
Concepts of Object-Oriented Programming
AS 2012

Exercise 3

Subtyping and Behavioral Subtyping

October 12, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Assume the following class de�nitions in a nominally typed language:

class A {...}
class B extends A {...}

Consider now the following two classes:

class Super
{
B foo(B x) { return x; }

}

class Sub extends Super
{

A foo(A x) { return x; }
}

This subtyping is illegal, according to one of the rules presented in (Lecture 2, Slides 22-28).
Which one?

However, considering the substitution principle (Lecture 2, Slide 19), this subtyping is safe.
Why?

Solution

The interface of Sub breaks the overriding rule of Slide 26 (co-variant results).

An object of Sub has a wider interface (it applies to arguments of more types). When it is
applied to an object of type B, it happens to return a B, which is exactly the behavior expected
by an object of Super.

Task 2

In this question, we are in a nominal subtyping setting.

Some languages have a special type MyType that represents the dynamic type of object this.
For example, the following class

class C
{

MyType clone() { ... }
}

guarantees that for any subclass D of C, the result type of clone() will be D.



(a) Show a class that could be a valid subtype of C if we had used C instead of MyType in the
de�nition of C, but it is not a valid subtype with the de�nition above.

(b) Consider now the following code:

class Point
{

int x,y;
boolean equals(MyType other) { return x==other.x && y==other.y; }

}

class ColorPoint extends Point
{

int color;
bool equals(MyType other)
{ return super.equals(other) && color==other.color; }

}

This de�nition demands that the dynamic type of the parameter of equals is a subtype
of the dynamic type of this.
Consider the following de�nitions that give static types to some variables:

Point p;
ColorPoint cp1, cp2;

and the following calls:

p.equals(cp1) // A
p.equals(cp2) // B
cp1.equals(p) // C
cp2.equals(cp1) // D
cp1.equals(cp2) // E

Assume a sound, statically-checked type system. Which of the calls above must be for-
bidden and which may be allowed? Why?

(c) Answer the same question, assuming that ColorPoint is �nal, i.e., we may not declare
new classes as its subtypes.

(d) Assume now that the language includes the feature of exact types. An exact type is
written @C where C is a normal type. When we declare that an object o is of type @C,
then o is of type C, but does not belong to any of the other subtypes of C. Change the
de�nitions of our variables as follows

@Point p;
@ColorPoint cp1;
ColorPoint cp2;

and do not assume that ColorPoint is �nal. Which calls should be forbidden now?
Why?

Solution

(a) class D extends C
{

C clone() {...}
}

(b) All calls are potentially unsafe and should be forbidden. The reason is that the dynamic
type of both the receiver and the parameter are unknown and are not guaranteed to
match the restriction that the dynamic type of the parameter should be a subtype of the
dynamic type of the receiver.

(c) In this case, we know that the dynamic types of both cp1 and cp2 are ColorPoint. This
guarantees that the calls D and E are ok. However, the �rst three calls remain unsafe.
The �rst two calls are unsafe because the dynamic type of p may be of a subtype of Point
that has no relation to ColorPoint. Call C is not safe, because p may be of dynamic
type Point.



(d) All is known about the dynamic types of cp1 and p. The calls A, B, and E are safe. D
is not, because cp2 may belong to a proper subtype of ColorPoint. C is not, because p
is of dynamic type Point.

Task 3

Let SortedArray be a Java class, which supports a private �eld A. The �eld A must be a
sorted (in increasing order) array of integers with no duplicates. The following is a method for
the insertion of a value into the array:

void insert (int x)
{

int[] B = new int[A.length+1];
int i = 0;
while (i<A.length && A[i]<x)
{

B[i]=A[i];
i++;

}
B[i]=x;
while (i<A.length)
{

B[i+1]=A[i];
i++;

}
A=B;

}

Give an appropriate invariant for the class, as well as a precondition and a postcondition for the
method insert. You may use quanti�ers (∀, ∃) in your annotations. Note that the invariant is
automatically checked at the end of the method body and you do not need to explicitly include
it in the postcondition.

Hint: Consider what happens when the item to be inserted into the array already exists. Do
not change the implementation to avoid this situation.

Solution

class sortedArray{
int[] A;
invariant A 6= null
invariant ∀ i:int | 0 ≤ i ∧ i < A.length-1 ⇒ A[i] < A[i+1]

requires ∀ i:int | 0 ≤ i ∧ i < A.length ⇒ x 6= A[i]
ensures A.length = old(A.length) + 1
ensures
∃ i0:int |

(0 ≤ i0 ∧ i0 < A.length)
∧ A[i0] = x
∧ ( ∀ i:int | (0 ≤ i ∧ i < i0 ⇒ A[i] = old(A[i]))
∧ ( ∀ i:int | (i0 < i ∧ i < A.length ⇒ A[i] = old(A[i-1]))

void insert (int x){...}
}

Another approach to express the speci�cation of insert is as follows: �rst, we introduce an
auxiliary function contains:

contains (L, x) = ∃ j:int | ( 0 ≤ j ∧ j<L.length ∧ L[j]=x )

Using contains we can express the speci�cations of insert as follows:

requires ¬ contains(A, x)
ensures ∀ i:int | contains (A, i) ⇔ ( i=x ∨ contains (old(A), i) )



Task 4

Consider the following declarations in Java:

interface List
{

int getSize();
}

interface Iterator
{

boolean done();
int getCurrent();
void next();
void attach(List l);

}

List represents sequences of integers and Iterator represents a speci�c traversal of a list. An
implementation of an iterator starts iterating over the elements of a list by �rst calling method
attach. The following example prints all the elements found during the iteration:

void foo(Iterator iter, List list)
{

iter.attach(list);
while(!iter.done())
{

print(iter.getCurrent());
iter.next();

}
}

Does foo typecheck in Java?

Suppose that we want to have di�erent implementations of lists. For example a linked list and
an array are two di�erent ways to implement the List interface. What problem would that
cause to the implementers of the iterators? What problem would that cause to the method
foo?

Solution

The code typechecks.

According to the given speci�cation, an iterator must be able to work with all possible imple-
mentations of lists. This is impossible to achieve, given that the interface List is so small (the
iterator has to know the implementation of each possible list).

A solution for the iterator implementer is to have the attach method throw an exception when
provided with an incompatible list. That would cause foo to throw an exception, which the
type system could not prevent.


	
	
	
	

