
Concepts of Object-Oriented Programming
AS 2012

Exercise 13

Static Initialization and Invariants

December 21, 2012

Task 1

Consider the following Java classes:

public class A {
public static final int value = B.value + 1;

}

public class B {
public static final int value = C.value + 1;

}

public class C {
public static final int value = A.value + 1;

}

Will these classes compile? If not, how could we modify them so that they do?

What would the output of running the following program be?

public class Program {
public static void main(String[] args) {

System.out.println(A.value);
System.out.println(B.value);
System.out.println(C.value);

}
}

In what ways can you change the output of the program by reordering the statements?

Solution

The classes will compile. When the program is run, the output will be:

3
2
1

This is because, starting to initialize A causes B to start being initialized which causes C to
start being initialized (at which point Java realizes A has already started initialization and just
carries on initializing C). When C.value gets assigned, A.value still contains the default value
0.

The class we �rst mention will always get loaded �rst, and so complete initialization last. By
changing the order of the second two classes, we can vary the output between the one above,
and:

3
1
2

Task 2

A technique to represent a complete binary tree T using an array A, is:

• store the root in A[0]

• for any node N stored in A[i], store the children of N to A[2i+1] and A[2i+2].

The size of the array should be equal to 2h+1 − 1, where h is the height of the tree.

Consider the following invariant on a complete binary tree of integers: any non-leaf node stores

the sum of the integers stored in its two children. Let us call this invariant U (for �undented�;
cf. �dented invariants� on Lecture 9, Slide 11).

The following class uses the above-mentioned representation.

final class CompleteBinaryTree
{

private int[] theTree;

public CompleteBinaryTree(int h)
{

theTree = new int[Math.pow(2,h+1)-1];
for(int i=0; i<theTree.length; i++)

theTree[i]=0;
}

/// requires 0 ≤ i < theTree.length
public int getNode(int i) { return theTree[i]; }

/// requires theTree.length/2 ≤ i < theTree.length
// this means i must be a leaf
public void addToLeaf(int i, int s)
{ addToNode (i, s); }

private void addToNode(int i, int s)
{

theTree[i]+=s;
if (i>0) addToNode((i-1)/2, s);

}
}

(a) Write formally the invariant U.

(b) The method addToNode does not preserve U. Instead, its purpose is to �x U, when it is
temporarily broken. Describe how this is done.

(c) Describe informally the precondition under which the method addtoNode has to be called,
such that U holds when the method terminates.

(d) Dent U accordingly so that the precondition above is formally expressible. Hint: Denting
usually uses a single boolean �eld (see Lecture 9, Slide 11). Here, you need more than
one boolean �eld.

(e) Add assignments to the new boolean �elds in the bodies of all the methods and write
speci�cations for all the methods. All methods must preserve the dented invariant.

(f) Explain why the public interface of the class preserves U.

Solution

(a) The invariant of the class, apart from U, should also contain the following conjuncts:

theTree6=null ∧ ∃h:int. h≥0 ∧ theTree.length=2h+1-1

This part of the invariant is assumed throughout the solution, and we will not refer to it
again.

The invariant U can be written as follows:

∀i.0≤i<theTree.length/2⇒
theTree[i] = theTree[2*i+1]+theTree[2*i+2]

Note that the condition 0≤i<theTree.length/2 says that node i is not a leaf. Note
also that �height� means the maximum distance of the root to the leaves (so a single node
is a 0-height tree)

(b) When addToLeaf is called on a leaf, a sequence of recursive calls to addToNode begins.
The �rst call adds a number s to the leaf, which temporarily breaks the invariant, because
the parent of that leaf no longer holds the correct sum. Each subsequent call of addToNode
corrects the sum of its current node, similarly making the sum of its parent (if there is
one) outdated. The calls to addToNode happen recursively all the way up from the leaf
to the root, at which point the invariant is �xed.

(c) The precondition is as follows: either (i) the method addToNode is called on a leaf or (ii)
the invariant must be broken exactly at the node on which we call addToNode. In the
latter case, the sum of the children of that node must be exactly s less than what it is
supposed to be.

(d) We can dent the invariant in the following way: Introduce a boolean array b. For every
non-leaf i, the �ag b[i] is true if and only if the U has to hold at node i. More formally,
the dented version of the invariant is:

∀i.0≤i<theTree.length/2 ∧ b[i]⇒
theTree[i] = theTree[2*i+1]+theTree[2*i+2]

where the �eld b is declared as bool[] b;

This denting allows us to break U at any node in the tree, which makes the precondition
described in (c) easily expressible.

Remember that the invariant must also specify that b is not null, and that the size of b
is equal to the number of non-leaf nodes in the tree.

(e) Here is the code together with the new �eld:

final class CompleteBinaryTree
{

bool[] b;
private int[] theTree;

/// invariant theTree6=null ∧ b6=null
/// invariant ∃h:int. h≥0 ∧ theTree.length=2h+1-1 ∧ b.length=2h-1
/// invariant: as mentioned in (d)

public CompleteBinaryTree(int h)
/// ensures ∀i.b[i]

{
theTree = new int[Math.pow(2,h+1)-1];
for(int i=0; i<theTree.length; i++)

theTree[i]=0;
b = new bool[Math.pow(2,h)-1];
for(int i=0; i<b.length; i++) b[i]=true;

}

public void addToLeaf(int i, int s)
/// requires theTree.length/2 ≤ i < theTree.length

/// requires ∀j.b[j]
/// ensures theTree[i]=old(theTree[i+1])+s
/// ensures ∀j.b[j]

{ addToNode (i, s); }

private void addToNode(int i, int s)
/// requires 0 ≤ i < theTree.length
/// requires i<theTree.length/2⇒
¬b[i] ∧ theTree[i]=theTree[2*i+1]+theTree[2*i+2]-s

/// requires ∀j. i 6=j⇒b[j]
/// ensures theTree[i]=old(theTree[i+1])+s
/// ensures ∀j.b[j]

{
theTree[i]+=s;
if(i<b.length) b[i]=true;
if (i>0)
{

b[(i-1)/2]=false;
addToNode((i-1)/2, s);

}
}

}

(f) The claim is as follows: all methods preserve the dented invariant, and the public methods
preserve the condition ∀j.b[j], which guarantees the undented invariant U.

Task 3

Consider the following example

class Redundant {
int a, b;
Logger l;

///invariant a == b

public setLogger(Logger l) { this.l = l; }

public void set(int v) {
a = v;
l.log("Inside set");
b = v;

}

public int div(int v) {
return v / (a − b + 1);

}
}

class Logger {
private Redundant r;

public Logger(Redundant r) { this.r = r; }
public void log(String m) {

System.out.println(m + r.div(5));
}

}

• Write client code that causes div to throw an exception

• Suppose that we change the implementation of set as follows:

public void set(int v) {

a = v;
b = v;

}

Can we stil causes div to throw an exception to be thrown by writing code outside the
two classes?

Solution

• Here is an example (note that Java initializes integers to 0):

Redundant r = new Redundant();
Logger l = new Logger(r);
r.setLogger(l);
r.set(−1);

• We can break the code again. First we override set to re-introduce the unsafe callback
in the subclass:

class ReallyRedundant extends Redundant
{

public void set(int v) {
a = v;
l.log("Inside set");
b = v;

}
}

And then we use the same trick again:

Redundant r = new ReallyRedundant();
Logger l = new Logger(r);
r.setLogger(l);
r.set(−1);

