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The problem

• Until now, data modeling with

Base types: Int, Bool, Char, Float, . . .

Compound types: tuples, lists, functions, . . .

Type synonyms: type Complex = (Float,Float)

• Example: modeling dates, e.g., months

� Using strings: "January", "February", . . . , "December"

� Using integers: 1, 2, . . . , 12

• Many possibilities (like in assembler). Not particularly abstract.

� Also error-prone. What does 0 represent? Or 1 + 2?

� Analogous to problem of modeling years.
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Another example: modeling trees
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• Assembler or C: model using pointers

• Alternative: model using functions

� Tree addresses (position) as path address

[ ], [1], [2, 1, 2], . . .

� Function application produces value associated with node

f [ ] = 1, f [1] = 10, f [2] = 17, f [2, 1] = 14, f [2, 2] = 20

• Data type is a derived notion, not first-class

� Low-level coding

� Can be improperly used

Functional Programming Spring Semester, 2012
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Solution: algebraic data types

• Declare new types tailored to the objects being modeled.

• For months, we declare the type Month with elements

January, February, ..., December

These are new data constructors.

• For trees, declare type Tree with elements like

Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf)) �� ��
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Enumeration types (disjoint unions)

data Season = Spring | Summer | Fall | Winter
data Month = January | February | March | April | May | June | July |

August | September | October | November | December

• Syntax

� Starts with keyword data

� Names different (uniquely named) constructors

� First letter of each constructor must be upper-case

• Defines a set: Season = {Spring, Summer, Fall, Winter}

• Functions can be written using pattern matching

whichSeason :: Month -> Season

whichSeason January = Winter
whichSeason February = Winter
whichSeason March = Spring
...
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Product types
data People = Person Name Age
type Name = String
type Age = Int

• An element of type People consists of a name n and an age a, e.g.,

Person "Uncle George" 85
Person "Levi Jeans" 501 -- Nonsense but type correct

• Constructors are functions

? :type Person
Person :: Name -> Age -> People

• Functions may be defined by pattern matching

showPerson :: People -> String
showPerson (Person n a) = n ++ " who is " ++ show a ++ " years old"

? showPerson (Person "Uncle George" 85)
"Uncle George who is 85 years old" :: [Char]
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Product types versus tuples

• Alternative to products are tuples

data People = Person Name Age
type People’ = (Name, Age)

• Advantage of product types

� Conceptual: new, self-contained type

� Objects are labeled and hence types are unambiguous

• Disadvantages

� Longer definitions

� Many polymorphic functions no longer applicable (fst, zip, . . . )

Functional Programming Spring Semester, 2012
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Enumeration and product types

• They can be combined

data Shape = Circle Float | Rectangle Float Float

• Two kinds of shapes

� Circle with radius, e.g. Circle 3.0

� Rectangle with two sides, e.g. Rectangle 45.9 87.6

• Functions again definable by pattern matching

area :: Shape -> Float
area (Circle r) = pi * r * r
area (Rectangle h w) = h * w

Functional Programming Spring Semester, 2012
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Integration with classes

• No default functions like == or show

data Foo = D1 | D2 | D3

? D1 == D2
ERROR: No instance for (Eq Foo)

• Class instances can be explicitly created

instance Eq Foo where
D1 == D1 = True
D2 == D2 = True
D3 == D3 = True
_ == _ = False

? D1 == D2
False :: Bool

Functional Programming Spring Semester, 2012
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Integration with classes (cont.)

• In some cases, class instances can be automatically derived

data Foo = D1 | D2 | D3
deriving (Eq, Ord, Enum, Show)

? D1
D1 :: Foo

? [D1 .. D3]
[D1, D2, D3] :: [Foo]

? D2 < D3
True :: Bool

See “Haskell Report” for further details

Functional Programming Spring Semester, 2012
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General definition

data T = Constr1 T11 . . . T1k1

| Constr2 T21 . . . T2k2
...

| Constrn Tn1 . . . Tnkn

• Tij are types, possibly also containing T (i.e., recursion allowed)

• T can have type variables as arguments (polymorphism)

Let’s look more closely at these extensions

Functional Programming Spring Semester, 2012
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Recursive types

