
Concepts of Object-Oriented Programming
AS 2013

Exercise 8
Parametric polymorphism and information hiding

November 15, 2013

Task 1
Consider the following Java method:
String concatenate(List<?> list) {

String result="";
String separator="";
if(list instanceof List<String>) {

result="String:";
separator=" ";

}
else if(list instanceof List<Integer>) {

result="Integers:";
separator="+";

}
for(Object el : list)

result=result+separator+el.toString();
return result;

}

• This program is rejected by Java compiler. Why?

• Using the advice given by the Java compiler, rewrite and compile the program. What are
the results of executing the method passing each of the following:

– A list of strings containing only one element "word"?

– A list of Integers containing only one element Integer(1)?

– A list of Objects containing only one element (initialized by new Object())?

• Is this behaviour consistent with what you would expect from the initial program? If not,
how can you fix it?

• What would happen if you tried to implement the different cases using method overloading
instead of just one method. Why is this the case?

• What happens if you compile and execute the initial program in C#? Why?

Task 2
Consider the following Java method:
public void add(Object value, List<?> list) {

list.add(value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#1-of ?) in the type List<capture#1-of ?> is not
applicable for the arguments (Object)

• Explain why we obtain such an error.

• Fix the program by using a generic type for the parameter of method add and constraining
the wildcard appropriately.

• We can use the following alternative signature for add:
public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

• Consider the following methods:
public <V> void addAll(List<V> v, List<? super V> l) {

for(V el : v) l.add(el);
}
public <V> void addAll1(List<V> v, List<V> l) {

for(V el : v) l.add(el);
}

Method addAll is less restrictive than addAll1. Provide an example to prove this claim.

Task 3
A C++ template class can inherit from its template argument:
template <typename T>
class SomeClass : public T { ... }

Using this technique and given the following class definition
class Cell {
public:

virtual void setVal(int x) { x_ = x; }
virtual int value() { return x_; }

private:
int x_{};

}

write two template classes that can be used as “mixins” for class Cell

• Doubling - doubles the value stored in the cell.

• Counting - counts the number of times the value of the cell was read.

Do not use multiple inheritance. It should be possible to use the classes like this:
auto c = new Doubling<Counting<Cell>>(); // instantiation
c->setVal(5);
c->value(); // returns 10
c->numRead(); // returns 1

• Describe how the instantiation above will look like.

• How does this concept of mixins in C++ differ from Scala traits?

• Can the code above be implemented using Java generics? If yes, show how. If no, explain
why not.

• What if we used C# instead of Java, does anything change?

Task 4
Consider the following Scala code:
class A[-T]
class B[... T] {

def m(in : A[T]) : int = {...}
}

We want to annotate the generic type of B. If we use a covariant or a contravariant annotation
for the generic type parameter to B, what would that annotation be? Why? Justify your answer
with an example.

Task 5
Java allows an object of a class C to access the private fields of other objects declared in C.
Discuss the resulting level of information hiding, its advantages and limits, and provide some
examples.

What is the policy concerning the visibility of protected fields of other objects?

Task 6
Consider the following Java code:
file A.java:
package p;
public class A {}

file B.java:
package p;
class B extends A {}

file C.java:
package p;
public class C extends B { //1

public B get(){...} //2
public void set(B d){...} //3

}

file client.java:
package client;
import p.*;
class Client
void f(){

C c = new C();

c.set(c.get()); //4
c.set(c); //5

A a = c; //6
}

The code is accepted by the Java compiler.

• What seems inconsistent with information hiding in this code? Which lines would you
expect the compiler to reject? Could allowing this still be useful in some cases?

• Does this problem exist in C++? C#? Scala? If not explain which line the respective
compiler would complain about.

• Suggest a rule the Java compiler could enforce in order to be more consistent with infor-
mation hiding - the rule should reject all marked lines but (1).

• Now suppose we wanted to support also line (6) (could you suggest why this might be
useful?) how can we relax our new rule to allow this?

