
Formal Methods and
Functional Programming

Introduction to Part II

Alex Summers

Chair of Programming Methodology
ETH Zurich

Based on material by Professor Peter Müller

Organization

Most aspects do not change (lecture times, web page, homework)

In general, please attend the same exercise session

Some tutors and rooms have changed:

Tuesday 16-18, HG G26.5 (Stefan Heule, German)
Tuesday 16-18, CLA E4 (Yannis Kassios, English)
Tuesday 16-18, ETZ E7 (Malte Schwerhoff, German)
(previously Jérôme Dohrau’s exercise class in HG D3.3)
Wednesday 15-17, IFW A34 (Yannis Kassios, English)
Wednesday 15-17, IFW C33 (Malte Schwerhoff, German)
Note: students previously attending Ognjen Marić’s exercise class, or
those in IFW A34 who wish to remain taught in German, can choose
either of these two exercise sessions.

For all organizational issues, please email Yannis Kassios
(ioannis.kassios@inf.ethz.ch)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 2

Homeworks and Exam

Homework can be submitted in one of two ways:

By email to the appropriate tutor (see course website)
By hand in the appropriate box outside room CAB F53.1

Solutions must be received by 11:00 on the Monday after the exercise is
published, in order to receive feedback.

The exam will take place in the exam session

See web page for details (coming soon)

Please check the course website regularly, for announcements
http://www.infsec.ethz.ch/education/ss2013/fmfp

Alex Summers—Formal Methods and Functional Programming, SS13 p. 3

http://www.infsec.ethz.ch/education/ss2013/fmfp

Recommended Books

Hanne Riis Nielson and Flemming Nielson:
Semantics with Applications: A Formal Introduction

Available from
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.pdf

Christel Baier and Joost-Pieter Katoen:
Principles of Model Checking

Alex Summers—Formal Methods and Functional Programming, SS13 p. 4

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.pdf

Software Errors Cost Large Amounts of Money

Software errors cost US economy $59.5 billion annually
(estimate by Department of Commerce’s National Institute of
Standards and Technology, 2002)

Software bugs in baggage handling
system of the airport of Denver led to
damage of around $1 million per day
(for almost a year)

Explosion of Ariane 5 destroyed
satellites worth $500 million

In comparison: famous hardware bugs:

Pentium bug cost Intel $500 million

Xbox bug cost Microsoft $1 billion

Alex Summers—Formal Methods and Functional Programming, SS13 p. 5

Software Errors May Cost Lives

Software error in Therac-25 medical
linear accelerator led to overdose, which
killed six people

Rounding error caused Patriot Missile
system to ignore an incoming Scud
missile; 28 soldiers died

Many other safety critical systems

Controllers in airplanes, cars, trains, etc.
Air traffic control systems
Nuclear reactor control systems

Alex Summers—Formal Methods and Functional Programming, SS13 p. 6

Traditional Software Engineering

Describes expected behavior using natural language or semi-formal
notations

Ambiguities

Contradictions

Incompletenesses

Relies on testing to ensure quality
Testing can show the presence of errors, but not their absence.

[E. Dijkstra]
Exhaustive testing possible only for trivial programs
Some errors are hard to find / reproduce (data races, deadlocks)
Achieving good test coverage is difficult (rare cases)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 7

Alternative: Formal Methods

Formal methods are mathematical approaches to
software and system development which support the
rigorous specification, design, and verification of
computer systems. [FME]

Programs, programming languages, designs, etc. are mathematical
objects and can be treated by mathematical methods

Examples from Part I of the course:
Proving program properties

∀xs, ys, zs.(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Formalizing language semantics

(λx .t)t ′ ↪ t[x ← t ′]

Proving language properties

If t ↪ t ′ and A ⊢ t ∶∶ τ then A ⊢ t ′ ∶∶ τ

Alex Summers—Formal Methods and Functional Programming, SS13 p. 8

Example 1: Sorting Function

void sort(int[] input)

Informal specification:
Method sort sorts the elements of input in ascending order