• Sets of objects are often recursively defined

Expr ::= Int | Expr + Expr | Expr − Expr

• Formalized as a recursive data type

data Expr = Lit Int | Add Expr Expr | Sub Expr Expr

• Bijection between elements of Expr and data-type elements

2 Lit 2

2 + 3 Add (Lit 2) (Lit 3)

2 + (3− 1) Add (Lit 2) (Sub (Lit 3) (Lit 1))

• Recursion: Expr is recursive. Hence so are functions over Expr

Functional Programming Spring Semester, 2012
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Recursive functions over data types

• Example: Interpreter for arithmetic expressions

data Expr = Lit Int | Add Expr Expr | Sub Expr Expr
deriving (Show, Eq)

• Evaluator

Lit n: n
Add e1 e2: value of e1 + value of e2

Sub e1 e2: value of e1 − value of e2

• Program

eval :: Expr -> Int

eval (Lit n) = n
eval (Add e1 e2) = (eval e1) + (eval e2)
eval (Sub e1 e2) = (eval e1) - (eval e2)

Functional Programming Spring Semester, 2012
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Arithmetic expressions (cont.)

• Other functions are written similarly

showExpr (Lit n) = show n
showExpr (Add e1 e2) = "("++showExpr e1++"+"++showExpr e2 ++")"
showExpr (Sub e1 e2) = "("++showExpr e1++"-"++showExpr e2 ++")"

? eval (Add (Lit 2) (Sub (Lit 3) (Lit 1))) -- 2 + (3 - 1)
4 :: Int

? show (Add (Lit 2) (Sub (Lit 3) (Lit 1)))
"Add (Lit 2) (Sub (Lit 3) (Lit 1))" :: [Char]

? showExpr (Add (Lit 2) (Sub (Lit 3) (Lit 1)))
"(2+(3-1))" :: [Char]

Functional Programming Spring Semester, 2012
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Trees (with internal integer nodes)
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ITree ::= Leaf | Node Int ITree ITree

• Haskell data type

data ITree = Leaf | Node Int ITree ITree
deriving (Eq, Show)

• Example tree t

Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))
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Functions over trees
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• Sum of values treeSum t = 62

treeSum :: ITree -> Int
treeSum Leaf = 0
treeSum (Node n t1 t2) = n + (treeSum t1) + (treeSum t2)

• Depth depth t = 3

depth :: ITree -> Int
depth Leaf = 0
depth (Node n t1 t2) = 1 + max (depth t1) (depth t2)

• How often does an element occur? occurs t 10 = 1

occurs :: ITree -> Int -> Int
occurs Leaf p = 0
occurs (Node n t1 t2) p

| n == p = 1 + rest
| otherwise = rest
where rest = occurs t1 p + occurs t2 p

Functional Programming Spring Semester, 2012
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Polymorphic algebraic types

• Examples have monomorphic types

data ITree = Leaf | Node Int ITree ITree

In general, types may include type variables

• Example: data Pair t = MkPair t t has elements like:

MkPair 2 3 :: Pair Int
MkPair [] [2,3] :: Pair [Int]
MkPair [] [] :: Pair [t]

• Functions can now also be polymorphic

equalPair :: Eq t => Pair t -> Bool
equalPair (MkPair x y) = (x == y)

Functional Programming Spring Semester, 2012
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Trees

• Definition with type parameters

data Tree t = Leaf | Node t (Tree t) (Tree t)
deriving (Eq,Ord,Show)

? Node 2 Leaf Leaf
Node 2 Leaf Leaf :: Tree Int

? Node True (Node False Leaf Leaf) (Node True Leaf Leaf)
Node True (Node False Leaf Leaf) (Node True Leaf Leaf) :: Tree Bool

• Same definitions. Now types are more general

occurs :: Eq t => Tree t -> t -> Int
occurs Leaf p = 0
occurs (Node n t1 t2) p

| n == p = 1 + rest
| otherwise = rest
where rest = occurs t1 p + occurs t2 p

Functional Programming Spring Semester, 2012
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Polymorphic algebraic types — questions

• Have you seen this type before?

data L t = E | C t (L t)
deriving (Eq,Ord,Show)

• Observe that

E :: L t
C :: t -> L t -> L t

• What is the type of the following function?

f y E = False
f y (C x l) = x == y || f y l

• What is the result?

