
D. Basin and P. Müller

Formal Methods and Functional Programming

Exercise Sheet 9: Big Step Semantics

Submission deadline: May 9th, 2011

Please submit your solution before 9:15am on the submission date specified above. Solutions
can be submitted via e-mail or by using the boxes to the left of RZ F1. Make sure that the first
page (and preferably each sheet) always contains your name, the exercise sheet number as well
as your tutor’s name and the weekday (Tuesday or Wednesday) of your exercise group. Don’t
forget to staple your pages if you submit more than one page.

Assignment 1 - Last year’s exam!

Consider the following IMP statement s:
while n # 0 do

a := a+n;

b := b*n;

n := n-1

end

Let σ be a state such that σ(a) = 0, σ(b) = 1, and σ(n) = 2. Prove using the natural
semantics that there is a state σ′ with σ′(a) = 3, σ′(b) = 2, and σ′(n) = 0 such that 〈s, σ〉 → σ′.
Hint: provide the complete derivation tree. You have to explicitly write the names of the rules

you apply at each derivation step.

Assignment 2 - Last year’s exam!

Consider the extension of the IMP programming language with the following statement:

for(s1, b, s2) s end

Give derivation rule(s) in natural semantics for this statement. Your rule(s) must not make use
of the while statement. The semantics of this statement is identical to the for-loop statement
for(s1; b; s2) {s} in Java and C#.

Assignment 3

In the lecture, you have seen the proof of the direction from left to right of the following claim:

〈while b do s end, σ〉 → σ′ ⇔ 〈if b then s; while b do s end else skip end, σ〉 → σ′

1



Prove the direction from right to left of the claim.

Assignment 4

In this assignment you will write a simple interpreter for IMP programs. You will use the
programming language Haskell. A skeleton of the IMP interpreter as a literate Haskell file
is available at the course web page. The skeleton file contains the data types for arithmetic
expressions, Boolean expressions, and statements for representing IMP programs in Haskell.
Moreover, the skeleton file contains some auxiliary functions. You have to use this skeleton
file instead of what you have developed in assignment 5 of exercise sheet 8. The skeleton
contains already a parser and several auxiliary functions (e.g., evaluation of arithmetic and Boolean
expressions).

Download the skeleton file and complete the definition of the function
transNS :: Config -> Config

The place where you should insert your code in the skeleton file is marked by the word TODO.
The function transNS should encode the rules of the transition relation from the lecture for the
natural semantics. Feel free to extend IMP, e.g., with local variables.

Please mail your solution of this assignment together with some test cases to your tutor. The
email addresses of the tutors are:

Alex Summers alexander.summers@inf.ethz.ch

Yannis Kassios ioannis.kassios@inf.ethz.ch

Pietro Ferrara pietro.ferrara@inf.ethz.ch

Stefan Heule stheule@student.ethz.ch

Assignment 5 - Headache of the week

Extend the natural semantics of IMP to support exceptions.
You have to introduce two new statements (where ex ∈ ExcNames is the name of an excep-

tion):

• throw ex throws an exception ex

• try s catch(ex) s1 executes s, and if it throws an exception ex it executes s1

Hint: you have to modify the structure of the state on which the natural semantics is defined.

2


