
Lazy Evaluation

David Basin

Department of Computer Science
ETH Zurich

Functional Programming

David Basin 1

Evaluation Strategy

• Evaluation strategy has, until now, been unimportant

• Example: map (\x -> x * x) ([1,2,3] ++ [2*2])

[1, 4, 9, 16]

• Haskell is lazy: expressions evaluated only when necessary

loop x = (loop x) + 1
f g x = g 7

? f (*2) (loop 0)
14

• Subtle consequences such as data-driven computation

Functional Programming Spring Semester, 2012

David Basin 2

Lazy evaluation

• Evaluation based on function application and substitution

f x = ...x...x... ⇒ f a = ...a...a...

• Example for f x y = x+ y

f (9− 3) (f 34 3) = (9− 3) + (f 34 3)

� In Haskell, substitution occurs without argument evaluation

� Evaluation of arguments is postponed

. . . = 6 + (f 34 3) = 6 + (34 + 3) = 6 + 37 = 43

• Sometimes expressions are never evaluated

This can save arbitrarily large amounts of time

Functional Programming Spring Semester, 2012

David Basin 3

Example in ghc

g :: Int -> Int -> Int
g x y = x + 12

switch :: Bool -> Int -> Int -> Int
switch True x _ = x
switch False _ y = y

? g 7 (loop 0)
19 :: Int

? switch True 8 (loop 0)
8 :: Int

? switch False 8 (loop 0)
ERROR: Garbage collection fails to reclaim sufficient space

Functional Programming Spring Semester, 2012

David Basin 4

Lazy evaluation (cont.)

• Potential problem: duplicated computation, e.g., square x = x * x

square (9− 3) = (9− 3) ∗ (9− 3) = 6 ∗ 6 = 36

The same expression 9− 3 is evaluated twice here

• Duplication avoided by simultaneously reducing both occurrences

• Implementation based on sharing: terms represented as DAGs

• Summary: function arguments are evaluated only when needed

and at most once

Functional Programming Spring Semester, 2012

David Basin 5

Evaluation — further details

Typical function

f p1 p2 ... pk
| g1 = e1
| g2 = e2

:
| otherwise = en
where v1 ... = r1

:

Built using patterns, guards, and local definitions

Functional Programming Spring Semester, 2012

David Basin 6

Evaluation — pattern matching

• Arguments evaluated as far as needed to determine pattern match

f [] _ = 0
f (a:x) [] = 0
f (a:x) (b:y) = a + b

• Haskell notation: [n .. m] == enumFromTo n m

? enumFromTo 1 10
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] :: [Int]

• f [1 .. 3] [4 .. 6] executes as follows:

f [1 .. 3] [4 .. 6] = f (1 : [2 .. 3]) [4 .. 6] (1)

= f (1 : [2 .. 3]) (4 : [5 .. 6]) (2)

= 1 + 5 = 6 (3)

1. Test if case 1 holds
2. Test if cases 2 or 3 hold

Functional Programming Spring Semester, 2012

David Basin 7

Evaluation — guards

• Execution proceeds sequentially, until success

f a b c
| a >= b && a >= c = a
| b >= a && a >= c = b
| otherwise = c

• Example

f (2+3) (4-1) (3+9)
?? (2+3) >= (4-1) && (2+3) >= (3+9) [try 1st guard]
?? = 5 >= 3 && 5 >= (3+9)
?? = True && 5 >= (3+9)
?? = 5 >= (3+9)
?? = 5 >= 12
?? = False
?? 3 >= 5 && False [try 2nd guard, already partially evaluated]
?? = False && False
?? = False
?? otherwise [try final guard (= True)]

= 12
Functional Programming Spring Semester, 2012

David Basin 8

Evaluation — local definitions

Local definitions (with where) are also lazily evaluated

f a b f 3 5
| notNil l = front l ?? notNil l
| otherwise = b ?? where l = [3 .. 5]
where ?? = 3:[4 .. 5]
l = [a .. b] ?? = notNil (3:[4 .. 5])

?? = True
front (c:d:_) = c+d = front l
front [c] = c where

l = 3:[4 .. 5]
notNil [] = False = 3:4:[5]
notNil _ = True = 3+4

= 7

Functional Programming Spring Semester, 2012

David Basin 9

Evaluation — misc.