? f 3 (C 2 (C 3 (C 4 E)))

• So standard types (like Bool, Lists [a], etc.) can be defined as

algebraic data types
Functional Programming Spring Semester, 2012
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Higher-order programming with data types

• You have done this already! For example, map for lists

map f E = E --- E = []
map f (C x xs) = C (f x) (map f xs) --- C = (:)

• Analogous program on trees

mapTree :: (t -> u) -> Tree t -> Tree u
mapTree f Leaf = Leaf
mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1) (mapTree f t2)

? mapTree (+2)
(Node 7 (Node 20 Leaf Leaf) (Node 1 Leaf Leaf))

Node 9 (Node 22 Leaf Leaf) (Node 3 Leaf Leaf) :: Tree Int

? mapTree not
(Node True (Node False Leaf Leaf) (Node True Leaf Leaf))

Node False (Node True Leaf Leaf) (Node False Leaf Leaf) :: Tree Bool

Functional Programming Spring Semester, 2012
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From foldr to treeFold

• Recall foldr
foldr :: (a -> b -> b) -> b -> [a] -> b

foldr f e E = e --- E = []
foldr f e (C x xs) = f x (foldr f e xs) --- C = (:)

• Procedure for foldr f e l

In the list l, C is replaced with f and E with e

• Procedure for treeFold f e t

In the tree t, Node is replaced with f and Leaf with e

• Definition
treeFold:: (a -> b -> b -> b) -> b -> Tree a -> b

treeFold f e Leaf = e
treeFold f e (Node x l r) = f x (treeFold f e l) (treeFold f e r)

Functional Programming Spring Semester, 2012
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What is computed?
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14 20t = Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))

? treeFold (\x l r -> x + l + r) 0 t
62 :: Int

? treeFold (\_ l r -> 1 + l + r) 0 t
5 :: Int

? treeFold (\_ l r -> 1 + max l r) 0 t
3 :: Int

? treeFold (\x l r -> Node x r l) Leaf t
Node 1 (Node 17 (Node 20 Leaf Leaf) (Node 14 Leaf Leaf))

(Node 10 Leaf Leaf) :: Tree Int

Functional Programming Spring Semester, 2012
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From trees to lists
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14 20t = Node 1 (Node 10 Leaf Leaf)
(Node 17 (Node 14 Leaf Leaf)

(Node 20 Leaf Leaf))

preorder t = treeFold (\x l r -> [x] ++ l ++ r) [] t

inorder t = treeFold (\x l r -> l ++ [x] ++ r) [] t

postorder t = treeFold (\x l r -> l ++ r ++ [x]) [] t

? preorder t
[1, 10, 17, 14, 20] :: [Int]

? inorder t
[10, 1, 14, 17, 20] :: [Int]

? postorder t
[10, 14, 20, 17, 1] :: [Int]

Functional Programming Spring Semester, 2012
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Case study: editing distance

• Motivation: compute the minimal number of changes needed to

transform one string into another

� Practical problem, e.g., updating display

� “diff” programs

• Goal: find “cheapest” sequence of editing steps using operations

Change a character

Copy a character without change

Delete a character

Insert a character

Kill rest of string, i.e., delete to the end

Assume unit price for all operations except copy, which is for free.

Functional Programming Spring Semester, 2012
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Example: “Help” is not far from “Hello”

? transform "help" "hello"
[Copy, Copy, Copy, Insert ’l’, Change ’o’]

? transform "hello" "help"
[Copy, Copy, Copy, Delete, Change ’p’]

In both cases, the cost is 2

Functional Programming Spring Semester, 2012
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Development #1: data types

1. Identify types, e.g., for editing

data Edit = ...

2. Identify kinds of data

Each corresponds to a constructor

data Edit = Change ... | Copy ... |
Delete ... | Insert ... | Kill ...

3. Fix the components (arguments)

data Edit = Change Char | Copy |
Delete | Insert Char | Kill
deriving (Eq, Show)

Functional Programming Spring Semester, 2012
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Development #2: functions

• Main function: carry out transformation

transform :: String -> String -> [Edit]

• Base cases

transform [] [] = []
transform xs [] = [Kill]
transform [] ys = map Insert ys

• General case: choose between the operations

transform (x:xs) (y:ys)
| x == y = Copy : transform xs ys
| otherwise = best [ Delete : transform xs (y:ys) ,

Insert y : transform (x:xs) ys ,
Change y : transform xs ys ]

N.B. Kill is not necessary. Why?
Functional Programming Spring Semester, 2012



David Basin 27

Development (cont.)

