
Lists and Abstraction

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

List type

• Types we have seen

� Basis types: Int, Char, Bool, . . .

� Type constructors: (T1, . . . , Tk)

• List types, a new type constructor

If T is a type, then [T] is a type

• Elements of [T]

� Empty list [] :: [T]

� If x :: T and xs :: [T], then (x : xs) :: [T]

• Short hand: 1 : (2 : (3 : [])) written as [1, 2, 3]

Functional Programming Spring Semester, 2012

David Basin 2

Examples and notation
? [’a’,’a’,’b’] :: [Char]
"aab" :: [Char]

? [’a’,’a’,’b’] == "aab"
True

Haskell supports various abbreviations

? [3..6]
[3, 4, 5, 6] :: [Int]

? [6..3]
[] :: [Int]

[n, p..m] means count from n to m in steps of p− n
? [7,6..3]
[7, 6, 5, 4, 3] :: [Int]

? [0.0, 0.3 .. 1.0]
[0.0, 0.3, 0.6, 0.9] :: [Double]

Functional Programming Spring Semester, 2012

David Basin 3

Functions on lists — sumList

• Function sumList :: [Int] -> Int must specify:

� how to compute with the empty list []

� how to compute with the non-empty list (x : xs)

• Computation

Empty list [] : 0

Non-empty list (x : xs) : x + sum of list xs

sumList [] = 0
sumList (x:xs) = x + sumList xs

? sumList [1..100] -- 100 * 101 / 2
5050 :: Int

Functional Programming Spring Semester, 2012

David Basin 4

Standard functions on lists
• length

length [] = 0
length (x:xs) = 1 + length xs

• append (not only for strings!)

[] ++ ys = ys
(x:xs) ++ ys = x:(xs++ys)

N.B.: (++) and (:) have different types!

? [2] ++ [3,4,5] == [2,3,4,5]
True

? 2 : [3,4,5] == [2,3,4,5]
True

? [2] : [3,4,5]
... Error ...

Functional Programming Spring Semester, 2012

David Basin 5

Patterns (lists and in general)

• Pattern matching has two purposes

� checks if an argument has the proper form

� binds values to variables

• Example: (x : xs) matches with [2, 3, 4] (= 2 : 3 : 4 : [] = 2 : [3, 4])

x = 2

xs = [3, 4]

• Another example (pattern matching during let-binding)

? let ([x,y,z],t) = ([1,2,3],(20,30)) in x + y
3 :: Int

? let ([x,y,z],t) = ([1,2,3,4],(20,30)) in x + y
Pattern match fails...

Functional Programming Spring Semester, 2012

David Basin 6

Patterns — details

• Patterns are inductively defined (additional constructors later)

Constants: −2, ′1′, True, []

Variables: x, foo

Wild card:
Tuples: (p1, p2, . . . , pk), where pi are patterns

Lists: (p1 : p2), where pi are patterns

• Moreover, patterns required to be linear.

This means that each variable can occur at most once

• Examples: [(x, foo),], ((x, y),), and 1 : (2 : (x, y))

• Counterexamples: (x ++ y, z) and [x, y, z, x]

Functional Programming Spring Semester, 2012

David Basin 7

Pattern matching

• Define pattern p matches term a by recursion on p.

Constant p = c: succeeds if c = a

Variable p = x: succeeds and with binding x = a

Wild card p = : succeeds but no binding

Tuple p = (p1, . . . , pk): succeeds if a = (a1, . . . , ak) and pi
matches ai, for i ∈ {1, . . . , k}

List p = (p1 : p2): succeeds if a is a nonempty list a1 : a2 and p1
matches a1 and p2 matches a2

• Successful or not?

� ([x], y) matches ([1], 2 + 3)

� [x] matches [1, 2]? [x, y] matches [1]?

� x : y matches [1, 2]? x : (y : z) matches [1, 2]?

