
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 10: Small Step Semantics

Submission deadline: May 16th, 2011

Please submit your solution before 9:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes to the left of RZ F1. Make sure that the first
page (and preferably each sheet) always contains your name, the exercise sheet number as well
as your tutor’s name and the weekday (Tuesday or Wednesday) of your exercise group. Don’t
forget to staple your pages if you submit more than one page.

Notation: As in slide 105 of the lectures, we use the vector notation σ[~y 7→~v], as a shorthand
for a (possibly empty) sequence of state updates. i.e., for some m ≥ 0, σ[~y 7→~v] abbreviates
σ[y1 7→v1][y2 7→v2] . . . [ym 7→vm], for some sequences of variables ~y = y1, y2, . . . , ym and corre-
sponding values ~v = v1, v2, . . . , vm. For empty sequences (i.e., m = 0), then σ[~y 7→~v] is just
σ.

Assignment 1 - implementing SOS

You find a solution of this assignment in the literate Haskell file simpi.lhs.

Assignment 2 - states and state updates

(i) Proof: We need to show that, ∀y ∈ Var, σ[x 7→v1][x 7→v2](y) = σ[x 7→v2](y). For arbitrary
y ∈ Var, we have (using the definition of state update):

σ[x 7→v1][x 7→v2](y) =

{
v2 if y = x
σ[x 7→v1](y) otherwise

=

{
v2 if y = x
σ(y) otherwise

= σ[x 7→v2](y)

1



(ii) Proof: We need to show that, if x 6= y, then ∀z ∈ Var, σ[x 7→v1][y 7→v2](z) =
σ[y 7→v2][x 7→v1](z). For arbitrary z ∈ Var, we have (using the definition of state update):

σ[x 7→v1][y 7→v2](z) =

{
v2 if z = y
σ[x 7→v1](z) otherwise

=


v2 if z = y
v1 if z = x (and z 6= y but we know x 6= y)
σ(z) otherwise

=


v1 if z = x
v2 if z = y (and z 6= x but we know x 6= y)
σ(z) otherwise

=

{
v1 if z = x
σ[y 7→v2](z) otherwise

= σ[y 7→v2][x 7→v1](z)

Note that the reordering of the cases in the function definition only works because we
assumed x 6= y - this condition is necessary (and indeed, the result isn’t true otherwise).

(iii) Proof: By strong induction on m (the sequence length). Let ~y and ~v′ be arbitrary
sequences of length m, and let σ be an arbitrary state (we use a different name from the
quantified σ′). Then we need to show, σ[x 7→v1][~y 7→~v′][x 7→v2] = σ[~y 7→~v′][x 7→v2], and
we can assume (our induction hypothesis) that the corresponding property holds for any
sequences of smaller (than m) length, and for all states σ′.

We consider two cases:

(m = 0): Then we need to show σ[x 7→v1][x 7→v2] = σ[x 7→v2]. This follows from part (i)
of the question.

(m > 0): Consider the first variable y1. We consider two (sub-)cases:

(y1 = x): Then, by part 1 of the question, σ[x 7→v1][y1 7→v′1] = σ[y1 7→v′1], and so we
have σ[x 7→v1][~y 7→~v′][x 7→v2] = σ[~y 7→~v′][x 7→v2] as required.

(y1 6= x): Then, by part 2 of the question, σ[x 7→v1][y1 7→v′1] = σ[y1 7→v′1][x 7→v1].
Now, what we need to show is equivalent to: (σ[y1 7→v′1])[x 7→v1][y2 7→v′2] . . . [ym 7→v′m][x 7→v2] =
(σ[y1 7→v′1])[y2 7→v′2] . . . [ym 7→v′m][x 7→v2]. Since the sequences y2, . . . , ym and
v′2, . . . , v

′
m are of smaller length than m, this follows from our induction hy-

pothesis, taking σ′ to be (σ[y1 7→v′1]).

2



Assignment 3 - last year’s exam

Let s’ be the body of the loop.

