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Assignment 1

Let B(n) denote the minimum number of breaks needed to split a bar with n squares. We want to
prove that Vn > 0 = B(n) = n— 1. So we define the predicate P(n) :n > 0= B(n) =n—1.
The proof is based on strong induction. That is, we assume that P(k) is true for all k& < n, and
we want to prove P(n). To prove n > 0 = B(n) =n — 1 we assume n > 0 and we attempt to
prove B(n) =n — 1. Two cases are possible:

e n = 1. In this case, the bar already only consists of small squares. We did use 0 breaks, as
claimed.

e n > 1. No matter how the first break of the bar is made, we will end up with two
smaller pieces. We suppose that the two pieces are of sizes n; and ny. So we have that
ny +ng =mn and ny,ny > 0. Since n; < n Any < n and they are both greater than zero,
we can apply on them the IH. The minimum number of breaks for the initial bar will be
B(n) = B(n1) + B(ns) + 1. By inductive hypothesis, we have that B(n;) = n; — 1 and
B(ng) = ny — 1. Then we have that B(ny) + B(ng) +1=(n1 — 1)+ (ne — 1) + 1 =
n1+n2—1:n—1.

Assigment 2

The proof by strong induction is on the number n of matches in each pile. We assume that the
claim holds for all k < n, and show that it also holds for n.
Suppose that both piles contain n matches, and that the first player removes j matches from
one pile, where 0 < j < n. One pile then contains n matches and the other one n — j matches.
We make a case distinction over j:

e j == n: the second player removes j matches from the other pile. After that, both piles
are empty, and this means that the second player has removed the last match winning the
game.

e j < n: the second player removes j matches from the other pile. After that, the two piles
contain n — j matches. By induction hypothesis, we assumed that V& < n the second



player wins if both the piles contain & matches. Therefore we know that the second player
will win the game with n — 5 matches, and so that it wins the match with n matches.

Assignment 3

The property we want to prove is Va € Aexp : P(a) : Vo,0’ € State,Vx € FV(a) - o(z) =
o'(x) = AJa]o = Ala]o’. We prove it by structural induction on a.

e Base case 1: a is a numeral n. By definition of .4, we have that A[n]o = N[n] and
A[n]o" = N[n]. Then we have that A[n]o = A[n]o’ by the transitive property of equality.

e Base case 2: « is a variable y. By definition of F'V, x € FV(y) is only possible if
r = y. By definition of A, we have that A[z]o = o(z) and A[z]o’ = o'(x). Then, by
the definition of o and o', we have that o(z) = ¢/(z). Therefore, by transitive property of

/

equality we proved that A[n]o = A[n]o’.

e Inductive case: a is an arithmetic expression a; <0P> ay where <0P> € {'4',/ ="/ '}. By
definition of A, we have that Afa; <0P> as]o = Afai]o <0P> AJas]o and Afa; <0P>
az]o’ = Afai]o’ <OP> A[az]o’. By inductive hypothesis, we have that Afa;]o = Afa;]o’
and Afas]o = Afaz]o’. So we have that Afa,]o <0P> Afas]o = AJai]o’ <0P> Afas]o’.
Then by transitive property of equality we proved that Afa; <OP> as]o = Afa;]o’ <OP>
Alaz]o’.

Assignment 4

We define bly +— e] as follows:

e1ly — e] op esly — €| if b is the arithmetic comparison e; op e,

oy — el not b'[y — e] if b is the Boolean expression not &', and
el =

Y bily — e] ® bily — €] if bis the Boolean expression by @ by

with & € {and, or}.
Let e, y and o be arbitrary. We prove by structural induction over b that

BIbly > llo = B8] (oly — Alelo])

e Base Case: b = e; op e5. We have that

Bleily — €] op esly = el]o

Alerly — el]o op Alesly — e]o

Alex](oly = Alelo]) op Alez] (oly — Ale]o])
= Bleiopes](ofy — Ale]o]) .

Bl(e1 op e2)[y — e]]o
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o
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e Step Case: b = not b'. We have that

B[(not V)[y +— e]Jc = Blnot b'[y — e]]o

— By e el
MBI (oly > Alelo)
= B[not V] (cly — Ale]o]).

e Step Case: b = by @ by with @ € {and, or}. We have that

Bl(by © ba)[y = e]]Jo = B

Here, @ denotes the corresponding Boolean operation.

Assignment 5

data Aexp

Num Integer
Var String
Add Aexp Aexp
Sub Aexp Aexp
Mul Aexp Aexp

data Op = Eq | Neq | Le | Leq | Ge | Geq

data Bexp

Rel Op Aexp Aexp
Not Bexp

Or Bexp Bexp
And Bexp Bexp

data State = VarAssign (String -> Integer)

evallAexp ::
(Num n)
(Var x)
(Add el
(Sub el
(Mul el

evalAexp
evalAexp
evalAexp
evalAexp
evalAexp

evalBexp ::
evalBexp (Rel op el e2) sigma =
(evalOp op) (evallexp el sigma) (evallexp e2 sigma)

Aexp

Bexp

-> State -> Integer

n

(VarAssign val) = val x
e2) sigma = (evallexp el sigma) + (evalAexp e2 sigma)
e2) sigma = (evalAexp el sigma) - (evalAexp e2 sigma)
e2) sigma = (evallexp el sigma) * (evalAexp e2 sigma)

-> State -> Bool



where evalOp Eq (==

evalOp Neq = (/=)
evalOp Le = ()
evalOp Leq = (<=)
evalOp Ge = (>)
evalOp Geq = (>=)
evalBexp (Not b) sigma = not (evalBexp b sigma)

evalBexp (Or bl b2) sigma = (evalBexp bl sigma) || (evalBexp b2 sigma)
evalBexp (And bl b2) sigma = (evalBexp bl sigma) && (evalBexp b2 sigma)

Assignment 6

Consider a generic S € V. By definition of V, the set S contains a finite number of elements.
P(n) is the property that states that all descending chains starting from sets with n elements
are finite. We want to prove by strong induction over the number of elements of the set that
Vn >0: P(n).

Let |S| be n. By induction hypothesis we know that n" < n = P(n). We make a case
distinction:

e n = 0: by definition of C the descending chain is composed only by S = ) and so it is
finite.

e n > (0: S is composed of at least one element. This means that in the descending chain
S will be followed by a (possible empty) S” such that S” C S. By induction hipothesis, we
know that the descending chain starting from S’ is finite. Therefore the descending chain
starting from S is finite as well.

The induction principle for the relation C is as follows: (VS.(VI' C S.P(T)) = P(S)) =
VS.P(S), i.e., prove the property P for a set S under the assumption that P holds forany ' C S.

Let us use the induction principle to prove that any set S € V has 2!5 subsets. Let S be a
set in V. We have to make a case distinction:

e If S =0 then 2/51 =20 =1, that is the empty set itself.

e Otherwise, S contains at least one element and we can consider a a € S. By induction
hypothesis, we know that S\ {a} has 2/°/=! subsets s, ..., sys/-1. The subsets of S are
all subsets of S\ {a} (si,...,sys1-1, that are 219171) and all these subsets unified with {a}
(s1U{al,...,sqs-1 U{a}, that are 21°1=1). Then we have 2 - 215171 = 2!5| sybsets.



