ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming
Solutions of Exercise Sheet 12: Axiomatic Semantics 2

Assignment 1

We first present a solution that proves a more general result using one of the extra rules described
in the extra material (available from the course website). Then, we also give a straight-forward
solution that proves the claim directly.

(a) Assuming X is the original value of %, a suitable loop invariant is x = XgAy = 22 Az < x.

(b) A suitable loop variant is (x — z). We can now prove the following triple, characterising
the general behaviour of the statement s (using the invariant and variant above): { x =
XoAXo>0}s{lx=XyAy=2% }. Hereis the proof outline:

{XZXoAXOZO}

4

= 1;

i

ol

XoANXo>0Ay=1A0=0}
z = 0;

XoANXo>0Ay=1A2=0}

I
o

—~

X

4

{x=XoANy=22Nz <x}

{x=XoANy=22Nz<zxANz<xA(x—2z)=W}

=

{x=XoAy-2=22""Az+1<xA(x—(z+1)) <V}

{x=XoAy=22"1Az+1<xA(x—(z+1)) <V}

{Ulx=XoAy=22Nz<xA(x—2) <V}
{Ix=XoAy=22Az<xAz>x}

=
{llx:XO/\y:2XU}

* side-condition: this predicate implies (x —z) > 0

However, the next part of the question requires us to make use of this loop in a more-
specific context (when we know x = 10 in the precondition, and do not use the logical
variable Xj).

(c) We wish to prove that = { x =10 } s { || y = 1024 }. We could of course construct an
entirely new proof outline to show this triple. However, the recipe above tells us how to
adapt our existing proof to this more-specific context: using the recipe we can re-use our
previous proof for the loop. Firstly, we need to find an expression e such that Xy = ¢ in
the precondition of s. Here, we obviously choose e to be 10. Now, according to the recipe,
we can adapt our proven assertion { x = Xg A Xo >0} s{{x=XoAy=2% } to the
new assertion { (Xo > 0)[x/Xo] Ax =10} s { | (x = Xog Ay =2%)[10/X,] }, i.e., we
obtain the triple { x > 0Ax =10} s { | x =10 Ay = 2! }. Finally, we can obtain the
desired triple using the rule of consequence:

{x>0Ax=10}s{{ox=10Ay=2""}
{x=10)s{ly=1024}

CoONs

And now the solution that does not use the extra rule:

(a) A suitable loop invariantisx =10 Ay =2* Az < x.
(b) A suitable loop variant is (x — z), as before.

(c) We can now directly prove the claimed triple: - {x =10} s { | y = 1024 }. Here is the
proof outline:

{x =10}

=

(x=10A1=1}

{x=10"ny=1}

=

(x=10Ay=1A0=0}

{x=10Ny=1Az=0}

=

{x=10Ay=22 Nz <x}

\while z<x do\
{x=10"Ny=22Nz<xANz<xA(x—2z)=W}*
=
{x=10Ay-2=22"Az+1<xA(x—(z+1)) <V}

{x=10Ay =22 Az+1<xA(x—(z+1)) <V}

z =z + 1]
{Ux=10"y=22Nz<xA(x—2) <V}
{lx=10"Ny=2"2ANz<xAz>x}
=

{lx=10Ay =20}

* side-condition: this predicate implies (x —z) > 0

Assignment 2

The right-to-left direction (<) can be shown directly: Suppose that there exist P’,Q)', R’ with
P=PadQ@Q =QandF-{ P }s; {yR }andF{ R } sy { | @ }. Then we can
construct the following derivation:
{PYysi{IR} {R/}SQ{UQ/}S Q
E
{P'}ss{1Q}
Cons
{P}ss{lQ}

For the left-to-right direction (=) we proceed by induction on the structure of the derivation
of { P} s1;80 { J @ }, considering cases for the last rule applied. Given the form of the
statement, there are only two possible cases - either the rule for sequential composition or the
rule of consequence was the last rule applied:

Case 1 - sequential composition rule: Then from the form of the rule, there must be some

predicate R such that we have derivations for { P } s; { J R} and { R } s2 { Q }.
Choosing P’ to be P,)’ to be () and R’ to be R, we have exactly the four properties
required.