• Define the auxiliary function best

best :: [[Edit]] -> [Edit]

best [x] = x
best (x:xs)

| cost x <= cost x’ = x
| otherwise = x’
where x’ = best xs

• Formalize unit price for all operations except copy

cost :: [Edit] -> Int
cost = length . filter (/=Copy)

Functional Programming Spring Semester, 2012
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The entire program

data Edit = Change Char | Copy | Delete | Insert Char | Kill
deriving (Eq,Show)

transform [] [] = []
transform xs [] = [Kill]
transform [] ys = map Insert ys
transform (x:xs) (y:ys)

| x == y = Copy : transform xs ys
| otherwise = best [ Delete : transform xs (y:ys) ,

Insert y : transform (x:xs) ys ,
Change y : transform xs ys ]

best [x] = x
best (x:xs)

| cost x <= cost x’ = x
| otherwise = x’
where x’ = best xs

cost = length . filter (/=Copy)

Functional Programming Spring Semester, 2012
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Transform — examples
? :set +s

? transform "fish" "chips"
[Insert ’c’, Change ’h’, Copy, Insert ’p’, Copy, Kill]
(0.02 secs, 3803456 bytes)

? transform "1234" "4321"
[Delete, Change ’4’, Copy, Insert ’2’, Change ’1’]
(0.01 secs, 3051880 bytes)

? transform "123456" "654321"
[Delete, Change ’6’, Change ’5’, Copy, Insert ’3’, Change ’2’,
Change ’1’]

(0.04 secs, 5990368 bytes)

? transform "12345678" "87654321"
[Delete, Change ’8’, Change ’7’, Change ’6’, Copy, Insert ’4’,
Change ’3’, Change ’2’, Change ’1’]

(1.00 secs, 84024700 bytes)

Does transform always terminate? Run-time complexity?
Functional Programming Spring Semester, 2012
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Algebraic types and type classes

Goal: define hierarchy of movable objects

Support standard objects like points, lines, ...
and operations like reflection and (simple 180-degree) rotation.

Functional Programming Spring Semester, 2012
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Algebraic types and type classes (cont.)

data Vector = Vector Float Float -- x & y offset

class Movable t where
move :: Vector -> t -> t -- Translation
reflectX :: t -> t -- Reflection
reflectY :: t -> t
rotate180 :: t -> t -- Rotation
rotate180 = reflectX . reflectY

Instance: point
data Point = Pt Float Float

deriving Show

instance Movable Point where
move (Vector v1 v2) (Pt c1 c2) = Pt (c1+v1) (c2+v2)
reflectX (Pt c1 c2) = Pt c1 (-c2)
reflectY (Pt c1 c2) = Pt (-c1) c2
rotate180 (Pt c1 c2) = Pt (-c1) (-c2)

Functional Programming Spring Semester, 2012
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Types and classes (cont.)

• Figures are also movable
data Figure = Line Point Point | Circle Point Float

deriving Show

instance Movable Figure where
move v (Line p1 p2) = Line (move v p1) (move v p2)
move v (Circle p r) = Circle (move v p) r

reflectX (Line p1 p2) = Line (reflectX p1) (reflectX p2)
reflectX (Circle p r) = Circle (reflectX p) r

reflectY (Line p1 p2) = Line (reflectY p1) (reflectY p2)
reflectY (Circle p r) = Circle (reflectY p) r

• Lists of movable objects are also movable
instance Movable t => Movable [t] where

move v = map (move v)
reflectX = map reflectX
reflectY = map reflectY

Functional Programming Spring Semester, 2012
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Algebraic types and classes

• Algebraic types are “first class” citizens

Fully compatible with polymorphism and type classes

• Programs are simple to read and understand

only move rather than movePoint, etc.

