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Evaluation Strategy

• Evaluation strategy has, until now, been unimportant

• Example: map (\x -> x * x) ([1,2,3] ++ [2*2])

[1, 4, 9, 16]

• Haskell is lazy: expressions evaluated only when necessary

loop x = (loop x) + 1
f g x = g 7

? f (*2) (loop 0)
14

• Subtle consequences such as data-driven computation
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Lazy evaluation

• Evaluation based on function application and substitution

f x = ...x...x... ⇒ f a = ...a...a...

• Example for f x y = x+ y

f (9− 3) (f 34 3) = (9− 3) + (f 34 3)

� In Haskell, substitution occurs without argument evaluation

� Evaluation of arguments is postponed

. . . = 6 + (f 34 3) = 6 + (34 + 3) = 6 + 37 = 43

• Sometimes expressions are never evaluated

This can save arbitrarily large amounts of time
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Example in ghc

g :: Int -> Int -> Int
g x y = x + 12

switch :: Bool -> Int -> Int -> Int
switch True x _ = x
switch False _ y = y

? g 7 (loop 0)
19 :: Int

? switch True 8 (loop 0)
8 :: Int

? switch False 8 (loop 0)
ERROR: Garbage collection fails to reclaim sufficient space
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Lazy evaluation (cont.)

• Potential problem: duplicated computation, e.g., square x = x * x

square (9− 3) = (9− 3) ∗ (9− 3) = 6 ∗ 6 = 36

The same expression 9− 3 is evaluated twice here

• Duplication avoided by simultaneously reducing both occurrences

• Implementation based on sharing: terms represented as DAGs

• Summary: function arguments are evaluated only when needed

and at most once
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Evaluation — further details

Typical function

f p1 p2 ... pk
| g1 = e1
| g2 = e2

:
| otherwise = en
where v1 ... = r1

:

Built using patterns, guards, and local definitions
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Evaluation — pattern matching

• Arguments evaluated as far as needed to determine pattern match

f [] _ = 0
f (a:x) [] = 0
f (a:x) (b:y) = a + b

• Haskell notation: [n .. m] == enumFromTo n m

? enumFromTo 1 10
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10] :: [Int]

• f [1 .. 3] [4 .. 6] executes as follows:

f [1 .. 3] [4 .. 6] = f (1 : [2 .. 3]) [4 .. 6] (1)

= f (1 : [2 .. 3]) (4 : [5 .. 6]) (2)

= 1 + 5 = 6 (3)

1. Test if case 1 holds
2. Test if cases 2 or 3 hold
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Evaluation — guards

• Execution proceeds sequentially, until success

f a b c
| a >= b && a >= c = a
| b >= a && a >= c = b
| otherwise = c

• Example

f (2+3) (4-1) (3+9)
?? (2+3) >= (4-1) && (2+3) >= (3+9) [try 1st guard]
?? = 5 >= 3 && 5 >= (3+9)
?? = True && 5 >= (3+9)
?? = 5 >= (3+9)
?? = 5 >= 12
?? = False
?? 3 >= 5 && False [try 2nd guard, already partially evaluated]
?? = False && False
?? = False
?? otherwise [try final guard (= True)]

= 12
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Evaluation — local definitions

Local definitions (with where) are also lazily evaluated

f a b f 3 5
| notNil l = front l ?? notNil l
| otherwise = b ?? where l = [3 .. 5]
where ?? = 3:[4 .. 5]
l = [a .. b] ?? = notNil (3:[4 .. 5])

?? = True
front (c:d:_) = c+d = front l
front [c] = c where

l = 3:[4 .. 5]
notNil [] = False = 3:4:[5]
notNil _ = True = 3+4

= 7
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Evaluation — misc.

• Functions are evaluated top-down (outermost operator first)

f e1 (f e2 17)

• and otherwise usually from left to right, depending on operator

precedence
f e1 + f e2

f e1 + f e2 ∗ f e3

• This kind of evaluation is as natural as “eager evaluation”

But the consequences (and possibilities) are surprising
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Application 1: data-driven programming

• Data can be generated lazily (on demand)

The result is improved runtime complexity

• Example: sum the 4th powers of the numbers 1 through n

• Data-driven solution

� Construct the list of numbers [1 .. n]

� Compute each 4th power, resulting in [1, 16, . . . , n4]

� Sum the list of powers

• Resulting program: sumFourthPowers n = sum (map (^4) [1 .. n])

Would a loop (e.g., in Java) be better?
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Examples (cont.)

• Execution as follows

sumFourthPowers n
= sum (map (^4) [1 .. n])
= sum (map (^4) (1:[2 .. n]))
= sum (((^4) 1) : map (^4) [2 .. n])
= (^4) 1 + sum (map (^4) [2 .. n])
= 1 + sum (map (^4) [2 .. n]) = ...
= 1 + (16 + sum (map (^4) [3 .. n])) = ...
= 1 + (16 + (81 + ... + n^4))

• Intermediate lists are not fully constructed

Head is immediately turned into a sum
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Data-driven programming

• Example 2: list minimum

isort [] = [] ins a [] = [a]
isort (x:xs) = ins x (isort xs) ins a (x:xs)

| a <= x = a : (x:xs)
| otherwise = x : ins a xs

lmin = head . isort

• lmin [8,6,1,7,5] executes as follows (focusing on isort)

isort [8, 6, 1, 7, 5] = ins 8 (ins 6 (ins 1 (ins 7 (ins 5 [ ])))))

