Build Tools 1

Build Tools

Software Engineering

Chair of Programming Methodology UL

Eideeniissische Techaische H Zici

Swiss Federal Institmology Zurich

SOftware Engineering Eidgendssische Technische Hochschule Zorich

Swiss Federal Institute of Technology Zurich

Build Tools

Agenda for Today
Build Tools

1.Motivation
2.Key Concepts
3. Tools Available
4.Presentation
5.Discussion

Objectives
- Use modern build systems for software

Software Engineering

Build Tools

Build Tools

1.Motivation
2.Key Concepts
3.Tools
4.Exercise
5.Discussion

Software Engineering

Build Tools

Software Complexity

= Software moved from a monolithic implementation
to a highly dynamic and modular implementation

= Software grew in size and complexity
- Different languages
- Different stages of file transformation
- Many dependencies to keep track

= Portability of the software became a problem

» Building of the software also got complex
- Shell scripts got extremely fragile

Software Engineering

Build Tools

A tool was needed

= Quality Assurance became a necessity

- Such that every build was reproducible on different
platforms

= Portability between different platforms

- Let the tool master the environment, instead of the
developer

» |[ncremental builds to speed up the development
time
- Ensuring the build produces the same results as a full
clean build

Software Engineering

Build Tools

Build Tools

1.Motivation
2.Key Concepts
3.Tools
4.Exercise
5.Discussion

Software Engineering

Build Tools

File Transformation

* The building of software consists of transforming
files from one format to another

hello_world.c = hello_world

= Must instruct the appropriate tool to perform the
transformation
cc —c —o hello_world.o hello_world.c

= Must check that all dependencies of the target have
been also successfully transformed

cc —o hello_world hello_world.o

Software Engineering

Build Tools

Dependency Tracking

Files may depend on other files

For a successful transformation, the dependencies
are required to be available and transformed

Usually done by a time stamp on the file

Before we compile hello_world, we must first check
that hello world.o is newer than our source file,
hello world.c

I it Is not, we must recompile hello_world.o

Software Engineering

Build Tools

External Instrumentation

* |t is the purpose of the build tool to instruct external
tools in the appropriate order to perform the file
transformations

= However, build tools may not know all the possible
tools it may be used with

= Most build tools use either a shell scripting
language or allow for a plug-in framework

» Tools contain some predefined rules for common
tasks, like compilation
- Ant and Java
- Make and Fortran, C

Software Engineering

Build Tools

10

Build Tools

1.Motivation
2.Key Concepts
3.Tools
4.Exercise
5.Discussion

Software Engineering

Build Tools

11

General Idea

= Allow the developer to define targets,
dependencies, and rules.

» Dependencies may either be files, or other targets

= When a target is performed, then the dependencies
are checked to ensure a correct transformation
= Some tools support incremental builds

- If the dependencies have not changed since the last
transformation, then we do not need to re-transform them

Software Engineering

Build Tools 12

Make

= Created by Stuart Feldman in 1977 at Bell Labs

= 2003, he received the ACM Software System
Award for the Make tool

= Arguably, the single most important step in the
direction of modern build environments

= Still the de-facto standard for software builds on
Unix systems
= Easy to compile and install Unix based applications
- make
- make install

Software Engineering

Build Tools 13

Modern Versions

= BSD Make

- Derived from Adam de Boor’s work on a version of make
capable of building targets in parallel.

