
Concepts of Object-Oriented Programming
AS 2014

Exercise 12
Initialization

December 12, 2014

Task 1
Consider the following abstract class, representing a node of a singly-linked list:
public abstract class ListNode<X> {

public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext();

}

Consider now the following implementation using a simple (acyclic) list:
public class AcyclicListNode<X> extends ListNode<X> {

protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext() { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item field.

A) Annotate the class AcyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from the
Construction Types system (free or unc annotations).

B) Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {
protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }



public CyclicListNode getNext() { return next; }
}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next field points to itself, but whose item field is null. All non-empty lists will
be represented using only nodes whose item fields are non-null.

Annotate the class CyclicListNode<X> with appropriate non-null type annotations to ex-
press these design intentions as far as possible. You do not need any annotations from the
Construction Types system (free or unc annotations).

C) Now consider how to annotate the method signatures in ListNode<X> so that both im-
plementations can be accommodated. Your solution should be compatible with the usual
co/contra-variance rules for subclass method signatures.

Task 2
In the Construction Types system, when we read from the field of an expression of committed
type, we obtain a reference of committed type, i.e., if e1 has a committed type then e1.f

has a committed type. Similarly, if e1 has an unclassified type then e1.f has an unclassified
type. However, if e1 has a free type then e1.f does not have a free type, but instead has an
unclassified type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

Task 3
With non-null types, any class type T can be annotated to explicitly declare non-nullity (T!)
and possible-nullity (T?). In the Construction Types system, further variants of these types are
introduced, for “free”, “committed” (the default), and “unclassified” (unc) types. These types
are all treated differently by the type system taught in the lectures.

A) Explain at least one difference between the treatments of a reference of type T! and a
reference of type T? , giving an illustrative example.

B) Explain at least one difference between the treatments of a reference of type free T! and
a reference of type unc T! , giving an illustrative example.

C) Explain at least two differences between the treatments of a reference of type T! (a com-
mitted reference) and a reference of type unc T! , giving illustrative examples.

D) Explain at least three differences between the treatments of a reference of type T! and a
reference of type free T!, giving illustrative examples.

Task 4
Consider the following three classes (declared in the same package):
public class Person {

Dog? dog; // people might have a dog

public Person() { }
}



public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}
}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone(Dog toOwn) {
this.dog = toOwn;

}
}

A) Annotate the code with non-null and Construction Type annotations where they are nec-
essary. Explain why the code now type-checks according to Construction Types.

B) Could we provide constructors for classes Dog and Bone with no parameters?

C) Now, suppose a (possibly mad) scientist wants to extend the implementations of these
classes with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can
add the following method to class Bone to make a copy of an existing bone, and assign it to
another Dog:
public Bone clone(Dog toOwn) {

return new Bone(toOwn);
}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:
Dog(Dog toClone, Person newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone(this);

}

public Dog clone(Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person(Person toClone) {

Dog? d = toClone.dog;
if(d!=null) {

this.dog = new Dog(d, this);
}

}

public Person clone() {



return new Person(this);
}

Annotate this extra code with appropriate non-null and Construction Types annotations. You
should guarantee that each of the clone methods (which belong to the public interface) return
a committed reference. You should ensure that your answers guarantee that all of the code
type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the construc-
tors are called in more than one situation.

Task 5
(From a previous exam)

Consider the following code in a Java-like language enriched with the non-null types system of
the course:
class Node
{

int depth;
public Node! parent;
public Node! left;
public Node! right;

Node(int d)
{ ... }

...
}

The constructor shown above, when invoked with a positive integer, as in
new Node(d)

must create a complete binary tree (type Node!) of depth d containing exactly 2d+1 − 1 nodes.
The root node has depth 0. The depth field of every node in the constructed tree must be
initialized to the depth of that node in the tree. The parent field of the root node should point
to the root node itself. Similarly the left and right fields of leaf nodes should point to the
leaf nodes themselves.

A) Write the body of the constructor. You may introduce other constructors and methods.
Make sure that you adhere to the rules of the non-null types system including construction
types.

B) Consider the following method:

void foo(unc Node! o)
{

unc Node! x = new Node(2);
free Node! y = new Node(2);
Node! z = new Node(2);
o.right = new Node(2);

}

Which of these assignments would typecheck? Explain.

Task 6
Consider the following Java classes:



public class A {
public static final int value = B.value + 1;

}

public class B {
public static final int value = C.value + 1;

}

public class C {
public static final int value = A.value + 1;

}

A) Will these classes compile? If not, how could we modify them so that they do?

B) What would the output of running the following program be?

public class Program {
public static void main(String[] args) {

System.out.println(A.value);
System.out.println(B.value);
System.out.println(C.value);

}
}

C) In what ways can you change the output of the program by reordering the statements?

Task 7 (Just for Fun)
Some languages provide numerous features that enable programmers to implement advanced
types with very customizable behavior. In this question we explore how to implement a universal
non-null pointer template class in C++. To fully answer this question you’ll need to get familiar
with the following:

• Defining templates.

• Defining copy and conversion constructors.

• Defining and overloading operators (=, *, ->, type conversions).

• Defining friend classes.

A) Write the body of the NN class such that the main function below works as expected.
Incorrect code should not compile if uncommented.
class BadNonNullCast{}; // Throw when casting null to a non-null pointer

template <class T>
class NN {

...
};

// Some classes
class A{ public: int v{}; };
class B : public A{};
class C : public B{};
class X {};

#include <iostream>



using namespace std;
int main()
{

try
{

// Standard C++ pointers
A* a = new A(); a->v = 1;
B* b = new B(); b->v = 2;

// Non-null pointers can be initialized from standard pointers.
// Non-nullnes is checked at run-time.
NN<A> nna = a;
NN<B> nnb = b;
NN<C> nnc = new C(); nnc->v = 3;

// Subtyping works as expected
C* c = nnc;
nnb = nnc;
nnb = c;
b = nnc;

// NN<T> behaves just like a standard pointer
cout << (*a).v << (*nna).v << endl;
cout << c->v << nnc->v << endl;

// Non-null checks are performed at run time.
try{ nnb = nullptr; }
catch (BadNonNullCast&) {cout << "Expected exception"<<endl;}

C* nullC = nullptr;
try{ nnb = nullC; }
catch (BadNonNullCast&) {cout << "Expected exception"<<endl;}

X* x = new X();
// Each of the following will cause a compile time error
//NN<A> uninitialized;
//nna = x;
//nnc = nna;
//nnc = a;

}
catch (BadNonNullCast&)
{

cout << "Unexpected Exception" << endl;
}

return 0;
}

B) Discuss how implementing non-null types in this way is different from built-in support for
non-null types.


