
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2010

2

C-Example Revisited

Peter Müller – Concepts of Object-Oriented Programming

struct sPerson {
String name;
void (*print)(Person*);
String (*lastName)(Person*);

};

typedef struct sStudent Student;
struct sStudent {
String name;
int regNum;
void (*print)(Student*);
String (*lastName)(Student*);

};

Student *s;
Person *p;
s = StudentC(“Susan Roberts“);
p = (Person *) s;
p -> name = p -> lastName(p);
p -> print(p);

name
regNum

print
lastName

name
print
lastName

PersonStudent

2. Types and Subtyping

3

Peter Müller – Concepts of Object-Oriented Programming

Message not Understood
 Objects access fields and

methods of other objects

 A safe language detects
situations where the
receiver object does not
have the accessed field or
method

 Type systems can be used
to detect such errors

f1:
f2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}

f:
obj2

m(p1,p2) {..}
n(p,r) {..}

…
r = obj2.m(0, 1);
s = obj2.f;

r = obj2.m();
r = obj2.anotherMethod(0, 1);
s = obj2.anotherField;

2. Types and Subtyping

4

Peter Müller – Concepts of Object-Oriented Programming

Java Security Model (Sandbox)
 Applets get access to

system resources only
through an API

 Access control can be
implemented in API
(security manager)

 Code must be prevented
from by-passing API

Program

Operating System

API

X

2. Types and Subtyping

5

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping

6

Peter Müller – Concepts of Object-Oriented Programming

Type Systems
 Definition:

A type system is a tractable syntactic method for
proving absence of certain program behaviors by
classifying phrases according to the kinds of values
they compute.

[B.C. Pierce, 2002]

 Syntactic: Rules are based on form, not behavior
 Phrases: Expressions, methods, etc. of a program
 Kinds of values: Types

2.1 Types and Subtyping – Types

7

Weak and Strong Type Systems
 Untyped languages

- Do not classify values into types
- Example: assembler

 Weakly-typed languages
- Classify values into types, but do not strictly enforce

additional restrictions
- Example: C, C++

 Strongly-typed languages
- Enforce that all operations are applied to arguments of

the appropriate types
- Examples: C#, Eiffel, Java, Python, Scala, Smalltalk

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types

8

Weak vs. Strong Typing: Example

 Strongly-typed languages prevent certain
erroneous or undesirable program behavior

Peter Müller – Concepts of Object-Oriented Programming

int main(int argc, char** argv) {
int i = (int) argv[0];
printf("%d", i);

} C

int main(String[] argv) {
int i = (int) argv[0];
System.out.println(i);

} Java

1628878672 Compile-time error:
inconvertible types
found : java.lang.String
required: int

2.1 Types and Subtyping – Types

9

Peter Müller – Concepts of Object-Oriented Programming

Types
 Definition:

A type is a set of values sharing some properties.
A value v has type T if v is an element of T.

 Question: what are the “properties” shared by the
values of a type?
- Nominal types:

based on type names
Examples: C++, Eiffel, Java, Scala

- Structural types:
based on availability of methods and fields
Examples: Python, Ruby, Smalltalk

2.1 Types and Subtyping – Types

10

 Type membership

 Type equivalence
- S and T are different

in nominal systems
- S and T are equivalent

in structural systems

Nominal and Structural Types

Peter Müller – Concepts of Object-Oriented Programming

obj2: T
m(int) {..}
n() {..}

obj0: S
m(int) {..}
n() {..}

obj1: T
m(int) {..}
n() {..}

class S {
m(int) {…}
n() {…}

}

class T {
m(int) {…}
n() {…}

}

Two nominal
types

Two nominal
types One structural

type

2.1 Types and Subtyping – Types

11

Peter Müller – Concepts of Object-Oriented Programming

Static Type Checking
 Each expression of a

program has a type
 Types of variables and

methods are declared
explicitly or inferred

 Types of expressions can
be derived from the types
of their constituents

 Type rules are used at
compile-time to check
whether a program is
correctly typed

“A string”
5 + 7

Java

int a;
boolean equals(Object o)

Java

a + 7
“A number: “ + 7
“A string”.equals(null)

Java

a = “A string”;
“A string”.equals(1, 2)

Java

2.1 Types and Subtyping – Types

Compile-time
errors

12

Peter Müller – Concepts of Object-Oriented Programming

DynamicType Checking
 Variables, methods, and

expressions of a program
are typically not typed

 Every object and value
has a type

 Run-time system checks
that operations are
applied to expected
arguments

“A string”
5 + 7

Python

a = …;
def foo(o): …

Python

a + 7
“A number: “ * 7
foo(None)

Python

a = “A string” / 5
foo(5, 7)

Python

a = “A string”
a = 7

Python

Run-time
errors

2.1 Types and Subtyping – Types

13

Peter Müller – Concepts of Object-Oriented Programming

Static Type Safety
 Definition:

A programming language is called type-safe if its
design prevents type errors.

