
Chair of Programming Methodology

Technology Session II
- Serialization, Sockets, RMI -

Material based on Prof. Peter Müller’s

Konzepte objektorientierter Programmierung

course

2

Agenda for Today

Distributed Programming

- Sockets

- Serialization

- Remote Objects

Objectives

- Remote objects

- Remote method invocation

3

Aspects of Distributed Programming

� Programs run in different processes or on

different computers

- Usually no shared memory

� Communication is crucial

- Communication is not robust- Communication is not robust

- Communication takes time

� Distributed systems are often heterogeneous

- Different hardware

- Different operating systems

- Different programming languages

4

Operating
System

Operating
System

Operating
System

Distributed Chat Example

ChatClient ChatClientChatServer

Network &
Hardware

Network &
Hardware

Network &
Hardware

� How to access objects in different address spaces?

� How to communicate across process boundaries?

� How to pass parameters, results, and exceptions?

5

Distributed Programming

- Sockets

- Serialization- Serialization

- Remote Objects

6

Process 2
(Server)

Sockets and Ports

Process 1
(Client)

Socket

Operating SystemOperating System

Agreed

port

Any

port Data

channel

7

API

Communication via Sockets

Process 1
(Client)

Socket API

Process 2
(Server)

Socketstream stream Server
Socket

… …

� Server sockets wait for communication partners on
an agreed port

� Sockets provide communication facilities

� Input and output streams to transmit data

Operating System Operating System

8

Parameter Passing

Process 2
(Server)

Operating System

Process 1
(Client)

Operating System

� Commands, parameters,

results, and exceptions

are transmitted as

sequential byte streams

Operating SystemOperating System

Prd

…

…

9

Example: Chat server with Socket

� Main loop

accepts

clients and

starts new

threads

public class SocketChatServer {

public static void main(String[] args) {

SocketChatServer srv = new SocketChatServer();
ServerSocket ss = new ServerSocket(6666);

while (true) {

� Code does

not show

exception

handling

while (true) {

Socket s = ss.accept();

new ServiceThread(s).start();

}

}

}

10

Example: Chat server with Socket (cont’d)

class ServiceThread extends Thread {

Socket s;

public ServiceThread(Socket p) { s = p; }

public void run() {

ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

String cmd = (String) ois.readObject();String cmd = (String) ois.readObject();

if (cmd.equals("register")) { … }
else if (cmd.equals("deregister")) { … }

else if (cmd.equals("bcast")) { … }

else { System.err.println("Unknown command!"); }

ois.close();

s.close();

} }

11

Example: Chat client Socket

Registers to Chat server at known server port

(sends “register” + client IP addr + client port number)

Waits for messages on client port
(checks if starts with “msg” + displays message)(checks if starts with “msg” + displays message)

Sends messages to server
(sends message with “broadcast” prefix to server)

12

Example: Chat client with Socket

public class SocketChatClient extends Thread {

…

public static void main(String[] args) {

SocketChatClient scc = new SocketChatClient(IP_ADDR, PORT);

scc.start();

while (true) {

Socket s = client_socket.accept();

new ClientServiceThread(s).start();

}

}

}

13

Example: Chat client with Socket (cont’d)
class ClientServiceThread extends Thread {

Socket s;

public ClientServiceThread(Socket p) { s = p; }

public void run() {

ObjectInputStream ois = new ObjectInputStream(s.getInputStream());

String cmd = (String) ois.readObject();String cmd = (String) ois.readObject();

if (cmd.equals("msg"))

SocketChatClient.this.receive((Message) ois.readObject());

else

System.err.println("Unknown command!");

ois.close(); s.close();

}

}

14

Discussion of Socket Solution

� Communication has to be coded explicitly
- Commands, parameters, results, exceptions

� No static type safety

� Loss of object identities

� Significantly different from local solution� Significantly different from local solution

Socket s = new Socket(host, port);

ObjectOutputStream oos = new
ObjectOutputStream(s.getOutputStream());

oos.writeObject("broadcast");

oos.writeObject(“Hello”);

oos.close();

s.close();

server.broadcast(“Hello”);

15

Distributed Programming

- Sockets

- Serialization- Serialization

- Remote Objects

16

Serialization and Deserialization

� Serialization transforms object structures into
a sequential format

� Sequential format is independent of
memory addresses

� Serialization is used

- To save object structures persistently

- To exchange object structures between address

spaces

� Often called marshalling and unmarshalling

17

Object Streams in Java

� Serialization needs

access to private fields

- Interface Serializable is

used as tag

� Object streams serialize

interface Serializable { }

class ObjectOutputStream

extends OutputStream

implements … {

void writeObject(Object obj)

throws IOException { … }
Object streams serialize

- Values of primitive types

- Serializable objects

� All objects except strings

are written only once

throws IOException { … }

… }

Prd

…

…

18

Object Identity

� Serialization and deserialization

- Preserve “relative” object identities within object

structures (except strings)