〈s, σ〉 →1 〈if n# 0 then s’; s else skip end, σ〉
→1 〈a := a+n; b := b*n; n := n-1; s, σ〉
→1 〈b := b*n; n := n-1; s, σ[a 7→ 2]〉
→1 〈n := n-1; s, σ[a, b 7→ 2, 2]〉
→1 〈s, σ[a, b, n 7→ 2, 2, 1]〉
→1 〈if n# 0 then s’; s else skip end, σ[a, b, n 7→ 2, 2, 1]〉
→1 〈a := a+n; b := b*n; n := n-1; s, σ[a, b, n 7→ 2, 2, 1]〉
→1 〈b := b*n; n := n-1; s, σ[a, b, n 7→ 3, 2, 1]〉
→1 〈n := n-1; s, σ[a, b, n 7→ 3, 2, 1]〉
→1 〈s, σ[a, b, n 7→ 3, 2, 0]〉
→1 〈if n# 0 then s’; s else skip end, σ[a, b, n 7→ 3, 2, 0]〉
→1 〈skip, σ[a, b, n 7→ 3, 2, 0]〉
→1 σ[a, b, n 7→ 3, 2, 0]

Assignment 4 - composing executions

Proof: By strong induction on number of steps k.
The case (k = 0) leads to a contradiction, since we assume our derivation sequence ends in

a final state. The case (k = 1) is equivalent to the first rule of the structural semantics for
sequential composition, and therefore follows easily.

Let’s consider the case where k ≥ 2. Recall that our induction hypothesis lets us assume that
the proposition holds for n < k, i.e. for any n < k and for all statements p, q and states τ, τ ′:

〈p, τ〉 →n
1 τ
′ ⇒ 〈p; q , τ〉 →n

1 〈q, τ ′〉 IH

Our assumption from the question is also that

〈s1, σ〉 →k
1 σ
′ A1

We want to prove that

〈s1; s2 , σ〉 →k
1 〈s2, σ′〉

From A1 and the fact that k ≥ 2, we have that there is a configuration 〈sA, σA〉 such that

〈s1, σ〉 →1 〈sA, σA〉 →k−1
1 σ′ A2

which, by IH (instantiate: τ = σA, τ ′ = σ′, p = sA and q = s2), becomes

〈sA; s2 , σA〉 →k−1
1 〈s2, σ′〉

and therefore what remains to be proven is:

〈s1; s2, σ〉 →1 〈sA; s2 , σA〉
This is proven by A2 and the second rule of the structural semantics for sequential composition.

3



Assignment 5 - executing in similar states

(EDIT 04/06: In the single-step lemma below, and in the general result proved over the length
of derivation sequences, we need the extra information in the second of the two cases, that the
resulting statement doesn’t contain any new free variables compared with the original statement;
i.e., FV(s′) ⊆ FV(s) below. Without the stronger induction hypothesis which this provides, we
can’t make the eventual argument work, at point (∗) below).

As is typical for interesting results about small-step semantics, we first need to prove the
analogous result for single-step derivations, and then generalise to derivation sequences. Here is
the single-step version, as a lemma: For all states σ, σ′, statements s and configurations γ, if
∀y ∈ FV(S), (σ(y) = σ′(y)) and also 〈s, σ〉 →1 γ, then there exist variables ~x and corresponding
values ~v such that the ~x are all free variables of s (i.e., {~x} ⊆ FV(s)) such that either :

1. γ = σ[~x7→~v] and 〈s, σ′〉 →1 σ
′[~x7→~v], or

2. there exists a statement s′ such that γ = 〈s′, σ[~x7→~v]〉 and FV(s′) ⊆ FV(s) and 〈s, σ′〉 →1

〈s′, σ′[~x7→~v]〉.

Proof We prove the result by induction on the derivation of 〈s, σ〉 →1 γ, considering cases for
each possible last rule applied in the derivation:

SkipSOS Then s = skip and γ = σ. The result follows (taking empty sequences ~x and ~v), since
we can derive 〈skip, σ′〉 →1 σ

′ by the same rule.

AssSOS Then, for some x and e we have s = x:=e and γ = σ[x 7→ A[[e]]σ]. Note that, by the
same rule, we can derive 〈x:=e, σ′〉 →1 σ

′[x 7→ A[[e]]σ′]. By our previous result (Sheet
8, question 3), since FV(e) ⊆ FV(s), we can deduce that A[[e]]σ = A[[e]]σ′. The result
follows, taking singleton sequences (x1 = x and v1 = A[[e]]σ = A[[e]]σ′).