Testing
sort({}) → {} !

sort({2}) → {2} !

sort({2,3,1}) → {1,2,3} !

sort({2,2,1}) → {1,2,1} %

sort(null) → ☇ %

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

Informal specification:
Method sort sorts the elements of input in ascending order

Testing
sort({}) → {} !

sort({2}) → {2} !

sort({2,3,1}) → {1,2,3} !

sort({2,2,1}) → {1,2,1} %

sort(null) → ☇ %

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

Informal specification:
Method sort sorts the elements of input in ascending order

Testing
sort({}) → {} !

sort({2}) → {2} !

sort({2,3,1}) → {1,2,3} !

sort({2,2,1}) → {1,2,1} %

sort(null) → ☇ %

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

Informal specification:
Method sort sorts the elements of input in ascending order

Testing
sort({}) → {} !

sort({2}) → {2} !

sort({2,3,1}) → {1,2,3} !

sort({2,2,1}) → {1,2,1} %

sort(null) → ☇ %

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

Informal specification:
Method sort sorts the elements of input in ascending order

Testing
sort({}) → {} !

sort({2}) → {2} !

sort({2,3,1}) → {1,2,3} !

sort({2,2,1}) → {1,2,1} %

sort(null) → ☇ %

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

Informal specification:
Method sort sorts the elements of input in ascending order

Testing
sort({}) → {} !

sort({2}) → {2} !

sort({2,3,1}) → {1,2,3} !

sort({2,2,1}) → {1,2,1} %

sort(null) → ☇ %

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function—Formal Treatment

Specification
Pre and postcondition in predicate logic (contract)
If a is a non-null array of integers and
in the state before a call sort(a), the elements of a are e0 . . . en,
then the call terminates and immediately after the call,
the elements of a, e′0 . . . e

′

n, are a permutation of e0 . . . en
and ∀i , j ∈ [0,n].i < j ⇒ e′i ≤ e

′

j .

Verification
Prove that sort satisfies its specification using a formal semantics of the
programming language

Observations
Specification permits duplicate elements in array:
Test sort({2,2,1}) reveals error in implementation

Specification excludes null from the valid arguments to sort:
Test sort(null) is an invalid test case
Correctness proof covers all valid inputs, not just selected test cases

Alex Summers—Formal Methods and Functional Programming, SS13 p. 10

Example 1: Sorting Function—Formal Treatment

Specification
Pre and postcondition in predicate logic (contract)
If a is a non-null array of integers and
in the state before a call sort(a), the elements of a are e0 . . . en,
then the call terminates and immediately after the call,
the elements of a, e′0 . . . e

′

n, are a permutation of e0 . . . en
and ∀i , j ∈ [0,n].i < j ⇒ e′i ≤ e

′

j .

Verification
Prove that sort satisfies its specification using a formal semantics of the
programming language

Observations
Specification permits duplicate elements in array:
Test sort({2,2,1}) reveals error in implementation

Specification excludes null from the valid arguments to sort:
Test sort(null) is an invalid test case
Correctness proof covers all valid inputs, not just selected test cases

Alex Summers—Formal Methods and Functional Programming, SS13 p. 10

Example 1: Sorting Function—Formal Treatment

Specification
Pre and postcondition in predicate logic (contract)
If a is a non-null array of integers and
in the state before a call sort(a), the elements of a are e0 . . . en,
then the call terminates and immediately after the call,
the elements of a, e′0 . . . e

′

n, are a permutation of e0 . . . en
and ∀i , j ∈ [0,n].i < j ⇒ e′i ≤ e

′

j .

