
Concepts of Object-Oriented Programming
AS 2013

Exercise 12
Initialization

December 13, 2013

Task 1
Consider the following abstract class, representing a node of a singly-linked list:
public abstract class ListNode<X> {

public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext();

}

Consider now the following implementation using a simple (acyclic) list:
public class AcyclicListNode<X> extends ListNode<X> {

protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext() { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item field.

• Annotate the class AcyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from
the Construction Types system (free or unc annotations).

Now consider an alternative implementation using a cyclic list:
public class CyclicListNode<X> extends ListNode<X> {

protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public CyclicListNode getNext() { return next; }

}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next field points to itself, but whose item field is null. All non-empty lists will
be represented using only nodes whose item fields are non-null.

• Annotate the class CyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from
the Construction Types system (free or unc annotations).

• Now consider how to annotate the method signatures in ListNode<X> so that both
implementations can be accommodated. Your solution should be compatible with the
usual co/contra-variance rules for subclass method signatures.

Solution
(Side note: the interaction of generic types and non-null types, e.g., the interpretation of a
type X! if X can be instantiated with types that themselves include non-nullity expectations, is
beyond the scope of the course, but in case you are worried, you can assume that the explicitly
visible annotation ! overrides any annotation in the instantiation for X, i.e., X! can still be
safely assumed to always store a non-null value)

• The following class definitions express the design expectations:
public class AcyclicListNode<X> extends ListNode<X> {

protected X! item;
protected AcyclicListNode<X>? next;

public AcyclicListNode<X> (X! item) {
this.item = item;

}

public void setItem(X! x) { item = x; }
public X! getItem() { return item; }
public AcyclicListNode<X>? getNext() { return next; }

}

•
public class CyclicListNode<X> extends ListNode<X> {

protected X? item;
protected CyclicListNode<X>! next;

public CyclicListNode<X> (X? item) {
this.item = item;
this.next = this; // default - maybe changed later

}

public void setItem(X? x) { item = x; }
public X? getItem() { return item; }
public CyclicListNode! getNext() { return next; }

}

Note that we may decide to pass a non-null reference to setItem.

• We have to pick suitable method signatures so that the implementing methods have
valid overriding signatures in both classes above. This typically means strengthening the
argument types and weakening the return types:
public abstract class ListNode<X> {

public abstract void setItem(X! x);
public abstract X? getItem();
public abstract ListNode<X>? getNext();

}

Task 2
Some languages like C++ provide numerous features that enable programmers to implement
advanced types with very customizable behavior. In this question we explore how to implement
a universal non-null pointer template class. Your task is to write the body of the NN class
such that the main function below works as expected. Incorrect code should not compile if
uncommented.

After you write the code, discuss how implementing non-null types in this way is different from
built-in support for non-null types.

Hint: To fully answer this question you’ll need to get familiar with the following:

• Defining templates.

• Defining copy and conversion constructors.

• Defining and overloading operators (=, *, ->, type conversions).

• Defining friend classes.
class BadNonNullCast{}; // Throw when casting null to a non-null pointer

template <class T>
class NN {

...
};

// Some classes
class A{ public: int v{}; };
class B : public A{};
class C : public B{};
class X {};

#include <iostream>
using namespace std;
int main()
{

try
{

// Standard C++ pointers
A* a = new A(); a->v = 1;
B* b = new B(); b->v = 2;

// Non-null pointers can be initialized from standard pointers.
// Non-nullnes is checked at run-time.
NN<A> nna = a;
NN nnb = b;
NN<C> nnc = new C(); nnc->v = 3;

// Subtyping works as expected
C* c = nnc;
nnb = nnc;
nnb = c;
b = nnc;

// NN<T> behaves just like a standard pointer
cout << (*a).v << (*nna).v << endl;
cout << c->v << nnc->v << endl;

// Non-null checks are performed at run time.
try{ nnb = nullptr; }

catch (BadNonNullCast&) {cout << "Expected exception"<<endl;}

C* nullC = nullptr;
try{ nnb = nullC; }
catch (BadNonNullCast&) {cout << "Expected exception"<<endl;}

X* x = new X();
// Each of the following will cause a compile time error
//NN<A> uninitialized;
//nna = x;
//nnc = nna;
//nnc = a;

