Formal Methods and

Functional Programming
Introduction to Part Il

Alex Summers

Chair of Programming Methodology
ETH Zurich

Based on material by Professor Peter Miller

Organization

@ Most aspects do not change (lecture times, web page, homework)
@ In general, please attend the same exercise session

@ Some tutors and rooms have changed:

o Tuesday 16-18, HG G26.5 (Stefan Heule, German)

o Tuesday 16-18, CLA E4 (Yannis Kassios, English)

o Tuesday 16-18, ETZ E7 (Malte Schwerhoff, German)
(previously Jérome Dohrau's exercise class in HG D3.3)

o Wednesday 15-17, IFW A34 (Yannis Kassios, English)

o Wednesday 15-17, IFW C33 (Malte Schwerhoff, German)

e Note: students previously attending Ognjen Marié's exercise class, or
those in IFW A34 who wish to remain taught in German, can choose
either of these two exercise sessions.

@ For all organizational issues, please email Yannis Kassios
(ioannis.kassios@inf.ethz.ch)

ETH

Alex Summers—Formal Methods and Functional Programming, SS13 p. 2

Homeworks and Exam

@ Homework can be submitted in one of two ways:

o By email to the appropriate tutor (see course website)
e By hand in the appropriate box outside room CAB F53.1

Solutions must be received by 11:00 on the Monday after the exercise is
published, in order to receive feedback.

@ The exam will take place in the exam session
o See web page for details (coming soon)

@ Please check the course website regularly, for announcements
@ http://www.infsec.ethz.ch/education/ss2013/fmfp

Alex Summers—Formal Methods and Functional Programming, SS13 p. 3

http://www.infsec.ethz.ch/education/ss2013/fmfp

Recommended Books

, ._.
o . ..- = ¢
270
=9
® Hanne Riis Nielson
and Flemming Nielson

Christel Baler and Joost-Pleter Katoen

@ Hanne Riis Nielson and Flemming Nielson:
Semantics with Applications: A Formal Introduction
e Available from
http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.pdf

@ Christel Baier and Joost-Pieter Katoen:
Principles of Model Checking

chnische Hochsohule Zarich .
imstitute of Technology Zurich Alex Summers—Formal Methods and Functional Programming, SS13 p. 4

http://www.daimi.au.dk/~bra8130/Wiley_book/wiley.pdf

Software Errors Cost Large Amounts of Money

Software errors cost US economy $59.5 billion annually
(estimate by Department of Commerce's National Institute of
Standards and Technology, 2002)

Software bugs in baggage handling
system of the airport of Denver led to
damage of around $1 million per day
(for almost a year)

Explosion of Ariane 5 destroyed
satellites worth $500 million

In comparison: famous hardware bugs:

e Pentium bug cost Intel $500 million
o Xbox bug cost Microsoft $1 billion

S A Alex Summers—Formal Methods and Functional Programming, SS13

P-

Software Errors May Cost Lives

@ Software error in Therac-25 medical
linear accelerator led to overdose, which
killed six people

@ Rounding error caused Patriot Missile
system to ignore an incoming Scud
missile; 28 soldiers died

@ Many other safety critical systems

e Controllers in airplanes, cars, trains, etc.
e Air traffic control systems
e Nuclear reactor control systems

Technische Hochschule Zarich
geral institute of Technology Zurich Alex Summers—Formal Methods and Functional Programming, SS13 p. 6

Traditional Software Engineering

@ Describes expected behavior using natural language or semi-formal
notations

e Ambiguities i\]@

e Contradictions f

o Incompletenesses S “‘& ,

TRE CRICKEN S
Repny o EAT

@ Relies on testing to ensure quality
e Testing can show the presence of errors, but not their absence.
[E. Dijkstra]
e Exhaustive testing possible only for trivial programs
e Some errors are hard to find / reproduce (data races, deadlocks)
o Achieving good test coverage is difficult (rare cases)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 7

Alternative: Formal Methods

Formal methods are mathematical approaches to

software and system development which support the
rigorous specification, design, and verification of

computer systems. [FME]

