
Concepts of

Object-Oriented Programming

Peter Müller

Chair of Programming Methodology

Autumn Semester 2014

2

Peter Müller – Concepts of Object-Oriented Programming

Object Structures

 Objects are the building blocks of object-oriented

programming

 However, interesting abstractions are almost

always provided by sets of cooperating objects

 Definition:

An object structure is a set of objects that are

connected via references

6. Object Structures and Aliasing

3

Peter Müller – Concepts of Object-Oriented Programming

Example 1: Array-Based Lists

class ArrayList {

 private int[] array;

 private int next;

 public void add(int i) {

 if (next==array.length) resize();

 array[next] = i;

 next++;

 }

 public void setElems(int[] ia)

 { … }

 …

}

array:

next:

list

…

length:

0:

array

…

1:

2:

6. Object Structures and Aliasing

4

Peter Müller – Concepts of Object-Oriented Programming

Example 2: Doubly-Linked Lists

header:

3 size:

LinkedList

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

Object Object Object

next:

2 nextIndex:

ListItr

6. Object Structures and Aliasing

5

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

6

Peter Müller – Concepts of Object-Oriented Programming

Alias

 Definition:

A name that has been assumed temporarily
[WordNet, Princeton University]

6.1 Object Structures and Aliasing – Aliasing

7

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Procedural Programming

 var-parameters are

passed by reference

(call by name)

 Modification of a var-

parameter is

observable by caller

 Aliasing: Several

variables (here: p, q)

refer to same memory

location

 Aliasing can lead to

unexpected side-effects

program aliasTest

procedure assign(var p: int, var q: int);

begin

 p := 25;

end;

 begin

 var x: int := 1;

 assign(x, x);

 end

end.

{ p = 1 q = 1 }

p := 25;

{ p = 25 q = 25 }

{ x = 25 }

6.1 Object Structures and Aliasing – Aliasing

8

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Object-Oriented Programming

 Definition:

An object o is aliased if two or more variables hold

references to o.

 Variables can be

- Fields of objects (instance variables)

- Static fields (global variables)

- Local variables of method executions, including this

- Formal parameters of method executions

- Results of method invocations or other expressions

6.1 Object Structures and Aliasing – Aliasing

9

Peter Müller – Concepts of Object-Oriented Programming

Static Aliasing

 Definition:

An alias is static if all

involved variables are

fields of objects or

static fields.

 Static aliasing occurs in

the heap memory

array:

next:

list1

array:

next:

list2

array

list1.array[0] = 1;

list2.array[0] = -1;

System.out.println(list1.array[0]);

6.1 Object Structures and Aliasing – Aliasing

10

Peter Müller – Concepts of Object-Oriented Programming

Dynamic Aliasing

 Definition:

An alias is dynamic

if it is not static.

 Dynamic aliasing

involves stack-

allocated variables

array:

next:

list1

array

int[] ia = list1.array;

list1.array[0] = 1;

ia[0] = -1;

System.out.println(list1.array[0]);

6.1 Object Structures and Aliasing – Aliasing

11

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Efficiency

 In OO-programming,

data structures are

usually not copied

when passed or

modified

 Aliasing and

destructive updates

make OO-programming

efficient

class SList {

 SList next;

 Object elem;

 SList rest() { return next; }

 void set(Object e) { elem = e; }

}

void foo(SList slist) {

 SList rest = slist.rest();

 rest.set(“Hello”); }

SList SList SList SList

rest slist

6.1 Object Structures and Aliasing – Aliasing

12

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Sharing

 Aliasing is a direct

consequence of object

identity

 Objects have state that

can be modified

 Objects have to be

shared to make

modifications of state

effective

3

LinkedList

Entry

Entry Entry Entry

2

ListItr

6.1 Object Structures and Aliasing – Aliasing

13

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Capturing

 Capturing occurs when

objects are passed to a

data structure and then

stored by the data

structure

 Capturing often occurs in

constructors (e.g.,

streams in Java)

