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C-Example Revisited

Peter Müller – Concepts of Object-Oriented Programming

struct sPerson {
String name;
void ( *print )( Person* );
String ( *lastName )( Person* );

};

typedef struct sStudent Student;
struct sStudent {
String name;
int regNum;
void ( *print )( Student* );
String ( *lastName )( Student* );

};

Student *s;
Person *p;
s = StudentC( “Susan Roberts“ );
p = (Person *) s;
p -> name = p -> lastName( p );
p -> print( p );

name
regNum

print
lastName

name
print
lastName

PersonStudent

2. Types and Subtyping
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Message not Understood
 Objects access fields and 

methods of other objects

 A safe language detects 
situations where the 
receiver object does not 
have the accessed field or 
method

 Type systems can be used 
to detect such errors

f1:
f2:

obj1

m(p1,p2) {..}
m1( ) {..}
m2(p) {..}

f:
obj2

m(p1,p2) {..}
n(p,r) {..}

…
r = obj2.m( 0, 1 );
s = obj2.f;

r = obj2.m( );
r = obj2.anotherMethod( 0, 1 );
s = obj2.anotherField;

2. Types and Subtyping
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Java Security Model (Sandbox)
 Applets get access to 

system resources only 
through an API

 Access control can be 
implemented in API 
(security manager)

 Code must be prevented 
from by-passing API

Program

Operating System

API

X

2. Types and Subtyping
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2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping
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Type Systems
 Definition:

A type system is a tractable syntactic method for 
proving absence of certain program behaviors by 
classifying phrases according to the kinds of values 
they compute.

[B.C. Pierce, 2002]

 Syntactic: Rules are based on form, not behavior
 Phrases: Expressions, methods, etc. of a program
 Kinds of values: Types

2.1 Types and Subtyping – Types
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Weak and Strong Type Systems
 Untyped languages

- Do not classify values into types
- Example: assembler

 Weakly-typed languages
- Classify values into types, but do not strictly enforce 

additional restrictions
- Example: C, C++

 Strongly-typed languages
- Enforce that all operations are applied to arguments of 

the appropriate types
- Examples: C#, Eiffel, Java, Python, Scala, Smalltalk

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types
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Weak vs. Strong Typing: Example

 Strongly-typed languages prevent certain 
erroneous or undesirable program behavior

Peter Müller – Concepts of Object-Oriented Programming

int main( int argc, char** argv ) {
int i = ( int ) argv[ 0 ];
printf( "%d", i );

} C

int main( String[ ] argv ) {
int i = ( int ) argv[ 0 ];
System.out.println( i );

} Java

1628878672 Compile-time error:
inconvertible types
found    : java.lang.String
required: int

2.1 Types and Subtyping – Types
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Types
 Definition:

A type is a set of values sharing some properties. 
A value v has type T if v is an element of T.

 Question: what are the “properties” shared by the 
values of a type?
- Nominal types: 

based on type names
Examples: C++, Eiffel, Java, Scala

- Structural types: 
based on availability of methods and fields
Examples: Python, Ruby, Smalltalk

2.1 Types and Subtyping – Types



10

 Type membership

 Type equivalence
- S and T are different 

in nominal systems
- S and T are equivalent

in structural systems

Nominal and Structural Types
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obj2: T
m( int ) {..}
n( ) {..}

obj0: S
m( int ) {..}
n( ) {..}

obj1: T
m( int ) {..}
n( ) {..}

class S {
m( int ) {…}
n( ) {…}

}

class T {
m( int ) {…}
n( ) {…}

}

Two nominal 
types

Two nominal 
types One structural 

type

2.1 Types and Subtyping – Types
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Static Type Checking
 Each expression of a 

program has a type
 Types of variables and 

methods are declared
explicitly or inferred

 Types of expressions can 
be derived from the types 
of their constituents

 Type rules are used at 
compile-time to check 
whether a program is 
correctly typed

“A string”
5 + 7

Java

int a;
boolean equals( Object o )

Java

a + 7
“A number: “ + 7
“A string”.equals( null )

Java

a = “A string”;
“A string”.equals( 1, 2 )

Java

2.1 Types and Subtyping – Types

Compile-time 
errors
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DynamicType Checking
 Variables, methods, and

expressions of a program 
are typically not typed

 Every object and value 
has a type

 Run-time system checks 
that operations are 
applied to expected 
arguments

“A string”
5 + 7

Python

a = …;
def foo( o ): …

Python

a + 7
“A number: “ * 7
foo( None )

Python

a = “A string” / 5
foo( 5, 7 )

Python

a = “A string”
a = 7

Python

Run-time 
errors

2.1 Types and Subtyping – Types
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Static Type Safety
 Definition:

A programming language is called type-safe if its 
design prevents type errors.

