
Concepts of

Object-Oriented Programming

Peter Müller

Chair of Programming Methodology

Autumn Semester 2012

2

Peter Müller – Concepts of Object-Oriented Programming

Visible States

 Invariants have to hold in

pre- and poststates of

methods executions but

may be violated

temporarily in between

 Pre- and poststates are

called “visible states”

class Redundant {

 private int a, b;

 // invariant a == b

 public void set(int v) {

 // invariant of this holds

 a = v;

 // invariant of this violated

 b = v;

 // invariant of this holds

 }

}

2.3 Types and Subtyping – Behavioral Subtyping

3

Peter Müller – Concepts of Object-Oriented Programming

9. Object Invariants

9.1 Call-backs

9.2 Invariants of Object Structures

9. Object Invariants

4

class Logger {

 public void log(String m) {

 System.out.println(m);

 }

}

class Logger {

 private Redundant r;

 public void log(String m) {

 System.out.println(m + r.div(5));

 }

}

Call-backs

Peter Müller – Concepts of Object-Oriented Programming

class Redundant {

 private int a, b;

 private Logger l;

 // invariant a == b

 public void set(int v) {

 a = v;

 l.log(“Inside set”);

 b = v;

 }

 public int div(int v) {

 return v / (a – b + 1);

 }

}

1

1

Redundant

Logger

0

9.1 Object Invariants – Call-backs

5

Common Variations

 Self-calls Re-entrant monitors

Peter Müller – Concepts of Object-Oriented Programming

class Redundant {

 private int a, b;

 // invariant a == b

 public void set(int v) {

 a = v; this.div(5); b = v;

 }

 public int div(int v) {

 return v / (a – b + 1);

 }

}

9.1 Object Invariants – Call-backs

class Redundant {

 private int a, b;

 // monitor invariant a == b

 public synchronized void set(int v) {

 a = v; this.div(5); b = v;

 }

 public synchronized int div(int v) {

 return v / (a – b + 1);

 }

}
Java

6

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

Running Example

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

7

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF

 // ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 regulator.Report(this);

 }

 … }

Solution 1: Re-establishing Invariants

 Check invariant

before every

method call

 Overly restrictive:

most methods do

not call back

 Too expensive for

run-time checking

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

Check

invariant

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF

 // ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 if(cur.Equals(Currency.CHF))

 balance = Round(balance);

 regulator.Report(this);

 }

 … }

8

Solution 2: Call-back Analysis

 Statically analyze

code of callee to

detect call-backs

- Check invariant

before call only if

call-back is possible

 Not modular

- For dynamically-

bound methods, all

overrides need to

be known

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF

 // ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 … }

9.1 Object Invariants – Call-backs

What if

Regulator is

an interface?

9

Solution 3: Explicit Requirements

 Specify in each

precondition which

invariants the method

actually requires

 Check required

invariants before

method call

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 // requires invariant of this and c;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

9.1 Object Invariants – Call-backs

10

Explicit Requirements: Problems

 Writing the concrete

invariant in

precondition violates

information hiding

 Some methods

require a large

number of invariants

- For example, tree

traversal

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 // requires invariant of this and c;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

9.1 Object Invariants – Call-backs

11

Solution 4: Dented Invariants

 Use boolean field to

indicate whether

object is valid or not

- Can be used to turn

invariant on and off

 Dented invariant

holds in all visible

states

 Explicit requirements

can be stated using

the valid-field

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 boolean valid;

 // invariant valid ==>

 // cur == Currency.CHF

 // ==> balance % 5 == 0;

 // requires this.valid && c.valid;

 void Exchange(Currency! c)

 { … }

 …

}

9.1 Object Invariants – Call-backs

12

Re-establishing Dented Invariants

 Programmers might

forget to set valid-field

 Invariants still need to

be checked before

method calls

 A method can break

many invariants

through direct field

updates

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 boolean valid;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

valid not

set to false

Dented

invariant

does not

hold

9.1 Object Invariants – Call-backs

13

Basic Spec# Methodology

 Each object has an implicit valid-field

- Valid and mutable objects

 Each invariant is implicitly dented

 Object invariants can depend only on the fields of

the this object (will be relaxed later)

 Enforce that dented invariants hold in all execution

states, not just visible states

- Un-dented invariant holds whenever an object is valid

 Valid objects must not be modified

- Check for each field update o.f = e that o is mutable

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

14

class Account {

 …

 invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

} Spec#

class Account {

 …

 invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

} Spec#

Spec# Methodology: Example

Peter Müller – Concepts of Object-Oriented Programming

Invariant is

implicitly dented

Implicit precondition:

arguments are valid

Check fails:

receiver is

not mutable

9.1 Object Invariants – Call-backs

15

Maintaining Object Validity

 Setting the valid-field

to true might break

the dented invariant

 valid-field can be

modified only through

special expose block

statement

- Exposed object must

be initially valid

- Similar to non-

reentrant lock-block

Peter Müller – Concepts of Object-Oriented Programming

int f;

invariant 0 < f;

void foo() {

 valid = false;

 f = -1;

 valid = true;

