
Concepts of Object-Oriented Programming
AS 2012

Exercise 9

Information hiding, encapsulation and object structures

November 23, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.

public abstract class BankAccount {
... boolean importantCustomer=false;
... int amount=0;
... final int maxDebit=1000;

/// invariant amount >= -maxDebit &&
/// !importantCustomer => amount>=0 &&
/// importantCustomer <=> this instanceof RichCustomer

... void deposit(int amount);

... void withdraw(int amount);
}

public final class PoorCustomer extends BankAccount {
... void deposit(int amount) {

if(amount>=0)
this.amount+=amount;

}
... void withdraw(int amount) {

if(amount<=this.amount)
this.amount-=amount;

}
}

public final class RichCustomer extends BankAccount {
public RichCustomer() {importantCustomer=true;}
... void deposit(int amount) {

if(this.amount+amount >= -maxDebit)
this.amount+=amount;

}
... void withdraw(int amount) {

if(-maxDebit<=this.amount-amount)
this.amount-=amount;

}
}

Provide the most permissive access modi�ers for each �eld and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over/under�ow
occurs.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala �le. Suppose that the class BankAccount is declared as
sealed, and PoorCustomer and RichCustomer are part of the same scala �le. Does this allow
you to choose more permissive access modi�ers?

Task 2

Consider the following Java class de�nitions (in the same package):

class A {
int x=0;
void print() {System.out.println("Class A:"+x);}
void setX(int v) {x=v;}

}

public class B extends A {
int x=0;
void print() {System.out.println("Class B:"+x);}
protected void setX(int v) {x=v;}

}

as well as the following client (also in the same package as above):

public class X {
void foo(A obj) {

obj.x=10;
obj.print();

}

void bar(A obj) {
obj.setX(10);
obj.print();

}
...

}

What happens if we execute foo? What about bar? Explain in detail. In what sense is bar
preferable to foo?

Task 3

Consider the following Java code:

public class Hour {
public int h=0;

}

public class Time {
private Hour hour=new Hour();
private int m=0;
/// invariant hour.h>=0 && hour.h<24

public void setHour(int h) {
if(h>=0 && h<24) this.hour.h=h;

}

public Hour getHour() {return hour;}
}

• Provide an example that breaks the invariant of Time without changing the code above
and without using re�ection.

• There are two immediate ways to �x the problem. In one of them, signatures of methods
are modi�ed, while in the other they are not. What are these ways of �xing the problem?

• Clearly, we would prefer to keep the signatures the same as before. Are there any draw-
backs to this approach?

• Would it be possible to introduce an interface with no mutator methods and use it to
solve the problem? Explain how this approach would look and whether there is still a
way to break the invariant.

Task 4

In C++ any object can be created on the stack which is sometimes more e�cient. Consider
the following class declaration in a C++ header �le which is part of a library:

// rect.h
class Rect {

private:
int width_,height_;

public:
Rect(int width, int height);
int width();
int height();
int area();

};

Here is a client outside the library that is using the class above:

#include <iostream>
#include "rect.h"
int main() {

Rect rects[] = {{1,2},{3,4},{5,6}}; //Allocated on the stack
std::cout << "area: " << rects[1].area();
return 0;

}

After the client was written, the library maintainers have decided to precompute the result of
the area method in the constructor of Rect and store it in a private �eld so that the area

method simply returns it:

// rect.h
class Rect {

private:
int width_,height_,area_;

public:
Rect(int width, int height);
int width();
int height();
int area();

};

Although only the private implementation of Rect has changed, the method main will not work
as expected and might even crash if the client code is not recompiled after the change.

• What is the output of the main method before and after the change to Rect if the client
is not recompiled?

• Why is the behavior of main incorrect after the change?

• Will the client code work as expected if it was recompiled after the change?

• Propose two ways to avoid the need to recompile the client code, such that the output of
main is correct before and after the change.

� By modifying the implementation of the client and keeping the implementation of
Rect as above. You may add additional code to the library if necessary. Are there
any drawbacks to your solution?

� By only modifying the original and/or second implementation of the library and
keeping the implementation of the client as above. Are there any drawbacks to your
solution?

Which of these two approaches is preferable?

• If we translated this code to Java, would there be any problem? Explain why.

Task 5

Data structures often intentionally share aliases. For instance, consider the following Java class:

class ArrayList<T> {
private T[] elements=...;
private int LastEl=0;
public T get(int i) {return elements[i];}
public int size() {elements.length;}
public void add(T el) {elements[intLastEl++]=el;}

}

Imagine that this class is extended as follows

class Coordinates {
int x, y;
public Coordinates(int xx, int yy) {x=xx; y=yy;}

}

class CList extends ArrayList<Coordinates> {
/// invariant ∀ i:int | 0 ≤ i ∧ i < size() ⇒ get(i).x > get(i).y
public void add(Coordinates el) {

if(el.x>el.y) super.add(el);
}

}

Write a program that breaks the invariant of CList. How can we �x this problem? Is it
possible to �x it without allocating new objects (either directly or indirectly), that is, without
consuming additional memory? What new problems might arise from your changes? Discuss
the bene�ts and the drawbacks of using alias sharing in data structures.

Task 6

The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:

package security;

public class User {
public String name;
public String password;
public User(String name, String password) {

this.name = name;
this.password = password;

}
}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {

super(message);
this.problemUser = problemUser;

}
}

public class Login {
private List<User> users = new LinkedList<User>();
public void registerUser(User u) {

if (u == null || u.name == null || u.password == null
|| u.name.isEmpty() || u.password.isEmpty()) return;

users.add(u);
}

// Returns true if the user ’u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login(User u) throws LoginException {

if (u == null) return false;
User current = null;
try{

for(User registered : users) {
boolean nameEqual = registered.name.equals(u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals(u.password))

return true;
}

if (nameEqual)
throw new LoginException("Invalid password for user",u);

}

return false;
}
catch(Exception e) {

throw new LoginException("Invalid user",current);
}

}
}

The malicious method is in a di�erent package:

void malicious(Login l) { ... }

Assume the Login object that is passed into the method already has registered users.

• Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use
re�ection.

• Is it possible to �x the problem by:

� only modifying the User class?

� only modifying the LoginException class?

� only modifying the registerUser method?

� only modifying the body of the for loop inside the login method?

In each of these cases, explain how you can prevent the malicious login or why it is not
possible.