@ Programs, programming languages, designs, etc. are mathematical
objects and can be treated by mathematical methods

@ Examples from Part | of the course:
e Proving program properties
Vxs,ys,zs.(xs ++ ys) ++ zs = xs ++ (ys ++ zs)

e Formalizing language semantics
(Ax.t)t' > t[x < t']

e Proving language properties
If t—>t' and A-t:7then At =7

Alex Summers—Formal Methods and Functional Programming, SS13 p. 8

Example 1: Sorting Function

void sort(int[] input)

@ Informal specification:
Method sort sorts the elements of input in ascending order

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

@ Informal specification:
Method sort sorts the elements of input in ascending order

@ Testing
o sort({}) — {}

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

@ Informal specification:
Method sort sorts the elements of input in ascending order

@ Testing

o sort({}) —» {}
e sort({2}) — {2}

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

@ Informal specification:
Method sort sorts the elements of input in ascending order

@ Testing

o sort({}) —» {}
e sort({2}) — {2}
o sort({2,3,1}) — {1,2,3}

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

@ Informal specification:
Method sort sorts the elements of input in ascending order

@ Testing

o sort({}) — {}

e sort({2}) - {2}

e sort({2,3,1}) —» {1,2,3%}

e sort({2,2,1}) —» {1,2,1} X

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function

void sort(int[] input)

@ Informal specification:
Method sort sorts the elements of input in ascending order

@ Testing

o sort({}) — {}

e sort({2}) - {2}

e sort({2,3,1}) —» {1,2,3%}

e sort({2,2,1}) —» {1,2,1} X
o sort(null) —» 7 X

Alex Summers—Formal Methods and Functional Programming, SS13 p. 9

Example 1: Sorting Function—Formal Treatment

@ Specification
o Pre and postcondition in predicate logic (contract)
e If ais a non-null array of integers and
In the state before a call sort(a), the elements of a are ¢... e,
then the call terminates and immediately after the call,
the elements of a, €]...e¢,, are a permutation of e ... e,

/

and Vi,j€[0,n].i <j= e <€

Alex Summers—Formal Methods and Functional Programming, SS13 p. 10

Example 1: Sorting Function—Formal Treatment

@ Specification
o Pre and postcondition in predicate logic (contract)
e If ais a non-null array of integers and

In the state before a call sort(a), the elements of a are ¢... e,
then the call terminates and immediately after the call,
the elements of a, €]...e¢,, are a permutation of e ... e,

/

and Vi,j€[0,n].i <j= e <€

@ Verification
e Prove that sort satisfies its specification using a formal semantics of the

programming language

Alex Summers—Formal Methods and Functional Programming, SS13 p. 10

Example 1: Sorting Function—Formal Treatment

@ Specification
o Pre and postcondition in predicate logic (contract)
e If ais a non-null array of integers and
In the state before a call sort(a), the elements of a are ¢... e,
then the call terminates and immediately after the call,
the elements of a, €]...e¢,, are a permutation of e ... e,

and Vi,je[0,n].i<j=¢ <e.

@ Verification
e Prove that sort satisfies its specification using a formal semantics of the

programming language

@ Observations
e Specification permits duplicate elements in array:
Test sort({2,2,1}) reveals error in implementation
e Specification excludes null from the valid arguments to sort:

Test sort(null) is an invalid test case
e Correctness proof covers all valid inputs, not just selected test cases

Alex Summers—Formal Methods and Functional Programming, SS13 p. 10

Example 2: Zune Bug

@ Zune 30 did not
work on Dec. 31,
2008

e Official fix: drain
battery and
recharge after
midday on
Jan. 01, 2009

// Split total days since
// Jan. 01, ORIGINYEAR
// into year, month and day

while (days > 365) {
if (IsLeapYear(year)) {
if (days > 366) {
days -= 366; year += 1;
¥
} else {
days —-= 365; year += 1;
+
+

