
Concepts of Object-Oriented Programming
AS 2012

Exercise 11

Owner as Modi�er and Non-null Types

December 7, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Consider the typing rules for a �eld update e1.f = e2 (lecture 7, slide 40)

• Consider two particular cases: e2 is typed with the ownership modi�er any, or e2 is typed
with the ownership modi�er lost.

Suppose that e2 refers to an object (i.e., not null). Is there a di�erence between the
information that these two modi�ers convey about where this object is located in the
heap topology of ownership trees?

Can you �nd an example (by choosing the ownership modi�ers for e1 and f) when a �eld
assignment would be typeable in one of the two cases (of e2 being any or lost) but not
the other? Explain brie�y why this is the case.

• Suppose instead that e1 is typed with ownership modi�er τ(e1) and f has ownership
modi�er τ(f). We consider two di�erent cases: τ(e1) I τ(f) is the modi�er any, or τ(e

1) I τ(f) is the modi�er lost.

Is there a di�erence between the information that these two modi�ers convey about topo-
logical requirements associated with the location e1.f (i.e., what needs to be guaranteed
before an object can be validly assigned to this location)?

Can you �nd an example (by choosing the ownership modi�er for e2) when a �eld assign-
ment would be typeable in one of the two cases (of τ(e1) I τ(f) being any or lost) but
not the other? Explain brie�y why this is the case.

• Considering your answers above, explain why it makes sense that repIrep is lost and
not any. You may want to show an example.

Solution

• There is no di�erence between the information that these two modi�ers convey about
where this object is located in the heap topology; something referred to by either any or
lost could have any owner. There is no example where we could use lost and not any
as the type for e2 or vice versa; in fact, the only time either would be acceptable is if the
�eld f was typed with the any modi�er.

• In the case where τ(e1) I τ(f) is the modi�er any, this indicates that there are no re-
quirements that need to be satis�ed in order for such a �eld update to preserve topological
information. On the other hand, if τ(e1) I τ(f) is the modi�er lost, then this indicates
that there are requirements that need to be satis�ed, but that the type system is not able
to describe them precisely (for example, we assign to the rep �eld of a rep reference;



there is no ownership modi�er to describe the requirements here). For this reason, such
�eld updates are never allowed.

If e2 is any reference with an appropriate class type (it doesn't make a di�erence what the
ownership modi�er is), then the �eld update e1.f = e2 will be allowed when τ(e1) I τ(f)

is the modi�er any, and disallowed if τ(e1) I τ(f) is the modi�er lost.

• As mentioned above, when we try to assign to the rep �eld of a rep reference there is
no ownership modi�er to describe the topological requirements that the assigned value
needs to satisfy. repIrep is lost for this reason; this indicates that the type system
cannot express when such a �eld update would be safe. any would indicate that such a
�eld update is always safe, which would allow us to break the guarantees that a rep �eld
is supposed to make.

Task 2

Consider the following class:

public class Cell
{
int x_;

private Cell(int x) {x_=x;}

public XXX Cell clone()
{

return new XXX Cell(x_);
}

... // other methods and constructors
}

where an ownership annotation is missing and has been replaced by XXX. Consider also the
following client

public class Client
{
rep Cell a_;
peer Cell b_;

void foo()
{

a_ = b_.clone();
}

... // other methods and constructors
}

(a) Show that there is no ownership annotation XXX that can make the assignment in foo

valid according to ownership types. Describe what problem this causes.

(b) Assume that we want to extend the ownership type system in such a way that we can
postpone the speci�cation of topological requirements for a reference until we know them.
For example, the clone method above would return such a postponed reference which the
client can place topologically where it wishes. Suggest notation for postponed references
and for assigning to a postponed reference a speci�c topological requirement. Fix the
code above using your new syntax.

(c) Consider the situation where there are two di�erent postponed references to the same
object. What can go wrong? Show an example.



(d) Let o be a postponed reference of class C and f is a rep or peer �eld of C. Assume that
we allow assignments to o.f . What can go wrong? Show an example.

(e) Let C be a class. Let there be a constructor of C that takes a rep or peer reference as
a parameter. If we allow postponed references to be generated by this contructor, what
can go wrong? Show an example.

(f) List a set of restrictions that will avoid the unsoundnesses pointed out in questions (c)-(e),
while still permitting your �x in (b). It is OK to make your rules very strict. You do not
have to prove soundness.

Solution

(a) The reference b is peer. There is no annotation XXX such that peerIXXX is rep.

In this case, we cannot clone a peer object into a representation object (the ownership
system does not allow us to do so) even though this operation is safe from the point of
view of preserving topological properties.

In general, the problem is that when an object is created it must be assigned an owner
right away. If the desired owner is not known, then there is no way to postpone this
decision for later.

(b) Let us call these references unique (this is the name used in the literature for this kind
of references). We also use type-casting notation to assign to a unique reference another
topological requirement. Now the our code becomes:

public class Cell
{
int x_;

private Cell(int x) {x_=x;}

public unique Cell clone()
{
return new unique Cell(x_);

}

... // other methods and constructors
}

public class Client
{
rep Cell a_;
peer Cell b_;

void foo()
{

a_ = (rep) b_.clone();
}

... // other methods and constructors
}

(c) If we have two unique references to the same object, they can be assigned two di�erent
topological requirements. This breaks the ownership topology. For example, imagine the
following constructor for Client:

class Client
{

...