Case 2 - rule of consequence: Then from the form of the rule, there must be some predi-
cates P” and Q" such that P = P” and Q" = (@ and we have a (sub-)derivation for
{ P"} s1;80 { | Q" }. By applying the induction hypothesis to this sub-derivation, we
know that there exist P',Q)" and R’ such that P = P and Q' = Q" and - { P' } s; { |
R }and - { R } so { || @ }. By transitivity of implication, we have P = P’ and
Q' = @, which concludes the case.

Assignment 3

This question concerns termination and the Zune bug, as discussed in the lectures.

(a) If the triple { true } s { | true } can be derived, this means that the statement s is
guaranteed to terminate (regardless of the initial state).

(b) See the lecture slides, p.210

(c) See the lecture slides, p.211

Assignment 4

Note that there are two ways to proceed - we could either apply the result of Sheet 12 Assignment
2 directly (twice), or work by induction on the structure of the assumed derivation, and then use
Sheet 12 Assignment 2 (once) during the proof. The latter approach yields a simpler proof, since

the induction hypothesis makes everything straightforward in the case that the rule of consequence
was the last applied.

We proceed by induction on the structure of the derivation of { P } (s1;82);83 { | @ },
considering cases for the last rule applied. Given the form of the statement, there are only two
possible cases - either the rule for sequential composition or the rule of consequence was the last
rule applied:

Case 1 - sequential composition rule: Then from the form of the rule, there must be some
predicate R such that we have derivations for { P } (s1;s2) {J R} and { R} s3{ | @ }.
By applying the result of Sheet 12 Assignment 2 to the former of these two derivations,
we know that there exist predicates P’',R’,T" such that P = P’ and R’ = R and F
{P}s;{yT }and - {T"} sy {| R }. Combining all of this information together,
we can construct the following derivation:

{R}S:s{ilQ}
CoNs
{T"}s2 { U R} {R’}S:a{uQ}SEQ
{P s {47} {T’}SQ;Sg{UQ}SEQ
{P/}SB(SQ;SS){UQ}
CoONs
{P}sii(sass) {1 Q}

Case 2 - rule of consequence: Then from the form of the rule, there must be some predi-
cates P’ and @' such that P = P’ and Q' = @ and we have a (sub-)derivation for
{ P} (s1582);83 { | @ }. By applying the induction hypothesis to this sub-derivation,
we know that there exists a derivation of { P’ } s1;(s92;s3) { | @ }. Extending this new
derivation by the rule of consequence, we obtain { P } s1;(s2;53) { {} @ } as required.

Assignment 5 - Headache of the week

The code used for s is (as used in Sheet 7 question 1) as follows:

z := 0;
v := 0;
while v<y do
v :=1;
i = 0;
while i<x do
v o= vx(z+1);
i = i+1
end;
if v<=y then
z = z+1l
else
skip

end
end

For the outer loop, the invariant used (see Sheet 7 solutions for a discussion of the main idea)

is:
x=Xo Ay=Yo A Xo>0 A 2>0 A 2" <y A (v<y = v=2") A (v>y = v=(z + 1)¥)

and the variant used is max(0, (y — v)).

For the inner loop, the invariant used is:
x=Xo A Xog>0 A i<x Av=(z+1)" A z>0 A z°<y A y=Yy A Vo=(y — 2¥)

where we use (x — 1) as variant.

The proof outline is as follows:

{x=X0 A y=Yo A X0>0 A Yp>0}

¢

{X:X() ANy=Yo A Xo>0AYp>0A 020}

0o ANy=Yo A Xo>0A Yo>0 A z=0}

53
I

X
x=X

-

0o ANy=Yo A Xo>0 A Yo>0 A z=0 A 0=0}
:= 0;
x=Xo A y=Yy A X0>0 A Yp>0 A z=0 A v=0}

<
[

-

I

{x=X0o Ay=Yy A Xo>0A2>0 A 2*<y A (v<y = v=2%) A (v>y = v=(z + 1)*)}
while v<y do

{x=X0 ANy=Yo A X0>0Az>0 A 2*<y A (v<y = v=2") A (v>y = v=(z + 1)*) Av<y A Vo=max(0, (y — v)) }*
=
{x=Xo ANy=Yo A Xo>0Az>0 A 2*<y A Vo=(y—2z") A1 =1}

v o= 1;

x=Xo ANy=Yo AN Xo>0ANz>20ANz2"<y A Vo=(y—2F) ANv=

X Yo A Xo>0 >0 A2 Vi * 1

=
{x=Xo ANy=Yo A Xo>0Az>0 A z*<y A Vo=(y—2z*) Av=1A0=0}
{x=X0o ANy=Yo A Xo>0ANz>0 AN 2*<y A Vo=(y—2*) Av=1A1i=0}