• Functions are evaluated top-down (outermost operator first)

f e1 (f e2 17)

• and otherwise usually from left to right, depending on operator

precedence
f e1 + f e2

f e1 + f e2 ∗ f e3

• This kind of evaluation is as natural as “eager evaluation”

But the consequences (and possibilities) are surprising

Functional Programming Spring Semester, 2012

David Basin 10

Application 1: data-driven programming

• Data can be generated lazily (on demand)

The result is improved runtime complexity

• Example: sum the 4th powers of the numbers 1 through n

• Data-driven solution

� Construct the list of numbers [1 .. n]

� Compute each 4th power, resulting in [1, 16, . . . , n4]

� Sum the list of powers

• Resulting program: sumFourthPowers n = sum (map (^4) [1 .. n])

Would a loop (e.g., in Java) be better?

Functional Programming Spring Semester, 2012

David Basin 11

Examples (cont.)

• Execution as follows

sumFourthPowers n
= sum (map (^4) [1 .. n])
= sum (map (^4) (1:[2 .. n]))
= sum (((^4) 1) : map (^4) [2 .. n])
= (^4) 1 + sum (map (^4) [2 .. n])
= 1 + sum (map (^4) [2 .. n]) = ...
= 1 + (16 + sum (map (^4) [3 .. n])) = ...
= 1 + (16 + (81 + ... + n^4))

• Intermediate lists are not fully constructed

Head is immediately turned into a sum

Functional Programming Spring Semester, 2012

David Basin 12

Data-driven programming

• Example 2: list minimum

isort [] = [] ins a [] = [a]
isort (x:xs) = ins x (isort xs) ins a (x:xs)

| a <= x = a : (x:xs)
| otherwise = x : ins a xs

lmin = head . isort

• lmin [8,6,1,7,5] executes as follows (focusing on isort)

isort [8, 6, 1, 7, 5] = ins 8 (ins 6 (ins 1 (ins 7 (ins 5 [])))))

= ins 8 (ins 6 (ins 1 (ins 7 [5])))

= ins 8 (ins 6 (ins 1 (5 : ins 7 [])))

= ins 8 (ins 6 (1 : (5 : ins 7 [])))

= ins 8 (1 : ins 6 (5 : ins 7 []))

= 1 : ins 8 (ins 6 (5 : ins 7 []))

• Thus lmin l executes in linear time!
Functional Programming Spring Semester, 2012

David Basin 13

Application 2: infinite data

• Lazy evaluation enables finite representation of infinite data

• Example: infinite lists (streams)

ones = 1 : ones
from n = n : from (n+1)

? ones
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ^C{Interrupted!}

? from 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ^C{Interrupted!}

• Example: infinite trees

data Tree a = Leaf | Node a (Tree a) (Tree a) deriving (Show, Eq)
t = Node 1 t t

? t
Node 1 (Node 1 (Node 1 (Node 1 ^C{Interrupted!}

Functional Programming Spring Semester, 2012

David Basin 14

Infinite data (cont.)

• One can compute with infinite data in finite time

addFirstTwo (a:b:x) = a+b

? addFirstTwo ones
2 :: Int

• Executes as follows

addFirstTwo ones
= addFirstTwo (1:ones)
= addFirstTwo (1:1:ones)
= 1+1
= 2

• Conceptually elegant: we describe an infinite stream (tree, etc.)

and compute with arbitrarily large finite prefixes of it

Functional Programming Spring Semester, 2012

David Basin 15

Example: prime numbers

• One of the oldest algorithms: the Sieve of Eratosthenes

1. Generate the list of all natural numbers, starting with 2

2. Mark the first unmarked number

3. Cross out all multiples of the last marked number

4. Go to step 2

• N.B.