}

int f;

invariant 0 < f;

void foo() {

 expose(this) {

 f = -1;

 }

}
Spec#

Set valid

to false

Check

invariant

Set valid

to true

9.1 Object Invariants – Call-backs

16

class Account {

 invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 }

 … }
Spec# Spec#

Example Revisited

Peter Müller – Concepts of Object-Oriented Programming

Check

succeeds:

this is valid

Check

succeeds:

receiver is

mutable

Check

succeeds:

invariant holds

9.1 Object Invariants – Call-backs

17

Establishing Object Validity

 New objects are

initially mutable

- valid-Field is

initialized to false

 After initialization,

un-dented invariant

is checked and valid-

field is set to true

- We ignore inheritance

here

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 invariant cur == Currency.CHF

 ==> balance % 5 == 0;

 Account(Regulator! r) {

 cur = Currency.CHF;

 regulator = r;

 }

 …

}

Spec#

Invariant holds

since balance == 0

Implicit:

this.valid = true;

9.1 Object Invariants – Call-backs

18

Basic Spec# Methodology: Summary

 Admissible invariants

- The invariant of an object o may depend on fields of o

(and constants)

 Checks (proof obligations)

- Invariant of o holds after o has been initialized

- Invariant of o holds at the end of each expose(o) block

- Every expose operation is done on a valid object

- Every field update is done on a mutable receiver

 Recall: we ignore inheritance here

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

19

Call-backs in Spec#: Example

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 …

 regulator.Report(this);

 …

 }

 }

 int GetBalance()

 // requires this.valid

 { return balance; }

}
Spec#

class Regulator {

 void Report(Account! a)

 // requires this.valid && a.valid;

 {

 int b = a.GetBalance();

 // …

 }

 …

}
Spec#

In principle, methods

can be called while

invariant is broken

Requirement about

expected invariants

This call is forbidden

since precondition

does not hold

9.1 Object Invariants – Call-backs

20

Call-backs in Spec#: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 …

 regulator.Report(this);

 …

 }

 }

 int GetBalance()

 // requires this.valid

 { return balance; }

}
Spec#

class Regulator {

 void Report(Account! a)

 // requires this.valid;

 {

 int b = a.GetBalance();

 // …

 }

 …

}
Spec#

a’s invariant is

not expected

Call is allowed since

precondition holds
Call-back is forbidden

since precondition

does not hold

9.1 Object Invariants – Call-backs

21

Call-backs in Spec#: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 …

 regulator.Report(this);

 …

 }

 }

 int GetBalance()

 // requires true;

 { return balance; }

}
Spec#

class Regulator {

 void Report(Account! a)

 // requires this.valid;

 {

 int b = a.GetBalance();

 // …

 }

 …

}
Spec#

a’s invariant

not expected

Call is allowed since

precondition holds

No invariant

expected

Call-back is allowed

since precondition

holds

9.1 Object Invariants – Call-backs

22

Peter Müller – Concepts of Object-Oriented Programming

9. Object Invariants

9.1 Call-backs

9.2 Invariants of Object Structures

9. Object Invariants

23

Multi-Object Invariants: Example

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 Account! savings;

 invariant 0 <= savings.balance;

 …

}

Field update might

break invariants of

client objects

Invariant

depends on field

of another object

9.2 Object Invariants – Invariants of Object Structures

24

Finding Dependent Objects

 : Account

Withdraw(…)

 : Person
 : Person

 : Bank

: Company

 : E

 : Set

 : List

 : C

 : Node

 : A

 : Node

 : List

 : Node

 : List

 : F

9.2 Object Invariants – Invariants of Object Structures

Peter Müller – Concepts of Object-Oriented Programming

25

Ownership-Based Invariants

 Admissible invariants

- The invariant of an object o may

depend on fields of o and

objects (transitively) owned by o

(and constants)

 Requirement: when an object

o is mutable, so are o’s

(transitive) owners

- Because an update of o might

break the owners’ invariants

Peter Müller – Concepts of Object-Oriented Programming

 : Account

Withdraw(…)

 : Person
 : Person

 : Company

9.2 Object Invariants – Invariants of Object Structures

26

Using Ownership to Limit Dependencies

 : Account

Withdraw(…)