 Problem: Alias can be

used to by-pass interface

of data structure

array:

next:

list1

array

class ArrayList {

 private int[] array;

 private int next;

 public void setElems(int[] ia)

 { array = ia; next = ia.length; }

 …

}

6.1 Object Structures and Aliasing – Aliasing

14

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Leaking

 Leaking occurs when

data structure pass a

reference to an object,

which is supposed to be

internal to the outside

 Leaking often happens

by mistake

 Problem: Alias can be

used to by-pass

interface of data

structure

array:

next:

list1

array

class ArrayList {

 private int[] array;

 private int next;

 public int[] getElems()

 { return array; }

 …

}

6.1 Object Structures and Aliasing – Aliasing

15

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

16

Peter Müller – Concepts of Object-Oriented Programming

Observation

 Many well-established techniques of object-

oriented programming work for individual objects,

but not for object structures in the presence of

aliasing

 “The big lie of object-oriented programming is that

objects provide encapsulation” [Hogg, 1991]

 Examples

- Information hiding and exchanging implementations

- Encapsulation and consistency

6.2 Object Structures and Aliasing – Problems of Aliasing

17

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {

 private int[] array;

 private int next;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void setElems(int[] ia)

 { array = ia; next = ia.length; }

 …

}

class ArrayList {

 private Entry header;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void setElems(int[] ia)

 { … /* create Entry for each

 element */ }

 …

}

6.2 Object Structures and Aliasing – Problems of Aliasing

18

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

 Aliases can be used

to by-pass interface

 Observable behavior

is changed!

int foo(ArrayList list) {

 int[] ia = new int[3];

 list.setElems(ia);

 ia[0] = -1;

 return list.getFirst();

}

list
3

array

0
0
0

ia

list

Entry

Entry

0

Entry

0

Entry

0

3

array

0
0
0

ia

-1

-1

6.2 Object Structures and Aliasing – Problems of Aliasing

19

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures

 Consistency of object

structures depends on

fields of several objects

 Invariants are usually

specified as part of the

contract of those objects

that represent the

interface of the object

structure

class ArrayList {

 private int[] array;

 private int next;

 // invariant array != null &&

 // 0<=next<=array.length &&

 // i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void setElems(int[] ia)

 { … }

 …

}

6.2 Object Structures and Aliasing – Problems of Aliasing

20

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures (cont’d)

 Aliases can be used to

violate invariant

 Making all fields private is

not sufficient to

encapsulate internal state

int foo(ArrayList list) { // invariant of list holds

 int[] ia = new int[3];

 list.setElems(ia); // invariant of list holds

 ia[0] = -1; // invariant of list violated

}

list

3

array

0
0
0

ia

-1

6.2 Object Structures and Aliasing – Problems of Aliasing

21

System

Security Breach in Java 1.1.1

Class

Identity Identity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {

 Identity[] s;

 Identity trusted = java.Security…;

 s = Malicious.class.getSigners();

 s[0] = trusted;

 /* abuse privilege */

 }

}
Identity[] getSigners()

 { return signers; }

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

22

Problem Analysis

 Difficult to prevent

- Information hiding:

not applicable to arrays

- Restriction of Identity

objects: not effective

- Secure information flow:

read access permitted

- Run-time checks:

too expensive
System

Class

Identity Identity[]

Identity

Identity
Identity[]

