Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autu m n Semester 2012 Eidgendssische Te chnische Hochschule Ziirich

7. Ownership Types

/. Ownership Types

/.1 Readonly Types
/.2 Topological Types

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Object Structures Revisited

class Address { class Person {
private String street; private Address addr;
private String city; public Address getAddr()
{ return addr.clone(); }
public String getStreet(){ ... } public void setAddr(Address a)
public void setStreet(String s) { addr = a.clone(); }
{...}
}
public String getCity(){ ... } e ™~
: . . : peter
public void setCity(String s) 4 " home)
I e
{...} o N |street:
" Y city:
}
" /
Peter Muller — Concepts of Object-Oriented Programming Hdgmtnoce Tl Hochich

7.1 Ownership Types — Readonly Types

Drawbacks of Alias Prevention

= Aliases are helpful to

_ 4 peter)
share side-effects ~ddr
= Cloning objects Is not " home)
efficient b > .
street:
(" annette) .
city:
_ _ addr:| &
* In many cases, it suffices U J
to restrict access to - =
shared objects e
= Common situation: grant Orof7: o
read access only
N Y,

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Requirements for Readonly Access

= Mutable objects " peter
- Some clients can mutate the |addr:
object, but others cannot (" _home)
- Access restrictions apply to e C | street:
references, not whole objects > city:
: ETH ;
= Prevent field updates ——— phones. 1
. prof7:
= Prevent calls of mutating N J
methods \ M atel)
* Transitivity No:
- Access restrictions extend to
. N /
references to sub-objects

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Readonly Access via Supertypes

interface ReadonlyAddress {
public String getStreet();
public String getCity();

}

class Address
Implements ReadonlyAddress {

... [* as before */ }

class Person {
private Address addr;

public ReadonlyAddress
getAddr()

{ return addr; }
public void setAddr(Address a)
{ addr = a.clone(); }

2

* Clients use only the met

- Object remains mutable
- No field updates

nods In the interface

- No mutating method in the interface

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Limitations of Supertype Solution

= Reused classes class Address
might not implement Implements ReadonlyAddress {

a readonly interface srivate PhoneNo phone:

- See discussion Qf public PhoneNo getPhone()
structural subtyping { return phone; }}

» |nterfaces do not
support arrays,
flelds, and nOn-pUbliC public ReadonlyPhoneNo getPhone();
methods }

Interface ReadonlyAddress {

* Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

Eidgendssische Technische Hoch
Swiss Federal Institute of

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Supertype Solution Is not Safe

= No checks that class Person {
methods in readonly private Address addr;

_ public ReadonlyAddress getAddr()
interface are actually return addr: }

side-effect free public void setAddr(Address a)
{ addr = a.clone(); }

= Readwrite alilases can

occur, e.g., through }

capturing void m(Person p) {
ReadonlyAddress ra = p.getAddr();

Address a = (Address) ra;

= Clients can use casts o \
a.setCity(“Hagen”);

to get full access }

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Readonly Access In Eliffel

= Better support for fields
- Readonly supertype can contain getters
- Field updates only on “this” object

= Command-guery separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

= Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

7.1 Ownership Types — Readonly Types

10

Readonly Access in C++: const Pointers

class Address {
string city;
public:
string getCity(void)
{ return city; }
void setCity(string s)

{city=s;}

}; C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= C++ supports readonly
pointers
- No field updates
- No mutator calls

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(ZHagen”);

cout << a-%

Compile-time

}

Peter Muller — Concepts of Object-Oriented Programming

errors

Eidgendssische Technische Hoch

Zirich
ch

7.1 Ownership Types — Readonly Types

11

Readonly Access in C++: const Functions

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s)
{city=s;}
}; G

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= const Functions must
not modify their receiver
object

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(ZHagen”);

cout << a-m
) N

Peter Muller — Concepts of Object-Oriented Programming

(Call of const cemyplleine
error

qunction allowed |

Zirich
ch

7.1 Ownership Types — Readonly Types

12

It wouldn't be C++ ...