- Includes conditionals and iterative loops applied to
parsing stage.
- Generation of targets at runtime

= GNU Make

- Used in GNU/Linux installations

- Allows for pattern-matching in dependency graphs and
build targets

- Heavy use of external macros

Software Engineering

Build Tools

14

Make example

helloworld: helloworld.o
$(CC) $(CPPFLAGS) $(LDFLAGS) —0 $@ $<

helloworld.o: helloword.c
$(CC) —c $(CPPFLAGS) $(CFLAGS) —0 $@ $<

.PHONY: clean
clean:
$(RM) helloworld helloworld.o

Software Engineering

Build Tools

15

Extensions of Make

* Make files also have machine dependencies
- Compiler options, alternate command names

* This became extremely hard for developers to
support various platforms

= |[Make

- Generates Make files from templates and macro
functions

= GNU Automake
- Successor of IMake
- Generates Make files from a higher level language
- Dynamic dependency tracking

Software Engineering

Build Tools

16

Apache Ant

= Similar as Make, but Java language specific
= Uses an XML file for build description

= Primary goal was to solve Make’s portability
problem
- Make targets depend on a Unix shell

- Ant’s built-in functionality will usually behave identical on
all platforms

Software Engineering

Build Tools

Apache Ant

= Created by James Duncan Davidson from Sun
Microsystems

= Officially released as a stand alone tool July 2000

= Easy to integrate JUnit tests and other external
processes

= However, Ant has limitations

- XML format does not allow for complex build tasks,
requires a Java plug-in that encodes the task

- Limited fault handling rules
- Developer must make explicit incremental builds

Software Engineering

Eidgendssische Technische Hochschule Zorich
5% F I i f hir

Build Tools

18

Ant Example

<project default="compile”>
<target name=“compile”>
<mkdir dir="build” />
<javac srcdir="source” destdir="puild”/>
</target>
<target name="package” depends="compile”>
<jar jarfile="helloworld.jar” basedir="puild”/>
</target>
<target name = “clean”>
<delete dir="puild”/>
</target>
</project>

Software Engineering

Build Tools

19

Apache Maven

= Dependencies are hard to maintain in Java
programs

= Apache ant could not address the problem

= Maven was created with dependency control as the
prominent feature

= Uses concept of a Project Object Model
- Description of software project and external
dependencies

- External dependencies not available, will be downloaded
automatically

Software Engineering

Build Tools

20

Maven Example

= Maven 2 will be recommended in this course
= A simple hello world example
mvn archetype:create \
-Dgroupld=ch.ethz.HelloWorld \
-Dartifactld=hello-world

= And Maven creates a skeleton for our project
- Project Object Model file
- Main source directory
- Test source directory

» Adheres to best practices

Software Engineering

Build Tools

21

Extensions of Apache Maven

* Maven has a rich plug-in framework

= Default installation includes many powerful plug-ins

Build statistics exported to a website

Integration with continuous testing

Deployment of web applications through .war files
SCM integration for deployment of systems
Software metrics

TODO list generation

Export to Netbeans or Eclipse

And many, many more

Software Engineering

Build Tools

22

Build Tools

1.Motivation
2.Key Concepts
3.Tools
4.Exercise
5.Discussion

Software Engineering

Build Tools

23

Ant Exercise

= Still the de facto for industrial builds

= After the initial set up of Ant we will
- Set some standard project properties
- Configure the appropriate class path
- Write the targets to make and deploy our system
- Produce javadoc from our source code

Software Engineering

Build Tools 24

Maven Exercise

= For this course Maven is a good choice building our
project
= From the initial setup of Maven we will
- Set some standard tags in the POM file
- Add our dependencies to our project

- Make and deploy our project

- And if time permits, use our maven build system within
the Netbeans platform

Software Engineering

Build Tools

25

Build Tools

1.Motivation
2.Key Concepts
3.Tools
4.Exercise
5.Discussion

Software Engineering

Build Tools 26

Concluding Remarks

» Necessary to include build tools in Configuration
Management
- Automake 1.4 does not produce the same results as 1.9

= Change of machine dependencies will usually not
trigger a re-transformation
- May lead to deployment of software with the wrong
compile flags
= Change of machine dependencies may also produce
different results

- Compilation on Java 1.5 may produce different run-time
behaviors than Java 1.4

Software Engineering

Build Tools

27

References

= Make

= Ant

= Maven
- http://maven.apache.org
- http://codehaus.org

Software Engineering