� [x, x] matches [1, 1]

Functional Programming Spring Semester, 2012

David Basin 8

Examples

• Zipper function

zip [2, 3, 4] [4, 5, 78] = [(2, 4), (3, 5), (4, 78)]

zip [2, 3] [1, 2, 3] = [(2, 1), (3, 2)]

N.B.: extra elements in a longer list are discarded.

• Implementing zip

zip (x:xs) (y:ys) = (x,y) : zip xs ys
zip _ _ = []

• Which functions are implemented here?

f (False, False) = False g (True, _) = True
f (_, _) = True g (_, True) = True

g (_, _) = False

Functional Programming Spring Semester, 2012

David Basin 9

Intermezzo — advice on recursion
“Defining recursive functions is like riding a bicycle: it looks easy when someone else is

doing it; it may seem impossible when you first try to do it yourself, but becomes simple

and natural with practice.” — G. Hutton, Programming in Haskell

Function drop removes the first n elements of a list.

Step 1: Define the type: drop :: Int -> [Int] -> [Int]

Step 2: Enumerate the cases:

drop 0 [] = ...
drop 0 (x:xs) = ...
drop n [] = ...
drop n (x:xs) = ...

Step 3: Define the simple cases:
drop 0 [] = []
drop 0 (x:xs) = x:xs
drop n [] = []

Step 4: Define the other cases: drop n (x:xs) = drop (n-1) xs

Step 5: Generalize and simplify. Suggestions?

Functional Programming Spring Semester, 2012

David Basin 10

Example: insertion sort

• Insertion sort: [7, 3, 9, 2]

� First sort rest: [2, 3, 9]

� Insert head: [2, 3, 7,9]

isort :: [Int] -> [Int] isort [3,9,2]
isort [] = [] = ins 3 (isort [9,2])
isort (x:xs) = ins x (isort xs) = ins 3 (ins 9 (isort [2]))

= ins 3 (ins 9 (ins 2 (isort [])))
ins :: Int -> [Int] -> [Int] = ins 3 (ins 9 (ins 2 []))
ins a [] = [a] = ins 3 (ins 9 ([2]))
ins a (x:xs) = ins 3 (2: (ins 9 []))

| a <= x = a : (x : xs) = ins 3 [2, 9]
| otherwise = x : ins a xs = 2 : (ins 3 [9])

= 2 : [3,9] = [2,3,9]

Functional Programming Spring Semester, 2012

David Basin 11

Insertion sort — complexity

• Processing list [x1, . . . , xn] of size n results in

ins x1 (ins x2 (. . . (ins xn []) . . .))

• Complexity of computing ins a [x1, x2, . . . , xn]

Best case: a ≤ x1: 1 step

Worst case: a > xn: n steps

Average: n/2 steps (assuming all input sequences equally likely)

• Complexity of insertion sort:

Best case: n steps, i.e., O(n)

Worst case: 1 + 2 + . . .+ n = n(n+ 1)/2, i.e., O(n2)

Average: 1/2 + 2/2 + . . .+ (n− 1)/2 + n/2, also O(n2)

Functional Programming Spring Semester, 2012

David Basin 12

Quick sort
• Quick sort: [7, 3, 8, 2, 9]

� Split into head and tail: 7 and [3, 8, 2, 9]

� Partition tail into parts ≤ 7 and > 7: [3, 2] and [8, 9]

� Recursively sort: [2, 3] and [8, 9]

� Concatenate with head in the middle: [2, 3] ++ [7] ++ [8, 9] = [2, 3, 7, 8, 9]

qsort [] = []
qsort (x:xs) =

qsort (lesseq x xs) ++ [x] ++ qsort (greater x xs)
where

lesseq _ [] = []
lesseq x (y:ys)

| (y <= x) = y : lesseq x ys
| otherwise = lesseq x ys

greater _ [] = []
greater x (y:ys)

| (y > x) = y : greater x ys
| otherwise = greater x ys

• Complexity: O(n log n) on average. Worst case?
Functional Programming Spring Semester, 2012

David Basin 13

List comprehension

• Notation for sequential processing of list elements

� Analogous to set comprehension in set theory {2 · x | x ∈ X}
� Haskell notation: [2*x | x <- xs]

? [2*x | x <- [1,2,3,4,5]]
[2, 4, 6, 8, 10]

? [n ‘mod‘ 2 == 0 | n <- [2,4,7]]
[True,True,False]

• Can be augmented with guards: [2*x | x <- xs, pred1(x), ...]

