
Concepts of Object-Oriented Programming
AS 2012

Exercise 5

Inheritance

October 26, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Consider two classes Stack and Queue, implementing the standard LIFO/FIFO data struc-
tures, both of which have methods with the following signatures:

void push(Object o);
Object pop();
bool isEmpty();
int size();
void reverse();

• Despite having identical signatures, these two classes cannot be behavioral subtypes of
one another. Why not?

• When implementing these two classes, is there any possibility of code reuse? If so, give
details.

• Describe at least one way of reusing the code in one class by the other - which programming
language features are needed for this to work?

Solution

• The intended behavior is that a Stack is FIFO, while a Queue is LIFO. Therefore, the pop
and push have di�erent behavior and so neither can be considered a behavioral subtype
of the other.

• Depending on the internal representation, either the pop() or the push() method (but
not both) could be reused, from one implementation to the other. For example, if one
implements a Queue by pushing to the end of a linked list, and popping from the begin-
ning, then a Stack could be implemented either by pushing on the beginning of the list
and reusing the pop() method, or by reusing the push() method and popping from the
end of the list. Furthermore, it's likely that the isEmpty(), size() and reverse()

methods could all be reused.

• Any mechanism which allows code reuse without subtyping, e.g., private inheritance in
C++ or aggregation. In both cases it would make sense to have a �common super class�
used by both implementations. This super-class, however, would either be too wide (al-
lowing insertion/removal at both ends) or rather thin (allowing only insertion on one
side). In the wide case we could use a kind of linked list, for example, that can insert/re-
move at the beginning and end, and use private inheritance to expose only the relevant
operations to the clients of each data structure.



Task 2

Assume we are working with a Java-like language in which method dispatch is dynamic for
the type of the receiver and static for the type of the arguments. Consider a class Matrix to
implement matrices with integer values. A simple implementation would be to store a (private)
2-dimensional array of integers, and provide methods such as:

void set(int i, int j, int value);
int get(int i, int j);
Matrix add(Matrix m);
Matrix multiply(Matrix m);

A sparse matrix is a matrix which contains mainly zeros. When such matrices are large it can
be that an alternative representation of the matrix, which only stores the locations and values
of non-zero entries, can provide much more e�cient implementations for common expensive
operations such as addition and multiplication with other sparse matrices. If a sparse matrix is
to be added or multiplied with a standard matrix, it also is possible to de�ne an implementation
which is more e�cient that the standard one (but not as good as for two sparse matrices).

Consider writing a new class SparseMatrix to implement sparse matrices, with the similar
methods available to those for Matrix.

• Is it likely that there will be scope for reusing code from the class Matrix?

• Does it seem that SparseMatrix can (and should?) be a behavioural subtype of Matrix?

• What would be the implications of making SparseMatrix a subclass of Matrix?

• What alternative ways are there of expressing the relationship between the classes?

Solution

• Code reuse is not going to be possible (at least for the primitive operations), since the
two classes will use di�erent internal representations of the data.

• As long as all �elds are private, the classes should be indistinguishable in terms of be-
haviour (except for operation complexity). However, in order to state that formally, we
would have to write an abstract speci�cation for the matrix class, which does not refer to
any �elds. Note that as currently speci�ed, a sparse matrix can stop being sparse if too
many locations are set, but the underlying structure would remain the same and hence
be less e�cient.

• If we make them subclasses then we can nicely handle the appropriate implementations of
the add and multiplymethods in the various cases. On the other hand, a SparseMatrix
object will inherit a useless copy of the �elds used in Matrix - this means an overhead in
memory and initialization time (since by default the superclass constructor will still be
called). This can also lead to subtle bugs.

• An interface (or abstract class) could alternatively be de�ned, which both classes imple-
ment (or subclass). This eliminates the redundant overlap between �elds used in the two
classes. However, if client code has already been written in terms of the class Matrix
then adding the interface will not avoid any problems for this client code, unless the
Matrix class is very well encapsulated (this is a good reason to always provide interfaces
(or abstract classes in C++) rather than class de�nitions, to clients!).

Task 3

Consider the following C++ classes, implementing part of an expression tree:

class Expression {
public:



virtual int evaluate() = 0;
}

class BinaryExpression : Expression {
public:

virtual int evaluate() override {
int l = evalLeft();
int r = evalRight();
return op(l,r);

}

virtual int op(int l, int r) = 0;

private:
Expression* left,*right;

protected:
virtual int evalLeft() {

return left->evaluate();
}
virtual int evalRight() {

return right->evaluate();
}

}

class MultiplicationExpression : BinaryExpression {
protected:

virtual int op(int l, int r) override {
return r*l;

}
}

The BinaryExpression class is an abstract class for binary nodes in an expression tree (such as
addition, multiplication etc) and the MultiplicationExpression class represents an integer
multiplication expression.