 Statically type-safe object-oriented languages 
guarantee the following type invariant:
In every execution state, the type of the value held 
by variable v is a subtype of the declared type of v

 Type safety guarantees the absence of certain 
run-time errors

2.1 Types and Subtyping – Types
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Run-Time Checks in Static Type Systems
 Most static type systems 

rely on dynamic checks 
for certain operations

 Common example: type 
conversions by casts

 Run-time checks throw 
an exception in case of 
a type error

Object[ ] oa = new Object[ 10 ];
String s = “A String”;

oa[ 0 ] = s;

…

s = oa[ 0 ];

s = s.concat( “Another String” );

s = (String) oa[ 0 ];
if ( oa[ 0 ] instanceof String )
s = (String) oa[ 0 ];

2.1 Types and Subtyping – Types
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Expressiveness of Dynamic Type Systems

 Static checkers need to 
approximate run-time 
behavior (conservative 
checks)

 Dynamic checkers 
support on-the-fly code 
generation and dynamic 
class loading
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eval(
"x=10; y=20; document.write( x*y )" 

);

JavaScript

def divide( n, d ):
if d != 0: res = n / d
else: res = “Division by zero”
print res

Python

2.1 Types and Subtyping – Types



16

Static vs. Dynamic Type Checking
Advantages of 
static checking
 Static safety: More errors 

are found at compile time

 Readability: Types are 
excellent documentation

 Efficiency: Type 
information allows 
optimizations

Advantages of 
dynamic checking
 Expressiveness: No correct 

program is rejected by the 
type checker

 Low overhead: No need to 
write type annotations

 Simplicity: Static type 
systems are often 
complicated

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types
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Type Systems in OO-Languages

C++, C#, Eiffel, Java, 
Scala

For certain features of 
statically-typed languages

Research languages such 
as Moby, PolyToil, O’Caml

JavaScript, Python, Ruby, 
Smalltalk

Peter Müller – Concepts of Object-Oriented Programming

Static Dynamic
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Often called 
“duck typing”

“When I see a bird that walks 
like a duck and swims like a 
duck and quacks like a duck, 

I call that bird a duck.“
[James Whitcomb Riley]

2.1 Types and Subtyping – Types
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2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping
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Classification in Software Technology
 Substitution principle

Objects of subtypes can be used wherever objects 
of supertypes are expected

 Syntactic classification
- Subtype objects can understand at least the messages 

that supertype objects can understand

 Semantic classification
- Subtype objects provide at least the behavior of 

supertype objects

2.2 Types and Subtyping – Subtyping
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Subtyping
 Definition of “Type”:

A type is a set of values sharing some properties. 
A value v has type T if v is an element of T.

 The subtype relation corresponds to the subset 
relation on the values of a type

Object

String
Object String

2.2 Types and Subtyping – Subtyping
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Nominal and Structural Subtyping
 Nominal type systems

- Determine type 
membership based on 
type names

- Determine subtype 
relations based on 
explicit declarations

 Structural type systems
- Determine type 

membership and
subtype relations based
on availability of 
methods and fields

Peter Müller – Concepts of Object-Oriented Programming

class T 
extends S {
m( int ) {…}

}

class U {
m( int ) {…}
n( ) {…}

}

class T {
m( int ) {…}

}

class U {
m( int ) {…}
n( ) {…}

}

class S { m( int ) {…} }

Only T is a nominal 
subtype of S

T and U are structural 
subtypes of S

2.2 Types and Subtyping – Subtyping
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Nominal Subtyping and Substitution
 Subtype objects can understand at least the 

messages that supertype objects can understand
- Method calls
- Field accesses

 Subtype objects have wider interfaces than 
supertype objects
- Existence of methods and fields
- Accessibility of methods and fields
- Types of methods and fields

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping
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Existence
 Sub narrows Super’s 

interface

 If m is called with a 
Sub object as 
parameter, execution 
fails

 Subtypes may add, but 
not remove methods 
and fields

class Super {
void foo( ) { … } 
void bar( ) { … } 

}

class Sub <: Super {
void foo( ) { … } 
// no bar( )

