Concepts of
Object-Oriented Programming

Peter Muller
Chair of Programming Methodology

Autumn Semester 2010 Eidgendssische Te chnische Hochschule Ziirich

7. Ownership Types

/. Ownership Types

/.1 Readonly Types
/.2 Topological Types

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Object Structures Revisited

class Address { class Person {
private String street; private Address addr;
private String city; public Address getAddr()
{ return addr.clone(); }
public String getStreet(){ ... } public void setAddr(Address a)
public void setStreet(String s) { addr = a.clone(); }
{...}
}
public String getCity(){ ... } . ™
: . . : peter
public void setCity(String s) 4 " home)
. N
{...} acer ™~ |street:
" Y, city:
}
\ /
Peter Muller — Concepts of Object-Oriented Programming igntnocte Tl Hochic

7.1 Ownership Types — Readonly Types

Drawbacks of Alias Prevention

= Aliases are helpful to

4 ™
: peter
share side-effects ~ddr
= Cloning objects is not " home)
efficient b v street:
(" annette) -
City:
_ _ addr:| &
* In many cases, it suffices . /
to restrict access to N J
shared objects Y
= Common situation: grant orof7: o
read access only
. Y,

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Requirements for Readonly Access

= Mutable objects " peter)
- Some clients can mutate the |addr:
object, but others cannot " _home
- Access restrictions apply to e C | street:
references, not whole objects > city:
: ETH :
= Prevent field updates S phone:. 1
: prof7:
= Prevent calls of mutating N J
methods \ M atel)
* Transitivity No:
- Access restrictions extend to
. _ /
references to sub-objects

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Readonly Access via Supertypes

interface ReadonlyAddress {
public String getStreet();
public String getCity();

}

class Address
Implements ReadonlyAddress {

... I* as before */}

class Person {
private Address addr;

public ReadonlyAddress
getAddr()

{ return addr; }
public void setAddr(Address a)
{ addr = a.clone(); }

!

= Clients use only the met

- Object remains mutable
- No field updates

nods In the Interface

- No mutating method in the interface

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Limitations of Supertype Solution

= Reu

sed classes

might not implement
a readonly interface

- See discussion of
structural subtyping

= |nterfaces do not

sup
flielo

port arrays,
s, and non-public

met

nods

class Address {

private PhoneNo phone;
public PhoneNo getPhone()
{ return phone; }}

interface ReadonlyAddress {

public ReadonlyPhoneNo getPhone();
}

= Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
Swiss Federal Institute of

7.1 Ownership Types — Readonly Types

Supertype Solution Is not Safe

= No checks that class Person {
methods in readonly private Address addr;

: public ReadonlyAddress getAddr()
Interface are actually return addr: }

side-effect free public void setAddr(Address a)
{ addr = a.clone(); }

= Readwrite aliases can

occur, e.g., through }

capturing void m(Person p) {
ReadonlyAddress ra = p.getAddr();

Address a = (Address) ra;

= Clients can use casts o ,
a.setCity(“Hagen”);

to get full access |

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Readonly Access In Eliffel

= Better support for fields
- Readonly supertype can contain getters
- Field updates only on “this” object

= Command-query separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

= Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

7.1 Ownership Types — Readonly Types

10

Readonly Access in C++: const Pointers

class Address {
string city;
public:
string getCity(void)
{ return city; }
void setCity(string s)

{city=s;}

I

C++

class Person {
Address* addr;

public:

const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

%

C++

= C++ supports readonly

pointers
- No field updates
- No mutator calls

void m(Person*p) {
const Address* a = p->getAddr();
a->setCity(XHagen”);

cout << a-m@i\\

}

Peter Muller — Concepts of Object-Oriented Programming

Compile-time
errors

Eidgendssische Technische Hoch

Zirich
ch

7.1 Ownership Types — Readonly Types

11

Readonly Access in C++: const Functions

class Address {
string city;

public:

string getCity(void) const
{ return city; }

void setCity(string s)
{city=s;}

I}

C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= const Functions must

not modify their receiver

object

void m(Person*p) {
const Address* a = p->getAddr();
a->setCity(XHagen”);

cout << a-m\;\
’ N

Peter Muller — Concepts of Object-Oriented Programming

(Call of const cemypliE=arme
error

qunction allowed |

Zirich
ch

7.1 Ownership Types — Readonly Types

12

It wouldn't be C++ ...

