
Concepts of Object-Oriented Programming
AS 2012

Exercise 7

Bytecode Veri�cation

November 9, 2012

Task 1

The method f of class E has the following signature:
void f();

and one local variable v. The maximal stack size is equal to 1.

It has the following body:

0: iconst_5
1: istore_1
2: aload_0
3: astore_1
4: iload_1
5: iconst_1
6: iadd
7: istore_1
8: return

Can the provided byte code be veri�ed? If so then verify it, otherwise explain which line of the
code causes the problem and why.

Solution

In the following, we try to verify the bytecode. T is an uninitialized register. A state is
represented by a pair (S,R) where S describes the contents of the state and R describes the
contents of registers.

// ([],[E,T]) -- initial state
iconst_5
// ([int],[E,T])

istore_1
// ([], [E,int])

aload_0
// ([E], [E,int])

astore_1
// ([], [E,E])

iload_1
// ERROR!

...

The error happens because iload_1 expects that the local variable has integer type, but its
type is E.

Task 2

Consider the following type hierarchy:

A

B

C1 C2

Suppose that the method f of class E has the following signature:
A f(boolean b1, boolean b2);

and there are three local variables x, y, z. It is known that the initial state is:
([], [E,boolean,boolean,C1,C2,A])

The maximal stack size is equal to 1.

The method f has the following body:

0: iload_1
1: ifeq 22
4: iload_2
5: ifeq 12
8: aload_3
9: goto 14
12: aload_4
14: astore_3
15: aload_5
17: astore_4
19: goto 0
22: aload_3
23: areturn

• Verify that the program is type safe.

• Provide the minimal type information that enables veri�cation of the bytecode without
a �xpoint computation.

Note: In this example, ifeq x pops an integer from the stack and jumps to line x if the integer
is equal to zero.

Solution

• Here the initial state is ([], [E,b,b,C1,C2,A]). We denote the type boolean as b
for convenience (in reality the Java bytecode veri�er views it as an integer).

We show the solution following the convention of Lecture 4, Slide 21. To each command
we dedicate an input and an output column. A command may have multiple inputs and
outputs, corresponding to the di�erent iterations of the algorithm.

IN OUT

0 iload_1

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

1 ifeq 22

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

4 iload_2

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

5 ifeq 12

([b], [E,b,b,C1,C2,A])
([b], [E,b,b,B,A,A])
([b], [E,b,b,A,A,A])

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

8 aload_3

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

9 goto 14

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

12 aload_4

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([C2], [E,b,b,C1,C2,A])
([A], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

14 astore_3

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

-
([], [E,b,b,B,C2,A])
-
([], [E,b,b,A,A,A])
([], [E,b,b,A,A,A])

15 aload_5
([], [E,b,b,B,C2,A])
([], [E,b,b,A,A,A])

([A], [E,b,b,B,C2,A])
([A], [E,b,b,A,A,A])

17 astore_4
([A], [E,b,b,B,C2,A])
([A], [E,b,b,A,A,A])

([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

19 goto 0
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

([], [E,b,b,B,A,A])
([], [E,b,b,B,A,A])

22 aload_3

([], [E,b,b,C1,C2,A])
([], [E,b,b,B,A,A])
([], [E,b,b,A,A,A])

-
-
([A], [E,b,b,A,A,A])

23 areturn

([C1], [E,b,b,C1,C2,A])
([B], [E,b,b,B,A,A])
([A], [E,b,b,A,A,A])

-
-
([], [E,b,b,A,A,A])

• In the following code, we mark the types that are given by the user, and those infered by
the type checker

// given: ([],[E,b,b,A,A,A])
0: iload_1

// ([b], E,b,b,A,A,A])
1: ifeq 22

// ([], [E,b,b,A,A,A])
4: iload_2

// [b], [E,b,b,A,A,A]
5: ifeq 12

// ([], [E,b,b,A,A,A])
8: aload_3

// ([A], [E,b,b,A,A,A])
9: goto 14

// ([A], [E,b,b,A,A,A])
12: aload_4

// given: ([A], [E,b,b,A,A,A])
14: astore_3

// ([], [E,b,b,A,A,A])
15: aload_5

// ([A], [E,b,b,A,A,A])
17: astore 4

// ([], [E,b,b,A,A,A])
19: goto 0

// ([], [E,b,b,A,A,A])
22: aload_3

// ([A], [E,b,b,A,A,A])
23: areturn

// ([], [E,b,b,A,A,A])

