Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autumn Semester 2013 ETHzurich

2.3 Types and Subtyping — Behavioral Subtyping

Visible States

* |Invariants have to hold in
pre- and poststates of
methods executions but
may be violated
temporarily in between

= Pre- and poststates are
called “visible states”

class Redundant {
private int a, b;
/[Invarianta ==Db

public void set(intv) {
/l invariant of this holds

a=\Vv,

/I iInvariant of this violated

b=v;

/l iInvariant of this holds

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9. Object Invariants 3

9. Object Invariants

9.1 Call-backs
9.2 Invariants of Object Structures

Peter Muller — Concepts of Object-Oriented Programming ETH:-zurich

9.1 Object Invariants — Call-backs 4

Call-backs

class Redundant { class Logger {
private int a, b; private Redundantr;
private Logger |;

. . public void log(String m) {
/I Invariant a ==

System.out.printin(m + r.div(5));

public void set(int v) { 1
a=\v;)
l.log(“Inside set”);
} b=v; ‘Redundant)

public int div(int v) { 1q
returnv/(a—b+1); N\ \— Loggerw
}

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs S

Common Variations

= Self-calls = Re-entrant monitors
class Redundant { class Redundant {
private int a, b; private int a, b;
// invariant a == // monitor invariant a ==
public void set(intv) { public synchronized void set(int v) {
a=v;this.div(5), b=v; a=v;this.div(5);b=v;
} }
public int div(intv){ public synchronized int div(intv) {
returnv/(a—-b+1); returnv/(a—-b+1);
} }
} } Java

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs 6

Running Example

class Account {
Int balance;
Currency! cur,
Regulator! regulator;

/[invariant cur == Currency.CHF ==> balance % 5 == 0;

void Exchange(Currency! c) {
balance = cur.Convert(balance, c);
cur = c;
regulator.Report(this);
If(cur == Currency.CHF)
balance = balance /5 * 5;

}

Peter Muller — Concepts of Object-Oriented Programming ETH:-zurich

9.1 Object Invariants — Call-backs 7

Solution 1: Re-establishing Invariants

= Check invariant class Account {
int balance;
before every Currency! cur,
method call Regulator! regulator:
// invariant cur == Currency.CHF
= QOverly restrictive: I ==>balance % 5 == 0;
most methods do void Exchange(Currency! c) {
balance = cur.Convert(balance, c);
not call back cur =
If(cur.Equals(Currency.CHF))
= TOO expensive for balance = Round(balance);

: : regulator.Report(this);
run-time checking } ’ poritthis)

)

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs 8

Solution 2: Call-back Analysis

= Statically analyze | ¢'ass Account{

d f I int balance;
code of callee to Currency! cur;
detect call-backs Regulator! regulator;
- Check invariant // invariant cur == Currency.CHF
before call only if Il ==> palance % 5 == 0;

call-back is possible void Exchange(Currency! c) {
balance = cur.Convert(balance, c);

= Not modular cur = c; What if
_ regulator.Report(this); Regulator is
- For dynamically- if(cur == Currency.CHF) {_an interface?
boun_d methods, all balance = balance / 5 * 5;
overrides need to 1
be known)

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs 9

Solution 3: Explicit Requirements

class Account {
= Specify in each
precondition which /l requires invariant of this and c;

invariants the method void Exchange(Currency! c) {
balance = cur.Convert(balance, c);

actually requires cur = ¢

regulator.Report(this);
If(cur == Currency.CHF)
balance = balance /5 * 5;

= Check required
Invariants before 1
method call

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs 10

Explicit Requirements: Problems

= Writing the concrete class Account {
Invariant in
precondition violates // requires invariant of this and c;

: : - void Exchange(Currency! c) {
information hldmg balance = cur.Convert(balance, c);

cur = c;
» Some methods !regulator.Report(this);
: If(cur == Currency.CHF)
require an balance = balance /5 * 5;
unbounded number }

of Invariants

- For example, tree
traversal

Peter Muller — Concepts of Object-Oriented Programming ETH:-zurich

9.1 Object Invariants — Call-backs 11

Solution 4: Dented Invariants

= Use boolean field to
indicate whether class Account {
object is valid or not

- Can be used to turn

boolean valid;

/l Invariant valid ==>

invariant on and off J (cur == Currency.CHF
= Dented invariant I ==>balance % 5 == 0);
holds in all visible // requires this.valid && c.valid;
states void Exchange(Currency! ¢)

