ETH

Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich D. Basin and P. Muller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 9:
Big Step Semantics

Assignment 1

LHM

[0c ‘e« u‘a‘e] + ([T‘C‘C ++ u‘a‘e] ‘pue T op o#u oTTUM)
M [0‘c‘e <~ u‘a‘e] « ([0‘C‘e i u‘q‘e]‘m) vag [0‘c‘g «nu‘qe] « ([T‘C‘C <~ u‘q‘e]‘7-u =: u ‘uxq =: q ‘U+e =: ®)
vag [0‘Cg < u‘qie] « ([T‘c‘e «mu‘a‘®] ‘7-u =: u fuxq =: q)
sy [0 < u‘a‘e] «— ([Tc ‘e« u‘q‘e] ‘1-u =: u)

[Tz «nu‘qe] « ([1‘C ‘g < u‘q‘e] ‘use

=: ®)

Ssy
ssy [Tz < u‘qe] « ([T‘C‘e <+ u‘q‘e] ‘uxq =: q)

19941 UOI1BALIBP 3UIMO[|0) BY3 SI T2 auaym

THAL 0z« u‘ae] < ([g‘T‘0 < u‘a‘e]‘pue T op O#u oTTYAM)
17 vag [T‘ccu‘ae]+ ([g'T‘O«u‘q‘e]‘r-u =: u fuxq =: q ‘u+e =: e)
oag [Tcc+uae+ (g Tz u'ae'T-u =: u fuxq =: q) ssv gtz uae « ([g'T'0 1 u‘ae]‘me =: ®)
S8V [Tcc+u‘a‘e] + ([g‘c‘c < u‘qe]‘t-u =: uw sy [ccc+iu‘ae] <« (g'T'cu‘a®uxq =: q)
.T\\Q\h...nHQ\A'_ &\w“..

“‘Ta] se ‘AjpAoadsas IaC - - ‘Ta so|qelieA ayy 03 fu ‘- Ty s19891ul 9yl SuSisse 1eyl O 91e1S B 1M M ‘JSAOSIO|N
puS T Op Q#U STTUM JUSWSILISSY} M PUB T-U =: U ‘Uxq =: ¢ ‘U+B =: B JUSWDIILIS 33 SI] :Suolleinaiqqe Suimo||o) oyl asn ap\

Assignment 2

(s; $9,0) — 01 (for(skip, b, s3) s end,oq) — 0’

(for(skip, b, s») s end,o) — o’ B[b]o = tt
(for(skip, b, s3) s end,0) = 0 Blb]o = [f
(s1,0) = o1 (for(skip, b, s2) s end,o1) — o o skip

(for(sy, b, s3) s end,o) — o

Assignment 3

For the direction from right to left, we consider the derivation tree for

(if b then s; while b do s end else skip end, o) — o

The last applied rule in this derivation tree is a rule for the if-then-else statement. So, the
derivation tree has either the form

(s; while b do s end,o) — o”

(if b then s; while b do s end else skip end,o) — o” IFT (1)
or
(skip, o) — 0" -
(if b then s; while b do s end else skip end,o) — o” F (2)

e Let us first consider the case (2). The rule is only applicable when B[b]o = ff. Furthermore,
with the rule for skip, we conclude that o = ¢”. We construct the following derivation
tree:

(while b do s end,0) — o Wik

e Let us now consider the case (1). The rule is only applicable when B[b]o = tt. The next
applied rule in the derivation tree must be for sequential composition. The last part of the
derivation tree has the form

(s,0) — ¢ (while b do s end,o’) — o”
(s; while b do s end,o) — o”
(if b then s; while b do s end else skip end,o) — o’

SEQ

IrT

Let 77 be the derivation tree above (s,0) — ¢’ and let T, be the derivation tree above
(while b do s end,o’) — o”. We construct the following derivation tree:

T, T,
(s,0) — ¢’ (while b do s end,o’) — o”
(while b do s end,o) — o”

WHT

Assignment 4

You find a solution of this assignment in the literate Haskell file simpi_onlyns.1hs.

Assignment 5 - Headache of the week

In order to support exceptions, we have to add to the set of states some “exceptional” states to
represent computation in which an exception has been thrown. When an exception is thrown, we
have to collect the state of the computation of the name of the thrown exception. We represent an
“exceptional” state by an element in State X ExcNames. Then we define the new set of states as
the union of “normal” and “exceptional” states. Formally, State’ = StateU(State x ExcNames).

The natural semantics has to be extended with the following rules, where 0,0’ € State and
T € State'.

(throw ex,o) — (0, ex)
(s,0) = (o', ex) (s1,0') =T
(try s catch(ex) s1,0) =T

(s,0) = (0, ex’)

/
(try s catch(ex) si,0) — (0, ex’) e e

(s,o) = o
(try s catch(ex) s1,0) — o’

The semantics of other statements (assignment, skip, concatenation, if-then-else, while loop)
is the same of the one introduced in the lecture when dealing with states in State.

In the case of an exceptional state in State x ExcNames we have to carry on the exception.
This is formalized by the following rule, where s is a statement other than try-catch.

(s, (0,ex)) — (o, ex)

