Natural Semantics

Properties of looping programs cannot be expressed

No distinction between abortion and looping

Non-determinism suppresses looping (if possible)

Parallelism cannot be modeled

Definition of equivalence is too coarse

All sorting programs are equivalent

All looping programs are equivalent

Peter Müller—Formal Methods and Functional Programming, SS12 p. 115

Big-Step and Small-Step Semantics

Big-step semantics describe how the overall results of the executions
are obtained

Natural semantics

Small-step semantics describe how the individual steps of the
computations take place

Structural operational semantics (SOS)
Abstract state machines

Peter Müller—Formal Methods and Functional Programming, SS12 p. 116

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.2.1 Structural Operational Semantics of IMP
2.2.2 Properties of the Semantics
2.2.3 Extensions of IMP

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 117

Structural Operational Semantics

The emphasis is on the individual steps of the execution
Execution of assignments
Execution of tests

Describing small steps of the execution allows one to express the order
of execution of individual steps

Interleaving computations
Evaluation order for expressions (not shown in the course)

Always describing the next small step allows one to express properties
of looping programs

Peter Müller—Formal Methods and Functional Programming, SS12 p. 118

Transitions in SOS

The configurations are the same as for natural semantics

The transition relation →1 can have two forms

⟨s, σ⟩ →1 ⟨s ′, σ′⟩: the execution of s from σ is not completed and the
remaining computation is expressed by the intermediate configuration
⟨s ′, σ′⟩

⟨s, σ⟩ →1 σ
′: the execution of s from σ has terminated and the final

state is σ′

A transition ⟨s, σ⟩ →1 γ describes the first step of the execution of s
from σ

We use γ as meta-variable for (terminal or non-terminal) configurations

Peter Müller—Formal Methods and Functional Programming, SS12 p. 119

Transition System

Γ = {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} ∪ State
T = State
→1 ⊆ {⟨s, σ⟩ ∣ s ∈ Stm, σ ∈ State} × Γ

We say that ⟨s, σ⟩ is stuck if there is no γ such that ⟨s, σ⟩ →1 γ

Peter Müller—Formal Methods and Functional Programming, SS12 p. 120

SOS of IMP

skip does not modify the state

SkipSOS
⟨skip, σ⟩ →1 σ

x:=e assigns the value of e to variable x

AssSOS
⟨x:=e, σ⟩ →1 σ[x ↦ A[[e]]σ]

skip and assignment require only one step

Rules are analogous to natural semantics

SkipNS
⟨skip, σ⟩ → σ

AssNS
⟨x:=e, σ⟩ → σ[x ↦ A[[e]]σ]

Peter Müller—Formal Methods and Functional Programming, SS12 p. 121

SOS of IMP: Sequential Composition

Sequential composition s1;s2

First step of executing s1;s2 is the first step of executing s1

s1 is executed in one step

Seq1SOS

⟨s1, σ⟩ →1 σ
′

⟨s1;s2, σ⟩ →1 ⟨s2, σ
′
⟩

s1 is executed in several steps

Seq2SOS

⟨s1, σ⟩ →1 ⟨s ′1, σ
′
⟩

⟨s1;s2, σ⟩ →1 ⟨s ′1;s2, σ
′
⟩

Peter Müller—Formal Methods and Functional Programming, SS12 p. 122

SOS of IMP: Conditional Statement

The first step of executing if b then s1 else s2 end is to determine
the outcome of the test and thereby which branch to select

IfTSOS
⟨if b then s1 else s2 end, σ⟩ →1 ⟨s1, σ⟩

if B[[b]]σ = tt

IfFSOS
⟨if b then s1 else s2 end, σ⟩ →1 ⟨s2, σ⟩

ifB[[b]]σ = ff

Peter Müller—Formal Methods and Functional Programming, SS12 p. 123

Alternative for Conditional Statement

The first step of executing if b then s1 else s2 end is the first step of
the branch determined by the outcome of the test