Task 3

Consider the following Java code:

interface IFace {
void m();

}
class Cl1 implements IFace {

public void m() { System.out.println("Cl1.m"); }
}
class Cl2 implements IFace {

public void m() { System.out.println("Cl2.m"); }
}
public class Test1 {

public static void main(String[] args) {
xxx(true);
xxx(false);

}
public static void xxx(boolean param) {

IFace iface = null;
if(param) { iface = new Cl1();}
else { iface = new Cl2(); }
iface.m();

}
}

• What type will be calculated for the variable iface of the method xxx during the byte-
code veri�cation?

• When can we decide that iface.m() is safe to call? During bytecode veri�cation, or
execution?

• What if IFace was a class instead of an interface? What if it was an abstract class?

Solution

• Because the inference algorithm doesn't take interfaces into consideration, the calculated
type for the variable iface is Object.

• Because the inferred type of the iface is Object the decision can be made only during
the execution.

• In both cases the inferred type of the iface is IFace. The decision about the safety of
the call can be made during bytecode veri�cation.

Task 4

The bytecode type inference algorithm assumes that maximal stack size is provided.

• Is it possible to drop this requirement and infer the maximal stack size?

• If the answer is yes, then describe how the bytecode veri�cation algorithm can be updated.

• If the answer is no, then show that it can't be done.

Solution

Yes, it is possible to infer the maximal stack size for any program that is accepted. In fact,
when the bytecode type inference algorithm accepts a program, it always calculates the exact
size of the stack at every program point. The maximal size is provided to the veri�er only for
e�ciency reasons.

The JVM standard imposes the condition that there should never be di�erent stack sizes in the
inputs of a joint position in a program. If that weren't the case, it would be in general impossible
to calculate the maximal stack size. Here is an example in pseudo-code that demonstrates it:

int i = 0;
while(f(i)){

i++;
aload_0;

}

To improve readability we present the example in a mixture of Java source code and bytecode.
The instruction aload_0 (pushing the value of this onto the stack) is a bytecode instruction,
and the rest is Java source code.

Here f is an arbitrary function from int to boolean. The example puts this onto the stack
until we reach a value of i such that f(i) is false. So we need to �nd whether

∃i : int|¬f(i)

is true. And this question is essentially equivalent to the halting problem.

Task 5

The bytecode type inference algorithm rejects a veri�ed program if there are di�erent stack
sizes for input values of a join point.

• Provide a bytecode program that is rejected because of this limitation but that does not
cause runtime errors.

• Is it possible to construct a bytecode veri�cation algorithm that avoids this limitation?
If yes, then provide an updated algorithm. If no, then show that it can't be done.

• How serious is this restriction from a pragmatic perspective?

Solution

• 0 : aload_0
1 : iconst_1
2 : ifne 4
3 : aload_0
4 : astore_1

Note: ifne jumps to the given index if the integer value at the top of the stack is not
equal to zero. It pops the value at the top of the stack.

There are two possibilities for the stack size after executing this program. In any of the
two cases, the height of the stack at point 4 is at least 1, and there will be surely a
reference value at the top of the stack.

• Yes we can construct such an algorithm. The update is as follows: when joining stacks of
di�erent sizes, pick the smallest one, but carry as extra information the size of the largest
one to be used when checking for over�ow.
Note that if we just picked the smaller one and used that, we would not prevent stack
over�ows at runtime.
If we just picked the largest one and made the �extra� values into dummy values by giving
them the �top� type, we might not prevent under�ows when using instructions such as
pop().

• This limitation is not essential. If we have two states {[head1, x], [head2]} where
head1 and head2 are stacks of the same size, then we can't access x.

	
	
	
	
	

