
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 12: Axiomatic Semantics 2

Assignment 1

We first present a solution that proves a more general result using one of the extra rules described
in the extra material (available from the course website). Then, we also give a straight-forward
solution that proves the claim directly.

(a) Assuming X0 is the original value of x, a suitable loop invariant is x = X0∧y = 2z∧z ≤ x.

(b) A suitable loop variant is (x − z). We can now prove the following triple, characterising
the general behaviour of the statement s (using the invariant and variant above): { x =
X0 ∧X0 ≥ 0 } s { ⇓ x = X0 ∧ y = 2X0 }. Here is the proof outline:

{x = X0 ∧X0 ≥ 0}
⇒
{x = X0 ∧X0 ≥ 0 ∧ 1 = 1}
y := 1;

{x = X0 ∧X0 ≥ 0 ∧ y = 1}
⇒
{x = X0 ∧X0 ≥ 0 ∧ y = 1 ∧ 0 = 0}
z := 0;

{x = X0 ∧X0 ≥ 0 ∧ y = 1 ∧ z = 0}
⇒
{x = X0 ∧ y = 2z ∧ z ≤ x}
while z<x do

{x = X0 ∧ y = 2z ∧ z ≤ x ∧ z < x ∧ (x− z) = V0}?
⇒
{x = X0 ∧ y · 2 = 2z+1 ∧ z+ 1 ≤ x ∧ (x− (z+ 1)) < V0}
y := y * 2;

{x = X0 ∧ y = 2z+1 ∧ z+ 1 ≤ x ∧ (x− (z+ 1)) < V0}
z := z + 1

{⇓ x = X0 ∧ y = 2z ∧ z ≤ x ∧ (x− z) < V0}
end

{⇓ x = X0 ∧ y = 2z ∧ z ≤ x ∧ z ≥ x}
⇒
{⇓ x = X0 ∧ y = 2X0}

? side-condition: this predicate implies (x− z) ≥ 0

However, the next part of the question requires us to make use of this loop in a more-
specific context (when we know x = 10 in the precondition, and do not use the logical
variable X0).

1

(c) We wish to prove that ` { x = 10 } s { ⇓ y = 1024 }. We could of course construct an
entirely new proof outline to show this triple. However, the recipe above tells us how to
adapt our existing proof to this more-specific context: using the recipe we can re-use our
previous proof for the loop. Firstly, we need to find an expression e such that X0 = e in
the precondition of s. Here, we obviously choose e to be 10. Now, according to the recipe,
we can adapt our proven assertion { x = X0 ∧X0 ≥ 0 } s { ⇓ x = X0 ∧ y = 2X0 } to the
new assertion { (X0 ≥ 0)[x/X0] ∧ x = 10 } s { ⇓ (x = X0 ∧ y = 2X0)[10/X0] }, i.e., we
obtain the triple { x ≥ 0 ∧ x = 10 } s { ⇓ x = 10 ∧ y = 210 }. Finally, we can obtain the
desired triple using the rule of consequence:

{ x ≥ 0 ∧ x = 10 } s { ⇓ x = 10 ∧ y = 210 }
Cons

{ x = 10 } s { ⇓ y = 1024 }

And now the solution that does not use the extra rule:

(a) A suitable loop invariant is x = 10 ∧ y = 2z ∧ z ≤ x.

(b) A suitable loop variant is (x− z), as before.

(c) We can now directly prove the claimed triple: ` { x = 10 } s { ⇓ y = 1024 }. Here is the
proof outline:

{x = 10}
⇒
{x = 10 ∧ 1 = 1}
y := 1;

{x = 10 ∧ y = 1}
⇒
{x = 10 ∧ y = 1 ∧ 0 = 0}
z := 0;

{x = 10 ∧ y = 1 ∧ z = 0}
⇒
{x = 10 ∧ y = 2z ∧ z ≤ x}
while z<x do

{x = 10 ∧ y = 2z ∧ z ≤ x ∧ z < x ∧ (x− z) = V0}?
⇒
{x = 10 ∧ y · 2 = 2z+1 ∧ z+ 1 ≤ x ∧ (x− (z+ 1)) < V0}
y := y * 2;

{x = 10 ∧ y = 2z+1 ∧ z+ 1 ≤ x ∧ (x− (z+ 1)) < V0}
z := z + 1

{⇓ x = 10 ∧ y = 2z ∧ z ≤ x ∧ (x− z) < V0}
end

{⇓ x = 10 ∧ y = 2z ∧ z ≤ x ∧ z ≥ x}
⇒
{⇓ x = 10 ∧ y = 210}

? side-condition: this predicate implies (x− z) ≥ 0

2

Assignment 2

The right-to-left direction (⇐) can be shown directly: Suppose that there exist P ′,Q′,R′ with
P ⇒ P ′ and Q′ ⇒ Q and ` { P ′ } s1 { ⇓ R′ } and ` { R′ } s2 { ⇓ Q′ }. Then we can
construct the following derivation:

{ P ′ } s1 { ⇓ R′ } { R′ } s2 { ⇓ Q′ }
Seq

{ P ′ } s1; s2 { ⇓ Q′ }
Cons

{ P } s1; s2 { ⇓ Q }

For the left-to-right direction (⇒) we proceed by induction on the structure of the derivation
of { P } s1; s2 { ⇓ Q }, considering cases for the last rule applied. Given the form of the
statement, there are only two possible cases - either the rule for sequential composition or the
rule of consequence was the last rule applied:

Case 1 - sequential composition rule: Then from the form of the rule, there must be some
predicate R such that we have derivations for { P } s1 { ⇓ R } and { R } s2 { Q }.
Choosing P ′ to be P , Q′ to be Q and R′ to be R, we have exactly the four properties
required.

Case 2 - rule of consequence: Then from the form of the rule, there must be some predi-
cates P ′′ and Q′′ such that P ⇒ P ′′ and Q′′ ⇒ Q and we have a (sub-)derivation for
{ P ′′ } s1; s2 { ⇓ Q′′ }. By applying the induction hypothesis to this sub-derivation, we
know that there exist P ′,Q′ and R′ such that P ′′ ⇒ P ′ and Q′ ⇒ Q′′ and ` { P ′ } s1 { ⇓
R′ } and ` { R′ } s2 { ⇓ Q′ }. By transitivity of implication, we have P ⇒ P ′ and
Q′ ⇒ Q, which concludes the case.

Assignment 3

This question concerns termination and the Zune bug, as discussed in the lectures.

(a) If the triple { true } s { ⇓ true } can be derived, this means that the statement s is
guaranteed to terminate (regardless of the initial state).

(b) See the lecture slides, p.210

(c) See the lecture slides, p.211

Assignment 4

Note that there are two ways to proceed - we could either apply the result of Sheet 12 Assignment
2 directly (twice), or work by induction on the structure of the assumed derivation, and then use
Sheet 12 Assignment 2 (once) during the proof. The latter approach yields a simpler proof, since

3

the induction hypothesis makes everything straightforward in the case that the rule of consequence
was the last applied.

We proceed by induction on the structure of the derivation of { P } (s1; s2); s3 { ⇓ Q },
considering cases for the last rule applied. Given the form of the statement, there are only two
possible cases - either the rule for sequential composition or the rule of consequence was the last
rule applied:

Case 1 - sequential composition rule: Then from the form of the rule, there must be some
predicate R such that we have derivations for { P } (s1; s2) { ⇓ R } and { R } s3 { ⇓ Q }.
By applying the result of Sheet 12 Assignment 2 to the former of these two derivations,
we know that there exist predicates P ′,R′,T ′ such that P ⇒ P ′ and R′ ⇒ R and `
{ P ′ } s1 { ⇓ T ′ } and ` { T ′ } s2 { ⇓ R′ }. Combining all of this information together,
we can construct the following derivation:

{ P ′ } s1 { ⇓ T ′ }

{ T ′ } s2 { ⇓ R′ }

{ R } s3 { ⇓ Q }
Cons

{ R′ } s3 { ⇓ Q }
Seq

{ T ′ } s2; s3 { ⇓ Q }
Seq

{ P ′ } s1; (s2; s3) { ⇓ Q }
Cons

{ P } s1; (s2; s3) { ⇓ Q }

Case 2 - rule of consequence: Then from the form of the rule, there must be some predi-
cates P ′ and Q′ such that P ⇒ P ′ and Q′ ⇒ Q and we have a (sub-)derivation for
{ P ′ } (s1; s2); s3 { ⇓ Q′ }. By applying the induction hypothesis to this sub-derivation,
we know that there exists a derivation of { P ′ } s1; (s2; s3) { ⇓ Q′ }. Extending this new
derivation by the rule of consequence, we obtain { P } s1; (s2; s3) { ⇓ Q } as required.

Assignment 5 - Headache of the week

The code used for s is (as used in Sheet 7 question 1) as follows:

z := 0;

v := 0;

while v<y do

v := 1;

i := 0;

while i<x do

v := v*(z+1);

i := i+1

end;

if v<=y then

z := z+1

else

skip

4

end

end

For the outer loop, the invariant used (see Sheet 7 solutions for a discussion of the main idea)
is:

x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z+ 1)x)

and the variant used is max(0, (y− v)).

For the inner loop, the invariant used is:

x=X0 ∧X0>0 ∧ i≤x ∧ v=(z+1)i ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx)

where we use (x− i) as variant.