}

void m( Super s ) { s.bar( ); }

2.2 Types and Subtyping – Subtyping
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Accessibility
 At run time, m could 

access private method 
of Sub, thereby 
violating information 
hiding

 An overriding method 
must not be less 
accessible than the 
methods it overrides

class Super {
public void foo( ) { … } 
public void bar( ) { … } 

}

class Sub <: Super {
public void foo( ) { … } 
private void bar( ) { … } 

}

void m( Super s ) { s.bar( ); }

2.2 Types and Subtyping – Subtyping
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Overriding: Parameter Types
 Calling m with a Sub object 

demonstrates a violation of 
static type safety
- o in Sub.bar is not a String

 Contravariant parameters: 
An overriding method must 
not require more specific 
parameter types than the 
methods it overrides

Peter Müller – Concepts of Object-Oriented Programming

class Super {
void foo( String s ) { … } 
void bar( Object o ) { … } 

}

class Sub <: Super {
void foo( Object s ) { … } 
void bar( String o ) { … } 

}

void m( Super s ) { 
s.foo( “Hello” );
s.bar( new Object( ) );

}

2.2 Types and Subtyping – Subtyping



26

Overriding: Result Types
 Calling m with a Sub object 

demonstrates a violation of 
static type safety
- t in m is not a String

 Covariant results:
An overriding method must 
not have a more general 
result type than the 
methods it overrides
- Out-parameters and 

exceptions are results

Peter Müller – Concepts of Object-Oriented Programming

class Super {
Object foo( ) { … } 
String bar( ) { … } 

}

class Sub <: Super {
String foo( ) { … } 
Object bar( ) { … } 
}

void m( Super s ) { 
Object o = s.foo( );
String t = s.bar( );

}

2.2 Types and Subtyping – Subtyping
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Overriding: Fields
 Calling m with a Sub object 

demonstrates a violation of 
static type safety
- s.f is not a String
- t is not a String

 Subtypes must not change 
the types of fields
- Fields are bound statically

Peter Müller – Concepts of Object-Oriented Programming

class Super {
Object f;
String g;

}

class Sub <: Super {
String f;
Object g;
}

void m( Super s ) { 
s.f = new Object( );
String t = s.g;

}

2.2 Types and Subtyping – Subtyping
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class Super {
T f;
void setF( T f ) { this.f = f; }
T getF( ) { return f; }

}

class Sub <: Super {
S f;
void setF( S f ) { this.f = f; }
S getF( ) { return f; }

}

Overriding: Fields (cont’d)
 Regard field as pair of 

getter and setter methods
- Specializing a field type 

(S <: T) corresponds to 
specializing the argument of 
the setter (violates 
contravariant parameters)

- Generalizing a field type 
(T <: S) corresponds to 
generalizing the result of the 
getter (violates covariant 
results)

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping
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Overriding: Immutable Fields
 Immutable fields do not 

have setters
 Types of immutable fields 

can be specialized in 
subclasses (S <: T)
- Works only in the absence of 

inheritance (subtype 
constructor initializes f)!

 Not permitted by 
mainstream languages

Peter Müller – Concepts of Object-Oriented Programming

class Super {
final T f;
void setF( T f ) { this.f = f; }
T getF( ) { return f; }

}

class Sub <: Super {
final S f;
void setF( S f ) { this.f = f; }
S getF( ) { return f; }

}

2.2 Types and Subtyping – Subtyping
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Narrowing Interfaces in Eiffel
 Eiffel permits the “illegal” 

narrowing of interfaces
- Changing the existence of 

methods
- Overriding with covariant 

parameter types
- Specializing field types

 Run-time exception 
“catcall detected for
argument #1 'o' expected
STRING but got ANY“

Peter Müller – Concepts of Object-Oriented Programming

class SUPER
feature
bar ( o: ANY ) do … end

end

class SUB inherit SUPER
redefine bar end
feature
bar ( o: STRING ) do … end

end
m ( s: SUPER )
do
s.bar ( create {ANY} )

end

2.2 Types and Subtyping – Subtyping
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Narrowing Interfaces in Eiffel (cont’d)
 With attached (non-null) 

types, covariant overriding 
requires a detachable 
(possibly-null) type

 Run-time system passes 
null when an argument is 
not of the expected type

 Method must check for 
null-ness explicitly

Peter Müller – Concepts of Object-Oriented Programming

class SUPER
feature
bar ( o: ANY ) do … end

end

class SUB inherit SUPER
redefine bar end
feature
bar ( o: ?STRING ) 
do
if { o: STRING } s then s.foo;
else … end

end
end

2.2 Types and Subtyping – Subtyping
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 In Java and C#, arrays are 
covariant
- If S <: T then S[ ] <: T[ ]