}
catch (BadNonNullCast&)
{

cout << "Unexpected Exception" << endl;
}

return 0;
}

Solution

Here is the body of the NN class:
template <class T>
class NN {

// The non-null type
// Note that any reasonable compiler will inline all of the methods
// below. Furthermore since this class has no virtual members, it
// does not have a virtual table or any other class data. Thus
// at run-time there is no overhead of using NN<T> instead of T*
// directly and NN<T> has the same memory footprint as T*.

public:
// Constructors also serve as "Casts". Note that these are implicit
// without using an explicit casting operator. It is possible to
// make these more explicit by using the ’explicit’ keyword.
NN(T* pointer) : p(pointer ? pointer : throw BadNonNullCast()) {};
NN<T>& operator=(T* rhs)
{

p = rhs ? rhs : throw BadNonNullCast();
return *this;

}

// Copy constructor and assignment operator for NN<T>
NN(const NN<T>& other) : p(other.p){};
NN<T>& operator=(const NN<T>& rhs)
{

p=rhs.p;
return *this;

}

// Copy constructor and assignment operators for subtypes of NN<T>
template<class S> NN<T>(const NN<S>& other) : p(other.p){}
template<class S> NN<T>& operator=(const NN<S>& other)
{

p=other.p;
return *this;

}

// Conversion to regular pointer
operator T*() const { return p; }

// Dereferencing operators
T* operator->() const {return p;}
T& operator*() const {return *p;}

// Get access
template<class U> friend class NN;

private:
// The stored pointer
T* p;

};

A built-in non-null type system has many advantages:

• Its syntax is easier to write and read.

• It can be better integrated with the compiler to perform additional analysis, e.g. dataflow
analysis.

• Error messages from the compiler show the problem precisely and are much easier to
understand than error messages about templates.

• A built-in type system is omni-present in the entire program and easily enforcible. The
template solution only works if programmers always use the NN class, but there is no way
to enforce this. On the other hand this could also be considered a weakness - the C++
solution gives the programmer flexibility in choosing when to work with non-null types
and when not to.

A benefit of our C++ implementation of non-null types is that we can do it in an existing
mainstream language and we can use it with minimal effort, without switching languages or
tools.

Task 3
Consider the following three classes (declared in the same package):
public class Person {

Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}
}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone(Dog toOwn) {
this.dog = toOwn;

}
}

• Annotate the code with non-null and Construction Type annotations where they are
necessary. Explain why the code now type-checks according to Construction Types.

• Could we provide constructors for classes Dog and Bone with no parameters?

Now, suppose a (possibly mad) scientist wants to extend the implementations of these classes
with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can add the
following method to class Bone to make a copy of an existing bone, and assign it to another
Dog:
public Bone clone(Dog toOwn) {

return new Bone(toOwn);
}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:
Dog(Dog toClone, Person newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone(this);

}

public Dog clone(Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person(Person toClone) {

Dog? d = toClone.dog;
if(d!=null) {

this.dog = new Dog(d, this);
}

}

public Person clone() {
return new Person(this);

}

• Annotate this extra code with appropriate non-null and Construction Types annotations.
You should guarantee that each of the clone methods (which belong to the public inter-
face) return a committed reference. You should ensure that your answers guarantee that
all of the code type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the
constructors are called in more than one situation.

Solution
Here are the annotations for the first version of the code:
public class Person {

Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(unc Person ! owner, unc String ! breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}
}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone(unc Dog ! toOwn) {
this.dog = toOwn;

}
}

Note that we choose the parameter to the construction of Bone to be unclassified - since it is
public then it probably should be callable with a committed parameter from client code, but it
is also called inside the body of the constructor of Dog, with a free parameter. Note that the
returned reference from these two kinds of call will be different - committed in the former case,
and free in the latter. For the Dog constructor, we can also choose to make the parameters
unclassified. Although in this case we do not directly need to permit “free” arguments being
passed to the constructor, we may as well be as permissive as possible. In general, if it is
possible to type a constructor body using “unclassified” argument types then this should be the
preferred choice of signature as it is the most permissive. Note that the same does not apply
for method signatures, since any overriding method definitions are then also be forced to cope
with unclassified arguments, which may be much less convenient than using committed ones.