� Infinitely many prime numbers: but each is eventually marked

� Strictly speaking, this is not an algorithm since the steps cannot

be carried out to completion in finite time

Functional Programming Spring Semester, 2012

David Basin 16

Implementing the Sieve of Eratosthenes

1. Generate list: [2 ..]

2. Marking: function head :: [a] -> a determines first element

3. Cross out all multiples: dropMults

dropMults x ys = filter (\y -> y ‘mod‘ x /= 0) ys

4. Repetition via recursion:

sieve xs = head xs : sieve (dropMults (head xs) (tail xs))

The result

primes = sieve [2 ..]

? take 50 primes
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67,71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229] :: [Int]

Functional Programming Spring Semester, 2012

David Basin 17

Example: Newton’s algorithm

Problem: compute square roots

Input: The radicand r ∈ R, with r ≥ 0, and the first approximation

a0 ∈ R, where a0 > 0

Output:
√
r ∈ R

Procedure: The sequence of approximations is defined by

ai+1 = (ai + r/ai)/2

If the sequence of ai converges to a, then a = (a+ r/a)/2.

I.e., a =
√
r.

Numerical test: If |a− a′| < ε, then a′ is the result.

Functional Programming Spring Semester, 2012

David Basin 18

Newton (cont.)

• Example: a0 = 5, r = 2,
√
r = 1.4142135623 . . .

• Iterative search for root

of f(x) = x2 − 2

3

2

1

x

f(x)

Sequence of approximations is

[5.0, 2.7, 1.72037, 1.44146, 1.41447, 1.41421, . . .]

• For correctness, convergence criteria, etc. see other courses.

Functional Programming Spring Semester, 2012

David Basin 19

Implementation — imperative

function sqrt (r,a_0:real):real
const eps = ...;
var a,a’:real;
begin

a’:= a0;
repeat

a := a’;
a’ := (a + r/a)/2.0

until abs(a - a’) < eps;
sqrt := a’

end

Correct implementation, but as a monolithic unit!

Functional Programming Spring Semester, 2012

David Basin 20

Implementation — Haskell

next r x = (x + r/x) / 2 --- a[i+1] = (a[i] + r/a[i]) / 2

iterate f x = x : iterate f (f x) --- [x, f x, f(f x), ...]

within eps (x:(x’:xs))
| abs (x - x’) < eps = x’
| otherwise = within eps (x’:xs)

newton x0 eps r = within eps (iterate (next r) x0)

Direct implementation: generate and test

Program simpler to understand and modify (e.g. with other
convergence tests)

Functional Programming Spring Semester, 2012

David Basin 21

Correctness

• Lazy evaluation is powerful.

But it complicates analyzing program complexity and correctness

• Types like [Int] actually include

1. Finite, everywhere defined lists like [1, 3, 5]

2. Finite lists with “undefined” elements
undef :: t
undef = undef

? [1,2,undef]
[1,2,^C{Interrupted!}]

3. Infinite lists with defined or undefined elements

e.g. [1..] or [1, undef, 2, undef, 3, undef, . . .]

Functional Programming Spring Semester, 2012

David Basin 22

Correctness of lazy programs

• Induction is only sound for (1): finite, everywhere defined data.

� When we show by induction that

∀xs ys :: [t].map f (xs ++ ys) = map f xs ++ map f ys

we have proven the equality only for all finite lists!

� But data of kind (2) and (3) also belong to [t]

• We will not consider this correctness question further in this class.

Thus, when we prove a proposition by induction, we mean
only for all data of kind (1).

Functional Programming Spring Semester, 2012

David Basin 23

Summary

• Lazy evaluation enables new ways of writing programs

Data is created or further evaluated only on demand!

• We can describe algorithms that (potentially) produce and

operate on infinite data

� Infinite data of course is never generated

� But arbitrarily large quantities can be produced on demand

• Lazy evaluation is simple but exciting and has wide scope

� Many real programs are not algorithms in the strict sense

� E.g. reactive systems, operating systems, . . . shouldn’t terminate

� Such systems can be implemented as (lazy) stream processors!

� Establishing correctness requires, however, other techniques

Functional Programming Spring Semester, 2012

