
Algebraic Data Types

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

The problem

• Until now, data modeling with

Base types: Int, Bool, Char, Float, . . .

Compound types: tuples, lists, functions, . . .

Type synonyms: type Complex = (Float,Float)

• Example: modeling dates, e.g., months

� Using strings: "January", "February", . . . , "December"

� Using integers: 1, 2, . . . , 12

• Many possibilities (like in assembler). Not particularly abstract.

� Also error-prone. What does 0 represent? Or 1 + 2?

� Analogous to problem of modeling years.

Functional Programming Spring Semester, 2012

David Basin 2

Another example: modeling trees

�� ��
�� �� �	
�

�
��
��
��
� �
�
�
�
�
��
�

�
��
��
��
� �
�
�� �
��
��
��
� �
�

�
�
�
��
�

���
�
�
��
��
��
� ���� �
�

�
�

1

10 17

14 20

• Assembler or C: model using pointers

• Alternative: model using functions

� Tree addresses (position) as path address

[], [1], [2, 1, 2], . . .

� Function application produces value associated with node

f [] = 1, f [1] = 10, f [2] = 17, f [2, 1] = 14, f [2, 2] = 20

• Data type is a derived notion, not first-class

� Low-level coding

� Can be improperly used

Functional Programming Spring Semester, 2012

David Basin 3

Solution: algebraic data types

• Declare new types tailored to the objects being modeled.

• For months, we declare the type Month with elements

January, February, ..., December

These are new data constructors.

• For trees, declare type Tree with elements like

Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf)) �� ��
�� �� �	
�

�
��
��
��
� �
�
�
�
�
��
�

�
��
��
��
� �
�
�� �
��
��
��
� �
�

�
�
�
��
�

���
�
�
��
��
��
� ���� �
�

�
�

1

10 17

14 20

Functional Programming Spring Semester, 2012

David Basin 4

Enumeration types (disjoint unions)

data Season = Spring | Summer | Fall | Winter
data Month = January | February | March | April | May | June | July |

August | September | October | November | December

• Syntax

� Starts with keyword data

� Names different (uniquely named) constructors

� First letter of each constructor must be upper-case

• Defines a set: Season = {Spring, Summer, Fall, Winter}

• Functions can be written using pattern matching

whichSeason :: Month -> Season

whichSeason January = Winter
whichSeason February = Winter
whichSeason March = Spring
...

Functional Programming Spring Semester, 2012

David Basin 5

Product types
data People = Person Name Age
type Name = String
type Age = Int

• An element of type People consists of a name n and an age a, e.g.,

Person "Uncle George" 85
Person "Levi Jeans" 501 -- Nonsense but type correct

• Constructors are functions

? :type Person
Person :: Name -> Age -> People

• Functions may be defined by pattern matching

showPerson :: People -> String
showPerson (Person n a) = n ++ " who is " ++ show a ++ " years old"

? showPerson (Person "Uncle George" 85)
"Uncle George who is 85 years old" :: [Char]

Functional Programming Spring Semester, 2012

David Basin 6

Product types versus tuples

• Alternative to products are tuples

data People = Person Name Age
type People’ = (Name, Age)

• Advantage of product types

� Conceptual: new, self-contained type

� Objects are labeled and hence types are unambiguous

• Disadvantages

� Longer definitions

� Many polymorphic functions no longer applicable (fst, zip, . . .)

Functional Programming Spring Semester, 2012

David Basin 7

Enumeration and product types

• They can be combined

data Shape = Circle Float | Rectangle Float Float

• Two kinds of shapes

� Circle with radius, e.g. Circle 3.0

� Rectangle with two sides, e.g. Rectangle 45.9 87.6

• Functions again definable by pattern matching

area :: Shape -> Float
area (Circle r) = pi * r * r
area (Rectangle h w) = h * w

Functional Programming Spring Semester, 2012

David Basin 8

Integration with classes

• No default functions like == or show

data Foo = D1 | D2 | D3

? D1 == D2
ERROR: No instance for (Eq Foo)

• Class instances can be explicitly created

instance Eq Foo where
D1 == D1 = True
D2 == D2 = True
D3 == D3 = True
_ == _ = False

? D1 == D2
False :: Bool

Functional Programming Spring Semester, 2012

David Basin 9

Integration with classes (cont.)