 Each array update requires a
run-time type check

Covariant Arrays

Peter Müller – Concepts of Object-Oriented Programming

class C {
void foo( Object[ ] a ) {
if( a.length > 0 )
a[ 0 ] = new Object( );

}
}

void client( C c ) {
c.foo( new String[ 5 ] );

}

class Object[ ] {

public Object 0;
public Object 1;
…

}

class String[ ] 
<: Object[ ] {

public String 0;
public String 1;
…

}

2.2 Types and Subtyping – Subtyping
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Covariant Arrays (cont’d)
 Covariant arrays allow one to write methods that 

work for all arrays such as

 Here, the designers of Java and C# resolved the 
trade-off between expressiveness and static safety 
in favor of expressiveness 

 Generics allow a solution that is expressive and 
statically-safe (more later)

Peter Müller – Concepts of Object-Oriented Programming

class Arrays {  
public static void fill( Object[ ] a, Object val ) { … }

}

2.2 Types and Subtyping – Subtyping
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Shortcomings of Nominal Subtyping (1)
 Nominal subtyping can impede reuse
 Consider two library classes

 Now we would like to store Resident and 
Employee-objects in a collection of type Person[ ]
- Neither Resident nor Employee is a subtype of Person

Peter Müller – Concepts of Object-Oriented Programming

class Resident {
String getName( ) { … }
Data dateOfBirth( ) { … }
Address getAddress( ) { … }

}

class Employee {
String getName( ) { … }
Data dateOfBirth( ) { … }
int getSalary( ) { … }

}

2.2 Types and Subtyping – Subtyping
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Reuse: Adapter Pattern
 Implement Adapter (wrapper)

- Subtype of Person
- Delegate calls to adaptee (Resident or Employee)

 Adapter requires boilerplate code
 Adapter causes memory and run-time overhead
 Works also if Person is reused

Peter Müller – Concepts of Object-Oriented Programming

class EmployeeAdapter implements Person {
private Employee adaptee;
String getName( ) { return adaptee.getName( ); }
Data dateOfBirth() { return adaptee.dateOfBirth( ); }

}

interface Person {
String getName( );
Data dateOfBirth( );

}

2.2 Types and Subtyping – Subtyping
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Reuse: Generalization
 Most OO-languages support specialization of 

superclasses (top-down development)
 Some research languages (e.g., Sather, Cecil) also 

support generalization (bottom-up development)

 Supertype can be declared after subtype has been 
implemented

Peter Müller – Concepts of Object-Oriented Programming

interface Person generalizes Resident, Employee {
String getName( );
Data dateOfBirth( );

}

2.2 Types and Subtyping – Subtyping
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Reuse: Generalization (cont’d)
 Generalization does 

not match well with 
inheritance

 Subclass-to-be already 
has a superclass
- Single inheritance: 

exchanging the 
superclass might affect 
the subclass

- Multiple inheritance: 
additional superclass
may cause conflicts

Peter Müller – Concepts of Object-Oriented Programming

abstract class DataPoint
generalizes Cell {

abstract int getData( );
boolean equals( Object o ) {
… // check type of o
return getData( ) == 

( (DataPoint) o ).getData( );
}

}

class Cell {
int value;
int getData( ) {  return value; }

}

2.2 Types and Subtyping – Subtyping
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Shortcomings of Nominal Subtyping (2)
 Nominal subtyping can limit generality
 Many method signatures are overly restrictive

 printData uses only two methods of c, but requires 
a type with 13 methods

Peter Müller – Concepts of Object-Oriented Programming

void printData( Collection<String> c ) {
if( c.isEmpty() ) System.out.println( “empty” ); 
else { 
Iterator<String> iter = c.iterator( );
while( iter.hasNext() ) System.out.println( iter.next() );

}
}

2.2 Types and Subtyping – Subtyping
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Generality: Additional Supertypes
 Make type requirements 

weaker by declaring 
interfaces for useful 
supertypes

 But: many useful subsets 
of operations
- Read-only collection
- Write-only collection (log file)
- Convertible collection
- Combinations of the above

Peter Müller – Concepts of Object-Oriented Programming

interface Iterable<E> {
Iterator<E> iterator( );