BOOL ConvertDays(UINT32 days, ...) {
int year = ORIGINYEAR; /* =1980 */

Alex Summers—Formal Methods and Functional Programming, SS13

P-

11

Example 2: Zune Bug—Formal Treatment

@ Prove termination formally

@ Repetition: Sufficient condition for termination of recursive functions:
Arguments are smaller along a well-founded order

@ Similar technique for loops

® Zune example: while (days > 365) {

e Termination measure: if (IsLeapYear(year)) {
variable days if (days > 366) {

e Well-founded order: days -= 366; year += 1;
< with lower bound +
365 (loop condition) } else {

e Error: measure not days —-= 365; year += 1;
decreased if ¥
IsLeapYear (year) ¥

and days==366

Alex Summers—Formal Methods and Functional Programming, SS13 p. 12

Example 3: Deadlock

@ Threads are
synchronized via

class Account {
locks int balance;

@ Interleaved

. void transfer(Account to, int amount) {
execution of

acquire this;

a.transfer(b,n) acquire to;
and this.balance -= amount;
b.transfer(a,m) to.balance += amount;

release this;
release to;

might deadlock

@ Multi-threaded }
programs are +
extremely hard
to test

Alex Summers—Formal Methods and Functional Programming, SS13 p. 13

Example 3: Deadlock—Formal Treatment (1)

@ Prevent deadlocks
by acquiring locks
In ascending order

@ Prove absence of
deadlocks by:

e Defining an
order on locks

e Proving for each
acquire o that
o is above all
other locks held
by the current
thread

class Account {
int balance;
int number; // unique account number

void transfer (Account to, int amount) {
if (this.number < to.number) {
acquire this;
acquire to;
} else {
acquire to;
acquire this;
t
this.balance -= amount;
to.balance += amount;
release this;
release to;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 14

Example 3: Deadlock—Formal Treatment (2)

@ Alternative approach: state space exploration

e Enumerate all possible states of a system

@ Check properties on the states and their transitions

e Absence of deadlock: check for each state that there is a way to reach
the terminal state

Alex Summers—Formal Methods and Functional Programming, SS13 p. 15

Example 3: Deadlock—Formal Treatment (2)

@ Alternative approach: state space exploration

e Enumerate all possible states of a system

@ Check properties on the states and their transitions

e Absence of deadlock: check for each state that there is a way to reach
the terminal state

@ Main problem: size of state space
@ Explore abstractions of real program (here, balance does not matter)
@ Explore state space for limited executions

o Small number of threads (here, two are sufficient)
e Small number of objects (here, two are sufficient)
o Small number of context switches (here, one is sufficient)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 15

Example 3: Deadlock—Formal Treatment (2)

@ Alternative approach: state space exploration

e Enumerate all possible states of a system

@ Check properties on the states and their transitions

e Absence of deadlock: check for each state that there is a way to reach
the terminal state

@ Main problem: size of state space
@ Explore abstractions of real program (here, balance does not matter)
@ Explore state space for limited executions

o Small number of threads (here, two are sufficient)
e Small number of objects (here, two are sufficient)
o Small number of context switches (here, one is sufficient)

@ State space exploration typically gives no correctness guarantee
e Similar to testing
e Very effective in practice

Alex Summers—Formal Methods and Functional Programming, SS13 p.

15

Example 4: Needham-Schroeder Protocol

@ Establish a common secret over an insecure channel

1. Alice sends random number N, to Bob, encrypted with Bob's public key:
<A7 NA)B
2. Bob sends random number Npg to Alive, encrypted with Alice's public
key: <NA7NB>A
3. Alice responds with (Ng)g
1. <AN,>5

BF®

3. <Ng>g

@ Intruders may:

e Intercept, store, and replay messages
e Initiate or participate in runs of the protocol
e Decrypt messages only if encrypted with intruder’s public key

