
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2010

2

Peter Müller – Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation

5.1 Information Hiding
5.2 Encapsulation

5. Information Hiding and Encapsulation

3

Peter Müller – Concepts of Object-Oriented Programming

Information Hiding
 Definition

Information hiding is a technique for reducing the
dependencies between modules:
- The intended client is provided with all the information

needed to use the module correctly, and with nothing
more

- The client uses only the (publicly) available information

 Information hiding deals with programs, that is, with
static aspects

 Contracts are part of the exported interfaces

5.1 Information Hiding and Encapsulation – Information Hiding

4

Peter Müller – Concepts of Object-Oriented Programming

Objectives
 Establish strict interfaces
 Hide implementation

details
 Reduce dependencies

between modules
- Classes can be studied

and understood in isolation
- Classes only interact in

simple, well-defined ways

class Set {
…
// contract or documentation
public void insert(Object o)

{ … }
}

class BoundedSet {
Set rep;
int maxSize;

public void insert(Object o) {
if (rep.size() < maxSize)

rep.insert(o);
}

}

5.1 Information Hiding and Encapsulation – Information Hiding

5

Peter Müller – Concepts of Object-Oriented Programming

class SymbolTable
extends Dictionary<String,String>
implements Map<String,String> {

public int size;

public void add(String key, String value)
{ put(key, value); }

public String lookup(String key)
throws IllegalArgumentException {

return atKey(key);
}

}

The Client Interface of a Class
 Class name
 Type parameters

and their bounds
 Super-interfaces
 Signatures of

exported methods
and fields

 Client interface of
direct superclass

5.1 Information Hiding and Encapsulation – Information Hiding

class SymbolTable
extends Dictionary<String,String>
implements Map<String,String> {

public int size;

public void add(String key, String value)
{ put(key, value); }

public String lookup(String key)
throws IllegalArgumentException {

return atKey(key);
}

}

6

Peter Müller – Concepts of Object-Oriented Programming

What about Inheritance?
 Is the name of the

superclass part of the
client interface or an
implementation detail?

class SymbolTable {
Dictionary<String,String> rep;

public SymbolTable()
{ … }

public void
add(String key, String value)

{ … }
public String lookup(String key)
{ … }

}

Dictionary<String,String> d;
d = new SymbolTable();
d.put(“var”, “5”);

 In Java, inheritance is
done by subclassing

 Subtype information
must be part of the
client interface

5.1 Information Hiding and Encapsulation – Information Hiding

7

Peter Müller – Concepts of Object-Oriented Programming

The Client Interface of a Class
 Class name
 Type parameters

and their bounds
 Super-class
 Super-interfaces
 Signatures of

exported methods
and fields

 Client interface of
direct superclass

5.1 Information Hiding and Encapsulation – Information Hiding

class SymbolTable
extends Dictionary<String,String>
implements Map<String,String> {

public int size;

public void add(String key, String value)
{ put(key, value); }

public String lookup(String key)
throws IllegalArgumentException {

return atKey(key);
}

}

8

Peter Müller – Concepts of Object-Oriented Programming

public class DList {
protected Node first, last;
private int modCount;
protected void modified()
{ modCount++; }

…
}

Other Interfaces

 Friend interface
- Mutual access to

implementations of
cooperating classes

- Hiding auxiliary classes

package coop.util;
/* default */ class Node {
/* default */ Object elem;
/* default */ Node next, prev;
… }

package coop.util;
public class DList {
protected Node first, last;
private int modCount;
protected void modified()
{ modCount++; }

…
}

 Subclass interface
- Efficient access to

superclass fields
- Access to auxiliary

superclass methods

 And others …

5.1 Information Hiding and Encapsulation – Information Hiding

9

Peter Müller – Concepts of Object-Oriented Programming

Expressing Information Hiding
 Java: Access modifiers

- public client interface
- protected subclass + friend interface
- Default access friend interface
- private implementation

 Eiffel: Clients clause in feature declarations
- feature { ANY } client interface
- feature { T } friend interface for class T
- feature { NONE } implementation (only “this”-object)
- All exports include subclasses