 Statically type-safe object-oriented languages
guarantee the following type invariant:
In every execution state, the type of the value held
by variable v is a subtype of the declared type of v

 Type safety guarantees the absence of certain
run-time errors

2.1 Types and Subtyping – Types

14

Peter Müller – Concepts of Object-Oriented Programming

Run-Time Checks in Static Type Systems
 Most static type systems

rely on dynamic checks
for certain operations

 Common example: type
conversions by casts

 Run-time checks throw
an exception in case of
a type error

Object[] oa = new Object[10];
String s = “A String”;

oa[0] = s;

…

s = oa[0];

s = s.concat(“Another String”);

s = (String) oa[0];
if (oa[0] instanceof String)
s = (String) oa[0];

2.1 Types and Subtyping – Types

15

Expressiveness of Dynamic Type Systems

 Static checkers need to
approximate run-time
behavior (conservative
checks)

 Dynamic checkers
support on-the-fly code
generation and dynamic
class loading

Peter Müller – Concepts of Object-Oriented Programming

eval(
"x=10; y=20; document.write(x*y)"

);

JavaScript

def divide(n, d):
if d != 0: res = n / d
else: res = “Division by zero”
print res

Python

2.1 Types and Subtyping – Types

16

Static vs. Dynamic Type Checking
Advantages of
static checking
 Static safety: More errors

are found at compile time

 Readability: Types are
excellent documentation

 Efficiency: Type
information allows
optimizations

Advantages of
dynamic checking
 Expressiveness: No correct

program is rejected by the
type checker

 Low overhead: No need to
write type annotations

 Simplicity: Static type
systems are often
complicated

Peter Müller – Concepts of Object-Oriented Programming

2.1 Types and Subtyping – Types

17

Type Systems in OO-Languages

C++, C#, Eiffel, Java,
Scala

For certain features of
statically-typed languages

Research languages such
as Moby, PolyToil, O’Caml

JavaScript, Python, Ruby,
Smalltalk

Peter Müller – Concepts of Object-Oriented Programming

Static Dynamic

N
om

in
al

St
ru

ct
ur

al

Often called
“duck typing”

“When I see a bird that walks
like a duck and swims like a
duck and quacks like a duck,

I call that bird a duck.“
[James Whitcomb Riley]

2.1 Types and Subtyping – Types

18

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping

19

Peter Müller – Concepts of Object-Oriented Programming

Classification in Software Technology
 Substitution principle

Objects of subtypes can be used wherever objects
of supertypes are expected

 Syntactic classification
- Subtype objects can understand at least the messages

that supertype objects can understand

 Semantic classification
- Subtype objects provide at least the behavior of

supertype objects

2.2 Types and Subtyping – Subtyping

20

Peter Müller – Concepts of Object-Oriented Programming

Subtyping
 Definition of “Type”:

A type is a set of values sharing some properties.
A value v has type T if v is an element of T.

 The subtype relation corresponds to the subset
relation on the values of a type

Object

String
Object String

2.2 Types and Subtyping – Subtyping

21

Nominal and Structural Subtyping
 Nominal type systems

- Determine type
membership based on
type names

- Determine subtype
relations based on
explicit declarations

 Structural type systems
- Determine type

membership and
subtype relations based
on availability of
methods and fields

Peter Müller – Concepts of Object-Oriented Programming

class T
extends S {
m(int) {…}

}

class U {
m(int) {…}
n() {…}

}

class T {
m(int) {…}

}

class U {
m(int) {…}
n() {…}

}

class S { m(int) {…} }

Only T is a nominal
subtype of S

T and U are structural
subtypes of S

2.2 Types and Subtyping – Subtyping

22

Nominal Subtyping and Substitution
 Subtype objects can understand at least the

messages that supertype objects can understand
- Method calls
- Field accesses

 Subtype objects have wider interfaces than
supertype objects
- Existence of methods and fields
- Accessibility of methods and fields
- Types of methods and fields

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping

23

Peter Müller – Concepts of Object-Oriented Programming

Existence
 Sub narrows Super’s

interface

 If m is called with a
Sub object as
parameter, execution
fails

 Subtypes may add, but
not remove methods
and fields

class Super {
void foo() { … }
void bar() { … }

}

class Sub <: Super {
void foo() { … }
// no bar()

}

void m(Super s) { s.bar(); }

2.2 Types and Subtyping – Subtyping

24

Peter Müller – Concepts of Object-Oriented Programming

Accessibility
 At run time, m could

access private method
of Sub, thereby
violating information
hiding

 An overriding method
must not be less
accessible than the
methods it overrides

class Super {
public void foo() { … }
public void bar() { … }

}

class Sub <: Super {
public void foo() { … }
private void bar() { … }

}

void m(Super s) { s.bar(); }

2.2 Types and Subtyping – Subtyping

25

Overriding: Parameter Types
 Calling m with a Sub object

demonstrates a violation of
static type safety
- o in Sub.bar is not a String

 Contravariant parameters:
An overriding method must
not require more specific
parameter types than the
methods it overrides