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s) const {

Address* me = (Address*) this;

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ * clone */ }

me->city = s; 3
} }; C++ C++
= const-ness can be cast |void m(Person*p) {

away const Address* a = p->getAddr();

- No run-time check

a->setCity(“Hagen”);

Peter Muller — Concepts of Object-Oriented Programming

} \” Call of const
function allowed

f Technology Zurich

7.1 Ownership Types — Readonly Types

13

It wouldn't be C++ ...

(cont'd)

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s)

{city =s;}

} C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ * clone */ }

}; C++

= const-ness can be cast
away
- No run-time check

void m(Person* p) {
const Address* a = p->getAddr();
Address* ma = (Address*) a;
ma->setCity(“Hagen™);

} C++

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

14

Readonly Access In C++: Transitivity

class Phone {
public:
int number;

%

C++

void m(Person* p) {

}

const Address* a = p->getAddr();

Phone* p = a->getPhone();
p->number = 2331...;

C++

class Address {
string city;
Phone* phone;
public:
Phone* getPhone(void) const
{ return phone; }

}; C++

= const pointers are not

transitive

= const-ness of sub-

objects has to be
Indicated explicitly

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

15

Transitivity (cont’'d)

class Address {
string city;
Phone* phone;
public:

phone->number = 2331,
return phone;

}

const Phone* getPhone(void) const {

const functions may
modify objects other
than the receiver

C++

Peter Muller — Concepts of Object-Oriented Programming

ETH

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of Technology Zurich

7.1 Ownership Types — Readonly Types 16

Readonly Access In C++: Discussion

cons

= const-ness Is not
transitive

= const pointers are
unsafe

- Explicit casts

= Readwrite allases can
occur

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Techn she Hochschule Zarich

7.1 Ownership Types — Readonly Types

Pure Methods

= Tag side-effect free class Address {
methods as pure pr!vate Str!ng sFreet,
private String city;
= Pure methods public pure String getStreet()
- Must not contain field {...}
update public void setStreet(String s)
- Must not invoke non- {.)

pure methods public pure String getCity()
{...}

- Must not create objects oublic void setCity(String s)

- Can only be overridden [,
by pure methods

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Types

= Each class or interface T
Introduces two types

= Readwrite type rw T
- Denoted by T in programs

* Readonlytypero T

- Denoted by readonly T in
programs

class Person {
private Address addr;

public ReadonlyAddress
getAddr() {return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

..}
class Person { l

private Address addr;

public readonly Address
getAddr(){ ...}

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Subtype Relation

= Subtyping among readwrite
and readonly types is
defined as in Java

- S extends or implements T =
'wS<:rwT

- S extends or implements T =
rnS<roT

= Readwrite types are
subtypes of corresponding
readonly types

-mwil<:rofT

classT{...}

class Sextends T{...}

Srws=...
TrwT = ...
readonly SroS = ...
readonly T roT = ...

rwT =rwsS;
roT =roS;
roT =rwT;
rwT =roT;

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types 20

Type Rules: Transitive Readonly

class Address { class Person {
private Address addr;
private int[] phone; public readonly Address
public int[] getPhone() {...} getAddr() { return addr; }
)
}

= Accessing a value of a
readonly type or
through a readonly type
should yield a readonly
value

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Technische Hachschule Zarich

Swiss Federal Institute of Technology Zurich

7.1 Ownership Types — Readonly Types

Type Rules: Transitive Readonly (cont'd)

* The type of
- A field access

- An array access

- A method invocation
Is determined by the

type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Personp = ...
readonly Address a;
a = p.getAddr();

Int[] ph = a getPhone()

/

[ro Address >[

H_J

rw int[]

ro int[|

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

22

Type Rules: Transitive Readonly (cont'd)

* The type of
- A field access

- An array access

- A method invocation

Is determined by the
type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Personp = ...
readonly Address a;
a = p.getAddr();

donly int[] ph = a.getPh ;
rea onyln[]p/age \\one()

\

[ro Address }b [rw intf] J

H_J

ro int[|

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types 23

Type Rules: Readonly Access

= Expressions of readonly
types must not occur as
receiver of
- a field update
- an array update

- an invocation of a non-pure
method

= Readonly types must not
be cast to readwrite types

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Technische Hachschule Zarich

Swiss Federal Institute of Technology Zurich

7.1 Ownership Types — Readonly Types

24

Discussion

= Readonly types enable safe sharing of objects

= Very similar to const pointers in C++, but:
- Transitive
- No casts to readwrite types

