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Assignment 1 - loop invariants

Consider the following program s:

i := 0;

r := 1;

while i < k do

i := i + 1;

r := r * n

end

In this exercise we want to find an invariant for the while loop in s. Recall that a loop invariant is a
formula that holds before the loop, and that is preserved by the loop body.

(a) Which of the following formulas are invariants of this loop? You may assume that k stores
a positive integer at the beginning of the program. For those which are not, show why this
is not the case, that is where the proof fails.

i ≥ 0 (1)

i > 0 (2)

i ≥ 0 ∧ r = ni (3)

i ≥ 0 ∧ i ≤ k ∧ r = ni (4)

i ≥ 0 ∧ i < k ∧ r = ni (5)

Hint: You might want to consider the axiomatic semantics rule for while loops.
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(b) Prove in axiomatic semantics, that the above program s computes nk. More formally, show
that

` { k ≥ 1 ∧K = k } s { r = nK }

Hint: You might want to use one of the formulas from above (which are loop invariants)
as you loop invariant in you proof.

Assignment 2 - rule of consequence

Recall the rule of consequence as presented in the lecture

{ P′ } s { Q′ }
{ P } s { Q }

if P⇒ P′ and Q′ ⇒ Q

and compare it to the following unsound variation

{ P′ } s { Q′ }
{ P } s { Q }

if P′ ⇒ P and Q⇒ Q′

Give textual arguments why the first rule is sound and why the second one is not and support your
argumentation in the second case with two counter-examples.

Assignment 3 - program correctness

Consider the following program s computing the quotient and the remainder of x/y.

z := 0;

while y <= x do

z := z + 1;

x := x - y

end

Prove that ` { x = X ∧ y = Y } s { X = x+ Y · z ∧ Y > x }.

Hint: You might need to find a suitable loop invariant.

Assignment 4 - trivial postcondition

Show, by structural induction on the statement s, that ` { P } s { true } for all statements s
and all properties P.
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Assignment 5 - Headache of the week

Consider the following program s computing the greatest common divisor (gcd) of two given
positive integers:

b := x;

c := y;

while b # c do

if b < c then

c := c - b

else

b := b - c

end

end;

z := b

Convince yourself that the program terminates when x and y store positive integers.

Tasks:

(a) Formalise the claim that the above program computes the gcd of x and y as pre- and
postcondition P and Q, respectively.

(b) Find an invariant for the loop.

(c) Show that ` { P } s { Q }.

Recall the definition of the gcd:
Let x, y be positive integers. The number z is the greatest common divisor of x and y iff z|x
and z|y and there is no z′, with z′ > z, such that z′|x and z′|y. Here, z|x means that z divides
x, i.e., z · k = x, for some k ∈ N.

Hint: Consider using a relationship between the input variables x, y and the ’loop’ variables b,
c as part of your loop invariant.
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