}

interface Collection<E> 
extends Iterable<E> {

// 13 methods
}

 Overhead for declaring supertypes and subtyping

2.2 Types and Subtyping – Subtyping
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Generality: Optional Methods
 Java documentation 

marks some methods 
as “optional”
- Implementation is 

allowed to throw an 
unchecked exception

- For Collection: all 
mutating methods

 Static safety is lost

Peter Müller – Concepts of Object-Oriented Programming

interface Collection<E> 
extends Iterable<E> {

/* 13 methods, out of which 6 are 
optional */

}

class AbstractCollection<E> 
implements Collection<E> {

boolean add( E e ) {
throw new

UnsupportedOperationException( );
}
…

}

2.2 Types and Subtyping – Subtyping
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Structural Subtyping and Substitution
 Subtype objects can understand at least the 

messages that supertype objects can understand
- Method calls
- Field accesses

 Structural subtypes have by definition wider 
interfaces than their supertypes

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping
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Reuse: Structural Subtyping
 All types are “automatically” 

subtypes of types with 
smaller interfaces
- No extra code or declarations 

required

 No support for inheritance 
(like generalization)

 Person is a supertype of 
Resident and Employee

Peter Müller – Concepts of Object-Oriented Programming

class Resident {
String getName( ) { … }
Data dateOfBirth( ) { … }
… }

class Employee {
String getName( ) { … }
Data dateOfBirth( ) { … }
… }

interface Person {
String getName( );
Data dateOfBirth( );

}

2.2 Types and Subtyping – Subtyping
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Generality: Structural Subtyping

 Static type checking
- Additional supertypes approach applies
- Additional supertypes must be declared, but not the 

subtype relation
 Dynamic type checking

- Arguments to operations are not restricted
- Similar to optional methods approach (possible run-time 

error)

Peter Müller – Concepts of Object-Oriented Programming

void printData( Collection<String> c ) {
// uses only c.isEmpty() and c.iterator()

}

2.2 Types and Subtyping – Subtyping
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Type Systems in OO-Languages

Sweetspot:
Maximum static safety

Why should one declare all 
the type information but 

then not check it statically?

Overhead of declaring 
many types is inconvenient;
Problems with semantics of 

subtypes (see later)

Sweetspot:
Maximum flexibility

Peter Müller – Concepts of Object-Oriented Programming

Static Dynamic
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2.2 Types and Subtyping – Subtyping
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2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping
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Types
 Definition:

A type is a set of values sharing some properties. 
A value v has type T if v is an element of T.

 Question: what are the “properties” shared by the 
values of a type?
- So far we focused on syntax

 “Properties” should also include the behavior of the 
object
- Expressed as interface specifications (contracts)

2.3 Types and Subtyping – Behavioral Subtyping
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Method Behavior

 Preconditions have to 
hold in the state 
before the method 
body is executed

 Postconditions have 
to hold in the state 
after the method body 
has terminated

 Old-expressions can 
be used to refer to 
prestate values from 
the postcondition

class BoundedList {
Object[ ] elems;
int free;  // next free slot
…

void add( Object e )  { … }
}

// requires free < elems.length
// ensures elems[ old( free ) ] == e 

2.3 Types and Subtyping – Behavioral Subtyping
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Object Invariants
 Object invariants 

describe consistency 
criteria for objects

 Invariants have to hold 
in all states, in which an 
object can be accessed 
by other objects

class BoundedList {
Object[ ] elems;
int free;  // next free slot

…
// requires free < elems.length
// ensures elems[ old( free ) ] == e 
void add( Object e )  { … }

}

/* invariant 
elems != null &&
0 <= free && 
free <= elems.length */

2.3 Types and Subtyping – Behavioral Subtyping
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Visible States

 Invariants have to hold in 
pre- and poststates of 
methods executions but 
may be violated 
temporarily in between

 Pre- and poststates are 
called “visible states”

class Redundant {
private int a, b;
// invariant a == b

public void set( int v ) { 
// invariant  of this holds
a = v;
// invariant of this violated
b = v;
// invariant  of this holds

}
}

2.3 Types and Subtyping – Behavioral Subtyping
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History Constraints
 History constraints 

describe how objects 
evolve over time

 History constraints 
relate visible states

 Constraints must be 
reflexive and transitive

class Person {
int age;

// constraint old( age ) <= age

Person( int age ) {
this.age = age;

}

…
}

2.3 Types and Subtyping – Behavioral Subtyping

Person p = new Person( 7 );
…
…
assert 7 <= p.age;



51

Static vs. Dynamic Contract Checking
Static checking
Program verification
 Static safety: More errors 

are found at compile time

 Complexity: Static contract 
checking is difficult and not 
yet mainstream

 Large overhead: Static 
contract checking requires 
extensive contracts

 Examples: Spec#, JML

Dynamic checking
Run-time assertion checking
 Incompleteness: Not all 

properties can be checked 
(efficiently) at run-time

 Efficient bug-finding: 
Complements testing

 Low overhead: Partial 
contracts are useful

 Examples: Eiffel, JML

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping



52

Peter Müller – Concepts of Object-Oriented Programming

 Subtypes specialize the behavior of supertypes
 What are legal specializations?

