ETH

Concepts of Object-Oriented Programming
Eidgendssische Technische Hochschule Ziirich

AS 2012 Swiss Federal Institute of Technology Zurich

Fixercise 9
Information hiding, encapsulation and object structures
November 23, 2012

In-class Assessment: A subset of the questions from this sheet will be used for the in-class
assessment. No notes are allowed during the assessment.

Task 1

Suppose that the following Java classes are part of a package, to which an external user cannot
add classes.

public abstract class BankAccount {
boolean importantCustomer=false;
int amount=0;
final int maxDebit=1000;

/// invariant amount >= -maxDebit &&
/17 !importantCustomer => amount>=0 &§&
/17 importantCustomer <=> this instanceof RichCustomer

void deposit (int amount) ;
void withdraw (int amount) ;

}

public final class PoorCustomer extends BankAccount {
void deposit (int amount) {
if (amount>=0)
this.amount+=amount;

void withdraw (int amount) {
if (amount<=this.amount)
this.amount—=amount;

}

public final class RichCustomer extends BankAccount {
public RichCustomer () {importantCustomer=true;}
void deposit (int amount) {
if (this.amount+amount >= —-maxDebit)
this.amount+=amount;

void withdraw (int amount) {
if (-maxDebit<=this.amount—-amount)
this.amount—=amount;

}

Provide the most permissive access modifiers for each field and method, such that the class
invariant cannot be broken from outside the package. Assume that no integer over/underflow
occurs.

In Scala, a class can be declared as sealed. That means that the class can be extended only
by classes written in the same .scala file. Suppose that the class BankAccount is declared as
sealed, and PoorCustomer and RichCustomer are part of the same scala file. Does this allow
you to choose more permissive access modifiers?

Solution
For the fields of class BankAccount, the most permissive access modifiers are:

importantCustomer: default modifier. In this way, it would be accessible by other classes
in the same package but not by subclasses. Otherwise, we may have a class that extends
BankAccount and sets to true importantCustomer without being a RichCustomer

maxDebit: public, since it is final and it cannot be modified by other classes.

amount: default, since we need to access it from the other classes of this package (e.g. PoorCustomer
and RichCustomer), but we must prevent external attackers from modifying it.

Methods withdraw and deposit can be declared public, since they preserve the invariants.

If class BankAccount had been declared as sealed, we could choose protected as the access
modifier of the amount and importantCustomer fields, since external classes would not be
allowed to extend it and so would not be able to gain access to these fields. More generally, if a
class is sealed, the default and protected levels are equivalent, since it is not possible to extend
the current class outside the current package.

Task 2

Counsider the following Java class definitions (in the same package):

class A {
int x=0;
void print () {System.out.println("Class A:"+x);}
void setX (int v) {x=v;}

}

public class B extends A {
int x=0;
void print () {System.out.println("Class B:"+x);}
protected void setX(int v) {x=v;}

}

as well as the following client (also in the same package as above):

public class X {
void foo (A obj) {
obj.x=10;
obj.print () ;
}

void bar (A obj {

)
obj.setX (10);
obj.print ();

}

What happens if we execute foo? What about bar? Explain in detail. In what sense is bar
preferable to foo?
Solution

Assume that ob7 is of dynamic type B. The output of foo is:

Class B:0

This happens because in ob7j.x=10 we have the static binding of the class whose field we are
going to assign, that is, the compiler assigns field x of class A since the static type of obj is A.
On the other hand, the method call obj.print () is dynamically bound to the dynamic type
of ob7, that is, it calls method print () of class B. Thus method print () of class B reads the
value of field x of class B, that contains the initial value 0.

Under the same assumptions, the output of bar is:
Class B:10

This happens because the call to setX is bound dynamically, thus we assign value 10 to the
field x of class B. In addition, we have the same binding when calling print (), thus we invoke
it when field x of class B is equal to 10 and we obtain that output.

In general, it is better to adopt setter and getter methods from the point of view of information
hiding in order not to rely on the internal representation of the class. This example and the
unexpected behavior obtained when executing the first program demonstrate this fact: if we
rely on accesses to fields we may access fields that are different from the ones accessed using
method calls, since in the first case we have static binding, while in the second case we have
dynamic binding.

Task 3

Consider the following Java code:

public class Hour {
public int h=0;
}

public class Time {
private Hour hour=new Hour () ;
private int m=0;
/// invariant hour.h>=0 && hour.h<24

public void setHour (int h) {
if (h>=0 && h<24) this.hour.h=h;
}

public Hour getHour () {return hour;}

e Provide an example that breaks the invariant of Time without changing the code above
and without using reflection.

e There are two immediate ways to fix the problem. In one of them, signatures of methods
are modified, while in the other they are not. What are these ways of fixing the problem?

e Clearly, we would prefer to keep the signatures the same as before. Are there any draw-
backs to this approach?

e Would it be possible to introduce an interface with no mutator methods and use it to
solve the problem? Explain how this approach would look and whether there is still a
way to break the invariant.

