
Natural Deduction

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

Formal reasoning about systems

• Requirements

1. Language

2. Semantics

3. Deductive system for carrying out proofs

• Metatheorems relate these, e.g., soundness and completeness

� We focus on (1) and (3) and only comment briefly on (2)

� Most of this should be a review (logic/discrete math)

• Proofs are essential for both parts of the course

Some formality now allows (slightly) less formality later

Functional Programming Spring Semester, 2012

David Basin 2

Road map

+ Natural deduction

• Propositional logic

• First-order logic

• Equality

Functional Programming Spring Semester, 2012

David Basin 3

Natural Deduction

• Developed by Gentzen (1930s) and Prawitz (1960s)

• Rules are used to construct derivations under assumptions.

A1, ..., An ` A denotes that A follows from A1, ..., An.

• Derivations are trees

A,B ` A A,B ` B
∧-I

A,B ` A ∧B
→-I

A ` B → A ∧B
→-I

` A→ B → A ∧B

• A proof is a derivation where root has no assumptions

Functional Programming Spring Semester, 2012

David Basin 4

Natural Deduction: an abstract example

• Language L = {⊕,⊗,×,+}

• Deductive system given by rules of proof:

. . . , A, . . . ` A axiom

Γ ` +
α

Γ ` ⊗
Γ ` +

β
Γ ` ×

Γ ` ⊗ Γ ` ×
γ

Γ ` ⊕
Γ,+ ` ⊕

δ
Γ ` ⊕

Last rule says that assumption + may be discharged

• Proof of ⊕
+ ` +

α
+ ` ⊗

+ ` +
β

+ ` ×
γ

+ ` ⊕
δ

` ⊕
Functional Programming Spring Semester, 2012

David Basin 5

Road map

• Natural deduction

+ Propositional logic

• First-order logic

• Equality

Functional Programming Spring Semester, 2012

David Basin 6

Propositional Logic: syntax

• Propositions are built from a collection of variables and closed

under disjunction, conjunction, implication, . . .

• More formally: Let a set V of variables be given. LP , the

language of propositional logic, is the smallest set where:

� X ∈ LP if X ∈ V .

� ⊥∈ Lp.

� A ∧B ∈ LP if A ∈ LP and B ∈ LP .

� A ∨B ∈ LP if A ∈ LP and B ∈ LP .

� A→ B ∈ LP if A ∈ LP and B ∈ LP .

• In following, X ranges over variables and A and B over formulae

Functional Programming Spring Semester, 2012

David Basin 7

Propositional Logic: semantics

• A valuation σ : V → {True,False} is a function mapping

variables to truth values. Let Valuations be the set of valuations.

Valuations are simple kinds of models (interpretations).

• Satisfiability: smallest relation |= ⊆ Valuations × LP such that

� σ |= X, if σ(X) = True

� σ |= A ∧B, if σ |= A and σ |= B

� σ |= A ∨B, if σ |= A or σ |= B

� σ |= A→ B, if whenever σ |= A then σ |= B

• A formula A ∈ LP is valid (a tautology) if

σ |= A, for all valuations σ

• Semantic entailment: A1, . . . An |= A if

for all σ, if σ |= A1, ..., σ |= An then σ |= A
Functional Programming Spring Semester, 2012

David Basin 8

Requirements for a deductive system

• Syntactic entailment ` and semantic entailment |= should agree

• This requirement has two parts:

Soundness: If H ` A can be derived, then H |= A

Completeness: If H |= A, then H ` A can be derived

For H ≡ A1, . . . , An some collection of formulae.

• These are key requirements for any logic

• Decidability is another important property

What is the complexity of determining if a proposition is

satisfiable? A tautology?

Functional Programming Spring Semester, 2012

David Basin 9

Natural Deduction: basics

• A sequent is an assertion (judgement) of the form

A1, . . . , An ` A

where all A,A1, . . . An are propositional formulae

• Intuitively: A follows from the Ai

If logic is sound, this means Ai semantically entail A

• Axiom: starting point for building derivation trees

. . . , A, . . . ` A axiom

• A proof of A is a derivation tree with root ` A.

If logic is sound, then A is a tautology
Functional Programming Spring Semester, 2012

David Basin 10

Conjunction

• Rules of two kinds: introduce and eliminate connectives

Γ ` A Γ ` B
∧-I

Γ ` A ∧B
Γ ` A ∧B

∧-EL
Γ ` A

Γ ` A ∧B
∧-ER

Γ ` B

• Each rule is sound in that it preserves semantic entailment.

