
Concepts of Object-Oriented Programming
AS 2013

Exercise 7
Bytecode Verification
November 8, 2013

Task 1
The method f of class E has the following signature:

void f();

and one local variable v. The maximal stack size is equal to 1.

It has the following body:
0: iconst_5
1: istore_1
2: aload_0
3: astore_1
4: iload_1
5: iconst_1
6: iadd
7: istore_1
8: return

Can the provided byte code be verified? If so then verify it, otherwise explain which line of the
code causes the problem and why.

Task 2
Consider the following type hierarchy:

A

B

C1 C2

Suppose that the method f of class E has the following signature:
A f(boolean b1, boolean b2);

and there are three local variables x, y, z. It is known that the initial state is:
([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:
0: iload_1
1: ifeq 22
4: iload_2
5: ifeq 12
8: aload_3

9: goto 14
12: aload_4
14: astore_3
15: aload_5
17: astore_4
19: goto 0
22: aload_3
23: areturn

• Verify that the program is type safe.

• Provide the minimal type information that enables verification of the bytecode without
a fixpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

Task 3
Consider the following Java code:
interface IFace {

void m();
}
class Cl1 implements IFace {

public void m() { System.out.println("Cl1.m"); }
}
class Cl2 implements IFace {

public void m() { System.out.println("Cl2.m"); }
}
public class Test1 {

public static void main(String[] args) {
xxx(true);
xxx(false);

}
public static void xxx(boolean param) {

IFace iface = null;
if(param) { iface = new Cl1();}
else { iface = new Cl2(); }
iface.m();

}
}

• What type will be calculated for the variable iface of the method xxx during the byte-
code verification?

• When can we decide that iface.m() is safe to call? During bytecode verification, or
execution?

• What if IFace was a class instead of an interface? What if it was an abstract class?

Task 4
The bytecode type inference algorithm rejects a verified program if there are different stack
sizes for input values of a join point.

• Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

• Is it possible to construct a bytecode verification algorithm that avoids this limitation?
If yes, then provide an updated algorithm. If no, then show that it can’t be done.

• How serious is this restriction from a pragmatic perspective?