Solution

e We can easily break the invariants through alias leaking. For instance, the following code
breaks the invariant of class Time:

Time t=new Time ();

Hour h=t.getHour () ;
h.h=-1;

e We can fix this in two ways. We have to avoid the alias leaking. We can reach this goal
returning an integer value instead of an object, or a copy of the Hour object stored in the
current Time object.

public int getHour () {return hour.h;}
public Hour getHour () {return (Hour) hour.clone();}

In general, it is simpler for reasoning, if possible, to return only primitive values, or to
avoid exposing aliases of the local state of the object, by instead returning copies of the
stored objects. In this way, we can avoid alias leaking, thus no external code can modify
the values contained in the current object.

e The drawback of the second approach is that we are creating a new object and thus are
using more memory.

e We could hide the h field of Hour by making Hour implement an interface IMHour that
has no mutator methods. Time.getHour () could then return this interface.

The client could still downcast from IMHour to Hour and break the invariant but aside
from that the invariant is protected.

Task 4

In C++ any object can be created on the stack which is sometimes more efficient. Consider
the following class declaration in a C++ header file which is part of a library:

// rect.h
class Rect {
private:
int width_, height_;
public:
Rect (int width, int height);
int width();
int height ();
int area();

}i

Here is a client outside the library that is using the class above:

#include <iostream>

#include "rect.h"

int main () {
Rect rects[] = {{1,2},{3,4},{5,6}}; //Allocated on the stack
std::cout << "area: " << rects[l].areal();
return 0;

}

After the client was written, the library maintainers have decided to precompute the result of
the area method in the constructor of Rect and store it in a private field so that the area
method simply returns it:

// rect.h
class Rect {
private:
int width_,height_,area_;
public:
Rect (int width, int height);
int width();

}i

int height ();
int area();

Although only the private implementation of Rect has changed, the method main will not work
as expected and might even crash if the client code is not recompiled after the change.

What is the output of the main method before and after the change to Rect if the client
is not recompiled?

Why is the behavior of main incorrect after the change?
Will the client code work as expected if it was recompiled after the change?

Propose two ways to avoid the need to recompile the client code, such that the output of
main is correct before and after the change.

— By modifying the implementation of the client and keeping the implementation of
Rect as above. You may add additional code to the library if necessary. Are there
any drawbacks to your solution?

— By only modifying the original and/or second implementation of the library and
keeping the implementation of the client as above. Are there any drawbacks to your
solution?

Which of these two approaches is preferable?

If we translated this code to Java, would there be any problem? Explain why.

Solution

With the original library version the output is as expected: area: 12. With the new
version it is area: 5. The program might even crash during execution due to memory
corruption as explained below. This depends on many factors such as the operating
system, the CPU architecture, the compiler, the particular environment, etc.

In C++ it is possible to also work directly with objects (as opposed to languages like
Java, where it is only possible to access objects via references). This is the case with the
rects array in the client code where three objects of type Rect are created directly on
the stack. In order for the client code to work properly it needs to know exactly how
much memory is required by an object of type Rect so that enough space is allocated on
the stack. This is why the header file rect .h must list even private fields.

Using the original library, the client will create space for 6 integers on the stack that
correspond to the three objects:

rects|0] | rects[l] | rects|2]
1] 2[3]4]5]6

After the library has changed the client code needs to be recompiled so that the new
header file is read. If the client code is not recompiled, then it will still create space for
only 6 integers on the stack and different objects will now overlap:

rects[0] |

| rects|l] |
rects|2]
1] 2]3]4]5]6]30

Notice how the area_ fields of both rects[0] and rects[1] are overwritten by the
width_ fields of the successive rectangles. Only the last rectangle seems to be appropri-

ately initialized. However its area_ field is actually occupying an extra integer after the
6 positions allocated on the stack by the client. Thus there is memory corruption, which
might result in a crash or other undesired behavior.

e If the client code is recompiled with the new header rect.h it will work as expected.
However this is not a very modular design.

e Essentially we need to come up with a way which makes the particular memory layout of
Rect make no difference for the client code.
— We could try to modify the client to use pointers instead of objects:

#include <iostream>
#include "rect.h"

int main () {
Rect* rects[] = {new Rect{l,2},new Rect{3,4}, new Rect{5,6}};
std::cout << "area: " << rects[l]->area();

for (auto r: rects) delete r;
return O;

}

This version of the code might appear to work without recompilation with both
the original and the new library definition, but there is still a chance of memory
corruption, depending on the compiler. The key issue here is how the new operator
is implemented. In C++ calling new first allocates the required amount of memory
and then calls the constructors of the freshly allocated objects in order to initialize
them. In our example the constructors are code inside the library and it will always
properly initialize the objects give enough space.

