
Concepts of Object-Oriented Programming
AS 2013

Exercise 11
Owner as Modifier and Non-null Types

December 6, 2013

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1
Assume the topological ownership framework taught in the course. Suppose that we want to
create a class SortedLinkedList, with the internal invariant that the values stored in the
nodes are sorted in ascending order.
package SortedLinkedList;
public class SortedLinkedList {

private rep Node head;

/// invariant head != null ==> head.sorted()
...

}
private class Node {

protected peer Node next;
protected int value;

/// pure
boolean sorted() {
return next!=null ==> value < next.value && next.sorted()

}
}

Suppose that all methods in SortedLinkedList are guaranteed to preserve the invariant of
the class.

Furthermore, suppose that we want to create iterators for such lists (defined in the same
package):
public class LinkedListIterator { private any Node current_item; ... }

(a) Why is the field current_item annotated as any? What drawbacks would the other
possible annotations have?

(b) We want the following features:

(i) the invariant of a SortedLinkedList object is guaranteed to hold in any program,
except when one of its methods executes

(ii) LinkedListIterator is a modifying iterator, i.e., it may change the value of the
object it is pointing to

We can’t have both features. Depending on whether or not we impose the “owners as
modifiers” discipline, we can have either (i) or (ii). Demonstrate with an example what
doesn’t work in each case.



(c) The fact that (i) and (ii) cannot both hold together is not surprising. A modifying
iterator can break the invariant of the list it is iterating over. However, the “owners
as modifiers” discipline may disallow harmless designs. Write a benign class (perhaps
a restricted modifying iterator), which would not break the invariant of any object of
SortedLinkedList, but still does not compile under “owners-as modifiers”.

Task 2
We want to extend the ownership type system introduced in the course, to track how deep an
object is within the ownership hierarchy of another. In particular, we introduce the ownership
annotation rep(n) where n is a constant integer. The annotation rep(0) is equivalent to
peer. If reference o.f is of type rep(n) and g is a field of type rep, then o.f.g is of type
rep(n+1). Conversely, if g is of type rep(-1) then o.f.g is of type rep(n-1).

A Viewpoint Adaptation

What is the viewpoint adaptation relation in this system? Complete the following table:
rep(m) rep any

rep(n)

rep

any

lost

self

B Subtype Relations

What are the subtype relations between the ownership modifiers in this system?

C Field Assignments

What should the typing rules be for a field read v=e.f and for a field write e.f=v in the new
system?

Task 3
(From a previous exam)

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modifiers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants
are T?[]?, T?[]!, T![]?, T![]! (the first modifier applies to the type of objects stored in the
array, while the second modifier concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!



Task 4
Consider a Java class Vector, representing a 2 dimensional vector:
public class Vector {

public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}
}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorLength(Vector c) {

double x = c.x.doubleValue();
double y = c.y.doubleValue();
return Math.sqrt(x * x + y * y);

}

• This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

• Add a pre-condition for the method, specifying what is required to be safe.

• Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

• Suppose that you are also allowed to upgrade the class Vector to include reasonable
non-null type annotations. How does this affect your previous answer? Do these changes
to the class seem reasonable?


