
Concepts of

Object-Oriented Programming

Peter Müller

Chair of Programming Methodology

Autumn Semester 2012

2

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures

6.2 Aliasing

6.3 Problems of Aliasing

6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing – Object Structures

3

Peter Müller – Concepts of Object-Oriented Programming

Object Structures

 Objects are the building blocks of object-oriented

programming

 However, interesting abstractions are almost

always provided by sets of cooperating objects

 Definition:

An object structure is a set of objects that are

connected via references

6.1 Object Structures and Aliasing – Object Structures

4

Peter Müller – Concepts of Object-Oriented Programming

Example 1: Array-Based Lists

class ArrayList {

 private int[] array;

 private int next;

 public void add(int i) {

 if (next==array.length) resize();

 array[next] = i;

 next++;

 }

 public void addElems(int[] ia)

 { … }

 …

}

array:

next:

list

…

length:

0:

array

…

1:

2:

6.1 Object Structures and Aliasing – Object Structures

5

Peter Müller – Concepts of Object-Oriented Programming

Example 2: Doubly-Linked Lists

header:

3 size:

LinkedList

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

Object Object Object

next:

2 nextIndex:

ListItr

6.1 Object Structures and Aliasing – Object Structures

6

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures

6.2 Aliasing

6.3 Problems of Aliasing

6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing

7

Peter Müller – Concepts of Object-Oriented Programming

Alias

 Definition:

A name that has been assumed temporarily
[WordNet, Princeton University]

6.2 Object Structures and Aliasing – Aliasing

8

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Procedural Programming

 var-parameters are

passed by reference

(call by name)

 Modification of a var-

parameter is

observable by caller

 Aliasing: Several

variables (here: p, q)

refer to same memory

cell

 Aliasing can lead to

unexpected side-effects

program aliasTest

procedure assign(var p: int, var q: int);

begin

 p := 25;

end;

 begin

 var x: int := 1;

 assign(x, x);

 end

end.

{ p = 1 q = 1 }

p := 25;

{ p = 25 q = 25 }

{ x = 25 }

6.2 Object Structures and Aliasing – Aliasing

9

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Object-Oriented Programming

 Definition:

An object o is aliased if two or more variables hold

references to o.

 Variables can be

- Fields of objects (instance variables)

- Static fields (global variables)

- Local variables of method executions, including this

- Formal parameters of method executions

- Results of method invocations or other expressions

6.2 Object Structures and Aliasing – Aliasing

10

Peter Müller – Concepts of Object-Oriented Programming

Static Aliasing

 Definition:

An alias is static if all

involved variables are

fields of objects or

static fields.

 Static aliasing occurs in

the heap memory

array:

next:

list1

array:

next:

list2

array

list1.array[0] = 1;

list2.array[0] = -1;

System.out.println(list1.array[0]);

6.2 Object Structures and Aliasing – Aliasing

11

Peter Müller – Concepts of Object-Oriented Programming

Dynamic Aliasing

 Definition:

An alias is dynamic

if it is not static.

 Dynamic aliasing

involves stack-

allocated variables

array:

next:

list1

array

int[] ia = list1.array;

list1.array[0] = 1;

ia[0] = -1;

System.out.println(list1.array[0]);

6.2 Object Structures and Aliasing – Aliasing

12

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Efficiency

 In OO-programming,

data structures are

usually not copied

when passed or

modified

 Aliasing and

destructive updates

make OO-programming

efficient

class SList {

 SList next;

 Object elem;

 SList rest() { return next; }

 void set(Object e) { elem = e; }

}

void foo(SList slist) {

 SList rest = slist.rest();

 rest.set(“Hello”); }

SList SList SList SList

rest slist

6.2 Object Structures and Aliasing – Aliasing

13

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Sharing

 Aliasing is a direct

consequence of object

identity

 Objects have state that

can be modified

 Objects have to be

shared to make

modifications of state

effective

3

LinkedList

Entry

Entry Entry Entry

2

ListItr

6.2 Object Structures and Aliasing – Aliasing

14

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Capturing

 Capturing occurs when

objects are passed to a

data structure and then

stored by the data

structure

 Capturing often occurs in

constructors (e.g.,

streams in Java)

 Problem: Alias can be

used to by-pass interface

of data structure

array:

next:

list1

array

class ArrayList {

 private int[] array;

 private int next;

 public void addElems(int[] ia)

 { array = ia; next = ia.length; }

 …

}

6.2 Object Structures and Aliasing – Aliasing

15

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Leaking

 Leaking occurs when

data structure pass a

reference to an object,

which is supposed to be

internal to the outside

 Leaking often happens

by mistake

 Problem: Alias can be

used to by-pass

interface of data

structure

array:

next:

list1

array

class ArrayList {

 private int[] array;

 private int next;

 public int[] getElems()

