Technology Session lli
- Concurrency -

Chair of Programming Methodology

Material based on Prof. Peter Mdller’s
Konzepte objektorientierter Programmierung
course

Threads

= Execution threads are sequences
of atomic actions during a program
execution

= Concurrent programs can have
more than one thread

= Execution of threads can be parallel
(on several processors) or virtually
parallel (on one processor)

= A scheduler maps threads to
pProcessors

ETH

Eidgendasische Technische Hiochschule Zirich
Swiss Federal Institute of Technology Zurich

Concurrency in OO-Programs

» Passive objects

- Threads pass through different
objects (by method invocations)

- Several threads executed on one
object possible
= Active objects
- Each object has its own thread

- Upon method invocation, the thread of
the target object serves the request

- At most one thread executed on one
object

Threads and Passive Objects

= Threads have to be interface Runnable {

created, started, void run():
synchronized, and }
controlled
» Threads are class 1hread
_ plements Runnable {
represented by SpeC|a| Thread(Runnable target) {...}
objects void run() (..
= Method “start” starts hative void start()
new thread and returns f'_‘_)'d intermupt() s
iImmediately \

Example

class Printer implements Runnable {
String val;
Printer(String s) { val = s; }
void run() {
while(true)
System.out.printin(val);

}
}

“One”

“One”

new Thread(new Printer(“One”)).start();
new Thread(hew Printer(“Two”)).start();
new Thread(hew Printer(“Three”)).start();

“Three”
“Three”
“Three”

“Two

“Three”

J

ETH

Eidgendasische Technische Hiochschule Zirich
Swiss Federal Institute of Technology Zurich

Data Races

= Access to common
resources (e.g.,
variables) can lead to
unwanted behavior

= Execution is divided
Into critical and non-
critical sections

= Execution of critical
sections should be
mutually exclusive

class Even {
private int x;
void next() { X++; X++; }

}

N\

Enter e.next
Read 0
Write 1

;

Read 2

Enter e.next
Read 1
Write 2

C

Write 3

Read 2
Write 3

4

)

ETH

Eidgendasische Technische Hiochschule Zirich
Swiss Federal Institute of Technology Zurich

Object-Oriented Monitors

= Each object has a monitor

= Execution of synchronized
methods requires lock of monitor
- Lock is obtained upon invocation
- Lock is released upon termination
- Other threads have to wait

= Monitor keeps track of
- Thread that has locked the monitor

- Number of locks of this thread
- Queue of blocked threads

4 Even A
X:
N\ J
Current
Thread

Y

Preventing Data Races

& & class Even {
private int x;

Ente? e.next synchronized void next()
Read 0 { X+4] X4+ }
Write 1 }

/ Enter e.next

Read 1 (= W 5
Write 2 ven > rL]Jrrer;it 1
LX: a J rea

Read 2
Write 3
Read 3
Write 4

Queue

ETH

Eidgendasische Technische Hiochschule Zirich
Swiss Federal Institute of Technology Zurich

Safety and Liveness

= Safety
- “Nothing bad ever happens”™

- To perform method actions only when in consistent
states

- Achieved by mutual exclusion

= Liveness

“Something eventually happens”

Every called method should eventually execute
Avoiding deadlocks

Avoiding unfair scheduling (not guaranteed in Java)

8.2 Concurrency — Synchronization

10

Deadlock Example

class Cell {
private long value;
synchronized long get()
{ return value; }
synchronized void set(long v)
{value =v;}
synchronized void
swap(Cell other) {
long t = get();
long v = other.get();
set(v);
other.set(t);
}
}

cl.swap(c2);

c2.swap(cl);

D

Enter c1.swap
t=get();

Enter c2.swap
t=get();

v = other.get();

v = other.get();

/

Peter Miller — Konzepte objektorientierter Programmierung

ETH

Eidgendasische Technische Hiochschule Zirich
Swiss Federal Institute of Technology Zurich

