
Concepts of

Object-Oriented Programming

Peter Müller

Chair of Programming Methodology

Autumn Semester 2010

2

Peter Müller – Concepts of Object-Oriented Programming

Visible States

 Invariants have to hold in

pre- and poststates of

methods executions but

may be violated

temporarily in between

 Pre- and poststates are

called “visible states”

class Redundant {

 private int a, b;

 // invariant a == b

 public void set(int v) {

 // invariant of this holds

 a = v;

 // invariant of this violated

 b = v;

 // invariant of this holds

 }

}

2.3 Types and Subtyping – Behavioral Subtyping

3

Peter Müller – Concepts of Object-Oriented Programming

9. Object Invariants

9.1 Call-backs

9.2 Invariants of Object Structures

9. Object Invariants

4

class Logger {

 public void log(String m) {

 System.out.println(m);

 }

}

class Logger {

 private Redundant r;

 public void log(String m) {

 System.out.println(m + r.div(5));

 }

}

Call-backs

Peter Müller – Concepts of Object-Oriented Programming

class Redundant {

 private int a, b;

 private Logger l;

 // invariant a == b

 public void set(int v) {

 a = v;

 l.log(“Inside set”);

 b = v;

 }

 public int div(int v) {

 return v / (a – b + 1);

 }

}

1

1

Redundant

Logger

0

9.1 Object Invariants – Call-backs

5

Common Variations

 Self-calls  Re-entrant monitors

Peter Müller – Concepts of Object-Oriented Programming

class Redundant {

 private int a, b;

 // invariant a == b

 public void set(int v) {

 a = v; this.div(5); b = v;

 }

 public int div(int v) {

 return v / (a – b + 1);

 }

}

9.1 Object Invariants – Call-backs

class Redundant {

 private int a, b;

 // monitor invariant a == b

 public synchronized void set(int v) {

 a = v; this.div(5); b = v;

 }

 public synchronized int div(int v) {

 return v / (a – b + 1);

 }

}
Java

6

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

Running Example

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

7

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF

 // ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 regulator.Report(this);

 }

 … }

Solution 1: Re-establishing Invariants

 Check invariant

before every

method call

 Overly restrictive:

most methods do

not call back

 Too expensive for

run-time checking

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

Check

invariant

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF

 // ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 if(cur.Equals(Currency.CHF))

 balance = Round(balance);

 regulator.Report(this);

 }

 … }

8

Solution 2: Call-back Analysis

 Statically analyze

code of callee to

detect call-backs

- Check invariant

before call only if

call-back is possible

 Not modular

- For dynamically-

bound methods, all

overrides need to

be known

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 int balance;

 Currency! cur;

 Regulator! regulator;

 // invariant cur == Currency.CHF

 // ==> balance % 5 == 0;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 … }

9.1 Object Invariants – Call-backs

What if

Regulator is

an interface?

9

Solution 3: Explicit Requirements

 Specify in each

precondition which

invariants the method

actually requires

 Check required

invariants before

method call

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 // requires invariant of this and c;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

9.1 Object Invariants – Call-backs

10

Explicit Requirements: Problems

 Writing the concrete

invariant in

precondition violates

information hiding

 Some methods

require a large

number of invariants

- For example, tree

traversal

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 // requires invariant of this and c;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

9.1 Object Invariants – Call-backs

11

Solution 4: Dented Invariants

 Use boolean field to

indicate whether

object is valid or not

- Can be used to turn

invariant on and off

 Dented invariant

holds in all visible

states

 Explicit requirements

can be stated using

the valid-field

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 boolean valid;

 // invariant valid ==>

 // cur == Currency.CHF

 // ==> balance % 5 == 0;

 // requires this.valid && c.valid;

 void Exchange(Currency! c)

 { … }

 …

}

9.1 Object Invariants – Call-backs

12

Re-establishing Dented Invariants

 Programmers might

forget to set valid-field

 Invariants still need to

be checked before

method calls

 A method can break

many invariants

through direct field

updates

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 boolean valid;

 void Exchange(Currency! c) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

}

valid not

set to false

Dented

invariant

does not

hold

9.1 Object Invariants – Call-backs

13

Basic Spec# Methodology

 Each object has an implicit valid-field

- Valid and mutable objects

 Each invariant is implicitly dented

 Object invariants can depend only on the fields of

the this object (will be relaxed later)

 Enforce that dented invariants hold in all execution

states, not just visible states

- Un-dented invariant holds whenever an object is valid

 Valid objects must not be modified

- Check for each field update o.f = e that o is mutable

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

14

class Account {

 …

 invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

} Spec#

class Account {

 …

 invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 …

} Spec#

Spec# Methodology: Example

Peter Müller – Concepts of Object-Oriented Programming

Invariant is

implicitly dented

Implicit precondition:

arguments are valid

Check fails:

receiver is

not mutable

9.1 Object Invariants – Call-backs

15

Maintaining Object Validity

 Setting the valid-field

to true might break

the dented invariant

 valid-field can be

modified only through

special expose block

statement

- Exposed object must

be initially valid

- Similar to non-

reentrant lock-block

Peter Müller – Concepts of Object-Oriented Programming

int f;

invariant 0 < f;

void foo() {

 valid = false;

 f = -1;

 valid = true;