@ Error: intruder can pretend to be another party

ETH

Alex Summers—Formal Methods and Functional Programming, SS13 p. 16

Example 4: Needham-Schroeder Protocol—
Formal Treatment

@ State space exploration: enumerate A B |
protocol runs ;J'<A’NA>:

e Develop formal model of intruder 1_</>\,N:>§

as non-deterministic program i /

e Simplifications: two agents, one %m
intruder with limited memory | i :

o Check whether there is a protocol 2. <NA’NB>A—§

run such that agent believes to S i |

talks to intruder —>

@ Error was found this way 17 years

talk to other agent, but in fact —
after protocol was published |

Alex Summers—Formal Methods and Functional Programming, SS13 p. 17

Observations: Formal Specification

@ Use mathematical notations to describe:
o Assumptions about the environment (e.g., intruder model)
o Requirements for the system (desired properties, e.g., deadlock freedom)
o System design to accomplish these requirements (e.g., program code)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 18

Observations: Formal Specification

@ Use mathematical notations to describe:
o Assumptions about the environment (e.g., intruder model)

o Requirements for the system (desired properties, e.g., deadlock freedom)
o System design to accomplish these requirements (e.g., program code)

@ Requirements

e Safety properties: Something bad will never happen
@ Functional behavior of sort (no “incorrect” return-values)

@ Absence of certain faults (e.g., null-pointer exception, buffer overflow)

e Liveness properties: Something good will happen eventually
@ Termination of ConvertDays
@ Each request gets served eventually

e Non-functional requirements

@ Resource consumption, e.g., memory usage
@ Runtime, e.g., realtime guarantees

Alex Summers—Formal Methods and Functional Programming, SS13 p. 18

Observations: Formal Verification

@ Use formal logic to:

e \alidate specifications by checking consistency
Example: termination measure uses well-founded order

e Prove that design satisfies requirements under given assumptions
Example: code does not deadlock

e Prove that a more detailed design implements a more abstract one
(refinement)

Example: protocol implementation refines protocol specification

Alex Summers—Formal Methods and Functional Programming, SS13 p. 19

Observations: Formal Verification

@ Use formal logic to:

e \alidate specifications by checking consistency
Example: termination measure uses well-founded order

e Prove that design satisfies requirements under given assumptions
Example: code does not deadlock

e Prove that a more detailed design implements a more abstract one
(refinement)
Example: protocol implementation refines protocol specification

® Proof methods

e Deductive: proof system
Example: prove termination in a program logic
o Algorithmic: state space exploration (model checking)
Example: enumerate and check protocol runs
e Combinations: proof system to reduce problems to simpler ones;
exhaustively check these using highly-optimised tools
Example: automatic verification tools (verifiers)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 19

Formal Methods: Ingredients

@ Underlying programming/modelling system
o Programming language with precise (formal) semantics, or,
e Modelling language for constructing formal models of software

@ Specification language

e Desired properties expressed as logical formulas in a formal logic
e Precise meaning for “the system satisfies a property”

® Proof method

e Method to establish or refute that a system satisfies a property
e When not satisfied, may also provide a trace or counterexample

@ Tool support

e For specification, verification and useful feedback
o Proofs are often simple, but long and tedious (unlike in mathematics)
e Tools needed to check details: e.g., theorem provers and model checkers

Alex Summers—Formal Methods and Functional Programming, SS13 p. 20

Benefits of Formal Methods

@ Strong guarantees

e Detect faults with greater certainty than testing
e Guarantee absence of specific faults
e Unambiguous communication and documentation

Alex Summers—Formal Methods and Functional Programming, SS13 p. 21

Benefits of Formal Methods

@ Strong guarantees

e Detect faults with greater certainty than testing
e Guarantee absence of specific faults
e Unambiguous communication and documentation

@ Universality

o Properties of concrete programs (e.g., termination proof)

o Software designs and modelling (e.g., protocol verification)

o Compiler construction (e.g., validating optimisations)

o Programming languages / new features (e.g., type safety proof)

o Hardware (e.g., refinement proof between gate and transistor design)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 21

Benefits of Formal Methods

@ Strong guarantees

e Detect faults with greater certainty than testing
e Guarantee absence of specific faults
e Unambiguous communication and documentation

