
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 12: Axiomatic Semantics 2

Submission deadline: May 30th, 2010

Please submit your solution before 9:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes to the left of RZ F1. Make sure that the first
page always contains your name, the exercise sheet number as well as your tutor’s name and the
weekday (Tuesday or Wednesday) of your exercise group. Don’t forget to staple your pages if
you submit more than one page.

Extra Note

For the headache (and maybe assignment 1), you may want to work on an inner loop and then
“plug in” your proof to a larger context. If you choose to do this then (as discussed in the exer-
cises), you should make use of the frame rule (not required for the exam):

{ P } s { Q }
(if FV(s) ∩ FV(R) = ∅)

{ P ∧R } s { Q ∧R }

Furthermore, you may need to eliminate extra logical variables from your inner proof. e.g., If we
have proven { P ∧ x = X0 } s { Q } and want to use it in a larger proof in which the logical
variable X0 does not occur, you can employ the following recipe:

(a) Find an expression e for the value of x in the precondition of x. The expression e comes
from analysis of the code which comes before s - it should not mention X0 (and, for
simplicity, we assume e will also not have variables in common with s).

(b) You can then assume that ` { P [x/X0] ∧ x = e } s { Q[e/X0] }.

(c) Use the frame rule further to conjoin any extra information which needs to be preserved
across execution of s.

(d) Use the resulting triple in the larger proof, when dealing with s.

None of the note above is necessary for the exam - it just might help you construct large examples.
If you’d like to read about this in more detail, there are some extra notes in a separate document
online.

1



Assignment 1

Let s be the following statement:

y := 1;

z := 0;

while z<x do

y := y * 2;

z := z + 1

end

(a) What might be a suitable loop invariant?

Hint: Mention all of the variables mentioned in the loop.

(b) Find a suitable loop variant.

(c) Prove that ` { x = 10 } s { ⇓ y = 1024 }.

Assignment 2

Show that (for all statements s1,s2, and for all predicates P and Q):

` { P } s1; s2 { ⇓ Q } ⇔ there exist P ′,Q′,R′ such that:


P ⇒ P ′

Q′ ⇒ Q
{ P ′ } s1 { ⇓ R′ }
{ R′ } s2 { ⇓ Q′ }

Assignment 3

This question concerns termination and the Zune bug, as discussed in the lectures.

(a) Suppose that, for some statement s, the triple { true } s { ⇓ true } can be derived. What
does this tell us about s?

(b) Let s′ be the following IMP statement:

while (365 < days) do

if (L(year)) then

if (366 < days) then

days = days - 366; year = year + 1

else

skip

end

2



else

days = days - 365; year = year + 1

end

end

We assume that L(year) may be used as a boolean expression. Using days as a loop variant,
attempt to derive that ` { true } s′ { ⇓ true }. Where does your proof fail?

(c) Let s′′ be the following (corrected) IMP statement:

while (L(year) and 366 < days or not L(year) and 365 < days) do

if (L(year)) then

days = days - 366

else

days = days - 365;

end;

year += 1

end

Show that ` { true } s′′ { ⇓ true }.

Assignment 4

Show that, for all statements s1,s2 and s3, and for all predicates P and Q:

` { P } (s1; s2); s3 { ⇓ Q } ⇒ ` { P } s1; (s2; s3) { ⇓ Q }

Assignment 5 - Headache of the week

Recall the first exercise of sheet 7, in which you wrote a program to compute the floor of the
Mth root of N (when M > 0 and N ≥ 0 are both integers). This question requires an IMP
statement to perform the same task - given that the values M and N are stored in variables x
and y respectively, define an IMP statement s which is guaranteed to terminate, and which, on
termination, will have stored in a variable z the value b M

√
Nc. You may choose s to be any IMP

statement which you believe achieves this goal - you might like to use your solution to sheet 7,
or the sample solution.

Prove, that

` { x =M ∧ y = N ∧ M > 0 ∧ N ≥ 0 } s { ⇓ zM ≤ N ∧ N < (z+1)M }

3



Assignment 6

In the lecture, you have seen parts of the modelling language Promela. In this and later assign-
ments you will use Promela and the model checker Spin for modelling and analysing concurrent
programs. You can find detailed information about how to install the model checker Spin on your
computer at the webpage http://spinroot.com/spin/Man/README.html.

Some useful information for running Spin:

• If Spin is invoked without any options, it performs a random simulation. For example,

$ spin foo.pr

performs a random simulation for the Promela model specified in the file foo.pr.

• The command line option -a generates a protocol specific analyzer. The output is written
into a C file pan.c, which you can, e.g., compile with the GNU C compiler. Running the
compiled file will explore the state space of the Promela model and check whether the
model might deadlock. The assertions in the model are also checked.

$ spin -a foo.pr

$ gcc -o pan pan.c

$ ./pan

Note that there is also a graphical interface for Spin, called iSpin, which you can also down-
load from the Spin webpage http://spinroot.com. We recommend that you also install iSpin
on your computer. See http://spinroot.com/spin/Man/Manual.html#S for more informa-
tion.

The purpose of this assignment is to get familiar with Promela and the model checker Spin.

(a) Consider again the following statement (which you already saw on previous exercise sheets).

y := 0;

while x > 0 do

y := y + x;

x := x - 2

end

Write a model in Promela to check if the statement starts in a state σ with σ(x) = 3, it
will reach a state σ′ with σ′(y) = 4.

(b) Write a model in Promela to verify that the following program will result in a state in which
x has either the value 1 or 4.

x := 1 x := 2;x := x+ 2

(c) Write a model in Promela to verify that the following program will result in a state in which
x has one of the values 1 or 3 or 4.

x := 1 par x := 2;x := x+ 2

4