E.g., for ∧-I

Γ |= A and Γ |= B then Γ |= A ∧B

• If all rules preserve semantic entailment, logic is sound. (proof?)

Functional Programming Spring Semester, 2012

David Basin 11

Conjunction (cont.)

Γ ` A Γ ` B
∧-I

Γ ` A ∧B
Γ ` A ∧B

∧-EL
Γ ` A

Γ ` A ∧B
∧-ER

Γ ` B

• Example derivation where Γ ≡ A ∧ (B ∧ C)

Γ ` A ∧ (B ∧ C)
∧-EL

Γ ` A

Γ ` A ∧ (B ∧ C)
∧-ER

Γ ` B ∧ C
∧-ER

Γ ` C
∧-I

Γ ` A ∧ C

Note implicit use of axiom at derivation’s leaves

• Can we prove anything with just these three rules?

Equivalently: which (purely conjunctive) formulae are tautologies?

Functional Programming Spring Semester, 2012

David Basin 12

Implication

• Rules
Γ, A ` B

→-I
Γ ` A→ B

Γ ` A→ B Γ ` A
→-E

Γ ` B

• Application of →-I turns last derivation into a proof

...

A ∧ (B ∧ C) ` A ∧ C
` A ∧ (B ∧ C)→ A ∧ C

• Examples: (→ right associative and ∧ binds stronger than →)

` A→ B → A

` (A→ B → C)→ (A→ B)→ A→ C

` (A ∧B)→ (B ∧A)
Functional Programming Spring Semester, 2012

David Basin 13

Disjunction

• Rules
Γ ` A

∨-IL
Γ ` A ∨B

Γ ` B
∨-IR

Γ ` A ∨B

Γ ` A ∨B Γ, A ` C Γ, B ` C
∨-E

Γ ` C

• Elimination rule formalizes proof by cases

• Example: formalize and prove

When it rains then I wear my jacket

When it snows then I wear my jacket

It is raining or snowing

Therefore I wear my jacket

Functional Programming Spring Semester, 2012

David Basin 14

Falsity and Negation

• Falsity
Γ `⊥

⊥-E
Γ ` A

• Negation: define ¬A as A→⊥.

Γ ` ¬A Γ ` A
Γ ` B

derived by

Γ ` ¬A Γ ` A
→-E

Γ `⊥
⊥-E

Γ ` B

Functional Programming Spring Semester, 2012

David Basin 15

Intuitionistic versus Classical Logic

• Peirce’s Law: ((A→ B)→ A)→ A. Is this valid? Provable?

• We have only intuitionistic logic. Classical logic requires either:

� Axiom of excluded middle: A ∨ ¬A
� or rule “Reductio ad absurdum”

Γ,¬A `⊥
RAA

Γ ` A

• Example: There exist irrationals a and b such that ab is rational

Proof: Let b be
√

2 and consider whether or not bb is rational

Case 1: If rational, let a = b =
√

2

Case 2: If irrational, let a =
√

2
√
2

then

ab =
√

2

√
2

√
2

=
√

2
(
√
2∗
√
2)

=
√

2
2

= 2

Functional Programming Spring Semester, 2012

David Basin 16

Road map

• Natural deduction

• Propositional logic

+ First-order logic

� Syntax: variables over domain + functions, relations, quantifiers

� Semantics: interpreting domain, functions, and relations

• Equality

Functional Programming Spring Semester, 2012

David Basin 17

First-order Logic: Syntax

• Two syntactic categories: terms and formulae

• Let a finite collection of function symbols F and predicates P be

given (a signature) as well as a set V of variables

Write f i [or pi] to indicate function symbol f [predicate p] has

arity i ∈ N

• Term, the terms in first-order logic, is the smallest set where

1. x ∈ Term if x ∈ V, and

2. fn(t1, . . . , tn) ∈ Term if fn ∈ F and tj ∈ Term, for all

1 ≤ j ≤ n

N.B. constants are 0-ary function symbols

Functional Programming Spring Semester, 2012

David Basin 18

Syntax (cont.)

