
Monads∗

David Basin

Department of Computer Science
ETH Zurich

∗Thanks to Christoph Sprenger and Simon Meier for slide material

Functional Programming

David Basin 1

Monads: What’s it all about?

• Model various computational features in a uniform way.

E.g. partiality, state, exceptions, non-determinism, I/O, ...

• Idea: separate values from computations producing the values:

f :: a → b ordinary function, returns value of type b

f :: a → M b monadic function, returns computation M b

• M is a type constructor satisfying certain properties (monad laws).

By varying M, we can model different notions of computation.

• Every monad supports two basic operations: embedding a value

into a computation and the composing computations.

• Explains side-effects in a functional context and helps designing

controlled side effects.

Functional Programming Spring Semester, 2012

David Basin 2

Outline

Part I – A gentle introduction to monads by examples

• Partial functions

• Monad type class and monad laws

• Input/output

• Stateful computations

Part II – Case study: monadic interpreters

• Standard and monadic interpreter for mini-Haskell

• Variant 1: improved error handling

• Variant 2: counting the number of evaluation steps

• Variant 3: non-deterministic computation

• Variant 4: tracing intermediate results

Functional Programming Spring Semester, 2012

David Basin 3

Motivation: partial functions

Functional Programming Spring Semester, 2012

David Basin 4

Example: partial functions

• Consider integer division:

10 ‘div‘ 2 = 5 -- OK
10 ‘div‘ 0 = .. -- exception
*** Exception: divide by zero

• This partiality can be captured with the Maybe type:

data Maybe a = Nothing | Just a

safeDiv :: Int -> Int -> Maybe Int
safeDiv n d
| d /= 0 = Just (n ‘div‘ d)
| otherwise = Nothing

• A similar construction makes head safe:

safeHead :: [a] -> Maybe a
safeHead [] = Nothing
safeHead (x:_) = Just x

Functional Programming Spring Semester, 2012

David Basin 5

Computing with Maybe’s

Suppose we are given two Int lists xs and ys.

We would like to safely compute “(head xs) ‘div‘ (head ys) + 1”.

Direct implementation Using some Haskell magic

foo1 :: [Int] -> [Int] -> Maybe Int
foo1 xs ys = case safeHead xs of
Just a -> case safeHead ys of
Just b -> case safeDiv a b of
Just c -> Just (c + 1)
Nothing -> Nothing

Nothing -> Nothing
Nothing -> Nothing

foo2 :: ..(same type)..
foo2 xs ys = do
a <- safeHead xs;
b <- safeHead ys;
c <- safeDiv a b;
return (c + 1)

Many case distinctions. To be explained here
Ugly and scales poorly. and now!

Functional Programming Spring Semester, 2012

David Basin 6

Composition is the magic

• Key observation is that we would like to compose partial functions.

maybe1; maybe2 ↪→ ?

• Possible interpretation:

Nothing; maybe2 ↪→ Nothing
maybe1; Nothing ↪→ Nothing
Just x1; Just x2 ↪→ Just x2

• We define maybe1; maybe2 by maybe1 ‘semi‘ maybe2 where

semi :: Maybe a -> Maybe b -> Maybe b
semi Nothing = Nothing
semi Nothing = Nothing
semi (Just x1) (Just x2) = Just x2

• Problem: the computation of x2 may depend on x1.

Functional Programming Spring Semester, 2012

David Basin 7

Composition with value bindings

• Second computation needs to bind result of first.

bind :: Maybe a -> (a -> Maybe b) -> Maybe b
bind Nothing _ = Nothing
bind (Just x1) f = f x1

• We also define a function embedding a value in the Maybe type:

return :: a -> Maybe a
return x = Just x

• Thus we can now write foo2 as

foo2 :: [Int] -> [Int] -> Maybe Int
foo2 xs ys =

safeHead xs ‘bind‘ (\a ->
safeHead ys ‘bind‘ (\b ->
safeDiv a b ‘bind‘ (\c ->
return (c + 1))))

Functional Programming Spring Semester, 2012

David Basin 8

The Monad type class

• The Monad typeclass abstractly specifies bind and return

class Monad m where
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b -- bind

• The type constructor Maybe instantiates this class.

instance Monad Maybe where
return x = Just x
Nothing >>= = Nothing
(Just x) >>= f = f x

• Hence our function foo2 becomes
foo2 xs ys = foo2’ xs ys = do

safeHead xs >>= (\a -> a <- safeHead xs
safeHead ys >>= (\b -> b <- safeHead ys
safeDiv a b >>= (\c -> c <- safeDiv a b
return (c + 1)))) return (c + 1)

The do-notation is just syntactic sugar to improve readability.