It isn’t reasonable to have constructors for Dog and Bone without parameters, since we need
some way of initialising their non-null fields. Although it would be possible to do this by calling
e.g., the Person constructor from the Dog constructor, this doesn’t seem very intuitive (nor
would it be easy to establish the intuitive invariants of the code - that a Dog’s owner refers
back to the same Dog, etc.). In particular, if all of the constructors need to take no parameters,
they would need to call each other infinitely. This is because, we can’t set up a cyclic object
structure without some kind of mutual initialization (in this case we can only build an infinite
object structure to satisfy the non-null requirements of all the objects).

Here is the fully annotated code for the cloning case:
public class Person {

Dog? dog; // people might have a dog

public Person() { }

Person(Person! toClone) {
Dog d? = toClone.dog;
if(d != null) {

this.dog = new Dog(d, this);
}

}

public Person! clone() {
return new Person(this);

}
}
public class Dog {

Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(unc Person ! owner, unc String ! breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}

Dog(Dog! toClone, unc Person! newOwner) {
this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone(this);

}

public Dog! clone(Person! toOwn) {
return new Dog(this, toOwn);

}

}
public class Bone {

Dog! dog; // Bones must belong to a dog..

public Bone(unc Dog ! toOwn) {
this.dog = toOwn;

}

public Bone! clone(Dog! toOwn) {
return new Bone(toOwn);

}
}

Note that all parameters to the new constructors and methods need to have non-null type
annotations, since they are each either dereferenced, used to initialize non-null-declared fields
or passed on as further parameters to calls that require non-null parameters.

The toClone parameter of the new constructor of Person needs to be a committed parameter,
otherwise when we dereference toClone.dog we will obtain a an unclassified value, which will
not be suitable to use as a parameter for the new Dog constructor.

The toClone parameter of the new constructor of Dog needs to be a committed parameter,
since when a field is read from it, we need to obtain a result with a non-null type. However, the
newOwner parameter of the new constructor of Dog needs to be an unclassified parameter. This
is because this parameter is sometimes supplied from a free reference (in the new constructor
of Person), and sometimes from a committed reference (in the clone method of Dog).

For similar reasons, the toOwn parameter of the constructor of Bone needs to be an unclassi-
fied parameter (as was suggested for the previous part of the question). This is because this
parameter is sometimes supplied from a free reference (in the new constructor of Dog), and
sometimes from a committed reference (in the clone method of Bone).

This is an important usage of the unclassified types in the Construction Types system - they
are useful for constructors which get called sometimes with free and sometimes with committed
parameters. Recall that the type of a new expression is determined from the static types of the
actual parameters at a particular call, and not from the formal parameters in the constructor
signature. For example, in the clone method of the Bone class, the new expression new Bone(

toOwn) is given a committed type because the actual parameter toOwn has a static type which
is committed, despite the fact that the constructor argument type is declared as unclassified
in its signature. This means that the same constructor can produce committed/free results

depending on the particular arguments provided in each call (new expression). In particular,
the return type of the clone method can be a committed reference, as required in the question
(the same applies to all of the clone methods in the code, since they each call constructors with
only committed arguments).

Task 4
In the Construction Types system, when we read from the field of an expression of committed
type, we obtain a reference of committed type, i.e., if e1 has a committed type then e1.f

has a committed type. Similarly, if e1 has an unclassified type then e1.f has an unclassified
type. However, if e1 has a free type then e1.f does not have a free type, but instead has an
unclassified type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

Solution
Because anything (in terms of Construction Type annotation) can be stored in the fields of a
free reference, when we read something back out of such a field we cannot make any guarantees
about what is stored there. In particular, it is possible to store a committed reference in the
field of a free reference, and if we could then read it back as free, this would be unsound. For
example, the following code would type-check:
public class C {

C! f, g;
public C(C! x) { // x is committed, this is free

this.f = x; // assigning free to committed - ok
this.f.f = this; // this.f free(?), so this would be ok
this.g = x.f.g; // what happens here?

}
}

Task 5
With non-null types, any class type T can be annotated to explicitly declare non-nullity (T!)
and possible-nullity (T?). In the Construction Types system, further variants of these types are
introduced, for “free”, “committed” (the default), and “unclassified” (unc) types. These types
are all treated differently by the type system taught in the lectures.

• Explain at least one difference between the treatments of a reference of type T! and a
reference of type T? , giving an illustrative example.

• Explain at least one difference between the treatments of a reference of type free T!

and a reference of type unc T! , giving an illustrative example.

• Explain at least two differences between the treatments of a reference of type T! (a
committed reference) and a reference of type unc T! , giving illustrative examples.

