Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autu m n Semester 2012 Eidgendssische Te chnische Hochschule Ziirich

2. Types and Subtyping 2

C-Example Revisited

struct sPerson {
String name;
void (*print)(Person*);
String (*lastName)(Person*);

%

typedef struct sStudent Student;

struct sStudent { Student Person
String name; hame name
mtl regNum.; regNum print
void (*print)(Student*); print lastName
String (*lastName)(Student*); lastName

I3

ETH

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Technische Hachschule Zarich

Swiss Federal Institute of Technology Zurich

2. Types and Subtyping

Message not Understood

= Objects access fields and [opr T om)
methods of other objects b T
. -)
m(pl,p2) {..} m(p1,p2) {..}
= A safe language detects m1(){.} nen{})
situations where the \m2(P){-})

receiver object does not

have the accessed field or

method r=obj2.m(0, 1),

S = 0obj2.f;

= Type systems can be used |[F=0bj2.m();

to detect such errors r = obj2.anotherMethod(O, 1);
s = obj2.anotherField;

Eidgendssische Technische Hochschule Zhrich
5% F I i f GTGTH

Peter Muller — Concepts of Object-Oriented Programming

2. Types and Subtyping 4

Java Security Model (Sandbox)

= Applets get access to
system resources only
through an API

= Access control can be
Implemented in API
(security manager)

API

= Code must be prevented Operating System
from by-passing API

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Techn e Hochschule Zarich

Swiss Federal Institute of Technology Zurich

2. Types and Subtyping

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types

Type Systems

= Definition:
A type system is a tractable syntactic method for
proving absence of certain program behaviors by
classifying phrases according to the kinds of values

they compute.
[B.C. Pierce, 2002]

= Syntactic: Rules are based on form, not behavior
» Phrases: Expressions, methods, etc. of a program
= Kinds of values: Types

Peter Muller — Concepts of Object-Oriented Programming EidgenauicheTechnshe Hochschule Zrich
wiss Federal Imstitute of Technology Zuric

2.1 Types and Subtyping — Types

Weak and Strong Type Systems

= Untyped languages
- Do not classify values into types
- Example: assembler

= Weakly-typed languages

- Classify values into types, but do not strictly enforce
additional restrictions

- Example: C, C++
= Strongly-typed languages
- Enforce that all operations are applied to arguments of
the appropriate types
- Examples: C#, Eiffel, Java, Python, Scala, Smalltalk

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

2.1 Types and Subtyping — Types 8

Weak vs. Strong Typing: Example

Int main(int argc, char** argv) { int main(String[] argv) {
inti=(int)argv[O J; inti=(int)argv[OJ;
printf("%d", i); System.out.printin(1);

} C } Java

= Strongly-typed languages prevent certain
erroneous or undesirable program behavior

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Technische Hachschule Zarich

Swiss Federal Institute of Technology Zurich

2.1 Types and Subtyping — Types

Types

= Definition:
A type Is a set of values sharing some properties.
A value v has type T if v is an element of T.

= Question: what are the “properties” shared by the
values of a type?

- Nominal types:
based on type names
Examples: C++, Eiffel, Java, Scala

- Structural types:
based on availability of methods and fields
Examples: Python, Ruby, Smalltalk

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types 10

Nominal and Structural Types

= : Two nominal
Type membership (S }

One structural
type

(Oble \ 4 ObJZT)

f obj0: S A _
m(int) {.} m(()'?t}) {-} m(int) {.}
n .-
nOL nOLy

= Type equivalence

- Sand T are different class S { class T {
in nominal systems m(int){...} || m(int){...}
. n(){...} n(){...}
- Sand T are equivalent 1 1

In structural systems

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types

11

Static Type Checking

= Each expression of a
program has a type

= Types of variables and
methods are declared
explicitly or inferred

= Types of expressions can
be derived from the types
of their constituents

= Type rules are used at
compile time to check
whether a program is

“A string”
5+7

Java

int a;

Java

boolean equals(Object o)

a+/
‘Anumber: “+7
“A string”.equals(null)

Java

a = “A string”;
“Astring”.equals(1, 2)

Java

correctly typed (Compile-time ‘

errors

o

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
5% F f

2.1 Types and Subtyping — Types

12

DynamicType Checking

= Variables, methods, and “A string” Python
expressions of a program 5+7
are typically not typed — S
_ def foo(0): ...
= Every object and value
has a type 27 e
“Anumber: “*7
_ foo(None)
= Run-time system checks
that operations are a = “A string” 2o
applied to expected a=7
al’guments - a="“A string” /5 Python
Run-time g
foo(5, 7
(errors (OO()

o

/)

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types

13

Static Type Safety

= Definition:
A programming language is called type-safe If its
design prevents type errors.