IfT1SOS

⟨s1, σ⟩ →1 σ
′

⟨if b then s1 else s2 end, σ⟩ →1 σ
′

if B[[b]]σ = tt

IfT2SOS

⟨s1, σ⟩ →1 ⟨s ′1, σ
′
⟩

⟨if b then s1 else s2 end, σ⟩ →1 ⟨s ′1, σ
′
⟩

if B[[b]]σ = tt

and two similar rules for B[[b]]σ = ff

Alternatives are equivalent for IMP

Choice is important for languages with parallel execution

Peter Müller—Formal Methods and Functional Programming, SS12 p. 124

SOS of IMP: Loop Statement

The first step is to unroll the loop

WhileSOS
⟨while b do s end, σ⟩ →1

⟨if b then s;while b do s end else skip end, σ⟩

Recall that while b do s end and
if b then s;while b do s end else skip end are semantically
equivalent in the natural semantics

Peter Müller—Formal Methods and Functional Programming, SS12 p. 125

Alternatives for Loop Statement

The first step is to decide the outcome of the test and thereby whether
to unroll the body of the loop or to terminate

WhTSOS
⟨while b do s end, σ⟩ →1 ⟨s;while b do s end, σ⟩

if B[[b]]σ = tt

WhFSOS
⟨while b do s end, σ⟩ →1 σ

if B[[b]]σ = ff

Or combine with the alternative semantics of the conditional statement

Alternatives are equivalent for IMP

Peter Müller—Formal Methods and Functional Programming, SS12 p. 126

Derivation Sequences

A derivation sequence is a sequence γ0, γ1, γ2, . . . , where

γi →1 γi+1 for each 0 ≤ i such that i + 1 is in the range of the sequence

if the derivation sequence is finite then it ends with a configuration that
is either a terminal configuration or a stuck configuration

Notation

γ0 →
i
1 γi indicates that there are i steps in the execution from γ0 to γi

γ →0
1 γ
′ indicates that there are zero steps in the execution from γ to γ′,

that is, γ = γ′

γ0 →
∗

1 γi indicates that there is a finite number of steps (possibly 0) in
the execution from γ0 to γi

We use these notations for derivation sequences as well as for
sub-sequences of derivation sequences (for instance, for the first i
transitions of a derivation sequence)

Peter Müller—Formal Methods and Functional Programming, SS12 p. 127

Derivation Sequences: Example

What is the final state if statement

(z:=x; x:=y); y:=z

is executed in state σzero[x↦ 5][y↦ 7][z↦ 0]?

⟨(z:=x; x:=y); y:=z, σzero[x↦ 5][y↦ 7][z↦ 0]⟩
→1 ⟨x:=y; y:=z, σzero[x↦ 5][y↦ 7][z↦ 0][z↦ 5]⟩
→1 ⟨y:=z, σzero[x↦ 5][y↦ 7][z↦ 0][z↦ 5][x↦ 7]⟩
→1 σzero[x↦ 5][y↦ 7][z↦ 0][z↦ 5][x↦ 7][y↦ 5]
= σzero[x↦ 7][y↦ 5][z↦ 5]

The last step is justified by properties of state updates, which will be
proved in the exercises

Peter Müller—Formal Methods and Functional Programming, SS12 p. 128

Derivation Trees

Derivation trees explain why transitions take place

For the first step

⟨(z:=x; x:=y); y:=z, σ⟩ →1 ⟨x:=y; y:=z, σ[z↦ 5]⟩

where σ = σzero[x↦ 5][y↦ 7][z↦ 0]

the derivation tree is

Seq2SOS

Seq1SOS

AssSOS
⟨z:=x, σ⟩ →1 σ[z↦ 5]

⟨z:=x; x:=y, σ⟩ →1 ⟨x:=y, σ[z↦ 5]⟩

⟨(z:=x; x:=y); y:=z, σ⟩ →1 ⟨x:=y; y:=z, σ[z↦ 5]⟩

The first transition for z:=x; (x:=y; y:=z) has a simpler tree with
only two rule applications (AssSOS and Seq1SOS)