• In some cases, class instances can be automatically derived

data Foo = D1 | D2 | D3
deriving (Eq, Ord, Enum, Show)

? D1
D1 :: Foo

? [D1 .. D3]
[D1, D2, D3] :: [Foo]

? D2 < D3
True :: Bool

See “Haskell Report” for further details

Functional Programming Spring Semester, 2012

David Basin 10

General definition

data T = Constr1 T11 . . . T1k1

| Constr2 T21 . . . T2k2
...

| Constrn Tn1 . . . Tnkn

• Tij are types, possibly also containing T (i.e., recursion allowed)

• T can have type variables as arguments (polymorphism)

Let’s look more closely at these extensions

Functional Programming Spring Semester, 2012

David Basin 11

Recursive types

• Sets of objects are often recursively defined

Expr ::= Int | Expr + Expr | Expr − Expr

• Formalized as a recursive data type

data Expr = Lit Int | Add Expr Expr | Sub Expr Expr

• Bijection between elements of Expr and data-type elements

2 Lit 2

2 + 3 Add (Lit 2) (Lit 3)

2 + (3− 1) Add (Lit 2) (Sub (Lit 3) (Lit 1))

• Recursion: Expr is recursive. Hence so are functions over Expr

Functional Programming Spring Semester, 2012

David Basin 12

Recursive functions over data types

• Example: Interpreter for arithmetic expressions

data Expr = Lit Int | Add Expr Expr | Sub Expr Expr
deriving (Show, Eq)

• Evaluator

Lit n: n
Add e1 e2: value of e1 + value of e2

Sub e1 e2: value of e1 − value of e2

• Program

eval :: Expr -> Int

eval (Lit n) = n
eval (Add e1 e2) = (eval e1) + (eval e2)
eval (Sub e1 e2) = (eval e1) - (eval e2)

Functional Programming Spring Semester, 2012

David Basin 13

Arithmetic expressions (cont.)

• Other functions are written similarly

showExpr (Lit n) = show n
showExpr (Add e1 e2) = "("++showExpr e1++"+"++showExpr e2 ++")"
showExpr (Sub e1 e2) = "("++showExpr e1++"-"++showExpr e2 ++")"

? eval (Add (Lit 2) (Sub (Lit 3) (Lit 1))) -- 2 + (3 - 1)
4 :: Int

? show (Add (Lit 2) (Sub (Lit 3) (Lit 1)))
"Add (Lit 2) (Sub (Lit 3) (Lit 1))" :: [Char]

? showExpr (Add (Lit 2) (Sub (Lit 3) (Lit 1)))
"(2+(3-1))" :: [Char]

Functional Programming Spring Semester, 2012

David Basin 14

Trees (with internal integer nodes)

�� ��
�� �� �	
�

�
��
��
��
� �
�
�
�
�
��
�

�
��
��
��
� �
�
�� �
��
��
��
� �
�

�
�
�
��
�

���
�
�
��
��
��
� ���� �
�

�
�

1

10 17

14 20• Grammar

ITree ::= Leaf | Node Int ITree ITree

• Haskell data type

data ITree = Leaf | Node Int ITree ITree
deriving (Eq, Show)

• Example tree t

Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))

Functional Programming Spring Semester, 2012

David Basin 15

Functions over trees

�� ��
�� �� �	
�

�
��
��
��
� �
�
�
�
�
��
�

�
��
��
��
� �
�
�� �
��
��
��
� �
�

�
�
�
��
�

���
�
�
��
��
��
� ���� �
�

�
�

1

10 17

14 20
• Sum of values treeSum t = 62

treeSum :: ITree -> Int
treeSum Leaf = 0
treeSum (Node n t1 t2) = n + (treeSum t1) + (treeSum t2)