Verification
Prove that sort satisfies its specification using a formal semantics of the
programming language

Observations
Specification permits duplicate elements in array:
Test sort({2,2,1}) reveals error in implementation

Specification excludes null from the valid arguments to sort:
Test sort(null) is an invalid test case
Correctness proof covers all valid inputs, not just selected test cases

Alex Summers—Formal Methods and Functional Programming, SS13 p. 10

Example 2: Zune Bug

Zune 30 did not
work on Dec. 31,
2008

Official fix: drain
battery and
recharge after
midday on
Jan. 01, 2009

//--------------------------
// Split total days since
// Jan. 01, ORIGINYEAR
// into year, month and day
//--------------------------
BOOL ConvertDays(UINT32 days, ...) {
int year = ORIGINYEAR; /* =1980 */

while (days > 365) {
if (IsLeapYear(year)) {

if (days > 366) {
days -= 366; year += 1;

}
} else {

days -= 365; year += 1;
}

}
... }

Alex Summers—Formal Methods and Functional Programming, SS13 p. 11

Example 2: Zune Bug—Formal Treatment

Prove termination formally
Repetition: Sufficient condition for termination of recursive functions:
Arguments are smaller along a well-founded order
Similar technique for loops

Zune example:

Termination measure:
variable days

Well-founded order:
< with lower bound
365 (loop condition)
Error: measure not
decreased if
IsLeapYear(year)

and days==366

while (days > 365) {
if (IsLeapYear(year)) {
if (days > 366) {

days -= 366; year += 1;
}

} else {
days -= 365; year += 1;

}
}

Alex Summers—Formal Methods and Functional Programming, SS13 p. 12

Example 3: Deadlock

Threads are
synchronized via
locks

Interleaved
execution of
a.transfer(b,n)

and
b.transfer(a,m)

might deadlock

Multi-threaded
programs are
extremely hard
to test

class Account {
int balance;

void transfer(Account to, int amount) {
acquire this;
acquire to;
this.balance -= amount;
to.balance += amount;
release this;
release to;

}
}

Alex Summers—Formal Methods and Functional Programming, SS13 p. 13

Example 3: Deadlock—Formal Treatment (1)

Prevent deadlocks
by acquiring locks
in ascending order

Prove absence of
deadlocks by:

Defining an
order on locks
Proving for each
acquire o that
o is above all
other locks held
by the current
thread

class Account {
int balance;
int number; // unique account number

void transfer(Account to, int amount) {
if (this.number < to.number) {
acquire this;
acquire to;

} else {
acquire to;
acquire this;

}
this.balance -= amount;
to.balance += amount;
release this;
release to;

}
}

Alex Summers—Formal Methods and Functional Programming, SS13 p. 14

Example 3: Deadlock—Formal Treatment (2)

Alternative approach: state space exploration

Enumerate all possible states of a system
Check properties on the states and their transitions
Absence of deadlock: check for each state that there is a way to reach
the terminal state

Main problem: size of state space
Explore abstractions of real program (here, balance does not matter)
Explore state space for limited executions

Small number of threads (here, two are sufficient)
Small number of objects (here, two are sufficient)
Small number of context switches (here, one is sufficient)

State space exploration typically gives no correctness guarantee
Similar to testing
Very effective in practice

Alex Summers—Formal Methods and Functional Programming, SS13 p. 15

Example 3: Deadlock—Formal Treatment (2)

Alternative approach: state space exploration

Enumerate all possible states of a system
Check properties on the states and their transitions
Absence of deadlock: check for each state that there is a way to reach
the terminal state

Main problem: size of state space
Explore abstractions of real program (here, balance does not matter)
Explore state space for limited executions

Small number of threads (here, two are sufficient)
Small number of objects (here, two are sufficient)
Small number of context switches (here, one is sufficient)

State space exploration typically gives no correctness guarantee
Similar to testing
Very effective in practice

Alex Summers—Formal Methods and Functional Programming, SS13 p. 15

Example 3: Deadlock—Formal Treatment (2)

Alternative approach: state space exploration

Enumerate all possible states of a system
Check properties on the states and their transitions
Absence of deadlock: check for each state that there is a way to reach
the terminal state

Main problem: size of state space
Explore abstractions of real program (here, balance does not matter)
Explore state space for limited executions

Small number of threads (here, two are sufficient)
Small number of objects (here, two are sufficient)
Small number of context switches (here, one is sufficient)

