Concepts of Object-Oriented Programming ETH

AS 2 12 Eidgendssische Technische Hochschule Ziirich
0 Swiss Federal Institute of Technology Zurich

Exercise 13
Static Initialization and Invariants
December 21, 2012

Task 1

Consider the following Java classes:

public class A {
public static final int value = B.value + 1;

}

public class B {
public static final int value

C.value + 1;

}

public class C {
public static final int value

A.value + 1;
}

Will these classes compile? If not, how could we modify them so that they do?

What would the output of running the following program be?

public class Program {
public static void main (Strin

gll]l args) {
System.out.println (A.value);
) ;
) ;

System.out.println (B.value
System.out.println (C.value

}

In what ways can you change the output of the program by reordering the statements?

Task 2

A technique to represent a complete binary tree T using an array A, is:

e store the root in A[0]

e for any node N stored in A[i], store the children of N to A[2i+1] and A[2i+2].
The size of the array should be equal to 2! — 1, where h is the height of the tree.

Consider the following invariant on a complete binary tree of integers: any non-leaf node stores
the sum of the integers stored in its two children. Let us call this invariant U (for “undented”;
cf. “dented invariants” on Lecture 9, Slide 11).

The following class uses the above-mentioned representation.

final class CompleteBinaryTree

{

private int[] theTree;

public CompleteBinaryTree (int h)
{
theTree = new int[Math.pow(2,h+t1)-1];
for (int i=0; i<theTree.length; i++)
theTree[i]=0;
}

/// requires 0 < i < theTree.length
public int getNode(int i) { return theTreeli]; }

/// requires theTree.length/2 < i < theTree.length
// this means i1 must be a leaf

public void addToLeaf (int i, int s)

{ addToNode (i, s); }

private void addToNode (int i, int s)
{

theTree[i] +=s;

if (i>0) addToNode ((i-1)/2, s);

(a) Write formally the invariant U.

temporarily broken. Describe how this is done.

such that U holds when the method terminates.

one boolean field.

(f) Explain why the public interface of the class preserves U.

Task 3

Consider the following example

class Redundant {
int a, b;
Logger 1;

///invariant a ==

public setlLogger (Logger 1) { this.l = 1; }

public void set(int v) {
a = v;
l.log("Inside set");
b = v;

}

public int div(int v) {

}

return v / (a — b + 1);

The method addToNode does not preserve U. Instead, its purpose is to fix U, when it is

Describe informally the precondition under which the method addt oNode has to be called,

Dent U accordingly so that the precondition above is formally expressible. Hint: Denting
usually uses a single boolean field (see Lecture 9, Slide 11). Here, you need more than

Add assignments to the new boolean fields in the bodies of all the methods and write
specifications for all the methods. All methods must preserve the dented invariant.

class Logger {
private Redundant r;

public Logger (Redundant r) { this.r = r; }

public void log(String m) {
System.out.println(m + r.div(5));

}

e Write client code that causes div to throw an exception

e Suppose that we change the implementation of set as follows:

public void set(int v) {
a = vy
b = v;

Can we stil causes div to throw an exception to be thrown by writing code outside the
two classes?