 Breach caused by unwanted alias
- Leaking of reference

6.2 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

23

Peter Müller – Concepts of Object-Oriented Programming

Other Problems with Aliasing

 Synchronization in concurrent

programs

- Monitor of each individual object

has to be locked to ensure

mutual exclusion

 Distributed programming

- For instance, parameter passing

for remote method invocation

 Optimizations

- For instance, object inlining is

not possible for aliased objects

6.2 Object Structures and Aliasing – Problems of Aliasing

24

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: LinkedList

 All fields are private

 Entry is a private inner class of LinkedList

- References are not passed out

- Subclasses cannot manipulate or leak Entry-objects

 ListItr is a private inner class of LinkedList

- Interface ListIterator provides controlled access to

ListItr-objects

- ListItr-objects are passed out, but in a controlled fashion

- Subclasses cannot manipulate or leak ListItr-objects

 Subclassing is severely restricted

6.2 Object Structures and Aliasing – Problems of Aliasing

25

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: String

 All fields are private

 References to internal

character-array are not

passed out

 Subclassing is prohibited

(final)

value:

…:

String

char[]

6.2 Object Structures and Aliasing – Problems of Aliasing

26

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

27

Peter Müller – Concepts of Object-Oriented Programming

Object Structures Revisited

class Address … {

 private String street;

 private String city;

 public String getStreet() { … }

 public void setStreet(String s)

 { … }

 public String getCity() { … }

 public void setCity(String s)

 { … }

 …

}

addr:

peter

…
street:

city:

home

…

class Person {

 private Address addr;

 public Address getAddr()

 { return addr.clone(); }

 public void setAddr(Address a)

 { addr = a.clone(); }

 …

}

6.3 Object Structures and Aliasing – Readonly Types

28

Peter Müller – Concepts of Object-Oriented Programming

Drawbacks of Alias Prevention

 Aliases are helpful to

share side-effects

 Cloning objects is not

efficient

 In many cases, it suffices

to restrict access to

shared objects

 Common situation: grant

read access only

addr:

peter

…

street:

city:

home

… addr:

annette

…

prof7:

ETH

…

6.3 Object Structures and Aliasing – Readonly Types

29

Requirements for Readonly Access

 Mutable objects

- Some clients can mutate the

object, but others cannot

- Access restrictions apply to

references, not whole objects

 Prevent field updates

 Prevent calls of mutating

methods

 Transitivity

- Access restrictions extend to

references to sub-objects

Peter Müller – Concepts of Object-Oriented Programming

No:

Natel

…

street:

city:

home

…

phone:

addr:

peter

…

prof7:

ETH

…

6.3 Object Structures and Aliasing – Readonly Types

30

Peter Müller – Concepts of Object-Oriented Programming

interface ReadonlyAddress {

 public String getStreet();

 public String getCity();

}

Readonly Access via Supertypes

 Clients use only the methods in the interface

- Object remains mutable

- No field updates

- No mutating method in the interface

class Address

 implements ReadonlyAddress … {

… /* as before */ }

class Person {

 private Address addr;

 public ReadonlyAddress

getAddr()

 { return addr; }

 public void setAddr(Address a)

 { addr = a.clone(); }

 … }

6.3 Object Structures and Aliasing – Readonly Types

31

Peter Müller – Concepts of Object-Oriented Programming

Limitations of Supertype Solution

 Reused classes

might not implement

a readonly interface

- See discussion of

structural subtyping

 Interfaces do not

support arrays,

fields, and non-public

methods

6.3 Object Structures and Aliasing – Readonly Types

class Address

 implements ReadonlyAddress … {

 …

 private PhoneNo phone;

 public PhoneNo getPhone()

 { return phone; } }

interface ReadonlyAddress {

 …

 public PhoneNo getPhone();

}

interface ReadonlyAddress {

 …

 public ReadonlyPhoneNo getPhone();

}

 Transitivity has to be encoded explicitly

- Requires sub-objects to implement readonly interface

32

Peter Müller – Concepts of Object-Oriented Programming

Supertype Solution is not Safe

 No checks that

methods in readonly

interface are actually

side-effect free

 Readwrite aliases can

occur, e.g., through

capturing

 Clients can use casts

to get full access

class Person {

 private Address addr;

 public ReadonlyAddress getAddr()

 { return addr; }

 public void setAddr(Address a)

 { addr = a.clone(); }

 …

}

void m(Person p) {

 ReadonlyAddress ra = p.getAddr();