Client(unique Cell a, unique Cell b)
{

a_ = (rep) a;
b_ = (peer) b;

}
}

After the execution of the constructor, if a and b happen to refer to the same object,
we can treat the same object as part of the representation through �eld a_ or as a peer
object through �eld b_. The object has two owners.

(d) Consider the following more complicated example:

class Node
{

public peer Node next;
...

}
class Client
{

...

rep Node a_;
peer Node b_;

void bar(unique Node a)
{

a.next = a_;
b_ = (peer) a;

}
}

The �rst assignment of bar implicitly makes the owner of a equal to this. The second
makes the owner of a equal to the owner of this. This breaks the topological invariant.

(e) The foo method in the following code:

class C
{

peer C next;
rep C child;

C(peer C c)
{

next = c;
}

void foo()
{

child = (rep) new unique C(this);
}

}

assigns a peer object to a rep �eld, breaking the topological invariant.

(f) The following is a (very strict) list of restrictions that avoid the above unsoundnesses:

� No unique annotations on �elds, variables, method arguments, and constructor
arguments.

� No unique references may be assigned to �elds and variables, passed as method
arguments, and passed as constructor arguments.



� No �eld accesses or method calls on unique references.

� The new unique command can be used only with constructors that do not get
references as arguments.

We may relax these rules, but with great care.

Task 3

(The following question is taken from a previous exam) Consider the following declarations:

class A
{

rep B first;
rep B second;

}
class B
{

any A obj;
peer B sibling;

}

Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modi�er
system? Assume that none of the objects involved are null. Brie�y explain each of your
answers.

Program 1 Program 2 Program 3 Program 4

rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

Solution

• Program 1 is accepted in both systems.

• Program 2 is not accepted in the topological system (and neither in the owner-as-modi�er
system). It attempts the assignment of an any reference to a peer reference. peer is not
a super-type of any.

• Program 3 is accepted in the topological system (it assigns any to any). However, it
assigns to the �eld of a lost reference, which means that it is not accepted in the owner-
as-modi�er system.

• Program 4 is not accepted in the topological system (and neither in the owner-as-modi�er
system), because it assigns to a lost location.

Task 4

(From a previous exam)

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modi�ers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants
are T?[]?, T?[]!, T![]?, T![]! (the �rst modi�er applies to the type of objects stored in the
array, while the second modi�er concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees



of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!

Solution

• T?[]! <: T?[]? - Safe

• T![]! <: T![]? - Safe

• T![]? <: T?[]? - Unsafe

Object![]? x = new Object![1]?;
Object?[]? y = x;
if(y!=null) y[0]=null;
if(x!=null) x[0].toString();

• T![]! <: T?[]! - Unsafe

Object![]! x = new Object![1]!;
Object?[]! y = x;
y[0]=null;
x[0].toString();

In both the last two cases, we need to check at runtime if a value stored in an array with dynamic
non-null type for the elements stored in the array is not the null value. Alternatively, we can
check at runtime if a value read from an array with dynamic non-null type is not the null

value.

Task 5

Consider the following abstract class, representing a node of a singly-linked list:

public abstract class ListNode<X> {
public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext();

}

Consider now the following implementation using a simple (acyclic) list:

public class AcyclicListNode<X> extends ListNode<X> {
protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext() { return next; }

}

In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item �eld.



• Annotate the class AcyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from
the Construction Types system (free or unc annotations).

Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {
protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public CyclicListNode getNext() { return next; }

}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next �eld points to itself, but whose item �eld is null. All non-empty lists will
be represented using only nodes whose item �elds are non-null.

• Annotate the class CyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from
the Construction Types system (free or unc annotations).

• Now consider how to annotate the method signatures in ListNode<X> so that both
implementations can be accommodated. Your solution should be compatible with the
usual co/contra-variance rules for subclass method signatures.

Solution

(Side note: the interaction of generic types and non-null types, e.g., the interpretation of a
type X! if X can be instantiated with types that themselves include non-nullity expectations, is
beyond the scope of the course, but in case you are worried, you can assume that the explicitly
visible annotation ! overrides any annotation in the instantiation for X, i.e., X! can still be
safely assumed to always store a non-null value)

• The following class de�nitions express the design expectations:

public class AcyclicListNode<X> extends ListNode<X> {
protected X! item;
protected AcyclicListNode<X>? next;

public AcyclicListNode<X> (X! item) {
this.item = item;

}

public void setItem(X! x) { item = x; }
public X! getItem() { return item; }
public AcyclicListNode<X>? getNext() { return next; }

}

•
public class CyclicListNode<X> extends ListNode<X> {

protected X? item;
protected CyclicListNode<X>! next;

public CyclicListNode<X> (X? item) {



this.item = item;
this.next = this; // default - maybe changed later

}

public void setItem(X? x) { item = x; }
public X? getItem() { return item; }
public CyclicListNode! getNext() { return next; }

}

Note that we may decide to pass a non-null reference to setItem.

• We have to pick suitable method signatures so that the implementing methods have
valid overriding signatures in both classes above. This typically means strengthening the
argument types and weakening the return types:

public abstract class ListNode<X> {
public abstract void setItem(X! x);
public abstract X? getItem();
public abstract ListNode<X>? getNext();

}