Y

{x=X0 A Xo>0 A i<x Av=(2+1)} Az>0 A 2*<y Ay=Yo A Vo=(y — z¥)}
while i<x do
{x=X0 A Xo>0A i<z Av=(z+1)} Ai<x Az>0 A z2*<y A y=Yp A Vo=(y — z¥) A Vi=(x—1)}**

4

{x=X0o A Xo>0 A (i+1)<x A (v¥(z+1))=(z+1)}TL A2>0 A 25<y A y=Yo A Vo=(y — 25) A (x—(i+1))<V1}
v 1= vk(z+1);
{x=Xo A Xo>0 A (i+1)<x A v=(2+1)T A2>0 A z5<y A y=Yy A Vo=(y — 25) A (x—(i+1))<Vi}
i 1= i+1
{U x=X0 A Xo>0 A i<z Av=(z+1)} Az>0 A 2*<y Ay=Yo A Vo=(y — z¥) A (x—1)<V1 }
end;
{J 2=X0 A Xo>0 A i<x Av=(z+1)} Az>0 A z*<y A y=Yy A Vo=(y — 2z¥) A i>x}

4

{x=X0 Ay=Yo A X0>0 Av=(2+1)* Az>0 A 2*<y A Vo=(y — z*)}
if v<=y then
{x=X0o ANy=Yo A Xo0>0 A v=(z+1)* A z>0 A 2*<y A Vo=(y — z¥) Av<y}

4

{x=X0 ANy=Yo A Xo>0 Av=(2+1)* Av<y A (2+1)>0 A (z+1-1)*<y A Vo=(y — (z+1-1)*)}
z := z+l
{Ux=Xo ANy=Yo A Xo>0 Av=z* Av<y Az>0A (z—1)*<y A Vo=(y — (z—1)*)}

4

{U x=Xo ANy=Yo A Xo>0Az>0 A z*<y A (v<y = v=2") A (v>y = v=(2 + 1)*) Amax(0, (y — v))<Vo}

{x=X0 AN y=Yo A Xo>0 Av=(2+1)* AN 2>0 A 2*<y A Vo=(y — 2*) Av>y}
skip
{J x=Xo Ay=Yo A Xo>0 Av=(z+1)* AN 2>0 A 2*<y A Vo=(y — z*) Av>y}

I

{U x=Xo ANy=Yo A Xo>0Az>0 A 2*<y A (v<y = v=2") A (v>y = v=(z + 1)*) Amax(0, (y — v))<Vb}

{Ux=Xo ANy=Yo A X0>0Az>0 A z*<y A (v<y = v=2") A (v>y = v=(z + 1)*) Amax(0, (y — v))<Vb}

{I x=Xo Ay=Yy A Xo>0Az>0 A 2*<y A (v<y = v=2") A (v>y = v=(z + 1)*) Av>y}
=

{I (v=Yo Av=Z%0 A ZX0<Yy Av>Yy) V (v>Yo Av=(z+1)%0 A 2X0<Y)}

=

{U 2X0<Yp A (z+1)%0 > Yo}

* side-condition: this predicate implies max(0,(y —v)) >0

** side-condition: this predicate implies (x—1) > 0

Assignment 6

(a) We use the following Promela model.

#define initX 3
#define initY 7

int x = initX, y = inity;

inline s() {
y=0;
do
x>0 ->y=y+x; Xx=X-2;
:: else —> break
od

init {
printf("Starting in state where x = %d\n", x);
sO;
assert y == 4;
printf ("Finishing in state where y = %d\n", y);

What changes do we need to make to the model if we want to use proctype s() instead
of inline s()?

(b) The model is as follows.

init {
int x;
if
o x =1
i x =2, x=%x+2
fi;
assert (x == 1 || x == 4);
printf("Value of x is %d\n", x);
}
(c) The model is as follows.

int x;

init {

run Left();
run Right(Q);

/* wait for processes to terminate */
_nr_pr == 1;

printf("Value of x is %d\n", x);
assert x == 1 || x == 3 || x == 4;

proctype Left() {
x =1;

3

proctype Right() {
X = 2;
XxX=x+2

by

