
1Unit Testing

Unit Testing
JUnit and Coverage

Software Engineering

Software Engineering

Chair of Programming Methodology

2Unit Testing

Agenda for Today

1. Testing

2. Main Concepts

3. Unit Testing – JUnit

4. Test Evaluation – Coverage

5. Reference

Software Engineering

5. Reference

3Unit Testing

Software Testing

� Goal: find many errors before shipping software

- Higher cost to fix errors after deployment

- Higher acceptance and confidence of users

� Scientific approach

- Proof correctness and completeness of code

Software Engineering

- Proof correctness and completeness of code

� Pragmatic approach

- Try out software in typical usage scenarios

� Fact

- Testing does not guarantee the absence of errors

4Unit Testing

Testing Scope

� Testing in the small

- Exercising the smallest executable units of the system

� Testing in the large

- Putting the entire system to the test

Unit Testing

Software Engineering

Unit Testing
Individual classes

Component Testing
Group of related classes

Integration Testing
Interaction between components

5Unit Testing

Unit Testing

� Exercising the smallest individually executable units

� Objectives: find faults in the units, assure correct
functional behavior of units

� Usually performed by programmers

� The Typical Test Cycle

Software Engineering

� The Typical Test Cycle

- Develop a suite of test cases

- Create test fixtures to support each test case

- Clean-up fixtures, if necessary

- Run the test and capture test results

- Report and analyze the test results

6Unit Testing

Testing Problem

Why?

programmers

Should write

few

Do

Tests

Software Engineering

Why?
I am so busy…I am so busy…I am so busy…I am so busy…

It is difficult…

� Programmers need a tool to:

“Write a few lines of code, then a test that should

run; or even better, write a test that won't run, then

write the code that will make it run.”

few

7Unit Testing

JUnit

� Almost indisputably the single most important third-
party Java library ever developed

� Fueled the testing explosion
- Inspired a whole family of xUnit tools:

NUnit(.net), PyUnit(Python), CppUnit(c++), DUnit(delphi), …

- increasing number of extensions: JMLUnit, SQLUnit, XMLUnit

Software Engineering

- increasing number of extensions: JMLUnit, SQLUnit, XMLUnit

� IDE integration
- NetBeans, BlueJ, IntelliJ, JBuilder, Eclipse, …

� open source

“Never in the field of software development was so

much owed by so many to so few lines of code.”
Martin Fowler

8Unit Testing

Detailed Look
� Written by Erich Gamma (of Design Patterns fame) and

Kent Beck (creator of XP methodology)

� A simple framework to write and run repeatable tests

� JUnit features include:

- Assertions for testing expected results

- Test fixtures for sharing common test data

Software Engineering

- Test suites for easily organizing and running tests

- Graphical and textual test runners

� JUnit 3.8.2: old stable version

- Naming conventions and reflection

� JUnit 4.5: new stable version

- Using Java 5 annotations

9Unit Testing

Terminology

� Test Case
- defines a method to run a set of tests

� Test Suite
- a collection of related test cases

� Test Fixture
- a common set of test data and collaborating objects shared by

many tests

- Generally are implemented as instance variables in the test class

Software Engineering

- Generally are implemented as instance variables in the test class

� Test Runner
- runs tests and reports results

� Errors and failures
- An error is some unanticipated failure (e.g., an exception thrown

inside the tested code)

- A failure is anticipated, and is produced by a call of an assertXXX
method

10Unit Testing

JUnit 3.x Testing Steps

1. Create a test class

- Import junit.framework.*

- Declared as a subclass of TestCase

• Create Test Case

- Name the test method as testXXX

Software Engineering

- Name the test method as testXXX

- Asserts the expected results on the object under test

• Use Test Fixture when necessary

1. Check for expected exceptions

2. Run the tests in the console or IDE

11Unit Testing

Example: Money class
import org.junit.*;

import static org.junit.Assert.*;

import java.util.*;

public class Money {

private int fAmount;

private String fCurrency;

public Money(int amount, String currency) {

Software Engineering

public Money(int amount, String currency) {

fAmount=amount; fCurrency=currency; }

public int amount() { return fAmount; }

public String currency() { return fCurrency; }

public Money add(Money m) {

return new Money(amount()+m.amount(),
currency()); }

}

12Unit Testing

Test method

public class MoneyTest extends TestCase {// test class

public void testadd() { // test method

// create the test fixture

Money m12CHF = new Money(12, "CHF");

Money m14CHF = new Money(14, "CHF");

Money expected = new Money(26, "CHF");

Software Engineering

Money expected = new Money(26, "CHF");

Money result = m12CHF.add(m14CHF);

// verify the result, use assertEquals in this example

Assert.assertEquals(expected,result);

}

}

13Unit Testing

JUnit Assertions

� Within a test

- Call the method being tested and get the actual result

- Assert what the correct result should be with one of the

provided assert methods

- These steps can be repeated as many times as

necessary

Software Engineering

necessary

� An assert method

- Is a JUnit method that performs a test

- Throws an AssertionFailedError if the test fails

- JUnit catches these Errors and shows you the result

14Unit Testing

JUnit Assertions (Cont’d)

� assertTrue(boolean test)
assertFalse(boolean test)
assertEquals(Object expected, Object actual)
assertSame(Object expected, Object actual)
assertNotSame(Object expected, Object actual)
assertNull(Object object)
assertNotNull(Object object)

Software Engineering

assertNull(Object object)
assertNotNull(Object object)
fail()

