Concepts of Object-Oriented Programming

ETH

Eidgendssische Technische Hochschule Ziirich

AS 2012 Swiss Federal Institute of Technology Zurich

Fixercise 8
Parametric polymorphism and information hiding
November 16, 2012

Task 1

Consider the following Java method:

String concatenate (List<?> list) {
String result="";
String separator="";
if (list instanceof List<String>) {

}

result="String:";
separator=" ";

else if(list instanceof List<Integer>) {

}

result="Integers:";
separator="+";

for (Object el : list)

result=result+separator+el.toString();

return result;

This program is rejected by Java compiler. Why?

Using the advice given by the Java compiler, rewrite and compile the program. What are
the results of executing the method passing each of the following:

— A list of strings containing only one element "word"?
— A list of Integers containing only one element Integer(1)?
— A list of Objects containing only one element (initialized by new Object())?

Is this behaviour consistent with what you would expect from the initial program? If not,
how can you fix it?

What would happen if you tried to implement the different cases using method overloading
instead of just one method. Why is this the case?

What happens if you compile and execute the initial program in C#? Why?

Solution

We obtain two errors:

Cannot perform instanceof check against parameterized type
List<Integer>. Use instead its raw form List since generic
type information will be erased at runtime.

Cannot perform instanceof check against parameterized type

List<String>. Use instead its raw form List since generic
type information will be erased at runtime.

This happens because of type erasure in Java.

First of all, we follow the output of the compiler, and so we rewrite the method to:

String concatenate (List<?> list) {
String result="";
String separator="";
if(list instanceof List) {
result="String:";
separator=" ";

}

else if (list instanceof List) {
result="Integers:";
separator="+";

}

for (Object el : 1list)
result=result+separator+el.toString();

return result;

The Java compiler will compile this program without any warning. The output of the
method is obviously:

String: word
String: 1
String: java.lang.Object@3e25a5

No, in the original program we expected:
String: word
Integers:+1

java.lang.Object@3e25a5

We can fix it in the following way:

String concatenate (List<?> list) {

String result="";
String separator="";
if(list.size() >= 1)

if(list.get (0) instanceof String) {
result="Strings:";
separator="";

}

else if (list.get (0) instanceof Integer) {
result="Integers:";
separator="+";
}
for (Object el : 1list)
result=result+separator+el.toString();
return result;

But this requires to have at least one element in the list. Moreover, there is no guarantee
that if the first element is, for example, a string, that this is not a list of Objects.

If we introduce separate methods which differ only be the generic types of their arguments,
we get compile-time errors such as:

Method concatenate (List<? extends Object>) has the same
erasure concatenate (List<E>) as another method in type C

This restriction is imposed to ensure that when choosing which of the overloaded method
definitions to call, we always have a “best fit”. Java class files do however include generic
versions of the method signatures in the class (to enable separate compilation and type-
checking of generic code). For this reason, it might seem surprising that we cannot
disambiguate between these different overloaded methods, since at compile-time the type
information is all available. However, Java also supports raw types - versions of generic
classes in which no type parameter is provided (e.g., List for a List<x> class). These
are supported for backwards compatibility with pre-generics Java code. For this reason,
we need to consider the possibility that a client calling our method provides an argument
of raw type List. In this case, we would not be able to choose between our different
method overloads.

e The program is compiled and we obtain the expected results (“String: word”, “Inte-
gers:+17, “..7), since in C# there is no type erasure and the information about generics
is preserved at runtime.

Task 2

Consider the following Java method:

public void add (Object value, List<?> list) {
list.add (value);
}

The Java compiler rejects this program, with the following message:

The method add(capture#l-of ?) in the type List<capture#l-of ?> is not
applicable for the arguments (Object)

e Explain why we obtain such an error.

e Fix the program by using a generic type for the parameter of method add and constraining
the wildcard appropriately.
e We can use the following alternative signature for adad:

public <V> void add(V value, List<V> list)

Is this solution more restricted than the one obtained using the wildcard?

e Consider the following methods:
public <V> void addAll (List<V> v, List<? super V> 1) {

for(v el : v) l.add(el);

}

public <V> void addAlll (List<V> v, List<v> 1) {
for(V el : v) l.add(el);

}

Method addal1l is less restrictive than adda111. Provide an example to prove this claim.

Solution

e We do not have any relation between the wildcard of List, and the types of the values
that we are going to store.