State space exploration typically gives no correctness guarantee
Similar to testing
Very effective in practice

Alex Summers—Formal Methods and Functional Programming, SS13 p. 15

Example 4: Needham-Schroeder Protocol

Establish a common secret over an insecure channel

1. Alice sends random number NA to Bob, encrypted with Bob’s public key:
⟨A,NA⟩B

2. Bob sends random number NB to Alive, encrypted with Alice’s public
key: ⟨NA,NB⟩A

3. Alice responds with ⟨NB⟩B

Intruders may:

Intercept, store, and replay messages
Initiate or participate in runs of the protocol
Decrypt messages only if encrypted with intruder’s public key

Error: intruder can pretend to be another party

Alex Summers—Formal Methods and Functional Programming, SS13 p. 16

Example 4: Needham-Schroeder Protocol—
Formal Treatment

State space exploration: enumerate
protocol runs

Develop formal model of intruder
as non-deterministic program
Simplifications: two agents, one
intruder with limited memory
Check whether there is a protocol
run such that agent believes to
talk to other agent, but in fact
talks to intruder

Error was found this way 17 years
after protocol was published

Alex Summers—Formal Methods and Functional Programming, SS13 p. 17

Observations: Formal Specification

Use mathematical notations to describe:
Assumptions about the environment (e.g., intruder model)
Requirements for the system (desired properties, e.g., deadlock freedom)
System design to accomplish these requirements (e.g., program code)

Requirements

Safety properties: Something bad will never happen

Functional behavior of sort (no “incorrect” return-values)
Absence of certain faults (e.g., null-pointer exception, buffer overflow)

Liveness properties: Something good will happen eventually

Termination of ConvertDays

Each request gets served eventually

Non-functional requirements

Resource consumption, e.g., memory usage
Runtime, e.g., realtime guarantees

Alex Summers—Formal Methods and Functional Programming, SS13 p. 18

Observations: Formal Specification

Use mathematical notations to describe:
Assumptions about the environment (e.g., intruder model)
Requirements for the system (desired properties, e.g., deadlock freedom)
System design to accomplish these requirements (e.g., program code)

Requirements

Safety properties: Something bad will never happen

Functional behavior of sort (no “incorrect” return-values)
Absence of certain faults (e.g., null-pointer exception, buffer overflow)

Liveness properties: Something good will happen eventually

Termination of ConvertDays

Each request gets served eventually

Non-functional requirements

Resource consumption, e.g., memory usage
Runtime, e.g., realtime guarantees

Alex Summers—Formal Methods and Functional Programming, SS13 p. 18

Observations: Formal Verification

Use formal logic to:

Validate specifications by checking consistency
Example: termination measure uses well-founded order
Prove that design satisfies requirements under given assumptions
Example: code does not deadlock
Prove that a more detailed design implements a more abstract one
(refinement)
Example: protocol implementation refines protocol specification

Proof methods

Deductive: proof system
Example: prove termination in a program logic
Algorithmic: state space exploration (model checking)
Example: enumerate and check protocol runs
Combinations: proof system to reduce problems to simpler ones;
exhaustively check these using highly-optimised tools
Example: automatic verification tools (verifiers)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 19

Observations: Formal Verification

Use formal logic to:

Validate specifications by checking consistency
Example: termination measure uses well-founded order
Prove that design satisfies requirements under given assumptions
Example: code does not deadlock
Prove that a more detailed design implements a more abstract one
(refinement)
Example: protocol implementation refines protocol specification

Proof methods

Deductive: proof system
Example: prove termination in a program logic
Algorithmic: state space exploration (model checking)
Example: enumerate and check protocol runs
Combinations: proof system to reduce problems to simpler ones;
exhaustively check these using highly-optimised tools
Example: automatic verification tools (verifiers)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 19

Formal Methods: Ingredients

Underlying programming/modelling system
Programming language with precise (formal) semantics, or,
Modelling language for constructing formal models of software

Specification language

Desired properties expressed as logical formulas in a formal logic
Precise meaning for “the system satisfies a property”