 Address a = (Address) ra;

 a.setCity(“Hagen”);

}

6.3 Object Structures and Aliasing – Readonly Types

33

Readonly Access in Eiffel

 Better support for fields

- Readonly supertype can contain getters

- Field updates only on “this” object

 Command-query separation

- Distinction between mutating and inspector methods

- But queries are not checked to be side-effect free

 Other problems as before

- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Müller – Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing – Readonly Types

34

Readonly Access in C++: const Pointers

 C++ supports readonly

pointers

- No field updates

- No mutator calls

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 string city;

public:

 string getCity(void)

 { return city; }

 void setCity(string s)

 { city = s; }

};

class Person {

 Address* addr;

public:

 const Address* getAddr()

 { return addr; }

 void setAddr(Address a)

 { /* clone */ }

}; C++ C++

void m(Person* p) {

 const Address* a = p->getAddr();

 a->setCity(“Hagen”);

 cout << a->getCity();

} C++ Compile-time

error

Compile-time

errors

6.3 Object Structures and Aliasing – Readonly Types

35

Readonly Access in C++: const Functions

 const functions must

not modify their receiver

object

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 string city;

public:

 string getCity(void) const

 { return city; }

 void setCity(string s)

 { city = s; }

};

class Person {

 Address* addr;

public:

 const Address* getAddr()

 { return addr; }

 void setAddr(Address a)

 { /* clone */ }

}; C++ C++

void m(Person* p) {

 const Address* a = p->getAddr();

 a->setCity(“Hagen”);

 cout << a->getCity();

} C++ Compile-time

error
Call of const

function allowed

6.3 Object Structures and Aliasing – Readonly Types

36

It wouldn’t be C++ …

 const-ness can be cast

away

- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 string city;

public:

 string getCity(void) const

 { return city; }

 void setCity(string s) const {

 Address* me = (Address*) this;

 me->city = s;

} };

class Person {

 Address* addr;

public:

 const Address* getAddr()

 { return addr; }

 void setAddr(Address a)

 { /* clone */ }

};

C++ C++

void m(Person* p) {

 const Address* a = p->getAddr();

 a->setCity(“Hagen”);

}

C++

Call of const

function allowed

6.3 Object Structures and Aliasing – Readonly Types

37

It wouldn’t be C++ … (cont’d)

 const-ness can be cast

away

- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 string city;

public:

 string getCity(void) const

 { return city; }

 void setCity(string s)

 { city = s; }

};

class Person {

 Address* addr;

public:

 const Address* getAddr()

 { return addr; }

 void setAddr(Address a)

 { /* clone */ }

}; C++ C++

void m(Person* p) {

 const Address* a = p->getAddr();

 Address* ma = (Address*) a;

 ma->setCity(“Hagen”);

} C++

6.3 Object Structures and Aliasing – Readonly Types

38

class Phone {

public:

 int number;

};

Readonly Access in C++: Transitivity

 const pointers are not

transitive

 const-ness of sub-

objects has to be

indicated explicitly

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 string city;

 Phone* phone;

public:

 Phone* getPhone(void) const

 { return phone; }

…

};

C++

C++

void m(Person* p) {

 const Address* a = p->getAddr();

 Phone* p = a->getPhone();

 p->number = 2331…;

}
C++

6.3 Object Structures and Aliasing – Readonly Types

39

Transitivity (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 string city;

 Phone* phone;

public:

 const Phone* getPhone(void) const {

 phone->number = 2331 …;

 return phone;

 }

 …

};
C++

const functions may

modify objects other

than the receiver

6.3 Object Structures and Aliasing – Readonly Types

40

Readonly Access in C++: Discussion

Pros

 const pointers provide

readonly pointers to

mutable objects

- Prevent field updates

- Prevent calls of non-

const functions

 Work for library classes

 Support for arrays,

fields, and non-public

methods

Cons

 const-ness is not

transitive

 const pointers are

unsafe

- Explicit casts

 Readwrite aliases can

occur

Peter Müller – Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing – Readonly Types

