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7.1 Ownership Types — Readonly Types

Object Structures Revisited

class Address { class Person {
private String street; private Address addr;
private String city; public Address getAddr( )
{ return addr.clone(); }
public String getStreet(){ ... } public void setAddr( Address a )
public void setStreet( String s ) { addr = a.clone(); }
{...}
}
public String getCity( ){ ... } . ™
: . . : peter
public void setCity( String s ) 4 " home )
. N
{...} acer ™~ |street:
" Y, city:
}
\ /
Peter Muller — Concepts of Object-Oriented Programming igntnocte Tl Hochic



7.1 Ownership Types — Readonly Types

Drawbacks of Alias Prevention

= Aliases are helpful to

4 ™
: peter
share side-effects ~ddr
= Cloning objects is not " home )
efficient b v street:
(" annette ) -
City:
_ _ addr:| &
* In many cases, it suffices . /
to restrict access to N J
shared objects Y
= Common situation: grant orof7: o
read access only
. Y,
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7.1 Ownership Types — Readonly Types

Requirements for Readonly Access

= Mutable objects " peter )
- Some clients can mutate the |addr:
object, but others cannot " _home
- Access restrictions apply to e C | street:
references, not whole objects > city:
: ETH :
= Prevent field updates S phone:. 1
: prof7:
= Prevent calls of mutating N J
methods \ M atel )
* Transitivity No:
- Access restrictions extend to
. \_ /
references to sub-objects
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7.1 Ownership Types — Readonly Types

Readonly Access via Supertypes

interface ReadonlyAddress {
public String getStreet();
public String getCity( );

}

class Address
Implements ReadonlyAddress {

... I* as before */}

class Person {
private Address addr;

public ReadonlyAddress
getAddr( )

{ return addr; }
public void setAddr( Address a )
{ addr = a.clone(); }

!

= Clients use only the met

- Object remains mutable
- No field updates

nods In the Interface

- No mutating method in the interface
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7.1 Ownership Types — Readonly Types

Limitations of Supertype Solution

= Reu

sed classes

might not implement
a readonly interface

- See discussion of
structural subtyping

= |nterfaces do not

sup
flielo

port arrays,
s, and non-public

met

nods

class Address {

private PhoneNo phone;
public PhoneNo getPhone()
{ return phone; }}

interface ReadonlyAddress {

public ReadonlyPhoneNo getPhone( );
}

= Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

Peter Muller — Concepts of Object-Oriented Programming
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7.1 Ownership Types — Readonly Types

Supertype Solution Is not Safe

= No checks that class Person {
methods in readonly private Address addr;

: public ReadonlyAddress getAddr( )
Interface are actually return addr: }

side-effect free public void setAddr( Address a )
{ addr = a.clone(); }

= Readwrite aliases can

occur, e.g., through }

capturing void m( Person p ) {
ReadonlyAddress ra = p.getAddr();

Address a = (Address) ra;

= Clients can use casts o ,
a.setCity( “Hagen”);

to get full access |
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7.1 Ownership Types — Readonly Types

Readonly Access In Eliffel

= Better support for fields
- Readonly supertype can contain getters
- Field updates only on “this” object

= Command-query separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

= Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Muller — Concepts of Object-Oriented Programming
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7.1 Ownership Types — Readonly Types

10

Readonly Access in C++: const Pointers

class Address {
string city;
public:
string getCity( void )
{ return city; }
void setCity( string s )

{city=s;}

I

C++

class Person {
Address* addr;

public:

const Address* getAddr( )
{ return addr; }
void setAddr( Address a )
{ I* clone */ }

%

C++

= C++ supports readonly

pointers
- No field updates
- No mutator calls

void m( Person*p ) {
const Address* a = p->getAddr();
a->setCity(XHagen”);

cout << a-m@i\\

}

Peter Muller — Concepts of Object-Oriented Programming
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7.1 Ownership Types — Readonly Types

11

Readonly Access in C++: const Functions

class Address {
string city;

public:

string getCity( void ) const
{ return city; }

void setCity( string s )
{city=s;}

I}

C++

class Person {
Address* addr;
public:
const Address* getAddr( )
{ return addr; }
void setAddr( Address a )
{ I* clone */ }