• In an attempt to optimize expression tree evaluation, the following variant for
MultiplicationExpression was written:

class MultiplicationExpression : BinaryExpression {
protected:

virtual int evalLeft() override {
int r = BinaryExpression::evalLeft();
leftIsNonZero = r!=0;
return r;

}

virtual int evalRight() override {
if (leftIsNonZero)

return BinaryExpression::evalRight();
else

return 0;
}
virtual int op(int l, int r) override {

return r*l;
}

private:
bool leftIsNonZero = false;

}

This version tries to avoid evaluating the right hand side expression tree if the left hand



side had evaluated to 0. Would this version work as the above version? What does this
version assume about the BinaryExpression class that the former does not? What
change in the BinaryExpression class would break the optimized version but not the
original version?

• How would you modify the optimized version of MultiplicationExpression to �x this
problem, while still avoiding the unnecessary evaluation of subtrees when possible?

Solution

• The optimized version would work as the original version, however it further assumes
that the subexpressions are evaluated in left to right order - to which the original version
is oblivious. The following, seemingly innocent, change to the BinaryExpression class
could break the optimized version:

class BinaryExpression : Expression {
public:

virtual int evaluate() override {
return op(evalLeft(),evalRight());

}
...

As the order of evaluation for function arguments is not speci�ed (but usually right to
left), this version might not work on some compilers/architectures (check it!) where the
arguments are evaluated in right to left order.

• If we drop the assumption about the order of evaluation, we need to account for both
orders:

class MultiplicationExpression : BinaryExpression{
protected:

virtual int evalLeft() override {
if (!first && !firstNonZero)

return 0;
return evalCommon(BinaryExpression::evalLeft());

}

virtual int evalRight() override {
if (!first && !firstNonZero)

return 0;
return evalCommon(BinaryExpression::evalRight());

}

virtual int op(int l, int r) override {
return r*l;

}

private:
int evalCommon(int r) {

if (first)
firstNonZero = r!=0;

first=!first;
return r;

}

bool firstNonZero = false;
bool first = true;

}

Now if the �rst subexpression is evaluated to zero, the second one would not be evaluated,
regardless of the order of evaluation



Task 4

Consider the following C++ classes, representing 2 and 3 dimensional vectors:

class Vector2D{
public:

Vector2D(double _x, double _y)
: x(_x), y(_y), lengthCache(-1)
{}

double length() {
if (lengthCache<0)

lengthCache = calculateLength();
return lengthCache;

}

private:
double x,y;
double lengthCache;

protected:
virtual double calculateLength() {

return sqrt(sqr(x)+sqr(y));
}

}

class Vector3D : public Vector2D{
public:

Vector3D(double _x, double _y, double _z)
: Vector2D(_x,_y), z(_z)
{}

private:
double z;

protected:
virtual double calculateLength() override {

return sqrt(sqr(Vector2D::calculateLength())+sqr(z));
}

}

• Assuming that the sqrt function is signi�cantly more expensive than other �oating point
operations, can you suggest a way to make the implementation more e�cient without
causing code duplication and without exposing private �elds? If you have to modify the
superclass - is that a reasonable modi�cation if we had no knowledge of subclasses?

• Normalizing a vector means scaling it uniformly so that it points in the same direction
but its length is 1 (dividing each coordinate by the length) - implement a normalize()

method for both classes, avoiding code duplication

• Would your solution work if the implementation of the Vector2D class were to be changed
so as not to cache the vector length but recalculated it every time? Is that signi�cant?

Solution

• We would have to modify the superclass speci�cally for this - it would not be a sensible
implementation for the superclass if we did not know the subclass:

class Vector2D{
...

protected:
virtual double calculateSquareLength() {

return sqr(x)+sqr(y);



}
virtual double calculateLength() {

return sqrt(calculateSquareLength());
}

}

class Vector3D : public Vector2D{
...

protected:
virtual double calculateSquareLength() override {

return Vector2D::calculateSquareLength() + sqr(z);
}

}

• We could implement it as follows:

class Vector2D{
...

public:
virtual void normalize() {

double s = length();
x /= s;
y /= s;
lengthCache = 1;

}
}

class Vector3D : public Vector2D{
...

public:
virtual void normalize() override {

double s = length();
z /= s;
Vector2D::normalize();

}
}

• The solution would fail in that case, because the length calculated for normalizing x and
y would be wrong. This is signi�cant because the correctness of the subclass depends on
the private �elds/implementation of the superclass - so they have to be veri�ed/tested
together and not modularly.

Task 5

From a previous exam

Consider the following Java classes:

public class B {
public void foo(B obj) {

System.out.print("B1 ");
}
public void foo(C obj) {

System.out.print("B2 ");
}

}

class C extends B {
public void foo(B obj) {



System.out.print("C1 ");
}
public void foo(C obj) {

System.out.print("C2 ");
}
public static void main(String[] args) {

B c = new C();
B b = new B();
b.foo(c);
c.foo(b);
c.foo(c);

}
}

What is the output of the execution of method main in class C? Explain your answer.

Solution

The code will print B1 C1 C1 - the method de�nition is resolved in terms of the static type of
the argument, but the dynamic type of the receiver. Note that this means that it is possible
to have two aliases of the same object, and receive di�erent results when passing them as
parameter to a method of the same name (note however that, this is not really passing them
to the same method - it is better to think of method overloads as de�nitions of two di�erent
methods in the class).


	
	
	
	
	

