
D. Basin and P. Müller

Formal Methods and Functional Programming

Solutions of Exercise Sheet 8:
Structural Induction

Assignment 1

Let B(n) denote the minimum number of breaks needed to split a bar with n squares. We want to
prove that ∀n > 0⇒ B(n) = n− 1. So we define the predicate P (n) : n > 0⇒ B(n) = n− 1.
The proof is based on strong induction. That is, we assume that P (k) is true for all k < n, and
we want to prove P (n). To prove n > 0⇒ B(n) = n− 1 we assume n > 0 and we attempt to
prove B(n) = n− 1. Two cases are possible:

• n = 1. In this case, the bar already only consists of small squares. We did use 0 breaks, as
claimed.

• n > 1. No matter how the first break of the bar is made, we will end up with two
smaller pieces. We suppose that the two pieces are of sizes n1 and n2. So we have that
n1 + n2 = n and n1, n2 > 0. Since n1 < n ∧ n2 < n and they are both greater than zero,
we can apply on them the IH. The minimum number of breaks for the initial bar will be
B(n) = B(n1) + B(n2) + 1. By inductive hypothesis, we have that B(n1) = n1 − 1 and
B(n2) = n2 − 1. Then we have that B(n1) + B(n2) + 1 = (n1 − 1) + (n2 − 1) + 1 =
n1 + n2 − 1 = n− 1.

Assigment 2

The proof by strong induction is on the number n of matches in each pile. We assume that the
claim holds for all k < n, and show that it also holds for n.

Suppose that both piles contain n matches, and that the first player removes j matches from
one pile, where 0 < j ≤ n. One pile then contains n matches and the other one n− j matches.

We make a case distinction over j:

• j == n: the second player removes j matches from the other pile. After that, both piles
are empty, and this means that the second player has removed the last match winning the
game.

• j < n: the second player removes j matches from the other pile. After that, the two piles
contain n − j matches. By induction hypothesis, we assumed that ∀k < n the second

1

player wins if both the piles contain k matches. Therefore we know that the second player
will win the game with n− j matches, and so that it wins the match with n matches.

Assignment 3

The property we want to prove is ∀a ∈ Aexp : P (a) : ∀σ, σ′ ∈ State, ∀x ∈ FV (a) · σ(x) =
σ′(x)⇒ A[[a]]σ = A[[a]]σ′. We prove it by structural induction on a.

• Base case 1: a is a numeral n. By definition of A, we have that A[[n]]σ = N[[n]] and
A[[n]]σ′ = N[[n]]. Then we have that A[[n]]σ = A[[n]]σ′ by the transitive property of equality.

• Base case 2: a is a variable y. By definition of FV , x ∈ FV (y) is only possible if
x = y. By definition of A, we have that A[[x]]σ = σ(x) and A[[x]]σ′ = σ′(x). Then, by
the definition of σ and σ′, we have that σ(x) = σ′(x). Therefore, by transitive property of
equality we proved that A[[n]]σ = A[[n]]σ′.

• Inductive case: a is an arithmetic expression a1 <OP> a2 where <OP> ∈ {′+′,′−′,′ ∗′}. By
definition of A, we have that A[[a1 <OP> a2]]σ = A[[a1]]σ <OP> A[[a2]]σ and A[[a1 <OP>

a2]]σ
′ = A[[a1]]σ′ <OP> A[[a2]]σ′. By inductive hypothesis, we have that A[[a1]]σ = A[[a1]]σ′

and A[[a2]]σ = A[[a2]]σ′. So we have that A[[a1]]σ <OP> A[[a2]]σ = A[[a1]]σ′ <OP> A[[a2]]σ′.
Then by transitive property of equality we proved that A[[a1 <OP> a2]]σ = A[[a1]]σ′ <OP>
A[[a2]]σ′.

Assignment 4

We define b[y 7→ e] as follows:

b[y 7→ e] =

e1[y 7→ e] op e2[y 7→ e] if b is the arithmetic comparison e1 op e2,

not b′[y 7→ e] if b is the Boolean expression not b′, and

b1[y 7→ e]⊕ b1[y 7→ e] if b is the Boolean expression b1 ⊕ b2
with ⊕ ∈ {and, or}.

Let e, y and σ be arbitrary. We prove by structural induction over b that

B[[b[y 7→ e]]]σ = B[[b]]
(
σ[y 7→ A[[e]]σ]

)
• Base Case: b = e1 op e2. We have that

B[[(e1 op e2)[y 7→ e]]]σ = B[[e1[y 7→ e] op e2[y 7→ e]]]σ

= A[[e1[y 7→ e]]]σ op A[[e2[y 7→ e]]]σ
(a)
= A[[e1]]

(
σ[y 7→ A[[e]]σ]

)
op A[[e2]]

(
σ[y 7→ A[[e]]σ]

)
= B[[e1 op e2]]

(
σ[y 7→ A[[e]]σ]

)
.

