
Concepts of Object-Oriented Programming
AS 2012

Exercise 5

Inheritance

October 26, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Consider two classes Stack and Queue, implementing the standard LIFO/FIFO data struc-
tures, both of which have methods with the following signatures:

void push(Object o);
Object pop();
bool isEmpty();
int size();
void reverse();

• Despite having identical signatures, these two classes cannot be behavioral subtypes of
one another. Why not?

• When implementing these two classes, is there any possibility of code reuse? If so, give
details.

• Describe at least one way of reusing the code in one class by the other - which programming
language features are needed for this to work?

Task 2

Assume we are working with a Java-like language in which method dispatch is dynamic for
the type of the receiver and static for the type of the arguments. Consider a class Matrix to
implement matrices with integer values. A simple implementation would be to store a (private)
2-dimensional array of integers, and provide methods such as:

void set(int i, int j, int value);
int get(int i, int j);
Matrix add(Matrix m);
Matrix multiply(Matrix m);

A sparse matrix is a matrix which contains mainly zeros. When such matrices are large it can
be that an alternative representation of the matrix, which only stores the locations and values
of non-zero entries, can provide much more e�cient implementations for common expensive
operations such as addition and multiplication with other sparse matrices. If a sparse matrix is
to be added or multiplied with a standard matrix, it also is possible to de�ne an implementation
which is more e�cient that the standard one (but not as good as for two sparse matrices).

Consider writing a new class SparseMatrix to implement sparse matrices, with the similar
methods available to those for Matrix.

• Is it likely that there will be scope for reusing code from the class Matrix?



• Does it seem that SparseMatrix can (and should?) be a behavioural subtype of Matrix?

• What would be the implications of making SparseMatrix a subclass of Matrix?

• What alternative ways are there of expressing the relationship between the classes?

Task 3

Consider the following C++ classes, implementing part of an expression tree:

class Expression {
public:

virtual int evaluate() = 0;
}

class BinaryExpression : Expression {
public:

virtual int evaluate() override {
int l = evalLeft();
int r = evalRight();
return op(l,r);

}

virtual int op(int l, int r) = 0;

private:
Expression* left,*right;

protected:
virtual int evalLeft() {

return left->evaluate();
}
virtual int evalRight() {

return right->evaluate();
}

}

class MultiplicationExpression : BinaryExpression {
protected:

virtual int op(int l, int r) override {
return r*l;

}
}

The BinaryExpression class is an abstract class for binary nodes in an expression tree (such as
addition, multiplication etc) and the MultiplicationExpression class represents an integer
multiplication expression.

• In an attempt to optimize expression tree evaluation, the following variant for
MultiplicationExpression was written:

class MultiplicationExpression : BinaryExpression {
protected:

virtual int evalLeft() override {
int r = BinaryExpression::evalLeft();
leftIsNonZero = r!=0;
return r;

}

virtual int evalRight() override {
if (leftIsNonZero)

return BinaryExpression::evalRight();
else



return 0;
}
virtual int op(int l, int r) override {

return r*l;
}

private:
bool leftIsNonZero = false;

}

This version tries to avoid evaluating the right hand side expression tree if the left hand
side had evaluated to 0. Would this version work as the above version? What does this
version assume about the BinaryExpression class that the former does not? What
change in the BinaryExpression class would break the optimized version but not the
original version?

• How would you modify the optimized version of MultiplicationExpression to �x this
problem, while still avoiding the unnecessary evaluation of subtrees when possible?

Task 4

Consider the following C++ classes, representing 2 and 3 dimensional vectors:

class Vector2D{
public:

Vector2D(double _x, double _y)
: x(_x), y(_y), lengthCache(-1)
{}

double length() {
if (lengthCache<0)

lengthCache = calculateLength();
return lengthCache;

}

private:
double x,y;
double lengthCache;

protected:
virtual double calculateLength() {

return sqrt(sqr(x)+sqr(y));
}

}

class Vector3D : public Vector2D{
public:

Vector3D(double _x, double _y, double _z)
: Vector2D(_x,_y), z(_z)
{}

private:
double z;

protected:
virtual double calculateLength() override {

return sqrt(sqr(Vector2D::calculateLength())+sqr(z));
}

}

• Assuming that the sqrt function is signi�cantly more expensive than other �oating point
operations, can you suggest a way to make the implementation more e�cient without



causing code duplication and without exposing private �elds? If you have to modify the
superclass - is that a reasonable modi�cation if we had no knowledge of subclasses?

• Normalizing a vector means scaling it uniformly so that it points in the same direction
but its length is 1 (dividing each coordinate by the length) - implement a normalize()
method for both classes, avoiding code duplication

• Would your solution work if the implementation of the Vector2D class were to be changed
so as not to cache the vector length but recalculated it every time? Is that signi�cant?

Task 5

From a previous exam

Consider the following Java classes:

public class B {
public void foo(B obj) {

System.out.print("B1 ");
}
public void foo(C obj) {

System.out.print("B2 ");
}

}

class C extends B {
public void foo(B obj) {

System.out.print("C1 ");
}
public void foo(C obj) {

System.out.print("C2 ");
}
public static void main(String[] args) {

B c = new C();
B b = new B();
b.foo(c);
c.foo(b);
c.foo(c);

}
}

What is the output of the execution of method main in class C? Explain your answer.


	
	
	
	
	