Peter Müller – Concepts of Object-Oriented Programming

class Super {
void foo(String s) { … }
void bar(Object o) { … }

}

class Sub <: Super {
void foo(Object s) { … }
void bar(String o) { … }

}

void m(Super s) {
s.foo(“Hello”);
s.bar(new Object());

}

2.2 Types and Subtyping – Subtyping

26

Overriding: Result Types
 Calling m with a Sub object

demonstrates a violation of
static type safety
- t in m is not a String

 Covariant results:
An overriding method must
not have a more general
result type than the
methods it overrides
- Out-parameters and

exceptions are results

Peter Müller – Concepts of Object-Oriented Programming

class Super {
Object foo() { … }
String bar() { … }

}

class Sub <: Super {
String foo() { … }
Object bar() { … }
}

void m(Super s) {
Object o = s.foo();
String t = s.bar();

}

2.2 Types and Subtyping – Subtyping

27

Overriding: Fields
 Calling m with a Sub object

demonstrates a violation of
static type safety
- s.f is not a String
- t is not a String

 Subtypes must not change
the types of fields
- Fields are bound statically

Peter Müller – Concepts of Object-Oriented Programming

class Super {
Object f;
String g;

}

class Sub <: Super {
String f;
Object g;
}

void m(Super s) {
s.f = new Object();
String t = s.g;

}

2.2 Types and Subtyping – Subtyping

28

class Super {
T f;
void setF(T f) { this.f = f; }
T getF() { return f; }

}

class Sub <: Super {
S f;
void setF(S f) { this.f = f; }
S getF() { return f; }

}

Overriding: Fields (cont’d)
 Regard field as pair of

getter and setter methods
- Specializing a field type

(S <: T) corresponds to
specializing the argument of
the setter (violates
contravariant parameters)

- Generalizing a field type
(T <: S) corresponds to
generalizing the result of the
getter (violates covariant
results)

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping

29

Overriding: Immutable Fields
 Immutable fields do not

have setters
 Types of immutable fields

can be specialized in
subclasses (S <: T)
- Works only in the absence of

inheritance (subtype
constructor initializes f)!

 Not permitted by
mainstream languages

Peter Müller – Concepts of Object-Oriented Programming

class Super {
final T f;
void setF(T f) { this.f = f; }
T getF() { return f; }

}

class Sub <: Super {
final S f;
void setF(S f) { this.f = f; }
S getF() { return f; }

}

2.2 Types and Subtyping – Subtyping

30

Narrowing Interfaces in Eiffel
 Eiffel permits the “illegal”

narrowing of interfaces
- Changing the existence of

methods
- Overriding with covariant

parameter types
- Specializing field types

 Run-time exception
“catcall detected for
argument #1 'o' expected
STRING but got ANY“

Peter Müller – Concepts of Object-Oriented Programming

class SUPER
feature
bar (o: ANY) do … end

end

class SUB inherit SUPER
redefine bar end
feature
bar (o: STRING) do … end

end
m (s: SUPER)
do
s.bar (create {ANY})

end

2.2 Types and Subtyping – Subtyping

31

Narrowing Interfaces in Eiffel (cont’d)
 With attached (non-null)

types, covariant overriding
requires a detachable
(possibly-null) type

 Run-time system passes
null when an argument is
not of the expected type

 Method must check for
null-ness explicitly

Peter Müller – Concepts of Object-Oriented Programming

class SUPER
feature
bar (o: ANY) do … end

end

class SUB inherit SUPER
redefine bar end
feature
bar (o: ?STRING)
do
if { o: STRING } s then s.foo;
else … end

end
end

2.2 Types and Subtyping – Subtyping

32

 In Java and C#, arrays are
covariant
- If S <: T then S[] <: T[]

 Each array update requires a
run-time type check

Covariant Arrays

Peter Müller – Concepts of Object-Oriented Programming

class C {
void foo(Object[] a) {
if(a.length > 0)
a[0] = new Object();

}
}

void client(C c) {
c.foo(new String[5]);

}

class Object[] {

public Object 0;
public Object 1;
…

}

class String[]
<: Object[] {

public String 0;
public String 1;
…

}

2.2 Types and Subtyping – Subtyping

33

Covariant Arrays (cont’d)
 Covariant arrays allow one to write methods that

work for all arrays such as

 Here, the designers of Java and C# resolved the
trade-off between expressiveness and static safety
in favor of expressiveness

 Generics allow a solution that is expressive and
statically-safe (more later)