Proof method

Method to establish or refute that a system satisfies a property
When not satisfied, may also provide a trace or counterexample

Tool support

For specification, verification and useful feedback
Proofs are often simple, but long and tedious (unlike in mathematics)
Tools needed to check details: e.g., theorem provers and model checkers

Alex Summers—Formal Methods and Functional Programming, SS13 p. 20

Benefits of Formal Methods

Strong guarantees

Detect faults with greater certainty than testing
Guarantee absence of specific faults
Unambiguous communication and documentation

Universality

Properties of concrete programs (e.g., termination proof)
Software designs and modelling (e.g., protocol verification)
Compiler construction (e.g., validating optimisations)
Programming languages / new features (e.g., type safety proof)
Hardware (e.g., refinement proof between gate and transistor design)

Didactic value: Studying formal methods:

Leads to deep understanding of semantics of programs and specifications
Increases awareness of subtle issues of programs, languages, etc.
Shows how to construct formal arguments (proofs) about these issues
Makes you a better engineer! (also language/compiler designer, etc..)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 21

Benefits of Formal Methods

Strong guarantees

Detect faults with greater certainty than testing
Guarantee absence of specific faults
Unambiguous communication and documentation

Universality

Properties of concrete programs (e.g., termination proof)
Software designs and modelling (e.g., protocol verification)
Compiler construction (e.g., validating optimisations)
Programming languages / new features (e.g., type safety proof)
Hardware (e.g., refinement proof between gate and transistor design)

Didactic value: Studying formal methods:

Leads to deep understanding of semantics of programs and specifications
Increases awareness of subtle issues of programs, languages, etc.
Shows how to construct formal arguments (proofs) about these issues
Makes you a better engineer! (also language/compiler designer, etc..)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 21

Benefits of Formal Methods

Strong guarantees

Detect faults with greater certainty than testing
Guarantee absence of specific faults
Unambiguous communication and documentation

Universality

Properties of concrete programs (e.g., termination proof)
Software designs and modelling (e.g., protocol verification)
Compiler construction (e.g., validating optimisations)
Programming languages / new features (e.g., type safety proof)
Hardware (e.g., refinement proof between gate and transistor design)

Didactic value: Studying formal methods:

Leads to deep understanding of semantics of programs and specifications
Increases awareness of subtle issues of programs, languages, etc.
Shows how to construct formal arguments (proofs) about these issues
Makes you a better engineer! (also language/compiler designer, etc..)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 21

Success Stories

Paris driverless metro (Meteor)

Safety-critical system
Pilot software developed through stepwise refinement in B
Most detailed design translated automatically to 30,000 lines of Ada
28,000 proofs

Static Driver Verifier/SLAM at Microsoft

Windows device drivers running in kernel mode should respect API
Third-party device drivers not respecting APIs responsible for 90% of
Windows crashes
SLAM inspects C code using a combination of model checking and
theorem proving

Airbus 380 flight controller

Safety-critical system
Static analysis of 500,000 lines of C code
Proved absence of runtime errors (e.g., buffer overflows)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 22

Success Stories

Paris driverless metro (Meteor)

Safety-critical system
Pilot software developed through stepwise refinement in B
Most detailed design translated automatically to 30,000 lines of Ada
28,000 proofs

Static Driver Verifier/SLAM at Microsoft

Windows device drivers running in kernel mode should respect API
Third-party device drivers not respecting APIs responsible for 90% of
Windows crashes
SLAM inspects C code using a combination of model checking and
theorem proving

Airbus 380 flight controller

Safety-critical system
Static analysis of 500,000 lines of C code
Proved absence of runtime errors (e.g., buffer overflows)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 22

Success Stories

Paris driverless metro (Meteor)

Safety-critical system
Pilot software developed through stepwise refinement in B
Most detailed design translated automatically to 30,000 lines of Ada
28,000 proofs

Static Driver Verifier/SLAM at Microsoft

Windows device drivers running in kernel mode should respect API
Third-party device drivers not respecting APIs responsible for 90% of
Windows crashes
SLAM inspects C code using a combination of model checking and
theorem proving

