
Concepts of Object-Oriented Programming
AS 2014

Exercise 11
Owner as Modifier, Non-null Types, Initialization Types

December 5, 2014

Task 1
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next!=null ==> value < next.value && next.sorted()

}
}

Suppose that all methods in SortedLinkedList are guaranteed to preserve the invariant of
the class.

Furthermore, suppose that we want to create iterators for such lists (defined in the same
package):
public class LinkedListIterator { private any Node current_item; ... }

A) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

B) We want the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program, except
when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the object
it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as modifiers”
discipline, we can have either (i) or (ii). Argue why this is the case.

C) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying iterator
can break the invariant of the list it is iterating over. However, the “owners as modifiers”
discipline may disallow harmless designs. Write a benign class (perhaps a restricted modifying
iterator), which would not break the invariant of any object of SortedLinkedList, but still
does not compile under “owners-as modifiers”.

Task 2 Topological Ownership
(From a previous exam)

The topological ownership system guarantees the following property: If a reference a.f to an
object b is of ownership type rep C, then object a is the owner of b. Moreover, each object
has at most one owner.

The topological ownership system has a weakness: it does not support ownership transfer, which
is desirable in many situations. Let us try to remedy this situation. Consider the following
incomplete definition of a class T:
class T {
public rep U f, g;
...

}

and the following program P , which, in addition to the field assignments, implicitly also changes
the owner of object e2.g from e2 to e1:
// implicitly: e2.g.owner = e1;
e1.f = e2.g;
e2.g = null;

where e1, e2 are two non-null objects of type T.

A) The code P is not allowed in the topological ownership system. Which rule disallows it?

B) Write a code snippet C, such that executing C;P is guaranteed to break the property
described in the first paragraph of this task, after P has finished executing. Do not rely on any
specific implementation of class U (but you may assume the existence of a constructor without
parameters). You may also add constructors to class T.

Note that

• You can assume that P is accepted by the compiler

• All the code that you write must respect the topological ownership system. P is the only
code that breaks the rules.

• You may not use reflection in your solution.

• You may not use P anywhere in the code that you write.

Task 3
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}
}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength(Vector c) {

double x = c.x.doubleValue();
double y = c.y.doubleValue();
return Math.sqrt(x * x + y * y);

}

A) This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

B) Add a pre-condition for the method, specifying what is required to be safe.

C) Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

D) Suppose that you are also allowed to upgrade the class Vector to include reasonable non-
null type annotations. How does this affect your previous answer? Do these changes to the
class seem reasonable?

Task 4
(From a previous exam)

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants
are T?[]?, T?[]!, T![]?, T![]! (the first modifier applies to the type of objects stored in the
array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!

Task 5 Cloning a Cyclic List
(From a previous exam)

Consider these two different implementations of a cyclic list that use the construction type
system taught in the course. The type system rejects both of these implementations:

1 class Node {
2 Node! next; // cyclic
3 Node? copy;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;
10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 other.copy = this;
16
17 if(other.next == other)
18 next = this;
19 else
20 next = new Node(other, other.next);
21 }
22
23 Node(Node! first, Node! other)
24 {
25 value = other.value;
26 other.copy = this;
27
28 if(other.next == first)
29 next = other.next.copy;
30 else
31 next = new Node(first, other.next);
32 }
33 }

1 class Node {
2 Node! next; // cyclic
3 Node? original;
4 int value;
5
6 Node(int x)
7 {
8 next = this;
9 value = x;

10 }
11
12 Node(Node! other)
13 {
14 value = other.value;
15 original = other;
16
17 if(other.next == other)
18 next = this;
19 else
20 new Node(this, this, other.next);
21 }
22
23 Node(free Node! first,
24 free Node! prev, Node! other)
25 {
26 value = other.value;
27 original = other;
28 prev.next = this;
29
30 if(other.next == first.original)
31 next = first;
32 else
33 new Node(first, this, other.next);
34 }
35 }

The constructors are used to clone an existing list. In both cases we establish a link between
a node and its clone.

A) Are there lines of code where we are trying to incorrectly assign to a field of a committed
object? If so, in which implementation (left or right) and on which lines?

B) If we allowed these implementations to run, is it possible that a committed object would
become not locally initialized, while a constructor is executing? If so, in which implementation
(left or right) and on which line is there an assignment where this happens?

C) If we allowed these implementations to run, is it possible that a committed object would
become not transitively initialized, while a constructor is executing? If so, in which implemen-
tation (left or right) and on which line is there an assignment where this happens?

D) Without changing the constructor signatures in any way, which two lines of the implemen-
tation on the right can you change and how, so that it typechecks in the construction type
system and achieves the expected result? Write the line numbers and the new content of the
lines.