Peter Müller—Formal Methods and Functional Programming, SS12 p. 129

Derivation Sequences and Trees

Natural (big-step) semantics
The execution of a statement (sequence) is described by one big
transition
The big transition can be seen as trivial derivation sequence with exactly
one transition
The derivation tree explains why this transition takes place

Structural operational (small-step) semantics
The execution of a statement (sequence) is described by one or more
transitions
Derivation sequences explain how a statement is executed
Derivation trees justify each individual step in a derivation sequence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 130

Termination

The execution of a statement s in state σ

terminates iff there is a finite derivation sequence starting with ⟨s, σ⟩

loops iff there is an infinite derivation sequence starting with ⟨s, σ⟩

The execution of a statement s in state σ

terminates successfully if ⟨s, σ⟩ →∗1 σ
′

In IMP, an execution terminates successfully iff it terminates (no stuck
configurations)

We will see later that non-deterministic statements may terminate and
loop in a state σ

Peter Müller—Formal Methods and Functional Programming, SS12 p. 131

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.2.1 Structural Operational Semantics of IMP
2.2.2 Properties of the Semantics
2.2.3 Extensions of IMP

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 132

Induction on Derivations

The length of a derivation sequence γ0, γ1, . . . is the number of
transitions γi →1 γi+1 such that i and i + 1 are in the range of the
sequence

A finite derivation sequence γ0, γ1, . . . , γn has length n

A stuck or terminal configuration γ is a derivation sequence of length
zero

Induction on the length of derivation sequences

Induction hypothesis: Assume that the property holds for all derivation
sequences of length less than k

Prove that it also holds for derivation sequences of length k

Induction on the length of derivation sequences is an application of
strong mathematical (Noetherian) induction.

Peter Müller—Formal Methods and Functional Programming, SS12 p. 133

Using Induction on Derivations

The proof is often done by inspecting either
the structure of the statement or

the derivation tree validating the first transition of the derivation
sequence

Lemma

⟨s1;s2, σ⟩ →
k
1 σ

′′
⇒

∃σ′, k1, k2 ∶ ⟨s1, σ⟩ →
k1
1 σ′ ∧ ⟨s2, σ

′
⟩ →

k2
1 σ′′∧

k1 + k2 = k

If there is a derivation sequence ⟨s1;s2, σ⟩ →
k
1 σ
′′ with k steps then there

are derivation sequences ⟨s1, σ⟩ →
k1
1 σ′ and ⟨s2, σ

′
⟩ →

k2
1 σ′′ such that their

numbers of steps add up to k

Peter Müller—Formal Methods and Functional Programming, SS12 p. 134

Proof

Proof by induction on k, that is, by induction on the length of the
derivation sequence for ⟨s1;s2, σ⟩ →

k
1 σ

′′

We assume that the lemma holds for m < k

We prove that the lemma holds for k

We may assume k > 0 since there is no step ⟨s1;s2, σ⟩ →
0
1 σ

′′

The derivation sequence

⟨s1;s2, σ⟩ →
k
1 σ

′′ can be written as

⟨s1;s2, σ⟩ →1 γ →
k−1
1 σ′′ for some configuration γ

Peter Müller—Formal Methods and Functional Programming, SS12 p. 135

Proof (cont’d)