Functional Programming Spring Semester, 2012

David Basin 9

The monad laws

• Monads are mathematical objects with additional properties.

• The monad operations must satisfy the following laws.

(1) return x >>= f = f x (left unit)
(2) m >>= return = m (right unit)
(3) (m >>= f) >>= g = m >>= (\x -> (f x >>= g)) (associativity)

These laws enable equational reasoning about monadic programs.

• Exercise: check that these laws hold for the Maybe monad.

Also check this for all other monads in this lecture.

Functional Programming Spring Semester, 2012

David Basin 10

The monad type class – The full story
Two additional ingredients

class Monad m where

-- return and bind are the mathematical core
return :: a -> m a
(>>=) :: m a -> (a -> m b) -> m b

-- shortcut for convenience; when second computation
-- does not dependent on result of first one
(>>) :: m a -> m b -> m b
m1 >> m2 = m1 >>= (\ -> m2)

-- not part of mathematical concept of a monad
-- called on pattern matching errors in do-notation
fail :: String -> m a

Functional Programming Spring Semester, 2012

David Basin 11

Input/Output

Functional Programming Spring Semester, 2012

David Basin 12

Why is IO problematic?

• How would we write a program like the following in Haskell?

void main () {
char name[20];
printf ("Hi, I am HAL. Who are you?");
scanf ("%19s", name);
printf ("Hello %s!", name);

}

• Assume there would be functions like inputInt :: Int in Haskell

� What is the value of inputInt - inputInt?

� Equational reasoning would no longer be sound

� Result depends on order in which the arguments are evaluated

• This function is not side-effect free! So which state changes?

Functional Programming Spring Semester, 2012

David Basin 13

The IO type constructor

• Haskell uses a monad to distinguish between pure expressions and

expressions that interact with The World.

IO a type of computations performing I/O operations

and returning a value of type a

• Examples:

inputInt :: IO Int
inputString :: IO String
outputInt :: Int -> IO () -- () is the unit type in Haskell

• You can think of IO a as the Haskell type

data IO a = InOut (TheWorld -> (a, TheWorld))

Functional Programming Spring Semester, 2012

David Basin 14

Basic actions

• Haskell (see Prelude.hs) provides IO primitives

� getChar :: IO Char

The action getChar reads a character from the keyboard,

echoes it to the screen, and returns the character as its result

value.

� putChar :: Char -> IO ()

The action putChar c writes the character c to the screen and

returns no result value.

� return :: a -> IO a

The action return v simply returns the value v, without

performing any interaction.

• . . . and many others (reading & writing files, etc.)

Functional Programming Spring Semester, 2012

David Basin 15

Sequencing

• The order of the actions matters

read2 = do c1 <- getChar read2’ = do c2 <- getChar
c2 <- getChar c1 <- getChar
return (c1:c2:[]) return (c1:c2:[])

What is the type of read2?

• Previous lecture: order of applying parsers also matters

pexpr = do token "(" pexpr’ = do token "("
e <- expr token ")"
token ")" e <- expr
return e return e

• The IO type constructor cannot be “opened”. Hence, any

function doing I/O will have range IO a for some type a.

• For example, inputInt - inputInt is incorrect. Why?