5.1 Information Hiding and Encapsulation – Information Hiding

10

Peter Müller – Concepts of Object-Oriented Programming

Safe Changes
 Consistent renaming of

hidden elements
package coop.util;

public class DList {

protected Node first, last;

private int modCount;
protected void incrModCount()
{ modCount++; }

…
}

package coop.util;

public class DList {

protected Node first, last;

private int version;
protected void incrModCount()
{ version++; }

…
}

package coop.util;

public class DList {

protected Node first, last;

private int version;
protected void modified()
{ version++; }

…
}

 Modification of hidden
implementation as long
as exported functionality
is preserved

 Access modifiers and
Clients clauses specify
what classes might be
affected by a change

5.1 Information Hiding and Encapsulation – Information Hiding

11

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations
 Observable behavior

must be preserved
 Exported fields limit

modifications severely
- Use getter and setter

methods instead
- Uniform access in Eiffel

 Modifications are critical
- Fragile baseclass problem
- Object structures

class Coordinate {
private float x,y;
…
public float distOrigin()
{ return Math.sqrt(x*x + y*y); }

}

class Coordinate {
private float radius, angle;
…
public float distOrigin()
{ return radius; }

}

5.1 Information Hiding and Encapsulation – Information Hiding

12

Peter Müller – Concepts of Object-Oriented Programming

class T {
public void m() { ... }

}

class S extends T {
public void m() { ... }

}

T v = new U();
v.m();

 At compile time:
1. Determine static declaration
2. Check accessibility
3. Determine invocation mode

(virtual / nonvirtual)

 At run time:
4. Compute receiver reference
5. Locate method to invoke

(based on dynamic type of
receiver object)

Method Selection in Java (JLS1)

class U extends S { }

class T {
public void m() { ... }

}

T v = new U();
v.m();
T v = new U();
v.m();

class S extends T {
public void m() { ... }

}

5.1 Information Hiding and Encapsulation – Information Hiding

13

Peter Müller – Concepts of Object-Oriented Programming

Rules for Overriding: Access
 Access Rule:

The access modifier of
an overriding method
must provide at least as
much access as the
overridden method

class Super {
…
protected void m() { … }

}

class Sub extends Super {
void m() { … }

}

In class Super:
public void test(Super v) {
v.m();

}

public

Default access

protected

public

5.1 Information Hiding and Encapsulation – Information Hiding

14

Peter Müller – Concepts of Object-Oriented Programming

Rules for Overriding: Hiding
 Override Rule:

A method Sub.m
overrides the superclass
method Super.m only if
Super.m is accessible
from Sub

 If Super.m is not
accessible from Sub, it is
hidden by Sub.m

 Private methods cannot
be overridden

class Super {
…
private void m()
{ System.out.println(“Super”); }

public void test(Super v)
{ v.m(); }

}

class Sub extends Super {
public void m()
{ System.out.println(“Sub”); }

}

Super v = new Sub();
v.test(v);

5.1 Information Hiding and Encapsulation – Information Hiding

15

Peter Müller – Concepts of Object-Oriented Programming

Problems with Default Access Methods
 S.m does not override

T.m (T.m is not
accessible in S)

 T.m and S.m are
different methods with
same signature

 Static declaration for
invocation is T.m

 At run time, S.m is
selected and invoked

package PT;
public class T {

void m() { ... }
}

package PS;
public class S extends PT.T {

public void m() { ... }
}

In package PT:
T v = new PS.S();
v.m();