}; C++

= const Functions must

not modify their receiver

object

void m( Person*p ) {
const Address* a = p->getAddr();
a->setCity(XHagen”);

cout << a-m\;\
’ N

Peter Muller — Concepts of Object-Oriented Programming
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7.1 Ownership Types — Readonly Types

12

It wouldn't be C++ ...

class Address {
string city;
public:
string getCity( void ) const
{ return city; }
void setCity( string s ) const {

Address* me = ( Address* ) this;

class Person {
Address* addr;
public:
const Address* getAddr( )
{ return addr; }
void setAddr( Address a )
{ I* clone */ }

me->city = s; %
} }; C++ C++
= const-ness can be cast |void m(Person*p) {

away const Address* a = p->getAddr();

- No run-time check

a->setCity( “Hagen” );

Peter Muller — Concepts of Object-Oriented Programming
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7.1 Ownership Types — Readonly Types

13

It wouldn't be C++ ...

(cont’d)

class Address {
string city;
public:
string getCity( void ) const
{ return city; }
void setCity( string s )

{city =s;}

}; C++

class Person {
Address* addr;
public:
const Address* getAddr( )
{ return addr; }
void setAddr( Address a )
{ I* clone */ }

}; C++

= const-ness can be cast
away
- No run-time check

void m( Person* p) {
const Address* a = p->getAddr();
Address* ma = ( Address*) a;
ma->setCity( “Hagen” );

} C++

Peter Muller — Concepts of Object-Oriented Programming




7.1 Ownership Types — Readonly Types

14

Readonly Access In C++: Transitivity

class Phone {
public:
Int number,;

%

C++

void m( Person*p) {

}

const Address* a = p->getAddr();

Phone* p = a->getPhone();
p->number = 2331...;

C++

class Address {
string city;
Phone* phone;
public:

{ return phone; }

I

Phone* getPhone( void ) const

C++

= const pointers are not

transitive

= const-ness of sub-

objects has to be
Indicated explicitly

Peter Muller — Concepts of Object-Oriented Programming



7.1 Ownership Types — Readonly Types 15

Transitivity (cont’d)

class Address {
string city;
Phone* phone;
public:
const Phone* getPhone( void ) const {
phone->number = 2331,

return phone; const functions may
] modify objects other
than the receiver

J

C++

ETH
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7.1 Ownership Types — Readonly Types 16

Readonly Access In C++: Discussion

cons

= const-ness Is not
transitive

= const pointers are
unsafe

- Explicit casts

= Readwrite aliases can
occur

Peter Muller — Concepts of Object-Oriented Programming Eidgenassische Techn sche Hochschule 2rich



7.1 Ownership Types — Readonly Types

Pure Methods

= Tag side-effect free class Address {
methods as pure pr!vate Str!ng s.treet,
private String city;
= Pure methods public pure String getStreet( )
- Must not contain field 1.}
update public void setStreet( String s )
- Must not invoke non- o)
pure methods public pure String getCity( )
{...}

- Must not create objects public void setCity( String s )

- Can only be overridden {...}
by pure methods

Peter Muller — Concepts of Object-Oriented Programming



7.1 Ownership Types — Readonly Types

Types

= Each class or interface T
iIntroduces two types

* Readwrite typerw T
- Denoted by T in programs

= Readonlytypero T

- Denoted by readonly T in
programs

class Person {
private Address addr;

public ReadonlyAddress
getAddr( ) { return addr; }

public void setAddr( Address a )
{ addr = a.clone(); }

e }
class Person { l

private Address addr;

public readonly Address
getAddr( ){ ...}

Peter Muller — Concepts of Object-Oriented Programming




7.1 Ownership Types — Readonly Types

Subtype Relation

= Subtyping among readwrite
and readonly types Is
defined as in Java

- S extends or implements T =
'wS<:rwT

- S extends or implements T =
rnS<:roT
= Readwrite types are
subtypes of corresponding
readonly types

-mwil<rofl

classT{...}

class Sextends T{ ...

