
Debugging

Software Engineering

Chair of Programming Methodology

2Debugging

Agenda for today

1. Debugging

� “Classical” vs. “Modern” technique

1. Main Concepts

� “Devil’s” vs. “Scientific” method

� Demo with NetBeans™

Software Engineering

� Demo with NetBeans™

1. Tips for finding and fixing bugs

2. References

3Debugging

Debugging

� Testing detects the error

� Debugging identifies and corrects the root cause
- typically identification is much harder

� Can take up to 50% of development time!

� Experience can make you three times faster!

Software Engineering

� Experience can make you three times faster!

Debugging is twice as hard as writing the code in the first
place.

Therefore, if you write the code as cleverly as possible, you
are, by definition, not smart enough to debug it.

— Brian W. Kernighan

4Debugging

Cause-effect chain

defect in code

infection in program state

class C {

Vector vec;

void addElement (Element e) {

vec.add(e);

}

} D
 e

 b
 u

 g
 g

 i n
 g

vec uninitialised

when add invoked

Software Engineering

infection in program state

visible as failure

D
 e

 b
 u

 g
 g

 i n
 g

when add invoked

5Debugging

Cause-effect chain

� Not every defect causes a failure!

Testing can only show the presence of errors – not their
absence.

— Dijkstra (1972)

Software Engineering

� Every failure can be traced back to some infection

� Every infection is caused by some defect

� Debugging means to relate a given failure to the
defect — and to remove the defect

6Debugging

“Classical” technique

� Print messages like

- “I’m here!” to track control flow

- “The value of x is 3” to track data flow

� Add toString methods to easily print object content

Software Engineering

� Add toString methods to easily print object content

� if(Debug.debugLevel > 3)

System.out.println(o);

� Still useful for finding simple defects quickly!

7Debugging

“Modern” technique

� Use of assert statements
- in Java since 1.4

- if fails: in debug mode throws exception, otherwise no
effect

� Use of java.util.logging.Logger

Software Engineering

� Use of java.util.logging.Logger

� Use of debugging tools
- interactive debugger

- integrated into IDE

- allows tracking of control and data flow

8Debugging

Main concepts

� Breakpoints

- Stop execution at specified locations

� Inspecting program state

- Peek into program state at a certain location

Software Engineering

- Peek into program state at a certain location

� Stepping through code

- Interactively control execution of program

9Debugging

Breakpoints

� Stop execution at specified locations

� Location types

- given method or line

- variable or field accessed/modified

- exception of specified type thrown, caught or not handled

Software Engineering

- thread starts or stops

- class loaded into or unloaded from VM

- conditional or unconditional

10Debugging

Inspecting program state

� Peek into program state where debugger is at

� Values of fields, local variables or any expression

� Call stack

� Hierarchy of all loaded classes

� Threads of the program

Software Engineering

� Threads of the program

11Debugging

Stepping through code

� Interactively control execution of program

Software Engineering

12Debugging

Stepping through code

� Step over, into or out

Executes one source line. If line contains method call,
executes the entire routine.

Software Engineering

13Debugging

Stepping through code

� Step over, into or out

Executes one source line. If line contains method call,
stops just before executing the first statement of the
routine.

Software Engineering

14Debugging

Stepping through code

� Step over, into or out

Software Engineering

Executes the remaining of the routine the line is part of
and returns control to the caller of the routine.

15Debugging

Devil’s approach

� Don’t waste time on understanding the problem

� Find defect by guessing

� Fix error with most obvious fix

� Do random changes until it seems to work

Software Engineering

Programmers do not always use available data to constrain

their reasoning.

They carry out minor and irrational repairs, and they often

don’t undo the incorrect repairs.
— Iris Vessey

16Debugging

Scientific approach

� Observe through repeatable experiments

� Form hypothesis that is consistent with

observations

� Make predictions based on hypothesis

� Test predictions by experiments or further

Software Engineering

� Test predictions by experiments or further

observations

� Repeat steps 3 and 4 until hypothesis

and experiments/observation contradict

17Debugging

Scientific approach — in debugging

1. Observe a failure

� stabilize error and make it occur reliably

� Invent hypothesis for failure cause consistent with

observations

� Make predictions based on hypothesis

Software Engineering

� Make predictions based on hypothesis

� Test hypothesis by experiments/observations

a) if experiment satisfies prediction, refine hypothesis

b) otherwise create alternate hypothesis

� Repeat 3 and 4 until hypothesis can no longer be

refined

18Debugging

Scientific approach — example

� Failure: Every time I run my application, it throws a NullPointerException in method
initElements.

Software Engineering

19Debugging

Scientific approach — example

� Failure: Every time I run my application, it throws a NullPointerException in method
initElements.

� Hypothesis: array elems is not initialized.

� Prediction: at the beginning of method initElements, elems is null.

� Prediction fails: inspecting the program state shows that the array is non-null at
beginning of initElements.

Software Engineering

beginning of initElements.

20Debugging

Scientific approach — example

� Failure: Every time I run my application, it throws a NullPointerException in method
initElements.

� Hypothesis: array elems is not initialized.

� Prediction: at the beginning of method initElements, elems is null.

� Prediction fails: inspecting the program state shows that the array is non-null at
beginning of initElements.

Software Engineering

beginning of initElements.

� New hypothesis: the elements of the array are null when invoking method init on them.

� New prediction: at the point where method init is called, the target reference is null.

21Debugging

Scientific approach — example

� Failure: Every time I run my application, it throws a NullPointerException in method
initElements.

� Hypothesis: array elems is not initialized.

� Prediction: at the beginning of method initElements, elems is null.

� Prediction fails: inspecting the program state shows that the array is non-null at
beginning of initElements.

Software Engineering

beginning of initElements.

� New hypothesis: the elements of the array are null when invoking method init on them.

� New prediction: at the point where method init is called, the target reference is null.

� Prediction confirmed by inspecting the program state.

22Debugging

Scientific approach — example

� Failure: Every time I run my application, it throws a NullPointerException in method
initElements.

� Hypothesis: array elems that contains the elements is not initialized.

� Prediction: at the beginning of method initElements, elems is null.

� Prediction fails: inspecting the program state shows that the array is non-null at
beginning of initElements.

Software Engineering

beginning of initElements.

� New hypothesis: the elements of the array are null when invoking method init on them.

� New prediction: at the point where method init is called, the target reference is null.

� Prediction confirmed by inspecting the program state.

� Hypothesis need not be refined further. Program can now be fixed, for instance, by
making sure that elements of elems are non-null when method initElements is called.

23Debugging

Demo with NetBeans

Software Engineering

Demo with NetBeans

24Debugging

Tips for finding defects

� Understand language & behavior of library methods

� Reproduce the error in several different ways

� Use all data available to make hypothesis

� Use negative test results too

� Narrow (and expand) the suspicious region of code

Software Engineering

� Narrow (and expand) the suspicious region of code

� Be suspicious of code that have had bugs before or

has changed recently

� Integrate incrementally

� Take a break!

25Debugging

Tips for fixing defects

� Add test case that exposes the defect

� Confirm your hypothesis by test cases

� Understand problem before fixing it

� Understand program/module, not just problem

� Fix problem, not symptom

Software Engineering

� Fix problem, not symptom

� Make one fix at a time

� Check your fix

� Look for similar defects

26Debugging

References

� Andreas Zeller: Why Programs Fail: A Guide to

Systematic Debugging, Morgan Kaufmann, 2005.

� Using NetBeans™ IDE

Software Engineering

� Using NetBeans™ IDE

� Steve McConnell: Code Complete, Microsoft

Press, 2nd edition, Chapter 23.