? [2*x | x <- [0,1,2,3,4,5,6], x ‘mod‘ 2 == 0, x > 3]
[8, 12]

• What is computed here?

q [] = []
q (p:xs) = q [x | x<-xs, x <= p] ++ [p] ++ q [x | x<-xs, x > p]

Functional Programming Spring Semester, 2012

David Basin 14

Program development with lists
A larger example

• Objective: a (mini-)library database

• A design method for programs “in the small”

1. Specify the requirements

2. Fix the types (input/output representation)

3. Implement each function

• For systems “in the large”, design is substantially more difficult

Topic for software engineering courses

Functional Programming Spring Semester, 2012

David Basin 15

Step 1: requirements analysis

Which functionality is required?

1. Given a person p, which books has p borrowed?

2. Given a book b, who has borrowed b?

Assumption: many-to-many relation between (copies of) books

and persons

3. Is a book lent out?

Functional Programming Spring Semester, 2012

David Basin 16

Step 2: types

• We define two types to represent books and people

type Person = String -- Note: types always start with
type Book = String -- a capital letter

• Database: list of (Person, Book)-pairs

type Database = [(Person,Book)]

• Example

myDB = [("Alice", "Postman Pat"), ("Anna", "All Alone"),
("Alice", "Spot"), ("Rory", "Postman Pat")]

Functional Programming Spring Semester, 2012

David Basin 17

Types (cont.)

• Each kind of functionality implemented by a separate function

1. Which books has person p borrowed?

books :: Database -> Person -> [Book]

2. Who has borrowed book b?

borrowers :: Database -> Book -> [Person]

3. Is a book b on loan?

borrowed :: Database -> Book -> Bool

• Further functionality could also be specified

E.g., checking out or returning a book

Functional Programming Spring Semester, 2012

David Basin 18

Step 3: implementation

• books:: Database -> Person -> [Book]

books db p = [bk | (per,bk) <- db, per == p]

• borrowers :: Database -> Book -> [Person]

borrowers db b = [per | (per,bk) <- db, bk == b]

• borrowed :: Database -> Book -> Bool

borrowed [] _ = False
borrowed ((_,bk):rest) b = bk == b || borrowed rest b

Functional Programming Spring Semester, 2012

David Basin 19

Complete program and examples

type Person = String
type Book = String
type Database = [(Person,Book)]

myDB = [("Alice", "Postman Pat"), ("Anna", "All Alone"),
("Alice", "Spot"), ("Rory", "Postman Pat")]

books db p = [bk | (per,bk) <- db, per == p]
borrowers db b = [per | (per,bk) <- db, bk == b]

borrowed [] _ = False
borrowed ((_,bk):rest) b = bk == b || borrowed rest b

? books myDB "Alice"
["Postman Pat", "Spot"]
? borrowers myDB "All Alone"
["Anna"]
? borrowed myDB "Postman Pat"
True

Functional Programming Spring Semester, 2012

David Basin 20

Correctness — Induction

Functional Programming Spring Semester, 2012

David Basin 21

Review: induction over natural numbers

• Rule for induction over N .

Proof by induction: to prove P (n) for all natural numbers n.

Base case: prove P (0)

Step case: prove P (n)→ P (n+ 1) for an arbitrary n ∈ N , i.e.,

Induction hypothesis: P (n)
To prove: P (n+ 1)

• Once proven, we know, for example, P (17) since

� P (0) holds, and

� P (0)→ P (1) . . . and. . . P (16)→ P (17)

� since all n ∈ N are reachable in finitely many steps, we know

that P (n), for every n ∈ N .