However there are two options for where the memory allocation occurs:

x The client allocates the memory: in this case the code above is still incorrect as
only space for 2 integers will be allocated for each object.

x The code where the classes are defined allocates the memory: in this case there
is no problem.

In C4++ the memory allocation will be done at the place where new is called and
thus it will be performed by the client. Therefore the code above still causes subtle
memory corruption because the constructor of Rect will assume it has enough space
for three integers.

It is possible to avoid it by indirectly creating new rectangles using a factory provided
by the library:

//rectFactory.h
class RectFactory{
public:
static Rectx create(int width, int height);
}

//client.cpp

#include <iostream>
#include "rect.h"
#include "rectFactory.h"

int main() {
Rect* rects[] = {RectFactory::create(l,2),
RectFactory::create(3,4), RectFactory::create(5,6});
std::cout << "area: " << rects[l]->areal();

for (auto r: rects) delete r;
return O;

}

This version will work as expected and will not cause any memory corruption.

Note that the behavior of delete may also be a problem, depending on the compiler.
However it is typical to store information about how much memory was allocated
when the object was created so then delete will simply release that amount. If this
is not the case, we could still make the program work by implementing a custom
“deleter” method in the library, similar to the way we introduced a factory.

— It is possible hide the internal fields of a class from its clients using opaque pointers
1 2.

, <

// rect.h

class RectData; // This is only declared, the actuall

// implementation is completely hidden from the clients

class Rect {

private:
RectDatax data_;

public:
Rect (int width, int height);
~Rect () ;

int width();
int height ();
int areal();

}i

//rect.cpp
#include "rect.h"
class RectData {
public:
int width_;
int height_;
}

Rect::Rect (int width, int height)
data_ (new RectData())

{
data_->width_ = width;
data_->height_ = height;

}

Rect::~Rect () { delete data_; }

int Rect::width() { return data_->width_; }
int Rect::height () { return data_->height_; }
int Rect::area() { return width () rheight(); }

The data pointer isolates the clients of Rect from its internal representation. The
key here is that when a new Rect is created, even if it is on the stack, its data will
be created by the library and will be placed on the heap.

If the Rect class had been written in the way above, it is easy to just add the extra
field to the RectData class and change the implementation of the area () method.
The client code will be completely oblivious to the change and will work as expected.

The drawback here is that access to the data members of Rect now requires one level
of indirection which might have a negative effect in performance critical applications.

'http://en.wikipedia.org/wiki/Opaque_pointer
nttp://techbase.kde.org/Policies/Binary_Compatibility Issues_With_ C++#Using_
a_d-Pointer

http://en.wikipedia.org/wiki/Opaque_pointer
http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++#Using_a_d-Pointer
http://techbase.kde.org/Policies/Binary_Compatibility_Issues_With_C++#Using_a_d-Pointer

The second approach is preferable since only the library code has to be made safe and
all clients can just use it without requiring some special consideration, in particular the
clients do not need to manage the memory themselves.

e The equivalent Java code will not have a problem and the library code can freely imple-

ment the change without breaking the client.

In Java, objects are only accessed by references and classes are loaded dynamically which
allows for extra modularity and code independence. Adding or removing private fields in
particular has no effect over the compiled client code.

However in Java it is not possible to allocate objects on the stack and use them directly,
which is often more efficient for local variables.

Another benefit of using objects allocated on the stack in C++ is that we get predictable
memory behavior. All objects allocated on the stack will be cleaned up as soon as
execution leaves the scope in which these objects were created. In this example the
rects array and its elements will be automatically deleted at the end of the enclosing
method. Note that this applies even in the case where we use an opaque pointer, since
the destructor of each Rect will automatically delete its corresponding data which was
placed on the heap. In Java and other languages with garbage collection, objects can
still take up memory much after we are finished using them, until the garbage collector
disposes of them.

Task 5

Data structures often intentionally share aliases. For instance, consider the following Java class:

class ArrayList<T> {

}

private T[] elements=...;

private int LastEl=0;

public T get(int i) {return elements[i];}

public int size () {elements.length;}

public void add (T el) {elements[intLastEl++]=el;}

Imagine that this class is extended as follows

class Coordinates {

}

int x, y;
public Coordinates (int xx, int yy) {x=xx; y=vyy;}

class CList extends ArraylList<Coordinates> {

}

/// invariant V i:int | 0 < 1 A 1 < size() = get(i).x > get(i).y
public void add(Coordinates el) {

if(el.x>el.y) super.add(el);
}

Write a program that breaks the invariant of cList. How can we fix this problem? Is it
possible to fix it without allocating new objects (either directly or indirectly), that is, without
consuming additional memory? What new problems might arise from your changes? Discuss
the benefits and the drawbacks of using alias sharing in data structures.

