ETH

Concepts of Object-Oriented Programming
Eidgendssische Technische Hochschule Ziirich

AS 2012 Swiss Federal Institute of Technology Zurich

Exercise 12
[nitialization
December 14, 2012

Task 1
Consider a Java class Vector, representing a 2 dimensional vector:

public class Vector ({
public Number x; // Remark: Number is a super—-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = vy;

}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:

public double vectorLength (Vector c) {
double x = c.x.doubleValue () ;
double y = c.y.doubleValue();
return Math.sqrt(x » x + v % y);

e This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

e Add a pre-condition for the method, specifying what is required to be safe.

e Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

e Suppose that you are also allowed to upgrade the class vector to include reasonable
non-null type annotations. How does this affect your previous answer? Do these changes
to the class seem reasonable?

Task 2

Suppose that we add a subclass Vector3D which has a third Number field z and a new method

volume ():

public class Vector3D extends Vector ({
public Number! z;

double volume () {
return x.doubleValue () ry.doubleValue () xz.doubleValue();

}



Which of the following method definitions compile (assuming that the data-flow analysis for
non-null types doesn’t consider the semantics of instanceof)? Which would always run safely?
Explain your answers.

double getVolumel (Vector? c) {
if (c instanceof Vector3D) {
return c.volume () ;
} else { return 0.0; }

}

double getVolume?2 (Vector? c) {
if (¢ instanceof Vector3D) {
return ((!) c).volume();

} else { return 0.0; }

}

double getVolume3 (Vector? c) {
if (c instanceof Vector3D) {
return ((Vector3D!) c¢).volume();
} else { return 0.0; }

}

double getVolumed (Vector? c) {
if(c!=null && (c instanceof Vector3D)) {
return c.volume () ;
} else { return 0.0; }

}

double getVolumeb (Vector? c) {
if (c!=null && (c instanceof Vector3D)) {
return ((!) c).volume();
} else { return 0.0; }
}

double getVolume6 (Vector? c) {
if (c!=null && (c instanceof Vector3D)) {
return ((Vector3D!) c¢).volume();
} else { return 0.0; }

Task 3

Consider the following three classes (declared in the same package):

public class Person {
Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) ({
this.owner = owner;
this.bone = new Bone (this);
this.breed = breed;



public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone (Dog toOwn) {
this.dog = toOwn;
}

e Annotate the code with non-null and Construction Type annotations where they are
necessary. Explain why the code now type-checks according to Construction Types.

e Could we provide constructors for classes Dog and Bone with no parameters?

Now, suppose a (possibly mad) scientist wants to extend the implementations of these classes
with some genetic engineering. Firstly, we want to be able to “clone” a bone. We can add the
following method to class Bone to make a copy of an existing bone, and assign it to another
Dog:

public Bone clone (Dog toOwn) {

return new Bone (toOwn) ;
}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:
Dog (Dog toClone, Person newOwner) {

this.owner = newOwner;

this.breed = toClone.breed;
this.bone = new Bone (this);

}

public Dog clone (Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:
Person (Person toClone) {

Dog? d = toClone.dog;

if (d!=null) {

this.dog = new Dog(d, this);

}

}

public Person clone() {
return new Person (this);

}

e Annotate this extra code with appropriate non-null and Construction Types annotations.
You should guarantee that each of the clone methods (which belong to the public inter-
face) return a committed reference. You should ensure that your answers guarantee that
all of the code type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the
constructors are called in more than one situation.

Task 4

In the Construction Types system, when we read from the field of an expression of committed



type, we obtain a reference of committed type, i.e., if e; has a committed type then e;.f
has a committed type. Similarly, if e; has an unclassified type then e;.f has an unclassified
type. However, if e; has a free type then e;.f does not have a free type, but instead has an
unclassified type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

Task 5

In the Construction Types system, a field assignment e;.f = ey is permitted if the usual
subtyping holds, and if, in addition either e; has a free type, or e; has a committed type.

In particular (in terms of Construction Types), it is ok for an expression with committed type
to be assigned to the field of an expression with committed type, and it is also ok for an
expression of free type to be assigned to the field of an expression of free type. However, it is
not permitted for an expression of unclassified type to be assigned to the field of an expression
of unclassified type. Explain why not, giving an example of what would go wrong if we were
to allow this.



