
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2010

2

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing – Object Structures

3

Peter Müller – Concepts of Object-Oriented Programming

Object Structures
 Objects are the building blocks of object-oriented

programming
 However, interesting abstractions are almost

always provided by sets of cooperating objects

 Definition:
An object structure is a set of objects that are
connected via references

6.1 Object Structures and Aliasing – Object Structures

4

Peter Müller – Concepts of Object-Oriented Programming

Example 1: Array-Based Lists
class ArrayList {
private int[] array;
private int next;

public void add(int i) {
if (next==array.length) resize();
array[next] = i;
next++;

}

public void addElems(int[] ia)
{ … }

…
}

array:
next:

list

…

length:
0:

array

…

1:
2:

6.1 Object Structures and Aliasing – Object Structures

5

Peter Müller – Concepts of Object-Oriented Programming

Example 2: Doubly-Linked Lists

header:
3size:

LinkedList

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

ObjectObject Object

next:
2nextIndex:

ListItr

6.1 Object Structures and Aliasing – Object Structures

6

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing

7

Peter Müller – Concepts of Object-Oriented Programming

Alias

 Definition:
A name that has been assumed temporarily

[WordNet, Princeton University]

6.2 Object Structures and Aliasing – Aliasing

8

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Procedural Programming
 var-parameters are

passed by reference
(call by name)

 Modification of a var-
parameter is
observable by caller

 Aliasing: Several
variables (here: p, q)
refer to same memory
cell

 Aliasing can lead to
unexpected side-effects

program aliasTest
procedure assign(var p: int, var q: int);
begin

p := 25;

end;
begin
var x: int := 1;
assign(x, x);

end
end.

{ p = 1 ∧ q = 1 }
p := 25;
{ p = 25 ∧ q = 25 }

{ x = 25 }

6.2 Object Structures and Aliasing – Aliasing

9

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Object-Oriented Programming
 Definition:

An object o is aliased if two or more variables hold
references to o.

 Variables can be
- Fields of objects (instance variables)
- Static fields (global variables)
- Local variables of method executions, including this
- Formal parameters of method executions
- Results of method invocations or other expressions

6.2 Object Structures and Aliasing – Aliasing

10

Peter Müller – Concepts of Object-Oriented Programming

Static Aliasing
 Definition:

An alias is static if all
involved variables are
fields of objects or
static fields.

 Static aliasing occurs in
the heap memory

array:
next:

list1

array:
next:

list2

array

list1.array[0] = 1;
list2.array[0] = -1;
System.out.println(list1.array[0]);

6.2 Object Structures and Aliasing – Aliasing

11

Peter Müller – Concepts of Object-Oriented Programming

Dynamic Aliasing
 Definition:

An alias is dynamic
if it is not static.

 Dynamic aliasing
involves stack-
allocated variables

array:
next:

list1

array

int[] ia = list1.array;
list1.array[0] = 1;
ia[0] = -1;
System.out.println(list1.array[0]);

6.2 Object Structures and Aliasing – Aliasing

12

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Efficiency
 In OO-programming,

data structures are
usually not copied
when passed or
modified

 Aliasing and
destructive updates
make OO-programming
efficient

class SList {
SList next;
Object elem;
void rest() { return next; }
void set(Object e) { elem = e; }

}

void foo(SList slist) {
SList rest = slist.rest();
rest.set(“Hello”); }

SList SList SListSList

restslist

6.2 Object Structures and Aliasing – Aliasing

13

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Sharing
 Aliasing is a direct

consequence of object
identity

 Objects have state that
can be modified

 Objects have to be
shared to make
modifications of state
effective

3

LinkedList

Entry

Entry Entry Entry

2

ListItr

6.2 Object Structures and Aliasing – Aliasing

14

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Capturing
 Capturing occurs when

objects are passed to a
data structure and then
stored by the data
structure

 Capturing often occurs in
constructors (e.g.,
streams in Java)

 Problem: Alias can be
used to by-pass interface
of data structure

array:
next:

list1

array

class ArrayList {
private int[] array;
private int next;
public void addElems(int[] ia)
{ array = ia; next = ia.length; }

…
}

6.2 Object Structures and Aliasing – Aliasing

15

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Leaking
 Leaking occurs when

data structure pass a
reference to an object,
which is supposed to be
internal to the outside

 Leaking often happens
by mistake

 Problem: Alias can be
used to by-pass
interface of data
structure

array:
next:

list1

array

class ArrayList {
private int[] array;
private int next;
public int[] getElems()
{ return array; }

…
}

6.2 Object Structures and Aliasing – Aliasing

16

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6.3 Object Structures and Aliasing – Problems of Aliasing

17

Peter Müller – Concepts of Object-Oriented Programming

Observation
 Many well-established techniques of object-

oriented programming work for individual objects,
but not for object structures in the presence of
aliasing

 “The big lie of object-oriented programming is that
objects provide encapsulation” [Hogg, 1991]

 Examples
- Information hiding and exchanging implementations
- Encapsulation and consistency