• Depth depth t = 3

depth :: ITree -> Int
depth Leaf = 0
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

• How often does an element occur? occurs t 10 = 1

occurs :: ITree -> Int -> Int
occurs Leaf p = 0
occurs (Node n t1 t2) p

| n == p = 1 + rest
| otherwise = rest
where rest = occurs t1 p + occurs t2 p

Functional Programming Spring Semester, 2012

David Basin 16

Polymorphic algebraic types

• Examples have monomorphic types

data ITree = Leaf | Node Int ITree ITree

In general, types may include type variables

• Example: data Pair t = MkPair t t has elements like:

MkPair 2 3 :: Pair Int
MkPair [] [2,3] :: Pair [Int]
MkPair [] [] :: Pair [t]

• Functions can now also be polymorphic

equalPair :: Eq t => Pair t -> Bool
equalPair (MkPair x y) = (x == y)

Functional Programming Spring Semester, 2012

David Basin 17

Trees

• Definition with type parameters

data Tree t = Leaf | Node t (Tree t) (Tree t)
deriving (Eq,Ord,Show)

? Node 2 Leaf Leaf
Node 2 Leaf Leaf :: Tree Int

? Node True (Node False Leaf Leaf) (Node True Leaf Leaf)
Node True (Node False Leaf Leaf) (Node True Leaf Leaf) :: Tree Bool

• Same definitions. Now types are more general

occurs :: Eq t => Tree t -> t -> Int
occurs Leaf p = 0
occurs (Node n t1 t2) p

| n == p = 1 + rest
| otherwise = rest
where rest = occurs t1 p + occurs t2 p

Functional Programming Spring Semester, 2012

David Basin 18

Polymorphic algebraic types — questions

• Have you seen this type before?

data L t = E | C t (L t)
deriving (Eq,Ord,Show)

• Observe that

E :: L t
C :: t -> L t -> L t

• What is the type of the following function?

f y E = False
f y (C x l) = x == y || f y l

• What is the result?

? f 3 (C 2 (C 3 (C 4 E)))

• So standard types (like Bool, Lists [a], etc.) can be defined as

algebraic data types
Functional Programming Spring Semester, 2012

David Basin 19

Higher-order programming with data types

• You have done this already! For example, map for lists

map f E = E --- E = []
map f (C x xs) = C (f x) (map f xs) --- C = (:)

• Analogous program on trees

mapTree :: (t -> u) -> Tree t -> Tree u
mapTree f Leaf = Leaf
mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1) (mapTree f t2)

? mapTree (+2)
(Node 7 (Node 20 Leaf Leaf) (Node 1 Leaf Leaf))

Node 9 (Node 22 Leaf Leaf) (Node 3 Leaf Leaf) :: Tree Int

? mapTree not
(Node True (Node False Leaf Leaf) (Node True Leaf Leaf))

Node False (Node True Leaf Leaf) (Node False Leaf Leaf) :: Tree Bool

Functional Programming Spring Semester, 2012

David Basin 20

From foldr to treeFold

• Recall foldr
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e E = e --- E = []
foldr f e (C x xs) = f x (foldr f e xs) --- C = (:)

• Procedure for foldr f e l

In the list l, C is replaced with f and E with e

• Procedure for treeFold f e t

In the tree t, Node is replaced with f and Leaf with e

• Definition
treeFold:: (a -> b -> b -> b) -> b -> Tree a -> b

treeFold f e Leaf = e
treeFold f e (Node x l r) = f x (treeFold f e l) (treeFold f e r)

Functional Programming Spring Semester, 2012

David Basin 21

What is computed?