» Explicit requirements | '}
can be stated using |,
the valid-field

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs 12

Re-establishing Dented Invariants

= Programmers might (T o
forget to set valid-field [¢ass account ¢ }
boolean valid,;
= |[nvariants still need to | void ange(Currency! ¢) {
be checked before balance = cur.Convert(balance, c);

set to false

=C N\
method calls e Dented
regulator.Report(thisT; invariant
if(cur == Currency.CHF) | does not
= A method can break balance = balance /5*5; {_ hold)
many invariants }
through direct field }"'
updates

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Object Invariants — Call-backs 13

Basic Spec# Methodology

= Each object has an implicit valid-field
- Valid and mutable objects

= Each invariant is implicitly dented

= Object invariants can depend only on the fields of
the this object (will be relaxed later)

= Enforce that dented invariants hold in all execution
states, not just visible states
- Un-dented invariant holds whenever an object is valid

= Valid objects must not be modified
- Check for each field update o.f = e that o is mutable

Peter Muller — Concepts of Object-Oriented Programming ETH:-zurich

9.1 Obiject Invariants — Call-backs

Spec# Methodology: Example

Invariant is
implicitly dented

Check fails: Implicit precondition:

receiver is arguments are valid
not mutable

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

9.1 Obiject Invariants — Call-backs

15

Maintaining Object Validity

= Setting the valid-field :ﬂtvznamoq-
to true might break void foo(){
the dented invariant valid = false:
= valid-field can be f/;i'dl;_ _
modified only through | |
special expose block —
INtT,
Staéemen; . Set valid in\{ariant0<f;
- Exposed o Je.ct must o false || void foo() {
be initially valid __expose(this) {
- Similar to non- [in(\:/gfig;t W r=-1
reentrant lock-block J
Set valid) Spec#
Peter Muller — Concepts of Object-Oriented Programmingk to true J ETH:-zurich

9.1 Obiject Invariants — Call-backs

Example Revisited

class Account {
Invariant cur == Currency.CHF ==> balance % 5 == 0;

Check void Exchange(Currency! c)
SL_'C(}eedS{: Il requires this.valid && c.valid;
this is valid

{

expose(this) {

~
su(ézggld(s balance = cur.Convert(balance, c);
L cur = c;
receiver is :
_ mutable regulator.Report(this);
If(cur == Currency.CHF)
balance = balance /5 * 5;
} Check
J succeeds:
o b invariant holds Spect

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Obiject Invariants — Call-backs

Establishing Object Validity

= New objects are
initially mutable
- valid-Field is
Initialized to false

= After initialization,
un-dented invariant
s checked and valid-
fleld 1s set to true

- We ignore inheritance
here

class Account {

Invariant cur == Currency.CHF
==> palance % 5 == 0;

Account(Regulator! r) {
cur = Currency.CHF,;
regulator =r;

Invariant holds
since balance ==

Implicit:
this.valid = true;

Spec#

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.1 Object Invariants — Call-backs 18

Basic Spec# Methodology: Summary

= Admissible invariants

- The invariant of an object o may depend on fields of o
(and constants)

= Checks (proof obligations)

Invariant of o holds after o has been initialized

Invariant of o holds at the end of each expose(o0) block
Every expose operation is done on a valid object

Every field update is done on a mutable receiver

= Recall: we ignore inheritance here

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.1 Obiject Invariants — Call-backs

19

Call-backs in Spec#: Example

class Account {

I/ requires this.va

void Exchange(Currency! c)

lid && c.valid:

~
Requirement about
expected invariants

{

expose(this)

In principle, methods
can be called while
Invariant is broken

regulator.Report(this);

}
}

Si

This call is forbidden

nce precondition
does not hold

Int GetBalance()
I/ requires this.va
{ return balance; }

}

lid

Spec#

class Regulator {
void Report(Account! a

{

}

/l requires this.valid && a.valid;

int b = a.GetBalance();
/...