Functional Programming Spring Semester, 2012

David Basin 16

IO examples

• Printing a string on the screen:

putString :: String -> IO ()
putString "" = return ()
putString (x:xs) = do putChar x; putString xs

• Reading a string from the keyboard:

getString :: IO String
getString = do c <- getChar

if c == ’\n’
then return ""
else do cs <- getString

return (c:cs)

• A “hello world” program in Haskell:

main :: IO ()
main = do putString "Hi, I am HAL. Who are you?\n"

name <- getString
putString ("Hello " ++ name ++ "!\n")

Functional Programming Spring Semester, 2012

David Basin 17

Stateful computation

Functional Programming Spring Semester, 2012

David Basin 18

Example: renaming of tree nodes

• We want to consistently rename tree nodes in preorder fashion.

• New names are given as a list that is assumed to be long enough.

• Idea: Use an accumulator to keep track of two things: the list of

remaining names and a table of current name translations.

�

� �

��

�

�

� �

� �

� �

��

�

�

� �

�

������ �����

��

�����������������������

��������������� �����������������������������
���

��

Functional Programming Spring Semester, 2012

David Basin 19

Implementation of tree node renaming

The type of accumulator (names, table) is ([b],[(a,b)]).

rename :: Eq a => [b] -> Tree a -> Tree b
rename names = fst . go (names, [])

go :: Eq a => ([b],[(a,b)]) -> Tree a -> (Tree b, ([b],[(a,b)]))
go state Leaf = (Leaf, state)
go (names, table) (Node x l r) =
case lookup x table of
Nothing -> let x’ = head names

state’ = (tail names, (x, x’):table)
(l’, state’’) = go state’ l
(r’, state’’’) = go state’’ r

in (Node x’ l’ r’, state’’’)

Just x’ -> let (l’, state’) = go state l
(r’, state’’) = go state’ r

in (Node x’ l’ r’, state’’)

Ugly plumbing needed to thread state through two recursive calls.
Functional Programming Spring Semester, 2012

David Basin 20

Constructing the state monad

Type constructor for stateful computations

data State s a = State (s -> (a, s))

Idea: computation takes a state of type s and transforms it into a

result of type a and a successor state of type s.

State access read current value of state without changing it

get :: State s s
get = State (\s -> (s, s))

State update write a new state value, ignoring the current state

put :: s -> State s ()
put t = State (\s -> ((), t))

Functional Programming Spring Semester, 2012

David Basin 21

Return and bind

Run is an auxiliary function that opens the monad and runs the

computation from the initial state s0

runState :: (State s a) -> (s -> (a, s))
runState (State m) s0 = m s0

Return embeds a value into a stateful computation

return :: a -> State s a
return x = State (\s -> (x, s))

Bind composes two stateful computations with value binding

(>>=) :: State s a -> (a -> State s b) -> State s b
m >>= k = State (\s -> let (x, t) = runState m s

in runState (k x) t)

Note: The operator (>>) defined as m1 >> m2 = m1 >>= (_ -> m2) is
essentially the sequential composition (;) in imperative programming languages.

Functional Programming Spring Semester, 2012

David Basin 22

Understanding the state monad

x := x + 1 in state monad Stepwise evaluation of tick

tick :: State Int ()
tick = do
x <- get
put (x + 1)

with explicit binding

tick :: State Int ()
tick =
get >>= (\x->
put (x + 1))

tick

↪→ State (\s ->
let (x, t) = runState get s
in runState (put (x + 1)) t

)

↪→ State (\s ->
let (x, t) = (\s -> (s, s)) s
in (\s -> ((), x + 1)) t

)

↪→ State (\s -> ((), s + 1))

• The state monad encapsulates program composition.

• To run the program: invoke runState tick s0 where s0 is some

initial state.

Functional Programming Spring Semester, 2012

David Basin 23

Tree renaming using the state monad

rename :: Eq a => [b] -> Tree a -> Tree b
rename names t = fst $ runState (renameTree t) (names, [])

renameTree :: Eq a => Tree a -> State ([b],[(a,b)]) (Tree b)
renameTree Leaf = return Leaf
renameTree (Node x l r) = do
(names, table) <- get
case lookup x table of
Nothing -> do
let x’ = head names
put (tail names, (x, x’):table)
l’ <- renameTree l
r’ <- renameTree r
return (Node x’ l’ r’)

Just x’ -> do
l’ <- renameTree l
r’ <- renameTree r
return (Node x’ l’ r’)