Seq1SOS Then s = s1;s2 for some s1, s2, and for some σ′′ we have 〈s1, σ〉 →1 σ
′′ and γ =

〈s2, σ′′〉. By induction hypothesis (applied to the sub-derivation of 〈s1, σ〉 →1 σ
′′), we

obtain (from case 1, since σ′′ is a final state) that σ′′ = σ[~x7→~v] for some ~x in FV(s1) and
some corresponding ~v, and furthermore, that 〈s1, σ′〉 →1 σ

′[~x7→~v] (this follows from the
induction hypothesis, because FV(s1) ⊆ FV(s), and so we know that ∀y ∈ FV(s1), (σ(y) =
σ′(y))).

We aim to show that case 2 of our result holds (since γ is not a final state). Note that,
since FV(s1) ⊆ FV(s) we also know that the ~x are also free variables of s, and note
that we also know FV(s2) ⊆ FV(s). We can apply the rule Seq2SOS to the fact that
〈s1, σ′〉 →1 σ

′[~x7→~v], to conclude 〈s, σ′〉 →1 〈s2, σ′[~x7→~v]〉 as required.

Seq2SOS Then s = s1;s2 for some s1, s2, and for some σ′′ and s3 we have 〈s1, σ〉 →1 〈s3, σ′′〉
and γ = 〈s3;s2, σ′′〉. By induction hypothesis (applied to the sub-derivation of 〈s1, σ〉 →1

〈s3, σ′′〉), we obtain (from case 2, since 〈s3, σ′′〉 is not a final state) that FV(s3) ⊆ FV(s1)
and, for some ~x in FV(s1) (⊆ FV(s)) and some corresponding ~v, σ′′ = σ[~x7→~v], and
furthermore, that 〈s1, σ′〉 →1 〈s3, σ′[~x7→~v]〉 holds.

We aim to show that case 2 of our result holds (since γ is not a final state). Since
FV(s3) ⊆ FV(s1), we have FV(s3;s2) ⊆ FV(s1;s3). Using our knowledge that 〈s1, σ′〉 →1

4



〈s3, σ′[~x7→~v]〉 holds, and applying the rule Seq2SOS, we can derive 〈s1;s2, σ′〉 →1 〈s3;s2, σ′[~x7→~v]〉
as required.

IfTSOS Then s = if b then s1 else s2 end for some b, s1, s2, and we know γ = 〈s1, σ〉 and
B[[b]]σ = tt . By the generalisation of Sheet 8, question 3 to boolean expressions, we must
also have that B[[b]]σ′ = tt (since FV(b) ⊆ FV(s), and so we know that σ(y) = σ′(y) for
all y in FV(b)). Therefore, by applying the same derivation rule, we can derive 〈s, σ′〉 →1

〈s1, σ′〉 as required.

IfFSOS Analogous to the case for IfTSOS.

WhileSOS Then s = while b do s1 end for some b, s1, and
γ = 〈if b then s1;while b do s1 end else skip end, σ〉. Note that
FV(if b then s1;while b do s1 end else skip end) = FV(b)∪FV(s1) = FV(s). By apply-
ing the same rule, we can derive 〈s〉σ′ →1 〈if b then s1;while b do s1 end else skip end, σ′〉
as required.

Having proved our result for single-step reductions, we generalise it to reduction sequences:
(EDIT 04/06: compared with the question, we prove the stronger result which includes the
condition FV(s′) ⊆ FV(s) in the second cases, i.e., we prove:
for all states σ, σ′, statements s and configurations γ, if ∀y ∈ FV(S), (σ(y) = σ′(y)) and also
〈s, σ〉 →∗1 γ, then there exist variables ~x and corresponding values ~v such that the ~x are free
variables of s (i.e., {~x} ⊆ FV(s)) such that either :

1. γ = σ[~x 7→ ~v] and 〈s, σ′〉 →∗1 σ′[~x 7→ ~v], or

2. there exists a statement s′ such that γ = 〈s′, σ[~x 7→ ~v]〉 and 〈s, σ′〉 →∗1 〈s′, σ′[~x 7→ ~v]〉
and FV(s′) ⊆ FV(s)

)

Proof By induction on the number of steps (let’s call this l) of the derivation sequence justifying
〈s, σ〉 →∗1 γ.

Base case (l = 0): Then our initial and final configurations are the same, and we have nothing
to prove (we just take empty sequences ~x and ~v, and we satisfy the second case of our
desired result easily.