= Statically type-safe object-oriented languages
guarantee the following type invariant:
In every execution state, the type of the value held
by variable v is a subtype of the declared type of v

= Type safety guarantees the absence of certain
run-time errors

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types 14

Run-Time Checks In Static Type Systems

= Most static type systems
rely on dynamic checks Object[] oa = new Object[10];
for certain operations String s = "A String’;

oa[0]=s;
= Common example: type

conversions by casts
If (0a[O]instanceof String)

. = (Stri O1;
= Run-time checks throw s =(5tring) 03l 0]

an exception in case of s = s.concat(“Another String”);
a type error

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types 15

Expressiveness of Dynamic Type Systems

= Static checkers need t0 [et divide(n, d). Python
approximate run-time ifd!=0:res=n/d
behavior (conservative | else:res = “Division by zero”
checks) print res

= Dynamic checkers

JavaScript

support on-the-fly code | eval(
generation and dynamic |, *=10:y=20; document.write(xy)

class loading)

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types

16

Static vs. Dynamic Type Checking

Advantages of
static checking

= Static safety: More errors
are found at compile time

= Readability: Types are
excellent documentation

= Efficiency: Type
Information allows
optimizations

Advantages of
dynamic checking

= EXxpressiveness: No correct
program is rejected by the
type checker

= Low overhead: No need to
write type annotations

= Simplicity: Static type
systems are often
complicated

Peter Muller — Concepts of Object-Oriented Programming

2.1 Types and Subtyping — Types

17

Type Systems in OO-Languages

Static Dynamic
@©
= C++, C#, Eliffel, Java, For certain features of
g Scala statically-typed languages
Z
o
g Research languages such | JavaScript, Python, Ruby,
S | as Moby, PolyToil, O'Caml S |k
5 Often called

k “duck typing”

}

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

2. Types and Subtyping

18

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 19

Classification in Software Technology

= Substitution principle
Objects of subtypes can be used wherever objects
of supertypes are expected

= Syntactic classification

- Subtype objects can understand at least the messages
that supertype objects can understand

= Semantic classification

- Subtype objects provide at least the behavior of
supertype objects

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 20

Subtyping

= Definition of “Type”:
A type Is a set of values sharing some properties.
A value v has type T if v is an element of T.

» The subtype relation corresponds to the subset
relation on the values of a type

Object
String

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

Nominal and Structural Subtyping

= Nominal type systems

- Determine type

membership based on

type names

- Determine subtype
relations based on

explicit declarations
class S{m(int){...}}

= Structural type systems

- Determine type
membership and
subtype relations based
on availability of
methods and fields

Peter Miller — C_

class T class U {

extends S { m(int){...}
m(int){...} n(){...}

J L

Only T is a nominal W

subtype of S

(T and U are structural

class T { class U {
m(int){...} m(int){...}
} n(){..}
7

L /‘:hnnchr Hochschule Zorich
Swiss Federal Institute of Technology Zurich

2.2 Types and Subtyping — Subtyping

22

Nominal Subtyping and Substitution

= Subtype objects can understand at least the
messages that supertype objects can understand
- Method calls
- Field accesses

= Subtype objects have wider interfaces than
supertype objects
- Existence of methods and fields
- Accessibility of methods and fields
- Types of methods and fields

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 23

Existence

class Super { . _Sub narrows Super's
void foo(){...} interface
void bar() { ... }

) * [f mis called with a

Sub object as

class Sub <: Super { parameter, execution

void foo(){ ... }

falls
// no bar()
} = Subtypes may add, but
not remove methods
void m(Super s) { s.bar(); } and fields

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 24

Accessibility

class Super { = At run time, m could
public void foo(){ ... } access a private
public void bar(){ ... } method of Sub,

) thereby violating

iInformation hiding
class Sub <: Super {

public void foo(){ ... }

| | = An overriding method
private void bar() { ... }

must not be less
) accessible than the
methods it overrides

void m(Super s) { s.bar(); }

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 25

Overriding: Parameter Types

class Super { = Calling m with a Sub object
void foo(String s){ ... ; demonstrates a violation of
void bar(Objecto){ ...} :
static type safety

- 0 In Sub.bar is not a String

}

class Sub <: Super {
void foo(Objects) { ...}
void bar(String 0){ ... } = Contravariant parameters:

} An overriding method must
not require more specific
parameter types than the
methods it overrides

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Techn e Hochschule Zarich

Swiss Federal Institute of Technology Zurich

2.2 Types and Subtyping — Subtyping 26

Overriding: Result Types

class Super { = Calling m with a Sub object
:t?:rfgt;?(()){{ "'}} demonstrates a violation of
\ static type safety
- tin m is not a String

class Sub <: Super {

String foo() { ... } = Covariant results:

Object bar(){ ...} An overriding method must
} not have a more general

result type than the
methods It overrides

- QOut-parameters and
exceptions are results

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Techn fsche Hochschule Zarich

2.2 Types and Subtyping — Subtyping 27

Overriding: Fields

class Super { = Calling m with a Sub object
Object f; demonstrates a violation of
String g; :

\ static type safety

- s.fis not a String

class Sub <: Super { . :

String f - tiIs not a String

Object g;

} = Subtypes must not change

the types of fields
- Fields are bound statically

Peter Miller — Concepts of Object-Oriented Programming Eidgensssische Techn e Hochschule Zarich
st urich

2.2 Types and Subtyping — Subtyping 28

Overriding: Fields (cont'd)

» Regard field as pair of

class Super { getter and setter methods
T - Specializing a field type
void setF(T f) {this.f=f;} (S <: T) corresponds to
T getF() {return ; } specializing the argument of
i the setter (violates
class Sub <: Super { contravariant parameters)
S, - Generalizing a field type
void setF(S f) {this.f=f;} (T <: S) corresponds to
S getF() {return f; } generalizing the result of the
} getter (violates covariant
results)

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 29

Overriding: Immutable Fields

= |mmutable fields do not

class Super { have setters
final TT; | » Types of immutable fields
T getF() {return £: } can be specialized In
) subclasses (S <: T)
- Works only in the absence of
Inheritance (supertype

class Sub <: Super {

final S f; (supe |
void-setF(S} {this-f=F1} constructor initializes f with a
S getF() {return f; } T-value)!
; = Not permitted by

mainstream languages

Eidgendssische Technische Hoch
5% F I i f

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

30

Narrowing Interfaces in Eliffel

= Eiffel permits the “illegal”
narrowing of interfaces

- Changing the existence of
methods

- Overriding with covariant
parameter types

- Specializing field types
= Run-time exception
“catcall detected for

argument #1 'o' expected
STRING but got ANY*

class SUPER
feature

bar (0: ANY) do ... end
end

class SUB inherit SUPER
redefine bar end
feature

bar (0: STRING) do ... end
end

m (s: SUPER)
do

s.bar (create {ANY})
end

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

2.2 Types and Subtyping — Subtyping

Narrowing Interfaces in Eiffel (cont’'d)

= With attached (non-null) class SUPER
types, covariant overriding |feature
requires a detachable bar (0: ANY) do ... end

: end
(possibly-null) type
class SUB inherit SUPER

i redefine bar end
= Run-time system passes ¢
eature

null when an argument is bar (0: 2STRING)

not of the expected type do
If { 0: STRING } s then s.foo;
» Method must check for e'dse .- end
en

null-ness explicitly o

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

32

Covariant Arrays

class C{
void foo(Object[]a) {
if(a.length >0)
al[0] = new Object();
}
}

void client(C c) {
c.foo(new String[5]);

}

* In Java and C#, arrays are

covariant

- IfS<: Tthen S[]<: T[]

class Object[] {

public Object 0O;
public Object 1;

}

class String|]
<: Object[] {
public String O;
public String 1;

}

= Each array upc

run-time type c

ate requires a
neck

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
Swiss Federal Institu f

2.2 Types and Subtyping — Subtyping 33

Covariant Arrays (cont'd)

= Covariant arrays allow one to write methods that
work for all arrays such as

class Arrays {
public static void fill(Object[] a, Objectval) { ... }

}

= Here, the designers of Java and C# resolved the
trade-off between expressiveness and static safety
In favor of expressiveness

= Generics allow a solution that is expressive and
statically-safe (more later)

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

34

Shortcomings of Nominal Subtyping (1)

= Nominal subtyping can impede reuse
= Consider two library classes

class Resident {
String getName() { ... }
Data dateOfBirth() { ..

}

.}
Address getAddress() { ...

}

class Employee {
String getName()
Data dateOfBirth(
Int getSalary() { ..