41

Peter Müller – Concepts of Object-Oriented Programming

Pure Methods

 Tag side-effect free

methods as pure

 Pure methods

- Must not contain field

update

- Must not invoke non-

pure methods

- Must not create objects

- Can be overridden only

by pure methods

class Address {

 private String street;

 private String city;

 public pure String getStreet()

 { … }

 public void setStreet(String s)

 { … }

 public pure String getCity()

 { … }

 public void setCity(String s)

 { … }

 …

}

6.3 Object Structures and Aliasing – Readonly Types

42

Peter Müller – Concepts of Object-Oriented Programming

Types

 Each class or interface T

introduces two types

 Readwrite type rw T

- Denoted by T in programs

 Readonly type ro T

- Denoted by readonly T in

programs

class Person {

 private Address addr;

 public readonly Address

 getAddr() { … }

 …

}

class Person {

 private Address addr;

 public ReadonlyAddress

 getAddr() { return addr; }

 public void setAddr(Address a)

 { addr = a.clone(); }

 … }

6.3 Object Structures and Aliasing – Readonly Types

43

Peter Müller – Concepts of Object-Oriented Programming

Subtype Relation

 Subtyping among readwrite

and readonly types is

defined as in Java

- S extends or implements T

rw S <: rw T

- S extends or implements T

ro S <: ro T

 Readwrite types are

subtypes of corresponding

readonly types

- rw T <: ro T

class T { … }

class S extends T { … }

S rwS = …

T rwT = …

readonly S roS = …

readonly T roT = …

rwT = rwS;

roT = roS;

roT = rwT;

rwT = roT;

6.3 Object Structures and Aliasing – Readonly Types

44

Peter Müller – Concepts of Object-Oriented Programming

class Address {

 …

 private int[] phone;

 public int[] getPhone() { … }

}

Type Rules: Transitive Readonly

 Accessing a value of a

readonly type or

through a readonly type

should yield a readonly

value

Person p = …

readonly Address a;

a = p.getAddr();

int[] ph = a.getPhone();

class Person {

 private Address addr;

 public readonly Address

 getAddr() { return addr; }

 …

}

6.3 Object Structures and Aliasing – Readonly Types

45

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …

readonly Address a;

a = p.getAddr();

int[] ph = a.getPhone();

ro Address rw int[] ►

ro int[]

 The type of
- A field access

- An array access

- A method invocation

 is determined by the
type combinator ►

6.3 Object Structures and Aliasing – Readonly Types

46

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …

readonly Address a;

a = p.getAddr();

readonly int[] ph = a.getPhone();

ro Address rw int[] ►

ro int[]

 The type of
- A field access

- An array access

- A method invocation

 is determined by the
type combinator ►

6.3 Object Structures and Aliasing – Readonly Types

47

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Readonly Access

 Expressions of readonly

types must not occur as

receiver of

- a field update

- an array update

- an invocation of a non-pure

method

 Readonly types must not

be cast to readwrite types

readonly Address roa;

roa.street = “Rämistrasse”;

roa.phone[0] = 41;

roa.setCity(“Hagen”);

readonly Address roa;

Address a = (Address) roa;

6.3 Object Structures and Aliasing – Readonly Types

48

Peter Müller – Concepts of Object-Oriented Programming

Discussion

 Readonly types enable safe sharing of objects

 Very similar to const pointers in C++, but:

- Transitive

- No casts to readwrite types

 All rules for pure methods and readonly types can

be checked statically by a compiler

 Readwrite aliases can still occur, e.g., by capturing

6.3 Object Structures and Aliasing – Readonly Types

49

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Aliasing

6.2 Problems of Aliasing

6.3 Readonly Types

6.4 Ownership Types

6. Object Structures and Aliasing

50

Object Topologies

 Read-write aliases

can still occur, e.g.,

by capturing or

leaking

 We need to

distinguish “internal”

references from

other references

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 private Address addr;

 private Company employer;

 public readonly Address getAddr()

