ETH

AS 2 12 Eidgendssische Technische Hochschule Ziirich
0 Swiss Federal Institute of Technology Zurich

Concepts of Object-Oriented Programming

Exercise 12
Initialization
December 14, 2012

Task 1

Consider a Java class Vector, representing a 2 dimensional vector:

public class Vector ({
public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y Vi

}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:
public double vectorlLength (Vector c) {

double x = c.x.doubleValue () ;

double y = c.y.doubleValue () ;
return Math.sqgrt(x * x + y *x y);

e This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

e Add a pre-condition for the method, specifying what is required to be safe.

e Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

e Suppose that you are also allowed to upgrade the class vector to include reasonable
non-null type annotations. How does this affect your previous answer? Do these changes
to the class seem reasonable?

Solution

e If ¢ were null, the field dereferences c.x and c.y would generate exceptions. Fur-
thermore, if c¢.x were null then method call c.x.doublevalue () would generate an
exception. Similarly if c.y were null. There is no reasonable answer for the method to
return if it encounters null values - any attempt to deal with these cases would have to re-
turn some arbitrary value, since the question the method is meant to answer is undefined
in these cases.

® requires: c#null A c.x#null A c.y#null

e public double vectorLength (Vector! c) would make the following pre-condition
sufficient: requires: c.x#null A c.y#null



e By changing the types of the fields x and y to be Number! we could guarantee that no
pre-condition would be required. This seems a reasonable change, since a null Vector
doesn’t seem to be meaningful anyway.

Task 2

Suppose that we add a subclass Vector3D which has a third Number field z and a new method
volume ():

public class Vector3D extends Vector ({
public Number! z;

double volume () {
return x.doubleValue () ry.doubleValue () *z.doubleValue();
}
}

Which of the following method definitions compile (assuming that the data-flow analysis for
non-null types doesn’t consider the semantics of instanceof)? Which would always run safely
(if compiled without typechecking)? Explain your answers.

double getVolumel (Vector? c) {
if (c instanceof Vector3D) {
return c.volume () ;
} else { return 0.0; }

}

double getVolume?2 (Vector? c) {
if (c instanceof Vector3D) {
return ((!) c).volume();

} else { return 0.0; }

}

double getVolume3 (Vector? c) {
if (c instanceof Vector3D) {
return ((Vector3D!) c¢).volume();
} else { return 0.0; }

}

double getVolumed (Vector? c) {
if (c¢c!=null &¢& (c instanceof Vector3D)) {
return c.volume () ;
} else { return 0.0; }

}

double getVolume5 (Vector? c) {
if (c¢c!=null && (c instanceof Vector3D)) {
return ((!) c).volume();
} else { return 0.0; }

}

double getVolumeb6 (Vector? c) {
if (c!=null && (c instanceof Vector3D)) {
return ((Vector3D!) c¢).volume();
} else { return 0.0; }

}

Solution

e getVolumel won’t compile for two reasons - Java will complain that c is of (class) type
Vector for which method volume is not defined, and a non-null type checker would
complain that it cannot determine that c is non-null when the call is made. However,



the program would run safely - the if-condition not only guarantees that the method is
defined for the call, but implicitly that the expression c is non-null when the call is made
(because Java defined that (null instanceof T) always evaluates to false.

e getVolume2 won't compile for the first reason above - Java will complain. The code
would still be safe.

e getVolume3 will compile - the cast satisfies all the necessary constraints to be checked.
The code will still be safe (in particular, the cast always succeeds).

e getVolumed and getVolume5 won’t compile for the first reason above - Java will com-
plain. The code would be safe though. Note that the non-null type checker won’t complain
in either case, because of the new if-condition.

e getVolume6 will compile and run safely.

Task 3

Consider the following three classes (declared in the same package):

public class Person {
Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) ({
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (Dog toOwn) {
this.dog = toOwn;
}

e Annotate the code with non-null and Construction Type annotations where they are
necessary. Explain why the code now type-checks according to Construction Types.

e Could we provide constructors for classes Dog and Bone with no parameters?

Now, suppose a (possibly mad) scientist wants to extend the implementations of these classes
with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can add the
following method to class Bone to make a copy of an existing bone, and assign it to another
Dog:
public Bone clone (Dog toOwn) {

return new Bone (toOwn) ;

}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the



following extra constructor and method to class Dog:

Dog (Dog toClone, Person newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone (this);

}

public Dog clone (Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person (Person toClone) {

Dog? d = toClone.dog;

if (d!=null) {

this.dog = new Dog(d, this);

}

}

public Person clone() {
return new Person (this);

}

e Annotate this extra code with appropriate non-null and Construction Types annotations.
You should guarantee that each of the clone methods (which belong to the public inter-
face) return a committed reference. You should ensure that your answers guarantee that
all of the code type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the
constructors are called in more than one situation.

Solution

Here are the annotations for the first version of the code:

public class Person {
Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(unc Person ! owner, unc String ! breed) {
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (unc Dog ! toOwn) {
this.dog = toOwn;
}



Note that we choose the parameter to the construction of Bone to be unclassified - since it is
public then it probably should be callable with a committed parameter from client code, but it
is also called inside the body of the constructor of Dog, with a free parameter. Note that the
returned reference from these two kinds of call will be different - committed in the former case,
and free in the latter. For the Dog constructor, we can also choose to make the parameters
unclassified. Although in this case we do not directly need to permit “free” arguments being
passed to the constructor, we may as well be as permissive as possible. In general, if it is
possible to type a constructor body using “unclassified” argument types then this should be the
preferred choice of signature as it is the most permissive. Note that the same does not apply
for method signatures, since any overriding method definitions are then also be forced to cope
with unclassified arguments, which may be much less convenient than using committed ones.

