
Concepts of Object-Oriented Programming
AS 2012

Exercise 4

Behavioral Subtyping and Inheritance

October 19, 2012

Task 1

1. Consider a Java class SortedArrayEven, which is like the SortedArray class of last
week, but with the extra restriction that all the numbers in A must be even.
Is SortedArrayEven a behavioral subtype of SortedArray?

2. If not, then change the precondition of SortedArray.insert to make
SortedArrayEven a behavioral subtype of SortedArray, assuming that there is no
problem with the rest of the methods. Do you see any problems with this solution?

3. Assume that, apart from the constructor, there are no mutating methods, i.e., meth-
ods that change the state, like insert. Can SortedArrayEven now be a subtype of
SortedArray?

4. Consider a class NoDupArray of unsorted arrays with no duplicates that has an insert

method. Adapt the speci�cations of SortedArray for that class. Could NoDupArray be
a behavioral supertype of SortedArray? Why?

Solution

1. The two classes have no behavioural subtyping relation. The invariant of
SortedArrayEven is stronger than that of SortedArray, because it includes an extra
conjunct:

∀ i:int | ((0 ≤ i ∧ i < A.length-1) ⇒ A[i] % 2 == 0)

However, using insert with an odd parameter now breaks the invariant.

2. If we want to use SortedArrayEven as a behavioural subtype of SortedArray, then we
can strengthen the precondition of SortedArray.insert, by conjoining
x % 2 == 0 to it. This however is not what SortedArray is meant to do.

3. The problem disappears if we forbid mutating methods: there is now no way for a method
to break the stronger invariant.

4. The speci�cation for NoDupArray is as follows:

class NoDupArray{
int[] A;
/// invariant A 6= null
/// invariant ∀ i,j:int | ((0 ≤ i ∧ i<j ∧ j<A.length) ⇒ A[i] 6=

A[j])

/// requires ∀ i:int | (0 ≤ i ∧ i < A.length) ⇒ x 6= A[i]
/// ensures A.length = old(A.length) + 1;
/// ensures ∀ i:int | (contains(A, i) ⇔ (i=x ∨ contains(old(A)

, i)))

void insert (int x){...}
}

This class is a behavioral supertype of SortedArray. The reason that the mutator
method insert does not pose a problem here is that its contract does not break the
invariant of the subclass.

Task 2

Let C be a class with an integer �eld x and a method m. Let m have

• Precondition x>0

• Postcondition x<1

Suppose now that there is a class D with an integer �eld x and a method m. In which of the
following cases does the speci�cation of m in D permit D to be a behavioral subtype of C?

a) Pre x>0 Post x<-1

b) Pre x>0 Post x<2

c) Pre x>-1 Post x<1

d) Pre x>2 Post x<1

e) Pre x>-4 Post x<-old(x)*old(x)

f) Pre true Post false

Solution

Presuper ⇒ Presub Postsub ⇒ Postsuper Behavioral subtyping
a yes yes yes
b yes no no
c yes yes yes
d no yes no
e yes yes yes
f yes yes yes

Task 3

Consider this example of behavioral subtyping:

class Super
{

/// requires p == p*p
/// ensures p < result
int foo(int p) { ... }

};

class Sub extends Super
{

/// requires p == 0 || p == 1
/// ensures result == 2
int foo(int p) { ... }

}

Suppose that we try to prove this behavioral subtyping.

• Is it possible to prove it using the rules on slide 59? If yes, how? If not, explain why.

• Show a proof using the improved rules for pre- and postcondition inheritance. Is there
any problem this time?

Solution

• According to the rule Postsub ⇒ Postsuper we would have to prove that result == 2

⇒ p < result which is not possible since we cannot assume anything about p. In
particular we cannot assume the precondition.

• This time behavioral subtyping for the e�ective pre and post conditions is given by con-
struction, we have to show the the given post condition implies the e�ective post condition,
and the other way around for preconditions:

The preconditions are equivalent p == p*p ⇔ (p == 0 ∨ p == 1)

According to the e�ective postcondition rule
(old(PreSuper.foo) ⇒ PostSuper.foo) ∧ (old(PreSub.foo) ⇒ PostSub.foo)

we have to prove
(old(p == p*p)⇒ p < result) ∧ (old(p == 0 ∨ p == 1) ⇒ result == 2)

Assuming that result == 2, the second implication is trivial. The �rst one is also easy
to show:
p == p*p ⇔ (p == 0 ∨ p == 1) therefore p < 2. Since result == 2 we have p <

result.

Task 4

Suppose that we have a database, for which we want an �automated key generation� feature.
This means that each time the user inserts a new tuple, a unique key is automatically generated
for the tuple by the system. An obvious way to do that is to write a counter, which increments
by 1 the value that it returns each time it is called. The method that generates a new key is
called generate.

1. Write a Java class IncCounter and an accompanying speci�cation for such a counter.

2. Annotate the following Java class with speci�cations and show that it is not a behavioural
subtype of IncCounter.

class DecCounter
{

int key;
DecCounter () { key = 0; }
int generate () { return key--; }

}

3. (Harder) Write an abstract class GenerateUniqueKey together with a speci�cation, such
that both IncCounter and DecCounter are behavioural subtypes of
GenerateUniqueKey. In the speci�cation, you may use helper methods and �elds.

Solution

1. class IncCounter
{

int key;
IncCounter () { key = 0; }

/// ensures key=old(key)+1 ∧ result=old(key)
int generate () { return key++; }

}

2. The postcondition for generate is key=old(key)-1 ∧ result=old(key) and it is
easy to see that it does not re�ne the postcondition of IncCounter.generate.

3. The abstract parent class can be declared using a helper pure method
boolean used(int). Informally, the helper method returns true if x has been used as
a key before. Furthermore, the correctness of the class relies on the property that once a
number is used, it never becomes unused again. This can be expressed with a two-state
history constraint.

The de�nitions of the classes follow:

abstract class GenerateUniqueKey
{

/// constraint ∀ x:int | (old(used(x)) ⇒ used(x))
abstract boolean used(int);

/// ensures ¬old(used(result)) ∧ used(result)
abstract int generate ();

}

class IncCounter // ... and similarly for DecCounter
{

int key;
IncCounter () { key = 0; }

boolean used (int x)
{ return x < key; }

/// ensures key == old(key)+1 ∧ result == old(key)
int generate () { return key++; }

}

Task 5

Consider the following classes:

class Sequence {
abstract int size()
abstract int getAt(int index)
int median() {...}

}

class Array {
int size() {...}
int getAt(int index) {...}
int median() {...}
void insert(int value) {...} // Inserts ’value’ at the end of the

array
void swap(int x, int y) {...} // Swaps elements ’x’ and ’y’ of the

array
}

class SortedArray {
int size() {...}
int getAt(int index) {...}
int median() {...}
void insert(int value) {...} // Inserts ’value’ into the array such

that the resulting array is sorted
}

What should the subtype, inheritance and subclass relationships be between these three classes?

Solution

Array can be made a subclass of Sequence - it is both a subtype and could reuse the imple-
mentation of the median method.

SortedArray is a subtype of Sequence and although it could reuse the implementation of the
median method, it is possible to provide a much more e�cient version.
Thus SortedArray does not need to inherit from Sequence.

Array has a wider interface than SortedArray but it is not a behavioral subtype of
SortedArray since the postcondition of the Array.insert method does not imply that of
SortedArray.insert.

SortedArray could reuse most of the functionality of Array and so it could inherit from it.

	
	
	
	
	

