
Correctness

David Basin

Department of Computer Science
ETH Zurich

Functional Programming



David Basin 1

Correctness

• Correctness is important! What does your program compute?

• What does this mean? What properties should hold?

� Termination: Important for many, but not all, programs.

Examples?

� Functional behavior: function should return “correct” value.

Can be defined by another (mathematically defined) function or

an input-output relation.

• Correctness is often not obvious.

It must be proven!

Functional Programming Spring Semester, 2012



David Basin 2

Correctness (example)

• The factorial function can be written as

fac 0 = 1
fac n = n * fac (n-1)

or as

fac2 (0,a) = a
fac2 (n,a) = fac2 (n-1,n*a)

• Do these functions terminate?

fac 3 ; 3 ∗ fac 2 ; 3 ∗ 2 ∗ fac 1 ; 3 ∗ 2 ∗ 1 ∗ 1 ; 6

fac2 (3, 1) ; fac2 (2, 3 ∗ 1) ; fac2 (1, 2 ∗ 3 ∗ 1) ;
fac2 (0, 1 ∗ 2 ∗ 3 ∗ 1) ; 1 ∗ 2 ∗ 3 ∗ 1 ; 6

• Are fac n and fac2 n 1 equivalent?

Functional Programming Spring Semester, 2012



David Basin 3

Termination

• If f is defined in terms of functions g1, . . . , gk (gi 6= f), and each

gi terminates, then so does f .

g x = x * x + 15
f x = (g x + x + 2) / 13

• Problem is recursion, e.g., fac n, for n > 0

• Sufficient condition for termination: Arguments are smaller along

a well-founded order on function’s domain.

� An order > on a set S is well-founded iff there is no infinite

decreasing chain x1 > x2 > x3 > . . ., for xi ∈ S.

� Example: >N . Counter examples: >Z, >R.

Here we write >S to denote the set S, where >S ⊆ S × S

Functional Programming Spring Semester, 2012



David Basin 4

An aside on well-founded relations

• How do we construct new relations from old?

• Let R1 and R2 be binary relations on a set S. The composition of

R1 and R2 is defined as

R2 ◦R1 ≡ {(a, c) ∈ S × S | ∃b ∈ S. (a, b) ∈ R1 ∧ (b, c) ∈ R2}

• Let R ⊆ S × S. Define:

R1 ≡ R

Rn+1 ≡ R ◦Rn for n ≥ 1

R+ ≡ ∪n≥1Rn

Functional Programming Spring Semester, 2012



David Basin 5

Well-founded relations (cont.)

• Lemma: Let R ⊆ S × S. Let s0, si ∈ S and i ≥ 1. Then s0R
isi

iff there are s1, . . . , si−1 ∈ S such that s0 R s1 R . . . R si−1 R si.

� Proof: induction on i (easy exercise).

• Theorem: If > is a well-founded order on the set S, then >+ is

also well-founded on S.

Proof. Assume that

a1 >
+ a2 >

+ a3 >
+ . . .

is an infinite descending chain. Then, there exist ij ≥ 1 such that

aj >
ij aj+1, for all j ≥ 1. By the above lemma, the sequence

a1 >
i1 a2 >

i2 a3 >
i3 . . .

contradicts the well-foundedness of >.
Functional Programming Spring Semester, 2012



David Basin 6

Termination: examples

fac 0 = 1 fac2 (0,a) = a
fac n = n * fac (n-1) fac2 (n,a) = fac2 (n-1,n*a)

• Factorial function fac

� fac n has only fac (n− 1) as recursive call and n > n− 1.

� Here > is the standard ordering over the natural numbers.

• Function fac2

� fac2 (n, a) has only fac2 (n− 1, n ∗ a) as a recursive call.

� The first argument is always smaller under >.

• Do fac and fac2 terminate when n < 0?

Functional Programming Spring Semester, 2012



David Basin 7

Termination (cont.)

Do the following functions terminate?

f(0) = 0
f(1) = 1
f(n) = f(n-1) + f(n-2)

g(0) = 1
g(1) = 1
g(n) = g(n+1) + g(n-2)

h(0,y) = y
h(x,y) = h(x-1,y+1)

What do they actually compute?

Functional Programming Spring Semester, 2012



David Basin 8

Correctness — behavior

• Do fac and fac2 compute the same function in following sense?

∀n ∈ Nat . fac n = fac2 (n, 1)

• Testing sufficient to find errors

fac 0 = 1 = fac2 (0, 1)

fac 1 = 1 = fac2 (1, 1)

fac 2 = 2 = fac2 (2, 1)

• Correctness requires a formal proof!

Functional Programming Spring Semester, 2012



David Basin 9

Correctness — equational reasoning

• Proofs based on simple idea: functions are equations

swap :: (Int,Int) -> (Int,Int)
swap (a,b) = (b,a)

Meaning: For all possible values of a and b:

swap (a, b) = (b, a)

More formally:

∀a ∈ Int . ∀b ∈ Int . swap(a, b) = (b, a)

• Some properties can be shown through equational reasoning.

E.g., swap (swap (a, b)) = (a, b). Proof?

• More generally: proofs in first-order logic with equality.

