
Concepts of Object-Oriented Programming
AS 2014

Exercise 4
Behavioral Subtyping and Inheritance

October 17, 2014

Task 1
Consider the example in Slide 57 of the lecture 2:
class Number {
int n;

/// requires true
/// ensures n == p
void set(int p) { n = p; }

}

class UndoNaturalNumber extends Number {
int undo;

/// requires 0 < p
/// ensures n == p && undo == old(n)
void set(int p) { undo = n; n = p; }

/// requires true
/// ensures n == undo && undo == old(undo)
void reset() { n = undo; }

}

where the invariants have been removed. Class UndoNaturalNumber is not a behavioral sub-
type of NaturalNumber. One solution is to use specification inheritance. What are the effective
pre/post-conditions of method UndoNaturalNumber.set according to the rules of Slides 67
and 70?

Solution
The effective precondition is equal to true. The effective postcondition is given by

(old(true)==> n==p)&& (old(0<p)==> n==p && undo==old(n))

which, if we make the simplifying assumption that formal parameters cannot be assigned to,
i.e., old(p)==p, is equivalent to

n==p && (0<p ==> undo==old(n)).

Task 2 Behavioral Subtyping
Assume the following types in Java:
enum Shift {DayShift, NightShift, SpecialShift}

interface PostalWorker {
boolean sick();



///ensures sick()
void catchDisease();

///requires when == SpecialShift || when == DayShift
///requires !sick()
int work(Shift when);

}

interface Bartender {
boolean sick();

///ensures sick()
void catchDisease();

///requires when == SpecialShift || when == NightShift
///requires !sick()
int work(Shift when);

}

The work() method can be called in order to request that the corresponding person work the
requested shift. The value returned by work() is the average hourly wage that was earned
during the working shift including tips.

A

Now we introduce another interface:
interface HardWorker extends PostalWorker, Bartender {

///requires true
int work(Shift when);

}

Assuming the improved rule for specification inheritance discussed in the course, what is the
effective precondition of the work() method of the HardWorker interface?

solution
///requires

(!sick() && (when == SpecialShift || when == DayShift))
|| (!sick() && (when == SpecialShift || when == NightShift))
|| true

which is equivalent to
///requires true

B

Now we add postconditions to all work() methods. Everything else remains as before.
interface PostalWorker {

...
///ensures result ≥ 15 && result ≤ 25
int work(Shift when);

}

interface Bartender {
...
///ensures result ≥ 20 && result ≤ 30
int work(Shift when);

}



interface HardWorker extends PostalWorker, Bartender {
...
///ensures result ≥ 25 && result ≤ 50
int work(Shift when);

}

Assuming the improved rules for specification inheritance, what is the effective postcondition
of the work() method of HardWorker?

solution
///ensures

( old(!sick() && (when == SpecialShift || when == DayShift))
⇒ (result ≥ 15 && result ≤ 25) )

&& ( old(!sick() && (when == SpecialShift || when == NightShift))
⇒ (result ≥ 20 && result ≤ 30) )

&& ( old(true)
⇒ (result ≥ 25 && result ≤ 50) )

which is equivalent to
///ensures

( old(!sick() && when != NightShift)
⇒ result == 25 )

&& ( old(!sick() && when == NightShift)
⇒ (result ≥ 25 && result ≤ 30) )

&& ( old(sick())
⇒ (result ≥ 25 && result ≤ 50) )

C

Consider the following code:
///requires worker != null
///requires !worker.sick()
int foo(HardWorker worker) {

return worker.work(Shift.SpecialShift);
}

What is the range of possible return values of the foo() method?

solution

Only 25 is a possible return value.

D

Change the body of method foo() such that it calls the work() method of worker in a way
that makes it possible for this call to return 50.

solution
int foo(HardWorker worker) {

worker.catchDisease();
return worker.work(Shift.SpecialShift);

}



Task 3
Investigate the behavior of the following Java code:
interface I {};

class C {};

public class E2_1
{

public static void main(String [] argv)
{

C c = new C();
I i = (I) c;

}
}

Try to compile it. If it compiles, try to execute it. What happens? Why?

Solution
The compiler allows the code to go through although it can’t prove that c implements I. The
reason is that there might be a subclass D of C such that D implements I and c might be an
object of D. Here Java opts for the flexibility of dynamic type checking.

When the code executes a runtime exception is thrown, because c does not implement I and
this is caught by the runtime check.

Task 4
Suppose that we have a database, for which we want an “automated key generation” feature.
This means that each time the user inserts a new tuple, a unique key is automatically generated
for the tuple by the system. An obvious way to do that is to write a counter, which increments
by 1 the value that it returns each time it is called. The method that generates a new key is
called generate.