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s) const {

Address* me = (Address*) this;

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

me->city = s; %
} }; C++ C++
= const-ness can be cast |void m(Person*p) {

away const Address* a = p->getAddr();

- No run-time check

a->setCity(“Hagen”);

Peter Muller — Concepts of Object-Oriented Programming

} \/ Call of const
function allowed

f Technology Zurich

7.1 Ownership Types — Readonly Types

13

It wouldn't be C++ ...

(cont’d)

class Address {
string city;
public:
string getCity(void) const
{ return city; }
void setCity(string s)

{city =s;}

}; C++

class Person {
Address* addr;
public:
const Address* getAddr()
{ return addr; }
void setAddr(Address a)
{ I* clone */ }

}; C++

= const-ness can be cast
away
- No run-time check

void m(Person* p) {
const Address* a = p->getAddr();
Address* ma = (Address*) a;
ma->setCity(“Hagen”);

} C++

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

14

Readonly Access In C++: Transitivity

class Phone {
public:
Int number,;

%

C++

void m(Person*p) {

}

const Address* a = p->getAddr();

Phone* p = a->getPhone();
p->number = 2331...;

C++

class Address {
string city;
Phone* phone;
public:

{ return phone; }

I

Phone* getPhone(void) const

C++

= const pointers are not

transitive

= const-ness of sub-

objects has to be
Indicated explicitly

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types 15

Transitivity (cont’d)

class Address {
string city;
Phone* phone;
public:
const Phone* getPhone(void) const {
phone->number = 2331,

return phone; const functions may
] modify objects other
than the receiver

J

C++

ETH

Peter Muller — Concepts of Object-Oriented Programming Eidgendssische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.1 Ownership Types — Readonly Types 16

Readonly Access In C++: Discussion

cons

= const-ness Is not
transitive

= const pointers are
unsafe

- Explicit casts

= Readwrite aliases can
occur

Peter Muller — Concepts of Object-Oriented Programming Eidgenassische Techn sche Hochschule 2rich

7.1 Ownership Types — Readonly Types

Pure Methods

= Tag side-effect free class Address {
methods as pure pr!vate Str!ng s.treet,
private String city;
= Pure methods public pure String getStreet()
- Must not contain field 1.}
update public void setStreet(String s)
- Must not invoke non- o)
pure methods public pure String getCity()
{...}

- Must not create objects public void setCity(String s)

- Can only be overridden {...}
by pure methods

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Types

= Each class or interface T
iIntroduces two types

* Readwrite typerw T
- Denoted by T in programs

= Readonlytypero T

- Denoted by readonly T in
programs

class Person {
private Address addr;

public ReadonlyAddress
getAddr() { return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

e }
class Person { l

private Address addr;

public readonly Address
getAddr(){ ...}

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Subtype Relation

= Subtyping among readwrite
and readonly types Is
defined as in Java

- S extends or implements T =
'wS<:rwT

- S extends or implements T =
rnS<:roT
= Readwrite types are
subtypes of corresponding
readonly types

-mwil<rofl

classT{...}

class Sextends T{ ...

Srws=...
TrwT = ...
readonly SroS = ...

readonly T roT = ...
rwT =rwS;
rol =roS:;
rolT =rwT;
rwT =roT ;

Peter Muller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types 20

Type Rules: Transitive Readonly

class Address { class Person {
private Address addr;
private int[] phone; public readonly Address
public int[] getPhone() {...} getAddr() { return addr; }
)
}

= Accessing a value of a
readonly type or
through a readonly type
should yield a readonly
value

Peter Mller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.1 Ownership Types — Readonly Types

Type Rules: Transitive Readonly (cont’d)

= The type of
- A field access

- An array access

- A method invocation
IS determined by the

type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Personp = ...
readonly Address a;
a = p.getAddr();

Int[] ph = a getPhone()