Contracts and Subtyping
class UndoNaturalNumber

extends Number {
int undo;
// invariant 0 < n && 0 < undo

// requires 0 < p
// ensures n == p && undo == old( n )
void set( int p )  

{ undo = n; n = p; }
…

}

class Number {

int n;
// invariant true

// requires true
// ensures n == p
void set( int p )  

{ n = p; }
…

}

2.3 Types and Subtyping – Behavioral Subtyping
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Rules for Subtyping: Preconditions
class Super {
// requires 0 <= n && n < 5
void foo( int n ) {
char[ ] tmp = new char[ 5 ];
tmp[ n ] = ‘X’;

}
}

class Sub extends Super {
// requires 0 <= n && n < 3
void foo( int n ) {
char[ ] tmp = new char[ 3 ];
tmp[ n ] = ‘X’;

}
}

void crash( Super s ) {
s.foo( 4 );

}

x.crash( new Sub( ) );

 Subtype objects must fulfill 
contracts of supertypes

 Overriding methods of 
subtypes may have weaker 
preconditions than 
corresponding supertype
methods

2.3 Types and Subtyping – Behavioral Subtyping



54

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Postconditions
class Super {
// ensures 0 < result
int foo( ) {
return 1;

}
}

class Sub extends Super {
// ensures 0 <= result
int foo( ) {
return 0;

}
}

void crash( Super s ) {
int i = 5 / s.foo( );

}

x.crash( new Sub( ) );

 Overriding methods of 
subtypes may have 
stronger postconditions 
than corresponding 
supertype methods

2.3 Types and Subtyping – Behavioral Subtyping
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Rules for Subtyping: Invariants
class Super {
int n;
// invariant 0 < n
Super( ) { n = 5; }
int crash( ) { return 5 / n; }

}

class Sub extends Super {
// invariant 0 <= n
Sub( ) { 
n = 0;

}
}

new Sub( ).crash( );

 Subtypes may have 
stronger invariants

2.3 Types and Subtyping – Behavioral Subtyping
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Rules for Subtyping: History Constraints
class Super {
int n;

// constraint old( n ) <= n

int get( ) { return n; }

void foo( ) { }
}

class Sub extends Super {
// constraint true

void foo( ) {
n = n – 1;

}
}

int crash( Super s ) {
int cache = s.get( ) – 1;
s.foo( );
return 5 / ( cache – s.get() );

}

x.crash( new Sub( ) );

 Subtypes may have 
stronger history 
constraints

2.3 Types and Subtyping – Behavioral Subtyping
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Natural Numbers Revisited

 UndoNaturalNumber does not specialize the 
behavior of Number

Peter Müller – Concepts of Object-Oriented Programming

class UndoNaturalNumber
extends Number {

int undo;
// invariant 0 < n && 0 < undo

// requires 0 < p
// ensures n == p && undo == old( n )
void set( int p )  

{ undo = n; n = p; }
…

}

class Number {

int n;
// invariant true

// requires true
// ensures n == p
void set( int p )  

{ n = p; }
…

}

2.3 Types and Subtyping – Behavioral Subtyping
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 Subtype objects must fulfill contracts of supertypes, 
but:
- Subtypes can have stronger invariants
- Subtypes can have stronger history constraints
- Overriding methods of subtypes can have

weaker preconditions
stronger postconditions

than corresponding supertype methods

 Concept is called Behavioral Subtyping
- Often implemented via specification inheritance

Rules for Subtyping: Summary
2.3 Types and Subtyping – Behavioral Subtyping
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Static Checking of Behavioral Subtyping
 For each override S.m of T.m check for all 

parameters, heaps, and results
- PreT.m => PreS.m and PostS.m => PostT.m

 For each subtype S <: T check for all heaps:
- InvS => InvT and ConsS => ConsT

 But: entailment is undecidable
- For all p :: p == p*p  =>  (p == 0 || p == 1)
- For all p, result :: result == 2 =>  p < result 

Peter Müller – Concepts of Object-Oriented Programming
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class Super {
// requires p == p*p
// ensures p < result 
int foo( int p ) { … }          }

class Sub extends Super {
// requires p == 0 || p == 1
// ensures result == 2
int foo( int p ) { … }          }
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Run-Time Checking of Behav. Subtyping
 Checking entailment for all 

parameters, heaps, and results 
is not possible at run time

 Idea: check those properties 
subsequent code relies on 

 For each call o.m( … )
- Check precondition of m in o’s 

dynamic type (which the 
executed body relies on)