2

• Step Case: b = not b′. We have that

B[[(not b′)[y 7→ e]]]σ = B[[not b′[y 7→ e]]]σ

= ¬ B[[b′[y 7→ e]]]σ
IH
= ¬ B[[b′]]

(
σ[y 7→ A[[e]]σ]

)
= B[[not b′]]

(
σ[y 7→ A[[e]]σ]

)
.

• Step Case: b = b1 ⊕ b2 with ⊕ ∈ {and, or}. We have that

B[[(b1 ⊕ b2)[y 7→ e]]]σ = B[[(b1[y 7→ e] ⊕ b2[y 7→ e])]]σ

= B[[b1[y 7→ e]]]σ ⊕ B[[b2[y 7→ e]]]σ
IH
= B[[b1]]

(
σ[y 7→ A[[e]]σ]

)
⊕ B[[b2]]

(
σ[y 7→ A[[e]]σ]

)
= B[[b1 ⊕ b2]]

(
σ[y 7→ A[[e]]σ]

)
.

Here, ⊕ denotes the corresponding Boolean operation.

Assignment 5

data Aexp = Num Integer

| Var String

| Add Aexp Aexp

| Sub Aexp Aexp

| Mul Aexp Aexp

data Op = Eq | Neq | Le | Leq | Ge | Geq

data Bexp = Rel Op Aexp Aexp

| Not Bexp

| Or Bexp Bexp

| And Bexp Bexp

data State = VarAssign (String -> Integer)

evalAexp :: Aexp -> State -> Integer

evalAexp (Num n) _ = n

evalAexp (Var x) (VarAssign val) = val x

evalAexp (Add e1 e2) sigma = (evalAexp e1 sigma) + (evalAexp e2 sigma)

evalAexp (Sub e1 e2) sigma = (evalAexp e1 sigma) - (evalAexp e2 sigma)

evalAexp (Mul e1 e2) sigma = (evalAexp e1 sigma) * (evalAexp e2 sigma)

evalBexp :: Bexp -> State -> Bool

evalBexp (Rel op e1 e2) sigma =

(evalOp op) (evalAexp e1 sigma) (evalAexp e2 sigma)

3

where evalOp Eq = (==)

evalOp Neq = (/=)

evalOp Le = (<)

evalOp Leq = (<=)

evalOp Ge = (>)

evalOp Geq = (>=)

evalBexp (Not b) sigma = not (evalBexp b sigma)

evalBexp (Or b1 b2) sigma = (evalBexp b1 sigma) || (evalBexp b2 sigma)

evalBexp (And b1 b2) sigma = (evalBexp b1 sigma) && (evalBexp b2 sigma)

Assignment 6

Consider a generic S ∈ V . By definition of V , the set S contains a finite number of elements.
P (n) is the property that states that all descending chains starting from sets with n elements
are finite. We want to prove by strong induction over the number of elements of the set that
∀n ≥ 0 : P (n).

Let |S| be n. By induction hypothesis we know that n′ < n ⇒ P (n). We make a case
distinction:

• n = 0: by definition of (the descending chain is composed only by S = ∅ and so it is
finite.

• n > 0: S is composed of at least one element. This means that in the descending chain
S will be followed by a (possible empty) S ′ such that S ′ (S. By induction hipothesis, we
know that the descending chain starting from S ′ is finite. Therefore the descending chain
starting from S is finite as well.

The induction principle for the relation (is as follows:
(
∀S.(∀T (S. P (T)

)
⇒ P (S)) ⇒

∀S.P (S), i.e., prove the property P for a set S under the assumption that P holds for any T (S.
Let us use the induction principle to prove that any set S ∈ V has 2|S| subsets. Let S be a

set in V . We have to make a case distinction:

• If S = ∅ then 2|S| = 20 = 1, that is the empty set itself.

• Otherwise, S contains at least one element and we can consider a a ∈ S. By induction
hypothesis, we know that S \ {a} has 2|S|−1 subsets s1, . . . , s2|S|−1 . The subsets of S are
all subsets of S \{a} (s1, . . . , s2|S|−1 , that are 2|S|−1) and all these subsets unified with {a}
(s1 ∪ {a}, . . . , s2|S|−1 ∪ {a}, that are 2|S|−1). Then we have 2 · 2|S|−1 = 2|S| subsets.

4