}

{..
)

-}

{...}
-}

= Now we would like to store Resident and

Employee-objects in a collection of type Person[]
- Neither Resident nor Employee is a subtype of Person

Peter Muller — Concepts of Object-Oriented Programming Edgenssssche echnische Hoch

2.2 Types and Subtyping — Subtyping

35

Reuse: Adapter Pattern

* Implement Adapter (wrapper)
- Subtype of Person
- Delegate calls to adaptee (Resident or Employee)

interface Person {
String getName();
Data dateOfBirth();

}

class EmployeeAdapter implements Person {
private Employee adaptee;
String getName() { return adaptee.getName(); }
Data dateOfBirth() { return adaptee.dateOfBirth(); }

}

= Adapter requires boilerplate code
= Adapter causes memory and run-time overhead
= Works also if Person Is reused

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

36

Reuse: Generalization

= Most OO-languages support specialization of
superclasses (top-down development)

= Some research languages (e.g., Sather, Cecil) also
support generalization (bottom-up development)

Interface Person generalizes Resident, Employee {
String getName();
Data dateOfBirth();

}

= Supertype can be declared after subtype has been
Implemented

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

37

Reuse: Generalization (cont’'d)

= Generalization does
not match well with
Inheritance

= Subclass-to-be already
has a superclass

- Single inheritance:
exchanging the
superclass might affect
the subclass

- Multiple inheritance:
additional superclass
may cause conflicts

class Cell {
int value;
int getData() { return value; }

}

abstract class DataPoint
generalizes Cell {

abstract int getData();
boolean equals(Object o) {
... Il check type of o

return getData() ==
((DataPoint) o).getData();

}
}

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 38

Shortcomings of Nominal Subtyping (2)

= Nominal subtyping can limit generality
= Many method signatures are overly restrictive

void printData(Collection<String> ¢) {
If(c.isEmpty()) System.out.printin(“empty”);
else {
lterator<String> iter = c.iterator();
while(iter.hasNext()) System.out.printin(iter.next());

}
}

= printData uses only two methods of ¢, but requires
a type with 13 methods

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

Generality: Additional Supertypes

= Make type requirements interface Iterable<E> {
weaker by declaring Iterator<E> iterator();
interfaces for useful }
Supertypes interface Collection<E>

= But: many useful subsets extends lterable<E> {
of operations }” 13 methods

Read-only collection
Write-only collection (log file)
Convertible collection
Combinations of the above

= Overhead for declaring supertypes and subtyping

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of GTGTH

2.2 Types and Subtyping — Subtyping

40

Generality: Optional Methods

= Java documentation
marks some methods
as “optional”
- Implementation is

allowed to throw an
unchecked exception

- For Collection: all
mutating methods

= Static safety Is lost

Interface Collection<E>
extends Iterable<E> {

/* 13 methods, out of which 6 are
optional */

}

class AbstractCollection<E>
iImplements Collection<E> {

boolean add(E e) {
throw new

UnsupportedOperationException();

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

41

Structural Subtyping and Substitution

= Subtype objects can understand at least the
messages that supertype objects can understand

- Method calls
- Field accesses

= Structural subtypes have by definition wider
iInterfaces than their supertypes

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

42

Reuse: Structural Subtyping

= All types are "automatically”
subtypes of types with
smaller interfaces

- No extra code or declarations
required

= No support for inheritance
(like generalization)

= Person is a supertype of
Resident and Employee

interface Person {
String getName();
Data dateOfBirth();

}

class Resident {
String getName() { ... }
)

)

Data dateOfBirth() {
.}
class Employee {
String getName() { ... }
Data dateOfBirth() { ... }

)

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping 43

Generality: Structural Subtyping

void printData(Collection<String> ¢) {
// uses only c.isEmpty() and c.iterator()

}

= Static type checking
- Additional supertypes approach applies

- Additional supertypes must be declared, but not the
subtype relation

= Dynamic type checking
- Arguments to operations are not restricted

- Similar to optional methods approach (possible run-time
error)

Eidgendssische Technische Hoch
5% F I i f

Peter Muller — Concepts of Object-Oriented Programming

2.2 Types and Subtyping — Subtyping

44

Type Systems in OO-Languages

Static Dynamic
=
c Sweetspot Why shoul_d one dgclare all
= Maximum static safety the type information but
% then not check it statically?
& Overhead of declaring
g many types is inconvenient; Sweetspot:
S | Problems with semantics of Maximum flexibility
% subtypes (see later)

Peter Muller — Concepts of Object-Oriented Programming

2. Types and Subtyping

45

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 46

Types

= Definition:
A type Is a set of values sharing some properties.
A value v has type T if v is an element of T.