⟨s1;s2, σ⟩ →1 γ →
k−1
1 σ′′

Consider the two rules that may justify the transition ⟨s1;s2, σ⟩ →1 γ

Case 1

Seq1SOS

⟨s1, σ⟩ →1 σ
′

⟨s1;s2, σ⟩ →1 ⟨s2, σ
′
⟩

Case 2

Seq2SOS

⟨s1, σ⟩ →1 ⟨s ′1, σ
′
⟩

⟨s1;s2, σ⟩ →1 ⟨s ′1;s2, σ
′
⟩

Peter Müller—Formal Methods and Functional Programming, SS12 p. 136

Proof: Case 1

From the form of the rule Seq1SOS we obtain ⟨s1, σ⟩ →1 σ
′ and

γ = ⟨s2, σ
′
⟩

From γ →k−1
1 σ′′ we get ⟨s2, σ

′
⟩ →

k−1
1 σ′′

The required result follows by choosing k1 = 1 and k2 = k − 1

Peter Müller—Formal Methods and Functional Programming, SS12 p. 137

Proof: Case 2

From the form of the rule Seq2SOS we obtain ⟨s1, σ⟩ →1 ⟨s ′1, σ
′
⟩ and

γ = ⟨s ′1;s2, σ
′
⟩

From γ →k−1
1 σ′′ we get ⟨s ′1;s2, σ

′
⟩ →

k−1
1 σ′′

By applying the induction hypothesis, we get
∃σ0, l1, l2 ∶ ⟨s

′

1, σ
′
⟩ →

l1
1 σ0 ∧ ⟨s2, σ0⟩ →

l2
1 σ

′′
∧ l1 + l2 = k − 1

From

⟨s1, σ⟩ →1 ⟨s ′1, σ
′
⟩ and ⟨s ′1, σ

′
⟩ →

l1
1 σ0

we get ⟨s1, σ⟩ →
l1+1
1 σ0

By

⟨s2, σ0⟩ →
l2
1 σ

′′ and (l1 + 1) + l2 = k
we have proved the required result

Peter Müller—Formal Methods and Functional Programming, SS12 p. 138

Semantic Equivalence

Two statements s1 and s2 are semantically equivalent if for all
states σ:

⟨s1, σ⟩ →
∗

1 γ iff ⟨s2, σ⟩ →
∗

1 γ, whenever γ is a
configuration that is either stuck or terminal, and

there is an infinite derivation sequence starting in ⟨s1, σ⟩
iff there is one starting in ⟨s2, σ⟩

Note: In the first case, the length of the two derivation sequences may
be different

Peter Müller—Formal Methods and Functional Programming, SS12 p. 139

Determinism

Lemma: The structural operational semantics of IMP is
deterministic. That is, for all s,σ,γ, and γ′ we have that

⟨s, σ⟩ →1 γ ∧ ⟨s, σ⟩ →1 γ
′
⇒ γ = γ′

The proof runs by induction on the shape of the derivation tree for the
transition ⟨s, σ⟩ →1 γ

Corollary: There is exactly one derivation sequence starting in
configuration ⟨s, σ⟩

The proof runs by induction on the length of the derivation sequence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 140

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.2.1 Structural Operational Semantics of IMP
2.2.2 Properties of the Semantics
2.2.3 Extensions of IMP

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 141

Local Variable Declarations

Local variable declaration var x:=e in s end

The small steps are
1. Assign e to x
2. Execute s
3. Restore the initial value of x

(necessary if x exists in the enclosing scope)

The first small step is trivial

⟨var x:=e in s end, σ⟩ →1 ⟨s, σ[x ↦ A[[e]]σ]⟩

But: when s terminates, how should we restore the initial value of x?
How do we recognize the termination of s?
How do we preserve the original value of x?

Peter Müller—Formal Methods and Functional Programming, SS12 p. 142

Artificial End Marker

We extend the syntactic category Stm with a restore statement

Stm = . . . | ’restore’ (Var,Val)

Note that the restore statement contains a value, not an expression

The restore statement is used internally by the semantics but must not
occur in programs.

Now we can use the restore statement to mark the end of the scope of
a local variable and remember its original value:

LocSOS
⟨var x:=e in s end, σ⟩ →1 ⟨s;restore (x , σ(x)), σ[x ↦ A[[e]]σ]⟩

RetSOS
⟨restore (var , val), σ⟩ →1 σ[var ↦ val]

A more general solution is to model execution stacks
Stacks are useful to handle procedure calls

