
Concepts of Object-Oriented Programming
AS 2012

Exercise 10

Readonly and Ownership Types

November 30, 2012

Task 1

The intuition behind a pure method is that its execution e�ects are not observable by the client.
This essentially means that the result of any other method call or �eld read inside client code
would not be a�ected by a pure method execution. One way to formalize this property is to
require that the execution of a pure method does not change the program heap.

• Provide proof obligations that guarantee the purity of a method, according to this re-
quirement. Can you de�ne an analogous notion for constructors?

• Class Set represents a set of integers. Method Set allLessThan(int bound) (in class
Set) returns a freshly-allocated instance of class Set that contains all elements of the
original set that are smaller than bound.

� Even though the method allLessThan does not change the behavior of other meth-
ods, it is not pure, according to our de�nition. Why?

� How can the provided de�nition of purity be relaxed to allow declaration of the
method allLessThan as pure, without violating the intuition above?

� Provide proof obligations that guarantee purity of a method according to your re-
laxed de�nition.

� Can you de�ne an analogous notion for constructors?

Solution

• A method is pure if and only if:

1. It does not contain �eld updates

2. It does not invoke non-pure methods

3. It does not create objects

We cannot reasonably provide an analogous notion for constructors, since a constructor
call is guaranteed to modify the heap.

• � Method allLessThan is not pure because it allocates new objects. Furthermore,
it must either make �eld updates or call non-pure methods in order to add all the
elements that are less than the given bound to the set returned by allLessThan.
Nonetheless, it seems likely it does not change the behavior of other methods, and
we would like to consider it as pure.

� We need to allow �pure� methods to allocate new objects, and to perform modi�-
cations on those newly-allocated objects. In this case, we say that the method is
�weakly pure�



� We shall use the readonly type system - a method is �weakly pure�, if:

1. All its arguments are readonly

2. The receiver is treated as readonly - we can annotate the method in a similar
way to C++ const methods:

Set allLessThan(int bound) readonly {
Set result = new Set();
for (readonly Node n = head; n!=null; n=n.next)

if (n.val<bound)
result.append(n.val);

return result;
}

We assume the set is implemented as a linked list. We can access this.head as
readonly as this is readonly. The disadvantage here is that we cannot store
read/write references to our arguments (e.g. we could not have that the new Set

includes a read/write pointer to the old one, or it has read/write access to members
if it did not clone them).

� For constructors, we can make the same requirements except that the this pointer
can be read/write (but again could not store read/write pointers to arguments).

Task 2

Consider the following C++ class:

class Person
{

int money;
Person *spouse;

public:
void f () const;
Person (int m, Person *s)
{ if (!s) spouse = 0;

else { spouse = s; s->spouse = this; }
money = m;

}
};

Method f promises not to make any changes to its target object. Show that this claim can
still be violated by a de�nition of f, without using casting and without introducing any local
variables.

Solution

We can violate the claim by changing the target object this through the �eld spouse, for
instance : spouse->spouse->money=0;

This would only work if the s passed in the constructor is non-null.

Task 3

Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:

readonly int[] x;

which, similarly to the rules for accessing �elds of objects, would forbid an update such as



x[2] = 2; // error - x is declared with a readonly type

• Should there be a subtyping relationship (in either direction) between types readwrite
int[] and readonly int[]?

For arrays of reference types, there are two reasonable questions to consider for readonly typing.
Firstly, just as for an array of primitive types, whether or not the array reference can be used
for modi�cations. Secondly, whether the array elements can be used for modi�cations.

y[1] = y[2]; // is this allowed?
y[1].f = y[2].f; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modi�ers for
an array type - the �rst to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readonly readwrite T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go �rst via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense �skipping� y, and hence ignoring the �rst modi�er).

• For each of these two possible semantics, consider the following:

� Do all four combinations of modi�ers express something di�erent from one another?