Functional Programming Spring Semester, 2012



David Basin 10

Correctness — reasoning by cases

maxi :: Int -> Int -> Int
maxi n m

| n >= m = n
| otherwise = m

Can we prove that maxi n m ≥ n?

We have n ≥ m ∨ ¬(n ≥ m)

Now show maxi n m ≥ n for both cases

Case 1: n ≥ m,

then maxi n m = n and n ≥ n

Case 2: ¬(n ≥ m),

then maxi n m = m. But m > n, so maxi n m ≥ n

Functional Programming Spring Semester, 2012



David Basin 11

Correctness (cont.)

The previous proof used two inference rules:

Excluded Middle: For all propositions P :

P ∨ ¬P

Case split: Given Q ∨R,

to prove any P , we must prove:

1. P follows from Q and

2. P follows from R

Compare with ND-rules (∨-elimination)

Functional Programming Spring Semester, 2012



David Basin 12

Proof by induction

• Suppose you wish to prove a formula P (n), for all n ∈ Nat

∀n ∈ Nat. 0 + 1 + 2 + ...+ n = n · (n+ 1)/2

• Proof by cases not possible here: P (0), P (1), P (2), P (3), . . .

• Domino principle: prove P (0) and, for every n ∈ Nat , P (n+ 1)

follows from P (n)

• Induction proof rule: To prove ∀n ∈ Nat . P (n)

Base case: Prove P (0)

Step case: For an arbitrary n, prove P (n+ 1) under the

assumption P (n).

• Exercise: formulate rule ND style and prove example in FOL.

Functional Programming Spring Semester, 2012



David Basin 13

Induction as the dual of recursion

fac 0 = 1
fac n = n * fac (n-1)

1. Base case, like in induction

2. Step case

• States how to compute fac n, given value for fac (n− 1).

• Corresponds to proving P (n) follows from P (n− 1), for n > 0

or equivalently: proving P (n+ 1) follows from P (n), for n ≥ 0

3. Correspondence can be precisely formulated

Induction is not more complicated or more circular than
(terminating) recursive definitions!

Functional Programming Spring Semester, 2012



David Basin 14

Example: powers

power2 :: Int -> Int -- computes 2^r as 2 * 2 * ... * 1
power2 0 = 1
power2 r = 2 * power2 (r-1)

sumPowers :: Int -> Int -- computes 1 + 2 + 4 + ... + 2^r
sumPowers 0 = 1
sumPowers r = sumPowers (r-1) + power2 r

Examples:

sumPowers 3 = 15

power2 4 = 24 = 16

sumPowers 5 = 63

power2 6 = 26 = 64

How are these functions related?

Functional Programming Spring Semester, 2012



David Basin 15

Powers

• Conjecture: ∀n ∈ Nat . (sumPowers n) + 1 = power2 (n+ 1)

• Proof: Let P (n) ≡ (sumPowers n) + 1 = power2 (n+ 1).

We show for ∀n. P (n) by induction on n.

Base case: Show P (0)

(sumPowers 0) + 1 = 1 + 1 = 2

and

power2 (0 + 1) = 2 · power2 0 = 2 · 1 = 2

Step case: Assume P (n) for an arbitrary n, i.e.,

(sumPowers n) + 1 = power2 (n+ 1)

and prove P (n+ 1)

(sumPowers (n+ 1)) + 1 = power2 (n+ 2)
Functional Programming Spring Semester, 2012



David Basin 16

Powers proof (cont.)

(sumPowers (n+ 1)) + 1 = sumPowers ((n+ 1)− 1) + power2 (n+ 1) + 1 (def.)

= sumPowers (n) + 1 + power2 (n+ 1) (arithmetic)

= power2 (n+ 1) + power2 (n+ 1) (ind. hypothesis)

= 2 · power2 (n+ 1) (arithmetic)

= power2 (n+ 2) (def.)

• We have proven (sumPowers n) + 1 = power2 (n+ 1)

Equivalently: sumPowers n = (power2 (n+ 1))− 1

• Equation above yields a better definition of sumPowers:

� power2: O(n) iterations

� sumPowers = O(n) iterations + with each iteration a call to

power2. Overall: O(n2) calls of power2.

Functional Programming Spring Semester, 2012



David Basin 17

Noetherian induction

• Induction schema

Induction: To prove P (n), for all natural numbers n.

To prove: P (n) for an arbitrary n under the assumption that

P (m) holds, for all m < n

• In general, we can use any well-founded ordering <.

Here, the transitive closure of the predecessor relation on Nat

• Same principle applies to any set, not just Nat .

Functional Programming Spring Semester, 2012



David Basin 18

Deriving 1-step (structural, weak) induction from
Noetherian induction

To derive 1-step induction we must derive P (n) for an arbitrary n ∈ Nat , from

the assumptions

P (0) (1)

∀n ∈ Nat .P (n)→ P (n+ 1) (2)

By Noetherian induction, we may assume that

∀m ∈ Nat . (m < n)→ P (m) (3)

We establish P (n) by a case split on n = 0 ∨ n > 0.

Case 1: n = 0, and P (0) follows from (1).

Case 2: n > 0, so n = k + 1 for some k ∈ Nat , i.e., we must prove P (k + 1).

By (3), k < k + 1→ P (k). Hence P (k) holds and P (k + 1) follows from (2).

Functional Programming Spring Semester, 2012