- Check postcondition of m in o’s 
static type (which the caller relies 
on)

Peter Müller – Concepts of Object-Oriented Programming

class Super {
// requires p == p*p
// ensures p < result 
int foo( int p ) { … }          }

class Sub extends Super {
// requires p == 0 || p == 1
// ensures result == 2
int foo( int p ) { … }          }

void bar( Super s ) {
// check 0 == 0 || 0 == 1
r = s.foo( 0 );
// check 0 < r

} Assume s is 
a Sub object

2.3 Types and Subtyping – Behavioral Subtyping
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Specification Inheritance
 Behavioral subtyping can be 

enforced by inheriting 
specifications from supertypes

 Rule for invariants
- The invariant of a type S is the 

conjunction of the invariant 
declared in S and the invariants 
declared in the supertypes of S

- Subtypes have stronger 
invariants

- Analogous for history constraints

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Super {
int n;
// invariant 0 < n
Super( ) { n = 5; }
int crash( ) { 
return 5 / n; 

}
}

class Sub extends Super {
// invariant 0 <= n
Sub( ) { n = 0; }

} Violates 
inherited 
invariant
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Simple Inheritance of Method Contracts
 An overriding method must not

declare additional preconditions
- The overriding and the

overridden method have 
identical preconditions

 The postcondition of an overriding method is the 
conjunction of the postcondition declared for the 
method and the postconditions declared for the 
methods it overrides
- Overriding methods have stronger postconditions

Peter Müller – Concepts of Object-Oriented Programming
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class Super {
// requires 0 <= n && n < 5
void foo( int n ) { … }

}

class Sub extends Super {
// requires 0 <= n && n < 3
void foo( int n ) { … }

}
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Precondition Inheritance: Shortcomings
 Simple rule does not work for multiple subtyping

 Simple rule does not allow precondition weakening

Peter Müller – Concepts of Object-Oriented Programming

interface I {
// requires 0 <= n
void foo( int n );

}

class C implements I, J {
void foo( int n ) { … }

}

interface J {
// requires n < 0
void foo( int n );

}
Inherited 

precondition 
is false

class Set {
// requires contains( x )
void remove( Object x )
{ … }

}

class MySet extends Set {
// requires true
void remove( Object x )
{ … }

}

2.3 Types and Subtyping – Behavioral Subtyping
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Precondition Inheritance: Improved Rule
 The precondition of an overriding method is the 

disjunction of the precondition declared for the 
method and the preconditions declared for the 
methods it overrides
- Overriding methods have weaker preconditions

 Simple postcondition rule becomes to restrictive

Peter Müller – Concepts of Object-Oriented Programming
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class Set {
// requires contains( x )

void remove( Object x )
{ … }

}

class MySet extends Set {
// requires true
void remove( Object x )
{ … }

}

class Set {
// requires contains( x )
// ensures size() == old( size() – 1 )
void remove( Object x )
{ … }

}
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 A method must satisfy its postcondition only if the 
caller satisfies the precondition
- Interpret every postcondition as  old( PreT.m ) => PostT.m

 The postcondition of a method is the conjunction of 
these implications for the declared and inherited 
contracts

class Set {
// requires contains( x )
// ensures size() == old( size() – 1 )
void remove( Object x )
{ … }

}

Postcondition Inheritance: Improved Rule

Peter Müller – Concepts of Object-Oriented Programming
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class MySet extends Set {
// requires true
// ensures true
void remove( Object x )
{ … }

}

class MySet extends Set {
// requires !contains( x )
// ensures size() == old( size() )
void remove( Object x )
{ … }

}
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Behavioral Structural Subtyping
 Structural type systems determine 

subtype relation automatically
 Automatic static checking

- Not possible, see above
 Dynamic checking

- Not possible for all contracts
- Postcondition cannot be checked

because we have no static type for 
receiver, so we do not know what we 
can expect
(just like result types are not checked)

Peter Müller – Concepts of Object-Oriented Programming

render( p ) {
p.draw( );

}

class Circle {
draw( ) { … }

}

class Cowboy {
draw( ) { … }

}

2.3 Types and Subtyping – Behavioral Subtyping
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Types as Contracts
 Types can be seen as a 

special form of contract, 
where static checking is 
decidable

 Operator type( x ) yields 
the type of the object
stored in x 
- (The dynamic type of x)