• Reflects that N is the least set such that 0 ∈ N and if n ∈ N ,

then so is n+ 1 ∈ N .
Functional Programming Spring Semester, 2012

David Basin 22

Induction over lists

• How are elements in [T] constructed?

[] :: [T] and (x : xs) :: [T], if x :: T and xs :: [T]

• Corresponds to following rule

Proof by induction: to prove P (xs) for all xs in [T]

Base case: prove P ([])

Step case: prove P (x : xs) under the assumption P (xs), for an

arbitrary xs :: [T] and x :: T , i.e.,

Induction hypothesis: xs :: [T], x :: T , and P (xs)

To prove: P (x : xs)

• Like with numbers: induction can be seen as a “machine” that

establishes a property for all lists.

E.g., P ([3, 20]) follows since P ([])→ P (20 : [])→ P (3 : 20 : []).
Functional Programming Spring Semester, 2012

David Basin 23

Example 1: sum and double

sumList [] = 0 double [] = []
sumList (x:xs) = x + sumList xs double (x:xs) = (2*x) : double xs

Proof by induction: P (xs) ≡ sumList (double xs) = 2 · sumList xs

Base case: P ([])
sumList (double []) = sumList [] = 0

2 · sumList [] = 2 · 0 = 0

Step case: P (xs)→ P (x : xs)

Induction hypothesis: sumList (double xs) = 2 · sumList xs

To prove: sumList (double (x : xs)) = 2 · sumList (x : xs)

sumList (double (x : xs)) = sumList ((2 · x) : double xs)

= 2 · x+ sumList (double xs)

= 2 · x+ 2 · sumList xs

= 2 · (x+ sumList xs)

= 2 · (sumList (x : xs))
Functional Programming Spring Semester, 2012

David Basin 24

Example 2: associativity of append

[] ++ ys = ys
(x:xs) ++ ys = x : (xs ++ ys)

Proof by induction:
Q(xs) ≡ (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

Base case: ([] ++ ys) ++ zs = ys ++ zs = [] ++ (ys ++ zs)

Step case:

Induction hypothesis: (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

To prove: ((x : xs) ++ ys) ++ zs = (x : xs) ++ (ys ++ zs)

((x : xs) ++ ys) ++ zs = (x : (xs ++ ys)) ++ zs

= x : ((xs ++ ys) ++ zs)

= x : (xs ++ (ys ++ zs))

= (x : xs) ++ (ys ++ zs)
Functional Programming Spring Semester, 2012

David Basin 25

Induction: difficulties

• How do we select an induction variable?

P (xs) ≡ sumList (double xs) = 2 · sumList xs

Q(???) ≡ (xs ++ ys) ++ zs = xs ++ (ys ++ zs)

� Induction on ys or zs fails, e.g., Q(zs)

� In step case we must show Q(z : zs)

(xs ++ ys) ++ (z : zs) = xs ++ (ys ++ (z : zs))

Not possible either to further simplify or to use Q(zs).

• Requires planning in order to use the induction hypothesis

• Auxiliary lemmas are sometimes also needed.

Functional Programming Spring Semester, 2012

David Basin 26

Example: rev and qrev

rev [] = [] qrev xs = aux (xs, [])
rev (x:xs) = rev xs ++ [x] aux ([], ys) = ys

aux ((x:xs), ys) = aux (xs, x:ys)

• Append is O(n) in first argument

[a1, a2, . . . , an] ++ x = a1 : ([a2, . . . , an] ++ x)

= . . . n− 1 times . . .

= a1 : (a2 : . . . : (an : x) . . .)

• rev is O(n2) (average append: n/2 steps)

rev [a1, a2, . . . , an] = rev [a2, . . . , an] ++ [a1]

= . . . n− 1 times . . .

= (. . . ([] ++ [an]) ++ . . . ++ [a2]) ++ [a1]
Functional Programming Spring Semester, 2012

David Basin 27

Example (cont.)