= Question: what are the “properties” shared by the
values of a type?
- So far we focused on syntax

= “Properties” should also include the behavior of the
object
- Expressed as interface specifications (contracts)
ETH

Peter Muller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich
Swiss Federal Institute of Technology Zurich

2.3 Types and Subtyping — Behavioral Subtyping

Method Behavior

= Preconditions have to
nold In the state

nefore the method class BoundedList {
pody is executed Object]] elems;
- int free; // next free slot
= Postconditions have
to hold in the state I/ requires free < elems.length
after the method body /I ensures elems[old(free)]==e
has terminated void add(Objecte) { ...}
= Old-expressions can }

be used to refer to
prestate values from
the postcondition

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 48

ODbject Invariants

*= Object invariants class BoundedList {
Object[] elems;

describe consistency MOSNII
: : : t : t t
criteria for objects e N TEERE
elems = null &&
_ 0 <= free &&
= |nvariants have to hold free <= elems.length */

In all states, inwhichan | =
: I/ requires free < elems.length
ObJeCt can be accessed // ensures elems| old(free)] ==e

by other objects void add(Objecte) {...}
}

Peter Muller — Concepts of Object-Oriented Programming Eidgendusische Technische Hochuchule Zirkch
wiss Federal Imstitute of Technology Zuric

2.3 Types and Subtyping — Behavioral Subtyping

49

Visible States

* |nvariants have to hold in
pre- and poststates of
methods executions but
may be violated
temporarily in between

= Pre- and poststates are
called “visible states”

class Redundant {
private int a, b;
/[invarianta == Db

public void set(int v) {
/[invariant of this holds
a=yV,
/I Invariant of this violated
b=v;
/I invariant of this holds

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

50

History Constraints

= History constraints
describe how objects
evolve over time

= History constraints
relate visible states

= Constraints must be
reflexive and transitive

class Person {
Int age;

// constraint old(age) <= age

Person(int age) {
this.age = age;

}

}

Person p = new Person(7);

assert 7 <= p.age,

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

51

Static vs. Dynamic Contract Checking

Static checking
Program verification

= Static safety: More errors
are found at compile time

yet mainstream

= |Large overhead: Static
contract checking requires
extensive contracts

= Examples: Spec#, JML

= Complexity: Static contract
checking is difficult and not

Dynamic checking
Run-time assertion checking

= |ncompleteness: Not all
properties can be checked
(efficiently) at run-time

= Efficient bug-finding:
Complements testing

= | ow overhead: Partial
contracts are useful

= Examples: Eiffel, IML

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
wiss F I i f

2.3 Types and Subtyping — Behavioral Subtyping

Contracts and Subtyping

class Number { class UndoNaturalNumber
extends Number {
int n; Int undo;
// invariant true // invariant 0 < n && 0 < undo
/| requires true /I requires 0 <p
/l ensures n == p /I ensures n == p && undo == old(n)
void set(int p) void set(int p)
{n=p;} {undo=n;n=p;}
} }

= Subtypes specialize the behavior of supertypes
= What are legal specializations?

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

53

Rules for Subtyping: Preconditions

class Super {
/[requires0<=n&& n<5
void foo(intn){
char[] tmp = new char[5];
tmp[n]="X;
}
}

void crash(Super s) {
s.foo(4);

}

x.crash(new Sub());

class Sub extends Super {
/[requires0<=n&& n<3
void foo(int n){
char[] tmp = new char[3];
tmp[n] =X
}
}

= Subtype objects must fulfill

contracts of supertypes

Overriding methods of
subtypes may have weaker
preconditions than
corresponding supertype
methods

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

54

Rules for Subtyping: Postconditions

class Super {
/] ensures O < result
int foo() {
return 1;

}
}

void crash(Super s) {
Inti=5/s.foo();

}

x.crash(new Sub());

class Sub extends Super {
I/l ensures 0 <= result
int foo() {
return O;

}

}

= Overriding methods of

subtypes may have
stronger postconditions
than corresponding
supertype methods

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 55

Rules for Subtyping: Invariants

c!ass Super { new Sub().crash();
int n;

/I Invariant 0 < n
Super() {n=5;}
int crash() {return5/n;}

}
class Sub extends Super { = Subtypes may have
/l'invariant 0 <=n ' '
Sub() { stronger Invariants
n=0;
}
}

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 56

Rules for Subtyping: History Constraints

class Super { Int crash(Super s) {

int n; Int cache = s.get() — 1;
s.foo();
return 5/ (cache — s.get());

