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Object Structures Revisited
class Address {
private String street;
private String city;

public String getStreet( ) { … }
public void setStreet( String s ) 
{ … }

public String getCity( ){ … }
public void setCity( String s ) 
{ … }

…
}

addr:

peter

…
street:

city:

home

…

class Person {
private Address addr;
public Address getAddr(  ) 
{ return addr.clone( ); }

public void setAddr( Address a )
{ addr = a.clone( ); }

…
}

7.1 Ownership Types – Readonly Types
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Drawbacks of Alias Prevention
 Aliases are helpful to 

share side-effects
 Cloning objects is not 

efficient

 In many cases, it suffices 
to restrict access to 
shared objects

 Common situation: grant 
read access only

addr:

peter

…
street:

city:

home

…addr:

annette

…

prof7:

ETH

…

7.1 Ownership Types – Readonly Types
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Requirements for Readonly Access
 Mutable objects

- Some clients can mutate the 
object, but others cannot

- Access restrictions apply to 
references, not whole objects

 Prevent field updates
 Prevent calls of mutating 

methods
 Transitivity

- Access restrictions extend to 
references to sub-objects 

Peter Müller – Concepts of Object-Oriented Programming

No:

Natel

…

street:
city:

home

…

phone:

addr:

peter

…

prof7:

ETH

…

7.1 Ownership Types – Readonly Types
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interface ReadonlyAddress {
public String getStreet( );
public String getCity( );

}

Readonly Access via Supertypes

 Clients use only the methods in the interface
- Object remains mutable
- No field updates
- No mutating method in the interface

class Address 
implements ReadonlyAddress {

…  /* as before */ }

class Person {
private Address addr;
public ReadonlyAddress

getAddr(  ) 
{ return addr; }

public void setAddr( Address a )
{ addr = a.clone( ); }

… }

7.1 Ownership Types – Readonly Types
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Limitations of Supertype Solution
 Reused classes 

might not implement 
a readonly interface
- See discussion of 

structural subtyping
 Interfaces do not 

support arrays, 
fields, and non-public 
methods

7.1 Ownership Types – Readonly Types

class Address {
…
private PhoneNo phone;
public PhoneNo getPhone( )
{ return phone; } }

interface ReadonlyAddress {
… 
public PhoneNo getPhone( );

}

interface ReadonlyAddress {
… 
public ReadonlyPhoneNo getPhone( );

}

 Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface
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Supertype Solution is not Safe
 No checks that 

methods in readonly
interface are actually 
side-effect free

 Readwrite aliases can 
occur, e.g., through 
capturing 

 Clients can use casts
to get full access

class Person {
private Address addr;
public ReadonlyAddress getAddr(  ) 
{ return addr; }

public void setAddr( Address a )
{ addr = a.clone( ); }

… 
}

void m( Person p ) {
ReadonlyAddress ra = p.getAddr( );
Address a = (Address) ra;
a.setCity( “Hagen” );

}

7.1 Ownership Types – Readonly Types
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Readonly Access in Eiffel
 Better support for fields

- Readonly supertype can contain getters
- Field updates only on “this” object

 Command-query separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

 Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Müller – Concepts of Object-Oriented Programming

7.1 Ownership Types – Readonly Types
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Readonly Access in C++: const Pointers 

 C++ supports readonly
pointers
- No field updates
- No mutator calls

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity( void )
{ return city; }

void setCity( string s ) 
{ city = s; }

};

class Person {
Address* addr;

public: 
const Address* getAddr(  ) 
{ return addr; }

void setAddr( Address a )
{ /* clone */ }

};C++ C++

void m( Person* p ) {
const Address* a = p->getAddr( );
a->setCity( “Hagen” );
cout << a->getCity( );

} C++Compile-time 
error

Compile-time 
errors

7.1 Ownership Types – Readonly Types
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Readonly Access in C++: const Functions 

 const Functions must 
not modify their receiver 
object

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity( void ) const
{ return city; }

void setCity( string s ) 
{ city = s; }

};

class Person {
Address* addr;

public: 
const Address* getAddr(  ) 
{ return addr; }

void setAddr( Address a )
{ /* clone */ }

};C++ C++

void m( Person* p ) {
const Address* a = p->getAddr( );
a->setCity( “Hagen” );
cout << a->getCity( );

} C++Compile-time 
errorCall of const 

function allowed

7.1 Ownership Types – Readonly Types
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It wouldn’t be C++ …

 const-ness can be cast 
away
- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity( void ) const
{ return city; }

void setCity( string s ) const {
Address* me = ( Address* ) this;
me->city = s; 