• Form, the formulae in first-order logic, is the smallest set where

1. ⊥∈ Form,

2. pn(t1, . . . , tn) ∈ Form if pn ∈ P and tj ∈ Term, for all

1 ≤ j ≤ n,

3. ¬φ ∈ Form if φ ∈ Form,

4. φ ◦ ψ ∈ Form if φ ∈ Form, ψ ∈ Form and ◦ ∈ {∧,∨,→},
5. ∀x. φ ∈ Form and ∃x. φ ∈ Form if φ ∈ Form and x ∈ V

• All occurrences of a variable in a formula are bound or free.

(q(x) ∨ ∃x.∀y. p(f(x), z) ∧ q(a)) ∨ ∀x. r(x, z, g(x))

A variable occurrence x in a formula φ is bound if x occurs within

a subformula of φ of the form ∃x.ψ or ∀x. ψ
Functional Programming Spring Semester, 2012

David Basin 19

Semantics

• A structure is a pair A = 〈UA, IA〉 where UA is an nonempty set,

the universe, and IA is a mapping where

1. IA(pn) is an n-ary relation on UA, for pn ∈ P,

2. IA(fn) is an n-ary (total) function on UA, for fn ∈ F , and

3. IA(x) is an element of UA, for each x ∈ V

As shorthand, write pA for IA(p), etc.

• For A a structure, define the value of a term t under A, written

A(t) by

1. A(x) = xA, for x ∈ V, and

2. A(f(t1, . . . , tn)) = fA(A(t1), . . . ,A(tn))

Functional Programming Spring Semester, 2012

David Basin 20

Semantics (cont.)

Define the (truth-)value of formula φ, written A(φ) under A as:

A(⊥) = False

A(p(t1, . . . , tn)) =

{
True if (A(t1), . . . ,A(tn)) ∈ pA
False otherwise

A(¬φ) =

{
True if A(φ) = False
False if A(φ) = True

...

A(∀x. φ) =

{
True if for all u ∈ UA,A[u/x](φ) = True
False otherwise

A(∃x. φ) =

{
True if for some u ∈ UA,A[u/x](φ) = True
False otherwise

Here A[u/x] is the structure A′ identical to A, except xA
′
= u.

Functional Programming Spring Semester, 2012

David Basin 21

Semantics (cont.)

• When A(φ) = True, we write A |= φ and say φ is satisfied with
respect to A or A is a model of φ. When every suitable

structure is a model, we write |= φ and say φ is valid.

• If there is at least one model for φ, φ is satisfiable
(and contradictory otherwise).

• Complexity of these problems?

Functional Programming Spring Semester, 2012

David Basin 22

An example

∀x.p(x, s(x))

• A model:

UA = N
pA = {(m,n) | m,n ∈ UA and m < n}
sA = the successor function on UA

= i.e., sA(x) = x+ 1

• Not a model:

UA = {a, b, c}
pA = {(a, b), (a, c)}
sA = the identity function

Functional Programming Spring Semester, 2012

David Basin 23

More examples
Which of following are satisfiable? Valid?

• ∀x.∃y.y ∗ 2 = x

satisfied WRT rationals

• x < y → ∃z.x < z ∧ z < y

satisfied WRT any dense order

• ∃x.x 6= 0

satisfied WRT domains with ≥ 2 elements

• (∀x. p(x, x))→ p(a, a)

valid

Functional Programming Spring Semester, 2012

David Basin 24

Universal quantification

• Rules Γ ` P (x)
∀-I∗

Γ ` ∀x. P (x)

Γ ` ∀x. P (x)
∀-E

Γ ` P (t)

Side condition (*): x not free in any assumptions in Γ.

• Why the side condition? Consider the following “derivation”.

x = 0 ` x = 0
∀-I

x = 0 ` ∀x. x = 0
→-I

` x = 0→ ∀x. x = 0
∀-I

` ∀x. (x = 0→ ∀x. x = 0)

• N.B. we continue to use rules from propositional logic, but now

for first-order formulas.

Functional Programming Spring Semester, 2012

David Basin 25

Universal quantification (cont.)

• Is the following a proof?

∀x.∃y.x 6= y ` ∀x.∃y.x 6= y
∀-E

∀x.∃y.x 6= y ` ∃y.y 6= y
→-I

` (∀x.∃y.x 6= y)→ (∃y.y 6= y)

• Conclusion is not valid. Reason: false if UA has ≥ 2 elements.

