
Concepts of Object-Oriented Programming
AS 2013

Exercise 13
Invariants

December 20, 2013

Task 1
A technique to represent a complete binary tree T using an array A, is:

• store the root in A[0]

• for any node N stored in A[i], store the children of N to A[2i+1] and A[2i+2].

The size of the array should be equal to 2h+1 − 1, where h is the height of the tree.

Consider the following invariant on a complete binary tree of integers: any non-leaf node stores
the sum of the integers stored in its two children. Let us call this invariant U (for “undented”;
cf. “dented invariants” on Lecture 9, Slide 11).

The following class uses the above-mentioned representation.
final class CompleteBinaryTree
{

private int[] theTree;

public CompleteBinaryTree(int h)
{

theTree = new int[Math.pow(2,h+1)-1];
for(int i=0; i<theTree.length; i++)

theTree[i]=0;
}

/// requires 0 ≤ i < theTree.length
public int getNode(int i) { return theTree[i]; }

/// requires theTree.length/2 ≤ i < theTree.length
// this means i must be a leaf
public void addToLeaf(int i, int s)
{ addToNode (i, s); }

private void addToNode(int i, int s)
{

theTree[i]+=s;
if (i>0) addToNode((i-1)/2, s);

}
}

(a) Write formally the invariant U.

(b) The method addToNode does not preserve U. Instead, its purpose is to fix U, when it is
temporarily broken. Describe how this is done.

(c) Describe informally the precondition under which the method addtoNode has to be called,
such that U holds when the method terminates.

(d) Dent U accordingly so that the precondition above is formally expressible. Hint: Denting
usually uses a single boolean field (see Lecture 9, Slide 11). Here, you need more than
one boolean field.

(e) Add assignments to the new boolean fields in the bodies of all the methods and write
specifications for all the methods. All methods must preserve the dented invariant.

(f) Explain why the public interface of the class preserves U.

Task 2
Consider the following example
class Redundant {
int a, b;
Logger l;

///invariant a == b

public setLogger(Logger l) { this.l = l; }

public void set(int v) {
a = v;
l.log("Inside set");
b = v;

}

public int div(int v) {
return v / (a − b + 1);

}
}

class Logger {
private Redundant r;

public Logger(Redundant r) { this.r = r; }
public void log(String m) {

System.out.println(m + r.div(5));
}

}

• Write client code that causes div to throw an exception

• Suppose that we change the implementation of set as follows:
public void set(int v) {

a = v;
b = v;

}

Can we still cause div to throw an exception by writing code outside the two classes?

Task 3
Consider the following Java classes:
class Vector {

public int x, y;
Vector(int x, int y) {

this.x=x;
this.y=y;

}

}

class SumVectors {
public Vector[] a=new Vector[0];

public void insert(Vector vct) {
Vector[] o=a;
a=new Vector[a.length+1];
for(int i=0; i<o.length; i++) a[i]=o[i];
a[a.length-1]=vct;

}

public Vector sum() {
int x=0, y=0;
for(Vector v : a) {

x+=v.x;
y+=v.y;

}
return new Vector(x, y);

}
}

• Annotate the classes with specifications that ensure that there is no null-pointer derefer-
encing, that method insert inserts a new Vector object in the end of the array a, and
that method sum computes the sum of all vectors in the array a.

• Annotate the following class with invariants, such that it is a behavioural subtype of
SumVectors:
class FastSumVectors extends SumVectors
{

int sx=0, sy=0;

public void insert(Vector vct) {
super.insert(vct);
sx+=vct.x; sy+=vct.y;

}

public Vector sum() {
return new Vector(sx, sy);

}
}