® public <V> void add(V value, List<? super V> list) {

list.add(value);
}

We have to use a lower bound constraint because we want the argument of 1ist.add to
be a supertype of v, otherwise we cannot pass it as a parameter.

e public <V> void add(V value, List< V> list) {

list.add(value) ;
}

This method has exactly the same constraints of the ones obtained using a wildcard. In
fact, the type of value can be a subtype of the generic type of 1ist, since it is a method
argument. In practice, this means that the generic type of 1ist is supertype of the type
of value. For instance, consider the following program.

List<Object> list =...
add("x", list);

This program is accepted because strings are subtype of objects, thus v=0b ject is inferred
by the type checker.

List<String> list = new ArrayList();

List<Object> 1list2 = new ArraylList();

addAll (list, 1list2);
addAlll (1list, 1list2);

The call to adda11 is accepted by the compiler, while the one to adda111 is rejected, since
it requires that the parametric type of List is exactly String. This happens because of
non-invariance on type parameters in Java, so V has to be string, but the generic type
of 1ist2 is Object.

Task 3

A C-++ template class can inherit from its template argument:

template <typename T>
class SomeClass : public T { ... }

Using this technique and given the following class definition

class Cell {

public:
virtual void setVal (int x) { x_ = x; }
virtual int value () { return x_; }
private:

}

int x_{};

write two template classes that can be used as “mixins” for class cell

e Doubling - doubles the value stored in the cell.

e Counting - counts the number of times the value of the cell was read.

Do not use multiple inheritance. It should be possible to use the classes like this:

auto ¢ = new Doubling<Counting<Cell>>(); // instantiation
c—>setVal (5);

c->value(); // returns 10

c->numRead (); // returns 1

e Describe how the instantiation above will look like.

e How does this concept of mixins in C++ differ from Scala traits?

e Can the code above be implemented using Java generics? If yes, show how. If no, explain

why not.
e What if we used C+# instead of Java, does anything change?

Solution

Here is the C++ implementation of the mixin classes:

template <typename T>
class Doubling : public T {
public:
virtual void setVal (int x) override {
T::setVal(x * 2);
}
}

template <typename T>
class Counting : public T {
public:
virtual int value () override {
++numRead_;
return T::value();
}
int numRead () { return numRead_; }
private:
int numRead_{};

}

e When the mix-ins are instantiated the following two classes will be created:

class Countinggey : public Cell {
public:
virtual int value () override {

++numRead_;
return Cell::value();
}
int numRead() { return numRead_; }
private:
int numRead_{};

}

class Doublingcountinge.; @ Public Countinggep A
public:
virtual void setVal (int x) override {
Countinggey: :setVal (x x 2);
}

e While this concept is similar to Scala traits there are some notable differences. In Scala
it is possible to mix any number of traits in a class and use this in any location of the

code that requires the same class and a subset of the traits:

var x = new X with A with B with C with D

var x1: (X) = x // OK

var x2: (X with A) = x // OK

var x3: (X with B) = x // OK

var x4: (X with A with D with C) = x // OK

Using the proposed solution in C++ however is more restrictive, as there is no way to

refer to the class x with arbitrary mix-ins:

auto x = new D<C<B<KAKX>>>>();
Xx x1 = x; // OK

A<X>*x x2 = x; // OK
B<X>% x3 = x; // Does not compile
C<D<A<X>>>% x4 = x; // Does not compile

This is particularly important for traits that introduce new methods like Counting.
numRead () since any client code that uses this new behavior would have to know exactly
how the trait was mixed-in.

Another problem of the C++ solution is object construction. If the base class does not
have a default constructor then the mix-ins should know to call the correct constructor
and provide appropriate parameters.

A further difference to Scala is that in the C++ solution it is possible to include the same
“trait” more than once:
auto x = new Doubling<Doubling<X>>();

x->setVal (5);
x->value(); // returns 20

An advantage of the C++ solution is that we do not need to declare the base class that
the mix-ins extend. Thus it is possible to use them with different base classes as long
they have matching virtual methods.

No, it is not possible to implement this with generics. The core reason for this is erasure.
In Java each class must have a known supertype. However if we could translate the code
above to Java and apply erasure, it will turn out that the supertype of Doubling and
Counting is Object which is clearly not what we want.