} };

class Person {
Address* addr;

public: 
const Address* getAddr(  ) 
{ return addr; }

void setAddr( Address a )
{ /* clone */ }

};

C++ C++

void m( Person* p ) {
const Address* a = p->getAddr( );
a->setCity( “Hagen” );

}
C++

Call of const 
function allowed

7.1 Ownership Types – Readonly Types
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It wouldn’t be C++ … (cont’d)

 const-ness can be cast 
away
- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity( void ) const
{ return city; }

void setCity( string s ) 
{ city = s; } 

};

class Person {
Address* addr;

public: 
const Address* getAddr(  ) 
{ return addr; }

void setAddr( Address a )
{ /* clone */ }

};C++ C++

void m( Person* p ) {
const Address* a = p->getAddr( );
Address* ma = ( Address* ) a;
ma->setCity( “Hagen” );

} C++

7.1 Ownership Types – Readonly Types



14

class Phone {
public:
int number;

};

Readonly Access in C++: Transitivity

 const pointers are not 
transitive

 const-ness of sub-
objects has to be 
indicated explicitly

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;
Phone* phone;

public:
Phone* getPhone( void ) const
{ return phone; }

… 
};

C++

C++

void m( Person* p ) {
const Address* a = p->getAddr( );
Phone* p = a->getPhone( );
p->number = 2331…;

} C++

7.1 Ownership Types – Readonly Types
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Transitivity (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;
Phone* phone;

public:
const Phone* getPhone( void ) const {
phone->number = 2331;
return phone; 

}
… 

};
C++

const functions may 
modify objects other 

than the receiver

7.1 Ownership Types – Readonly Types
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Readonly Access in C++: Discussion
Pros
 const pointers provide 

readonly pointers to 
mutable objects
- Prevent field updates
- Prevent calls of non-

const functions
 Work for library classes
 Support for arrays, 

fields, and non-public 
methods

Cons
 const-ness is not 

transitive

 const pointers are 
unsafe
- Explicit casts

 Readwrite aliases can 
occur

Peter Müller – Concepts of Object-Oriented Programming

7.1 Ownership Types – Readonly Types
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Pure Methods
 Tag side-effect free 

methods as pure
 Pure methods

- Must not contain field 
update 

- Must not invoke non-
pure methods

- Must not create objects
- Can only be overridden 

by pure methods

class Address {
private String street;
private String city;
public pure String getStreet( )
{ … }

public void setStreet( String s ) 
{ … }

public pure String getCity( )
{ … }

public void setCity( String s ) 
{ … }

…
}

7.1 Ownership Types – Readonly Types
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Types
 Each class or interface T 

introduces two types

 Readwrite type rw T
- Denoted by T in programs

 Readonly type ro T
- Denoted by readonly T in 

programs

class Person {
private Address addr;
public readonly Address

getAddr(  ) { … }
…

}

class Person {
private Address addr;
public ReadonlyAddress 

getAddr(  ) { return addr; }
public void setAddr( Address a )
{ addr = a.clone( ); }

… }

7.1 Ownership Types – Readonly Types
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Subtype Relation
 Subtyping among readwrite

and readonly types is 
defined as in Java
- S extends or implements T ⇒

rw S <: rw T
- S extends or implements T ⇒

ro S <: ro T
 Readwrite types are 

subtypes of corresponding 
readonly types
- rw T <: ro T

class T { … }

class S extends T { … }

S rwS = …
T rwT = …
readonly S roS = …
readonly T roT = …

rwT = rwS;
roT = roS ;
roT = rwT;

rwT = roT ;

7.1 Ownership Types – Readonly Types



20

Peter Müller – Concepts of Object-Oriented Programming

class Address {
…
private int[ ] phone;
public int[ ] getPhone( ) { … }

}

Type Rules: Transitive Readonly

 Accessing a value of a 
readonly type or 
through a readonly type
should yield a readonly
value

Person p = …
readonly Address a;
a = p.getAddr( );

int[ ] ph = a.getPhone( );

class Person {
private Address addr;
public readonly Address

getAddr(  ) { return addr; }
…

}

7.1 Ownership Types – Readonly Types
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Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …
readonly Address a;
a = p.getAddr( );

int[ ] ph = a.getPhone( );

ro Address rw int[ ]►

ro int[ ]