/

[ro Address >[

H_J

rw int[|

ro int[|

Peter Mller — Concepts of Object-Oriented Programming

7.1 Ownership Types — Readonly Types

Type Rules: Transitive Readonly (cont’d)

= The type of
- A field access

- An array access

- A method invocation
IS determined by the

type combinator »

Personp = ...

readonly Address a;
a = p.getAddr();

donly int[] ph = a.getPh ;
rea onym[]p/age \\one()

[ro Address }» [

\

rw int[|

|

H_J

Peter Muller — Concepts of Object-Oriented Programming

> rw T roT
ro int
rw S rw T roT []
roS roT roT
EI'H

7.1 Ownership Types — Readonly Types 23

Type Rules: Readonly Access

= Expressions of readonly
types must not occur as
receiver of
- afield update
- an array update

- an invocation of a non-pure
method

= Readonly types must not
be cast to readwrite types

Peter Mller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.1 Ownership Types — Readonly Types

24

Discussion

= Readonly types enable safe sharing of objects

= Very similar to const pointers in C++, but:
- Transitive
- No casts to readwrite types

= All rules for pure methods and readonly types can
be checked statically by a compiler

= Readwrite aliases can still occur, e.g., by capturing

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types

25

/. Ownership Types

/.1 Readonly Types
/.2 Topological Types

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

26

Object Topologies

class Person {

» Read-write aliases private Address addr;

- private Company employer;
can still O.CCUI’, .9 public readonly Address getAddr()
by capturing or

_ { return addr; }
leaking public void setAddr(Address a)
{ addr = a.clone(); }

= We need to public Company getEmployer()
distinguish “internal” | {return employer; }
references from public void setEmployer(Company c)

employer = c;
other references L employ }

}

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

Roles in Object Structures

* Interface objects that are
used to access the
structure

* Internal representation
of the object structure

= Arguments of the object
structure

LinkedList)

" \
Listltr
™ ®
N
|
Entry
N
—

N (" N (- N
Entr Entry Entry
Oy | @i
= 4—-—oj—-—o
._/ ;. N
\/

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 28

Ownership Model Owner of
Entry objects
. O)
X! Listltr
= Each object hgs Zero or CinrodLiod
one owner objects —_
. . NI
* The set of objects with the
same owner is called a Entry
context
= The ownership relation is Entry] [(Entwy) [(Ent
acyclic s
* The heap Is structured into
a forest of ownership trees Aﬁ Y
- objects owned
by list head

Eidgendssische Technische Hoch
5% F I it f

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 29

OwnershipTypes rep
reference R
= We use types to express TinkedList Listtr
ownership information —
_ J
*= peer types for objects in / Entry
the same context as this
[peer ::::
= rep types for reference | \EQhU L el e
representation objects in \\L'_Z:j_:
the context owned by this ~__ | A

* any types for argument

objects in any context any
reference

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 30

Example

class LinkedList {
private rep Entry header;

A list owns

its nodeSJ (

Lists store
elements with

arbitrary owners
class Entry %4\

private any Object element;
private peer Entry previous, next;

) mdes have
the same owner

N

ETH

Peter Muller — Concepts of Object-Oriented Programming Eidgendssische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types 31

Type Safety

= Run-time type information consists of
- The class of each object
- The owner of each object

= Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value
- If e has type rep T then o’s owner Is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner Is arbitrary

\f An existential W
4

Eidgendssische Technische Hoch
Swiss Federal §

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

Subtyping and Casts

classT{...}

= For types with identical class S extends T{ ...}

ownership modifier, subtyping

: : : peer T peerT = ...
IS defined as In Java

any T anyT = ...
-repS<irepT rep SrepS=...
- peer S<:peerT rep TrepT = ...
-anyS<iany T repT = repS;

" rep types and peer types are |3 =repl; |
subtypes of corresponding JORT =[Pt 1) Iy

repT =(rep T) anyT,
any types
T < T repT = peerT,
- ep - any peerT =repT;
- peerT<iany T repT = anyT:

Eidgendssische Technische Hoch
Swiss Federal Institute of

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 33

Example (cont’d)

class LinkedList {
private rep Entry header;
public void add(any Object o) {
rep Entry newk = new rep Entry(o, header, header.previous);