 { return addr; }

 public void setAddr(Address a)

 { addr = a.clone(); }

 public Company getEmployer()

 { return employer; }

 public void setEmployer(Company c)

 { employer = c; }

 …

}

6.4 Object Structures and Aliasing – Ownership Types

51

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures

 Interface objects that are

used to access the

structure

 Internal representation

of the object structure

- Must not be exposed to

clients

 Arguments of the object

structure

- Must not be modified

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types

52

Peter Müller – Concepts of Object-Oriented Programming

Ownership Model

 Each object has zero

or one owner objects

 The set of objects

with the same owner

is called a context

 The ownership

relation is acyclic

 The heap is

structured into a

forest of ownership

trees

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types
Owner of

Entry objects

Context of

objects owned

by list head

Dictionary

53

Peter Müller – Concepts of Object-Oriented Programming

OwnershipTypes

 We use types to express
ownership information

 peer types for objects in
the same context as this

 rep types for
representation objects in
the context owned by this

 any types for argument
objects in any context

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Ownership Types

rep

reference

peer

reference

any

reference

54

Example

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {

 private rep Entry header;

 …

}

class Entry {

 private any Object element;

 private peer Entry previous, next;

 …

}

6.4 Object Structures and Aliasing – Ownership Types

A list owns

its nodes
Lists store

elements with

arbitrary owners

All nodes have

the same owner

55

Type Safety

 Run-time type information consists of

- The class of each object

- The owner of each object

 Type invariant: the static ownership information of

an expression e reflects the run-time owner of the

object o referenced by e’s value

- If e has type rep T then o’s owner is this

- If e has type peer T then o’s owner is the owner of this

- If e has type any T then o’s owner is arbitrary

Peter Müller – Concepts of Object-Oriented Programming

An existential

type

6.4 Object Structures and Aliasing – Ownership Types

56

Peter Müller – Concepts of Object-Oriented Programming

Subtyping and Casts

 For types with identical

ownership modifier, subtyping

is defined as in Java

- rep S <: rep T

- peer S <: peer T

- any S <: any T

 rep types and peer types are

subtypes of corresponding

any types

- rep T <: any T

- peer T <: any T

class T { … }

class S extends T { … }

peer T peerT = …

any T anyT = …

rep S repS = …

rep T repT = …

repT = repS;

anyT = repT;

peerT = (peer T) anyT;

repT = (rep T) anyT;

repT = peerT;

peerT = repT;

repT = anyT;

6.4 Object Structures and Aliasing – Ownership Types

Run-time

error

Run-time

checks

57

Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {

 private rep Entry header;

 public void add(any Object o) {

 rep Entry newE = new rep Entry(o, header, header.previous);

 …

 }

}

class Entry {

 private any Object element;

 private peer Entry previous, next;

 public Entry(any Object o, peer Entry p, peer Entry n) { … }

}

6.4 Object Structures and Aliasing – Ownership Types

Ownership information

is relative to this

reference (viewpoint)

Ownership information

is relative to this

reference (viewpoint)

58

Viewpoint Adaptation: Example 1

peer ► peer = peer

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

Entry Entry Entry

List

59

Viewpoint Adaptation: Example 2

rep ► peer = rep

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

List

Entry Entry Entry

60

Viewpoint Adaptation

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T ? any T

rep S rep T ? any T

any S ? ? any T

6.4 Object Structures and Aliasing – Ownership Types

v = e.f;

e.f = v;

(e) ► (f) <: (v)

(v) <: (e) ► (f)

61

Read vs. Write Access

any Address a = joe.addr;

class Person {

 public rep Address addr;

 public peer Person spouse;

 …

}

peer Person joe, jill;