• qrev is O(n)

qrev [a1, . . . , an] = aux ([a1, . . . , an], [])

= aux ([a2, . . . , an], [a1])

= . . . n− 2 times . . .

= aux ([], [an, . . . , a2, a1])

= [an, . . . , a2, a1]

Functional Programming Spring Semester, 2012

David Basin 28

Relationship between rev and qrev

• Is rev xs = qrev xs ?

Base case: P ([])

rev [] = [] = aux ([], []) = qrev []

Step case: P (xs)→ P (x : xs)

Induction hypothesis: rev xs = qrev xs

To prove: rev (x : xs) = qrev (x : xs)

rev (x : xs) = rev xs ++ [x]

qrev (x : xs) = aux (x : xs, []) = aux (xs, [x])

• No proof!

� We require rev xs ++ [x] = aux (xs, [x])

� Induction hypothesis only says rev xs = qrev xs = aux (xs, [])

Functional Programming Spring Semester, 2012

David Basin 29

Next induction
• To prove: rev xs ++ [x] = aux (xs, [x]). Let’s try induction again

Base case: P ([])
rev [] ++ [x] = [] ++ [x] = [x] = aux ([], [x])

Step case: P (xs)→ P (a : xs)

Induction hypothesis: rev xs ++ [x] = aux (xs, [x])

To prove: rev (a : xs) ++ [x] = aux (a : xs, [x])

rev (a : xs) ++ [x] = (rev xs ++ [a]) ++ [x]

= rev xs ++ ([a] ++ [x])

= rev xs ++ [a, x]

aux (a : xs, [x]) = aux (xs, [a, x])

• Problem: Induction hypothesis only proven for accumulator [x].

Rather than another induction, let’s try a generalization!

Functional Programming Spring Semester, 2012

David Basin 30

Generalization

• To prove rev xs ++ [x] = aux (xs, [x]), we prove

rev xs ++ ys = aux (xs, ys)

I.e., prove ∀xs. P (xs), where

P (xs) ≡ ∀ys. rev xs ++ ys = aux (xs, ys)

• Recall proof rules for ∀x.Q(x)

� ∀-Introduction

To prove: ∀x.Q(x)

Prove: Q(x), where x is arbitrary

� ∀-Elimination

From ∀x.Q(x) we can conclude Q(t), for every t

Functional Programming Spring Semester, 2012

David Basin 31

Prove: ∀xs.∀ys. rev xs ++ ys = aux (xs,ys)

Proof by induction: ∀xs. P (xs) by induction

P (xs) ≡ ∀ys. rev xs ++ ys = aux (xs, ys)

Base case: P ([])

∀ys. rev [] ++ ys = aux ([], ys)

Using ∀-Introduction, it is sufficient to prove:

rev [] ++ ys = aux ([], ys)

Holds as rev [] ++ ys = [] ++ ys = ys = aux ([], ys)

Functional Programming Spring Semester, 2012

David Basin 32

Proof (cont.)

Step case: P (xs)→ P (x : xs)

Induction hypothesis: ∀ys. rev xs ++ ys = aux (xs, ys)

To prove: ∀ys. rev (x : xs) ++ ys = aux (x : xs, ys)

Using ∀-introduction, we reduce the goal (for ys arbitrary) to

rev (x : xs) ++ ys = aux (x : xs, ys)

From the definition and associativity of ++, we know that

rev (x : xs) ++ ys = (rev xs ++ [x]) ++ ys

= rev xs ++ ([x] ++ ys) = rev xs ++ (x : ys)

aux (x : xs, ys) = aux (xs, x : ys)

But an instance of the induction hypothesis (∀-Elimination) is

rev xs ++ (x : ys) = aux (xs, x : ys) QED

Functional Programming Spring Semester, 2012

David Basin 33

Abstraction

Functional Programming Spring Semester, 2012

David Basin 34

Until now . . .