@ Universality

o Properties of concrete programs (e.g., termination proof)

o Software designs and modelling (e.g., protocol verification)

o Compiler construction (e.g., validating optimisations)

o Programming languages / new features (e.g., type safety proof)

o Hardware (e.g., refinement proof between gate and transistor design)

@ Didactic value: Studying formal methods:

e Leads to deep understanding of semantics of programs and specifications
e Increases awareness of subtle issues of programs, languages, etc.

o Shows how to construct formal arguments (proofs) about these issues

o Makes you a better engineer! (also language/compiler designer, etc..)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 21

Success Stories

@ Paris driverless metro (Meteor)

e Safety-critical system

o Pilot software developed through stepwise refinement in B

e Most detailed design translated automatically to 30,000 lines of Ada
e 28,000 proofs

Alex Summers—Formal Methods and Functional Programming, SS13 p. 22

Success Stories

@ Paris driverless metro (Meteor)

e Safety-critical system

o Pilot software developed through stepwise refinement in B

e Most detailed design translated automatically to 30,000 lines of Ada
e 28,000 proofs

@ Static Driver Verifier/SLAM at Microsoft

e Windows device drivers running in kernel mode should respect API

e Third-party device drivers not respecting APls responsible for 90% of
Windows crashes

e SLAM inspects C code using a combination of model checking and
theorem proving

Alex Summers—Formal Methods and Functional Programming, SS13 p. 22

Success Stories

@ Paris driverless metro (Meteor)

e Safety-critical system

o Pilot software developed through stepwise refinement in B

e Most detailed design translated automatically to 30,000 lines of Ada
e 28,000 proofs

@ Static Driver Verifier/SLAM at Microsoft

e Windows device drivers running in kernel mode should respect API

e Third-party device drivers not respecting APls responsible for 90% of
Windows crashes

e SLAM inspects C code using a combination of model checking and
theorem proving

@ Airbus 380 flight controller

e Safety-critical system
e Static analysis of 500,000 lines of C code
o Proved absence of runtime errors (e.g., buffer overflows)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 22

Limitations

@ Incorrect specifications

e Formal methods per se do not guarantee correctness
e Verifying the wrong specification is useless
e It is difficult to get specifications right

@ Technical limitations

e Almost all interesting properties are undecidable, in general
e Many tools quickly reach limits (scope, computing resources)

@ Many applications of formal methods require specialist users

o Strong background in mathematics / training in formal modelling
e Some tools try to hide this complexity from users (research topic)

@ Application of formal methods is expensive
e But testing is expensive, too

Alex Summers—Formal Methods and Functional Programming, SS13 p. 23

Formal Methods and Testing

@ Formal methods and testing complement each other

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Formal Methods and Testing

@ Formal methods and testing complement each other

@ Testing still necessary

e Validate specifications
o Test properties not formally proven (e.g., performance)
o Detect errors in environment (e.g., compiler)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Formal Methods and Testing

@ Formal methods and testing complement each other

@ Testing still necessary

e Validate specifications
o Test properties not formally proven (e.g., performance)
o Detect errors in environment (e.g., compiler)

@ Formal methods aid testing

e Derive test cases, test data, and test oracles from specifications
e Increase test coverage
o Replace (infinitely) many tests

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Formal Methods and Testing

@ Formal methods and testing complement each other

@ Testing still necessary

e Validate specifications
o Test properties not formally proven (e.g., performance)
o Detect errors in environment (e.g., compiler)

@ Formal methods aid testing

e Derive test cases, test data, and test oracles from specifications
e Increase test coverage
o Replace (infinitely) many tests

@ Runtime testing aids formal methods

e Runtime monitoring to detect properties of program executions
e Can be used to “guess’ candidate formal specifications
e Potentially reduces overheads needed in writing specifications

Alex Summers—Formal Methods and Functional Programming, SS13 p. 24

Course Outline—Part Il

@ Focus: formal methods for (stateful) software
e Imperative programs and languages

@ Two main areas explored in this half of the course:

1. Formal semantics of imperative programming languages

e Operational semantics
o Axiomatic semantics (Hoare Logic)

2. Modelling and state space exploration techniques

e Constructing models of program behaviours
e Temporal logic and model checking

Alex Summers—Formal Methods and Functional Programming, SS13 p. 25

Why Formal Semantics of Programming Languages?