The state monad takes care of all the plumbing!
Functional Programming Spring Semester, 2012

David Basin 24

Tree renaming the way you want it

• Renaming can be made a bliss ...

renameTree’ :: Eq a => Tree a -> State ([b],[(a,b)]) (Tree b)
renameTree’ Leaf = return Leaf
renameTree’ (Node x l r) = do
x’ <- translate x
l’ <- renameTree’ l
r’ <- renameTree’ r
return (Node x’ l’ r’)

• ... by abstracting the pattern of looking up a translation

translate :: Eq a => a -> State ([b],[(a,b)]) b
translate x = do
(names, table) <- get
case lookup x table of
Nothing -> do
let x’ = head names
put (tail names, (x, x’):table)
return x’

Just x’ -> do
return x’

Functional Programming Spring Semester, 2012

David Basin 25

Summary (Part I)

• Monads are a powerful concept which helps understanding and

modeling computations with side effects.

• Contrary to imperative languages, where side effects are the rule,

monads promote the use of side effects in a controlled way (you

usually have a good reason to use a monad).

• Construct, combine, and use monads that exactly fit the structure

of your problem (fine-grained control of side effects).

• New monads can model computational effects that are not present

in imperative languages (e.g., non-determinism, continuations)

• Monadic computations are first-class values that can be composed

as needed.

Functional Programming Spring Semester, 2012

David Basin 26

Case study: Monadic Interpreters

Functional Programming Spring Semester, 2012

David Basin 27

Language: A variant of mini-Haskell

• Language we consider here:

Term ::= Identifier | Number |
λx.Term | Term Term | Term + Term

This core language could be extended with other arithmetic operations,
predicates, if-then-else, recursion, ...

• Data types for syntax:

type Name = String
data Term = Var Name

| Lit Int
| Lam Name Term
| App Term Term
| Add Term Term

• Only consider evaluation, for parsing see previous module.

Functional Programming Spring Semester, 2012

David Basin 28

Standard and Monadic Interpreters

Standard Interpreters Monadic interpreters

Value (:: Value)

Read

Evaluate

Print

Text

Lexical Analysis

Parsing

Abstract Syntax Tree (:: Term)

Semantic Interpretation

Pretty Print Output

Text

Value computation (:: M Value)

Read

Evaluate

Print

Text

Lexical Analysis

Parsing

Abstract Syntax Tree (:: Term)

Semantic Interpretation

Pretty Print Output

Text

- for calculuator in previous lecture: Value = Int ;

- for λ-calculus interpreter: Value = Term.

Functional Programming Spring Semester, 2012

David Basin 29

Standard interpreter

• Comparison with λ-interpreter from previous lecture:

� eager evaluation: evaluate function arguments and under λ’s

� evaluate only closed terms, as is usual in programming

� use Haskell’s substitution instead of implementing it ourselves

• Output: structured type of values

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value -> Value) -- closure

Error + λ-abstractions evaluate to closures.

• An environment binds free variables to values

type Environment = [(Name, Value)]

Functional Programming Spring Semester, 2012

David Basin 30

Auxiliary functions

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value -> Value) -- closure

type Environment = [(Name, Value)]

lookup :: Name -> Environment -> Value
lookup x [] = Wrong
lookup x ((y, v):es) = if x == y then v else lookup x es

add :: Value -> Value -> Value
add (Num x) (Num y) = Num (x + y)
add _ _ = Wrong

apply :: Value -> Value -> Value
apply (Fun k) a = k a
apply _ _ = Wrong

Functional Programming Spring Semester, 2012

David Basin 31

Standard Evaluation

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value -> Value) -- closure

type Environment = [(Name, Value)]

eval :: Term -> Environment -> Value
eval (Var v) e = lookup v e
eval (Lit x) e = Num x
eval (Lam x t) e = Fun (\a -> eval t ((x, a):e))
eval (App t u) e = apply (eval t e) (eval u e)
eval (Add t u) e = add (eval t e) (eval u e)

run :: Term -> Value
run t = eval t []

instance Show Value where
show Wrong = "<wrong>"
show (Num i) = show i
show (Fun _) = "<function>"