• We have only seen simple structuring techniques

� sufficient though to construct all programs

• Difference: language expressiveness versus usability/eloquence

� Assembler versus modern programming languages

� Quick sort with/without comprehension
q [] = []
q (p:xs) = q [x | x<-xs, x <= p] ++ [p] ++ q [x | x<-xs, x > p]

• We will now examine different ways of

� structuring programs

� simplifying programs

� improving their reusability

Functional Programming Spring Semester, 2012

David Basin 35

Higher-order functions

First order: Arguments are basis types or constructor types

Int -> [Int]

Second order: Arguments can be themselves functions

(Int -> Int) -> [Int]

Third order: Arguments may be functions, whose arguments are

functions

((Int -> Int) -> Int) -> [Int]

Higher-order functions: Functions of arbitrary order

Functional Programming Spring Semester, 2012

David Basin 36

Example: map

double :: [Int] -> [Int]
double [] = []
double (x:xs) = (2*x) : double xs

triple :: [Int] -> [Int]
triple [] = []
triple (x:xs) = (3*x) : triple xs

Same control structure, only different function application

double [x1, . . . , xn] = [2·x1, . . . , 2·xn]
triple [x1, . . . , xn] = [3·x1, . . . , 3·xn]

Functional Programming Spring Semester, 2012

David Basin 37

Control structure can be abstracted

map f [] = [] -- higher order
map f (x:xs) = f x : map f xs -- (function f is an argument)

times2 x = 2 * x
times3 x = 3 * x

double xs = map times2 xs
triple xs = map times3 xs

Example of execution

map times2 [2,3]
= times2 2 : map times2 [3]
= 4 : map times2 [3]
= 4 :(times2 3 : map times2 [])
= 4 : (6 : map times2 [])
= 4 : (6 : [])
= [4,6]

Functional Programming Spring Semester, 2012

David Basin 38

Visualizing map

map f [] = []
map f (x:xs) = f x : map f xs

map f [1, 2, 3] = [f 1, f 2, f 3]

[]

1

2

3

:

[]

:

:

map f
:

:
:

f 1

f 3

f 2

Note similarity to list comprehension: map f xs = [f x | x <- xs]

Functional Programming Spring Semester, 2012

David Basin 39

Why functions as arguments?

-- without map
double [] = []
double (x:xs) = (2*x) : double xs

-- with map
double xs = map times2 xs

Advantages:

1. Definition is easier to understand

2. Parts are easier to modify

3. Parts are easier to reuse

4. Correctness is simpler to understand and show

Functional Programming Spring Semester, 2012

David Basin 40

Example: folding

• Consider sumList [1,2,3] = 1+2+3

sumList [] = 0
sumList (x:xs) = x + sumList xs

Is this an instance of map?

• Generalization

f [x1, x2, . . . , xk] = f(x1, f(x2, . . . , f(xk, 0) . . .))

E.g. sumList [1,2,3] = f(1,f(2,f(3,0))), for f = (+)

• Program

foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

sumList xs = foldr (+) 0 xs
Functional Programming Spring Semester, 2012

David Basin 41

Visualizing foldr

foldr f z [] = z
foldr f z (x:xs) = f x (foldr f z xs)

foldr f e [1, 2, 3] = f(1, f(2, f(3, e))

:
1

2

3 e

foldr f e 1

2

3

:
f

f

f

[]

:

Functional Programming Spring Semester, 2012

David Basin 42

Examples of foldr

We can now easily define some standard Haskell functions:

concat xs = foldr (++) [] xs
? concat [[1,2,3],[4],[5,6]]
[1,2,3,4,5,6] :: [Int]

and bs = foldr (&&) True bs
? and [True,True,False]
False :: Bool

or bs = foldr (||) False bs
? or [True,True,False]
True :: Bool

pcons (x,y) (xs,ys) = (x:xs, y:ys)
unzip xs = foldr pcons ([],[]) xs
? unzip [(1,2),(3,4),(5,6)]
([1,3,5],[2,4,6]) :: ([Int],[Int])

Functional Programming Spring Semester, 2012

David Basin 43

Example: reverse
rev [] = []
rev (x:xs) = rev xs ++ [x]

rev [1, 2, 3] = rev [2, 3] ++ [1]

= (rev [3] ++ [2]) ++ [1]

= ((rev [] ++ [3]) ++ [2]) ++ [1]

= (([] ++ [3]) ++ [2]) ++ [1]

= . . .

