
Concepts of Object-Oriented Programming
AS 2012

Exercise 11

Owner as Modi�er and Non-null Types

December 7, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Consider the typing rules for a �eld update e1.f = e2 (lecture 7, slide 40)

• Consider two particular cases: e2 is typed with the ownership modi�er any, or e2 is typed
with the ownership modi�er lost.

Suppose that e2 refers to an object (i.e., not null). Is there a di�erence between the
information that these two modi�ers convey about where this object is located in the
heap topology of ownership trees?

Can you �nd an example (by choosing the ownership modi�ers for e1 and f) when a �eld
assignment would be typeable in one of the two cases (of e2 being any or lost) but not
the other? Explain brie�y why this is the case.

• Suppose instead that e1 is typed with ownership modi�er τ(e1) and f has ownership
modi�er τ(f). We consider two di�erent cases: τ(e1) I τ(f) is the modi�er any, or τ(e

1) I τ(f) is the modi�er lost.

Is there a di�erence between the information that these two modi�ers convey about topo-
logical requirements associated with the location e1.f (i.e., what needs to be guaranteed
before an object can be validly assigned to this location)?

Can you �nd an example (by choosing the ownership modi�er for e2) when a �eld assign-
ment would be typeable in one of the two cases (of τ(e1) I τ(f) being any or lost) but
not the other? Explain brie�y why this is the case.

• Considering your answers above, explain why it makes sense that repIrep is lost and
not any. You may want to show an example.

Task 2

Consider the following class:

public class Cell
{
int x_;

private Cell(int x) {x_=x;}

public XXX Cell clone()
{

return new XXX Cell(x_);



}

... // other methods and constructors
}

where an ownership annotation is missing and has been replaced by XXX. Consider also the
following client

public class Client
{
rep Cell a_;
peer Cell b_;

void foo()
{

a_ = b_.clone();
}

... // other methods and constructors
}

(a) Show that there is no ownership annotation XXX that can make the assignment in foo

valid according to ownership types. Describe what problem this causes.

(b) Assume that we want to extend the ownership type system in such a way that we can
postpone the speci�cation of topological requirements for a reference until we know them.
For example, the clone method above would return such a postponed reference which the
client can place topologically where it wishes. Suggest notation for postponed references
and for assigning to a postponed reference a speci�c topological requirement. Fix the
code above using your new syntax.

(c) Consider the situation where there are two di�erent postponed references to the same
object. What can go wrong? Show an example.

(d) Let o be a postponed reference of class C and f is a rep or peer �eld of C. Assume that
we allow assignments to o.f . What can go wrong? Show an example.

(e) Let C be a class. Let there be a constructor of C that takes a rep or peer reference as
a parameter. If we allow postponed references to be generated by this contructor, what
can go wrong? Show an example.

(f) List a set of restrictions that will avoid the unsoundnesses pointed out in questions (c)-(e),
while still permitting your �x in (b). It is OK to make your rules very strict. You do not
have to prove soundness.

Task 3

(The following question is taken from a previous exam) Consider the following declarations:

class A
{

rep B first;
rep B second;

}
class B
{

any A obj;
peer B sibling;

}



Which of the following programs are allowed in the topological ownership system? For any
program that is accepted in the topological system, is it also accepted in the owner-as-modi�er
system? Assume that none of the objects involved are null. Brie�y explain each of your
answers.

Program 1 Program 2 Program 3 Program 4

rep B b;
...
b = b.sibling;

peer A a; rep B b;
...
a = b.obj;

any A a;
...
a.first.obj = a;

peer A a;
...
a.first = a.first;

Task 4

(From a previous exam)

This question is about extending the non-null type system to handle arrays (ignoring initializa-
tion). Array types can have two type modi�ers, declaring independently the nullity expectations
for the array itself and the array elements. For any array type T[] the corresponding variants
are T?[]?, T?[]!, T![]?, T![]! (the �rst modi�er applies to the type of objects stored in the
array, while the second modi�er concerns the reference to the array object itself).

Assuming that we want to guarantee a statically sound approach to subtyping (that is, we
want to enforce safety at compile time, without using runtime checks), explain whether or not
the following subtype relations are safe. For each relation you consider unsafe, provide a code
snippet illustrating that allowing such a subtype relationship would break the safety guarantees
of the type system. For these unsafe cases, explain also what runtime checks could be made to
restore safety.

• T?[]! <: T?[]?

• T![]! <: T![]?

• T![]? <: T?[]?

• T![]! <: T?[]!

Task 5

Consider the following abstract class, representing a node of a singly-linked list:

public abstract class ListNode<X> {
public abstract void setItem(X x);
public abstract X getItem();
public abstract ListNode<X> getNext();

}

Consider now the following implementation using a simple (acyclic) list:

public class AcyclicListNode<X> extends ListNode<X> {
protected X item;
protected AcyclicListNode<X> next;

public AcyclicListNode<X> (X item) {
this.item = item;
this.next = null;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public AcyclicListNode<X> getNext() { return next; }

}



In this implementation, suppose that an empty list is represented simply by a null reference.
Suppose that a further design intention of this implementation is that each node is guaranteed
to store an X object in its item �eld.

• Annotate the class AcyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from
the Construction Types system (free or unc annotations).

Now consider an alternative implementation using a cyclic list:

public class CyclicListNode<X> extends ListNode<X> {
protected X item;
protected CyclicListNode<X> next;

public CyclicListNode<X> (X item) {
this.item = item;
this.next = this;

}

public void setItem(X x) { item = x; }
public X getItem() { return item; }
public CyclicListNode getNext() { return next; }

}

In this implementation, the design intention is that every node will always have a next object
in the list (sometimes itself). In this design, we choose to represent an empty list by a single
node whose next �eld points to itself, but whose item �eld is null. All non-empty lists will
be represented using only nodes whose item �elds are non-null.

• Annotate the class CyclicListNode<X> with appropriate non-null type annotations to
express these design intentions as far as possible. You do not need any annotations from
the Construction Types system (free or unc annotations).

• Now consider how to annotate the method signatures in ListNode<X> so that both
implementations can be accommodated. Your solution should be compatible with the
usual co/contra-variance rules for subclass method signatures.