5.1 Information Hiding and Encapsulation – Information Hiding

16

Peter Müller – Concepts of Object-Oriented Programming

Corrected Method Selection (JLS2)
 Dynamically selected method must override

statically determined method
 Theoretically, uniform treatment of private and non-

private methods possible

 At run time:
4. Compute receiver

reference
5. Locate method to invoke,

which overrides statically
determined method

 At compile time:
1. Determine static

declaration
2. Check accessibility
3. dropped

5.1 Information Hiding and Encapsulation – Information Hiding

17

Peter Müller – Concepts of Object-Oriented Programming

Problems with Protected Methods
 S.m overrides T.m
 Static declaration is

T.m, which is
accessible for C

 At run time, S.m is
selected, which is not
accessible for C

 protected does not
always “provide at
least as much access”
as protected

package PT;
public class T {

protected void m() { ... }
}

package PS;
public class S extends PT.T {

protected void m() { ... }
}

package PT;
public class C {
public void foo() {

T v = new PS.S();
v.m(); }

}

5.1 Information Hiding and Encapsulation – Information Hiding

public would
be safe

18

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {
public void inc2() { inc1(); }

}

Another Fragile Baseclass Problem
class C {
int x;
public void inc1()
{ this.inc2(); }

private void inc2()
{ x++; }

}

CS cs = new CS(5);
cs.inc2();
System.out.println(cs.x);

Develop
Superclass

Implement
Subclass

Modify
Superclass

5.1 Information Hiding and Encapsulation – Information Hiding

19

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {
public void inc2() { inc1(); }

}

Another Fragile Baseclass Problem
class C {
int x;
public void inc1()
{ this.inc2(); }

protected void inc2()
{ x++; }

}

CS cs = new CS(5);
cs.inc2();
System.out.println(cs.x);

Develop
Superclass

Implement
Subclass

Modify
Superclass

5.1 Information Hiding and Encapsulation – Information Hiding

20

Peter Müller – Concepts of Object-Oriented Programming

5. Information Hiding and Encapsulation

5.1 Information Hiding
5.2 Encapsulation

5. Information Hiding and Encapsulation

21

Peter Müller – Concepts of Object-Oriented Programming

Objective
 A well-behaved module

operates according to its
specification in any
context, in which it can
be reused

 Implementations rely on
consistency of internal
representations

 Reuse contexts should
be prevented from
violating consistency

class Coordinate {
public float radius, angle;
// invariant 0 <= radius &&
// 0 <= angle && angle < 360
…
// ensures 0 <= result
public float distOrigin()
{ return radius; }

}

Coordinate c = new Coordinate();
c.radius = -10;
Math.sqrt(c.distOrigin());

5.2 Information Hiding and Encapsulation – Encapsulation

22

Peter Müller – Concepts of Object-Oriented Programming

Encapsulation
 Definition

Encapsulation is a technique for structuring the
state space of executed programs. Its objective is
to guarantee data and structural consistency by
establishing capsules with clearly defined
interfaces.

 Encapsulation deals mainly with dynamic aspects
 Information hiding and encapsulation are often

used synonymously in the literature;
here, encapsulation is a more specific concept

5.2 Information Hiding and Encapsulation – Encapsulation

23

Peter Müller – Concepts of Object-Oriented Programming

Levels of Encapsulation
 Capsules can be

- Individual objects
- Object structures
- A class (with all of its objects)
- All classes of a subtype hierarchy
- A package (with all of its classes and their objects)
- Several packages

 Encapsulation requires a definition of the boundary
of a capsule and the interfaces at the boundary

5.2 Information Hiding and Encapsulation – Encapsulation

24

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Objects
 Objects have (external)

interfaces and an (internal)
representation

 Consistency can include
- Properties of one execution state
- Relations between execution

states
 The internal representation of

an object is encapsulated if it
can only be manipulated by
using the object’s interfaces

a1:
a2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}
h1(p,q) {..}
h2(r) {..}
h3() {..}

ha1:
ha2:
ha3:

5.2 Information Hiding and Encapsulation – Encapsulation

25

Peter Müller – Concepts of Object-Oriented Programming

class Coordinate {
public float radius, angle;
// invariant 0 <= radius &&
// 0 <= angle && angle < 360
…
// ensures 0 <= result
public float distOrigin()
{ return radius; }

}

Example: Breaking Consistency (1)

 Problem:
Exported fields allow
objects to manipulate
the state of other objects

 Solution:
Apply proper information
hiding Coordinate c = new Coordinate();

c.radius = -10;
Math.sqrt(c.distOrigin());