Airbus 380 flight controller

Safety-critical system
Static analysis of 500,000 lines of C code
Proved absence of runtime errors (e.g., buffer overflows)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 22

Limitations

Incorrect specifications

Formal methods per se do not guarantee correctness
Verifying the wrong specification is useless
It is difficult to get specifications right

Technical limitations

Almost all interesting properties are undecidable, in general
Many tools quickly reach limits (scope, computing resources)

Many applications of formal methods require specialist users

Strong background in mathematics / training in formal modelling
Some tools try to hide this complexity from users (research topic)

Application of formal methods is expensive

But testing is expensive, too

Alex Summers—Formal Methods and Functional Programming, SS13 p. 23

Formal Methods and Testing

Formal methods and testing complement each other

Testing still necessary

Validate specifications
Test properties not formally proven (e.g., performance)
Detect errors in environment (e.g., compiler)

Formal methods aid testing

Derive test cases, test data, and test oracles from specifications
Increase test coverage
Replace (infinitely) many tests

Runtime testing aids formal methods

Runtime monitoring to detect properties of program executions
Can be used to “guess” candidate formal specifications
Potentially reduces overheads needed in writing specifications

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Formal Methods and Testing

Formal methods and testing complement each other

Testing still necessary

Validate specifications
Test properties not formally proven (e.g., performance)
Detect errors in environment (e.g., compiler)

Formal methods aid testing

Derive test cases, test data, and test oracles from specifications
Increase test coverage
Replace (infinitely) many tests

Runtime testing aids formal methods

Runtime monitoring to detect properties of program executions
Can be used to “guess” candidate formal specifications
Potentially reduces overheads needed in writing specifications

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Formal Methods and Testing

Formal methods and testing complement each other

Testing still necessary

Validate specifications
Test properties not formally proven (e.g., performance)
Detect errors in environment (e.g., compiler)

Formal methods aid testing

Derive test cases, test data, and test oracles from specifications
Increase test coverage
Replace (infinitely) many tests

Runtime testing aids formal methods

Runtime monitoring to detect properties of program executions
Can be used to “guess” candidate formal specifications
Potentially reduces overheads needed in writing specifications

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Formal Methods and Testing

Formal methods and testing complement each other

Testing still necessary

Validate specifications
Test properties not formally proven (e.g., performance)
Detect errors in environment (e.g., compiler)

Formal methods aid testing

Derive test cases, test data, and test oracles from specifications
Increase test coverage
Replace (infinitely) many tests

Runtime testing aids formal methods

Runtime monitoring to detect properties of program executions
Can be used to “guess” candidate formal specifications
Potentially reduces overheads needed in writing specifications

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Course Outline—Part II

Focus: formal methods for (stateful) software
Imperative programs and languages

Two main areas explored in this half of the course:

1. Formal semantics of imperative programming languages

Operational semantics
Axiomatic semantics (Hoare Logic)

2. Modelling and state space exploration techniques

Constructing models of program behaviours
Temporal logic and model checking

Alex Summers—Formal Methods and Functional Programming, SS13 p. 25

Why Formal Semantics of Programming Languages?

Alex Summers—Formal Methods and Functional Programming, SS13 p. 26

C: Expression Evaluation

int print(char* text) {
printf("%s\n", text);
return 5;

}

print("One")+print("Two");

Alex Summers—Formal Methods and Functional Programming, SS13 p. 27

C: Expression Evaluation

int print(char* text) {
printf("%s\n", text);
return 5;

}

print("One")+print("Two");

One
Two

Two
One

In C and C++,
evaluation order of
expressions is undefined

Precedence and
associativity define
rules for structuring
expressions

But do not define
operand evaluation
order

Alex Summers—Formal Methods and Functional Programming, SS13 p. 27

Haskell and SML: Evaluation

Haskell
const :: Int -> Int
const x = 1

const (2 ’div’ 0)

