
Concepts of Object-Oriented Programming
AS 2012

Exercise 6

Multiple Inheritance, Multiple Dispatch and Traits

November 2, 2012

Task 1

Consider an interface Matrix to represent integer valued matrices, which has two implementations-
GeneralMatrix that represents matrices as 2 dimensional arrays, and SparseMatrix that
represents only non-zero elements with their position. The idea is that matrices with few non-
zero elements can implement operations more e�ciently. Consider now the add and multiply

methods. These operations should be implemented di�erently depending on the (runtime) types
of both the receiver and the argument the methods are applied to - they are binary methods.
In this question assume that matrices are immutable.

1. Sketch how to implement the add method (the details of how to perform the actual
addition are not essential), in both GeneraMatrix and SparseMatrix based on each of
the following approaches to binary methods:

(a) Explicit type tests to check the runtime type of the argument

(b) Double invocation (Visitor pattern)

(c) Multiple dispatch

Detail how implementing multiply di�ers from implementing add.

2. Which approach seems most elegant/appropriate for this example?

3. If we were to add a third class, ZeroMatrix, which represents a matrix where all values
are zero, how much would we have to change in each approach? Does any of them excel
or su�er in particular?

4. We are given the following Matrix interface:

interface Matrix{
int get(int i, int j);
Matrix add(Matrix m);
Matrix multiply(Matrix m);

}

For reasons of compatibility with existing code, we are not allowed to change the existing
de�nition of the Matrix interface. For each of the three approaches above, consider how
feasible it is to adapt to this constraint.

Task 2

Now assume that we want to reduce code duplication by pooling all the common implementa-
tion of matrices into an abstract Matrix class instead of an interface. This class would be a
superclass for GeneralMatrix and SparseMatrix



1. Sketch how to implement the add method in the Matrix class. Does this require any
other methods or changes in the other classes?

2. In each of the three approaches detailed above, can we now omit some code? What would
be the consequences?

3. How would you add the ZeroMatrix now? Is it easier or harder?

Task 3

Consider the following C++ code:

class Person
{

bool likesDiamonds;

public:
Person (bool l) { likesDiamonds = l; }

};

class Programmer : virtual public Person
{

public:
Programmer () : Person (false) {}
// diamonds are a programmer’s worst enemy

};

• It is expected that !likesDiamonds is an invariant in class Programmer. Use virtual
inheritance to break this invariant, without altering the above code.

• Assuming we have n constructors for class Person, where constructor i has the postcon-
dition Qi (where inputs are existentially quanti�ed), what can we assume at the entry to
the body of the Programmer constructor?

Task 4

Consider the following Scala code:

class Cell
{

private var x:int = 0
def get() = { x }
def set(i:int) = { x=i }

}

trait Doubling extends Cell
{

override def set(i:int) = { super.set(2*i) }
}

trait Incrementing extends Cell
{

override def set(i:int) = { super.set(i+1) }
}

• What is the di�erence between the following objects?

val a = new Cell
val b = new Cell with Incrementing
val c = new Cell with Incrementing with Doubling
val d = new Cell with Doubling with Incrementing



• We use the following code to implement a cell that stores the argument of the set method
multiplied by four:

val e = new Cell with Doubling with Doubling

Why doesn't it work? What does it do? How can we make it work?

• Find a modularity problem in the above, or a similar, situation. Hint: a client that gets
given a class C does not necessarily know if a trait T has been mixed in that class.

Task 5

Write three classes

• A normal queue class Queue

• A subclass of Queue that also stores (and allows clients to retrieve) the current sum of
all items in the queue, using the enqueue and dequeue methods

• A subclass of Queue that also stores (and allows clients to retrieve) the current product
of all items in the queue, using the enqueue and dequeue methods

We now want a class that supports both functionalities.

• Suppose that we want to use multiple inheritance to do that. We want to override the
enqueue and dequeue methods of the new class, such that the new methods call the
enqueue and dequeue methods of both the old classes. Are there any problems with
this approach?

• How do we attack the problem using traits? Does this �x the above-mentioned problems?
Are there any new problems with this approach?

Task 6

Consider the following declarations in Scala:

class C
trait T extends C
trait U extends C
class D extends C

Find all the types that can be created with or without traits, as well as the subtype relations
between them.


	
	
	
	
	
	

