Concepts of Object-Oriented Programming E'H

AS 2014 Eidgendssische Technische Hochschule Ziirich
Swiss Federal Institute of Technology Zurich

Fixercise 6
Multiple Inheritance, Multiple Dispatch and Traits
October 31, 2014

Task 1

Consider an interface Mat rix to represent integer valued matrices, which has two implementations-
GeneralMatrix that represents matrices as 2 dimensional arrays, and SparseMatrix that
represents only non-zero elements with their position. The idea is that matrices with few non-
zero elements can implement operations more efficiently. Consider now the add and multiply
methods. These operations should be implemented differently depending on the (runtime) types
of both the receiver and the argument the methods are applied to - they are binary methods.
In this question assume that matrices are immutable.

1. Sketch how to implement the add method (the details of how to perform the actual
addition are not essential), in both GeneraMatrix and SparseMatrix based on each of
the following approaches to binary methods:

(a) Explicit type tests to check the runtime type of the argument
(b) Double invocation (Visitor pattern)
(¢) Multiple dispatch
Detail how implementing multiply differs from implementing add.
2. Which approach seems most elegant /appropriate for this example?

3. If we were to add a third class, zeroMat rix, which represents a matrix where all values
are zero, how much would we have to change in each approach? Does any of them excel
or suffer in particular?

4. We are given the following Mat rix interface:
interface Matrix{
int get(int i, int j);
Matrix add(Matrix m);

Matrix multiply (Matrix m);
}

For reasons of compatibility with existing code, we are not allowed to change the existing
definition of the Matrix interface. Which of the three approaches above can be adapted
to this constraint?

Task 2

Now assume that we want to reduce code duplication by pooling all the common implementa-
tion of matrices into an abstract Matrix class instead of an interface. This class would be a
superclass for GeneralMatrix and SparseMatrix



1. Sketch how to implement the add method in the Matrix class. Does this require any
other methods or changes in the other classes?

2. In each of the three approaches detailed above, can we now omit some code? What would
be the consequences?

3. How would you add the ZeroMatrix now? Is it easier or harder?

Task 3

(a) Java 8 allows interface methods to have a default implementation directly in the interface.
e What are some advantages of this feature?
e What could be some problems with this feature? How can they be resolved?

e What problems of C-++ virtual inheritance are avoided by this new design for Java
interfaces?

(b) Now suppose that, in addition to method implementations, Java also allowed interfaces
to define fields. Interfaces would not have constructors and interface fields would always
be initialized with a default value.

e What are some advantages of this feature?

e Given the restrictions above, are there any problems left with such an implementation
of multiple inheritance? If so what are they? Propose a solution for each problem
you have identified.

Task 4

Consider the following Scala code:

class Cell

{
private var x:int = 0
def get () = { x }
def set(i:int) = { x=i }
}

trait Doubling extends Cell
{

override def set (i:int) = { super.set (2x1i) }

}

trait Incrementing extends Cell

{

override def set(i:int) = { super.set (i+1l) 1}

}

e What is the difference between the following objects?

val a = new Cell

val b = new Cell with Incrementing

val ¢ = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing

e We use the following code to implement a cell that stores the argument of the set method
multiplied by four:

val e = new Cell with Doubling with Doubling



Why doesn’t it work? What does it do? How can we make it work?

e Find a modularity problem in the above, or a similar, situation. Hint: a client that gets
given a class C does not necessarily know if a trait T has been mixed in that class.

Task 5

Assume all the definitions of the previous exercise. Assume that Cell has the invariant that x
is always even. Furthermore, consider a Scala method

foo(x: Cell with Doubling with Incrementing) {...}

e During the execution of foo, if we assume that all subclasses of Cel1 respect behavioral
subtyping, then are we allowed to conclude that x.get () always returns an even number?

e We propose the following solution to support traits together with behavioral subtyping:
Assume C is a class with specification s. Each time we create a new trait T that extends
C, we must ensure that ¢ with T also satisfies s.

Show a counterexample that demonstrates that this approach does not work.

Task 6

Write three classes

e A normal queue class Queue

e A subclass of Queue that also stores (and allows clients to retrieve) the current sum of
all items in the queue, using the enqueue and dequeue methods

e A subclass of Queue that also stores (and allows clients to retrieve) the current product
of all items in the queue, using the enqueue and dequeue methods

We now want a class that supports both functionalities.

e Suppose that we want to use multiple inheritance to do that. We want to override the
enqueue and dequeue methods of the new class, such that the new methods call the
enqueue and dequeue methods of both the old classes. Are there any problems with
this approach?

e How do we attack the problem using traits? Does this fix the above-mentioned problems?
Are there any new problems with this approach?

Task 7

Consider the following declarations in Scala:

class C

trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.