= All rules for pure methods and readonly types can
be checked statically by a compiler

= Readwrite aliases can still occur, e.g., by capturing

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types

25

/. Ownership Types

/.1 Readonly Types
/.2 Topological Types

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

26

Object Topologies

class Person {

» Read-write aliases private Address addr;

: private Company employer;
can stil OF)CUF, €9 public readonly Address getAddr()
by capturing or

) { return addr; }
leaking public void setAddr(Address a)
{ addr = a.clone(); }

= We need to public Company getEmployer()
distinguish “internal” | 1return employer; }
references from public void setEmployer(Company c)

employer = c;
other references t employ }

}

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

Roles in Object Structures

* Interface objects that are
used to access the
structure

= Internal representation
of the object structure

= Arguments of the object
structure

LinkedList)

e

Listltr

~

Entr

[
—
|/

tv
Ll
L_T.

=

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 28

Ownership Model Owner of
Entry objects
. TR
N Listltr
= Each object h_as Zero or CincodLiod !
one owner objects —
. . NI
= The set of objects with the
same owner Is called a Entry
context
= The ownership relation is Enry) [Enmy) [En
_ C > @ >
acyclic D
* The heap Is structured into -
a forest of ownership trees - o
- objects owned
by list head

Eidgendssische Technische Hoch
5% F I it f

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 29

OwnershipTypes rep
reference P
= We use types to express TinkedList ==t
ownership information —
- J
= peer types for objects in Entry
the same context as this
peer i:::
= rep types for reference | \ogbo | el EO
representation objects in \\'j_?j_:
the context owned by this -
-
= any types for argument)]
objects in any context any
reference

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 30

Example

class LinkedList {
private rep Entry header;

A list owns

Its nOdESJ (

Lists store
elements with
arbitrary owners

class Entry {
private any Object element;
private peer Entry previous, next;

] mdes have
the same owner

N

ETH

Peter Muller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types 31

Type Safety

* Run-time type information consists of
- The class of each object
- The owner of each object

= Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value
- If e has type rep T then o’s owner is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner is arbitrary

\/ An existential W
4

Eidgendssische Technische Hoch
Swiss Federal |

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

32

Subtyping and Casts

» For types with identical
ownership modifier, subtyping
IS defined as in Java
-repS<irepT
- peer S<:peerT
-anyS<:any T

= rep types and peer types are
subtypes of corresponding

classT{...}

class Sextends T{ ... }

peer T peerT =
any T anyT = ...
rep SrepS=...
rep T repT = ...

/

repT =reps;

anyT = repT,;
peerT = (peer T/ anyT,

Run-time
checks

repT =(rep T) anyT;
any types
T < T repT = peerT;
- rep b=.any peerT =repT;
- peerT<:any T repT = anyT:

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
5% F

7.2 Ownership Types — Topological Types 33

Example (cont'd)

class LinkedList {
private rep Entry header;
public void add(any Object o) {
rep Entry newk = new rep Entry(o, header, header.previous);

}

} Ownership information
IS relative to this
class Entry { (_ reference (viewpoint)

private any Object element;

private peer Entry previous, next;

public Entry(any Object o, peer Entry p, peer Entryn) { ... }
}

Peter Miller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types

34

Viewpoint Adaptation: Example 1

List
Q
N\

N\

Entry

Entry Entry
e > ®

peer » peer = peer

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types

35

Viewpoint Adaptation: Example 2

List

|

\

A ¥

Entry

rep » peer =rep

Entry

Entry

Peter Muller — Concepts of Object-Oriented Programming

ETH

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types

36

Viewpoint Adaptation

> peer T rep T any T
peer S peer T ? any T
rep S rep T ? any T
any S ? ? any T

v=e.lf

(e)Pt(f)<it(v)

ef=v;

(v)<itz(e) P t(f)

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 37

Read vs. Write Access

[this) class Person {

° public rep Address addr;

SR public peer Person spouse,;
ji

peer Person joe, jill;

joe

A

joe.spouse = jill;

any Address a = joe.addr;

I.

joe.addr = new rep Address();