6.3 Object Structures and Aliasing – Problems of Aliasing

18

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {
private int[] array;
private int next;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem(old(ia[i]))
public void addElems(int[] ia)
{ array = ia; next = ia.length; }

…
}

class ArrayList {
private Entry header;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem(old(ia[i]))
public void addElems(int[] ia)
{ … /* create Entry for each

element */ }
…

}

6.3 Object Structures and Aliasing – Problems of Aliasing

19

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

 Aliases can be used
to by-pass interface

 Observable behavior
is changed!

int foo(ArrayList list) {
int[] ia = new int[3];
list.addElems(ia);
ia[0] = -1;
return list.getFirst();

}

list
3

array

0
0
0

ia

list

Entry

Entry

0

Entry

0

Entry

0

3

array

0
0
0

ia

-1

-1

6.3 Object Structures and Aliasing – Problems of Aliasing

20

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures
 Consistency of object

structures depends on
fields of several objects

 Invariants are usually
specified as part of the
contract of those objects
that represent the
interface of the object
structure

class ArrayList {
private int[] array;
private int next;

// invariant array != null &&
// 0<=next<=array.length &&
// ∀i.0<=i<next: array[i] >= 0

public void add(int i) { … }
public void addElems(int[] ia)
{ … }

…
}

6.3 Object Structures and Aliasing – Problems of Aliasing

21

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures (cont’d)

 Aliases can be used to
violate invariant

 Making all fields private is
not sufficient to
encapsulate internal state

int foo(ArrayList list) { // invariant of list holds
int[] ia = new int[3];
list.addElems(ia); // invariant of list holds
ia[0] = -1; // invariant of list violated

}

list

3

array

0
0
0

ia

-1

6.3 Object Structures and Aliasing – Problems of Aliasing

22

System

Security Breach in Java 1.1.1

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

void bad() {
Identity[] s;
Identity trusted = java.Security…;
s = Malicious.class.getSigners();
s[0] = trusted;
/* abuse privilege */
}

} Identity[] getSigners()
{ return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

23

Problem Analysis

 Difficult to prevent
- Information hiding:

not applicable to arrays
- Restriction of Identity

objects: not effective
- Secure information flow:

read access permitted
- Run-time checks:

too expensive
System

Class

IdentityIdentity[]

Identity

Identity
Identity[]

 Breach caused by unwanted alias
- Leaking of reference

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

24

Peter Müller – Concepts of Object-Oriented Programming

Other Problems with Aliasing
 Synchronization in concurrent

programs
- Monitor of each individual object

has to be locked to ensure
mutual exclusion

 Distributed programming
- For instance, parameter passing

for remote method invocation
 Optimizations

- For instance, object inlining is
not possible for aliased objects

6.3 Object Structures and Aliasing – Problems of Aliasing

25

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing

26

Peter Müller – Concepts of Object-Oriented Programming

Alias Modes
 We need better control over the objects in an

object structure to avoid the problems with
aliasing

 Approach
1. Define roles of objects in object structures
2. Assign a tag (alias mode) to every expression to

indicate the role of the referenced object
3. Impose programming rules to guarantee that objects

are only used according to their alias modes

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

27

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures
 Interface objects that are

used to access the
structure

 Internal representation
of the object structure

 Arguments of the object
structure

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

28

Peter Müller – Concepts of Object-Oriented Programming

Interface Objects (peer Mode)
 Interface objects are

used to access the
structure

 Interface objects can be
used in any way objects
are usually used
(passed around,
changed, etc.)

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

29

Peter Müller – Concepts of Object-Oriented Programming

Representations (rep Mode)
 Expressions with mode

“rep” hold references to
the representation of the
object structure

 Objects referenced by
rep-expressions can be
changed

 rep-objects must not be
exported from the object
structure

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

30

Peter Müller – Concepts of Object-Oriented Programming

Arguments (arg Mode)
 Expressions with mode

“arg” hold references to
arguments of the object
structure

 Objects must not be
changed through arg-
references

 arg-objects can be
passed around and
aliased freely

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

31

Peter Müller – Concepts of Object-Oriented Programming

Meaning of Alias Modes
 Alias modes describe the

role of an object relative
to an interface object

 Informally: References
- With peer mode stay in the

same context
- With rep-mode go from an

interface object into its
context

- With arg-mode may go to
any context

LinkedList

Entry

Entry Entry Entry

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

Dictionary

32

Peter Müller – Concepts of Object-Oriented Programming

(Simplified) Programming Discipline
 Rule 1: No Role Confusion

- Expression with one alias mode must not be assigned to
variables with another mode

 Rule 2: No Representation Exposure
- rep-mode must not occur in an object’s interface
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on this

 Rule 3: No Argument Dependence
- Implementations must not depend on the state of

argument objects

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

33

Peter Müller – Concepts of Object-Oriented Programming

Example 1: LinkedList with Alias Modes
class LinkedList {
private /* rep */ Entry header;
private int size;

public void add(/* arg */ Object o) {
/* rep */ Entry newE = new /* rep */ Entry(o, header, header.previous);
… }

}

class Entry {
private /* arg */ Object element;
private /* peer */ Entry previous, next;

public Entry(/* arg */ Object o, /* peer */ Entry p, /* peer */ Entry n) { … }
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