SML
fun const (x: int):int = 1;

const (2 div 0);

uncaught exception divide by zero

Haskell uses lazy evaluation:
Arguments are evaluated when they are needed
SML uses eager evaluation:
Arguments are evaluated when function is applied

Alex Summers—Formal Methods and Functional Programming, SS13 p. 28

Haskell and SML: Evaluation

Haskell
const :: Int -> Int
const x = 1

const (2 ’div’ 0)

1

SML
fun const (x: int):int = 1;

const (2 div 0);

uncaught exception divide by zero

Haskell uses lazy evaluation:
Arguments are evaluated when they are needed
SML uses eager evaluation:
Arguments are evaluated when function is applied

Alex Summers—Formal Methods and Functional Programming, SS13 p. 28

Java: Dynamic Method Binding

class C1 {
int x = 5;
public void inc1()
{ this.inc2(); }

private void inc2()
{ x++; }

}

class CS1 extends C1 {
public void inc2()
{ inc1(); }

}

CS1 cs = new CS1();
cs.inc2();
System.out.println(cs.x);

class C2 {
int x = 5;
public void inc1()
{ this.inc2(); }

protected void inc2()
{ x++; }

}

class CS2 extends C2 {
public void inc2()
{ inc1(); }

}

CS2 cs = new CS2();
cs.inc2();
System.out.println(cs.x);

Alex Summers—Formal Methods and Functional Programming, SS13 p. 29

Java: Dynamic Method Binding

class C1 {
int x = 5;
public void inc1()
{ this.inc2(); }

private void inc2()
{ x++; }

}

class CS1 extends C1 {
public void inc2()
{ inc1(); }

}

CS1 cs = new CS1();
cs.inc2();
System.out.println(cs.x);

class C2 {
int x = 5;
public void inc1()
{ this.inc2(); }

protected void inc2()
{ x++; }

}

class CS2 extends C2 {
public void inc2()
{ inc1(); }

}

CS2 cs = new CS2();
cs.inc2();
System.out.println(cs.x);

Alex Summers—Formal Methods and Functional Programming, SS13 p. 29

Java: Class Initialization

class C {
public static int x;

}

class D {
public static char y;
...

static { C.x = C.x + 1; }

}

C.x = 0;
D.y = ’?’;
System.out.println(C.x);

1

Alex Summers—Formal Methods and Functional Programming, SS13 p. 30

Java: Class Initialization

class C {
public static int x;

}

class D {
public static char y;

...

static { C.x = C.x + 1; }
}

C.x = 0;
D.y = ’?’;
System.out.println(C.x);

1

Alex Summers—Formal Methods and Functional Programming, SS13 p. 30

Why Formal Semantics?

Programming language design
Formal verification of language properties
Reveal ambiguities
Support for standardization

Implementation of programming languages
Specification for developing compilers/interpreters
Evaluation of proposed compiler optimisations
Portability - abstract description of language semantics
Evaluation of new programming language features

Reasoning about programs
Formal verification of program properties

Alex Summers—Formal Methods and Functional Programming, SS13 p. 31

Programming Language Properties

Type safety:
In each execution state, a variable of type T holds a value of type T (or
a subtype of T)

Very important question for language designers

Example:
If String is a subtype of Object, should String[] be a subtype of
Object[]?

void m(Object[] oa) {
oa[0]=new Integer(5);

}

String[] sa=new String[10];
m(sa);
String s = sa[0];

Alex Summers—Formal Methods and Functional Programming, SS13 p. 32

Programming Language Properties

Type safety:
In each execution state, a variable of type T holds a value of type T (or
a subtype of T)

Very important question for language designers

Example:
If String is a subtype of Object, should String[] be a subtype of
Object[]?

void m(Object[] oa) {
oa[0]=new Integer(5);

}

String[] sa=new String[10];
m(sa);
String s = sa[0];

Alex Summers—Formal Methods and Functional Programming, SS13 p. 32

Compiler Optimization

Common subexpression elimination

d = a * Math.sqrt(c);
e = b * Math.sqrt(c);

double tmp=Math.sqrt(c);
d = a * tmp;
e = b * tmp;