�� ��
�� �� �	
�

�
��
��
��
� �
�
�
�
�
��
�

�
��
��
��
� �
�
�� �
��
��
��
� �
�

�
�
�
��
�

���
�
�
��
��
��
� ���� �
�

�
�

1

10 17

14 20t = Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))

? treeFold (\x l r -> x + l + r) 0 t
62 :: Int

? treeFold (_ l r -> 1 + l + r) 0 t
5 :: Int

? treeFold (_ l r -> 1 + max l r) 0 t
3 :: Int

? treeFold (\x l r -> Node x r l) Leaf t
Node 1 (Node 17 (Node 20 Leaf Leaf) (Node 14 Leaf Leaf))

(Node 10 Leaf Leaf) :: Tree Int

Functional Programming Spring Semester, 2012

David Basin 22

From trees to lists

�� ��
�� �� �	
�

�
��
��
��
� �
�
�
�
�
��
�

�
��
��
��
� �
�
�� �
��
��
��
� �
�

�
�
�
��
�

���
�
�
��
��
��
� ���� �
�

�
�

1

10 17

14 20t = Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))

preorder t = treeFold (\x l r -> [x] ++ l ++ r) [] t

inorder t = treeFold (\x l r -> l ++ [x] ++ r) [] t

postorder t = treeFold (\x l r -> l ++ r ++ [x]) [] t

? preorder t
[1, 10, 17, 14, 20] :: [Int]

? inorder t
[10, 1, 14, 17, 20] :: [Int]

? postorder t
[10, 14, 20, 17, 1] :: [Int]

Functional Programming Spring Semester, 2012

David Basin 23

Case study: editing distance

• Motivation: compute the minimal number of changes needed to

transform one string into another

� Practical problem, e.g., updating display

� “diff” programs

• Goal: find “cheapest” sequence of editing steps using operations

Change a character

Copy a character without change

Delete a character

Insert a character

Kill rest of string, i.e., delete to the end

Assume unit price for all operations except copy, which is for free.

Functional Programming Spring Semester, 2012

David Basin 24

Example: “Help” is not far from “Hello”

? transform "help" "hello"
[Copy, Copy, Copy, Insert ’l’, Change ’o’]

? transform "hello" "help"
[Copy, Copy, Copy, Delete, Change ’p’]

In both cases, the cost is 2

Functional Programming Spring Semester, 2012

David Basin 25

Development #1: data types

1. Identify types, e.g., for editing

data Edit = ...

2. Identify kinds of data

Each corresponds to a constructor

data Edit = Change ... | Copy ... |
Delete ... | Insert ... | Kill ...

3. Fix the components (arguments)

data Edit = Change Char | Copy |
Delete | Insert Char | Kill
deriving (Eq, Show)

Functional Programming Spring Semester, 2012

David Basin 26

Development #2: functions

• Main function: carry out transformation

transform :: String -> String -> [Edit]

• Base cases

transform [] [] = []
transform xs [] = [Kill]
transform [] ys = map Insert ys

• General case: choose between the operations

transform (x:xs) (y:ys)
| x == y = Copy : transform xs ys
| otherwise = best [Delete : transform xs (y:ys) ,

Insert y : transform (x:xs) ys ,
Change y : transform xs ys]

N.B. Kill is not necessary. Why?
Functional Programming Spring Semester, 2012

David Basin 27

Development (cont.)

• Define the auxiliary function best

best :: [[Edit]] -> [Edit]

best [x] = x
best (x:xs)

| cost x <= cost x’ = x
| otherwise = x’
where x’ = best xs

• Formalize unit price for all operations except copy

cost :: [Edit] -> Int
cost = length . filter (/=Copy)

Functional Programming Spring Semester, 2012

David Basin 28

The entire program

data Edit = Change Char | Copy | Delete | Insert Char | Kill
deriving (Eq,Show)

transform [] [] = []
transform xs [] = [Kill]
transform [] ys = map Insert ys
transform (x:xs) (y:ys)

| x == y = Copy : transform xs ys
| otherwise = best [Delete : transform xs (y:ys) ,

Insert y : transform (x:xs) ys ,
Change y : transform xs ys]

best [x] = x
best (x:xs)

| cost x <= cost x’ = x
| otherwise = x’
where x’ = best xs

cost = length . filter (/=Copy)