Srws=...
TrwT = ...
readonly SroS = ...

readonly T roT = ...
rwT =rwS;
rol =roS:;
rolT =rwT;
rwT =roT ;

Peter Muller — Concepts of Object-Oriented Programming




7.1 Ownership Types — Readonly Types 20

Type Rules: Transitive Readonly

class Address { class Person {
private Address addr;
private int[ ] phone; public readonly Address
public int[] getPhone() {...} getAddr( ) { return addr; }
)
}

= Accessing a value of a
readonly type or
through a readonly type
should yield a readonly
value

Peter Mller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich
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7.1 Ownership Types — Readonly Types

Type Rules: Transitive Readonly (cont’d)

= The type of
- A field access

- An array access

- A method invocation
IS determined by the

type combinator »

> rw T roT
rw S rw T roT
roS roT roT

Personp = ...
readonly Address a;
a = p.getAddr();

Int[ ] ph = a getPhone()

/

[ ro Address >[

H_J

rw int[ |

ro int[ |

Peter Mller — Concepts of Object-Oriented Programming




7.1 Ownership Types — Readonly Types

Type Rules: Transitive Readonly (cont’d)

= The type of
- A field access

- An array access

- A method invocation
IS determined by the

type combinator »

Personp = ...

readonly Address a;
a = p.getAddr();

donly int[ ] ph = a.getPh ;
rea onym[]p/age \\one()

[ ro Address }» [

\

rw int[ |

|

H_J

Peter Muller — Concepts of Object-Oriented Programming
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7.1 Ownership Types — Readonly Types 23

Type Rules: Readonly Access

= Expressions of readonly
types must not occur as
receiver of
- afield update
- an array update

- an invocation of a non-pure
method

= Readonly types must not
be cast to readwrite types

Peter Mller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich
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7.1 Ownership Types — Readonly Types

24

Discussion

= Readonly types enable safe sharing of objects

= Very similar to const pointers in C++, but:
- Transitive
- No casts to readwrite types

= All rules for pure methods and readonly types can
be checked statically by a compiler

= Readwrite aliases can still occur, e.g., by capturing

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types

25

/. Ownership Types

/.1 Readonly Types
/.2 Topological Types
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7.2 Ownership Types — Topological Types

26

Object Topologies

class Person {

» Read-write aliases private Address addr;

- private Company employer;
can still O.CCUI’, .9 public readonly Address getAddr( )
by capturing or

_ { return addr; }
leaking public void setAddr( Address a )
{ addr = a.clone(); }

= We need to public Company getEmployer( )
distinguish “internal” | {return employer; }
references from public void setEmployer( Company c )

employer = c;
other references L employ }

}

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

Roles in Object Structures

* Interface objects that are
used to access the
structure

* Internal representation
of the object structure

= Arguments of the object
structure

LinkedList)

" \
Listltr
™ ®
N
|
Entry
N
—

N (" N (- N
Entr Entry Entry
Oy | @i
= 4—-—oj—-—o
._/ ;. N
\/
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7.2 Ownership Types — Topological Types 28

Ownership Model Owner of
Entry objects
. O )
X! Listltr
= Each object hgs Zero or CinrodLiod
one owner objects —_
. . NI
* The set of objects with the
same owner is called a Entry
context
= The ownership relation is Entry] [(Entwy) [(Ent
acyclic s
* The heap Is structured into
a forest of ownership trees Aﬁ Y
- objects owned
by list head

Eidgendssische Technische Hoch
5% F I it f
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7.2 Ownership Types — Topological Types 29

OwnershipTypes rep
reference R
= We use types to express TinkedList Listtr
ownership information —
\_ J
*= peer types for objects in / Entry
the same context as this
[ peer ::::
= rep types for reference | \EQhU L el e
representation objects in \\L'_Z:j_:
the context owned by this ~__ | A

* any types for argument

objects in any context any
reference

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types 30

Example

class LinkedList {
private rep Entry header;