Peter Müller—Formal Methods and Functional Programming, SS12 p. 143

Abortion

Statement abort stops the execution of the complete program

Abortion is modeled by ensuring that the configurations ⟨abort, σ⟩ are
stuck

There is no additional rule for abort in the structural operational
semantics

abort and skip are not semantically equivalent

⟨abort, σ⟩ is the only derivation sequence for abort starting in σ

⟨skip, σ⟩ →1 σ is the only derivation sequence for skip starting in σ

skip terminates successfully in all states, whereas abort terminates in
all states, but not successfully

Peter Müller—Formal Methods and Functional Programming, SS12 p. 144

Abortion: Observations

abort and while true do skip end are not semantically equivalent:

⟨while true do skip end, σ⟩ →1

⟨if true then skip;while true do skip end end, σ⟩ →1

⟨skip;while true do skip end, σ⟩ →1

⟨while true do skip end, σ⟩

In a structural operational semantics,

looping is reflected by infinite derivation sequences

abnormal termination by finite derivation sequences ending in a stuck
configuration

Peter Müller—Formal Methods and Functional Programming, SS12 p. 145

Non-determinism

For the statement s1 s2 either s1 or s2 is non-deterministically chosen
to be executed

The statement

x:=1 (x:=2; x:=x+2)

will result in a state in which x either has the value 1 or 4

Rules

ND1SOS
⟨s1 s2, σ⟩ →1 ⟨s1, σ⟩

ND2SOS
⟨s1 s2, σ⟩ →1 ⟨s2, σ⟩

Peter Müller—Formal Methods and Functional Programming, SS12 p. 146

Non-determinism: Observations

There are two derivation sequences

⟨x:=1 (x:=2; x:=x+2), σ⟩ →∗1 σ[x↦ 1]

⟨x:=1 (x:=2; x:=x+2), σ⟩ →∗1 σ[x↦ 4]

There are also two derivation sequences for
⟨while true do skip end (x:=2; x:=x+2), σ⟩

a finite derivation sequence leading to σ[x↦ 4]

an infinite derivation sequence

A structural operational semantics can choose the “wrong” branch of a
non-deterministic choice

In a structural operational semantics non-determinism does not
suppress looping

Peter Müller—Formal Methods and Functional Programming, SS12 p. 147

Parallelism

For the statement s1 par s2 both statements s1 and s2 are executed,
but execution can be interleaved

Par1SOS

⟨s1, σ⟩ →1 ⟨s ′1, σ
′
⟩

⟨s1 par s2, σ⟩ →1 ⟨s ′1 par s2, σ
′
⟩

Par2SOS

⟨s1, σ⟩ →1 σ
′

⟨s1 par s2, σ⟩ →1 ⟨s2, σ
′
⟩

Par3SOS

⟨s2, σ⟩ →1 ⟨s ′2, σ
′
⟩

⟨s1 par s2, σ⟩ →1 ⟨s1 par s ′2, σ
′
⟩

Par4SOS

⟨s2, σ⟩ →1 σ
′

⟨s1 par s2, σ⟩ →1 ⟨s1, σ
′
⟩

Peter Müller—Formal Methods and Functional Programming, SS12 p. 148

Example: Interleaving

The statement

x:=1 par (x:=2; x:=x+2)

will result in a state in which x has the value 4, 1, or 3

Execute x:=1, then x:=2, and then x:=x+2

Execute x:=2, then x:=x+2, and then x:=1

Execute x:=2, then x:=1, and then x:=x+2

In a structural operational semantics we can easily express interleaving
of computations

Peter Müller—Formal Methods and Functional Programming, SS12 p. 149

Example: Derivation Sequences

⟨x:=1 par (x:=2; x:=x+2), σ⟩ →1 ⟨x:=2; x:=x+2, σ[x ↦ 1]⟩
→1 ⟨x:=x+2, σ[x ↦ 2]⟩
→1 σ[x ↦ 4]

⟨x:=1 par (x:=2; x:=x+2), σ⟩ →1 ⟨x:=1 par x:=x+2, σ[x ↦ 2]⟩
→1 ⟨x:=1, σ[x ↦ 4]⟩
→1 σ[x ↦ 1]