5

The proof outline is as follows:

{x=X0 ∧ y=Y0 ∧X0>0 ∧ Y0>0}
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ Y0>0 ∧ 0=0}
z := 0;

{x=X0 ∧ y=Y0 ∧X0>0 ∧ Y0>0 ∧ z=0}
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ Y0>0 ∧ z=0 ∧ 0=0}
v := 0;

{x=X0 ∧ y=Y0 ∧X0>0 ∧ Y0>0 ∧ z=0 ∧ v=0}
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z+ 1)x)}
while v<y do

{x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z+ 1)x) ∧ v<y ∧ V0=max(0, (y− v))}?
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx<y ∧ V0=(y−zx) ∧ 1 = 1}
v := 1;

{x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx<y ∧ V0=(y−zx) ∧ v = 1}
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx<y ∧ V0=(y−zx) ∧ v = 1 ∧ 0 = 0}
i := 0;

{x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx<y ∧ V0=(y−zx) ∧ v = 1 ∧ i = 0}
⇒
{x=X0 ∧X0>0 ∧ i≤x ∧ v=(z+1)i ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx)}
while i<x do

{x=X0 ∧X0>0 ∧ i≤x ∧ v=(z+1)i ∧ i<x ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx) ∧ V1=(x−i)}??
⇒
{x=X0 ∧X0>0 ∧ (i+1)≤x ∧ (v∗(z+1))=(z+1)i+1 ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx) ∧ (x−(i+1))<V1}
v := v*(z+1);

{x=X0 ∧X0>0 ∧ (i+1)≤x ∧ v=(z+1)i+1 ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx) ∧ (x−(i+1))<V1}
i := i+1

{⇓ x=X0 ∧X0>0 ∧ i≤x ∧ v=(z+1)i ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx) ∧ (x−i)<V1}
end;

{⇓ x=X0 ∧X0>0 ∧ i≤x ∧ v=(z+1)i ∧ z≥0 ∧ zx<y ∧ y=Y0 ∧ V0=(y− zx) ∧ i≥x}
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ v=(z+1)x ∧ z≥0 ∧ zx<y ∧ V0=(y− zx)}
if v<=y then

{x=X0 ∧ y=Y0 ∧X0>0 ∧ v=(z+1)x ∧ z≥0 ∧ zx<y ∧ V0=(y− zx) ∧ v≤y}
⇒
{x=X0 ∧ y=Y0 ∧X0>0 ∧ v=(z+1)x ∧ v≤y ∧ (z+1)≥0 ∧ (z+1−1)x<y ∧ V0=(y− (z+1−1)x)}
z := z+1

{⇓ x=X0 ∧ y=Y0 ∧X0>0 ∧ v=zx ∧ v≤y ∧ z≥0 ∧ (z−1)x<y ∧ V0=(y− (z−1)x)}
⇒
{⇓ x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z + 1)x) ∧max(0, (y− v))<V0}

else

{x=X0 ∧ y=Y0 ∧X0>0 ∧ v=(z+1)x ∧ z≥0 ∧ zx<y ∧ V0=(y− zx) ∧ v>y}
skip

{⇓ x=X0 ∧ y=Y0 ∧X0>0 ∧ v=(z+1)x ∧ z≥0 ∧ zx<y ∧ V0=(y− zx) ∧ v>y}
⇒
{⇓ x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z+ 1)x) ∧max(0, (y− v))<V0}

end

{⇓ x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z+ 1)x) ∧max(0, (y− v))<V0}
end

{⇓ x=X0 ∧ y=Y0 ∧X0>0 ∧ z≥0 ∧ zx≤y ∧ (v≤y⇒ v=zx) ∧ (v>y⇒ v=(z+ 1)x) ∧ v≥y}
⇒
{⇓ (v=Y0 ∧ v=ZX0 ∧ ZX0≤Y0 ∧ v≥Y0) ∨ (v>Y0 ∧ v=(z+1)X0 ∧ zX0≤Y0)}
⇒
{⇓ zX0≤Y0 ∧ (z+1)X0 > Y0}

? side-condition: this predicate implies max(0, (y− v)) ≥ 0

?? side-condition: this predicate implies (x−i) ≥ 0

6

Assignment 6

(a) We use the following Promela model.

#define initX 3

#define initY 7

int x = initX, y = initY;

inline s() {

y = 0;

do

:: x > 0 -> y = y + x; x = x - 2;

:: else -> break

od

}

init {

printf("Starting in state where x = %d\n", x);

s();

assert y == 4;

printf("Finishing in state where y = %d\n", y);

}

What changes do we need to make to the model if we want to use proctype s() instead
of inline s()?

(b) The model is as follows.

init {

int x;

if

:: x = 1

:: x = 2; x = x + 2

fi;

assert (x == 1 || x == 4);

printf("Value of x is %d\n", x);

}

(c) The model is as follows.

int x;

init {

7

run Left();

run Right();

/* wait for processes to terminate */

_nr_pr == 1;

printf("Value of x is %d\n", x);

assert x == 1 || x == 3 || x == 4;

}

proctype Left() {

x = 1;

}

proctype Right() {

x = 2;

x = x + 2

}

8

