
1Build Tools

Build Tools

Software Engineering

Software Engineering

Chair of Programming Methodology

2Build Tools

Agenda for Today

Build Tools

1.Motivation

2.Key Concepts

3.Tools Available

4.Presentation

Software Engineering

5.Discussion

Objectives

- Use modern build systems for software

3Build Tools

Build Tools

1.Motivation

2.Key Concepts

3.Tools

4.Exercise

5.Discussion

Software Engineering

5.Discussion

4Build Tools

Software Complexity

� Software moved from a monolithic implementation
to a highly dynamic and modular implementation

� Software grew in size and complexity

- Different languages

- Different stages of file transformation

Software Engineering

- Different stages of file transformation

- Many dependencies to keep track

� Portability of the software became a problem

� Building of the software also got complex

- Shell scripts got extremely fragile

5Build Tools

A tool was needed

� Quality Assurance became a necessity

- Such that every build was reproducible on different
platforms

� Portability between different platforms

- Let the tool master the environment, instead of the
developer

Software Engineering

developer

� Incremental builds to speed up the development
time

- Ensuring the build produces the same results as a full
clean build

6Build Tools

Build Tools

1.Motivation

2.Key Concepts

3.Tools

4.Exercise

5.Discussion

Software Engineering

5.Discussion

7Build Tools

File Transformation

� The building of software consists of transforming
files from one format to another

hello_world.c � hello_world

� Must instruct the appropriate tool to perform the
transformation

Software Engineering

transformation
cc –c –o hello_world.o hello_world.c

� Must check that all dependencies of the target have
been also successfully transformed

cc –o hello_world hello_world.o

8Build Tools

Dependency Tracking

� Files may depend on other files

� For a successful transformation, the dependencies
are required to be available and transformed

� Usually done by a time stamp on the file

� Before we compile hello_world, we must first check

Software Engineering

� Before we compile hello_world, we must first check
that hello_world.o is newer than our source file,
hello_world.c

� If it is not, we must recompile hello_world.o

9Build Tools

External Instrumentation

� It is the purpose of the build tool to instruct external
tools in the appropriate order to perform the file
transformations

� However, build tools may not know all the possible
tools it may be used with

� Most build tools use either a shell scripting

Software Engineering

� Most build tools use either a shell scripting
language or allow for a plug-in framework

� Tools contain some predefined rules for common
tasks, like compilation
- Ant and Java

- Make and Fortran, C

10Build Tools

Build Tools

1.Motivation

2.Key Concepts

3.Tools

4.Exercise

5.Discussion

Software Engineering

5.Discussion

11Build Tools

General Idea

� Allow the developer to define targets,
dependencies, and rules.

� Dependencies may either be files, or other targets

� When a target is performed, then the dependencies
are checked to ensure a correct transformation

Software Engineering

are checked to ensure a correct transformation

� Some tools support incremental builds

- If the dependencies have not changed since the last
transformation, then we do not need to re-transform them

12Build Tools

Make

� Created by Stuart Feldman in 1977 at Bell Labs

� 2003, he received the ACM Software System
Award for the Make tool

� Arguably, the single most important step in the
direction of modern build environments

Software Engineering

direction of modern build environments

� Still the de-facto standard for software builds on
Unix systems

� Easy to compile and install Unix based applications

- make

- make install

13Build Tools

Modern Versions

� BSD Make

- Derived from Adam de Boor’s work on a version of make
capable of building targets in parallel.

- Includes conditionals and iterative loops applied to
parsing stage.

- Generation of targets at runtime

Software Engineering

- Generation of targets at runtime

� GNU Make

- Used in GNU/Linux installations

- Allows for pattern-matching in dependency graphs and
build targets

- Heavy use of external macros

14Build Tools

Make example

helloworld: helloworld.o

$(CC) $(CPPFLAGS) $(LDFLAGS) –o $@ $<

helloworld.o: helloword.c

$(CC) –c $(CPPFLAGS) $(CFLAGS) –o $@ $<

Software Engineering

$(CC) –c $(CPPFLAGS) $(CFLAGS) –o $@ $<

.PHONY: clean

clean:

$(RM) helloworld helloworld.o

15Build Tools

Extensions of Make

� Make files also have machine dependencies
- Compiler options, alternate command names

� This became extremely hard for developers to
support various platforms

� IMake

Software Engineering

- Generates Make files from templates and macro
functions

� GNU Automake
- Successor of IMake

- Generates Make files from a higher level language

- Dynamic dependency tracking

16Build Tools

Apache Ant

� Similar as Make, but Java language specific

� Uses an XML file for build description

� Primary goal was to solve Make’s portability
problem

- Make targets depend on a Unix shell

Software Engineering

- Make targets depend on a Unix shell

- Ant’s built-in functionality will usually behave identical on
all platforms

17Build Tools

Apache Ant

� Created by James Duncan Davidson from Sun
Microsystems

� Officially released as a stand alone tool July 2000

� Easy to integrate JUnit tests and other external
processes

Software Engineering

processes

� However, Ant has limitations

- XML format does not allow for complex build tasks,
requires a Java plug-in that encodes the task

- Limited fault handling rules

- Developer must make explicit incremental builds

18Build Tools

Ant Example

<project default=“compile”>

<target name=“compile”>

<mkdir dir=“build” />

<javac srcdir=“source” destdir=“build”/>

</target>

<target name=“package” depends=“compile”>

Software Engineering

<target name=“package” depends=“compile”>

<jar jarfile=“helloworld.jar” basedir=“build”/>

</target>

<target name = “clean”>

<delete dir=“build”/>

</target>

</project>

19Build Tools

Apache Maven

� Dependencies are hard to maintain in Java
programs

� Apache ant could not address the problem

� Maven was created with dependency control as the
prominent feature

Software Engineering

prominent feature

� Uses concept of a Project Object Model

- Description of software project and external
dependencies

- External dependencies not available, will be downloaded
automatically

20Build Tools

Maven Example

� Maven 2 will be recommended in this course

� A simple hello world example

mvn archetype:create \

-DgroupId=ch.ethz.HelloWorld \

-DartifactId=hello-world

Software Engineering

-DartifactId=hello-world

� And Maven creates a skeleton for our project

- Project Object Model file

- Main source directory

- Test source directory

� Adheres to best practices

21Build Tools

Extensions of Apache Maven

� Maven has a rich plug-in framework

� Default installation includes many powerful plug-ins

- Build statistics exported to a website

- Integration with continuous testing

- Deployment of web applications through .war files

Software Engineering

- Deployment of web applications through .war files

- SCM integration for deployment of systems

- Software metrics

- TODO list generation

- Export to Netbeans or Eclipse

- And many, many more

22Build Tools

Build Tools

1.Motivation

2.Key Concepts

3.Tools

4.Exercise

5.Discussion

Software Engineering

5.Discussion

23Build Tools

Ant Exercise

� Still the de facto for industrial builds

� After the initial set up of Ant we will
- Set some standard project properties

- Configure the appropriate class path

- Write the targets to make and deploy our system

Software Engineering

- Produce javadoc from our source code

24Build Tools

Maven Exercise

� For this course Maven is a good choice building our
project

� From the initial setup of Maven we will

- Set some standard tags in the POM file

- Add our dependencies to our project

Software Engineering

- Add our dependencies to our project

- Make and deploy our project

- And if time permits, use our maven build system within
the Netbeans platform

25Build Tools

Build Tools

1.Motivation

2.Key Concepts

3.Tools

4.Exercise

5.Discussion

Software Engineering

5.Discussion

26Build Tools

Concluding Remarks

� Necessary to include build tools in Configuration
Management

- Automake 1.4 does not produce the same results as 1.9

� Change of machine dependencies will usually not
trigger a re-transformation

Software Engineering

- May lead to deployment of software with the wrong
compile flags

� Change of machine dependencies may also produce
different results

- Compilation on Java 1.5 may produce different run-time
behaviors than Java 1.4

27Build Tools

References

� Make

- http://www.gnu.org/

- http://www.bsd.org

� Ant

- http://ant.apache.org

Software Engineering

- http://ant.apache.org

� Maven

- http://maven.apache.org

- http://codehaus.org