Alex Summers—Formal Methods and Functional Programming, SS13 p. 26

C: Expression Evaluation

int print(char* text) {
printf ("%s\n", text);
return 5;

}

print ("One")+print ("Two") ;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 27

C: Expression Evaluation

}

int print(char* text) {
printf ("%s\n", text); evaluation order of

return 5;

In C and C++,

expressions is undefined

@ Precedence and

print ("One")+print ("Two") ;

associativity define

rules for structuring

One

Two

Two

One

expressions

@ But do not define

operand evaluation
order

Alex Summers—Formal Methods and Functional Programming, SS13 p. 27

Haskell and SML: Evaluation

Haskell SML

const :: Int -> Int fun const (x: int):int = 1;
const x =1

const (2 ’div’ O) const (2 div 0);

Alex Summers—Formal Methods and Functional Programming, SS13 p. 28

Haskell and SML: Evaluation

Haskell SML
const :: Int -> Int fun const (x: int):int = 1;
const x = 1
const (2 ’div’ O) const (2 div 0);
1 uncaught exception divide by zero

@ Haskell uses lazy evaluation:
Arguments are evaluated when they are needed

@ SML uses eager evaluation:
Arguments are evaluated when function is applied

Alex Summers—Formal Methods and Functional Programming, SS13 p. 28

Java: Dynamic Method Binding

class C1 {
int x = 5;
public void inc1()
{ this.inc2(); }
private void inc2()
{ x++; }

+

class CS1 extends C1 {
public void inc2()

{ inc1(); %

+

CS1 cs = new CS1();
cs.inc2();
System.out.println(cs.x);

Alex Summers—Formal Methods and Functional Programming, SS13 p. 29

Java: Dynamic Method Binding

class C1 {
int x = 5;
public void inc1()
{ this.inc2(); }
private void inc2()
{ x++; }

+

class C2 {
int x = 5;
public void incl1()
{ this.inc2(); %}
protected void inc2()
{ x++; }

+

class CS1 extends C1 {
public void inc2()
{ inc1(); }
}

class CS2 extends C2 {
public void inc2()
{ inc1(); }
}

CS1 cs = new CS1();
cs.inc2();
System.out.println(cs.x);

CS2 cs = new CS2();
cs.inc2();
System.out.println(cs.x);

Alex Summers—Formal Methods and Functional Programming, SS13 p. 29

Java: Class Initialization

class C {
public static int x;

+

class D {
public static char y;

+
C.x = 0;
D.y = ’7’;

System.out.println(C.x) ;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 30

Java: Class Initialization

class C {
public static int x;

+

class D {
public static char y;

static { C.x = C.x + 1; }

+
C.x = 0;
D.y = ’7;

System.out.println(C.x) ;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 30

Why Formal Semantics?

@ Programming language design
e Formal verification of language properties
e Reveal ambiguities
e Support for standardization

@ Implementation of programming languages
o Specification for developing compilers/interpreters
e Evaluation of proposed compiler optimisations
e Portability - abstract description of language semantics
e Evaluation of new programming language features

@ Reasoning about programs
e Formal verification of program properties

Alex Summers—Formal Methods and Functional Programming, SS13 p. 31

Programming Language Properties

@ Type safety:
In each execution state, a variable of type T holds a value of type T (or
a subtype of T)

@ Very important question for language designers

@ Example:
If String is a subtype of Object, should String[] be a subtype of
Object [17

Alex Summers—Formal Methods and Functional Programming, SS13 p. 32

Programming Language Properties

@ Type safety:
In each execution state, a variable of type T holds a value of type T (or
a subtype of T)

@ Very important question for language designers

@ Example:
If String is a subtype of Object, should String[] be a subtype of
Object [17

void m(Object[] oa) { String[] sa=new String[10];
oa[0]l=new Integer(5); ||m(sa);
} String s = sal[0];

