
Concepts of Object-Oriented Programming
AS 2012

Exercise 10

Readonly and Ownership Types

November 30, 2012

Task 1

The intuition behind a pure method is that its execution e�ects are not observable by the client.
This essentially means that the result of any other method call or �eld read inside client code
would not be a�ected by a pure method execution. One way to formalize this property is to
require that the execution of a pure method does not change the program heap.

• Provide proof obligations that guarantee the purity of a method, according to this re-
quirement. Can you de�ne an analogous notion for constructors?

• Class Set represents a set of integers. Method Set allLessThan(int bound) (in class
Set) returns a freshly-allocated instance of class Set that contains all elements of the
original set that are smaller than bound.

� Even though the method allLessThan does not change the behavior of other meth-
ods, it is not pure, according to our de�nition. Why?

� How can the provided de�nition of purity be relaxed to allow declaration of the
method allLessThan as pure, without violating the intuition above?

� Provide proof obligations that guarantee purity of a method according to your re-
laxed de�nition.

� Can you de�ne an analogous notion for constructors?

Task 2

Consider the following C++ class:

class Person
{

int money;
Person *spouse;

public:
void f () const;
Person (int m, Person *s)
{ if (!s) spouse = 0;

else { spouse = s; s->spouse = this; }
money = m;

}
};

Method f promises not to make any changes to its target object. Show that this claim can
still be violated by a de�nition of f, without using casting and without introducing any local
variables.



Task 3

Consider how we might extend readonly types to handle arrays. For an array of primitive types,
one might want to declare that the array elements cannot be changed, using a declaration such
as:

readonly int[] x;

which, similarly to the rules for accessing �elds of objects, would forbid an update such as

x[2] = 2; // error - x is declared with a readonly type

• Should there be a subtyping relationship (in either direction) between types readwrite
int[] and readonly int[]?

For arrays of reference types, there are two reasonable questions to consider for readonly typing.
Firstly, just as for an array of primitive types, whether or not the array reference can be used
for modi�cations. Secondly, whether the array elements can be used for modi�cations.

y[1] = y[2]; // is this allowed?
y[1].f = y[2].f; // is this allowed?

In order to express all possibilities, consider having two readonly/readwrite modi�ers for
an array type - the �rst to denote access to the array reference itself, and the second to denote
access to the objects stored in its elements, e.g., readonly readonly T[] y; is the most
restrictive possibility.

Consider what the semantics of readonly readwrite T[] y; could be. There are two rea-
sonable choices here, depending on whether we regard accesses of the form y[1].f as accesses
which go �rst via the array y, and then to the element y[1], or consider them as accesses
directly to y[1] (in a sense �skipping� y, and hence ignoring the �rst modi�er).

• For each of these two possible semantics, consider the following:

� Do all four combinations of modi�ers express something di�erent from one another?

� What subtyping relationships (if any) would be reasonable between the four possible
variants of a T[] type?

• In the light of these questions, which of the two semantics seems the best choice?

Task 4

The following multiple choice question is taken from a previous exam

In the readonly/readwrite type system, which of the following assignments is not type
correct?

1. x=y; where x is readonly and y is readwrite

2. x=y.f; where x is readwrite, variable y is readonly and �eld f is readwrite

3. x=y.f; where x is readwrite, variable y is readwrite and �eld f is readwrite

4. x=y.f; where x is readonly, variable y is readwrite and �eld f is readwrite

Task 5

Annotate the following program with appropriate ownership type modi�ers to maximize the
bu�er, the producer, and the consumer encapsulation:



class Producer {
int[] buf;
int n;
Consumer con;
Producer()
{
buf = new int[10];

}
void produce(int x)
{
buf[n] = x;
n = (n+1)
% buf.length;

}
}

class Consumer {
int[] buf;
int n;
Producer pro;
Consumer(Producer p)
{
buf = p.buf;
pro = p;
p.con = this;

}
int consume()
{
n = (n+1)
% buf.length;
return buf[n];

}
}

class Context {
Producer p;
Consumer c;

Context(){
p = new Producer();
c = new Consumer(p);
}

public void run() {
for(int i=-5; i<=5;

++i){
p.produce(i);
if(i%2 == 0)
c.consume();

}
}

}

Task 6

Consider the following method signatures:

peer Object foo(any String el);
peer Object foo(rep String el);
rep Object foo(any String el);
any Object foo(peer String el);
rep Object foo(peer String el);

Find all the valid pairs of signatures such that one overrides the other.

Task 7

The Ownership type system allows the following ownership modi�ers: peer, rep, self, lost
, and any - to structure the object store and to restrict how references can be passed and
used. We want to extend the Ownership type system by adding one more modi�er down. This
modi�er is introduced to denote references to objects in the same context as this or in the
context (transitively) owned by an object in the same context as this.

(a) Redraw the subtype relation diagram below to include the newly introduced type of the
universe type system.

any T

lost T

rep Tpeer Tself T

(b) De�ne the most speci�c (in terms of the context information it conveys) viewpoint adap-
tation function I by �lling the table below (for a combination Te I Tf the modi�er Te

speci�es the row, and the modi�er Tf the column of the table used).

Recall that the viewpoint adaptation function I is used, in particular, to determine the
owner of an object referenced by a �eld access. More exactly, if the ownership modi�er of
e is Te and the ownership modi�er of a �eld f is Tf , then the ownership modi�er assigned



to the �eld access e.f is determined as Te I Tf . Note that this applies to �eld updates
as well as �eld reads.

I peer rep any down

self

peer

rep

lost

any

down

(c) Assuming that you only need to enforce the topological constraints of the type system ,
how should the �eld update rule from lecture 7 slide 40 be adapted to the system extended
with the down modi�er? Do you need to make any changes?

You might like to consider the following example code, in assessing your answers to (b) and
(c):

public class Node{
rep Node c;
down Node d;

public void foo() {
this.d.d = this; // does this/should this type-check?
this.c.d = this.d; // does this/should this type-check?

}
}