• Reusability

Instance for Movable [t] is polymorphic with respect to lists of

movable objects

Functional Programming Spring Semester, 2012
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What actually are algebraic data types?

data Tree a = Leaf | Node a (Tree a) (Tree a)

• A data type defines a set of terms for each type instance

E.g., Tree Int corresponds to {Leaf , Node 0 Leaf Leaf , . . . }

• Algebraic here means the smallest set S, where

Leaf ∈ S and x ∈ a ∧ t1 ∈ S ∧ t2 ∈ S ⇒ (Node x t1 t2) ∈ S

• Intuition: set S is built in steps

� Leaf ∈ S and

� (Node x t1 t2) ∈ S, where t1 and t2 in S in earlier steps

• What are sound reasoning principles for such types?

Functional Programming Spring Semester, 2012
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Correctness for Algebraic Data Types

Let’s start first with some old friends

Functional Programming Spring Semester, 2012
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Natural numbers

• Theorem to prove ∀n ∈ N . P (n)

Base case: Show P (0).

Step case: Let n ∈ N be arbitrary. Assume P (n).

Show P (n+ 1).

• Alternative formulation as natural deduction proof rule

Γ ` P (0) Γ, P (n) ` P (n+ 1)
Γ ` ∀n ∈ N . P (n) n not free in Γ

• ∀n ∈ N . P (n) holds as P (0), P (1), P (2), . . .

Functional Programming Spring Semester, 2012



David Basin 37

Numbers as a data type

data Nat = Zero | Succ Nat
deriving (Eq, Ord, Show)

plus Zero y = y
plus (Succ x) y = Succ (plus x y) --- Normally built-in primitives

--- that use machine arithmetic!
times Zero _ = Zero
times (Succ x) y = plus (times x y) y

? plus (Succ Zero) (Succ Zero)
Succ (Succ Zero)

? times (Succ (Succ Zero)) (Succ (Succ Zero))
Succ (Succ (Succ (Succ Zero)))

? Succ Zero < Succ (Succ Zero) --- How does ghc compute this?
True

Functional Programming Spring Semester, 2012
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Induction over the natural numbers

Zero

Succ Zero

Succ (Succ Zero)

. . .

data Nat = Zero | Succ Nat

• Natural numbers are (isomorphic to) the set

Nat = {Zero,Succ Zero, Succ (Succ Zero), . . . }

• Data type provides two rules for constructing members of Nat

0) Zero ∈ Nat

1) Succ x ∈ Nat , if x ∈ Nat

• Elements added step by step

Functional Programming Spring Semester, 2012
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Structural induction
Zero

Succ Zero

Succ (Succ Zero)

. . .

data Nat = Zero | Succ Nat

• Induction over the structure of terms

Equivalent to induction over the individual steps

(also depth of terms)

Γ ` P (Zero) Γ, P (n) ` P (Succ n)
Γ ` ∀n ∈ Nat . P (n) n not free in Γ

• Sufficient to show P (Zero), P (Succ Zero), . . .

• We can prove theorems like

∀x ∈ Nat . plus x (plus y z) = plus (plus x y) z

Functional Programming Spring Semester, 2012
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Lists

data L t = Nil | Cons t (L t)

• Elements in L t are built in steps

0) {Nil}
1) {Cons a Nil ∈ L t | a ∈ t}
2) {Cons b (Cons a Nil) ∈ L t | a, b ∈ t}

...

• l ∈ L t iff l appears in some step of the construction

• Induction

Γ ` P (Nil) Γ, P (xs) ` P (Cons x xs)
Γ ` ∀xs ∈ L t. P (xs)

x, xs not free in Γ

i.e., we must prove (i) P (Nil) and (ii) P (Cons x xs) follows from

P (xs), for an arbitrary x ∈ t and xs ∈ L t.
Functional Programming Spring Semester, 2012
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Trees

data Tree t = Leaf | Node t (Tree t) (Tree t)

• Steps for constructing Tree t

0) {Leaf }
1) {Node a Leaf Leaf ∈ Tree t | a ∈ t}

...

i) Trees in step i are of form Node a l r, where a ∈ t and l and r have

been constructed in the previous steps.

