
Concepts of Object-Oriented Programming
AS 2012

Exercise 4

Behavioral Subtyping and Inheritance

October 19, 2012

Task 1

1. Consider a Java class SortedArrayEven, which is like the SortedArray class of last
week, but with the extra restriction that all the numbers in A must be even.
Is SortedArrayEven a behavioral subtype of SortedArray?

2. If not, then change the precondition of SortedArray.insert to make
SortedArrayEven a behavioral subtype of SortedArray, assuming that there is no
problem with the rest of the methods. Do you see any problems with this solution?

3. Assume that, apart from the constructor, there are no mutating methods, i.e., meth-
ods that change the state, like insert. Can SortedArrayEven now be a subtype of
SortedArray?

4. Consider a class NoDupArray of unsorted arrays with no duplicates that has an insert

method. Adapt the speci�cations of SortedArray for that class. Could NoDupArray be
a behavioral supertype of SortedArray? Why?

Task 2

Let C be a class with an integer �eld x and a method m. Let m have

• Precondition x>0

• Postcondition x<1

Suppose now that there is a class D with an integer �eld x and a method m. In which of the
following cases does the speci�cation of m in D permit D to be a behavioral subtype of C?

a) Pre x>0 Post x<-1

b) Pre x>0 Post x<2

c) Pre x>-1 Post x<1

d) Pre x>2 Post x<1

e) Pre x>-4 Post x<-old(x)*old(x)

f) Pre true Post false

Task 3

Consider this example of behavioral subtyping:

class Super
{

// requires p == p*p
// ensures p < result
int foo(int p) { ... }

};

class Sub extends Super

{
// requires p == 0 || p == 1
// ensures result == 2
int foo(int p) { ... }

}

Suppose that we try to prove this behavioral subtyping.

• Is it possible to prove it using the rules on slide 59? If yes, how? If not, explain why.
• Show a proof using the improved rules for pre- and postcondition inheritance. Is there
any problem this time?

Task 4

Suppose that we have a database, for which we want an �automated key generation� feature.
This means that each time the user inserts a new tuple, a unique key is automatically generated
for the tuple by the system. An obvious way to do that is to write a counter, which increments
by 1 the value that it returns each time it is called. The method that generates a new key is
called generate.

1. Write a Java class IncCounter and an accompanying speci�cation for such a counter.
2. Annotate the following Java class with speci�cations and show that it is not a behavioural

subtype of IncCounter.

class DecCounter
{

int key;
DecCounter () { key = 0; }
int generate () { return key--; }

}

3. (Harder) Write an abstract class GenerateUniqueKey together with a speci�cation, such
that both IncCounter and DecCounter are behavioural subtypes of
GenerateUniqueKey. In the speci�cation, you may use helper methods and �elds.

Task 5

Consider the following classes:

class Sequence {
abstract int size()
abstract int getAt(int index)
int median() {...}

}

class Array {
int size() {...}
int getAt(int index) {...}
int median() {...}
void insert(int value) {...} // Inserts ’value’ at the end of the

array
void swap(int x, int y) {...} // Swaps elements ’x’ and ’y’ of the

array
}

class SortedArray {
int size() {...}
int getAt(int index) {...}
int median() {...}
void insert(int value) {...} // Inserts ’value’ into the array such

that the resulting array is sorted
}

What should the subtype, inheritance and subclass relationships be between these three classes?

	
	
	
	
	