ETH
Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types 38

The lost Modifier

= Some ownership class Person {
relations cannot be publ?c rep Address addr;
expressed in the type public peer Person spouse,;
system }"'

= |Internal modifier lost for
fixed, but unknown
owner joe.spouse = jill;

= Reading locations with
lost ownership is allowed

= Updating locations with ~ [19€:addr= new rep Address(),
lost ownership Is unsafe ﬁost p—

peer Person joe, jill;

[lost Address }

any Address a = joe.a\&ir;

\ J
Peter Muller — Concepts of Object-Oriented Programming Edgenssssche echnische Hoch

7.2 Ownership Types — Topological Types

39

The lost Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
~
= Subtyping [exis’?enr?ttiZIe[ype}
-repT<:lostT
- peer T<:lostT
- lost T<:any T

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types 40

Type Rules: Field Access

= The field read = The field write
v=e.f; e.f=v;
IS correctly typed if IS correctly typed if
- e Is correctly typed - e Is correctly typed
-t(e) P (f)<it(Vv) -t(v)<it(e) P t(f)

- 1(e) » t(f) does not
have lost modifier
= Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

41

The self Modifier

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe;

joe.addr = new rep Address();

this.addr = new rep Address();

* Internal modifier self only for the this literal

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
5% F I i f

7.2 Ownership Types — Topological Types 42

The self Modifier: Detalls

> peer T rep T any T v =e.f
peer S peer T lost T any T
(e)p» t(f)<it(v)
rep S rep T lost T any T
any S lost T lost T any T ef=yv
lost S lost T lost T any T
(v)<it(e)» 1(f)
self S peer T rep T any T
(e) » 1(f) does not
_ have lost modifier
= Subtyping

- self T<:peerT

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

Example: Sharing

this

class Person {
public rep Address addr;

joe

= Different Person objects
have different Address
objects

- No unwanted sharing

'0

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

44

Example: Internal vs. External Objects

class Person {
private rep Address addr;

public rep Address getAddr() {

Address is part of

Person’s internal
represenations

return addr;

}

Clients receive a
lost-reference

public void setAddr(rep Address a) {

addr = a;

}

Cannot be called
by clients

public void setAddr(any Address
addr = new rep Address(a);

a)i

) Cloning

} Xnecessary

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

45

Internal vs. External Objects (cont'd)

class Person {

private any Company employer;

public any Company getEmployer() {
return employer,

}

employer = c;

}

}

public void setEmployer(any Company c) {

Company is shared
between many
Person objects

Can be called
by clients

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 46

Owner-as-Modifier Discipline

= Based on the topological type system we can
strengthen encapsulation with extra restrictions
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

= Additional rules enforce owner-as-modifier

- Field write e.f = vis valid only if t(e) Is self,
peer, or rep

- Method call e.m(...) is valid only if t(e) Is self,
peer, or rep, or called method Is pure

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 47

Owner-as-Modifier Discipline (cont'd)

this

= A method may modify only objects directly or
iIndirectly owned by the owner of the current this
object

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

48

Internal vs. External Objects Revisited

class Person { Company is shared
private rep Address addr; cannot be modified

;J

private any Company employer;

public rep Address getAddr() {return addr; }

public void setAddr(any Address a) {
addr = new rep Address(a);

Clients receive
(transitive)
readonly reference

J Accidental capturing
IS prevented

public any Company getEmployer() {return employer; }

public void setEmployer(any Company c) { employer =c; }

}

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Encapsulation of Object Structures 49

(Simplified) Programming Discipline

= Rule 1: No Role Confusion

- Expression with one alias mode must not be
variables with another mode, except to an ar

= Rule 2: No Representation Exposure Viewpoint
adaptation
for rep types

Different
types for
different roles

- rep-mode must not occur in an object’s interf
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on this

= Rule 3: No Argument Dependence s
_ programming
- Implementations must not depend on discipline

argument objects

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 50

Achievements
* rep and any types enable
encapsulation of whole class ArrayList {
object structures protected rep int[| array;
_ private int next;
= Encapsulation cannot be |
violated by subclasses,)

via casts, etc.

= The technique fully
supports subclassing

- In contrast to solutions with
final, private inner classes,
etc.