A list owns

its nodeSJ (

Lists store
elements with

arbitrary owners
class Entry %4\

private any Object element;
private peer Entry previous, next;

) mdes have
the same owner

N

ETH
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7.2 Ownership Types — Topological Types 31

Type Safety

= Run-time type information consists of
- The class of each object
- The owner of each object

= Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value
- If e has type rep T then o’s owner Is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner Is arbitrary

\f An existential W
4

Eidgendssische Technische Hoch
Swiss Federal §
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7.2 Ownership Types — Topological Types

Subtyping and Casts

classT{...}

= For types with identical class S extends T{ ...}

ownership modifier, subtyping

: : : peer T peerT = ...
IS defined as In Java

any T anyT = ...
-repS<irepT rep SrepS=...
- peer S<:peerT rep TrepT = ...
-anyS<iany T repT = repS;

" rep types and peer types are |3  =repl; |
subtypes of corresponding JORT =[Pt 1) Iy

repT =(rep T) anyT,
any types
T < T repT = peerT,
- ep - any peerT  =repT;
- peerT<iany T repT = anyT:

Eidgendssische Technische Hoch
Swiss Federal Institute of
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7.2 Ownership Types — Topological Types 33

Example (cont’d)

class LinkedList {
private rep Entry header;
public void add( any Object o) {
rep Entry newk = new rep Entry( o, header, header.previous );

}

} Ownership information
IS relative to this
class Entry { _ reference (viewpoint)

private any Object element;

private peer Entry previous, next;

public Entry( any Object o, peer Entry p, peer Entryn) {... }
}

Peter Muller — Concepts of Object-Oriented Programming Eidgendssische Technische Hochschule Zarich
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7.2 Ownership Types — Topological Types

34

Viewpoint Adaptation: Example 1

List
Q
N\

N\

Entry Entry
[ > e

Entry

peer » peer = peer

Peter Muller — Concepts of Object-Oriented Programming
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7.2 Ownership Types — Topological Types

35

Viewpoint Adaptation: Example 2

List

|

\

\

Entry

rep » peer =rep

Entry

Entry

Peter Muller — Concepts of Object-Oriented Programming
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7.2 Ownership Types — Topological Types

36

Type Rules: Field Access

= The field read = The field write
v=e.f; ef=v;
IS correctly typed if IS correctly typed Iif
- e Is correctly typed - e Is correctly typed
-t(e)p r(f)<it(Vv) -t(v)<iz(e)» 1(f)

* Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

37

Viewpoint Adaptation

> peer T rep T any T
peer S peer T ? any T
rep S rep T ? any T
any S ? ? any T

v = e.f;

(e)P» t(f)<it(v)

ef=v;

(v)<it(e) P t(f)

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types 38

Read vs. Write Access

[ this | class Person {
® public rep Address addr;
/T public peer Person spouse;
Ji
o
}

joe peer Person joe, jill;

“l - -

o— joe.spouse = jill;

any Address a = joe.addr;

r.

joe.addr = new rep Address();

ETH

Peter Muller — Concepts of Object-Oriented Programming Eidgendssische Technische Hochschule Zarich
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7.2 Ownership Types — Topological Types 39

The lost Modifier

= Some ownership class Person {
relations cannot be publ?c rep Address addr;
expressed in the type public peer Person spouse;
system }

= |nternal modifier lost for
fixed, but unknown
owner joe.spouse = jill;

= Reading locations with
lost ownership is allowed

= Updating locations with ~ [19€:addr= new rep Address(),
lost ownership is unsafe ﬁostAddreSS T

peer Person joe, jill;

[ lost Address }

any Address a = joe.a\&jr;

h g ETH
Eidgendssische Technische Hoch
5% F
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7.2 Ownership Types — Topological Types 40

The lost Modifier: Detalls

> peer T rep T any T V = e.f;
peer S peer T lost T any T we)» ()< t(v)
rep S rep T lost T any T
any S lost T lost T any T ef=v:
lost S lost T lost T any T

- t(v)<:t(e) P t(f)