}

} Ownership information
IS relative to this
class Entry { _ reference (viewpoint)

private any Object element;

private peer Entry previous, next;

public Entry(any Object o, peer Entry p, peer Entryn) {... }
}

Peter Muller — Concepts of Object-Oriented Programming Eidgendssische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types

34

Viewpoint Adaptation: Example 1

List
Q
N\

N\

Entry Entry
[> e

Entry

peer » peer = peer

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types

35

Viewpoint Adaptation: Example 2

List

|

\

\

Entry

rep » peer =rep

Entry

Entry

Peter Muller — Concepts of Object-Oriented Programming

ETH

Eidgendssische Technische Hochschule Zhrich
Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types

36

Type Rules: Field Access

= The field read = The field write
v=e.f; ef=v;
IS correctly typed if IS correctly typed Iif
- e Is correctly typed - e Is correctly typed
-t(e)p r(f)<it(Vv) -t(v)<iz(e)» 1(f)

* Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

37

Viewpoint Adaptation

> peer T rep T any T
peer S peer T ? any T
rep S rep T ? any T
any S ? ? any T

v = e.f;

(e)P» t(f)<it(v)

ef=v;

(v)<it(e) P t(f)

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 38

Read vs. Write Access

[this | class Person {
® public rep Address addr;
/T public peer Person spouse;
Ji
o
}

joe peer Person joe, jill;

“l - -

o— joe.spouse = jill;

any Address a = joe.addr;

r.

joe.addr = new rep Address();

ETH

Peter Muller — Concepts of Object-Oriented Programming Eidgendssische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

7.2 Ownership Types — Topological Types 39

The lost Modifier

= Some ownership class Person {
relations cannot be publ?c rep Address addr;
expressed in the type public peer Person spouse;
system }

= |nternal modifier lost for
fixed, but unknown
owner joe.spouse = jill;

= Reading locations with
lost ownership is allowed

= Updating locations with ~ [19€:addr= new rep Address(),
lost ownership is unsafe ﬁostAddreSS T

peer Person joe, jill;

[lost Address }

any Address a = joe.a\&jr;

h g ETH
Eidgendssische Technische Hoch
5% F

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 40

The lost Modifier: Detalls

> peer T rep T any T V = e.f;
peer S peer T lost T any T we)» ()< t(v)
rep S rep T lost T any T
any S lost T lost T any T ef=v:
lost S lost T lost T any T

- t(v)<:t(e) P t(f)

= Subtyping [Another J t(e) » t(f) does not

- repT<:lostT existential type | have lost modifier

- peer T<:lostT

- lostT<:any T

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

The self Modifier

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe;

joe.addr = new rep Address();

this.addr = new rep Address();

* Internal modifier self only for the this literal

Eidgendssische Technische Hoch
Swiss Federal Institute of

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

42

The self Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
self S peer T rep T any T
= Subtyping

- self T<:peerT

v=e.f

(e)» t(f)<it(v)

ef=v;

(v)<it(e)» 1(f)
(e) » t(f) does not
have lost modifier

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

43

Example: Sharing

class Person {
public rep Address addr;

= Different Person objects
have different Address
objects

- No unwanted sharing

this

joe

r.

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

44

Example: Internal vs. External Objects

class Person {
private rep Address addr;

public rep Address getAddr() {

Address is part of

Person’s internal
represenations

return addr;

}

Clients receive a
lost-reference

public void setAddr(rep Address a) {

addr = a;

}

Cannot be called
by clients

public void setAddr(any Address
addr = new rep Address(a);

a){

) Cloning

} Xnecessary

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

45

Internal vs. External Objects (cont’d)

class Person {

private any Company employer;

public any Company getEmployer() {
return employer;

}

employer = c;
}
}

public void setEmployer(any Company c) {

Company is shared
between many
Person objects

Can be called
by clients

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 46

Owner-as-Modifier Discipline

= Topological type system can be used to strengthen
encapsulation
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

= Additional rules enforce owner-as-modifier

- Field write e.f = vis valid only if t(e) Is self,
peer, orrep

- Method call e.m(...) is valid only if t(e) Is self,
peer, or rep, or called method is pure