� What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

• In the light of these questions, which of the two semantics seems the best choice?

Solution

• readonly int[] is more restrictive than readwrite int[] (fewer operations can be
performed with such a reference) so we could have readwrite int[] <: readonly

int[].

• Considering y[1].f as an access which goes �rst via y, and then y[1], we would obtain
that:

1. If the �rst modi�er is readonly, all the accesses to elements of the array will be
treated as readonly, since the readonly modi�er for the array will be considered
�rst. Therefore, the only interesting combinations are:

(a) readonly readonly

(b) readwrite readonly

(c) readwrite readwrite

Note: The same approach is adopted when we have a readonly object variable and
we access a readwrite �eld through it: the result would be readonly, since any
access via a readonly reference is readonly.

2. (a) is more restricted than (b), and (b) is more restricted than (c). So the reasonable
subtyping relations are (a) :> (b) :> (c)

• Considering y[1].f as a direct access, we would obtain that:

1. All the four di�erent combinations have di�erent semantics. With respect to the
previous example, we would have that readonly readonly will allow only read
accesses both on the array and on the elements stored in it, while with readonly



readwrite we have that we cannot assign elements in the array but we can write
�elds accessed via the array elements.

2. The subtyping relations already pointed out still work. In addition we could have

(a) readonly readonly :> readonly readwrite

(b) readonly readwrite :> readwrite readwrite

• The second solution is more expressive than the �rst one, since it allows the developer
to have more �ne-grained control on the read and write accesses on arrays and on their
elements. Thus, the second choice seems to be the best. However, it should be care-
fully considered whether such an approach (that would be di�erent compared to the one
adopted for objects and �eld accesses) may confuse the developers, and eventually create
safety problems.

Task 4

The following multiple choice question is taken from a previous exam

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x=y; where x is readonly and y is readwrite

2. x=y.f; where x is readwrite, variable y is readonly and �eld f is readwrite

3. x=y.f; where x is readwrite, variable y is readwrite and �eld f is readwrite

4. x=y.f; where x is readonly, variable y is readwrite and �eld f is readwrite

Solution

Number 2 is not allowed - it casts from a readonly reference to a readwrite reference.

Task 5

Annotate the following program with appropriate ownership type modi�ers to maximize the
bu�er, the producer, and the consumer encapsulation:

class Producer {
int[] buf;
int n;
Consumer con;
Producer()
{
buf = new int[10];
}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;
Consumer(Producer p)
{
buf = p.buf;
pro = p;
p.con = this;

}
int consume()
{
n = (n+1)
% buf.length;
return buf[n];

}
}

class Context {
Producer p;
Consumer c;

Context(){
p = new Producer();
c = new Consumer(p);

}

public void run() {
for(int i=-5; i<=5;

++i){
p.produce(i);
if(i%2 == 0)
c.consume();

}
}
}

Solution



class Producer {
rep int[] buf;
int n;
peer Consumer con;
Producer()
{
buf = new rep int[10];

}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
any int[] buf;
int n;
peer Producer pro;
Consumer(peer Producer p)
{
buf = p.buf;
pro = p;
p.con = this;
}
int consume()
{
n = (n+1)
% buf.length;

return buf[n];
}

}

class Context {
rep Producer p;
rep Consumer c;

Context(){
p = new rep Producer();
c = new rep Consumer(p);

}

public void run() {
for(int i=-5; i<=5;

++i){
p.produce(i);
if(i%2 == 0)
c.consume();

}
}

}

Task 6

Consider the following method signatures:

peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

Solution

The general typing rules are any>:peer and any>:rep since any is more restrictive than rep

and peer. Following these rules, we obtain that

• peer Object foo(any String el) overrides any Object foo(peer String el)

• rep Object foo(any String el) overrides rep Object foo(peer String el), that
overrides any Object foo(peer String el)

• peer Object foo(any String el) overrides peer Object foo(rep String el)

Task 7

The Ownership type system allows the following ownership modi�ers: peer, rep, self, lost
, and any - to structure the object store and to restrict how references can be passed and
used. We want to extend the Ownership type system by adding one more modi�er down. This
modi�er is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

(a) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.



any T

lost T

rep Tpeer Tself T

(b) De�ne the most speci�c (in terms of the context information it conveys) viewpoint adap-
tation function I by �lling the table below (for a combination Te I Tf the modi�er Te

speci�es the row, and the modi�er Tf the column of the table used).