Functional Programming Spring Semester, 2012

David Basin 32

Standard interpreter – Examples

• Consider the terms (in abstract syntax)

t0 = (λx. x+ x) (10 + 11) ↪→ 42
t1 = (λx. x) + 12 ↪→ error
t2 = λx. x+ 1 ↪→ function

• In concrete syntax:

t0 = App (Lam "x" (Add (Var "x") (Var "x"))) (Add (Lit 10) (Lit 11))
t1 = Add (Lam "x" (Var "x")) (Lit 10)
t2 = Lam "x" (Add (Var "x")) (Lit 1)

• Evaluation in ghci:

*Main> run t0
42

*Main> run t1
<wrong>

*Main> run t2
<function>

Functional Programming Spring Semester, 2012

David Basin 33

Example: (λx.x)(1 + 2)
run (App (Lam "x" (Var "x")) (Add (Lit 1) (Lit 2)))

= eval (App (Lam "x" (Var "x")) (Add (Lit 1) (Lit 2))) []

= apply (eval (Lam "x" (Var "x")) []) (eval (Add (Lit 1) (Lit 2)) [])

= apply (Fun (\a -> eval (Var "x") [(x,a)])
(add (eval (Lit 1)[]) (eval (Lit 2) []))

= (\a -> eval (Var "x") [("x",a)]) (add (Num 1) (Num 2))

= eval (Var "x") [("x",(add (Num 1) (Num 2)))]

= lookup "x" [("x",(add (Num 1) (Num 2)))]

= add (Num 1) (Num 2)

= Num 3

N.B. Multiple reductions compressed.

Result Num 3 is output (with show) as 3.
Functional Programming Spring Semester, 2012

David Basin 34

Monadic interpreter – Ideas

• Replace all functions with result type Value by functions with

monadic result type M Value

• Values and function signatures:

data Value = Wrong -- error
| Num Int -- integer
| Fun (Value → M Value) -- closure

eval :: Term → Environment → M Value
run :: Term → M Value

lookup :: Name → Environment → M Value
apply, add :: Value → Value → M Value

• Win: By varying the definition of the monad M, we obtain

different computational effects. (Different defs. upcoming!)

Functional Programming Spring Semester, 2012

David Basin 35

Monadic interpreter – Auxiliary functions

data Value = Wrong
| Num Int
| Fun (Value -> M Value)

type Environment = [(Name, Value)]

lookup :: Name -> Environment -> M Value
lookup x [] = return Wrong
lookup x ((y, v):es) = if x == y then return v else lookup x es

apply :: Value -> Value -> M Value
apply (Fun k) a = k a
apply = return Wrong

add :: Value -> Value -> M Value
add (Num x) (Num y) = return (Num (x + y))
add = return Wrong

instance Show (M Value) =
show m = ... -- depends on monad M

Functional Programming Spring Semester, 2012

David Basin 36

Monadic interpreter – Evaluation

data Value = Wrong
| Num Int
| Fun (Value -> M Value)

type Environment = [(Name, Value)]

eval :: Term -> Environment -> M Value
eval (Var v) e = lookup v e
eval (Lit x) e = return (Num x)
eval (Lam x t) e = return (Fun (\a -> eval t ((x, a):e)))
eval (App t u) e = do f <- eval t e

a <- eval u e
apply f a

eval (Add t u) e = do a <- eval t e
b <- eval u e
add a b

run :: Term -> M Value
run t = eval t []

Functional Programming Spring Semester, 2012

David Basin 37

Monadic interpreter – Instances

• Recall: by varying the monad M we obtain interpreters with

different computational effects.

• We consider the following instances of the monad M:

� Identity monad: recover standard interpreter

� Exception monad: improved error handling

� State monad: count number of evaluation steps

� Nondeterministic monad: compute with choices

� Output monad: output intermediate results

• Abstraction is main benefit of using monads: Only small changes

are necessary in each case, basic structure remains the same.