= Subtyping [ Another J t(e) » t(f) does not

- repT<:lostT existential type | have lost modifier

- peer T<:lostT

- lostT<:any T

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

The self Modifier

class Person {
public rep Address addr;
public peer Person spouse;

}

peer Person joe;

joe.addr = new rep Address();

this.addr = new rep Address();

* Internal modifier self only for the this literal

Eidgendssische Technische Hoch
Swiss Federal Institute of
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7.2 Ownership Types — Topological Types

42

The self Modifier: Detalls

> peer T rep T any T
peer S peer T lost T any T
rep S rep T lost T any T
any S lost T lost T any T
lost S lost T lost T any T
self S peer T rep T any T
= Subtyping

- self T<:peerT

v=e.f

(e)» t(f)<it(v)

ef=v;

(v)<it(e)» 1(f)
(e ) » t(f) does not
have lost modifier

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

43

Example: Sharing

class Person {
public rep Address addr;

= Different Person objects
have different Address
objects

- No unwanted sharing

this

joe

r.

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

44

Example: Internal vs. External Objects

class Person {
private rep Address addr;

public rep Address getAddr( ) {

Address is part of

Person’s internal
represenations

return addr;

}

Clients receive a
lost-reference

public void setAddr( rep Address a ) {

addr = a;

}

Cannot be called
by clients

public void setAddr( any Address
addr = new rep Address( a);

a){

) Cloning

} Xnecessary

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

45

Internal vs. External Objects (cont’d)

class Person {

private any Company employer;

public any Company getEmployer( ) {
return employer;

}

employer = c;
}
}

public void setEmployer( any Company c ) {

Company is shared
between many
Person objects

Can be called
by clients

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types 46

Owner-as-Modifier Discipline

= Topological type system can be used to strengthen
encapsulation
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

= Additional rules enforce owner-as-modifier

- Field write e.f = vis valid only if t( e ) Is self,
peer, orrep

- Method call e.m(...) is valid only if t( e ) Is self,
peer, or rep, or called method is pure

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

47

Owner-as-Modifier Discipline (cont’'d)

this

= A method may modify only objects directly or
Indirectly owned by the owner of the current this
object

Peter Mller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

48

Internal vs. External Objects Revisited

class Person { Company is shared
private rep Address addr; cannot be modified

;J

private any Company employer;

public rep Address getAddr( ) {return addr; }

public void setAddr( any Address a ) {
addr = new rep Address( a);

Clients receive
(transitive)
readonly reference

i Accidental capturing
IS prevented

public any Company getEmployer( ) {return employer; }

public void setEmployer( any Company c ) { employer =c; }

}

Peter Muller — Concepts of Object-Oriented Programming



6.4 Object Structures and Aliasing — Encapsulation of Object Structures 49

(Simplified) Programming Discipline

= Rule 1: No Role Confusion -

- Expression with one alias mode must not be |  ypesfor
: . : different roles
assigned to variables with another mode

= Rule 2: No Representation Exposure Viewpoint
- rep-mode must not occur in an object’s interf fadaptat'on
_ or rep types
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on
this Like with

= Rule 3: No Argument Dependence prg%ré"ig;ir:'eng

- Implementations must not depend on the state of
argument objects

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types 50

Achievements
* rep and any types enable
encapsulation of whole class ArrayList {
ObJeCt structures protected rep int[ | array;
_ private int next;
= Encapsulation cannot be |
violated by subclasses, )

via casts, etc.

* The technique fully
supports subclassing

- In contrast to solutions with
final, private inner classes,
etcC.