Recall that the viewpoint adaptation function I is used, in particular, to determine the
owner of an object referenced by a �eld access. More exactly, if the ownership modi�er of
e is Te and the ownership modi�er of a �eld f is Tf , then the ownership modi�er assigned
to the �eld access e.f is determined as Te I Tf . Note that this applies to �eld updates
as well as �eld reads.

I peer rep any down

self

peer

rep

lost

any

down

(c) Assuming that you only need to enforce the topological constraints of the type system ,
how should the �eld update rule from lecture 7 slide 40 be adapted to the system extended
with the down modi�er? Do you need to make any changes?

You might like to consider the following example code, in assessing your answers to (b) and
(c):

public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // does this/should this type-check?
this.c.d = this.d; // does this/should this type-check?

}
}

Solution

(a)

any T

lost T

down T

rep Tpeer Tself T



(b) There are two reasonable approaches to de�ning viewpoint adaptation. One (and perhaps
the most intuitive) is to de�ne it as describing the most precise information possible about
where such a reference may belong in the heap topology (possibly over-approximating, in
cases where we cannot describe precisely what we want). For example, repIrep can be
down in this approach, because down over-approximates the objects which can actually
be stored in such a �eld. Note that this is a true approximation - repIrep is not allowed
to store all objects which can be referred to via down, only some of them. This means
that we need to add extra restrictions on �eld assignment in the cases where we use down
to over-approximate in this way; otherwise the examples in part (c) would type-check,
which would not be safe. Here is the appropriate table, taking this approach:

I peer rep any down

self peer rep any down

peer peer down any down

rep rep down any down

lost lost lost any lost

any lost lost any lost

down down down any down

The alternative approach is not to allow this kind of over-approximation; the modi�er
chosen has to re�ect precisely the requirements for a reference to be allowed to be stored
in such a location, and thus avoid the need for extra requirements on the �eld assignment
rule. Here is the table, in this approach:

I peer rep any down

self peer rep any down

peer peer lost any down

rep rep lost any lost

lost lost lost any lost

any lost lost any lost

down lost lost any lost

In this case, perhaps surprisingly, cases such as repIrep and downIdown result in lost.
This is because, choosing the answer down is not restrictive enough. In general, we have
no way to express what is safe to assign to the down �eld of a rep receiver (down from our
viewpoint includes objects above the rep, which should not be included), and similarly
for a down receiver. See also the code in the next part. As you can see, this second
approach is not very �exible; only rep and peer objects can ever be types as down (via
subtyping).

(c) Depends on the answer to the previous part. In the �rst case, we need to require that
the result of the viewpoint adaption is not down, except in the special case of the receiver
being self or peer, and the �eld type being down (in these cases, the down result
expresses precisely what is safe to assign to the location; it is not an over-approximation).

With the second approach, we do not need to make any changes to the �eld assignment
rule, to guarantee the topological constraints of the type system (as long as we de�ne
viewpoint adaptation as above).

The example code shows two cases where the �eld updates should not be allowed, because
we would allow a down �eld to point upwards (to this) in the ownership topology, and
in the second, because we would allow a down �eld to point to some object which is
considered down from the viewpoint of this, but not necessarily from the viewpoint of
this.c.

These would be disallowed by both of our solutions above (check this!):



public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // does this/should this type-check?
this.c.d = this.d; // does this/should this type-check?

}
}