Peter Müller – Concepts of Object-Oriented Programming

class Arrays {
public static void fill(Object[] a, Object val) { … }

}

2.2 Types and Subtyping – Subtyping

34

Shortcomings of Nominal Subtyping (1)
 Nominal subtyping can impede reuse
 Consider two library classes

 Now we would like to store Resident and
Employee-objects in a collection of type Person[]
- Neither Resident nor Employee is a subtype of Person

Peter Müller – Concepts of Object-Oriented Programming

class Resident {
String getName() { … }
Data dateOfBirth() { … }
Address getAddress() { … }

}

class Employee {
String getName() { … }
Data dateOfBirth() { … }
int getSalary() { … }

}

2.2 Types and Subtyping – Subtyping

35

Reuse: Adapter Pattern
 Implement Adapter (wrapper)

- Subtype of Person
- Delegate calls to adaptee (Resident or Employee)

 Adapter requires boilerplate code
 Adapter causes memory and run-time overhead
 Works also if Person is reused

Peter Müller – Concepts of Object-Oriented Programming

class EmployeeAdapter implements Person {
private Employee adaptee;
String getName() { return adaptee.getName(); }
Data dateOfBirth() { return adaptee.dateOfBirth(); }

}

interface Person {
String getName();
Data dateOfBirth();

}

2.2 Types and Subtyping – Subtyping

36

Reuse: Generalization
 Most OO-languages support specialization of

superclasses (top-down development)
 Some research languages (e.g., Sather, Cecil) also

support generalization (bottom-up development)

 Supertype can be declared after subtype has been
implemented

Peter Müller – Concepts of Object-Oriented Programming

interface Person generalizes Resident, Employee {
String getName();
Data dateOfBirth();

}

2.2 Types and Subtyping – Subtyping

37

Reuse: Generalization (cont’d)
 Generalization does

not match well with
inheritance

 Subclass-to-be already
has a superclass
- Single inheritance:

exchanging the
superclass might affect
the subclass

- Multiple inheritance:
additional superclass
may cause conflicts

Peter Müller – Concepts of Object-Oriented Programming

abstract class DataPoint
generalizes Cell {

abstract int getData();
boolean equals(Object o) {
… // check type of o
return getData() ==

((DataPoint) o).getData();
}

}

class Cell {
int value;
int getData() { return value; }

}

2.2 Types and Subtyping – Subtyping

38

Shortcomings of Nominal Subtyping (2)
 Nominal subtyping can limit generality
 Many method signatures are overly restrictive

 printData uses only two methods of c, but requires
a type with 13 methods

Peter Müller – Concepts of Object-Oriented Programming

void printData(Collection<String> c) {
if(c.isEmpty()) System.out.println(“empty”);
else {
Iterator<String> iter = c.iterator();
while(iter.hasNext()) System.out.println(iter.next());

}
}

2.2 Types and Subtyping – Subtyping

39

Generality: Additional Supertypes
 Make type requirements

weaker by declaring
interfaces for useful
supertypes

 But: many useful subsets
of operations
- Read-only collection
- Write-only collection (log file)
- Convertible collection
- Combinations of the above

Peter Müller – Concepts of Object-Oriented Programming

interface Iterable<E> {
Iterator<E> iterator();

}

interface Collection<E>
extends Iterable<E> {

// 13 methods
}

 Overhead for declaring supertypes and subtyping

2.2 Types and Subtyping – Subtyping

40

Generality: Optional Methods
 Java documentation

marks some methods
as “optional”
- Implementation is

allowed to throw an
unchecked exception

- For Collection: all
mutating methods

 Static safety is lost

Peter Müller – Concepts of Object-Oriented Programming

interface Collection<E>
extends Iterable<E> {

/* 13 methods, out of which 6 are
optional */

}

class AbstractCollection<E>
implements Collection<E> {

boolean add(E e) {
throw new

UnsupportedOperationException();
}
…

}

2.2 Types and Subtyping – Subtyping

41

Structural Subtyping and Substitution
 Subtype objects can understand at least the

messages that supertype objects can understand
- Method calls
- Field accesses

 Structural subtypes have by definition wider
interfaces than their supertypes

Peter Müller – Concepts of Object-Oriented Programming

2.2 Types and Subtyping – Subtyping

42

Reuse: Structural Subtyping
 All types are “automatically”

subtypes of types with
smaller interfaces
- No extra code or declarations

required

 No support for inheritance
(like generalization)

 Person is a supertype of
Resident and Employee

Peter Müller – Concepts of Object-Oriented Programming

class Resident {
String getName() { … }
Data dateOfBirth() { … }
… }

class Employee {
String getName() { … }
Data dateOfBirth() { … }
… }

interface Person {
String getName();
Data dateOfBirth();

}

2.2 Types and Subtyping – Subtyping

43

Generality: Structural Subtyping

 Static type checking
- Additional supertypes approach applies
- Additional supertypes must be declared, but not the

subtype relation
 Dynamic type checking

- Arguments to operations are not restricted
- Similar to optional methods approach (possible run-time

error)

Peter Müller – Concepts of Object-Oriented Programming

void printData(Collection<String> c) {
// uses only c.isEmpty() and c.iterator()

}

2.2 Types and Subtyping – Subtyping

44

Type Systems in OO-Languages

Sweetspot:
Maximum static safety

Why should one declare all
the type information but

then not check it statically?