� assertXXX(StringStringStringString messagemessagemessagemessage, …)
- Throws an AssertionFailedError if the test fails

- The optional message is included in the Error

15Unit Testing

Use of Fixtures

� Some test cases act on similar sets of objects

- Create a fixture instead of declaring them in all methods

- Write as many Test Cases as you like

- Add as many test methods as you like

Software Engineering

� Use in detail

- Add fields for each part of the fixture

- Define setUp to initialize the fields

- Define tearDown to release any permanent resources

16Unit Testing

Test Runners

� Run the tests and collect the results

� Make sure that the junit.jar file is on classpath

� Textual/graphical user interface

- Command line:
java junit.textui.TestRunner <test class name>

Software Engineering

java junit.textui.TestRunner <test class name>

java junit.swingui.TestRunner <test class name>

- Ant task (See <junit> tag)

� May use a main() method:
public static void main(String args[]) {

junit.textui.TestRunner.run(suite());}

java junitfaq.SimpleTest

17Unit Testing

JUnit 4

� Forward and backward compatibility
- JUnit4 can run JUnit 3 tests without any changes

- To enable JUnit 4 tests to run in JUnit 3 environments,

use JUnit4TestAdapter (see next slide)

� Java 5 annotations instead of naming conventions

� Free to use any superclass for tests

Software Engineering

� Free to use any superclass for tests

� Identify fixture methods with annotations, possible

to have multiple fixture methods

� More annotations to simplify tests

18Unit Testing

Making a test class for Money

public class MoneyTest {

@Test public void SimpleAdd() {

Money m12CHF= new Money(12, "CHF");

Money m14CHF= new Money(14, "CHF");

Money expected= new Money(26, "CHF");

Software Engineering

Money result= m12CHF.add(m14CHF);

Assert.assertTrue(expected.equals(result));

}

}

19Unit Testing

Use of Fixtures

� when some test cases act on similar sets of objects

- creating a fixture instead of declaring in all methods

- write as many Test Cases as you'd like

- add as many test methods as you'd like

� How to do

Software Engineering

� How to do

- Add fields for each part of the fixture

- Annotate a method with @Before and initialize the

variables in that method

- Annotate a method with @After to release any permanent

resources you allocated in setUp

- One-time setup and teardown for all classes: @_Class

20Unit Testing

Example: Use of Fixtures

public class MoneyTest {

private Money m12CHF; // fixture data

private Money m14CHF;

@Before public void setUp() { // setting up fixture

m12CHF= new Money(12, "CHF");

m14CHF= new Money(14, "CHF");

Software Engineering

m14CHF= new Money(14, "CHF");

}

@Test public void SimpleAdd() { // [12 CHF] + [14 CHF] = [26 CHF]

Money expected= new Money(26, "CHF");

Money result= m12CHF.add(m14CHF);

Assert.assertTrue(expected.equals(result));

}

}

21Unit Testing

JUnit 4: Expecting Exceptions

� @Test annotation takes a parameter declaring the type of

Exception thrown (test fails if no exception is thrown) .

Software Engineering

Compatible
to Junit 3.x

22Unit Testing

JUnit 4: Other Annotations

� Ignoring a test

- @Ignore annotation tells the runner to ignore the test

- @Ignore(“reason of why to ignore the test”) to pass in

a string message to the runner and report it

� Timing out a test

Software Engineering

� Timing out a test

- @Test (timeout=10)

- pass in a timeout parameter to the test annotation to

specify the timeout period in milliseconds

- If the test takes more, it fails

23Unit Testing

More Unit Testing Issues

� How do I test database dependent code?

- dbUnit

� Should I test my web application? How?

- HttpUnit

• Parses HTML results into DOM

• Easy link navigation and form population

Software Engineering

• Easy link navigation and form population

• Useful for automated acceptance tests

- Canoo WebTest
• HttpUnit inside Ant

A partial List of xUnit framworks:
http://en.wikipedia.org/wiki/XUnit

24Unit Testing

Test Evaluation: Code Coverage

� How good is a test?

� Do we have enough test cases?

� Testing is inherently incomplete
- Coverage metrics: quantitative evaluation of test suite

- A test evaluation tool helps in assessing whether the
test cases achieve good coverage or not

Software Engineering

test cases achieve good coverage or not

� Tools
- Clover, Quilt, Emma, Coverlipse, JDepend, Cobertura,

Java Test Coverage, …

25Unit Testing

Coverage Netbeans Plugin

Software Engineering

26Unit Testing

JMLUnit

� A model-driven test generation tool, from Iowa

State University

� One of a suite of tools based on the JML

behavioral interface specification language

� Automatic generation of test oracles using

Software Engineering

� Automatic generation of test oracles using

- Formal specifications and

- Runtime assertion checker

� License: open source

27Unit Testing

Summary

� “Any program feature without an automated test

simply doesn’t exist”

� Testable code improves confidence and design

� Programmers can sleep better

� “Keep the bar green to keep the code clean!”

Software Engineering

� “Keep the bar green to keep the code clean!”

28Unit Testing

Reference

� JUnit http://www.junit.org
http://junit.sourceforge.net/doc/cookbook/cookbook.htm

� Extreme programming
http://www.xprogramming.com

� Coverage http://codecoverage.netbeans.org

Software Engineering

� Coverage http://codecoverage.netbeans.org

� dbUnit http://www.dbunit.org

� HttpUnit http://www.httpunit.org

� Canoo WebTest http://webtest.canoo.com

� Software QA and Testing Resource
Center http://www.softwareqatest.com

� JMLUnit http://jmlspecs.org