/[constraintold(n) <=n
int get() { return n; }]

id f
}VO' oo() 1} x.crash(new Sub());

class Sub extends Super {

// constraint true = Subtypes may have
void foo(l)_{ stronger history
}” -n=4 constraints

}

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

Natural Numbers Revisited

class Number { class UndoNaturalNumber
extends Number {
int n; Int undo;
// invariant true // invariant 0 < n && 0 < undo
/ requires true /I requires 0 < p
/l ensures n == p /I ensures n == p && undo == old(n)
void set(int p) void set(int p)
{n=p;} {undo=n;n=p;}
} }

= UndoNaturalNumber does not specialize the
behavior of Number

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 58

Rules for Subtyping: Summary

= Subtype objects must fulfill contracts of supertypes,
but:
- Subtypes can have stronger invariants
- Subtypes can have stronger history constraints

- Overriding methods of subtypes can have
weaker preconditions
stronger postconditions
than corresponding supertype methods

= Concept is called Behavioral Subtyping
- Often implemented via specification inheritance

Eidgendssische Technische Hoch
5% F

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 59

Static Checking of Behavioral Subtyping

= For each override S.m of T.m check for all
parameters, heaps, and results

- Pre; ., => Preg ,, and Posts . => Post;

* For each subtype S <: T check for all heaps:
- Invg => Inv; and Consg => Cons;

= But: entallment is undecidable

class Super { class Sub extends Super {
/[requires p == p*p [l requiresp==0||p==
// ensures 0 < result // ensures result == 2
int foo(intp){...} } int foo(intp){...} }

- Forallp::p==p*p => (p==0|| p==1)
- For all p, result :: result == 2 => 0 < result

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 60

Run-Time Checking of Behav. Subtyping

= Checking entallment for all arguments, heaps, and
results is not possible at run time
- Forallp:p==p*p => (p==0]|p==1)
- For all p, result :: result == 2 => 0 < result

= The run-time checker needs to decide which pre-
and postconditions to check

Super s = new Sub();
r =s.foo(0);

» |dea: check those properties the implementation
may rely on

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

61

Run-Time Checking of Preconditions

= A method implementation in
class a C may rely on the
precondition specified in C

= Check precondition of the
dynamically-bound
Implementation

* Implement check inside
method implementation or
at the call site via a
dynamically-bound method

class Super {
Il requires p == p*p
// ensures 0 < result
int foo(intp){...} }

class Sub extends Super {
/[requiresp==0|| p ==
/[ensures result == 2
int foo(intp){...} }

Super s = new Sub();
[/ check0==0]| 0 ==
r =s.foo(0);

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

62

Run-Time Checking of Postconditions

* The caller of a method may
rely on the postconditions
declared in the dynamic type
of the receiver and all of its
supertypes

= Check postconditions
declared in all of these types

= \We must not assume that the
subtype precondition is

class Super {
Il requires p == p*p
// ensures 0 < result
int foo(intp){...}

}

class Sub extends Super {

/[requiresp==0|| p ==
// ensures result ==
int foo(intp){...}

}

Super s = new Sub();
//check0==0||0==1

_ _ r =s.foo(0);
stronger since behavioral /l check O <r
subtyping is not checked /I check r == 2

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 63

Specification Inheritance

= Behavioral subtyping can be [¢jass super{
enforced by inheriting int n;

specifications from supertypes | //invanant0<n
Super(){n=5;}

_ _ int crash() {
* Rule for invariants return 5/ n:
- The invariant of a type S is the }
conjunction of the invariant }
declared in S and the invariants
declared in the supertypes of S

class Sub extends Super {
/[Invariant 0 <=n

- Subtypes have stronger Sub(){n=0:}
invariants \/
_ _ Violates
- Analogous for history constraints inherited
L mvanant

Peter Muller — Concepts of Object-Oriented Programming

schule Zhric
f :Ilnnlog}- Zurich

2.3 Types and Subtyping — Behavioral Subtyping 64

Simple Inheritance of Method Contracts

» An overriding method must not | ¢ass Supery

> - /l requires0<=n&&n<5
declare additional preconditions| g foo(intn){...}

- The overriding and the }
overridden method have class Sub extends Super {
identical preconditions /l requires0 <=n && n <3

void foo(intn){...}

}

= The postcondition of an overriding method is the
conjunction of the postcondition declared for the
method and the postconditions declared for the
methods It overrides