Inductive case (l = k + 1): Then, for some intermediate configuration 〈sk, σk〉, we have 〈s, σ〉 →k
1

〈sk, σk〉 and 〈sk, σk〉 →1
1 γ. By induction, we obtain that (*) FV(sk) ⊆ FV(s), and that

for some ~x in FV(s), and ~v, we have σk = σ[~x 7→ ~v] and 〈s, σ′〉 →k
1 〈sk, σ′[~x 7→ ~v]〉. Now,

we apply the one-step version of our result to 〈sk, σk〉 →1
1 γ, and we obtain that, for some

~x′ in FV(sk), and some corresponding ~v′, one of two possible cases occur (as stated in our
lemma):

1. (Case 1 : γ = σk[~x′ 7→~v′] and 〈sk, σ′[~x 7→ ~v]〉 →1 σ
′[~x 7→ ~v][~x′ 7→~v′]). Then, by (*)

above, we have that ~x′, ~x are all in FV(s), and that 〈s, σ′〉 →∗1 σ′[~x 7→ ~v][~x′ 7→~v′] as
required.

5



2. (Case 2: γ = 〈s′, σk[~x′ 7→~v′]〉 for some s′ with FV(s′) ⊆ FV(sk) and 〈sk, σ′[~x 7→
~v]〉 →1 〈s′, σ′[~x 7→ ~v][~x′ 7→~v′]〉). Then we have:
σk[~x′ 7→~v′] = σ[~x 7→ ~v][~x′ 7→~v′], and we satisfy the second case of our result, by (*)
(which justifies that ~x′, ~x are all in FV(s) and that FV(s′) ⊆ FV(s) and that we can
derive 〈s, σ′〉 →∗1 〈s′, σ′[~x 7→ ~v][~x′ 7→~v′]〉 as required.

Assignment 6 - Headache of the week: reordering programs

Assume FV(s1) ∩ FV(s2) = ∅, and let σ1, σ2 be arbitrary states such that 〈s1; s2, σ1〉 →∗1 σ2
holds. Then, we need to show that 〈s2; s1, σ1〉 →∗1 σ2 holds.

Firstly, by the lemma from slide 132 in the lectures, we obtain (ignoring the exact number of
steps involved in the derivation sequences) that there exists a state σ3 such that both 〈s1, σ1〉 →∗1
σ3 and 〈s2, σ3〉 →∗1 σ2 hold. By applying Lemma 1 stated in the question to the statement
〈s1, σ1〉 →∗1 σ3, we obtain that σ3 = σ1[~x7→~v] for some ~x which are free variables of s1, and for
some ~v. Similarly, applying to the Lemma 1 to 〈s2, σ3〉 →∗1 σ2, we have that σ2 = σ3[~y 7→~v′] for
some ~y which are free variables of s2, and for some ~v′. Note that, since we assumed that FV(s1)
and FV(s2) are disjoint, the two sequences ~x and ~y must also be disjoint.

Now, consider the states σ1 and σ3 = σ1[~x7→~v]. Since all of the variables ~x are in FV(s1),
we know that, ∀z ∈ FV(s2).(σ1(z) = σ3(z)). Therefore, we can apply the result proved in
the previous question, using the statement 〈s2, σ3〉 →∗1 σ3[~y 7→~v′], to obtain instead 〈s2, σ1〉 →∗1
σ1[~y 7→~v′].

Similarly, since it holds that ∀z ∈ FV(s1).(σ1(z) = σ1[~y 7→~v′](z)), then we can apply the
result of the previous question to the statement 〈s1, σ1〉 →∗1 σ1[~x7→~v] to obtain instead that
〈s1, σ1[~y 7→~v′]〉 →∗1 σ1[~y 7→~v′][~x7→~v]. Note that, by Lemma 2, this final state σ1[~y 7→~v′][~x7→~v] =
σ1[~x7→~v][~y 7→~v′] = σ2. Therefore, we actually have, 〈s1, σ1[~y 7→~v′]〉 →∗1 σ2.

Returning to our knowledge that 〈s2, σ1〉 →∗1 σ1[~y 7→~v′] holds, we can now apply the result
proved in question 4, to obtain 〈s2; s1;, σ1〉 →∗1 〈s1, σ1[~y 7→~v′]〉. Combining this information with
〈s1, σ1[~y 7→~v′]〉 →∗1 σ2 we obtain that 〈s2; s1;, σ1〉 →∗1 σ2 as required.

6