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

47

Owner-as-Modifier Discipline (cont’'d)

this

= A method may modify only objects directly or
Indirectly owned by the owner of the current this
object

Peter Mller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

48

Internal vs. External Objects Revisited

class Person { Company is shared
private rep Address addr; cannot be modified

;J

private any Company employer;

public rep Address getAddr() {return addr; }

public void setAddr(any Address a) {
addr = new rep Address(a);

Clients receive
(transitive)
readonly reference

i Accidental capturing
IS prevented

public any Company getEmployer() {return employer; }

public void setEmployer(any Company c) { employer =c; }

}

Peter Muller — Concepts of Object-Oriented Programming

6.4 Object Structures and Aliasing — Encapsulation of Object Structures 49

(Simplified) Programming Discipline

= Rule 1: No Role Confusion -

- Expression with one alias mode must not be | ypesfor
: . : different roles
assigned to variables with another mode

= Rule 2: No Representation Exposure Viewpoint
- rep-mode must not occur in an object’s interf fadaptat'on
_ or rep types
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on
this Like with

= Rule 3: No Argument Dependence prg%ré"ig;ir:'eng

- Implementations must not depend on the state of
argument objects

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 50

Achievements
* rep and any types enable
encapsulation of whole class ArrayList {
ObJeCt structures protected rep int[| array;
_ private int next;
= Encapsulation cannot be |
violated by subclasses,)

via casts, etc.

* The technique fully
supports subclassing

- In contrast to solutions with
final, private inner classes,
etcC.

Peter Mller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich

Swiss Federal Institute of Technology Zurich

6.3 Object Structures and Aliasing — Problems of Aliasing

51

Exchanging Implementations

class ArrayList {
private int[| array;
private int next;

I/ requires ia != null

/[ensures Vi. O<=i<ia.length:

I/ ISElem(old(ia[i]))

public void addElems(int[]ia)
{ array = ia; next = ia.length; }

}

=)

class ArrayList {

private Entry header;

// requires ia != null

I/ ensures Vi. 0<=i<ia.length:

Il ISElem(old(ia[i]))
public void addElems(int[]ia)

{ ... I* create Entry for each
element */ }

}

» Interface including contract remains unchanged

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hoch
Swiss Federal Institute of Tec

7.2 Ownership Types — Topological Types

52

Exchanging Implementations (cont’d)

class ArrayList {
private rep int[| array;
private int next;

// requires ia !'= null
I/ ensures Vi. O<=i<ia.length:
I/ IsElem(old(ia[i]))
public void
addElems(any int[] ia)
{ System.arraycopy(...);
next = ia.length; }

class ArrayList {
private rep Entry header;

// requires ia !'= null
/] ensures Vi. 0<=i<ia.length:
I/ ISElem(old(ia[i]))
public void
addElems(any int[| ia)
{ ... I* create Entry for each
element */ }

=)

.

) Wtal capturing | |}
IS prevented

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types 53

Exchanging Implementations (cont’d)

class ArrayList { class ArrayList {

private rep int[| array; private rep Entry header;

private int next;

public any int[| getElems() public void any int| | getElems()

{returnia;} { I* create new array */ }
\ Leaking is still }
possible

peer ArrayListlist = new peer ArrayList();
list.prepend(0); = Observable
any int[] ia = list.getElems(); behavior is
Ilst.prepend(1); Changed
assertia[0] == 1;

Eidgendssische Technische Hoch
Swiss Federal Institu f

Peter Muller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Problems of Aliasing

54

Consistency of Object Structures

= Consistency of object
structures depends on
flelds of several objects

= |nvariants are usually
specified as part of the
contract of those objects
that represent the
iInterface of the object
structure

class ArrayList {
private int[] array;
private int next;

// invariant array != null &&
/[O<=next<=array.length &&
Il Vi.0<=i<next: array[i]>=0

public void add(inti) {...}
public void addElems(int[]ia)