The code cannot be implemented using C# generics either - the standard explicitly forbids
a generic class to inherit directly from a type argument. Although the type argument
would be known at run-time and it is theoretically possible to allow inheriting from it,
that would have complicated and slowed down the handling of generics by the C# virtual
machine. The reason is that unlike C+-+, in C# only a single class would be generated
for all possible type arguments and a lot of dynamic checks and method call adjustments
would be required to make this work. Thus in this case the designers of C# chose safety
and efficiency at the expense of expressiveness.

Task 4

Consider the following Scala code:

class A[-T]
class B[... T] {

}

def m(in : A[T]) : int = {...}

We want to annotate the generic type of B. If we use a covariant or a contravariant annotation
for the generic type parameter to B, what would that annotation be? Why? Justify your answer
with an example.

Solution

The only annotation that may be used here is 4 (covariant).

If we use contravariance, then the following code may break:

def foo(x:B[String])

{

// due to contravariance x may be of type B[AnyRef]

var a = new A[String]

x.m(a) // crash!
// x expects A[AnyRef] and gets A[String]
// due to contravariance of A, this is
// type incorrect

Task 5

Java allows an object of a class C to access the private fields of other objects declared in C.
Discuss the resulting level of information hiding, its advantages and limits, and provide some
examples.

What is the policy concerning the visibility of protected fields of other objects?
Solution
Drawback: we cannot check the consistency of an object considering only the current instance.

public class Foo {
int a=0; /// invariant a>=0
public class Foo broken() {
Foo result=new Foo();
result.a=-1;
return result;

}

Another disadvantage is that with implementation inheritance we can break subclasses of the
current class:
private class C {

protected int v = 0;

public void £ (C other) {

other.v = -1;

}

}

public class D extends C{
/// invariant v>=0;

}

(note that the above example cannot be reproduced in Java, since protected fields do not have
object-level encapsulation)

Advantage: we can access the internal structure of other objects of the same class. Note that
we already know their internal structure, since it is exactly the same as that of the current
object.

public class List {

private Object el;
private List next;

public removeSecondElement () {this.next=this.next.next;}

}

Similarly to private fields, an object can access protected fields of other objects of the same
type. However there are some restrictions. Consider the code below:

class A {
protected int x;

}
class B : A {

public void foo()
public void bar (B Db)
public void foobar (A a) { a.

}

{ this.x = 2;
{ b.x =

|
N

X = 2;

} // OK
} // OK

} // Does not compile

The foo method compiles without errors - an object has access to its own protected fields. bar
also compiles - an object has access to private and protected fields of other objects of the same
type. However, as we see from foobar, an object does not have access to the protected fields
of another object of a supertype. If this were allowed it would be possible to break the internal
state of an arbitrary class by simply inheriting from it:

class A {

protected int x;

}

final class B {

/// invariant x==
{ this.x = 0 };

public B()
}

class MaliciousClass
public void foo (A a)

: A {

{a.x = 42;}

public void evil() {

B b = new B();

foo(b);

// The invariant of b would now be broken 1if

// method foo could be compiled.

}

Note that in the examples above we assume that

Task 6

Consider the following Java programs:

all classes are in different packages.

Program 1

Program 2

Program 3

Program 4

package Al;
public class X {
int x;

}

package Al;
public class X {
protected int x;
}

package Al;
public class X {
private int x;

}

package Al;
public class X {
protected int x;

}

package A2;
import Al.X;
class Y extends X
{
int £(X v) {
return v.x;
}
}

package A2;
import Al.X;
class Y extends X
{
int £(X v) {
return v.x;
}
}

package A2;
import Al.X;
class Y extends X
{
int £(X v) {
return v.x;
}
1

package A2;
import Al.X;
class Y extends X
{
int £() {
return this.x;
}
}

Only one of these programs compiles. Which one? Why are the other programs rejected?

Solution

e Program 1 does not compile because method f of class Y tries to access a field of the
superclass with default access modifier (that is, it can be accessed only by classes in the
same package) from an external package.

e Program 2 does not compile because method f of class Y tries to access a protected
field of an object instance of the superclass, but from a different package (a2, while the
superclass belongs to A1). Note that Java does not allow subclasses to access protected
fields of other objects instance of the superclass if they belong to a different package.

e Program 8 does not compile because method £ of class v tries to access a private field of
the superclass.

e Program 4 compiles. In fact, method £ of class v is allowed to access this.x since it is
a protected field of class x.

	
	
	
	
	
	