Functional Programming Spring Semester, 2012

David Basin 38

Identity monad: Standard interpreter

• The identity monad:

data Id a = Id a

instance Monad Id where
return x = Id x -- identity function
(Id m) >>= k = k m -- function application

• For example, forgetting about the constructor Id, the clauses

eval (Lit i) e = return (Num i)
eval (App t u) e = eval t e >>= (\f ->

eval u e >>= (\a ->
apply f a))

simplify to

eval (Lit i) e = Num i
eval (App t u) e = apply (eval t e) (eval u e)

Functional Programming Spring Semester, 2012

David Basin 39

Improving error handling

• Current solution has a only single error message: <wrong>

• First attempt to improve situation (in standard interpreter):

data Value = Wrong String
| Num Int
| Fun (Value -> Value)

• Specify source of error as argument to Wrong:

lookup x [] = Wrong ("Unbound variable: " ++ x)
apply v = Wrong ("Not a function: " ++ show v)
add v w = Wrong ("Not a number: " ++ show v

++ " or " ++ show w)

• Does not behave as intended:

*Main> run (App (Var "x") (Lit 10))
Not a function: Unbound variable: x

Functional Programming Spring Semester, 2012

David Basin 40

Exception Monad

• Type constructor and basic monad operations:

data Exc a = Success a
| Exception String

instance Monad Exc where
return x = Success x
(Success a) >>= k = k a -- on success: continue
(Exception e) >>= k = Exception e -- on exception: abort

• Monad-specific operations: throw and catch exceptions

throw :: String -> Exc a
throw e = Exception e -- raise exception

catch :: Exc a -> (a -> Exc a) -> Exc a
catch (Success a) h = (Success a) -- normal execution
catch (Exception e) h = h e -- call exception handler

• Straightforward function show shows value or exception.

Functional Programming Spring Semester, 2012

David Basin 41

Adapting the interpreter

• Modification of data structures and interpreter

data Value = Num Int -- removed: Wrong
| Fun (Value → ExcM Value)

lookup x [] = throw ("Unbound variable: "++x)
apply v = throw ("Not a function: "++show v)
add v w = throw ("Not a number: "++show v++" or "++show w)

• Examples: (using abstract syntax)

*Main> run (λx. x+ x) (10 + 11)
42

*Main> run (x 10)
Unbound variable: x

*Main> run (λx. x) + 10
Not a number: <function> or 10

*Main> run 99 (λx. x)
Not a function: 99

Functional Programming Spring Semester, 2012

David Basin 42

State monad: Counting evaluation steps

• The state monad (as seen before):

data State s a = State (s -> (a, s))

instance Monad (State s) where
return x = State (\s -> (x, s))
m >>= k = State (\s -> let (a, t) = runState m s

in runState (k a) t)

• Monad-specific operations for state manipulation:

get :: State s s
get = State (\s -> (s, s)) -- read

put :: s -> State s ()
put t = State (\s -> ((), t)) -- update

• Specific to application: step counting

tick :: State Int ()
tick = do s <- get; put (s + 1) -- increment counter

Functional Programming Spring Semester, 2012

David Basin 43

Adapting the interpreter

• We add tick’s to addition (and similarly to application):

eval (Add t u) e = do a <- eval t e
b <- eval u e
r <- add a b
tick -- count addition
return r

• The show function runs the monad with counter initialized to 0.

instance Show (State Int Value) where
show m = let (a, c) = runState m 0

in "Value: " ++ show a ++ "; " ++
"Count: " ++ show c ++ "."

• Examples:

*Main> run (λx. x+ x) (10 + 11)
Value 42; Count 3.

*Main> run (λx. x+ 1) ((λx. x+ x) (10 + 11))
Value 43; Count 5.

Functional Programming Spring Semester, 2012

David Basin 44

Nondeterministic monad: Allowing choices

• The nondeterministic monad (aka list monad):

data Alt a = Alt [a]

runAlt :: Alt a -> [a]
runAlt (Alt l) = l

instance Monad Alt where
return a = Alt [a]
m >>= k = Alt [b | a <- runAlt m, b <- runAlt (k a)]

Idea: computation may produce several possible results.