- Overriding methods have stronger postconditions

Peter Muller — Concepts of Object-Oriented Programming Edgenssssche echnische Hoch

2.3 Types and Subtyping — Behavioral Subtyping

65

Precondition Inheritance: Shortcomings

= Simple rule does not work for multiple subtyping

Interface | {
// requires 0 < n
Int foo(int n);

}

Interface J {
// requiresn<0
int foo(int n);

}

class C implements I, J {
int foo(intn){...}

} What is the
resulting

_precondition?

|

= Simple rule does not allow precondition weakening

class Set{
// requires contains(x)
void remove(Object x)

[}

}

class MySet extends Set {
// requires true
void remove(Object x)

[}
}

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 66

Precondition Inheritance: Improved Rule

interface | {
// requires 0 <n
/[ensures result ==n
Int foo(int n);

}

Interface J {
// requiresn<0
// ensures result == —n
int foo(int n);

}

class C implements I, J{
int foo(intn){...}

}

= Clients view an object through
a static type

void clientl(|1 x){ | | void client2(J x) {
/[assert0 <5 /[assert-3<0
Inty = x.foo(5) inty = x.foo(-3)
/[assumey ==5 /[assumey == 3
} }

* |dea: method implementation
may assume only the
disjunction of all inherited and
declared preconditions

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
5% F I it f

2.3 Types and Subtyping — Behavioral Subtyping 67

Effective Preconditions

= | et Pre; denote the precondition of method m
declared inclass T

= The effective precondition PreEffs ., of a method m
In class S is the disjunction of the precondition
Preg ,,declared for the method and the
preconditions Pre; declared for the methods it
overrides
- PreEffs = Preg .|| Prer || Prec .|| ---

= Overriding methods have weaker eff. preconditions

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of GTGTH

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

68

Shortcomings Revisited

* Improved rule works for multiple subtyping

Interface | {
// requires 0 < n
Int foo(int n);

}

Interface J {
// requiresn<0
int foo(int n);

}

class C implements I, J {
int foo(intn){...}

} Effective
precondition:

L0<n|In<0

|

* Improved rule allows precondition weakening

class Set{
// requires contains(x)
void remove(Object x)

[}

class MySet extends Set {
// requires true
void remove(Object x)

{...} Effective

}

}

precondition:

_ contains(x) || true

|

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
5% F I i f

2.3 Types and Subtyping — Behavioral Subtyping 69

Postcondition Inheritance: Improved Rule

= Simple postcondition rule becomes too restrictive

class Set { class MySet extends Set {
I/ requires contains(x) I/ requires true
I/ ensures size() == old(size() — 1) void remove(Object x)
void remove(Object x) {...}
{...} }

}

* |dea: method implementation needs to satisfy each
postcondition for which the corresponding
precondition holds

- PostEffs ., = (Preg ,=> Post;) && (Pre; ,=> Post;) ...

Eidgendssische Technische Hoch
5% F I i f

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 70

Postcondition Inheritance: Improved Rule

class Set { class MySet extends Set {
// requires contains(x) // requires true
/[ensures !contains(x) // ensures true
void remove(Object x) void remove(Object x)
{...} {...}

} }

*= Rule from previous slide produces bogus result:
B Pc)SJ[EﬁcMySet.remove =
(contains(x) => Icontains(X)) && (true => true)
= Precondition must be evaluated In prestate:

B I:)C)StEﬁcMySet.remove =
(old(contains(x)) => !contains(x)) && (old(true) => true)

Eidgendssische Technische Hoch
5% F I i f

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 71

Effective Postconditions

= | et Post; ,denote the postcondition of method m
declared inclass T

= The effective postcondition PostEffs . of a method
m In class S is the conjunction of implications
(old(Pre;) == Post;) for all types T such that T
declares S.m or S.m overrides T.m

- PostEffs .= (old(Preg) => Postg) &&
(old(Pre;,) => Post;) &&
(old(Pre+ ,,) => Post) && ...
= QOverriding methods have stronger eff.
postconditions

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

Behavioral Structural Subtyping

= With dynamic type checking, callers

have no static knowledge of contracts [¢jass circle ¢

- Cannot establish precondition draw(){ ... }
- Have no postcondition to assume i

= Called method may check its contract |render(p){
(see above) }p-draw()?