1. Write a Java class IncCounter and an accompanying specification for such a counter.

2. Annotate the following Java class with specifications and show that it is not a behavioural
subtype of IncCounter.
class DecCounter
{

int key;
DecCounter () { key = 0; }
int generate () { return key--; }

}

3. Write an abstract class GenerateUniqueKey together with a specification, such that
both IncCounter and DecCounter are behavioural subtypes of
GenerateUniqueKey. In the specification, you may use helper methods and fields.

Solution
1. class IncCounter

{
/// constraint old(key) <= key
int key;

IncCounter () { key = 0; }

/// ensures key=old(key)+1 ∧ result=old(key)
int generate () { return key++; }

}



2. The postcondition for generate is key=old(key)-1 ∧ result=old(key) and it is
easy to see that it does not refine the postcondition of IncCounter.generate. The his-
tory constraint is old(key)>= key and also does not strengthen the one of IncCounter.

3. The abstract parent class can be declared using a helper pure method
boolean used(int). Informally, the helper method returns true if x has been used as
a key before. Furthermore, the correctness of the class relies on the property that once a
number is used, it never becomes unused again. This can be expressed with a two-state
history constraint.

The definitions of the classes follow:
abstract class GenerateUniqueKey
{

/// constraint ∀ x:int | (old(used(x)) ⇒ used(x))
abstract boolean used(int);

/// ensures ¬old(used(result)) ∧ used(result)
abstract int generate ();

}

class IncCounter // ... and similarly for DecCounter
{

int key;
IncCounter () { key = 0; }

boolean used (int x)
{ return x < key; }

/// ensures key == old(key)+1 ∧ result == old(key)
int generate () { return key++; }

}

Task 5
Consider the following Java classes and interfaces:
public interface IA
{

IA g(IA x);
}

public interface IB extends IA
{

IB g(IA x);
IA g(IB x);

}

public interface IC extends IA
{

IC g(IB x);
}

class B implements IB
{

public IB g(IA x){System.out.print("B1");return null;}
public IC g(IB x){System.out.print("B2");return null;}

}

class C implements IC
{

public IC g(IA x){System.out.print("C1");return null;}



public C g(IB x){System.out.print("C2");return null;}
}

class Main{
public static void main(String[] args) {

B b = new B();
C c = new C();
IA a1 = b;
IA a2 = c;

IA r1 = a1.g(a2);
IA r2 = a2.g(b);
IC r3 = b.g(b);
IA r4 = c.g(a2);
C r5 = c.g(b);

}
}

What is the output of the execution of method main in class Main? Explain your answer.

Solution
The code will print B1 C1 B2 C1 C2:

a1 is of static type IA and dynamic type B, a2 is of static type IA: a1.g(a2) maps to IA.g(

IA), which is overriden in IB as IB.g(IA) and then in B as B.g(IA).

a2 is of static type IA and dynamic type C, b is of static type B: a2.g(b) maps to IA.g(IA),
which is overriden in IC as IC.g(IA) and then in C as C.g(IA).

b is of static type B and dynamic type B: b.g(b)maps to B.g(IB) (more specific than B.g(IA)
- overload resolution).

c is of static type C and dynamic type C, a2 is of static type IA: c.g(a2) maps to C.g(IA).

c is of static type C and dynamic type C, b is of static type B: c.g(b) maps to C.g(IB) (more
specific - overload resolution).

Task 6
Consider two classes Stack and Queue, implementing the standard LIFO/FIFO data struc-
tures, both of which have methods with the following signatures:
void push(Object o);
Object pop();
bool isEmpty();
int size();
void reverse();

• Despite having identical signatures, these two classes cannot be behavioral subtypes of
one another. Why not?

• When implementing these two classes, is there any possibility of code reuse? If so, give
details.

• Describe at least one way of reusing the code in one class by the other - which programming
language features are needed for this to work?

Solution

• The intended behavior is that a Stack is FIFO, while a Queue is LIFO. Therefore, the pop
and push have different behavior and so neither can be considered a behavioral subtype
of the other.



• Depending on the internal representation, either the pop() or the push() method (but
not both) could be reused, from one implementation to the other. For example, if one
implements a Queue by pushing to the end of a linked list, and popping from the begin-
ning, then a Stack could be implemented either by pushing on the beginning of the list
and reusing the pop() method, or by reusing the push() method and popping from the
end of the list. Furthermore, it’s likely that the isEmpty(), size() and reverse()

methods could all be reused.

• Any mechanism which allows code reuse without subtyping, e.g., private inheritance in
C++ or aggregation. In both cases it would make sense to have a “common super class”
used by both implementations. This super-class, however, would either be too wide (al-
lowing insertion/removal at both ends) or rather thin (allowing only insertion on one
side). In the wide case we could use a kind of linked list, for example, that can insert/re-
move at the beginning and end, and use private inheritance to expose only the relevant
operations to the clients of each data structure.