Functional Programming Spring Semester, 2012

David Basin 29

Transform — examples
? :set +s

? transform "fish" "chips"
[Insert ’c’, Change ’h’, Copy, Insert ’p’, Copy, Kill]
(0.02 secs, 3803456 bytes)

? transform "1234" "4321"
[Delete, Change ’4’, Copy, Insert ’2’, Change ’1’]
(0.01 secs, 3051880 bytes)

? transform "123456" "654321"
[Delete, Change ’6’, Change ’5’, Copy, Insert ’3’, Change ’2’,
Change ’1’]

(0.04 secs, 5990368 bytes)

? transform "12345678" "87654321"
[Delete, Change ’8’, Change ’7’, Change ’6’, Copy, Insert ’4’,
Change ’3’, Change ’2’, Change ’1’]

(1.00 secs, 84024700 bytes)

Does transform always terminate? Run-time complexity?
Functional Programming Spring Semester, 2012

David Basin 30

Algebraic types and type classes

Goal: define hierarchy of movable objects

Support standard objects like points, lines, ...
and operations like reflection and (simple 180-degree) rotation.

Functional Programming Spring Semester, 2012

David Basin 31

Algebraic types and type classes (cont.)

data Vector = Vector Float Float -- x & y offset

class Movable t where
move :: Vector -> t -> t -- Translation
reflectX :: t -> t -- Reflection
reflectY :: t -> t
rotate180 :: t -> t -- Rotation
rotate180 = reflectX . reflectY

Instance: point
data Point = Pt Float Float

deriving Show

instance Movable Point where
move (Vector v1 v2) (Pt c1 c2) = Pt (c1+v1) (c2+v2)
reflectX (Pt c1 c2) = Pt c1 (-c2)
reflectY (Pt c1 c2) = Pt (-c1) c2
rotate180 (Pt c1 c2) = Pt (-c1) (-c2)

Functional Programming Spring Semester, 2012

David Basin 32

Types and classes (cont.)

• Figures are also movable
data Figure = Line Point Point | Circle Point Float

deriving Show

instance Movable Figure where
move v (Line p1 p2) = Line (move v p1) (move v p2)
move v (Circle p r) = Circle (move v p) r

reflectX (Line p1 p2) = Line (reflectX p1) (reflectX p2)
reflectX (Circle p r) = Circle (reflectX p) r

reflectY (Line p1 p2) = Line (reflectY p1) (reflectY p2)
reflectY (Circle p r) = Circle (reflectY p) r

• Lists of movable objects are also movable
instance Movable t => Movable [t] where

move v = map (move v)
reflectX = map reflectX
reflectY = map reflectY

Functional Programming Spring Semester, 2012

David Basin 33

Algebraic types and classes

• Algebraic types are “first class” citizens

Fully compatible with polymorphism and type classes

• Programs are simple to read and understand

only move rather than movePoint, etc.

• Reusability

Instance for Movable [t] is polymorphic with respect to lists of

movable objects

Functional Programming Spring Semester, 2012

David Basin 34

What actually are algebraic data types?

data Tree a = Leaf | Node a (Tree a) (Tree a)

• A data type defines a set of terms for each type instance

E.g., Tree Int corresponds to {Leaf , Node 0 Leaf Leaf , . . . }

• Algebraic here means the smallest set S, where

Leaf ∈ S and x ∈ a ∧ t1 ∈ S ∧ t2 ∈ S ⇒ (Node x t1 t2) ∈ S

• Intuition: set S is built in steps

� Leaf ∈ S and

� (Node x t1 t2) ∈ S, where t1 and t2 in S in earlier steps

• What are sound reasoning principles for such types?

Functional Programming Spring Semester, 2012

David Basin 35

Correctness for Algebraic Data Types

Let’s start first with some old friends

Functional Programming Spring Semester, 2012

David Basin 36

Natural numbers

• Theorem to prove ∀n ∈ N . P (n)

Base case: Show P (0).