Peter Mller — Concepts of Object-Oriented Programming Eidgenassische Technische Hochschule Zarich
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6.3 Object Structures and Aliasing — Problems of Aliasing

51

Exchanging Implementations

class ArrayList {
private int[ | array;
private int next;

I/ requires ia != null

/[ ensures Vi. O<=i<ia.length:

I/ ISElem(old(ia[i]))

public void addElems(int[]ia)
{ array = ia; next = ia.length; }

}

=)

class ArrayList {

private Entry header;

// requires ia != null

I/ ensures Vi. 0<=i<ia.length:

Il ISElem( old(ia[i]))
public void addElems(int[]ia)

{ ... I* create Entry for each
element */ }

}

» Interface including contract remains unchanged

Peter Muller — Concepts of Object-Oriented Programming
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7.2 Ownership Types — Topological Types

52

Exchanging Implementations (cont’d)

class ArrayList {
private rep int[ | array;
private int next;

// requires ia !'= null
I/ ensures Vi. O<=i<ia.length:
I/ IsElem(old(ia[i]))
public void
addElems( any int[ ] ia)
{ System.arraycopy(...);
next = ia.length; }

class ArrayList {
private rep Entry header;

// requires ia !'= null
/] ensures Vi. 0<=i<ia.length:
I/ ISElem(old(ia[i]))
public void
addElems( any int[ | ia)
{ ... I* create Entry for each
element */ }

=)

.

) Wtal capturing | |}
IS prevented

Peter Muller — Concepts of Object-Oriented Programming




7.2 Ownership Types — Topological Types 53

Exchanging Implementations (cont’d)

class ArrayList { class ArrayList {

private rep int[ | array; private rep Entry header;

private int next;

public any int[ | getElems() public void any int| | getElems()

{returnia;} { I* create new array */ }
\ Leaking is still }
possible

peer ArrayListlist = new peer ArrayList();
list.prepend( 0 ); = Observable
any int[ ] ia = list.getElems( ); behavior is
Ilst.prepend( 1); Changed
assertia[ 0] == 1;

Eidgendssische Technische Hoch
Swiss Federal Institu f
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6.3 Object Structures and Aliasing — Problems of Aliasing

54

Consistency of Object Structures

= Consistency of object
structures depends on
flelds of several objects

= |nvariants are usually
specified as part of the
contract of those objects
that represent the
iInterface of the object
structure

class ArrayList {
private int[ ] array;
private int next;

// invariant array != null &&
/[ O<=next<=array.length &&
Il Vi.0<=i<next: array[i]>=0

public void add(inti) {...}
public void addElems(int[]ia)

[}

Peter Muller — Concepts of Object-Oriented Programming



7.2 Ownership Types — Topological Types

55

Invariants for Object Structures

= The invariant of object o
may depend on

- Encapsulated fields of o

- Fields of objects o
references through rep-
references

* Interface objects have
full control over their
rep-objects

class ArrayList {
private rep int[ ] array;
private int next;

// invariant array != null &&
/I 0<=next<=array.length &&
[l Vi.0<=i<next: array[i]>=0

public void add(inti) {...}

public void addElems
(anyint[]Jia) {...}
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Security Breach in Java 1.1.1

s = Malicious.class.getSigners( );
s[ O] = trusted, \

class Malicious { dentity] ] identity
@ >
void bad() { °
ldentity[ ] s; |dentity
|dentity trusted = java.Security...; ® —
Class

/* abuse privilege */ \ "‘\
} ldentity] ] _
— | |dentity
} ] ) [ E—
[Identlty[ ] getSigners() ]
return signers;
{ : : | System
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Security Breach in Java 1.1.1 (cont’d)

class Malicious {

void bad() {
any Ildentity[ ] s;
ldentity trusted = java.Security...; e

Identity][ ] |dentity
o >
[
|dentity
>

s[ O ] = trusted,;

s = Malicious.class.getSigners( ); \

t

Class _ _
E@ny[] signers; }
O
ldentity] ]
} \ o—"| [Identity
] ) @ -
[rep Identity[ ] getSigners( )]
return signers;
{ E } | System
Peter Miller — Concepts of Object-Oriented Programming Cidgendsaisch Tchnische Hachschle Ziric



7.2 Ownership Types — Topological Types

Ownership Types: Discussion

= Ownership types express heap topologies and
enforce encapsulation
= Owner-as-modifier is helpful to control side effects
- Maintain object invariants
- Prevent unwanted modifications
= Other applications also need restrictions of read
access
- Exchange of implementations
- Thread synchronization

= Ownership types are an area of current research

Peter Muller — Concepts of Object-Oriented Programming
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