Peter Müller – Concepts of Object-Oriented Programming

class Types {
Person p;

String foo( Person q ) { … }
…

}

class Types {
p;

foo( q ) { … }
…

}

class Types {
p;
// invariant type( p ) <: Person

foo( q ) { … }
…

}

class Types {
p;
// invariant type( p ) <: Person

// require type( q ) <: Person
// ensure type( result ) <: String
foo( q ) { … }
…

}

2.3 Types and Subtyping – Behavioral Subtyping



68

Types as Contracts: Subtyping
 Stronger invariant: 

- type( p ) <: S’ => type( p ) <: S  
requires S’ <: S

 Weaker precondition
- type( q ) <: T => type( q ) <: T’  

requires T <: T’

 Stronger postcondition: 
- type( result ) <: U’  => 

type( result ) <: U  
requires U’ <: U

Peter Müller – Concepts of Object-Oriented Programming

class Sub <: Super {
S’ p;
// invariant type( p ) <: S’
// require type( q ) <: T’
// ensure type( result ) <: U’
U’ foo( T’ q ) { … }

}

class Super {
S p;
// invariant type( p ) <: S
// require type( q ) <: T
// ensure type( result ) <: U
U foo( T q ) { … }

}

Contravariance

Covariance

Covariance

2.3 Types and Subtyping – Behavioral Subtyping
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Invariants over Inherited Fields
 Invariants over inherited 

field f can be violated by all 
methods that have access 
to f

 Static checking of such 
invariants is not modular

 Even without qualified field 
accesses (x.f = e), one 
needs to re-check all 
inherited methods

Peter Müller – Concepts of Object-Oriented Programming

package Client;
public class Sub 

extends Super {
// invariant 0 <= f

}

package Library;
public class Super {
protected int f;

}

package Library;
class Friend {
void foo( Super s ) { s.f = –1; }

}

2.3 Types and Subtyping – Behavioral Subtyping
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Immutable Types
 Objects of immutable types 

do not change their state 
after construction

 Advantages
- No unexpected modifications 

of shared objects
- No thread synchronization 

necessary
- No inconsistent states

 Examples from Java
- String, Integer

Peter Müller – Concepts of Object-Oriented Programming

class ImmutableCell {
int value;

ImmutableCell( int value ) { 
this.value = value;

}

int get( ) { 
return value; 

}

// no setter
}

2.3 Types and Subtyping – Behavioral Subtyping
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Immutable and Mutable Types
 What should be the 

subtype relation 
between mutable and 
immutable types?

Peter Müller – Concepts of Object-Oriented Programming

class ImmutableCell {
int value;
ImmutableCell( int value ) { … } 
int get( ) { … }
// no setter

}

class Cell {
int value;
Cell( int value ) { … } 
int get( ) { … }
void set( int value ) { … }

}

2.3 Types and Subtyping – Behavioral Subtyping
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Immutable and Mutable Types (cont’d)
 Proposal 1: Immutable 

type should be subtype

 Not possible because 
mutable type has wider 
interface

Peter Müller – Concepts of Object-Oriented Programming

class Cell {
int value;
Cell( int value ) { … } 
int get( ) { … }
void set( int value ) { … }

}

class ImmutableCell extends Cell {
ImmutableCell( int value ) { … }
void set( int value ) { 
// throw exception
}

}

2.3 Types and Subtyping – Behavioral Subtyping
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Immutable and Mutable Types (cont’d)
 Proposal 2: Mutable 

type should be subtype

 Mutable type has wider 
interface
- Also complies with 

structural subtyping

 But: Mutable type does 
not specialize behavior

Peter Müller – Concepts of Object-Oriented Programming

class Cell extends ImmutableCell {
Cell( int value ) { … } 
void set( int value ) { … }

}

class ImmutableCell {
int value;

… // no setter
}

foo( ImmutableCell c ) {
int cache = c.get( );
…
assert cache == c.get( );  

}

class ImmutableCell {
int value;
// constraint old( value ) == value
… // no setter

}

2.3 Types and Subtyping – Behavioral Subtyping
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Immutable and Mutable Types: Solutions
 Clean solution

- No subtype relation between 
mutable and immutable types

- Only exception: Object, which 
has no history constraint

 Java API contains immutable 
types that are subtypes of 
mutable types
- AbstractCollection and Iterator

are mutable
- All mutating methods are 

optional
Peter Müller – Concepts of Object-Oriented Programming

Object

Immutable 
types

Mutable 
types

2.3 Types and Subtyping – Behavioral Subtyping
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