= ins 8 (ins 6 (ins 1 (ins 7 [5])))

= ins 8 (ins 6 (ins 1 (5 : ins 7 [ ])))

= ins 8 (ins 6 (1 : (5 : ins 7 [ ])))

= ins 8 (1 : ins 6 (5 : ins 7 [ ]))

= 1 : ins 8 (ins 6 (5 : ins 7 [ ]))

• Thus lmin l executes in linear time!
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Application 2: infinite data

• Lazy evaluation enables finite representation of infinite data

• Example: infinite lists (streams)

ones = 1 : ones
from n = n : from (n+1)

? ones
[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ^C{Interrupted!}

? from 1
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, ^C{Interrupted!}

• Example: infinite trees

data Tree a = Leaf | Node a (Tree a) (Tree a) deriving (Show, Eq)
t = Node 1 t t

? t
Node 1 (Node 1 (Node 1 (Node 1 ^C{Interrupted!}
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Infinite data (cont.)

• One can compute with infinite data in finite time

addFirstTwo (a:b:x) = a+b

? addFirstTwo ones
2 :: Int

• Executes as follows

addFirstTwo ones
= addFirstTwo (1:ones)
= addFirstTwo (1:1:ones)
= 1+1
= 2

• Conceptually elegant: we describe an infinite stream (tree, etc.)

and compute with arbitrarily large finite prefixes of it
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Example: prime numbers

• One of the oldest algorithms: the Sieve of Eratosthenes

1. Generate the list of all natural numbers, starting with 2

2. Mark the first unmarked number

3. Cross out all multiples of the last marked number

4. Go to step 2

• N.B.

� Infinitely many prime numbers: but each is eventually marked

� Strictly speaking, this is not an algorithm since the steps cannot

be carried out to completion in finite time
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Implementing the Sieve of Eratosthenes

1. Generate list: [2 .. ]

2. Marking: function head :: [a] -> a determines first element

3. Cross out all multiples: dropMults

dropMults x ys = filter (\y -> y ‘mod‘ x /= 0) ys

4. Repetition via recursion:

sieve xs = head xs : sieve (dropMults (head xs) (tail xs))

The result

primes = sieve [2 ..]

? take 50 primes
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61,
67,71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137,
139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211,
223, 227, 229] :: [Int]
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Example: Newton’s algorithm

Problem: compute square roots

Input: The radicand r ∈ R, with r ≥ 0, and the first approximation

a0 ∈ R, where a0 > 0

Output:
√
r ∈ R

Procedure: The sequence of approximations is defined by

ai+1 = (ai + r/ai)/2

If the sequence of ai converges to a, then a = (a+ r/a)/2.

I.e., a =
√
r.

Numerical test: If |a− a′| < ε, then a′ is the result.
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Newton (cont.)

• Example: a0 = 5, r = 2,
√
r = 1.4142135623 . . .

• Iterative search for root

of f(x) = x2 − 2

3

2

1

x

f(x)

Sequence of approximations is

[5.0, 2.7, 1.72037, 1.44146, 1.41447, 1.41421, . . .]

• For correctness, convergence criteria, etc. see other courses.
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Implementation — imperative

function sqrt (r,a_0:real):real
const eps = ...;
var a,a’:real;
begin

a’:= a0;
repeat

a := a’;
a’ := (a + r/a)/2.0

until abs(a - a’) < eps;
sqrt := a’

end

Correct implementation, but as a monolithic unit!
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Implementation — Haskell

next r x = (x + r/x) / 2 --- a[i+1] = (a[i] + r/a[i]) / 2

iterate f x = x : iterate f (f x) --- [x, f x, f(f x), ...]

within eps (x:(x’:xs))
| abs (x - x’) < eps = x’
| otherwise = within eps (x’:xs)

newton x0 eps r = within eps (iterate (next r) x0)

Direct implementation: generate and test

Program simpler to understand and modify (e.g. with other
convergence tests)
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Correctness

• Lazy evaluation is powerful.

But it complicates analyzing program complexity and correctness

• Types like [Int] actually include

1. Finite, everywhere defined lists like [1, 3, 5]

2. Finite lists with “undefined” elements
undef :: t
undef = undef

? [1,2,undef]
[1,2,^C{Interrupted!}]

3. Infinite lists with defined or undefined elements

e.g. [1..] or [1, undef, 2, undef, 3, undef, . . .]
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Correctness of lazy programs

• Induction is only sound for (1): finite, everywhere defined data.

� When we show by induction that

∀xs ys :: [t].map f (xs ++ ys) = map f xs ++ map f ys

we have proven the equality only for all finite lists!

� But data of kind (2) and (3) also belong to [t]

• We will not consider this correctness question further in this class.

Thus, when we prove a proposition by induction, we mean
only for all data of kind (1).
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Summary

• Lazy evaluation enables new ways of writing programs

Data is created or further evaluated only on demand!

• We can describe algorithms that (potentially) produce and

operate on infinite data

� Infinite data of course is never generated

� But arbitrarily large quantities can be produced on demand

• Lazy evaluation is simple but exciting and has wide scope

� Many real programs are not algorithms in the strict sense

� E.g. reactive systems, operating systems, . . . shouldn’t terminate

� Such systems can be implemented as (lazy) stream processors!

� Establishing correctness requires, however, other techniques
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