• Proof incorrect. Reason: substitution must be capture-avoiding.

i.e., y must not occur free in substituted term t, where here t = y.

• This detail concerns substitution (and renaming of bound

variables), not ∀-E.

Functional Programming Spring Semester, 2012

David Basin 26

Universal quantification (cont.)

• Prove: ∀x.A(x) ∧B(x)→ ∀x.A(x) ∧ ∀x.B(x)

• Proof: Let Γ ≡ ∀x.A(x) ∧B(x)

Γ ` ∀x.A(x) ∧B(x)
∀-E

Γ ` A(x) ∧B(x)
∧-EL

Γ ` A(x)
∀-I

Γ ` ∀x.A(x)

Γ ` ∀x.A(x) ∧B(x)
∀-E

Γ ` A(x) ∧B(x)
∧-ER

Γ ` B(x)
∀-I

Γ ` ∀x.B(x)
∧-I

Γ ` ∀x.A(x) ∧ ∀x.B(x)
→-I

` (∀x.A(x) ∧B(x))→ (∀x.A(x) ∧ ∀x.B(x))

• Is it correct? Yes, check side conditions of ∀-I

Functional Programming Spring Semester, 2012

David Basin 27

Existential quantification

• Rules

Γ ` A(t)
∃-I

Γ ` ∃x.A(x)

Γ ` ∃x.A(x) Γ, A(x) ` B
∃-E∗

Γ ` B

Side condition (*): x not free in B or Γ.

• Sample derivation, assuming x does not occur free in B
Let Γ ≡ ∀x.A(x)→ B, ∃x.A(x), A(x)

∀x.A(x)→ B, ∃x.A(x) ` ∃x.A(x)

Γ ` ∀x.A(x)→ B
∀-E

Γ ` A(x)→ B Γ ` A(x)
→-E

Γ ` B
∃-E

∀x.A(x)→ B, ∃x.A(x) ` B
→-I

∀x.A(x)→ B ` (∃x.A(x))→ B
→-I

` (∀x.A(x)→ B)→ ((∃x. A(x))→ B)

Functional Programming Spring Semester, 2012

David Basin 28

Road map

• Natural deduction

• Propositional logic

• First-order logic

+ Equality

Functional Programming Spring Semester, 2012

David Basin 29

FOL with equality

• Equality is a logical symbol with associated proof rules

One speaks of first-order logic with equality rather than

equality being “just another predicate”

• Extended language: t1 = t2 ∈ Form if t1, t2 ∈ Term

• Semantics: recall a structure is a pair A = 〈UA, IA〉 and IA(t) is

the interpretation of t.

• IA(s = t) =

{
True IA(s) = IA(t)

False otherwise

Note the three completely different uses of “=” here!

Functional Programming Spring Semester, 2012

David Basin 30

Equality

• Equality is an equivalence relation

Γ ` t = t ref
Γ ` t = s

sym
Γ ` s = t

Γ ` t = s Γ ` s = r
trans

Γ ` t = r

• Equality is also a congruence on terms and all (definable) relations

Γ ` t1 = s1 · · · Γ ` tn = sn
cong1Γ ` r(t1, . . . , tn) = r(s1, . . . , sn)

Γ ` t1 = s1 · · · Γ ` tn = sn Γ ` A(t1, . . . , tn)
cong2Γ ` A(s1, . . . , sn)

• Soundness: equality in IA is a congruence

Functional Programming Spring Semester, 2012

David Basin 31

On the shape of proofs

• Let Γ ≡ a(b) = d(e), f(d(e)) = g(h). Prove Γ ` f(a(b)) = g(h)

Γ ` a(b) = d(e)
cong1Γ ` f(a(b)) = f(d(e)) Γ ` f(d(e)) = g(h)

trans
Γ ` f(a(b)) = g(h)

• Compare with following linear equational derivation

f(a(b)) = f(d(e)) = g(h)

• In general, any equality proof can be converted into such a linear

style. We will usually carry out equality reasoning this linear way.

• We will see many examples shortly, e.g., in proofs by induction.

Functional Programming Spring Semester, 2012

David Basin 32

What next?

• We consider the correctness question for functional programs.

• I will usually not write formal proofs using these rules.

• However, all proofs given can be translated to formal ones.

• You should check this, also for your own proofs.

• Topic is also of central importance in course’s second half.

Functional Programming Spring Semester, 2012