34

Peter Müller – Concepts of Object-Oriented Programming

Example 2: ArrayList with Alias Modes
 Array is internal

representation
of the list

 addElems
confuses alias
modes

class ArrayList {
private /* rep */ int[] array;
private int next;

public void addElems(/* peer */ int[] ia) {
array = ia;

next = ia.length;
}
…

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

35

Peter Müller – Concepts of Object-Oriented Programming

Example 2: ArrayList with Alias Modes
 Array is internal

representation
of the list

 Clean solution
requires array
copy

class ArrayList {
private /* rep */ int[] array;
private int next;

public void addElems(/* peer */ int[] ia) {
array = new /* rep */ int[ia.length];
System.arraycopy(ia, 0, array, 0, ia.length);
next = ia.length;

}
…

}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

36

Peter Müller – Concepts of Object-Oriented Programming

No Representation Exposure
 rep-objects can only be referenced

- By their interface objects
- By other rep-objects of the same

object structure
 rep-objects can only be modified

- By methods executed on their
interface objects

- By methods executed on rep-objects
of the same object structure

 Rep-objects are encapsulated
inside the object structure

array:
next:

list1

array

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

37

Peter Müller – Concepts of Object-Oriented Programming

Implementation Exchange Revisited

 Observable behavior remains unchanged!

class ArrayList {
private /* rep */ int[] array;
private int next;
public void addElems

(/* peer */ int[] ia) {
array = new /* rep */ int[ia.length];
System.arraycopy

(ia, 0, array, 0, ia.length);
next = ia.length;

}
… }

class ArrayList {
private /* rep */ Entry header;

public void addElems
(/* peer */ int[] ia)

{ … /* create Entry for each
element */ }

…
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

38

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Object Structures
 The invariant of object o

may depend on
- Encapsulated fields of o
- Fields of objects o

references through rep-
references

 Interface objects have
full control over their
rep-objects

class ArrayList {
private /* rep */ int[] array;
private int next;

// invariant array != null &&
// 0<=next<=array.length &&
// ∀i.0<=i<next: array[i] >= 0

public void add(int i) { … }
public void addElems

(/* peer */ int[] ia) { … }

…
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

39

Peter Müller – Concepts of Object-Oriented Programming

No Argument Dependence
 Objects referenced through

arg-references may be freely
aliased

 Object structures have no
control over the state of their
argument objects

 Invariants must not depend on
fields of argument objects, but
can depend on their identity

LinkedList

Entry

Entry Entry Entry

private /* arg */ T v, w;
// invariant v != w -- legal
// invariant v.f != w.f -- illegal

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

40

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Modular Programs
 Rules for rep-mode can

in general not be
checked modularly

 Subclasses can add
new methods or
override methods

 In Java, rep exposure
can be prevented by
- Access modifiers
- Final
- Inner Classes

class ArrayList {
protected /* rep */ int[] array;
private int next;
…

}

class MyList extends ArrayList {
public int[] leak() {
return array;

}
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

41

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: LinkedList
 All fields are private
 Entry is a private inner class of LinkedList

- References are not passed out
- Subclasses cannot manipulate or leak Entry-objects

 ListItr is a private inner class of LinkedList
- Interface ListIterator provides controlled access to

ListItr-objects
- ListItr-objects are passed out, but in a controlled fashion
- Subclasses cannot manipulate or leak ListItr-objects

 Subclassing is severely restricted

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

42

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: String
 All fields are private

 References to internal
character-array are not
passed out (no
representation exposure)

 Subclassing is prohibited
(final)

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

value:
…:

String

char[]

	Concepts of �Object-Oriented Programming
	6. Object Structures and Aliasing
	Object Structures
	Example 1: Array-Based Lists
	Example 2: Doubly-Linked Lists
	6. Object Structures and Aliasing
	Alias
	Aliasing in Procedural Programming
	Aliasing in Object-Oriented Programming
	Static Aliasing
	Dynamic Aliasing
	Intended Aliasing: Efficiency
	Intended Aliasing: Sharing
	Unintended Aliasing: Capturing
	Unintended Aliasing: Leaking
	6. Object Structures and Aliasing
	Observation
	Exchanging Implementations
	Exchanging Implementations (cont’d)
	Consistency of Object Structures
	Consistency of Object Structures (cont’d)
	Security Breach in Java 1.1.1
	Problem Analysis
	Other Problems with Aliasing
	6. Object Structures and Aliasing
	Alias Modes
	Roles in Object Structures
	Interface Objects (peer Mode)
	Representations (rep Mode)
	Arguments (arg Mode)
	Meaning of Alias Modes
	(Simplified) Programming Discipline
	Example 1: LinkedList with Alias Modes
	Example 2: ArrayList with Alias Modes
	Example 2: ArrayList with Alias Modes
	No Representation Exposure
	Implementation Exchange Revisited
	Invariants for Object Structures
	No Argument Dependence
	Alias Control in Modular Programs
	Alias Control in Java: LinkedList
	Alias Control in Java: String