 The type of
- A field access
- An array access
- A method invocation

is determined by the 
type combinator ►

7.1 Ownership Types – Readonly Types
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Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …
readonly Address a;
a = p.getAddr( );

readonly int[ ] ph = a.getPhone( );

ro Address rw int[ ]►

ro int[ ]

 The type of
- A field access
- An array access
- A method invocation

is determined by the 
type combinator ►

7.1 Ownership Types – Readonly Types
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Type Rules: Readonly Access
 Expressions of readonly

types must not occur as 
receiver of
- a field update
- an array update
- an invocation of a non-pure 

method

 Readonly types must not 
be cast to readwrite types

readonly Address roa;
roa.street = “Rämistrasse”;
roa.phone[ 0 ] = 41;
roa.setCity( “Hagen” );

readonly Address roa;
Address a = ( Address ) roa;

7.1 Ownership Types – Readonly Types
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Discussion
 Readonly types enable safe sharing of objects
 Very similar to const pointers in C++, but:

- Transitive
- No casts to readwrite types

 All rules for pure methods and readonly types can 
be checked statically by a compiler

 Readwrite aliases can still occur, e.g., by capturing

7.1 Ownership Types – Readonly Types
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7. Ownership Types

7.1 Readonly Types
7.2 Topological Types

7.2 Ownership Types
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Object Topologies

 Read-write aliases 
can still occur, e.g., 
by capturing or 
leaking

 We need to 
distinguish “internal” 
references from 
other references

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private Address addr;
private Company employer;
public readonly Address getAddr(  ) 
{ return addr; }

public void setAddr( Address a ) 
{ addr = a.clone( ); }

public Company getEmployer(  ) 
{ return employer; }

public void setEmployer( Company c  ) 
{ employer = c; }

…
}

7.2 Ownership Types – Topological Types
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Roles in Object Structures
 Interface objects that are 

used to access the 
structure

 Internal representation
of the object structure

 Arguments of the object 
structure

LinkedList

Entry

Entry Entry Entry

ListItr

7.2 Ownership Types – Topological Types
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Ownership Model
 Each object has zero or 

one owner objects
 The set of objects with the 

same owner is called a 
context

 The ownership relation is 
acyclic

 The heap is structured into 
a forest of ownership trees

LinkedList

Entry

Entry Entry Entry

ListItr

7.2 Ownership Types – Topological Types

Owner of 
Entry objects

Context of 
objects owned 

by list head
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OwnershipTypes
 We use types to express 

ownership information

 peer types for objects in 
the same context as this

 rep types for 
representation objects in 
the context owned by this

 any types for argument 
objects in any context

LinkedList

Entry

Entry Entry Entry

ListItr

7.2 Ownership Types – Topological Types

rep
reference

peer
reference

any
reference
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Example

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {
private rep Entry header;
…

}

class Entry {
private any Object element;
private peer Entry previous, next;
…

}

7.2 Ownership Types – Topological Types

A list owns 
its nodes

Lists store 
elements with 

arbitrary owners

All nodes have 
the same owner
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Type Safety
 Run-time type information consists of

- The class of each object
- The owner of each object

 Type invariant: the static ownership information of 
an expression e reflects the run-time owner of the 
object o referenced by e’s value
- If e has type rep T then o’s owner is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner is arbitrary

Peter Müller – Concepts of Object-Oriented Programming

An existential 
type

7.2 Ownership Types – Topological Types
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Subtyping and Casts
 For types with identical 

ownership modifier, subtyping
is defined as in Java
- rep S <: rep T
- peer S <: peer T
- any S <: any T

 rep types and peer types are 
subtypes of corresponding 
any types
- rep T <: any T
- peer T <: any T

class T { … }

class S extends T { … }

peer T peerT = …
any T anyT = …
rep S repS = …
rep T repT = …

repT = repS;
anyT = repT;
peerT = ( peer T ) anyT;
repT = ( rep T ) anyT;

repT = peerT;
peerT = repT;
repT = anyT;

7.2 Ownership Types – Topological Types
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Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {
private rep Entry header;
public void add( any Object o ) { 
rep Entry newE = new rep Entry( o, header, header.previous );
… 

}
}

class Entry {
private any Object element;
private peer Entry previous, next;
public Entry( any Object o, peer Entry p, peer Entry n ) { … }

}

7.2 Ownership Types – Topological Types

Ownership information 
is relative to this

reference (viewpoint)

Ownership information 
is relative to this

reference (viewpoint)
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Viewpoint Adaptation: Example 1

peer ► peer = peer 

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

EntryEntry Entry

List
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Viewpoint Adaptation: Example 2

rep ► peer = rep 

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

List

EntryEntry Entry
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Type Rules: Field Access
 The field read

is correctly typed if
- e is correctly typed
- τ( e ) ► τ( f ) <: τ( v )

v = e.f;