- Do (of course) not preserve absolute object identities

� Consequences for side-effects and comparison� Consequences for side-effects and comparison

x

y

z

null

‘F’

x’

y’

z’

null

‘F’

19

Aliasing

x

y

z

null

‘F’

x’

y’

z’

null

‘F’

y’’

z’’

null

‘F’

w

y’’’

z’’’

null

‘F’

w’’’

� Only reachable objects are serialized

� Serialization can destroy aliasing properties

bba a

w

c c

w’’’

20

Distributed Programming

- Sockets

- Serialization- Serialization

- Remote Objects

21

Stubs and Skeletons

Process 1
(Client)

Process 2
(Server)

obj
Remote
Object

Stub SkeletonSerialized

� Remote objects are represented locally by stubs

� Stubs and skeletons provide communication

� Code for stubs and skeletons are generated

automatically

parameters and results

22

Remote Interfaces

� Methods that are

available remotely

must be specified

in an interface that

extends Remote

interface Remote { }

interface ServerInterface extends Remote {

void register(ClientInterface c)

throws RemoteException;

void sendMessage(String msg)
throws RemoteException;throws RemoteException;

}

23

Programming with Remote Objects

Client Code
Server Code

� Remote interfaces

� Parameter and result
types (serializable) Implementations

of remote
interfaces

Concepts of Object-Oriented Programming

RMI compiler

Stubs Skeletons

Compiler

Server Program

Compiler

Client Program

Dynamic Generation
with Java 1.5+

24

Remote Method Invocation

� Implementations of remote objects extend

UnicastRemoteObject (or similar classes)

� Constructors may throw exception

� Remote interfaces can be used to invoke methods � Remote interfaces can be used to invoke methods
of remote objects

� Communication is transparent except for
- Error handling

- Problems of serialization

� Coding is almost identical to local solutions

25

Process Interaction of Chat application

Process 1 Process 3

Stub

Skeleton Stub

Stub

ChatClientImpl

Concepts of Object-Oriented Programming

ChatServer
Impl

Skeleton

Process 2

ChatClientImpl

Stub

Skeleton

26

Finding Objects

� References to remote objects are obtained through

a name service

� Name server (rmiregistry) must run on server site

- Offers service at a certain port

- Communication with name server is handled by API- Communication with name server is handled by API

class Naming {

static Remote lookup(String name) throws … { … }

static void rebind(String name, Remote obj) throws … { … }

…

}

27

Using RMI in Java

1. Define interface of remote object (extends
Remote)

2. Define implementation of remote object
(extends UnicastRemoteObject)

3. Start name server (rmiregistry)

4. Server program registers remote objects at 4. Server program registers remote objects at
registry

5. Client programs retrieve remote references
through URL (name of computer and name of
remote object)

28

Process 1

Serialization of Remote Objects

� Remote objects are not serialized when passed as

parameters or results

� Passing remote objects lead to remote references

x

y

null

Process 2

x

z

null

‘F’

Skeleton Stub

29

Remote Objects: Summary

� Remote objects can be accessed similarly to local

objects

� Remote objects are accessed through Remote

interfaces

- No field access

- Only public methods

� Communication is transparent except for

- Error handling

- Problems of serialization

30

Further references

� Slides of Konzepte objektorientierter Programmierung

http://pm.ethz.ch/teaching/as2008/KOOP

� Sun’s RMI Tutorial

http://java.sun.com/docs/books/tutorial/rmi/index.htmlhttp://java.sun.com/docs/books/tutorial/rmi/index.html

� URLClassLoader: load classes from given URLs
http://java.sun.com/javase/6/docs/api/java/net/URLClassLoader.html

� Reflection: examine and manipulate running program

http://java.sun.com/docs/books/tutorial/reflect/index.html

31

Task: Implement Distributed Chat application

� Create Remote interfaces for server and client side

� Server side:

- Register server on a given port (and localhost)

LocateRegistry.createRegistry(PORT). bind(SERVICE, server)

- Implement method for registering new clients

- Implement method for broadcasting messages to - Implement method for broadcasting messages to

registered clients

� Client side:

- Register application to server

LocateRegistry.getRegistry(PORT).lookup(SERVICE)

- Implement method for receiving broadcast messages

- Implement method for sending messages to server

32

BACKUPBACKUP

33

Process 2Process 1

Details of Serialization

� Remote objects are not serialized when passed as

parameters or results

� Rule also applies to remote objects that are

referenced indirectly

Process 2Process 1

x

y

z

null

‘F’

x’

y’

null

34

Details of Serialization: Aliasing

� Parameters of one remote method invocation are
serialized together

� Aliases do not lead to duplicate objects

Process 1

remote.m(x, x, y);

Process 2

p1 p2 p3

Process 1

x

y

z

null

‘F’

Process 2

x’

y’

null