5.2 Information Hiding and Encapsulation – Encapsulation

Use
private

26

Peter Müller – Concepts of Object-Oriented Programming

class BadCoordinate
extends Coordinate {

public void violate()
{ angle = -1; }

}

class Coordinate {
protected float radius, angle;
// invariant 0 <= radius &&
// 0 <= angle && angle < 360
…
public float getAngle()
{ return angle; }

}

Example: Breaking Consistency (2)
 Problem:

Subclasses can
introduce (new or
overriding) methods
that break consistency

 Solution:
Behavioral subtyping

BadCoordinate c =
new BadCoordinate();

c.violate();
Math.sqrt(c.getAngle());

5.2 Information Hiding and Encapsulation – Encapsulation

27

Peter Müller – Concepts of Object-Oriented Programming

Achieving Consistency of Objects
1. Apply encapsulation:

Hide internal representation wherever possible
2. Make consistency criteria explicit:

Use contracts and informal documentation to
express consistency criteria (e.g., invariants)

3. Check interfaces:
Make sure that all exported operations of an
object – including subclass methods – preserve all
documented consistency criteria

5.2 Information Hiding and Encapsulation – Encapsulation

28

Peter Müller – Concepts of Object-Oriented Programming

Invariants
 Invariants express

consistency properties

 Textbook solution:
The invariant of object o
has to hold in:
- Prestates of o’s methods
- Poststates of o’s methods

 Temporary violations
possible

class Redundant {
private int a, b;
// invariant a == b
…
public void set(int v) {
// prestate: invariant holds
a = v;
// invariant does not hold
b = v;
// poststate: invariant holds

}
}

5.2 Information Hiding and Encapsulation – Encapsulation

29

Peter Müller – Concepts of Object-Oriented Programming

Checks for Invariants
 Assume that all objects o are capsules

- Only methods executed on o can modify o’s state
- The invariant of object o only refers to the encapsulated

fields of o

 For each invariant, we have to show
- That all exported methods preserve the invariants

of the receiver object
- That all constructors establish the invariants

of the new object

5.2 Information Hiding and Encapsulation – Encapsulation

30

Peter Müller – Concepts of Object-Oriented Programming

Object Consistency in Java
 Declaring all fields

private does not
guarantee encapsulation
on the level of individual
objects

 Objects of same class
can break the invariant

 Eiffel supports
encapsulation on the
object level
- feature { NONE }

class Redundant {
private int a, b;
private Redundant next;
// invariant a == b
…
public void set(int v) { … }

public void violate() {
// all invariants hold
next.a = next.b + 1;
// invariant of next does not hold

}
}

5.2 Information Hiding and Encapsulation – Encapsulation

31

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Java (Simple Solution)

 Assumption: The invariants of object o may only
refer to private fields of o

 For each invariant, we have to show
- That all exported methods and constructors of class T

preserve the invariants of all objects of T
- That all constructors in addition establish the invariants of

the new object

5.2 Information Hiding and Encapsulation – Encapsulation

	Concepts of �Object-Oriented Programming
	5. Information Hiding and Encapsulation
	Information Hiding
	Objectives
	The Client Interface of a Class
	What about Inheritance?
	The Client Interface of a Class
	Other Interfaces
	Expressing Information Hiding
	Safe Changes
	Exchanging Implementations
	Method Selection in Java (JLS1)
	Rules for Overriding: Access
	Rules for Overriding: Hiding
	Problems with Default Access Methods
	Corrected Method Selection (JLS2)
	Problems with Protected Methods
	Another Fragile Baseclass Problem
	Another Fragile Baseclass Problem
	5. Information Hiding and Encapsulation
	Objective
	Encapsulation
	Levels of Encapsulation
	Consistency of Objects
	Example: Breaking Consistency (1)
	Example: Breaking Consistency (2)
	Achieving Consistency of Objects
	Invariants
	Checks for Invariants
	Object Consistency in Java
	Invariants for Java (Simple Solution)