⟨x:=1 par (x:=2; x:=x+2), σ⟩ →1 ⟨x:=1 par x:=x+2, σ[x ↦ 2]⟩
→1 ⟨x:=x+2, σ[x ↦ 1]⟩
→1 σ[x ↦ 3]

Peter Müller—Formal Methods and Functional Programming, SS12 p. 150

Comparison: Summary

Natural Semantics

Local variable declarations and
procedures can be modeled easily

No distinction between abortion
and looping

Non-determinism suppresses
looping (if possible)

Parallelism cannot be
modeled

Structural Operational Semantics

Local variable declarations and
procedures require an explicit
encoding of the original state

Distinction between abortion and
looping

Non-determinism does not
suppress looping

Parallelism can be modeled

Peter Müller—Formal Methods and Functional Programming, SS12 p. 151

2. Operational Semantics

2.1 Big-Step Semantics

2.2 Small-Step Semantics

2.3 Equivalence

Peter Müller—Formal Methods and Functional Programming, SS12 p. 152

Semantic Functions

The meaning of statements can be expressed as a partial function from
State to State:

SNS ∶ Stm→ (State↪ State)

SNS[[s]]σ = {
σ′ if ⟨s, σ⟩ → σ′ for some σ′

undefined otherwise

SSOS ∶ Stm→ (State↪ State)

SSOS[[s]]σ = {
σ′ if ⟨s, σ⟩ →∗1 σ

′ for some σ′

undefined otherwise

The semantic functions are well-defined because the semantics are
deterministic

Peter Müller—Formal Methods and Functional Programming, SS12 p. 153

Equivalence Theorem

Theorem: For every statement s of IMP we have
SNS[[s]] = SSOS[[s]]

If the execution of s from some state terminates in one of the semantics
then it also terminates in the other and the resulting states will be equal

If the execution of s from some state loops in one of the semantics
then it will also loop in the other

Peter Müller—Formal Methods and Functional Programming, SS12 p. 154

Equivalence Lemma 1

Lemma: For every statement s of IMP and states σ and σ′ we
have ⟨s, σ⟩ → σ′ ⇒ ⟨s, σ⟩ →∗

1 σ
′

If the execution of s from σ terminates in the natural semantics then it
will terminate in the same state in the structural operational semantics

The proof runs by induction on the shape of the derivation tree for
⟨s, σ⟩ → σ′ (see exercise)

Peter Müller—Formal Methods and Functional Programming, SS12 p. 155

Equivalence Lemma 2

Lemma: For every statement s of IMP, states σ and σ′, and
natural number k we have that ⟨s, σ⟩ →k

1 σ
′
⇒ ⟨s, σ⟩ → σ′

If the execution of s from σ terminates in the structural operational
semantics then it will terminate in the same state in the natural
semantics

The proof runs by induction on the length of the derivation sequence
for ⟨s, σ⟩ →k

1 σ
′ (see exercise)

Peter Müller—Formal Methods and Functional Programming, SS12 p. 156

Equivalence Theorem: Proof

SNS[[s]]σ = {
σ′ if ⟨s, σ⟩ → σ′ for some σ′

undefined otherwise

SSOS[[s]]σ = {
σ′ if ⟨s, σ⟩ →∗

1 σ
′ for some σ′

undefined otherwise

We have proved: SNS[[s]]σ = σ′⇔SSOS[[s]]σ = σ′

This is sufficient to prove SNS[[s]] = SSOS[[s]] because one function is
defined iff the other is defined

Peter Müller—Formal Methods and Functional Programming, SS12 p. 157

Equivalence: Summary

The natural semantics and structural operational semantics are
equivalent

Proof of Lemma 1 runs by induction on the shape of the derivation tree

Proof of Lemma 2 runs by induction on the length of the derivation
sequence

For extended languages, different formalization of the equivalence
theorem could be necessary

Non-deterministic languages

Consider only finite derivation sequences that end in terminal
configurations

Peter Müller—Formal Methods and Functional Programming, SS12 p. 158