Spec#

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.1 Obiject Invariants — Call-backs

20

Call-backs in Spec#: Example (cont'd)

{

}

{
}

class Account {
void Exchange(Currency! c)

I/ requires this.valid && c.valid,;
expose(this) {

regulator.Report(this);

} Call is allowed since
precondition holds

Int GetBalance()

// requires this.valid
return balance; }

(a’s Invariant is
not expected
class Regulator {

void Report(Accolit! a)
// requires this.valid;

{
Int b = a.GetBalance();
/..
} Call-back is forbidden
since precondition
} does not hold /
SpeTH

Spec#

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.1 Obiject Invariants — Call-backs

21

Call-backs in Spec#: Example (cont'd)

class Account {
void Exchange(Currency! c)

I/ requires this.valid && c.valid,;

(a’'s invariant
not expected

class Regulator {
{ . void Report(Accous a)
expose(this) { /I requires this.valid:;
- . {
regulator.Report(this); int b = a.GetBalance():
B ..
} Call is allowed since) Call-back is allowed
} precondition holds since precondition
_ ol holds
int GetBalance() _ _ } E——
/ requires true; No invariant
{ return balance; } expected
} Spec#
Peter Miiller — Concepts of Object-Oriented Programming E’HZUF/C/’)

9. Object Invariants 22

9. Object Invariants

9.1 Call-backs
9.2 Invariants of Object Structures

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.2 Obiject Invariants — Invariants of Object Structures

23

Multi-Object Invariants: Example

class Account {

void Withdraw(int amount)
requires cur == Currency.CHF
==>amount % 5 == 0;
ensures balance ==
old(balance) — amount;

{
expose(this) {
balance = balance — amount;
}
1 Field update might
) break invariants of

client objects

o

class Person {
Account! savings;

Invariant 0 <= savings.balance;

Invariant
depends on field
of another object

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.2 Object Invariants — Invariants of Object Structures 24

Finding Dependent Objects

(CA W ;/: Companyw
L J L J\{ - } . Bank

~_/ e

(: Person W (- PG W (. List W

[iset | k J J
L . List \/L \

(Accountw

. List Wthdraw(j J (

)]
) |)
J L J { :Node}/t J

Peter Muller — Concepts of Object-Oriented Programming E'HZUFiCh

/.

T)

9.2 Obiject Invariants — Invariants of Object Structures 25

Ownership-Based Invariants

= Admissible invariants

- The invariant of an object o may [: company|
depend on fields of o and

objects (transitively) owned by o
(and constants)

(. Person W { HPEET }
= Requirement: when an object |)
0 is mutable, so are 0’s \/
(transitive) owners &/i:tﬁgfaw‘t}
- Because an update of o might

break the owners’ invariants

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.2 Object Invariants — Invariants of Object Structures 26

Using Ownership to Limit Dependencies

[:a | [:company]| -
. </ J\{ ' } [:Bank

)
)
. List W
J

(: Person W (L S0 W
_—) J{
~ [- Account | L \
{ : List } Withdraw(..j L \JLE }
(; NC{\ ' F }

Z
o
o
)
()

Peter Muller — Concepts of Object-Oriented Programming E'HZUI'/Ch

9.2 Obiject Invariants — Invariants of Object Structures 27

Admissible Ownership-Based Invariants

class Person {
Account! savings;

Invariant O <= savings.balance;

Not admissible: invariant
) depends on field of
Use topological another object that is not
type system _ _ owned by this)

class Person {

\rep Account! savings;
-
Spec# syntax: Invariant O <= savings.balance;
[Rep] Il ... - _
) Admissible: savings
IS owned by this

Peter Muller — Concepts of Object-Oriented Programming E’HZU[’/C/’)

9.2 Obiject Invariants — Invariants of Object Structures

28

Mutable Owners: Example

class Account {

void Withdraw(int amount)
requires cur == Currency.CHF
==>amount % 5 == 0;
ensures balance ==
old(balance) — amount;
{
expose(this) {
balance = balance — amount;
}
}
}

}

class Person {
rep Account! savings;

Invariant 0 <= savings.balance;

void Donate()

{
savings.Withdraw(1000);

) This call might

break the
Invariant of this

|

Invariant of this Is
not checked!

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.2 Obiject Invariants — Invariants of Object Structures

29

Enforcing Mutable Owners

= Rules

- Expose owner before
owned object

- Un-expose in reverse order

= Additional checks for
expose(o)
- Before expose, o0 must be

valid and o’s owner must be
mutable

- At the end of expose, all
objects owned by o must be
valid

E

) mutable

[:] valid, mutable owner
[valid, valid owner

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.2 Obiject Invariants — Invariants of Object Structures

30

Mutable Owners: Example (cont'd)

class Account {

void Withdraw(int amount)
// requires valid && !'owner.valid
requires cur == Currency.CHF
==>amount % 5 == 0;
ensures balance ==
old(balance) — amount;
{
expose(this) {
balance = balance — amount;
}
}

}

class Person {
rep Account! savings;