Step case: Let n ∈ N be arbitrary. Assume P (n).

Show P (n+ 1).

• Alternative formulation as natural deduction proof rule

Γ ` P (0) Γ, P (n) ` P (n+ 1)
Γ ` ∀n ∈ N . P (n) n not free in Γ

• ∀n ∈ N . P (n) holds as P (0), P (1), P (2), . . .

Functional Programming Spring Semester, 2012

David Basin 37

Numbers as a data type

data Nat = Zero | Succ Nat
deriving (Eq, Ord, Show)

plus Zero y = y
plus (Succ x) y = Succ (plus x y) --- Normally built-in primitives

--- that use machine arithmetic!
times Zero _ = Zero
times (Succ x) y = plus (times x y) y

? plus (Succ Zero) (Succ Zero)
Succ (Succ Zero)

? times (Succ (Succ Zero)) (Succ (Succ Zero))
Succ (Succ (Succ (Succ Zero)))

? Succ Zero < Succ (Succ Zero) --- How does ghc compute this?
True

Functional Programming Spring Semester, 2012

David Basin 38

Induction over the natural numbers

Zero

Succ Zero

Succ (Succ Zero)

. . .

data Nat = Zero | Succ Nat

• Natural numbers are (isomorphic to) the set

Nat = {Zero,Succ Zero, Succ (Succ Zero), . . . }

• Data type provides two rules for constructing members of Nat

0) Zero ∈ Nat

1) Succ x ∈ Nat , if x ∈ Nat

• Elements added step by step

Functional Programming Spring Semester, 2012

David Basin 39

Structural induction
Zero

Succ Zero

Succ (Succ Zero)

. . .

data Nat = Zero | Succ Nat

• Induction over the structure of terms

Equivalent to induction over the individual steps

(also depth of terms)

Γ ` P (Zero) Γ, P (n) ` P (Succ n)
Γ ` ∀n ∈ Nat . P (n) n not free in Γ

• Sufficient to show P (Zero), P (Succ Zero), . . .

• We can prove theorems like

∀x ∈ Nat . plus x (plus y z) = plus (plus x y) z

Functional Programming Spring Semester, 2012

David Basin 40

Lists

data L t = Nil | Cons t (L t)

• Elements in L t are built in steps

0) {Nil}
1) {Cons a Nil ∈ L t | a ∈ t}
2) {Cons b (Cons a Nil) ∈ L t | a, b ∈ t}

...

• l ∈ L t iff l appears in some step of the construction

• Induction

Γ ` P (Nil) Γ, P (xs) ` P (Cons x xs)
Γ ` ∀xs ∈ L t. P (xs)

x, xs not free in Γ

i.e., we must prove (i) P (Nil) and (ii) P (Cons x xs) follows from

P (xs), for an arbitrary x ∈ t and xs ∈ L t.
Functional Programming Spring Semester, 2012

David Basin 41

Trees

data Tree t = Leaf | Node t (Tree t) (Tree t)

• Steps for constructing Tree t

0) {Leaf }
1) {Node a Leaf Leaf ∈ Tree t | a ∈ t}

...

i) Trees in step i are of form Node a l r, where a ∈ t and l and r have

been constructed in the previous steps.

• s ∈ Tree t iff s appears in some step of construction

• Induction

Γ ` P (Leaf) Γ, P (l), P (r) ` P (Node a l r)
Γ ` ∀x ∈ Tree t. P (x)

a, l, r not free in Γ

i.e., we must prove (i) P (Leaf) and (ii) P (Node a l r) follows from

P (l) and P (r), for an arbitrary a ∈ t and l, r ∈ Tree t.
Functional Programming Spring Semester, 2012

David Basin 42

Example of induction on trees

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

map f [] = []
map f (a:l) = f a : map f l

mapTree f Leaf = Leaf
mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1) (mapTree f t2)

treeFold f e Leaf = e
treeFold f e (Node x l r) = f x (treeFold f e l) (treeFold f e r)

inorder t = treeFold (\x l r -> l ++ [x] ++ r) [] t

Does the following hold?

