
1

Chair of Programming Methodology

Technology Session III
- Concurrency -

Material based on Prof. Peter Müller’s

Konzepte objektorientierter Programmierung

course

2

Threads

� Execution threads are sequences

of atomic actions during a program

execution

� Concurrent programs can have

more than one threadmore than one thread

� Execution of threads can be parallel

(on several processors) or virtually

parallel (on one processor)

� A scheduler maps threads to

processors

3

Concurrency in OO-Programs

� Passive objects

- Threads pass through different
objects (by method invocations)

- Several threads executed on one
object possible

� Active objects� Active objects

- Each object has its own thread

- Upon method invocation, the thread of

the target object serves the request

- At most one thread executed on one

object

4

Threads and Passive Objects

� Threads have to be

created, started,

synchronized, and

controlled

� Threads are

interface Runnable {

void run();

}

class Thread
implements Runnable {� Threads are

represented by special

objects

� Method “start” starts

new thread and returns

immediately

implements Runnable {

Thread(Runnable target) { … }

void run() { … }

native void start();

void interrupt() { … }

…

}

5

Example

class Printer implements Runnable {

String val;

Printer(String s) { val = s; }

void run() {

while(true)

System.out.println(val);

}

“Three”

“Three”

“Three”

“One”
}

}

new Thread(new Printer(“One”)).start();

new Thread(new Printer(“Two”)).start();

new Thread(new Printer(“Three”)).start(); “Three”

“One”

“One”

“Two”

6

Enter e.next

Read 0

Write 1

Enter e.next

Data Races

� Access to common

resources (e.g.,

variables) can lead to

unwanted behavior

� Execution is divided

class Even {

private int x;

void next() { x++; x++; }

}

Enter e.next

Read 1

Write 2

Read 2

� Execution is divided

into critical and non-

critical sections

� Execution of critical

sections should be

mutually exclusive

Read 2

Write 3

Write 3

7

Object-Oriented Monitors

� Each object has a monitor

� Execution of synchronized

methods requires lock of monitor

- Lock is obtained upon invocation

- Lock is released upon termination

x:

Even

Current
Thread

2- Lock is released upon termination

- Other threads have to wait

� Monitor keeps track of

- Thread that has locked the monitor

- Number of locks of this thread

- Queue of blocked threads

Thread

Queue

8

class Even {

private int x;

synchronized void next()

{ x++; x++; }

}

Preventing Data Races

Enter e.next

Read 0

Write 1

x:

Even

012

Current
Thread

Queue

01

Enter e.next

Read 1

Write 2

Read 2

Write 3

Read 3

Write 4

4

9

Safety and Liveness

� Safety

- “Nothing bad ever happens”

- To perform method actions only when in consistent

states

- Achieved by mutual exclusion

� Liveness

- “Something eventually happens”

- Every called method should eventually execute

- Avoiding deadlocks

- Avoiding unfair scheduling (not guaranteed in Java)

10

Deadlock Example

8.2 Concurrency – Synchronization

class Cell {

private long value;

synchronized long get()

{ return value; }

synchronized void set(long v)

{ value = v; }

synchronized void

Enter c1.swap

t = get();

c1.swap(c2); c2.swap(c1);

Peter Müller – Konzepte objektorientierter Programmierung

synchronized void

swap(Cell other) {

long t = get();

long v = other.get();

set(v);

other.set(t);

}

}

v = other.get();

Enter c2.swap

t = get();

v = other.get();