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Technische Hachschule Zarich

Swiss Federal Institute of Technology Zurich

6.3 Object Structures and Aliasing — Problems of Aliasing

51

Exchanging Implementations

class ArrayList {
private int[| array;
private int next;

// requires ia !'= null

I/ ensures Vi. 0<=i<ia.length:

Il ISElem(old(ia[i]))

public void addElems(int[]ia)
{ array = ia; next = ia.length; }

}

=)

class ArrayList {

private Entry header;

// requires ia !'= null

// ensures Vi. 0<=i<ia.length:

Il ISElem(old(ia[i]))
public void addElems(int[]ia)

{ ... /" create Entry for each
element */ }

}

» |nterface including contract remains unchanged

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
Swiss Federal Institute of Tec

7.2 Ownership Types — Topological Types

52

Exchanging Implementations (cont'd)

class ArrayList {
private rep int[| array;
private int next;

// requires ia !'= null
/[ensures Vi. O<=i<ia.length:
// ISElem(old(ia[i]))
public void
addElems(any int[] ia)
{ System.arraycopy(...);
next = ia.length; }

) Wtal capturing
IS prevented

N

=)

class ArrayList {
private rep Entry header;

// requires ia !'= null
I/ ensures Vi. O<=i<ia.length:
I/ ISElem(old(ia[i]))
public void
addElems(any int[] ia)
{ ... /" create Entry for each
element */ }

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 53

Exchanging Implementations (cont'd)

class ArrayList { class ArrayList {

private rep int[| array; private rep Entry header;

private int next;

public any int| | getElems() public void any int[| getElems()

{return ia;} { I* create new array */ }
\ Leaking is still }
possible

peer ArrayListlist = new peer ArrayList();
list.prepend(0); = Observable
any int[] ia = list.getElems(); behavior is
Ilst.prepend(1); Changed
assertia[0] == 1;

Eidgendssische Technische Hoch
Swiss Federal Institu f

Peter Muller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Problems of Aliasing

54

Consistency of Object Structures

= Consistency of object
structures depends on
flelds of several objects

= |nvariants are usually
specified as part of the
contract of those objects
that represent the
Interface of the object
structure

class ArrayList {
private int[] array;
private int next;

/[invariant array !'= null &&
/[O<=next<=array.length &&
Il Vi.0<=i<next: array[1]>=0

public void add(inti) {...}
public void addElems(int[]ia)

[}

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

55

Invariants for Object Structures

= The invariant of object o
may depend on
- Encapsulated fields of o

- Fields of objects
(transitively) owned by o

* Interface objects have
full control over their
rep-objects

class ArrayList {
private rep int[] array;
private int next;

/[invariant array != null &&
I/l 0<=next<=array.length &&
[l Vi1.0<=i<next: array[1]>=0

public void add(inti) {...}

public void addElems
(anyint[]ia) {...}

Peter Muller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Problems of Aliasing

56

Security Breach in Java 1.1.1

} [Identity[] getSigners()]

{ return signers; }

System

class Malicious { identity]] \dentiy
@ >
void bad() { °
ldentity[] s; ldentity
|dentity trusted = java.Security...; ® >
s = Malicious.class.getSigners();
_ : Class
s[O] = trusted,;
/* abuse privilege */ \ “~\
} ldentity] |
o— | |ldentity
S ———

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
Swiss Federal Institute of Te

7.2 Ownership Types — Topological Types

57

Security Breach in Java 1.1.1 (cont’d)

class Malicious {

void bad() {

any ldentity[] s;

|dentity trusted = java.Security...;
s = Malicious.class.getSigners();
s[O] = trusted,;

}

[{ return signers; }

Identity][] |dentity
@ >
@
ldentity
P>

\

t

rep Identity[| getSigners()]

System

\'den.@/

Class : .
rep Identity[] signers; }
hi\

|dentity

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
viss Federal

7.2 Ownership Types — Topological Types

Ownership Types: Discussion

= Ownership types express heap topologies and
enforce encapsulation
= Owner-as-modifier is helpful to control side effects
- Maintain object invariants
- Prevent unwanted modifications
= Other applications also need restrictions of read
access
- Exchange of implementations
- Thread synchronization

= Ownership types are an area of current research

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