[}

Peter Muller — Concepts of Object-Oriented Programming

7.2 Ownership Types — Topological Types

55

Invariants for Object Structures

= The invariant of object o
may depend on

- Encapsulated fields of o

- Fields of objects o
references through rep-
references

* Interface objects have
full control over their
rep-objects

class ArrayList {
private rep int[] array;
private int next;

// invariant array != null &&
/I 0<=next<=array.length &&
[l Vi.0<=i<next: array[i]>=0

public void add(inti) {...}

public void addElems
(anyint[]Jia) {...}

Peter Muller — Concepts of Object-Oriented Programming

6.3 Object Structures and Aliasing — Problems of Aliasing

56

Security Breach in Java 1.1.1

s = Malicious.class.getSigners();
s[O] = trusted, \

class Malicious { dentity]] identity
@ >
void bad() { °
ldentity[] s; |dentity
|dentity trusted = java.Security...; ® —
Class

/* abuse privilege */ \ "‘\
} ldentity]] _
— | |dentity
}]) [E—
[Identlty[] getSigners()]
return signers;
{ : : | System
Peter Muller — Concepts of Object-Oriented Programming Eugroesch TecischsHochc

7.2 Ownership Types — Topological Types

57

Security Breach in Java 1.1.1 (cont’d)

class Malicious {

void bad() {
any Ildentity[] s;
ldentity trusted = java.Security...; e

Identity][] |dentity
o >
[
|dentity
>

s[O] = trusted,;

s = Malicious.class.getSigners(); \

t

Class _ _
E@ny[] signers; }
O
ldentity]]
} \ o—"| [Identity
]) @ -
[rep Identity[] getSigners()]
return signers;
{ E } | System
Peter Miller — Concepts of Object-Oriented Programming Cidgendsaisch Tchnische Hachschle Ziric

7.2 Ownership Types — Topological Types

Ownership Types: Discussion

= Ownership types express heap topologies and
enforce encapsulation
= Owner-as-modifier is helpful to control side effects
- Maintain object invariants
- Prevent unwanted modifications
= Other applications also need restrictions of read
access
- Exchange of implementations
- Thread synchronization

= Ownership types are an area of current research

Peter Muller — Concepts of Object-Oriented Programming

Eidgendssische Technische Hochschule Zhrich
5% F I i f h

	Concepts of �Object-Oriented Programming
	7. Ownership Types
	Object Structures Revisited
	Drawbacks of Alias Prevention
	Requirements for Readonly Access
	Readonly Access via Supertypes
	Limitations of Supertype Solution
	Supertype Solution is not Safe
	Readonly Access in Eiffel
	Readonly Access in C++: const Pointers
	Readonly Access in C++: const Functions
	It wouldn’t be C++ …
	It wouldn’t be C++ … (cont’d)
	Readonly Access in C++: Transitivity
	Transitivity (cont’d)
	Readonly Access in C++: Discussion
	Pure Methods
	Types
	Subtype Relation
	Type Rules: Transitive Readonly
	Type Rules: Transitive Readonly (cont’d)
	Type Rules: Transitive Readonly (cont’d)
	Type Rules: Readonly Access
	Discussion
	7. Ownership Types
	Object Topologies
	Roles in Object Structures
	Ownership Model
	OwnershipTypes
	Example
	Type Safety
	Subtyping and Casts
	Example (cont’d)
	Viewpoint Adaptation: Example 1
	Viewpoint Adaptation: Example 2
	Type Rules: Field Access
	Viewpoint Adaptation
	Read vs. Write Access
	The lost Modifier
	The lost Modifier: Details
	The self Modifier
	The self Modifier: Details
	Example: Sharing
	Example: Internal vs. External Objects
	Internal vs. External Objects (cont’d)
	Owner-as-Modifier Discipline
	Owner-as-Modifier Discipline (cont’d)
	Internal vs. External Objects Revisited
	(Simplified) Programming Discipline
	Achievements
	Exchanging Implementations
	Exchanging Implementations (cont’d)
	Exchanging Implementations (cont’d)
	Consistency of Object Structures
	Invariants for Object Structures
	Security Breach in Java 1.1.1
	Security Breach in Java 1.1.1 (cont’d)
	Ownership Types: Discussion

