
Exercise 9
– Design Patterns –

1. We want to implement a text paragraph. A paragraph is a sequence of lines. Each
line is represented by a string. The Paragraph class has to provide at least the
following methods:

String getLine(int i ); // returns i−th line
int getCountLines(); // returns number of lines
void addLine(String s); // appends a line to the end of the paragraph

A text paragraph is always formatted. Whenever a line is added, it is formatted
immediately. The format algorithm (e.g., left-align or centered) can be selected at
runtime. It also has to be possible to add new format algorithms to the program
without modifying the Paragraph class.

Your task: Develop a design for Paragraph that satisfies the above requirements.
Which design pattern could you use?

2. We want to develop a Java AWT component that can display formatted text in a
flexible way. To do that, we want to reuse the Paragraph class. Each Java AWT
component inherits from class Component. Our FormattedTextArea will inherit from
the following library classes:

public class TextComponent extends Component implements Accessible { ... }

public class TextArea extends TextComponent {
public void append(String str) { ... }
public String getText() { ... }
...

}

Your task: Develop a design for FormattedTextArea that allows us to reuse Para-
graph and to inherit from TextArea. Which design pattern could you use? You
should also provide implementations for the methods append and getText.

3. We want to extend our design by a character counter. This counter is a separate
object that stores the number of characters in a Paragraph object. Whenever the
Paragraph object is changed, the counter has to be adapted automatically.

Your task: Develop a design for the counter. You are allowed to modify the Para-
graph class. Which design pattern could you use?