 The field write

is correctly typed if
- e is correctly typed
- τ( v ) <: τ( e ) ► τ( f )

e.f = v;

 Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

7.2 Ownership Types – Topological Types
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Viewpoint Adaptation

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T ? any T

rep S rep T ? any T

any S ? ? any T

7.2 Ownership Types – Topological Types

v = e.f;

e.f = v;

τ( e ) ► τ( f ) <: τ( v )

τ( v ) <: τ( e ) ► τ( f )



38

Read vs. Write Access

any Address a = joe.addr;

class Person {
public rep Address addr;
public peer Person spouse;
… 

}

peer Person joe, jill;

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

joe.spouse = jill;

this

joe

jill

joe.addr = new rep Address( );joe.addr = new rep Address( );
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The lost Modifier
 Some ownership 

relations cannot be 
expressed in the type 
system

 Internal modifier lost for 
fixed, but unknown 
owner

 Reading locations with 
lost ownership is allowed

 Updating locations with 
lost ownership is unsafe

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

any Address a = joe.addr;

class Person {
public rep Address addr;
public peer Person spouse;
… 

}

peer Person joe, jill;

joe.spouse = jill;

joe.addr = new rep Address( );

lost Address

lost Address
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The lost Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

7.2 Ownership Types – Topological Types

v = e.f;

e.f = v;

τ( e ) ► τ( f ) <: τ( v )

τ( v ) <: τ( e ) ► τ( f )
τ( e ) ► τ( f ) does not 
have lost modifier

 Subtyping
- rep T <: lost T
- peer T <: lost T
- lost T <: any T

Another 
existential type
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The self Modifier

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

class Person {
public rep Address addr;
public peer Person spouse;
… 

}

peer Person joe;

this

joe

joe.addr = new rep Address( );

this.addr = new rep Address( );

 Internal modifier self only for the this literal
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The self Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

v = e.f;

e.f = v;

τ( e ) ► τ( f ) <: τ( v )

τ( v ) <: τ( e ) ► τ( f )
τ( e ) ► τ( f ) does not 
have lost modifier

 Subtyping
- self T <: peer T

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

self S peer T rep T any T



43

Example: Sharing

 Different Person objects 
have different Address 
objects
- No unwanted sharing

Peter Müller – Concepts of Object-Oriented Programming

class Person {
public rep Address addr;
… 

}

this

joe

7.2 Ownership Types – Topological Types
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Example: Internal vs. External Objects

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private rep Address addr;

public rep Address getAddr(  ) {
return addr; 

}

public void setAddr( rep Address a ) { 
addr = a; 

}

public void setAddr( any Address a ) { 
addr = new rep Address( a ); 

}
}

Clients receive a 
lost-reference

Cannot be called 
by clients

Cloning 
necessary

Address is part of 
Person’s internal 
represenations

7.2 Ownership Types – Topological Types
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Internal vs. External Objects (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private any Company employer;

public any Company getEmployer(  ) {
return employer; 

}

public void setEmployer( any Company c ) { 
employer = c; 

}
}

Can be called 
by clients

Company is shared 
between many 
Person objects

7.2 Ownership Types – Topological Types
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Owner-as-Modifier Discipline
 Topological type system can be used to strengthen 

encapsulation
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

 Additional rules enforce owner-as-modifier
- Field write e.f = v is valid only if τ( e ) is self, 

peer, or rep
- Method call e.m(…) is valid only if τ( e ) is self,

peer, or rep, or called method is pure

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types
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Owner-as-Modifier Discipline (cont’d)

 A method may modify only objects directly or 
indirectly owned by the owner of the current this
object

o

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

this
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Internal vs. External Objects Revisited

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private rep Address addr;
private any Company employer;

public rep Address getAddr(  ) { return addr; }

public void setAddr( any Address a ) { 
addr = new rep Address( a ); 

}

public any Company getEmployer(  )  { return employer; }

public void setEmployer( any Company c ) { employer = c; }
}

Company is shared; 
cannot be modified

Clients receive 
(transitive) 

readonly reference
Accidental capturing 

is prevented

7.2 Ownership Types – Topological Types
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(Simplified) Programming Discipline
 Rule 1: No Role Confusion

- Expression with one alias mode must not be 
assigned to variables with another mode

 Rule 2: No Representation Exposure
- rep-mode must not occur in an object’s interface
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on 

this 
 Rule 3: No Argument Dependence

- Implementations must not depend on the state of 
argument objects

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

Different 
types for 

different roles

Viewpoint 
adaptation 

for rep types

Like with 
programming 

discipline
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Achievements
 rep and any types enable 

encapsulation of whole 
object structures

 Encapsulation cannot be 
violated by subclasses, 
via casts, etc.