• We also need the following monad-specific operations.

failure :: Alt a
failure = Alt []

choice :: Alt a -> Alt a -> Alt a
choice xs ys = Alt (runAlt xs ++ runAlt ys)

Functional Programming Spring Semester, 2012

David Basin 45

Adapting the interpreter

• Extend the term language with failure and choice operations:

data Term = ...
| Fail -- written ⊥ below
| Or Term Term -- (Or t u) written t | u below

• The interpreter is extended as follows:

eval Fail e = failure
eval (Or t u) e = eval t e ‘choice‘ eval u e

• Examples:

*Main> run ((λx. x+ x) (10 + 11))
[42]

*Main> run ((λx y. x+ x+ y) (10 | 20) (1 | 5))
[21,25,41,45]

*Main> run ((7 | 10) +⊥)
[]

Functional Programming Spring Semester, 2012

David Basin 46

Output Monad: Tracing intermediate results

• Output monad chains computations and concatenates output:
data Out a = Out (a, String)

runOut :: Out a -> (a, String)
runOut (Out x) = x

instance Monad Out where
return x = (x, "")
m >>= k = let (a, r) = runOut m; (b, s) = runOut k a

in Out (b, r ++ s)

• Monad-specific output function:
out :: Show a => a -> OutM ()
out a = ((), show a ++ "; ")

• Show monad value:
instance Show a => Show (OutM a) where
show (Out (a, s)) = "Output: " ++ s ++

"Value: " ++ show a
Functional Programming Spring Semester, 2012

David Basin 47

Adapting the interpreter for output tracing

• Extend the term language with a Show operation:

Term = ...
| Show Term -- Show t written #t below

• Extension of the interpreter:

eval (Show t) e = do r <- eval t e -- evaluate t
out r -- display its value
return r -- and return it

• Examples:

*Main> run ((λx. x+ x) #(10 + 11))
Output: 21; Value: 42

*Main> run (#(#(1 + 2) + 3) + 4)
Output: 3; 6; Value: 10

*Main> run (1 + #(2 +#(3 + 4)))
Output: 7; 9; Value: 10

Functional Programming Spring Semester, 2012

David Basin 48

A zoo of monads

Monad Type constructor

Partiality Maybe a = Nothing

| Just a

Exceptions Exc e a = Exception e

| Success a

State State s a = State (s -> (a, s))

Input/Output IO a =

(*) InOut (TheWorld-> (a, TheWorld))

Nondeterminism Alt a = Alt [a]

Output Out a = Out (a,String)

Parsers Parser a =

Parser (String -> [(a, String)])

(*) The definition of the Haskell IO monad is a conceptual one.
Functional Programming Spring Semester, 2012

David Basin 49

Conclusions

Summary Using monads we can ...

• write functional programs with a variety of controlled side

effects in a uniform, abstract, and flexible way

• obtain a deeper understanding of the meaning of side effects

Combining monads

• Q: How can I model language AFX (All Fancy effeXts)?

• A: Use monad transformers to modularly combine monads.

E.g., the parser monad is a non-deterministic state monad, we

can also define state-exception monads, etc.

Reasoning about monads two possibilities:

• equational reasoning using definitions of monadic functions and

monad laws (verify these for any monads you may invent), or

• pre-/post-condition reasoning using a monadic Hoare logic
Functional Programming Spring Semester, 2012

David Basin 50

Bibliography

• Monad tutorials recommended at http:

//www.haskell.org/haskellwiki/Tutorials#Using_monads

• Philip Wadler, The essence of functional programming, POPL 92,

1992. [Nice series of interpreters with monadic effects.]

• Sheng Liang, Paul Hudak, and Mark Jones, Monad transformers

and modular interpreters, POPL 95, 1995. [Series of interpreters

obtained in a modular fashion using monad transformers. This

goes beyond this course, but is very readable.]

• Nick Benton, John Hughes, and Eugenio Moggi, Monads and

Effects, 2002. [Covers both theoretical aspects and programming.]

Functional Programming Spring Semester, 2012

http://www.haskell.org/haskellwiki/Tutorials#Using_monads
http://www.haskell.org/haskellwiki/Tutorials#Using_monads