It isn’t reasonable to have constructors for Dog and Bone without parameters, since we need
some way of initialising their non-null fields. Although it would be possible to do this by calling
e.g., the Person constructor from the Dog constructor, this doesn’t seem very intuitive (nor
would it be easy to establish the intuitive invariants of the code - that a Dog’s owner refers
back to the same Dog, etc.). In particular, if all of the constructors need to take no parameters,
they would need to call each other infinitely. This is because, we can’t set up a cyclic object
structure without some kind of mutual initialization (in this case we can only build an infinite
object structure to satisfy the non-null requirements of all the objects).

Here is the fully annotated code for the cloning case:

public class Person {
Dog? dog; // people might have a dog

public Person() { }

Person (Person! toClone) {
Dog d? = toClone.dog;
if(d !'= null) {
this.dog = new Dog(d, this);
}
}

public Person! clone() {
return new Person (this);
}
}
public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog (unc Person ! owner, unc String ! breed) {
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;

}

Dog(Dog! toClone, unc Person! newOwner) {

this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone (this);

}

public Dog! clone (Person! toOwn) {
return new Dog (this, toOwn);
}



}

public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (unc Dog ! toOwn) {
this.dog = toOwn;
}

public Bone! clone (Dog! toOwn) {
return new Bone (toOwn) ;

}
}

Note that all parameters to the new constructors and methods need to have non-null type
annotations, since they are each either dereferenced, used to initialize non-null-declared fields
or passed on as further parameters to calls that require non-null parameters.

The toClone parameter of the new constructor of Person needs to be a committed parameter,
otherwise when we dereference toClone.dog we will obtain a an unclassified value, which will
not be suitable to use as a parameter for the new Dog constructor.

The toClone parameter of the new constructor of Dog needs to be a committed parameter,
since when a field is read from it, we need to obtain a result with a non-null type. However, the
newOwner parameter of the new constructor of Dog needs to be an unclassified parameter. This
is because this parameter is sometimes supplied from a free reference (in the new constructor
of Person), and sometimes from a committed reference (in the clone method of Dog).

For similar reasons, the toown parameter of the constructor of Bone needs to be an unclassi-
fied parameter (as was suggested for the previous part of the question). This is because this
parameter is sometimes supplied from a free reference (in the new constructor of Dog), and
sometimes from a committed reference (in the clone method of Bone).

This is an important usage of the unclassified types in the Construction Types system - they
are useful for constructors which get called sometimes with free and sometimes with committed
parameters. Recall that the type of a new expression is determined from the static types of the
actual parameters at a particular call, and not from the formal parameters in the constructor
signature. For example, in the clone method of the Bone class, the new expression new Bone (
toOwn) is given a committed type because the actual parameter toOwn has a static type which
is committed, despite the fact that the constructor argument type is declared as unclassified
in its signature. This means that the same constructor can produce committed/free results
depending on the particular arguments provided in each call (new expression). In particular,
the return type of the clone method can be a committed reference, as required in the question
(the same applies to all of the clone methods in the code, since they each call constructors with
only committed arguments).

Task 4

In the Construction Types system, when we read from the field of an expression of committed
type, we obtain a reference of committed type, i.e., if e; has a committed type then e;.f
has a committed type. Similarly, if e; has an unclassified type then e;.f has an unclassified
type. However, if e; has a free type then e;.f does not have a free type, but instead has an
unclassified type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

Solution

Because anything (in terms of Construction Type annotation) can be stored in the fields of a
free reference, when we read something back out of such a field we cannot make any guarantees



about what is stored there. In particular, it is possible to store a committed reference in the
field of a free reference, and if we could then read it back as free, this would be unsound. For
example, the following code would type-check:

public class C {

cl £, g;
public C(C! x) { // x 1s committed, this is free
this.f = x; // assigning free to committed - ok
this.f.f = this; // this.f free(?), so this would be ok
this.g = x.f.g; // what happens here?
}
}
Task 5

In the Construction Types system, a field assignment e;.f = ey is permitted if the usual
subtyping holds, and if, in addition either e; has a free type, or ey has a committed type.

In particular (in terms of Construction Types), it is ok for an expression with committed type
to be assigned to the field of an expression with committed type, and it is also ok for an
expression of free type to be assigned to the field of an expression of free type. However, it is
not permitted for an expression of unclassified type to be assigned to the field of an expression
of unclassified type. Explain why not, giving an example of what would go wrong if we were
to allow this.

Solution

Because unclassified references are supertypes of the corresponding free and committed refer-
ences, then if we were to allow this, we might “disguise” the assignment of a free reference to
the fields of a committed reference. For example, the following code would then type-check,
which is not sound:

public class C {

c! £, g;

public C(C! x) { // x 1s committed, this is free
unc C! y = x; // cast committed to unclassified - ok
unc C! z = this; // cast free to unclassified - ok
v.f = z; // assign unc to field of unc (?)

this.g = x.f.g; // what happens here?
this.f = this;