Overhead of declaring
many types is inconvenient;
Problems with semantics of

subtypes (see later)

Sweetspot:
Maximum flexibility

Peter Müller – Concepts of Object-Oriented Programming

Static Dynamic

N
om

in
al

St
ru

ct
ur

al
2.2 Types and Subtyping – Subtyping

45

Peter Müller – Concepts of Object-Oriented Programming

2. Types and Subtyping

2.1 Types
2.2 Subtyping
2.3 Behavioral Subtyping

2. Types and Subtyping

46

Peter Müller – Concepts of Object-Oriented Programming

Types
 Definition:

A type is a set of values sharing some properties.
A value v has type T if v is an element of T.

 Question: what are the “properties” shared by the
values of a type?
- So far we focused on syntax

 “Properties” should also include the behavior of the
object
- Expressed as interface specifications (contracts)

2.3 Types and Subtyping – Behavioral Subtyping

47

Peter Müller – Concepts of Object-Oriented Programming

Method Behavior

 Preconditions have to
hold in the state
before the method
body is executed

 Postconditions have
to hold in the state
after the method body
has terminated

 Old-expressions can
be used to refer to
prestate values from
the postcondition

class BoundedList {
Object[] elems;
int free; // next free slot
…

void add(Object e) { … }
}

// requires free < elems.length
// ensures elems[old(free)] == e

2.3 Types and Subtyping – Behavioral Subtyping

48

Peter Müller – Concepts of Object-Oriented Programming

Object Invariants
 Object invariants

describe consistency
criteria for objects

 Invariants have to hold
in all states, in which an
object can be accessed
by other objects

class BoundedList {
Object[] elems;
int free; // next free slot

…
// requires free < elems.length
// ensures elems[old(free)] == e
void add(Object e) { … }

}

/* invariant
elems != null &&
0 <= free &&
free <= elems.length */

2.3 Types and Subtyping – Behavioral Subtyping

49

Peter Müller – Concepts of Object-Oriented Programming

Visible States

 Invariants have to hold in
pre- and poststates of
methods executions but
may be violated
temporarily in between

 Pre- and poststates are
called “visible states”

class Redundant {
private int a, b;
// invariant a == b

public void set(int v) {
// invariant of this holds
a = v;
// invariant of this violated
b = v;
// invariant of this holds

}
}

2.3 Types and Subtyping – Behavioral Subtyping

50

Peter Müller – Concepts of Object-Oriented Programming

History Constraints
 History constraints

describe how objects
evolve over time

 History constraints
relate visible states

 Constraints must be
reflexive and transitive

class Person {
int age;

// constraint old(age) <= age

Person(int age) {
this.age = age;

}

…
}

2.3 Types and Subtyping – Behavioral Subtyping

Person p = new Person(7);
…
…
assert 7 <= p.age;

51

Static vs. Dynamic Contract Checking
Static checking
Program verification
 Static safety: More errors

are found at compile time

 Complexity: Static contract
checking is difficult and not
yet mainstream

 Large overhead: Static
contract checking requires
extensive contracts

 Examples: Spec#, JML

Dynamic checking
Run-time assertion checking
 Incompleteness: Not all

properties can be checked
(efficiently) at run-time

 Efficient bug-finding:
Complements testing

 Low overhead: Partial
contracts are useful

 Examples: Eiffel, JML

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

52

Peter Müller – Concepts of Object-Oriented Programming

 Subtypes specialize the behavior of supertypes
 What are legal specializations?

Contracts and Subtyping
class UndoNaturalNumber

extends Number {
int undo;
// invariant 0 < n && 0 < undo

// requires 0 < p
// ensures n == p && undo == old(n)
void set(int p)

{ undo = n; n = p; }
…

}

class Number {

int n;
// invariant true

// requires true
// ensures n == p
void set(int p)

{ n = p; }
…

}

2.3 Types and Subtyping – Behavioral Subtyping

53

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Preconditions
class Super {
// requires 0 <= n && n < 5
void foo(int n) {
char[] tmp = new char[5];
tmp[n] = ‘X’;

}
}

class Sub extends Super {
// requires 0 <= n && n < 3
void foo(int n) {
char[] tmp = new char[3];
tmp[n] = ‘X’;

}
}

void crash(Super s) {
s.foo(4);