• s ∈ Tree t iff s appears in some step of construction

• Induction

Γ ` P (Leaf ) Γ, P (l), P (r) ` P (Node a l r)
Γ ` ∀x ∈ Tree t. P (x)

a, l, r not free in Γ

i.e., we must prove (i) P (Leaf ) and (ii) P (Node a l r) follows from

P (l) and P (r), for an arbitrary a ∈ t and l, r ∈ Tree t.
Functional Programming Spring Semester, 2012
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Example of induction on trees

[] ++ ys = ys
(x:xs) ++ ys = x:(xs ++ ys)

map f [] = []
map f (a:l) = f a : map f l

mapTree f Leaf = Leaf
mapTree f (Node x t1 t2) = Node (f x) (mapTree f t1) (mapTree f t2)

treeFold f e Leaf = e
treeFold f e (Node x l r) = f x (treeFold f e l) (treeFold f e r)

inorder t = treeFold (\x l r -> l ++ [x] ++ r) [] t

Does the following hold?

∀s ∈ Tree t. map f (inorder s) = inorder (mapTree f s)

Functional Programming Spring Semester, 2012
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Auxiliary propositions

• Lemma: inorder Leaf = [ ]

inorder Leaf = treeFold (λx l r. l ++ [x] ++ r) [ ] Leaf

= [ ]

• Lemma: inorder (Node a l r) = inorder l ++ [a] ++ inorder r

Let f = λx l r. l ++ [x] ++ r. Then

inorder (Node a l r) = treeFold f [ ] (Node a l r)

= f a (treeFold f [ ] l) (treeFold f [ ] r)

= (treeFold f [ ] l)++ [a]++(treeFold f [ ] r)

= inorder l ++ [a] ++ inorder r

Functional Programming Spring Semester, 2012
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Auxiliary propositions (cont.)
• Lemma: map f (l ++ r) = (map f l) ++ (map f r)

Proof: Let P (l) ≡ map f (l ++ r) = (map f l) ++ (map f r).

We show ∀l ∈ [a]. P (l) by induction.

Base case: Show P ([]).

map f ([ ] ++ r) = map f r

= [ ] ++ (map f r)

= (map f [ ]) ++ (map f r)

Step case: Let x ∈ a and l ∈ [a] be arbitrary. Assume P (l). Show P (x : l).

map f ((x : l) ++ r) = map f (x : (l ++ r))

= f x : map f (l ++ r)

= f x : ((map f l) ++ (map f r))

= (f x : map f l) ++ (map f r)

= (map f (x : l)) ++ (map f r)

Functional Programming Spring Semester, 2012
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Correctness proof

Lemma: ∀s ∈ Tree t. map f (inorder s) = inorder (mapTree f s)

Proof: Let P (s) ≡ map f (inorder s) = inorder (mapTree f s).

We show ∀s ∈ Tree t. P (s) by induction.

Base case: Show P (Leaf).

map f (inorder Leaf ) = map f [ ] = [ ] = inorder Leaf = inorder (mapTree f Leaf )

Step case: Let a ∈ t and l, r ∈ Tree t be arbitrary.

Assume P (l) and P (r). Show P (Node a l r).

map f (inorder (Node a l r))

= map f (inorder l ++ [a] ++ inorder r)

= (map f (inorder l)) ++ (map f [a]) ++ (map f (inorder r))

= (map f (inorder l)) ++ [f a] ++ (map f (inorder r))

= (inorder (mapTree f l)) ++ [f a] ++ (inorder (mapTree f r))

= inorder (Node (f a) (mapTree f l) (mapTree f r))

= inorder (mapTree f (Node a l r))
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Structural induction — general idea

• Induction based on structure of terms

data T t = Leaf t | Node1 (T t) | Node2 t (T t) (T t)

• What are the terms in Step 0?

{Leaf a | a ∈ t}

• How do we go from step i− 1 to step i?

{Node1 s | s ∈ Ti−1} ∪ {Node2 a s1 s2 | a ∈ t and s1, s2 ∈ Ti−1}

where Ti−1 contains the elements from the previous steps.

• Formalized as induction rule
Γ ` P (Leaf a) Γ, P (s) ` P (Node1 s) Γ, P (s1), P (s2) ` P (Node2 a s1 s2)

Γ ` ∀x ∈ T t. P (x)
(∗)

(*) a, s, s1, s2 not free in Γ
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Conclusion — algebraic types

• Algebraic types improve possibilities for modeling

� No ambiguity: is “2000” a number or a year?

� Terms directly model objects

• General recursive types combine enumeration and product types

• Lists as example

� Recursive and polymorphic

� Many specialized functions can be written using general

recursive combinators

• Integrated with classes. Supports development in the large

• Induction is a fundamental reasoning principle
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