
Concepts of Object-Oriented Programming
AS 2012

Exercise 13

Static Initialization and Invariants

December 21, 2012

Task 1

Consider the following Java classes:

public class A {
public static final int value = B.value + 1;

}

public class B {
public static final int value = C.value + 1;

}

public class C {
public static final int value = A.value + 1;

}

Will these classes compile? If not, how could we modify them so that they do?

What would the output of running the following program be?

public class Program {
public static void main(String[] args) {

System.out.println(A.value);
System.out.println(B.value);
System.out.println(C.value);

}
}

In what ways can you change the output of the program by reordering the statements?

Task 2

A technique to represent a complete binary tree T using an array A, is:

• store the root in A[0]

• for any node N stored in A[i], store the children of N to A[2i+1] and A[2i+2].

The size of the array should be equal to 2h+1 − 1, where h is the height of the tree.

Consider the following invariant on a complete binary tree of integers: any non-leaf node stores

the sum of the integers stored in its two children. Let us call this invariant U (for �undented�;
cf. �dented invariants� on Lecture 9, Slide 11).

The following class uses the above-mentioned representation.

final class CompleteBinaryTree
{

private int[] theTree;

public CompleteBinaryTree(int h)
{

theTree = new int[Math.pow(2,h+1)-1];
for(int i=0; i<theTree.length; i++)

theTree[i]=0;
}

/// requires 0 ≤ i < theTree.length
public int getNode(int i) { return theTree[i]; }

/// requires theTree.length/2 ≤ i < theTree.length
// this means i must be a leaf
public void addToLeaf(int i, int s)
{ addToNode (i, s); }

private void addToNode(int i, int s)
{

theTree[i]+=s;
if (i>0) addToNode((i-1)/2, s);

}
}

(a) Write formally the invariant U.

(b) The method addToNode does not preserve U. Instead, its purpose is to �x U, when it is
temporarily broken. Describe how this is done.

(c) Describe informally the precondition under which the method addtoNode has to be called,
such that U holds when the method terminates.

(d) Dent U accordingly so that the precondition above is formally expressible. Hint: Denting
usually uses a single boolean �eld (see Lecture 9, Slide 11). Here, you need more than
one boolean �eld.

(e) Add assignments to the new boolean �elds in the bodies of all the methods and write
speci�cations for all the methods. All methods must preserve the dented invariant.

(f) Explain why the public interface of the class preserves U.

Task 3

Consider the following example

class Redundant {
int a, b;
Logger l;

///invariant a == b

public setLogger(Logger l) { this.l = l; }

public void set(int v) {
a = v;
l.log("Inside set");
b = v;

}

public int div(int v) {
return v / (a − b + 1);

}
}

class Logger {
private Redundant r;

public Logger(Redundant r) { this.r = r; }
public void log(String m) {

System.out.println(m + r.div(5));
}

}

• Write client code that causes div to throw an exception

• Suppose that we change the implementation of set as follows:

public void set(int v) {
a = v;
b = v;

}

Can we stil causes div to throw an exception to be thrown by writing code outside the
two classes?