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

joe.spouse = jill;

this

joe

jill

joe.addr = new rep Address(); joe.addr = new rep Address();

62

The lost Modifier

 Some ownership

relations cannot be

expressed in the type

system

 Internal modifier lost for

fixed, but unknown

owner

 Reading locations with

lost ownership is allowed

 Updating locations with

lost ownership is unsafe

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

any Address a = joe.addr;

class Person {

 public rep Address addr;

 public peer Person spouse;

 …

}

peer Person joe, jill;

joe.spouse = jill;

joe.addr = new rep Address();

lost Address

lost Address

63

The lost Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

6.4 Object Structures and Aliasing – Ownership Types

 Subtyping

- rep T <: lost T

- peer T <: lost T

- lost T <: any T

Another

existential type

64

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Field Access

 The field read

 is correctly typed if

- e is correctly typed

- (e) ► (f) <: (v)

v = e.f;

 The field write

 is correctly typed if

- e is correctly typed

- (v) <: (e) ► (f)

- (e) ► (f) does not

have lost modifier

e.f = v;

 Analogous rules for method invocations

- Argument passing is analogous to field write

- Result passing is analogous to field read

6.4 Object Structures and Aliasing – Ownership Types

65

The self Modifier

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

class Person {

 public rep Address addr;

 public peer Person spouse;

 …

}

peer Person joe;

this

joe

joe.addr = new rep Address();

this.addr = new rep Address();

 Internal modifier self only for the this literal

66

The self Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

v = e.f;

e.f = v;

(e) ► (f) <: (v)

(v) <: (e) ► (f)

(e) ► (f) does not

have lost modifier

 Subtyping

- self T <: peer T

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

self S peer T rep T any T

67

Example: Sharing

 Different Person objects

have different Address

objects

- No unwanted sharing

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 public rep Address addr;

 …

}

this

joe

6.4 Object Structures and Aliasing – Ownership Types

68

Example: Internal vs. External Objects

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 private rep Address addr;

 public rep Address getAddr() {

 return addr;

 }

 public void setAddr(rep Address a) {

 addr = a;

 }

 public void setAddr(any Address a) {

 addr = new rep Address(a);

 }

}

Clients receive a

lost-reference

Cannot be called

by clients

Cloning

necessary

Address is part of

Person’s internal

represenations

6.4 Object Structures and Aliasing – Ownership Types

69

Internal vs. External Objects (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 private any Company employer;

 public any Company getEmployer() {

 return employer;

 }

 public void setEmployer(any Company c) {

 employer = c;

 }

}

Can be called

by clients

Company is shared

between many

Person objects

6.4 Object Structures and Aliasing – Ownership Types

70

Owner-as-Modifier Discipline

 Based on the topological type system we can

strengthen encapsulation with extra restrictions

- Prevent modifications of internal objects

- Treat any and lost as readonly types

- Treat self, peer, and rep as readwrite types

 Additional rules enforce owner-as-modifier

- Field write e.f = v is valid only if (e) is self,

peer, or rep

- Method call e.m(…) is valid only if (e) is self,

peer, or rep, or called method is pure

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

71

Owner-as-Modifier Discipline (cont’d)

 A method may modify only objects directly or

indirectly owned by the owner of the current this

object

o

Peter Müller – Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing – Ownership Types

this

72

Internal vs. External Objects Revisited

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 private rep Address addr;

 private any Company employer;

 public rep Address getAddr() { return addr; }

 public void setAddr(any Address a) {

 addr = new rep Address(a);

 }

 public any Company getEmployer() { return employer; }

 public void setEmployer(any Company c) { employer = c; }

}

Company is shared;

cannot be modified

Clients receive

(transitive)

readonly reference

Accidental capturing

is prevented

6.4 Object Structures and Aliasing – Ownership Types

73

Peter Müller – Concepts of Object-Oriented Programming

Achievements

 rep and any types enable

encapsulation of whole

object structures

 Encapsulation cannot be

violated by subclasses,

via casts, etc.