= [3, 2, 1]

atEnd

1

2

3

:

[]

:

:
1

2

3

atEndfoldr atEnd []

[] [3]

++ [2]

++

++

[1]

[]

atEnd
Suggests program:

atEnd x xs = xs ++ [x]
rv xs = foldr atEnd [] xs

Functional Programming Spring Semester, 2012

David Basin 44

Example execution

atEnd x xs = xs ++ [x] foldr f z [] = z
rv xs = foldr atEnd [] xs foldr f z (x:xs) = f x (foldr f z xs)

Executes as follows:

rv [1, 2, 3] = foldr atEnd [] [1, 2, 3]

= atEnd 1 (foldr atEnd [] [2, 3])

= (foldr atEnd [] [2, 3]) ++ [1]

= (atEnd 2 (foldr atEnd [] [3])) ++ [1]

= ((foldr atEnd [] [3]) ++ [2]) ++ [1]

= (atEnd 3 (foldr atEnd [] []) ++ [2]) ++ [1]

= (((foldr atEnd [] []) ++ [3]) ++ [2]) ++ [1]

= ([] ++ [3]) ++ [2]) ++ [1]

= . . .

= [3, 2, 1]

Correctness: prove ∀xs. rev xs = rv xs
Functional Programming Spring Semester, 2012

David Basin 45

Example: composition and iteration

• Pattern and control structure for function application

fapp f g x = f (g x)

iter 0 f x = x
iter n f x = f (iter (n-1) f x)

• Examples

times2 x = 2 * x
times3 x = 3 * x

? fapp times2 times3 5
30 :: Int

? iter 4 times2 1
16 :: Int

? iter 4 times3 1
81 :: Int

Functional Programming Spring Semester, 2012

David Basin 46

Polymorphic types and reusability

• Consider following example:

length [] = 0
length (x:xs) = 1 + length xs

? length [17,3,149]
3 :: Int

? length ["eat","the","potato","Jane"]
4 :: Int

• What is type? [Int] -> Int, [String] -> Int, ...

� The type is polymorphic: [t] -> Int, for all types t.

• Often called parametric polymorphism. Differs from subtyping
polymorphism (e.g., in Java), where methods can be applied to

objects only of sub-classes.

Functional Programming Spring Semester, 2012

David Basin 47

Types and reusability (cont.)

• Polymorphic types contain type variables

length :: [t] -> Int

• Function typeable for all instances.

Definition: A type w for f is a most general (also called

principal) type iff for all types s for f , s is an instance of w.

• Haskell has algorithms for type checking and type reconstruction

� Haskell computes the principal type w, given a function f

� If user provides a type t, then t must be an instance of w.

I.e., one can only restrict the type

• We will look at this in more detail later

Functional Programming Spring Semester, 2012

David Basin 48

Polymorphic types — examples

• Functions over lists, e.g. (++) :: [t] -> [t] -> [t]

• Functions defined by gluing together other functions

? :type iter
Int -> (a -> a) -> a -> a

? :type fapp
(a -> b) -> (c -> a) -> c -> b

• Or applying functions to data

? :type map
(a -> b) -> [a] -> [b]

Functional Programming Spring Semester, 2012

David Basin 49

Functions as values

• Functions can be returned as values

• Example: function composition (fapp)

(f ◦ g)x = f (g x)

(.) :: (b -> c) -> (a -> b) -> (a -> c)
(f . g) x = f (g x)

• Examples

twice :: (t -> t) -> (t -> t)
twice f = f . f

? twice times3 1
9 :: Int
? (twice . twice) times3 1 -- 3^4 = 81
81 :: Int
? twice (times3 . times3) 1
81 :: Int

Functional Programming Spring Semester, 2012

David Basin 50

Functions as values (cont.)