Invariant O <= savings.balance;

void Donate()
// requires valid && !'owner.valid

{
savings.Withdraw(1000);

}
! This call is forbidden

since precondition
does not hold

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.2 Obiject Invariants — Invariants of Object Structures

31

Mutable Owners: Example (cont'd)

class Account {

void Withdraw(int amount)
// requires valid && !'owner.valid
requires cur == Currency.CHF
==>amount % 5 == 0;
ensures balance ==
old(balance) — amount;

{
expose(this) {

}
}

}

class Person {

balance = balance — amount;)

rep Account! savings;
Invariant O <= savings.balance;

void Donate()
// requires valid && !'owner.valid
{
expose(this) {
savings.Withdraw(1000);

Call is allowed since
precondition holds

|

Invariant check fails
(add precondition to fix)

Peter Muller — Concepts of Object-Oriented Programming

ETHzurich

9.2 Obiject Invariants — Invariants of Object Structures 32

Heap Snapshot

) mutable

[} valid, mutable owner
) valid, valid owner

Peter Muller — Concepts of Object-Oriented Programming ETH:-zurich

9.2 Object Invariants — Invariants of Object Structures 33

Spec# Methodology: Summary

= Admissible invariants

- The invariant of an object o may depend on fields of o
and objects (transitively) owned by o (and constants)

= Checks (proof obligations)
- Owner of newly created object is mutable
- Invariant of o holds after o has been initialized

- Invariant of o holds at the end of each expose(0) block
and all objects owned by o are valid

- Every expose operation is done on a valid object with a
mutable (or no) owner

- Every field update is done on a mutable receiver

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.2 Obiject Invariants — Invariants of Object Structures 34

Spec# Methodology: Observations

= Methodology relies on encapsulation of object
structures
- No strict enforcement of owner-as-modifier discipline
- But: owner must be exposed before owned object

= Responsibility for invariant checking is divided

- A method implementation is responsible for the objects Iin
the context of the receiver

- A caller is responsible for the objects in its context

= Ownership-based invariants are too restrictive for
many useful examples

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.2 Obiject Invariants — Invariants of Object Structures

35

Invariants and Immutability

= Immutable objects can be
freely shared

* |[nvariants may depend on
the state of shared
Immutable objects

= Immutabillity often leads to
more reliable programs

[Immutable] class Integer {
Int value;

} Spec#

-

class CIien%No OWnersh|pJ
: necessary
Integer! I;

Invariant O < i.value;

. } Spec#
- Especially for concurrency
- If performance permits
Peter Miller — Concepts of Object-Oriented Programming E’HZUF/C/’)

9.2 Object Invariants — Invariants of Object Structures 36

Invariants and Monotonicity

= Many properties of
objects evolve class Counter {
: Int value;
monotonlcally _ // constraint old(value) <= value;
- Numbers grow or shrink

monotonically }
- Reference go from null to .
non-nul lass lin (_| Mo ouners |
= [nvariants may depend Counter! c;

On propertles Of Shared Invariant 0 < C.Value;

objects guaranteed by -
their history constraint

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9.2 Obiject Invariants — Invariants of Object Structures

37

Invariants and Visibility

* [nvariants may depend
on fields of shared
objects if a modular static
analysis can determine
all necessary checks

= |nvariant and field are

(No ownership

class Person {A necessary

|

Person spouse;
Invariant spouse == null ||

spouse.spouse == this;

declared in the same SBeCe
module
- Common example:
recursive data structures
Peter Miller — Concepts of Object-Oriented Programming E’HZUF/C/’)

9.2 Object Invariants — Invariants of Object Structures 38

Summary

= Sound, modular checking of object invariants is
surprisingly difficult
- Call-backs
- Multi-object invariants
- Inheritance

= Spect# Is the first system to support sound, modular
verification of object invariants

- Efficient run-time checking does not seem feasible
= Spec# Is open source: specsharp.codeplex.com
= Try it on www.rise4fun.com/SpecSharp

Peter Muller — Concepts of Object-Oriented Programming E’HZU/’/C/’)

9. Object Invariants 39

References

= K. Rustan M. Leino and Peter Muller: Object Invariants in
Dynamic Contexts. ECOOP 2004

= K. Rustan M. Leino and Peter Mdller: Using the Spec#
Language, Methodology, and Tools to Write Bug-Free
Programs. Advanced Lectures on Software Engineering —
LASER Summer School 2007/2008, 2010

Peter Muller — Concepts of Object-Oriented Programming E’HZUF/C/’)