}

x.crash(new Sub());

 Subtype objects must fulfill
contracts of supertypes

 Overriding methods of
subtypes may have weaker
preconditions than
corresponding supertype
methods

2.3 Types and Subtyping – Behavioral Subtyping

54

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Postconditions
class Super {
// ensures 0 < result
int foo() {
return 1;

}
}

class Sub extends Super {
// ensures 0 <= result
int foo() {
return 0;

}
}

void crash(Super s) {
int i = 5 / s.foo();

}

x.crash(new Sub());

 Overriding methods of
subtypes may have
stronger postconditions
than corresponding
supertype methods

2.3 Types and Subtyping – Behavioral Subtyping

55

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: Invariants
class Super {
int n;
// invariant 0 < n
Super() { n = 5; }
int crash() { return 5 / n; }

}

class Sub extends Super {
// invariant 0 <= n
Sub() {
n = 0;

}
}

new Sub().crash();

 Subtypes may have
stronger invariants

2.3 Types and Subtyping – Behavioral Subtyping

56

Peter Müller – Concepts of Object-Oriented Programming

Rules for Subtyping: History Constraints
class Super {
int n;

// constraint old(n) <= n

int get() { return n; }

void foo() { }
}

class Sub extends Super {
// constraint true

void foo() {
n = n – 1;

}
}

int crash(Super s) {
int cache = s.get() – 1;
s.foo();
return 5 / (cache – s.get());

}

x.crash(new Sub());

 Subtypes may have
stronger history
constraints

2.3 Types and Subtyping – Behavioral Subtyping

57

Natural Numbers Revisited

 UndoNaturalNumber does not specialize the
behavior of Number

Peter Müller – Concepts of Object-Oriented Programming

class UndoNaturalNumber
extends Number {

int undo;
// invariant 0 < n && 0 < undo

// requires 0 < p
// ensures n == p && undo == old(n)
void set(int p)

{ undo = n; n = p; }
…

}

class Number {

int n;
// invariant true

// requires true
// ensures n == p
void set(int p)

{ n = p; }
…

}

2.3 Types and Subtyping – Behavioral Subtyping

58

Peter Müller – Concepts of Object-Oriented Programming

 Subtype objects must fulfill contracts of supertypes,
but:
- Subtypes can have stronger invariants
- Subtypes can have stronger history constraints
- Overriding methods of subtypes can have

weaker preconditions
stronger postconditions

than corresponding supertype methods

 Concept is called Behavioral Subtyping
- Often implemented via specification inheritance

Rules for Subtyping: Summary
2.3 Types and Subtyping – Behavioral Subtyping

59

Static Checking of Behavioral Subtyping
 For each override S.m of T.m check for all

parameters, heaps, and results
- PreT.m => PreS.m and PostS.m => PostT.m

 For each subtype S <: T check for all heaps:
- InvS => InvT and ConsS => ConsT

 But: entailment is undecidable
- For all p :: p == p*p => (p == 0 || p == 1)
- For all p, result :: result == 2 => p < result

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Super {
// requires p == p*p
// ensures p < result
int foo(int p) { … } }

class Sub extends Super {
// requires p == 0 || p == 1
// ensures result == 2
int foo(int p) { … } }

60

Run-Time Checking of Behav. Subtyping
 Checking entailment for all

parameters, heaps, and results
is not possible at run time

 Idea: check those properties
subsequent code relies on

 For each call o.m(…)
- Check precondition of m in o’s

dynamic type (which the
executed body relies on)

- Check postcondition of m in o’s
static type (which the caller relies
on)

Peter Müller – Concepts of Object-Oriented Programming

class Super {
// requires p == p*p
// ensures p < result
int foo(int p) { … } }

class Sub extends Super {
// requires p == 0 || p == 1
// ensures result == 2
int foo(int p) { … } }

void bar(Super s) {
// check 0 == 0 || 0 == 1
r = s.foo(0);
// check 0 < r

} Assume s is
a Sub object

2.3 Types and Subtyping – Behavioral Subtyping

61

Specification Inheritance
 Behavioral subtyping can be

enforced by inheriting
specifications from supertypes

 Rule for invariants
- The invariant of a type S is the

conjunction of the invariant
declared in S and the invariants
declared in the supertypes of S

- Subtypes have stronger
invariants

- Analogous for history constraints

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Super {
int n;
// invariant 0 < n
Super() { n = 5; }
int crash() {
return 5 / n;

}
}

class Sub extends Super {
// invariant 0 <= n
Sub() { n = 0; }

} Violates
inherited
invariant

62

Simple Inheritance of Method Contracts
 An overriding method must not

declare additional preconditions
- The overriding and the

overridden method have
identical preconditions

 The postcondition of an overriding method is the
conjunction of the postcondition declared for the
method and the postconditions declared for the
methods it overrides
- Overriding methods have stronger postconditions