 { return array; }

 …

}

6.2 Object Structures and Aliasing – Aliasing

16

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures

6.2 Aliasing

6.3 Problems of Aliasing

6.4 Encapsulation of Object Structures

6.3 Object Structures and Aliasing – Problems of Aliasing

17

Peter Müller – Concepts of Object-Oriented Programming

Observation

 Many well-established techniques of object-

oriented programming work for individual objects,

but not for object structures in the presence of

aliasing

 “The big lie of object-oriented programming is that

objects provide encapsulation” [Hogg, 1991]

 Examples

- Information hiding and exchanging implementations

- Encapsulation and consistency

6.3 Object Structures and Aliasing – Problems of Aliasing

18

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {

 private int[] array;

 private int next;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void addElems(int[] ia)

 { array = ia; next = ia.length; }

 …

}

class ArrayList {

 private Entry header;

 // requires ia != null

 // ensures i. 0<=i<ia.length:

 // isElem(old(ia[i]))

 public void addElems(int[] ia)

 { … /* create Entry for each

 element */ }

 …

}

6.3 Object Structures and Aliasing – Problems of Aliasing

19

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

 Aliases can be used

to by-pass interface

 Observable behavior

is changed!

int foo(ArrayList list) {

 int[] ia = new int[3];

 list.addElems(ia);

 ia[0] = -1;

 return list.getFirst();

}

list
3

array

0
0
0

ia

list

Entry

Entry

0

Entry

0

Entry

0

3

array

0
0
0

ia

-1

-1

6.3 Object Structures and Aliasing – Problems of Aliasing

20

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures

 Consistency of object

structures depends on

fields of several objects

 Invariants are usually

specified as part of the

contract of those objects

that represent the

interface of the object

structure

class ArrayList {

 private int[] array;

 private int next;

 // invariant array != null &&

 // 0<=next<=array.length &&

 // i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void addElems(int[] ia)

 { … }

 …

}

6.3 Object Structures and Aliasing – Problems of Aliasing

21

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures (cont’d)

 Aliases can be used to

violate invariant

 Making all fields private is

not sufficient to

encapsulate internal state

int foo(ArrayList list) { // invariant of list holds

 int[] ia = new int[3];

 list.addElems(ia); // invariant of list holds

 ia[0] = -1; // invariant of list violated

}

list

3

array

0
0
0

ia

-1

6.3 Object Structures and Aliasing – Problems of Aliasing

22

System

Security Breach in Java 1.1.1

Class

Identity Identity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {

 Identity[] s;

 Identity trusted = java.Security…;

 s = Malicious.class.getSigners();

 s[0] = trusted;

 /* abuse privilege */

 }

}
Identity[] getSigners()

 { return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

23

Problem Analysis

 Difficult to prevent

- Information hiding:

not applicable to arrays

- Restriction of Identity

objects: not effective

- Secure information flow:

read access permitted

- Run-time checks:

too expensive
System

Class

Identity Identity[]

Identity

Identity
Identity[]

 Breach caused by unwanted alias
- Leaking of reference

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

24

Peter Müller – Concepts of Object-Oriented Programming

Other Problems with Aliasing

 Synchronization in concurrent

programs

- Monitor of each individual object

has to be locked to ensure

mutual exclusion

 Distributed programming

- For instance, parameter passing

for remote method invocation

 Optimizations

- For instance, object inlining is

not possible for aliased objects

6.3 Object Structures and Aliasing – Problems of Aliasing

25

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures

6.2 Aliasing

6.3 Problems of Aliasing

6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing

26

Peter Müller – Concepts of Object-Oriented Programming

Alias Modes

 We need better control over the objects in an

object structure to avoid the problems with

aliasing

 Approach

1. Define roles of objects in object structures

2. Assign a tag (alias mode) to every expression to

indicate the role of the referenced object

3. Impose programming rules to guarantee that objects

are only used according to their alias modes

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

27

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures

 Interface objects that are

used to access the

structure

 Internal representation

of the object structure

 Arguments of the object

structure

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

28

Peter Müller – Concepts of Object-Oriented Programming

Interface Objects (peer Mode)

 Interface objects are

used to access the

structure

 Interface objects can be

used in any way objects

are usually used

(passed around,

changed, etc.)

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

29

Peter Müller – Concepts of Object-Oriented Programming

Representations (rep Mode)

 Expressions with mode

“rep” hold references to

the representation of the

object structure

 Objects referenced by

rep-expressions can be

changed

 rep-objects must not be

exported from the object

structure

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

30

Peter Müller – Concepts of Object-Oriented Programming

Arguments (arg Mode)