Alex Summers—Formal Methods and Functional Programming, SS13 p. 32

Compiler Optimization

@ Common subexpression elimination

d
e

a * Math.sqrt(c); double tmp=Math.sqrt(c);
b * Math.sqrt(c); d = a *x tmp;
e = b *x tmp;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 33

Compiler Optimization

@ Common subexpression elimination

d = a * Math.sqrt(c); double tmp=Math.sqrt(c);
e = b * Math.sqrt(c); d = a *x tmp;
e = b *x tmp;

@ Optimization works only for side-effect free expressions

d = a *x ct++; double tmp = c++;
e = b *x c++; d = a * tmp;
e = b * tmp;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 33

Formal Verification

/* returns the
factorial of n */
int fac(int n) {
if (n>1)
return n*fac(n-1);
else
return 1;

Alex Summers—Formal Methods and Functional Programming, SS13 p. 34

Formal Verification

/* returns the
factorial of n */
int fac(int n) {
if (n>1)
return nxfac(n-1);
else
return 1;

fac(17); -288522240

Alex Summers—Formal Methods and Functional Programming, SS13 p. 34

Formal Verification

@ Verification could run by

/* returns the iInduction
factorial of n */
int fac(int n) { @ Induction hypothesis:
if (n>1) n>0= fac(n) = n
return n*xfac(n-1);
else

@ Induction base is trivial
return 1;

¥ @ Induction step requires to
prove nx (n—1)! = n!
which is not the case in
computer arithmetic (for
ints)

fac(17); -288522240

Alex Summers—Formal Methods and Functional Programming, SS13 p. 34

Three Kinds of Programming Language Semantics

@ Operational semantics

e Describes execution on an abstract machine
e Describes how the effect is achieved; abstractly, how the program runs

@ Denotational semantics (not in this course)

e Programs are regarded as functions in a mathematical domain
e Describes only the effect, not how it is obtained

@ Axiomatic semantics

e Specific properties of the effect of executing a program are expressed
e Some aspects of the computation may be ignored

Alex Summers—Formal Methods and Functional Programming, SS13 p. 35

Operational Semantics

y :=1;
while not(x=1) do (y := x*y; x := x-1)

@ Focuses on how the program is evaluated /executed

@ “First we assign 1 to y, then we test whether x is 1 or not. If it is then
we stop and otherwise we update y to be the product of x and the
previous value of y and then we decrement x by 1. Now we test
whether the new value of x is 1 or not..."

@ Two kinds of operational semantics (both covered in this course)

o Natural Semantics (coarse-grained view of execution)
o Structural Operational Semantics (fine-grained view of execution)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 36

Axiomatic Semantics

y :=1;
while not(x=1) do (y := x*y; x := x-1)

@ Focus on properties of interest, not on how computation happens

@ “If x= n holds before the program is executed then y= n! will hold
when the execution terminates (if it terminates)”

@ Two kinds of axiomatic semantics (both covered in this course)
o Partial correctness (properties modulo program termination)
o Total correctness (prove termination as additional property)

Alex Summers—Formal Methods and Functional Programming, SS13 p. 37

Which Semantics to Use? Selection Criteria:

Constructs of the language Application of the semantics
@ Imperative @ Understanding the language
@ Functional @ Program verification
@ Concurrent @ Prototyping
@ Object-oriented @ Compiler construction
@ Non-deterministic @ Program analysis
@ etc. @ etc.

Alex Summers—Formal Methods and Functional Programming, SS13 p. 38

Focus of this Course

@ We discuss the major approaches to semantics for a small imperative
language (called IMP)

e Similarities and differences between semantics
e Important theoretical results

@ Operational Semantics
e Natural and structural operational semantics of IMP
o Suitable for building an interpreter (see exercises)

@ Axiomatic Semantics
o Proof Systems (Hoare Logics) for IMP
e Suitable as the basis for verification tools

Alex Summers—Formal Methods and Functional Programming, SS13 p. 39