- Precondition failures are analogous to

“message not understood”; caller cannot |class Cowboy {
be blamed draw() { ...}

- Postcondition failures may reveal error in |

method implementation (like an assert)

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 73

Behavioral Structural Subtyping (cont'd)

= With static structural type checking, callers may
state which signature and behavior they require

render({ void draw()
requires P

ensures Q} p){
p.draw();

}

= Contract can be checked statically or dynamically

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

Behavioral Structural Subtyping (cont'd)

class Circle { render({ void draw()
// requires P’ requires P
/I ensures Q’ ensures Q} p){
draw(){ ...} p.draw();

} }

= Behavioral subtyping needs to be checked when
the type system determines a subtype relation

= Static checking is possible, but in general not
automatic
= Dynamic checking is in general not possible

- Caller cannot be blamed for precondition violations
- Callee cannot be blamed for postcondition violations

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

2.3 Types and Subtyping — Behavioral Subtyping

75

Types as Contracts

= Types can be seen as a
special form of contract,
where static checking is
decidable

= QOperator type(x) yields
the type of the object
stored in X

- (The dynamic type of x)

class Types {
Person p;

String foo(Personq){ ...}

}

class Types {

P,
Il invariant type(p) <: Person

I/ require type(q) <: Person
I/ ensure type(result) <: String

foo(q){...}

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

76

Types as Contracts: Subtyping

class Super {
Sp;
/[invariant type(p) <: S
[l require type(q) <: T
// ensure type(result) <: U
Ufoo(Tq){...}

}

class Sub <: Super {
S'p;
/[invariant type(p) <: &’
// require type(q) <: T
// ensure type(result) <: U’
U foo(T'q){...}
}

= Stronger invariant:

- type(p) <:S =>type(p)<:S
e|elitse S < S{ Covariance }

= \WWeaker precondition

- type(q) <: T=>type(q)<: T
requires T <: T’

T Contravariance]

= Stronger postcondition:
- type(result) <: U’ =>

type(result) <: U
requires U’ <: U

Covariance]

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
Swiss Federal Institute of

2.3 Types and Subtyping — Behavioral Subtyping 77

Invariants over Inherited Fields

pa;‘r_agel “brgry? : = |nvariants over inherited
public class Super : :
orotected int f: field f can be violated by all
) methods that have access
package Client; tof

public class Sub = Static checking of such

~extendsSuperi | nvariants is not modular

/I iInvariant O <= f _ - _
} = Even without qualified field
sackage Library: accesses (x.f = e), one
class Friend { needs to re-check all

void foo(Supers) {s.f=-1;} | Inherited methods
}

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

78

Immutable Types

» Objects of immutable types
do not change their state
after construction

= Advantages

- No unexpected modifications
of shared objects

- No thread synchronization
necessary

- No Iinconsistent states

= Examples from Java
- String, Integer

class ImmutableCell {
Int value;

ImmutableCell(int value) {
this.value = value;

}

int get() {
return value;

}

/I no setter

}

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

79

Immutable and Mutable Types

class ImmutableCell {
int value;
ImmutableCell(int value) { ... }

intget(){...}
/I no setter

}

class Cell {
int value;
Cell(int value){ ... }
intget(){...}
void set(int value){ ...}

}

= \What should be the
subtype relation
between mutable and
iImmutable types?

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping

80

Immutable and Mutable Types (cont'd)

class ImmutableCell extends Cell {
ImmutableCell(int value) { ... }
void set(int value) {
// throw exception

}
}
class Cell {
int value;
Cell(int value){ ... }
intget(){...}
void set(int value){ ...}
}

* Proposal 1: Immutable
type should be subtype

= Not possible because
mutable type has wider
interface

Peter Muller — Concepts of Object-Oriented Programming

2.3 Types and Subtyping — Behavioral Subtyping 81

Immutable and Mutable Types (cont'd)

class ImmutableCell { = Proposal 2: Mutable
int value; .
type should be subtype

/[constraint old(value) == value
... /I no setter

} = Mutable type has wider

class Qell extends ImmutableCell { interface
Cell(int value){ ... } _ _
void set(int value) { ...} - Also complies with
) structural subtyping

= But: Mutable type does
not specialize behavior

Peter Miiller — Concepts of Object-Oriented Programming Eidgensssische Techn fsche Hochschule Zarich

2.3 Types and Subtyping — Behavioral Subtyping 82

Immutable and Mutable Types: Solutions

= Clean solution

- No subtype relation between
mutable and immutable types

- Only exception: Object, which
has no history constraint
= Java API contains immutable
types that are subtypes of
mutable types

- AbstractCollection and Iterator
are mutable

- All mutating methods are
optional

Immutable
types

Mutable
types

Peter Muller — Concepts of Object-Oriented Programming