∀s ∈ Tree t. map f (inorder s) = inorder (mapTree f s)

Functional Programming Spring Semester, 2012

David Basin 43

Auxiliary propositions

• Lemma: inorder Leaf = []

inorder Leaf = treeFold (λx l r. l ++ [x] ++ r) [] Leaf

= []

• Lemma: inorder (Node a l r) = inorder l ++ [a] ++ inorder r

Let f = λx l r. l ++ [x] ++ r. Then

inorder (Node a l r) = treeFold f [] (Node a l r)

= f a (treeFold f [] l) (treeFold f [] r)

= (treeFold f [] l)++ [a]++(treeFold f [] r)

= inorder l ++ [a] ++ inorder r

Functional Programming Spring Semester, 2012

David Basin 44

Auxiliary propositions (cont.)
• Lemma: map f (l ++ r) = (map f l) ++ (map f r)

Proof: Let P (l) ≡ map f (l ++ r) = (map f l) ++ (map f r).

We show ∀l ∈ [a]. P (l) by induction.

Base case: Show P ([]).

map f ([] ++ r) = map f r

= [] ++ (map f r)

= (map f []) ++ (map f r)

Step case: Let x ∈ a and l ∈ [a] be arbitrary. Assume P (l). Show P (x : l).

map f ((x : l) ++ r) = map f (x : (l ++ r))

= f x : map f (l ++ r)

= f x : ((map f l) ++ (map f r))

= (f x : map f l) ++ (map f r)

= (map f (x : l)) ++ (map f r)

Functional Programming Spring Semester, 2012

David Basin 45

Correctness proof

Lemma: ∀s ∈ Tree t. map f (inorder s) = inorder (mapTree f s)

Proof: Let P (s) ≡ map f (inorder s) = inorder (mapTree f s).

We show ∀s ∈ Tree t. P (s) by induction.

Base case: Show P (Leaf).

map f (inorder Leaf) = map f [] = [] = inorder Leaf = inorder (mapTree f Leaf)

Step case: Let a ∈ t and l, r ∈ Tree t be arbitrary.

Assume P (l) and P (r). Show P (Node a l r).

map f (inorder (Node a l r))

= map f (inorder l ++ [a] ++ inorder r)

= (map f (inorder l)) ++ (map f [a]) ++ (map f (inorder r))

= (map f (inorder l)) ++ [f a] ++ (map f (inorder r))

= (inorder (mapTree f l)) ++ [f a] ++ (inorder (mapTree f r))

= inorder (Node (f a) (mapTree f l) (mapTree f r))

= inorder (mapTree f (Node a l r))
Functional Programming Spring Semester, 2012

David Basin 46

Structural induction — general idea

• Induction based on structure of terms

data T t = Leaf t | Node1 (T t) | Node2 t (T t) (T t)

• What are the terms in Step 0?

{Leaf a | a ∈ t}

• How do we go from step i− 1 to step i?

{Node1 s | s ∈ Ti−1} ∪ {Node2 a s1 s2 | a ∈ t and s1, s2 ∈ Ti−1}

where Ti−1 contains the elements from the previous steps.

• Formalized as induction rule
Γ ` P (Leaf a) Γ, P (s) ` P (Node1 s) Γ, P (s1), P (s2) ` P (Node2 a s1 s2)

Γ ` ∀x ∈ T t. P (x)
(∗)

(*) a, s, s1, s2 not free in Γ

Functional Programming Spring Semester, 2012

David Basin 47

Conclusion — algebraic types

• Algebraic types improve possibilities for modeling

� No ambiguity: is “2000” a number or a year?

� Terms directly model objects

• General recursive types combine enumeration and product types

• Lists as example

� Recursive and polymorphic

� Many specialized functions can be written using general

recursive combinators

• Integrated with classes. Supports development in the large

• Induction is a fundamental reasoning principle

Functional Programming Spring Semester, 2012