 The technique fully 
supports subclassing
- In contrast to solutions with 

final, private inner classes, 
etc.

class ArrayList {
protected rep int[ ] array;
private int next;
…

}

class MyList extends ArrayList {
public peer int[ ] leak( ) {
return array;

}
}

7.2 Ownership Types – Topological Types



51

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {
private int[ ] array;
private int next;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem( old( ia[ i ] ) )
public void addElems( int[ ] ia )
{ array = ia; next = ia.length; }

…
}

class ArrayList {
private Entry header;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem( old( ia[ i ] ) )
public void addElems( int[ ] ia )
{ … /* create Entry for each 

element */ }
…

}

6.3 Object Structures and Aliasing – Problems of Aliasing
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Exchanging Implementations (cont’d)
class ArrayList {
private rep int[ ] array;
private int next;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem( old( ia[ i ] ) )
public void
addElems( any int[ ] ia )
{ System.arraycopy(…);

next = ia.length; }
…

}

class ArrayList {
private rep Entry header;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem( old( ia[ i ] ) )
public void
addElems( any int[ ] ia )
{ … /* create Entry for each 

element */ }
…

}

7.2 Ownership Types – Topological Types

Accidental capturing 
is prevented
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Exchanging Implementations (cont’d)
class ArrayList {
private rep int[ ] array;
private int next;

public any int[ ] getElems( )
{ return ia; }

…
}

class ArrayList {
private rep Entry header;

public void any int[ ] getElems( )
{ /* create new array */ }

…
}

7.2 Ownership Types – Topological Types

Leaking is still 
possible

peer ArrayList list = new peer ArrayList( );
list.prepend( 0 );
any int[ ] ia = list.getElems( );
list.prepend( 1 );
assert ia[ 0 ] == 1;

 Observable 
behavior is 
changed
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Consistency of Object Structures
 Consistency of object 

structures depends on 
fields of several objects

 Invariants are usually 
specified as part of the 
contract of those objects
that represent the 
interface of the object 
structure

class ArrayList {
private int[ ] array;
private int next;

// invariant array != null &&
// 0<=next<=array.length &&
// ∀i.0<=i<next: array[ i ] >= 0

public void add( int i ) { … }
public void addElems( int[ ] ia )
{ … }

…
}

6.3 Object Structures and Aliasing – Problems of Aliasing
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Invariants for Object Structures
 The invariant of object o 

may depend on
- Encapsulated fields of o
- Fields of objects o 

references through rep-
references

 Interface objects have 
full control over their 
rep-objects

class ArrayList {
private rep int[ ] array;
private int next;

// invariant array != null &&
// 0<=next<=array.length &&
// ∀i.0<=i<next: array[ i ] >= 0

public void add( int i ) { … }
public void addElems

( any int[ ] ia )    { … }

…
}

7.2 Ownership Types – Topological Types
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Security Breach in Java 1.1.1

Class

IdentityIdentity[ ]

Identity

Identity
Identity[ ]

class Malicious  {

void bad( ) {
Identity[ ] s;
Identity trusted = java.Security…;
s = Malicious.class.getSigners( );
s[ 0 ] = trusted;
/* abuse privilege */
}

} Identity[ ] getSigners( )
{ return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming
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Security Breach in Java 1.1.1 (cont’d)

Class

IdentityIdentity[ ]

Identity

Identity
Identity[ ]

class Malicious  {

void bad( ) {
any Identity[ ] s;
Identity trusted = java.Security…;
s = Malicious.class.getSigners( );
s[ 0 ] = trusted;
}

}

rep Identity[ ] getSigners( )
{ return signers; }

Peter Müller – Concepts of Object-Oriented Programming

rep Identity[ ] signers;

7.2 Ownership Types – Topological Types
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Ownership Types: Discussion
 Ownership types express heap topologies and 

enforce encapsulation
 Owner-as-modifier is helpful to control side effects

- Maintain object invariants
- Prevent unwanted modifications

 Other applications also need restrictions of read 
access
- Exchange of implementations
- Thread synchronization

 Ownership types are an area of current research

7.2 Ownership Types – Topological Types
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