
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 11: Axiomatic Semantics

Assignment 1

(a) Recall from the lecture the rule for a while statement:

{ b ∧ P } s {P }
{P } while b do s end {¬b ∧Q } While

where P is called the loop invariant. To show that a formula Q is a loop invariant, we need
to prove two things:

• That Q holds before the loop.

• That Q is preserved by an execution of the loop body.

Let’s see which formula satisfy these two properties. Formula (2) does not hold in the
pre-state of the loop, which can be seen as follows:

{ 0 = 0 }
i := 0

{ i = 0 }
r := 1

{ i = 0 }
6⇒ FAILS, since i = 0
{ i > 0 }

All the other formulas however do hold in the pre-state, which is shown by the following
proof:

{ 0 = 0 }
⇒ (the exercise states that k is positive)
{ 0 = 0 ∧ k > 0 }

1



i := 0

{ i = 0 ∧ k > 0 }
⇒
{ i = 0 ∧ k > 0 ∧ 1 = 1 }

r := 1

{ i = 0 ∧ k > 0 ∧ r = 1 }
⇒
{ i = 0 ∧ i < k ∧ r = ni }

Note that the last formula in the proof is strong enough to imply (2), (3), (4), and (5).

Formula (5) is not a loop invariant of the while loop, since it’s not preserved by the loop’s
body:

while i < k do

{ i ≥ 0 ∧ i < k ∧ r = ni ∧ i < k }
6⇒ FAILS if i = k - 1

{ i+ 1 ≥ 0 ∧ i+ 1 < k ∧ r · n = ni+1 }
i := i + 1;

r := r * n

{ i ≥ 0 ∧ i < k ∧ r = ni }
end

However, formula (4) is preserved by the loop and together with the fact that it holds in
the beginning of the loop, it is a valid loop invariant. The preservation is shown by the
following derivation tree:

{ 0≤i<k ∧ r=ni } i := i+ 1 { 0≤i−1<k ∧ r=ni−1 }
{ 1≤i≤k ∧ r∗n=ni } r := r ∗ n { 0≤i≤k ∧ r=ni }
{ 0≤i−1<k ∧ r=ni−1 } r := r ∗ n { 0≤i≤k ∧ r=ni } Cons

{ 0≤i<k ∧ r=ni } i := i+ 1; r := r ∗ n { 0≤i≤k ∧ r=ni } Seq

{ i<k ∧ i≥0 ∧ i≤k ∧ r=ni } i := i+ 1; r := r ∗ n { i≥0 ∧ i≤k ∧ r=ni } Cons

The proof that formula (3) is also a loop invariant is similar and omitted here.

Summarizing, we have that formulae (1), (3) and (4) are loop invariants, while formulae
(2) and (5) are not.

(b) We show ` { k ≥ 1 ∧K = k } s { r = nK } as follows:

{ k ≥ 1 ∧K = k } }
⇒
{K = k ∧ k ≥ 1 ∧ 0 = 0 }

i := 0;

2



{K = k ∧ k ≥ 1 ∧ i = 0 }
⇒
{K = k ∧ k ≥ 1 ∧ i = 0 ∧ 1 = 1 }

r := 1;

{K = k ∧ k ≥ 1 ∧ i = 0 ∧ r = 1 }
⇒
{K = k ∧ i ≥ 0 ∧ i ≤ k ∧ r = ni }

while i<k do

{K = k ∧ i ≥ 0 ∧ i ≤ k ∧ r = ni ∧ i < k }
⇒
{K = k ∧ i+ 1 ≥ 0 ∧ i+ 1 ≤ k ∧ r ∗ n = ni+1 }

i := i+ 1;

{K = k ∧ i ≥ 0 ∧ i ≤ k ∧ r ∗ n = ni }
r := r ∗ n

{K = k ∧ i ≥ 0 ∧ i ≤ k ∧ r = ni }
end

{K = k ∧ i ≥ k ∧ i ≥ 0 ∧ i ≤ k ∧ r = ni }
⇒
{ r = nK }

Assignment 2

The intuition of the sound rule of consequence is the following: if we execute a statement s in
a state satisfying the constraints P′ (the precondition, e.g. x ≥ 0) and if the final state satisfies
the constraints Q′ (the postcondition, e.g., x ≤ 0), we then can conclude that s will also execute
successfully in a state satisfying the stronger constraints P (e.g. x ≥ 5) and that the final state
at least satisfies the weaker constraints Q (e.g., x ≤ 5).

Assume we have proved the triple { x ≥ 0 } s { x ≤ 0 } for an algorithm that we implemented
as s and that now is to be used by our co-worker Alice.
She does not need to know the actual implementation, but we provide her with the pre- and
postcondition (the contract) so that she knows when (i.e., in which states) she can successfully
use our algorithm and which final states her own program needs to be able to handle after-
wards.

We could provide her with the conditions P′ and Q′, but we decide to give her P and Q instead.
This is valid, because our algorithm s will execute successfully if invoked in a state where x ≥ 5,
since we proved that it does so in all states where x ≥ 0.
Due to the postcondition Q that we gave her, Alice implemented her program in a way such that
it successfully operates on all states where x ≤ 5. This is perfectly fine since s only yields final
states where x ≤ 0.