• Iter (higher-order argument)

iter 0 f x = x
iter n f x = f (iter (n-1) f x)

• Iter (higher-order argument and result)

id x = x

iter :: Int -> (a -> a) -> a -> a
iter 0 f = id
iter n f = f . (iter (n-1) f)

• Functions cannot be displayed, but they can be applied

? iter 2 times2
... Error ...

? let f = iter 2 times2 in f 5
20 :: Int

Functional Programming Spring Semester, 2012

David Basin 51

Evaluation example

iter 0 f = id
iter n f = f . (iter (n-1) f)

let f = iter 2 times2 in f 5

Can be calculated as follows

let f = iter 2 times2 in f 5 = (iter 2 times2) 5

= (times2 . (iter 1 times2)) 5

= (times2 . (times2 . (iter 0 times2))) 5

= (times2 . (times2 . id)) 5

= times2 ((times2 . id) 5)

= times2 (times2 (id 5))

= times2 (times2 5)

= times2 10

= 20

Functional Programming Spring Semester, 2012

David Basin 52

λ-expressions
• Consider the following functions

times2 x = 2 * x
double xs = map times2 xs

• Haskell provides notation to write functions like times2 in-line

? map (\x -> x * 2) [2,3,4]
[4,6,8] :: Int

? foldr (\x y -> x * y) 1 [1,2,3,4]
24 :: Int

N.B.: \x y -> x * y is a shorthand for \x -> \y -> x * y

• Church’s λ-notation (character “\” used instead of “λ”)

usual λ-calculus
Declaration f(x) = x+ 3 λx. x+ 3
Application f(5) (λx. x+ 3)(5)
Reduction (x+ 3)[x← 5] (x+ 3)[x← 5]
Result 8 8

Functional Programming Spring Semester, 2012

David Basin 53

Partial application

• Functions of multiple arguments . . .

multiply :: Int -> Int -> Int
multiply a b = a * b

• . . . can be partially applied

? :type multiply 7
Int -> Int

? :type map
(a -> b) -> [a] -> [b]

? map (multiply 7) [1,2,3,4]
[7, 14, 21, 28] :: [Int]

• Application and types

If f :: t1→ t2→ . . .→ tn→ t and e1 :: t1, . . . , ek :: tk
then f e1 . . . ek :: tk+1→ . . .→ tn→ t

Functional Programming Spring Semester, 2012

David Basin 54

How many arguments do functions have?

• Each function takes exactly one argument

� multiply :: Int -> Int -> Int means

multiply :: Int -> (Int -> Int)
� Application multiply 2 3 means (multiply 2) 3

� Partial application is consistent with the view (= illusion) that

functions take multiple arguments

• Operator sections: if ⊕ is an infix binary operator

(a⊕) ≡ λx. a⊕ x
(⊕ a) ≡ λx. x⊕ a

• Example

? map ((2*).(3*)) [1,2,3]
[6,12,18]

Functional Programming Spring Semester, 2012

David Basin 55

Multiple arguments versus tupling

f :: (Int,Int) -> Int g :: Int -> Int -> Int
f (x,y) = x * y + 17 g x y = x * y + 17

• Tuple arguments: no partial application

• But equivalent in the following sense:

curry :: ((a,b) -> c) -> a -> b -> c
uncurrry :: (a -> b -> c) -> (a,b) -> c

curry f = f’ where f’ x1 x2 = f (x1,x2)
uncurrry f’ = f where f (x1,x2) = f’ x1 x2

• “Curry” like “Haskell Brooks Curry”

Functional Programming Spring Semester, 2012

David Basin 56

Examples

f :: (Int,Int) -> Int g :: Int -> Int -> Int
f (x,y) = x * y + 17 g x y = x * y + 17

? f (3,4)
29 :: Int

? curry f 3 4
29 :: Int

? g (3,4)
... Error ...

? g 3 4
29 :: Int

? uncurry g (3,4)
29 :: Int

Functional Programming Spring Semester, 2012

