
Concepts of Object-Oriented Programming
AS 2012

Exercise 3

Subtyping and Behavioral Subtyping

October 12, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Assume the following class de�nitions in a nominally typed language:

class A {...}
class B extends A {...}

Consider now the following two classes:

class Super
{
B foo(B x) { return x; }

}

class Sub extends Super
{

A foo(A x) { return x; }
}

This subtyping is illegal, according to one of the rules presented in (Lecture 2, Slides 22-28).
Which one?

However, considering the substitution principle (Lecture 2, Slide 19), this subtyping is safe.
Why?

Task 2

In this question, we are in a nominal subtyping setting.

Some languages have a special type MyType that represents the dynamic type of object this.
For example, the following class

class C
{

MyType clone() { ... }
}

guarantees that for any subclass D of C, the result type of clone() will be D.

(a) Show a class that could be a valid subtype of C if we had used C instead of MyType in
the de�nition of C, but it is not a valid subtype with the de�nition above.

(b) Consider now the following code:

class Point
{

int x,y;



boolean equals(MyType other) { return x==other.x && y==other.y; }
}

class ColorPoint extends Point
{

int color;
bool equals(MyType other)
{ return super.equals(other) && color==other.color; }

}

This de�nition demands that the dynamic type of the parameter of equals is a subtype
of the dynamic type of this.
Consider the following de�nitions that give static types to some variables:

Point p;
ColorPoint cp1, cp2;

and the following calls:

p.equals(cp1) // A
p.equals(cp2) // B
cp1.equals(p) // C
cp2.equals(cp1) // D
cp1.equals(cp2) // E

Which, if any, should be statically forbidden by the type system? Why?
(c) Answer the same question, assuming that ColorPoint is �nal, i.e., we may not declare

new classes as its subtypes.
(d) Assume now that the language includes the feature of exact types. An exact type is

written @C where C is a normal type. When we declare that an object o is of type @C,
then o is of type C, but does not belong to any of the other subtypes of C. Change the
de�nitions of our variables as follows

@Point p;
@ColorPoint cp1;
ColorPoint cp2;

and do not assume that ColorPoint is �nal. Which calls should be forbidden now?
Why?

Task 3

Let SortedArray be a Java class, which supports a private �eld A. The �eld A must be a
sorted (in increasing order) array of integers with no duplicates. The following is a method for
the insertion of a value into the array:

void insert (int x)
{

int[] B = new int[A.length+1];
int i = 0;
while (i<A.length && A[i]<x)
{

B[i]=A[i];
i++;

}
B[i]=x;
while (i<A.length)
{

B[i+1]=A[i];
i++;

}
A=B;

}



Give an appropriate invariant for the class, as well as a precondition and a postcondition for the
method insert. You may use quanti�ers (∀,∃) in your annotations. Note that the invariant is
automatically checked at the end of the method body and you do not need to explicitly include
it in the postcondition.

Hint: Consider what happens when the item to be inserted into the array already exists. Do
not change the implementation to avoid this situation.

Task 4

Consider the following declarations in Java:

interface List
{

int getSize();
}

interface Iterator
{

boolean done();
int getCurrent();
void next();
void attach(List l);

}

List represents sequences of integers and Iterator represents a speci�c traversal of a list.
An implementation of an iterator starts iterating over the elements of a list by �rst calling
method attach. The following example prints all the elements found during the iteration:

void foo(Iterator iter, List list)
{

iter.attach(list);
while(!iter.done())
{

print(iter.getCurrent());
iter.next();

}
}

Does foo typecheck in Java?

Suppose that we want to have di�erent implementations of lists. For example a linked list and
an array are two di�erent ways to implement the List interface. What problem would that
cause to the implementers of the iterators? What problem would that cause to the method
foo?


	
	
	
	