 Expressions with mode

“arg” hold references to

arguments of the object

structure

 Objects must not be

changed through arg-

references

 arg-objects can be

passed around and

aliased freely

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

31

Peter Müller – Concepts of Object-Oriented Programming

Meaning of Alias Modes

 Alias modes describe the

role of an object relative

to an interface object

 Informally: References

- With peer-mode stay in the

same context

- With rep-mode go from an

interface object into its

context

- With arg-mode may go to

any context

LinkedList

Entry

Entry Entry Entry

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

Dictionary

32

Peter Müller – Concepts of Object-Oriented Programming

(Simplified) Programming Discipline

 Rule 1: No Role Confusion

- Expression with one alias mode must not be assigned to

variables with another mode, except to an arg-variable

 Rule 2: No Representation Exposure

- rep-mode must not occur in an object’s interface

- Methods must not take or return rep-objects

- Fields with rep-mode may only be accessed on this

 Rule 3: No Argument Dependence

- Implementations must not depend on the state of

argument objects

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

33

Peter Müller – Concepts of Object-Oriented Programming

Example 1: LinkedList with Alias Modes

class LinkedList {

 private /* rep */ Entry header;

 private int size;

 public void add(/* arg */ Object o) {

 /* rep */ Entry newE = new /* rep */ Entry(o, header, header.previous);

 … }

}

class Entry {

 private /* arg */ Object element;

 private /* peer */ Entry previous, next;

 public Entry(/* arg */ Object o, /* peer */ Entry p, /* peer */ Entry n) { … }

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

34

Peter Müller – Concepts of Object-Oriented Programming

Example 2: ArrayList with Alias Modes

 Array is internal

representation

of the list

 addElems

confuses alias

modes

class ArrayList {

 private /* rep */ int[] array;

 private int next;

 public void addElems(/* peer */ int[] ia) {

 array = ia;

 next = ia.length;

 }

 …

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

35

Peter Müller – Concepts of Object-Oriented Programming

Example 2: ArrayList with Alias Modes

 Array is internal

representation

of the list

 Clean solution

requires array

copy

class ArrayList {

 private /* rep */ int[] array;

 private int next;

 public void addElems(/* peer */ int[] ia) {

 array = new /* rep */ int[ia.length];

 System.arraycopy(ia, 0, array, 0, ia.length);

 next = ia.length;

 }

 …

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

36

Peter Müller – Concepts of Object-Oriented Programming

No Representation Exposure

 rep-objects can be referenced only

- By their interface objects

- By other rep-objects of the same

object structure

- Via arg-references

 rep-objects can be modified only

- By methods executed on their

interface objects or on rep-objects of

the same object structure

 Rep-objects are encapsulated

inside the object structure

array:

next:

list1

array

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

37

Peter Müller – Concepts of Object-Oriented Programming

Implementation Exchange Revisited

 Observable behavior remains unchanged!

class ArrayList {

 private /* rep */ int[] array;

 private int next;

 public void addElems

 (/* peer */ int[] ia) {

 array = new /* rep */ int[ia.length];

 System.arraycopy

 (ia, 0, array, 0, ia.length);

 next = ia.length;

 }

 … }

class ArrayList {

 private /* rep */ Entry header;

 public void addElems

 (/* peer */ int[] ia)

 { … /* create Entry for each

 element */ }

 …

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

38

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Object Structures

 The invariant of object o

may depend on

- Encapsulated fields of o

- Fields of objects o

referenced through rep-

references

 Interface objects have

full control over their

rep-objects

class ArrayList {

 private /* rep */ int[] array;

 private int next;

 // invariant array != null &&

 // 0<=next<=array.length &&

 // i.0<=i<next: array[i] >= 0

 public void add(int i) { … }

 public void addElems

 (/* peer */ int[] ia) { … }

 …

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

39

Peter Müller – Concepts of Object-Oriented Programming

No Argument Dependence

 Objects referenced through

arg-references may be freely

aliased

 Object structures have no

control over the state of their

argument objects

 Invariants must not depend on

fields of argument objects, but

can depend on their identity

LinkedList

Entry

Entry Entry Entry

 private /* arg */ T v, w;

 // invariant v != w -- legal

 // invariant v.f != w.f -- illegal

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

40

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Modular Programs

 Rules for rep-mode cannot

be checked modularly

- Annotations are just

comments that may be

ignored by other classes

- Subclasses can add new

methods or override methods

 Traditionally, rep exposure

can be prevented by

- Access modifiers

- Final

- Inner Classes

class ArrayList {

 protected /* rep */ int[] array;

 private int next;

 …

}

class MyList extends ArrayList {

 public int[] leak() {

 return array;

 }

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

41

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: LinkedList

 All fields are private

 Entry is a private inner class of LinkedList

- References are not passed out

- Subclasses cannot manipulate or leak Entry-objects

 ListItr is a private inner class of LinkedList

- Interface ListIterator provides controlled access to

ListItr-objects

- ListItr-objects are passed out, but in a controlled fashion

- Subclasses cannot manipulate or leak ListItr-objects

 Subclassing is severely restricted

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

42

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: String

 All fields are private

 References to internal

character-array are not

passed out (no

representation exposure)

 Subclassing is prohibited

(final)

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

value:

…:

String

char[]