}

int f;

invariant 0 < f;

void foo() {

 expose(this) {

 f = -1;

 }

}
Spec#

Set valid

to false

Check

invariant

Set valid

to true

Invariant

violation goes

undetected

9.1 Object Invariants – Call-backs

16

class Account {

 invariant cur == Currency.CHF ==> balance % 5 == 0;

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 balance = cur.Convert(balance, c);

 cur = c;

 regulator.Report(this);

 if(cur == Currency.CHF)

 balance = balance / 5 * 5;

 }

 }

 … }
Spec# Spec#

Example Revisited

Peter Müller – Concepts of Object-Oriented Programming

Check

succeeds:

this is valid

Check

succeeds:

receiver is

mutable

Check

succeeds:

invariant holds

9.1 Object Invariants – Call-backs

17

Establishing Object Validity

 New objects are

initially mutable

- valid-Field is

initialized to false

 After initialization,

un-dented invariant

is checked and valid-

field is set to true

- We ignore inheritance

here

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 invariant cur == Currency.CHF

 ==> balance % 5 == 0;

 Account(Regulator! r) {

 cur = Currency.CHF;

 regulator = r;

 }

 …

}

Spec#

Invariant holds

since balance == 0

Implicit:

this.valid = true;

9.1 Object Invariants – Call-backs

18

Basic Spec# Methodology: Summary

 Admissible invariants

- The invariant of an object o may depend on fields of o

(and constants)

 Checks (proof obligations)

- Invariant of o holds after o has been initialized

- Invariant of o holds at the end of each expose(o) block

- Every expose operation is done on a valid object

- Every field update is done on a mutable receiver

 Recall: we ignore inheritance here

Peter Müller – Concepts of Object-Oriented Programming

9.1 Object Invariants – Call-backs

19

Call-backs in Spec#: Example

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 …

 regulator.Report(this);

 …

 }

 }

 int GetBalance()

 // requires this.valid

 { return balance; }

}
Spec#

class Regulator {

 void Report(Account! a)

 // requires this.valid && a.valid;

 {

 int b = a.GetBalance();

 // …

 }

 …

}
Spec#

In principle, methods

can be called while

invariant is broken

Requirement about

expected invariants

This call is forbidden

since precondition

does not hold

9.1 Object Invariants – Call-backs

20

Call-backs in Spec#: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 …

 regulator.Report(this);

 …

 }

 }

 int GetBalance()

 // requires this.valid

 { return balance; }

}
Spec#

class Regulator {

 void Report(Account! a)

 // requires this.valid;

 {

 int b = a.GetBalance();

 // …

 }

 …

}
Spec#

a’s invariant is

not expected

Call is allowed since

precondition holds
Call-back is forbidden

since precondition

does not hold

9.1 Object Invariants – Call-backs

21

Call-backs in Spec#: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 void Exchange(Currency! c)

 // requires this.valid && c.valid;

 {

 expose(this) {

 …

 regulator.Report(this);

 …

 }

 }

 int GetBalance()

 // requires true;

 { return balance; }

}
Spec#

class Regulator {

 void Report(Account! a)

 // requires this.valid;

 {

 int b = a.GetBalance();

 // …

 }

 …

}
Spec#

a’s invariant

not expected

Call is allowed since

precondition holds

No invariant

expected

Call-back is allowed

since precondition

holds

9.1 Object Invariants – Call-backs

22

Peter Müller – Concepts of Object-Oriented Programming

9. Object Invariants

9.1 Call-backs

9.2 Invariants of Object Structures

9. Object Invariants

23

Multi-Object Invariants: Example

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 Account! savings;

 invariant 0 <= savings.balance;

 …

}

Field update might

break invariants of

client objects

Invariant

depends on field

of another object

9.2 Object Invariants – Invariants of Object Structures

24

Finding Dependent Objects

 : Account

Withdraw(…)

 : Person
 : Person

 : Bank

: Company

 : E

 : Set

 : List

 : C

 : Node

 : A

 : Node

 : List

 : Node

 : List

 : F

9.2 Object Invariants – Invariants of Object Structures

Peter Müller – Concepts of Object-Oriented Programming

25

Ownership-Based Invariants

 Admissible invariants

- The invariant of an object o may

depend on fields of o and

objects (transitively) owned by o

(and constants)

 Requirement: when an object

o is mutable, so are o’s

(transitive) owners

- Because an update of o might

break the owners’ invariants

Peter Müller – Concepts of Object-Oriented Programming

 : Account

Withdraw(…)

 : Person
 : Person

 : Company

9.2 Object Invariants – Invariants of Object Structures

26

Using Ownership to Limit Dependencies

 : Account

Withdraw(…)

 : Person
 : Person

 : Bank

 : Company

 : E

 : Set

 : List

 : C

 : Node

 : A

 : Node

 : List

 : Node

 : List

 : F

9.2 Object Invariants – Invariants of Object Structures

Peter Müller – Concepts of Object-Oriented Programming

27

Admissible Ownership-Based Invariants

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 Account! savings;

 invariant 0 <= savings.balance;

 …

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 …

}

Not admissible: invariant

depends on field of

another object that is not

owned by this

Admissible: savings

is owned by this

Use topological

type system

Spec# syntax:

[Rep]

9.2 Object Invariants – Invariants of Object Structures

28

Mutable Owners: Example

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 void Donate()

 {

 savings.Withdraw(1000);

 }

}
This call might

break the

invariant of this

Invariant of this is

not checked!