• Explain at least three differences between the treatments of a reference of type T! and a
reference of type free T!, giving illustrative examples.

Solution
For all examples below, let us suppose that class T has the following field declarations:
T! f;
T? g;

• If x is a reference of type T! then x.f is a permitted field read (without any if-checks
/dataflow analysis), but if x is a reference of type T? then it is not.

Also, x can only be assigned to the f field of an object in the former case and not the
latter (T! is a subtype of T? but not vice versa).

• Suppose y is a reference of type free T!. If x is also a reference of type free T! then
x.f = y; is a permitted field update, but if x is a reference of type unc T! then it is
not.

Also, free T! is a subtype of unc T! but not vice versa.

• If x is a reference of type T! then x.f.f is a permitted field read, since x.f also has the
type T!. But if x is a reference of type unc T! then it is not permitted, since x.f has
the type unc T?.

If y is a further reference of type unc T! then y.f = x is allowed when x has the type
T! but not when x has the type unc T!.

Also, T! is a subtype of unc T! but not vice versa.

Furthermore, a constructor call new C(x) will be given a committed type if x is commit-
ted, but instead a free type if x is unclassified.

• If x is a reference of type T! then x.f.f is a permitted field read, since x.f also has the
type T!. But if x is a reference of type free T! then it is not permitted, since x.f has
the type unc T?.

If y is a further reference of type unc T! then y.f = x is allowed when x has the type
T! but not when x has the type free T!.

Similarly, x.f = y is allowed when x has the type free T! but not when x has the type
T!.

Furthermore, a constructor call new C(x) will be given a committed type if x is commit-
ted, but instead a free type if x is free.

Task 6
(From a previous exam)

Consider the following code in a Java-like language enriched with the non-null types system of
the course:
class Node
{

int depth;
public Node! parent;
public Node! left;
public Node! right;

Node(int d)
{ ... }

...
}

The constructor shown above, when invoked with a positive integer, as in
new Node(d)

must create a complete binary tree (type Node!) of depth d containing exactly 2d+1 − 1 nodes.
The root node has depth 0. The depth field of every node in the constructed tree must be
initialized to the depth of that node in the tree. The parent field of the root node should point
to the root node itself. Similarly the left and right fields of leaf nodes should point to the
leaf nodes themselves.

(a) Write the body of the constructor. You may introduce other constructors and methods.
Make sure that you adhere to the rules of the non-null types system including construction
types.

(b) Consider the following method:
void foo(unc Node! o)
{

unc Node! x = new Node(2);
free Node! y = new Node(2);
Node! z = new Node(2);
o.right = new Node(2);

}

There are four assignments in the body of this method. Which of them type-check? Which of
them do not? Why?

Solution
(a) Here is a possible implementation
Node(int d)
{

depth = 0;
parent = this;
if(d == 0) {

left=this;
right=this;

} else {
left = new Node(d, 1, this);
right = new Node(d, 1, this);

}
}

Node(int goal, int d, free Node! p) // can be unc Node!
{

depth = d;
parent = p;
if(d == goal) {

left=this;
right=this;

} else {
left = new Node(goal, d+1, this);
right = new Node(goal, d+1, this);

}
}

(b) The type of new Node(2) is committed. This can be shown trivially, because no references
are passed to the constructor.

The fourth assignment is allowed. By the rules for assignments to fields, we know that a
committed reference can be assigned to non-null fields of unclassified, free and committed
objects.

From the assignments to local variables, the second one is not allowed because it violates the
subtyping rules. The other two are allowed.

Task 7
Consider the following Java classes:
public class A {

public static final int value = B.value + 1;
}

public class B {
public static final int value = C.value + 1;

}

public class C {
public static final int value = A.value + 1;

}

Will these classes compile? If not, how could we modify them so that they do?

What would the output of running the following program be?
public class Program {

public static void main(String[] args) {
System.out.println(A.value);
System.out.println(B.value);
System.out.println(C.value);

}
}

In what ways can you change the output of the program by reordering the statements?

Solution
The classes will compile. When the program is run, the output will be:
3
2
1

This is because, starting to initialize A causes B to start being initialized which causes C to
start being initialized (at which point Java realizes A has already started initialization and just
carries on initializing C). When C.value gets assigned, A.value still contains the default value
0.

The class we first mention will always get loaded first, and so complete initialization last. By
changing the order of the second two classes, we can vary the output between the one above,
and:
3
1
2