Solution

The invariant can be broken by exploiting the fact that CList captures and stores Coordinates
objects.

CList list=new CList ();

Coordinates c=new Coordinates (2, 1);
list.add(c);
c.x=0;

We can fix CList quite easily: we need to clone the Coordinates element before storing it.

public void add(Coordinates el) {
if(el.x>el.y) super.add((Coordinates) el.clone());

}

The limit of such an approach is that we create a copy of all the elements stored in the list. It
is not possible to make sure the invariant is preserved without creating objects that are only
in the current CList object.

The main benefit of using alias sharing in data structures is to minimize the consumption of
memory. In addition, we may want to share aliases on data structures, for instance, in order
to further update the content of an element in a list. The main drawback is that alias sharing
does not allow us to reason locally on the values stored in the data structure, since the object
may have been stored by the program that added elements, and so it may modify the content
of the elements after they were stored.

A possible solution would be to have readonly fields in class Coordinates. This would ensure
that the invariant cannot be broken, but it requires the allocation of new objects each time we
want to modify the fields. For instance, the following code:

Coordinates c=new Coordinates (2, 1);
c.x=0;

should be re-written to

Coordinates c=new Coordinates (2, 1);
c=new Coordinates (0,1);

which allocates a new object even though this is not necessary (since the object pointed by c
is not shared, and so changing its fields cannot break the invariants of other objects).

Task 6

The following Java classes, all part of the security package, were written by an unexperienced
programmer and contain a number of issues:

package security;

public class User {
public String name;
public String password;
public User (String name, String password) {
this.name = name;
this.password = password;

}

public class LoginException extends RuntimeException {
public User problemUser;
public LoginException(String message, User problemUser) {
super (message) ;
this.problemUser = problemUser;
}
}

public class Login {
private List<User> users = new LinkedList<User>();

public void registerUser (User u) {
if (u == null || u.name == null || u.password == null
|| u.name.isEmpty () || u.password.isEmpty()) return;
users.add (u) ;

}

// Returns true if the user ’"u’ was successfully logged in.
// Otherwise returns false or throws an exception.
public boolean login (User u) throws LoginException {

if (u == null) return false;
User current = null;
try/{
for (User registered : users) {
boolean nameEqual = registered.name.equals (u.name);
current = registered;

if (nameEqual) {
if (registered.password.equals (u.password))

return true;

}

if (nameEqual)
throw new LoginException("Invalid password for user",u);

}

return false;

}
catch (Exception e) {
throw new LoginException("Invalid user",current);

}

}

The malicious method is in a different package:
void malicious (Login 1) { ... }
Assume the Login object that is passed into the method already has registered users.

e Complete the body of the malicious method so that you manage to log-in as an already
existing user. You do not know any names or passwords of existing users. Do not use

reflection.
e [s it possible to fix the problem by:
— only modifying the User class?
— only modifying the LoginException class?
— only modifying the registerUser method?
— only modifying the body of the for loop inside the 1ogin method?

In each of these cases, explain how you can prevent the malicious login or why it is not

possible.

Solution
e The body of the malicious method could look like:

void malicious (Login 1) {
User u = new User ("user", "pass");
l.registerUser (u);
u.name = null;

try {
l.login(u);
}

catch (LoginException e) {
boolean success = l.login(e.problemUser);
//Logged in as the user that was registeted before user u

e Here are the fixes

— We could make both fields of User have the default (package) access:

public class User {
String name;
String password;
public User (String name, String password) {
this.name = name;
this.password = password;

Therefore, code outside the package will not be able to change existing User objects
and the malicious method could not cause the exception as before.

— The LoginException class currently captures the value of the problematic user.
Instead it could create a new user that has the same name as problemUser but
hides the password.
public class LoginException extends RuntimeException {

public User problemUser;
public LoginException (String message, User problemUser) {

super (message) ;
this.problemUser = new User (problemUser.name, "*xxxx");

}

This way, even if an exception is thrown, that refers to the wrong user name, the
user’s password will not be leaked.

— We can change the registerUser method so that it does not capture its argument:

public void registerUser (User u) {
if (u == null || u.name == null || u.password == null
|| u.name.isEmpty () || u.password.isEmpty()) return;
users.add (new User (u.name, u.password));

Now we would not be able to modify the internal structure of the Login class by
modifying the user we just registered in the malicious method.

— This for loop actually contains a bug which allows the exploit to work. To fix it we
must move the assignment to the current variable to the beginning of the loop:

for (User registered : users) {
current = registered;
boolean nameEqual = registered.name.equals (u.name);

In the original code we were able to cause an exception regarding a particular user,

but report the previous user as an invalid, since current was not updated yet. This
is no longer the case.