3



Now consider the unsound rule. This time, let P′, Q′, P and Q be x ≥ 5, x ≤ 5, x ≥ 0 and
x ≤ 0, respectively.

If Alice invokes s in a state where x ≥ 0, an error might occur since our algorithm only guarantees
successful termination in all states where x ≥ 5.
Analogous, if Alice expects that the states resulting from the invocation of s satisfy x ≤ 0, her own
computations might fail since s can actually yield states where x ≤ 5.

Let’s consider a concrete counterexample where { P′ } s { Q′ } is a valid triple, where P′ ⇒ P
and Q⇒ Q′, but where { P } s { Q } is not a valid triple:

{ x > 1 } x := x+ 1 { x > 2 }
{ x ≥ 1 } x := x+ 1 { x > 3 } unsound Cons

If we begin a state where x = 1 then the precondition of this triple holds, but after execution
of the statement, the postcondition of the triple will be false. Therefore, this rule allows us to
deduce unsound conclusions.

Assignment 3

Using { X = z·Y+x ∧ y = Y } as the loop invariant we now prove that

` { x = X ∧ y = Y } s { X = x+ Y · z ∧ Y > x }
{ x = X ∧ y = Y }
⇒
{ X = 0 · Y + x ∧ y = Y }

z := 0;

{ X = z · Y + x ∧ y = Y }
while y <= x do

{ X = z · Y + x ∧ y = Y ∧ y ≤ x }
⇒
{ X = (z+ 1) · Y + x− y ∧ y = Y }

z := z + 1;

{ X = z · Y + x− y ∧ y = Y }
x := x - y

{ X = z · Y + x ∧ y = Y }
end

{ X = z · Y + x ∧ y = Y ∧ y > x }
⇒
{ X = z · Y + x ∧ Y > x }

4



Assignment 4

We prove the claim by an induction over the structure of the statement s.

Base cases

• s = skip:

The following derivation tree shows that for any property P , we have that
` {P } skip { true }:

{P } skip {P }
{P } skip { true } Cons (weakening of the postcondition)

• s = x := e:

The following derivation tree shows that for any property P , we have that
` {P } x := e { true }:

{ true } x := e { true }
{P } x := e { true } Cons (strengthening of the precondition)

Note that true[x 7→ e] is true and thus, the axiom for assignment applies.

Step cases

• s = r; t:

Let P be an arbitrary property. From the induction hypothesis, we have that for all prop-
erties Q and R, we have that ` {Q } r { true } and ` {R } t { true }. Let T1 be a
derivation tree that shows ` {Q } r { true } and let T2 be a derivation tree that shows
` { true } t { true }. With the rule for sequential composition, we construct the following
derivation tree that shows ` {P } r; t { true }:

T1 T2

{P } r; t { true } Seq

• s = if b then r else t end:

Let P be an arbitrary property. By induction hypothesis, we have derivation trees T1 and
T2 for showing ` {P ∧ b } r { true } and ` {P ∧ ¬b } t { true }, respectively. With the
rule for conditionals we construct the following derivation tree that shows
` {P } if b then r else t end { true }:

T1 T2

{P } if b then r else t end { true } If

5



• s = while b do s end:

Let P be an arbitrary property. By induction hypothesis, we have a derivation tree T that
shows ` { b∧ true } s { true }. We construct the following derivation tree by strengthening
the precondition and weakening the postcondition:

T
{ true } while b do s end {¬b ∧ true }
{P } while b do s end { true } Cons

Assignment 5 - Headache of the week

(a) { x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0 } s { z = gcd(X0, Y0) }

(b) A suitable loop invariant is: gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0

(preservation shown below)

6



(c) Here is the proof outline:

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0}
b := x;

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0 ∧ b = X0}
c := y;

{x = X0 ∧ y = Y0 ∧X0 > 0 ∧ Y0 > 0 ∧ b = X0 ∧ c = Y0}
⇒
{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}
while b#c do

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b 6= c}?
if b < c then

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b 6= c ∧ b < c}
⇒
{gcd(x, y) = gcd(b, (c− b+ b)) ∧ b > 0 ∧ (c− b) > 0 ∧ x = X0 ∧ y = Y0 ∧ b < (c− b+ b)}
c := c - b;

{gcd(x, y) = gcd(b, (c+ b)) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b < (c+ b)}
⇒
{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}

else

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b 6= c ∧ b ≥ c}
⇒
{gcd(x, y) = gcd((b− c+ c), c) ∧ (b− c) > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ (b− c+ c) > c}
b := b - c;

{gcd(x, y) = gcd((b+ c), c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ (b+ c) > c}
⇒
{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}

end

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0}
end;

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b = c}
z := b

{gcd(x, y) = gcd(b, c) ∧ b > 0 ∧ c > 0 ∧ x = X0 ∧ y = Y0 ∧ b = c ∧ z = b}
⇒
{z = gcd(X0, Y0)}

7