 : Person
 : Person

 : Bank

 : Company

 : E

 : Set

 : List

 : C

 : Node

 : A

 : Node

 : List

 : Node

 : List

 : F

9.2 Object Invariants – Invariants of Object Structures

Peter Müller – Concepts of Object-Oriented Programming

27

Admissible Ownership-Based Invariants

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 Account! savings;

 invariant 0 <= savings.balance;

 …

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 …

}

Not admissible: invariant

depends on field of

another object that is not

owned by this

Admissible: savings

is owned by this

Use topological

type system

Spec# syntax:

[Rep]

9.2 Object Invariants – Invariants of Object Structures

28

Mutable Owners: Example

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 void Donate()

 {

 savings.Withdraw(1000);

 }

}
This call might

break the

invariant of this

Invariant of this is

not checked!

9.2 Object Invariants – Invariants of Object Structures

29

Enforcing Mutable Owners

 Rules

- Expose owner before

owned object

- Un-expose in reverse order

 Additional checks for

expose(o)

- Before expose, o must be

valid and o’s owner must be

mutable

- At the end of expose, all

objects owned by o must be

valid

Peter Müller – Concepts of Object-Oriented Programming

A B

C D

E

A B

C D

E

A B

C D

E

mutable

valid, mutable owner

valid, valid owner

9.2 Object Invariants – Invariants of Object Structures

30

Mutable Owners: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 // requires valid && !owner.valid

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 void Donate()

 // requires valid && !owner.valid

 {

 savings.Withdraw(1000);

 }

} This call is forbidden

since precondition

does not hold

9.2 Object Invariants – Invariants of Object Structures

31

Mutable Owners: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 // requires valid && !owner.valid

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 void Donate()

 // requires valid && !owner.valid

 {

 expose(this) {

 savings.Withdraw(1000);

 }

 }

}

Call is allowed since

precondition holds

Invariant check fails

(add precondition to fix)

9.2 Object Invariants – Invariants of Object Structures

32

Heap Snapshot

mutable

valid, mutable owner

valid, valid owner

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

33

Spec# Methodology: Summary

 Admissible invariants

- The invariant of an object o may depend on fields of o

and objects (transitively) owned by o (and constants)

 Checks (proof obligations)

- Owner of newly created object is mutable

- Invariant of o holds after o has been initialized

- Invariant of o holds at the end of each expose(o) block

and all objects owned by o are valid

- Every expose operation is done on a valid object with a

mutable (or no) owner

- Every field update is done on a mutable receiver

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

34

Spec# Methodology: Observations

 Methodology relies on encapsulation of object

structures

- No strict enforcement of owner-as-modifier discipline

- But: owner must be exposed before owned object

 Responsibility for invariant checking is divided

- A method implementation is responsible for the objects in

the context of the receiver

- A caller is responsible for the objects in its context

 Ownership-based invariants are too restrictive for

many useful examples

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

35

Invariants and Immutability

 Immutable objects can be

freely shared

 Invariants may depend on

the state of shared

immutable objects

 Immutability often leads to

more reliable programs

- Especially for concurrency

- If performance permits

Peter Müller – Concepts of Object-Oriented Programming

class Client {

 Integer! i;

 invariant 0 < i.value;

 …

}

[Immutable] class Integer {

 int value;

 …

}

No ownership

necessary

Spec#

Spec#

9.2 Object Invariants – Invariants of Object Structures

36

Invariants and Monotonicity

 Many properties of

objects evolve

monotonically

- Numbers grow or shrink

monotonically

- Reference go from null to

non-null

 Invariants may depend

on properties of shared

objects guaranteed by

their history constraint

Peter Müller – Concepts of Object-Oriented Programming

class Client {

 Counter! c;

 invariant 0 < c.value;

 …

}

class Counter {

 int value;

 // constraint old(value) <= value;

 …

}

9.2 Object Invariants – Invariants of Object Structures

No ownership

necessary

37

Invariants and Visibility

 Invariants may depend

on fields of shared

objects if a modular static

analysis can determine

all necessary checks

 Invariant and field are

declared in the same

module

- Common example:

recursive data structures

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 Person spouse;

 invariant spouse == null ||

 spouse.spouse == this;

…

} Spec#

9.2 Object Invariants – Invariants of Object Structures

No ownership

necessary

38

Summary

 Sound, modular checking of object invariants is

surprisingly difficult

- Call-backs

- Multi-object invariants

- Inheritance

 Spec# is the first system to support sound, modular

verification of object invariants

- Efficient run-time checking does not seem feasible

 Spec# is open source: specsharp.codeplex.com

 Try it on www.rise4fun.com/SpecSharp

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