9.2 Object Invariants – Invariants of Object Structures

29

Enforcing Mutable Owners

 Rules

- Expose owner before

owned object

- Un-expose in reverse order

 Additional checks for

expose(o)

- Before expose, o must be

valid and o’s owner must be

mutable

- At the end of expose, all

objects owned by o must be

valid

Peter Müller – Concepts of Object-Oriented Programming

A B

C D

E

A B

C D

E

A B

C D

E

mutable

valid, mutable owner

valid, valid owner

9.2 Object Invariants – Invariants of Object Structures

30

Mutable Owners: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 // requires valid && !owner.valid

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 void Donate()

 // requires valid && !owner.valid

 {

 savings.Withdraw(1000);

 }

} This call is forbidden

since precondition

does not hold

9.2 Object Invariants – Invariants of Object Structures

31

Mutable Owners: Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Account {

 …

 void Withdraw(int amount)

 // requires valid && !owner.valid

 requires cur == Currency.CHF

 ==> amount % 5 == 0;

 ensures balance ==

 old(balance) – amount;

 {

 expose(this) {

 balance = balance – amount;

 }

 }

}

class Person {

 rep Account! savings;

 invariant 0 <= savings.balance;

 void Donate()

 // requires valid && !owner.valid

 {

 expose(this) {

 savings.Withdraw(1000);

 }

 }

}

Call is allowed since

precondition holds

Invariant check fails

(add precondition to fix)

9.2 Object Invariants – Invariants of Object Structures

32

Heap Snapshot

mutable

valid, mutable owner

valid, valid owner

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

33

Spec# Methodology: Summary

 Admissible invariants

- The invariant of an object o may depend on fields of o

and objects (transitively) owned by o (and constants)

 Checks (proof obligations)

- Owner of newly created object is mutable

- Invariant of o holds after o has been initialized

- Invariant of o holds at the end of each expose(o) block

and all objects owned by o are valid

- Every expose operation is done on a valid object with a

mutable (or no) owner

- Every field update is done on a mutable receiver

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

34

Spec# Methodology: Observations

 Methodology relies on encapsulation of object

structures

- No strict enforcement of owner-as-modifier discipline

- But: owner must be exposed before owned object

 Responsibility for invariant checking is divided

- A method implementation is responsible for the objects in

the context of the receiver

- A caller is responsible for the objects in its context

 Ownership-based invariants are too restrictive for

many useful examples

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

35

Invariants and Immutability

 Immutable objects can be

freely shared

 Invariants may depend on

the state of shared

immutable objects

 Immutability often leads to

more reliable programs

- Especially for concurrency

- If performance permits

Peter Müller – Concepts of Object-Oriented Programming

class Client {

 Integer! i;

 invariant 0 < i.value;

 …

}

[Immutable] class Integer {

 int value;

 …

}

No ownership

necessary

Spec#

Spec#

9.2 Object Invariants – Invariants of Object Structures

36

Invariants and Monotonicity

 Many properties of

objects evolve

monotonically

- Numbers grow or shrink

monotonically

- Reference go from null to

non-null

 Invariants may depend

on properties of shared

objects guaranteed by

their history constraint

Peter Müller – Concepts of Object-Oriented Programming

class Client {

 Counter! c;

 invariant 0 < c.value;

 …

}

class Counter {

 int value;

 // constraint old(value) <= value;

 …

}

9.2 Object Invariants – Invariants of Object Structures

No ownership

necessary

37

Invariants and Visibility

 Invariants may depend

on fields of shared

objects if a modular static

analysis can determine

all necessary checks

 Invariant and field are

declared in the same

module

- Common example:

recursive data structures

Peter Müller – Concepts of Object-Oriented Programming

class Person {

 Person spouse;

 invariant spouse == null ||

 spouse.spouse == this;

…

} Spec#

9.2 Object Invariants – Invariants of Object Structures

No ownership

necessary

38

Summary

 Sound, modular checking of object invariants is

surprisingly difficult

- Call-backs

- Multi-object invariants

- Inheritance

 Spec# is the first system to support sound, modular

verification of object invariants

- Efficient run-time checking does not seem feasible

 Spec# is open source: specsharp.codeplex.com

Peter Müller – Concepts of Object-Oriented Programming

9.2 Object Invariants – Invariants of Object Structures