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Super {
// requires 0 <= n && n < 5
void foo(int n) { … }

}

class Sub extends Super {
// requires 0 <= n && n < 3
void foo(int n) { … }

}

63

Precondition Inheritance: Shortcomings
 Simple rule does not work for multiple subtyping

 Simple rule does not allow precondition weakening

Peter Müller – Concepts of Object-Oriented Programming

interface I {
// requires 0 <= n
void foo(int n);

}

class C implements I, J {
void foo(int n) { … }

}

interface J {
// requires n < 0
void foo(int n);

}
Inherited

precondition
is false

class Set {
// requires contains(x)
void remove(Object x)
{ … }

}

class MySet extends Set {
// requires true
void remove(Object x)
{ … }

}

2.3 Types and Subtyping – Behavioral Subtyping

64

Precondition Inheritance: Improved Rule
 The precondition of an overriding method is the

disjunction of the precondition declared for the
method and the preconditions declared for the
methods it overrides
- Overriding methods have weaker preconditions

 Simple postcondition rule becomes to restrictive

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class Set {
// requires contains(x)

void remove(Object x)
{ … }

}

class MySet extends Set {
// requires true
void remove(Object x)
{ … }

}

class Set {
// requires contains(x)
// ensures size() == old(size() – 1)
void remove(Object x)
{ … }

}

65

 A method must satisfy its postcondition only if the
caller satisfies the precondition
- Interpret every postcondition as old(PreT.m) => PostT.m

 The postcondition of a method is the conjunction of
these implications for the declared and inherited
contracts

class Set {
// requires contains(x)
// ensures size() == old(size() – 1)
void remove(Object x)
{ … }

}

Postcondition Inheritance: Improved Rule

Peter Müller – Concepts of Object-Oriented Programming

2.3 Types and Subtyping – Behavioral Subtyping

class MySet extends Set {
// requires true
// ensures true
void remove(Object x)
{ … }

}

class MySet extends Set {
// requires !contains(x)
// ensures size() == old(size())
void remove(Object x)
{ … }

}

66

Behavioral Structural Subtyping
 Structural type systems determine

subtype relation automatically
 Automatic static checking

- Not possible, see above
 Dynamic checking

- Not possible for all contracts
- Postcondition cannot be checked

because we have no static type for
receiver, so we do not know what we
can expect
(just like result types are not checked)

Peter Müller – Concepts of Object-Oriented Programming

render(p) {
p.draw();

}

class Circle {
draw() { … }

}

class Cowboy {
draw() { … }

}

2.3 Types and Subtyping – Behavioral Subtyping

67

Types as Contracts
 Types can be seen as a

special form of contract,
where static checking is
decidable

 Operator type(x) yields
the type of the object
stored in x
- (The dynamic type of x)

Peter Müller – Concepts of Object-Oriented Programming

class Types {
Person p;

String foo(Person q) { … }
…

}

class Types {
p;

foo(q) { … }
…

}

class Types {
p;
// invariant type(p) <: Person

foo(q) { … }
…

}

class Types {
p;
// invariant type(p) <: Person

// require type(q) <: Person
// ensure type(result) <: String
foo(q) { … }
…

}

2.3 Types and Subtyping – Behavioral Subtyping

68

Types as Contracts: Subtyping
 Stronger invariant:

- type(p) <: S’ => type(p) <: S
requires S’ <: S

 Weaker precondition
- type(q) <: T => type(q) <: T’

requires T <: T’

 Stronger postcondition:
- type(result) <: U’ =>

type(result) <: U
requires U’ <: U

Peter Müller – Concepts of Object-Oriented Programming

class Sub <: Super {
S’ p;
// invariant type(p) <: S’
// require type(q) <: T’
// ensure type(result) <: U’
U’ foo(T’ q) { … }

}

class Super {
S p;
// invariant type(p) <: S
// require type(q) <: T
// ensure type(result) <: U
U foo(T q) { … }

}

Contravariance

Covariance

Covariance

2.3 Types and Subtyping – Behavioral Subtyping

69

Invariants over Inherited Fields
 Invariants over inherited

field f can be violated by all
methods that have access
to f

 Static checking of such
invariants is not modular

 Even without qualified field
accesses (x.f = e), one
needs to re-check all
inherited methods

Peter Müller – Concepts of Object-Oriented Programming

package Client;
public class Sub

extends Super {
// invariant 0 <= f

}

package Library;
public class Super {
protected int f;

}

package Library;
class Friend {
void foo(Super s) { s.f = –1; }

}

2.3 Types and Subtyping – Behavioral Subtyping

70

Immutable Types
 Objects of immutable types

do not change their state
after construction

 Advantages
- No unexpected modifications

of shared objects
- No thread synchronization

necessary
- No inconsistent states

 Examples from Java
- String, Integer

Peter Müller – Concepts of Object-Oriented Programming

class ImmutableCell {
int value;

ImmutableCell(int value) {
this.value = value;

}

int get() {
return value;

}

// no setter
}

2.3 Types and Subtyping – Behavioral Subtyping

71

Immutable and Mutable Types
 What should be the

subtype relation
between mutable and
immutable types?

