Concepts of Object-Oriented Programming ETH

AS 2 12 Eidgendssische Technische Hochschule Ziirich
0 Swiss Federal Institute of Technology Zurich

Fixercise 3
Subtyping and Behavioral Subtyping
October 12, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Assume the following class definitions in a nominally typed language:

class A {...}
class B extends A {...}

Consider now the following two classes:

class Super

{

B foo(B x) { return x; }

}

class Sub extends Super

{

A foo(A x) { return x; }

}

This subtyping is illegal, according to one of the rules presented in (Lecture 2, Slides 22-28).
Which one?

However, considering the substitution principle (Lecture 2, Slide 19), this subtyping is safe.
Why?

Task 2

In this question, we are in a nominal subtyping setting.

Some languages have a special type MyType that represents the dynamic type of object this.
For example, the following class

class C

{
MyType clone() { ... }

}

guarantees that for any subclass D of C, the result type of clone () will be D.

(a) Show a class that could be a valid subtype of C if we had used C instead of MyType in
the definition of C, but it is not a valid subtype with the definition above.
(b) Consider now the following code:

class Point

{

int x,vy;



boolean equals (MyType other) { return x==other.x && y==other.y; }
}

class ColorPoint extends Point

{
int color;
bool equals (MyType other)
{ return super.equals (other) && color==other.color; }

}

This definition demands that the dynamic type of the parameter of equals is a subtype
of the dynamic type of this.
Consider the following definitions that give static types to some variables:

Point p;
ColorPoint cpl, cp2;

and the following calls:

p.equals (cpl) // A
p.equals (cp2) // B
cpl.equals (p) // C
cp2.equals(cpl) // D
cpl.equals(cp2) // E

Which, if any, should be statically forbidden by the type system? Why?

Answer the same question, assuming that ColorPoint is final, i.e., we may not declare
new classes as its subtypes.

Assume now that the language includes the feature of exact types. An exact type is
written @C where C is a normal type. When we declare that an object o is of type QC,
then o is of type C, but does not belong to any of the other subtypes of C. Change the
definitions of our variables as follows

@Point p;

@ColorPoint cpl;
ColorPoint cp2;

and do not assume that ColorPoint is final. Which calls should be forbidden now?
Why?

Task 3

Let SortedArray be a Java class, which supports a private field A. The field A must be a
sorted (in increasing order) array of integers with no duplicates. The following is a method for
the insertion of a value into the array:

void insert (int x)

{

int[] B = new int[A.length+l];
int 1 = 0;
while (i<A.length && A[i]<x)
{
Bli]=A[1];
i++;
}
Bl[il=x;

while (i<A.length)

{

Bl[i+1]=A[i];
i++;

A=B;



Give an appropriate invariant for the class, as well as a precondition and a postcondition for the
method insert. You may use quantifiers (¥, 3) in your annotations. Note that the invariant is
automatically checked at the end of the method body and you do not need to explicitly include
it in the postcondition.

Hint: Consider what happens when the item to be inserted into the array already exists. Do
not change the implementation to avoid this situation.

Task 4

Consider the following declarations in Java:

interface List

{
int getSize();
}

interface Iterator

{
boolean done () ;
int getCurrent () ;
void next ();
void attach(List 1);

}

List represents sequences of integers and Iterator represents a specific traversal of a list.
An implementation of an iterator starts iterating over the elements of a list by first calling
method attach. The following example prints all the elements found during the iteration:

void foo(Iterator iter, List list)

{
iter.attach(list);
while(!iter.done())

{
print (iter.getCurrent ());
iter.next ();

}

Does foo typecheck in Java?

Suppose that we want to have different implementations of lists. For example a linked list and
an array are two different ways to implement the List interface. What problem would that
cause to the implementers of the iterators? What problem would that cause to the method
foo?



	
	
	
	