Optimization works only for side-effect free expressions

d = a * c++;
e = b * c++;

double tmp = c++;
d = a * tmp;
e = b * tmp;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 33

Compiler Optimization

Common subexpression elimination

d = a * Math.sqrt(c);
e = b * Math.sqrt(c);

double tmp=Math.sqrt(c);
d = a * tmp;
e = b * tmp;

Optimization works only for side-effect free expressions

d = a * c++;
e = b * c++;

double tmp = c++;
d = a * tmp;
e = b * tmp;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 33

Formal Verification

/* returns the
factorial of n */

int fac(int n) {
if (n>1)

return n*fac(n-1);
else

return 1;
}

fac(17); -288522240

Verification could run by
induction

Induction hypothesis:
n ≥ 0⇒ fac(n) = n!

Induction base is trivial

Induction step requires to
prove n × (n − 1)! = n!
which is not the case in
computer arithmetic (for
ints)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 34

Formal Verification

/* returns the
factorial of n */

int fac(int n) {
if (n>1)

return n*fac(n-1);
else

return 1;
}

fac(17); -288522240

Verification could run by
induction

Induction hypothesis:
n ≥ 0⇒ fac(n) = n!

Induction base is trivial

Induction step requires to
prove n × (n − 1)! = n!
which is not the case in
computer arithmetic (for
ints)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 34

Formal Verification

/* returns the
factorial of n */

int fac(int n) {
if (n>1)

return n*fac(n-1);
else

return 1;
}

fac(17); -288522240

Verification could run by
induction

Induction hypothesis:
n ≥ 0⇒ fac(n) = n!

Induction base is trivial

Induction step requires to
prove n × (n − 1)! = n!
which is not the case in
computer arithmetic (for
ints)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 34

Three Kinds of Programming Language Semantics

Operational semantics

Describes execution on an abstract machine
Describes how the effect is achieved; abstractly, how the program runs

Denotational semantics (not in this course)

Programs are regarded as functions in a mathematical domain
Describes only the effect, not how it is obtained

Axiomatic semantics

Specific properties of the effect of executing a program are expressed
Some aspects of the computation may be ignored

Alex Summers—Formal Methods and Functional Programming, SS13 p. 35

Operational Semantics

y := 1;
while not(x=1) do (y := x*y; x := x-1)

Focuses on how the program is evaluated/executed
“First we assign 1 to y, then we test whether x is 1 or not. If it is then
we stop and otherwise we update y to be the product of x and the
previous value of y and then we decrement x by 1. Now we test
whether the new value of x is 1 or not. . . ”

Two kinds of operational semantics (both covered in this course)

Natural Semantics (coarse-grained view of execution)
Structural Operational Semantics (fine-grained view of execution)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 36

Axiomatic Semantics

y := 1;
while not(x=1) do (y := x*y; x := x-1)

Focus on properties of interest, not on how computation happens

“If x= n holds before the program is executed then y= n! will hold
when the execution terminates (if it terminates)”

Two kinds of axiomatic semantics (both covered in this course)
Partial correctness (properties modulo program termination)
Total correctness (prove termination as additional property)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 37

Which Semantics to Use? Selection Criteria:

Constructs of the language

Imperative

Functional

Concurrent

Object-oriented

Non-deterministic

etc.

Application of the semantics

Understanding the language

Program verification

Prototyping

Compiler construction

Program analysis

etc.

Alex Summers—Formal Methods and Functional Programming, SS13 p. 38

Focus of this Course

We discuss the major approaches to semantics for a small imperative
language (called IMP)

Similarities and differences between semantics
Important theoretical results

Operational Semantics
Natural and structural operational semantics of IMP
Suitable for building an interpreter (see exercises)

Axiomatic Semantics
Proof Systems (Hoare Logics) for IMP
Suitable as the basis for verification tools

Alex Summers—Formal Methods and Functional Programming, SS13 p. 39