Peter Müller – Concepts of Object-Oriented Programming

class ImmutableCell {
int value;
ImmutableCell(int value) { … }
int get() { … }
// no setter

}

class Cell {
int value;
Cell(int value) { … }
int get() { … }
void set(int value) { … }

}

2.3 Types and Subtyping – Behavioral Subtyping

72

Immutable and Mutable Types (cont’d)
 Proposal 1: Immutable

type should be subtype

 Not possible because
mutable type has wider
interface

Peter Müller – Concepts of Object-Oriented Programming

class Cell {
int value;
Cell(int value) { … }
int get() { … }
void set(int value) { … }

}

class ImmutableCell extends Cell {
ImmutableCell(int value) { … }
void set(int value) {
// throw exception
}

}

2.3 Types and Subtyping – Behavioral Subtyping

73

Immutable and Mutable Types (cont’d)
 Proposal 2: Mutable

type should be subtype

 Mutable type has wider
interface
- Also complies with

structural subtyping

 But: Mutable type does
not specialize behavior

Peter Müller – Concepts of Object-Oriented Programming

class Cell extends ImmutableCell {
Cell(int value) { … }
void set(int value) { … }

}

class ImmutableCell {
int value;

… // no setter
}

foo(ImmutableCell c) {
int cache = c.get();
…
assert cache == c.get();

}

class ImmutableCell {
int value;
// constraint old(value) == value
… // no setter

}

2.3 Types and Subtyping – Behavioral Subtyping

74

Immutable and Mutable Types: Solutions
 Clean solution

- No subtype relation between
mutable and immutable types

- Only exception: Object, which
has no history constraint

 Java API contains immutable
types that are subtypes of
mutable types
- AbstractCollection and Iterator

are mutable
- All mutating methods are

optional
Peter Müller – Concepts of Object-Oriented Programming

Object

Immutable
types

Mutable
types

2.3 Types and Subtyping – Behavioral Subtyping

	Concepts of �Object-Oriented Programming
	C-Example Revisited
	Message not Understood
	Java Security Model (Sandbox)
	2. Types and Subtyping
	Type Systems
	Weak and Strong Type Systems
	Weak vs. Strong Typing: Example
	Types
	Nominal and Structural Types
	Static Type Checking
	DynamicType Checking
	Static Type Safety
	Run-Time Checks in Static Type Systems
	Expressiveness of Dynamic Type Systems
	Static vs. Dynamic Type Checking
	Type Systems in OO-Languages
	2. Types and Subtyping
	Classification in Software Technology
	Subtyping
	Nominal and Structural Subtyping
	Nominal Subtyping and Substitution
	Existence
	Accessibility
	Overriding: Parameter Types
	Overriding: Result Types
	Overriding: Fields
	Overriding: Fields (cont’d)
	Overriding: Immutable Fields
	Narrowing Interfaces in Eiffel
	Narrowing Interfaces in Eiffel (cont’d)
	Covariant Arrays
	Covariant Arrays (cont’d)
	Shortcomings of Nominal Subtyping (1)
	Reuse: Adapter Pattern
	Reuse: Generalization
	Reuse: Generalization (cont’d)
	Shortcomings of Nominal Subtyping (2)
	Generality: Additional Supertypes
	Generality: Optional Methods
	Structural Subtyping and Substitution
	Reuse: Structural Subtyping
	Generality: Structural Subtyping
	Type Systems in OO-Languages
	2. Types and Subtyping
	Types
	Method Behavior
	Object Invariants
	Visible States
	History Constraints
	Static vs. Dynamic Contract Checking
	Contracts and Subtyping
	Rules for Subtyping: Preconditions
	Rules for Subtyping: Postconditions
	Rules for Subtyping: Invariants
	Rules for Subtyping: History Constraints
	Natural Numbers Revisited
	Rules for Subtyping: Summary
	Static Checking of Behavioral Subtyping
	Run-Time Checking of Behav. Subtyping
	Specification Inheritance
	Simple Inheritance of Method Contracts
	Precondition Inheritance: Shortcomings
	Precondition Inheritance: Improved Rule
	Postcondition Inheritance: Improved Rule
	Behavioral Structural Subtyping
	Types as Contracts
	Types as Contracts: Subtyping
	Invariants over Inherited Fields
	Immutable Types
	Immutable and Mutable Types
	Immutable and Mutable Types (cont’d)
	Immutable and Mutable Types (cont’d)
	Immutable and Mutable Types: Solutions