 The technique fully

supports subclassing

- In contrast to solutions with

final, private inner classes,

etc.

class ArrayList {

 protected rep int[] array;

 private int next;

 …

}

class MyList extends ArrayList {

 public peer int[] leak() {

 return array;

 }

}

6.4 Object Structures and Aliasing – Ownership Types

74

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {

 private int[] array;

 private int next;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void setElems(int[] ia)

 { array = ia; next = ia.length; }

 …

}

class ArrayList {

 private Entry header;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void setElems(int[] ia)

 { … /* create Entry for each

 element */ }

 …

}

6.3 Object Structures and Aliasing – Problems of Aliasing

75

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

class ArrayList {

 private rep int[] array;

 private int next;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void

 setElems(any int[] ia)

 { System.arraycopy(…);

 next = ia.length; }

 …

}

class ArrayList {

 private rep Entry header;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void

 setElems(any int[] ia)

 { … /* create Entry for each

 element */ }

 …

}

6.4 Object Structures and Aliasing – Ownership Types

Accidental capturing

is prevented

76

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

class ArrayList {

 private rep int[] array;

 private int next;

 public any int[] getElems()

 { return array; }

 …

}

class ArrayList {

 private rep Entry header;

 public void any int[] getElems()

 { /* create new array */ }

 …

}

6.4 Object Structures and Aliasing – Ownership Types

Leaking is still

possible

peer ArrayList list = new peer ArrayList();

list.prepend(0);

any int[] ia = list.getElems();

list.prepend(1);

assert ia[0] == 1;

 Observable

behavior is

changed

77

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures

 Consistency of object

structures depends on

fields of several objects

 Invariants are usually

specified as part of the

contract of those objects

that represent the

interface of the object

structure

class ArrayList {

 private int[] array;

 private int next;

 // invariant array != null &&

 // 0<=next<=array.length &&

 // i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void setElems(int[] ia)

 { … }

 …

}

6.3 Object Structures and Aliasing – Problems of Aliasing

78

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Object Structures

 The invariant of object o

may depend on

- Encapsulated fields of o

- Fields of objects

(transitively) owned by o

 Interface objects have

full control over their

rep-objects

class ArrayList {

 private rep int[] array;

 private int next;

 // invariant array != null &&

 // 0<=next<=array.length &&

 // i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void setElems

 (any int[] ia) { … }

 …

}

6.4 Object Structures and Aliasing – Ownership Types

79

System

Security Breach in Java 1.1.1

Class

Identity Identity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {

 Identity[] s;

 Identity trusted = java.Security…;

 s = Malicious.class.getSigners();

 s[0] = trusted;

 /* abuse privilege */

 }

}
Identity[] getSigners()

 { return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

80

System

Security Breach in Java 1.1.1 (cont’d)

Class

Identity Identity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {

 any Identity[] s;

 Identity trusted = java.Security…;

 s = Malicious.class.getSigners();

 s[0] = trusted;

 }

}

rep Identity[] getSigners()

 { return signers; }

Peter Müller – Concepts of Object-Oriented Programming

rep Identity[] signers;

6.4 Object Structures and Aliasing – Ownership Types

81

Peter Müller – Concepts of Object-Oriented Programming

Ownership Types: Discussion

 Ownership types express heap topologies and

enforce encapsulation

 Owner-as-modifier is helpful to control side effects

- Maintain object invariants

- Prevent unwanted modifications

 Other applications also need restrictions of read

access

- Exchange of implementations

- Thread synchronization

6.4 Object Structures and Aliasing – Ownership Types

82

References

 Werner Dietl and Peter Müller: Universes: Lightweight

Ownership for JML. Journal of Object Technology, 2005

 Werner Dietl, Sophia Drossopoulou, and Peter Müller:

Separating Ownership Topology and Encapsulation with

Generic Universe Types. ACM Trans. Program. Lang. Syst.,

2011

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

