
Concepts of Object-Oriented Programming
AS 2012

Exercise 12

Initialization

December 14, 2012

Task 1

Consider a Java class Vector, representing a 2 dimensional vector:

public class Vector {
public Number x; // Remark: Number is a super-interface for
public Number y; // Integer, Double, etc.

public Vector (Number x, Number y) {
this.x = x;
this.y = y;

}
}

Suppose that in some other class we write the following method to calculate the length of the
vector represented by a Vector object:

public double vectorLength(Vector c) {
double x = c.x.doubleValue();
double y = c.y.doubleValue();
return Math.sqrt(x * x + y * y);

}

• This implementation is unsafe - when executed it may throw exceptions. Why? Is this a
reasonable behavior?

• Add a pre-condition for the method, specifying what is required to be safe.

• Suppose you are allowed to modify the signature of the method to include non-null type
annotations. To what extent can you weaken the necessary pre-condition?

• Suppose that you are also allowed to upgrade the class Vector to include reasonable
non-null type annotations. How does this a�ect your previous answer? Do these changes
to the class seem reasonable?

Task 2

Suppose that we add a subclass Vector3D which has a third Number �eld z and a new method
volume():

public class Vector3D extends Vector {
public Number! z;

double volume() {
return x.doubleValue()*y.doubleValue()*z.doubleValue();

}
}



Which of the following method de�nitions compile (assuming that the data-�ow analysis for
non-null types doesn't consider the semantics of instanceof)? Which would always run safely?
Explain your answers.

double getVolume1(Vector? c) {
if(c instanceof Vector3D) {

return c.volume();
} else { return 0.0; }

}

double getVolume2(Vector? c) {
if(c instanceof Vector3D) {

return ((!) c).volume();
} else { return 0.0; }

}

double getVolume3(Vector? c) {
if(c instanceof Vector3D) {

return ((Vector3D!) c).volume();
} else { return 0.0; }

}

double getVolume4(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return c.volume();
} else { return 0.0; }

}

double getVolume5(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return ((!) c).volume();
} else { return 0.0; }

}

double getVolume6(Vector? c) {
if(c!=null && (c instanceof Vector3D)) {

return ((Vector3D!) c).volume();
} else { return 0.0; }

}

Task 3

Consider the following three classes (declared in the same package):

public class Person {
Dog? dog; // people might have a dog

public Person() { }
}

public class Dog {
Person! owner; // Dogs must have an owner
Bone! bone; // Dogs must have a bone
String! breed; // Dogs must have a breed

public Dog(Person owner, String breed) {
this.owner = owner;
this.bone = new Bone(this);
this.breed = breed;

}
}



public class Bone {
Dog! dog; // Bones must belong to a dog..

public Bone(Dog toOwn) {
this.dog = toOwn;

}
}

• Annotate the code with non-null and Construction Type annotations where they are
necessary. Explain why the code now type-checks according to Construction Types.

• Could we provide constructors for classes Dog and Bone with no parameters?

Now, suppose a (possibly mad) scientist wants to extend the implementations of these classes
with some genetic engineering. Firstly, we want to be able to �clone� a bone. We can add the
following method to class Bone to make a copy of an existing bone, and assign it to another
Dog:

public Bone clone(Dog toOwn) {
return new Bone(toOwn);

}

However, our scientist would like to go further, and be able to clone dogs. A cloned Dog should
also have its bone cloned along with it, but may be assigned to a new owner: we add the
following extra constructor and method to class Dog:

Dog(Dog toClone, Person newOwner) {
this.owner = newOwner;
this.breed = toClone.breed;
this.bone = new Bone(this);

}

public Dog clone(Person toOwn) {
return new Dog(this, toOwn);

}

However, our scientist would like to go still further, and be able to clone people. A cloned
Person should also have its dog (if any) cloned along with it: we add the following extra
constructor and method to class Person:

Person(Person toClone) {
Dog? d = toClone.dog;
if(d!=null) {

this.dog = new Dog(d, this);
}

}

public Person clone() {
return new Person(this);

}

• Annotate this extra code with appropriate non-null and Construction Types annotations.
You should guarantee that each of the clone methods (which belong to the public inter-
face) return a committed reference. You should ensure that your answers guarantee that
all of the code type-checks - explain your choices.

Hint: think carefully about how constructor calls are typed, and what happens if the
constructors are called in more than one situation.

Task 4

In the Construction Types system, when we read from the �eld of an expression of committed



type, we obtain a reference of committed type, i.e., if e1 has a committed type then e1.f

has a committed type. Similarly, if e1 has an unclassi�ed type then e1.f has an unclassi�ed
type. However, if e1 has a free type then e1.f does not have a free type, but instead has an
unclassi�ed type. Explain why the alternative choice would be unsound (given the existing
rules of the system), giving an example of what would go wrong.

Task 5

In the Construction Types system, a �eld assignment e1.f = e2 is permitted if the usual
subtyping holds, and if, in addition either e1 has a free type, or e2 has a committed type.

In particular (in terms of Construction Types), it is ok for an expression with committed type
to be assigned to the �eld of an expression with committed type, and it is also ok for an
expression of free type to be assigned to the �eld of an expression of free type. However, it is
not permitted for an expression of unclassi�ed type to be assigned to the �eld of an expression
of unclassi�ed type. Explain why not, giving an example of what would go wrong if we were
to allow this.


