
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2010

2

Peter Müller – Concepts of Object-Oriented Programming

7. Ownership Types

7.1 Readonly Types
7.2 Topological Types

7. Ownership Types

3

Peter Müller – Concepts of Object-Oriented Programming

Object Structures Revisited
class Address {
private String street;
private String city;

public String getStreet() { … }
public void setStreet(String s)
{ … }

public String getCity(){ … }
public void setCity(String s)
{ … }

…
}

addr:

peter

…
street:

city:

home

…

class Person {
private Address addr;
public Address getAddr()
{ return addr.clone(); }

public void setAddr(Address a)
{ addr = a.clone(); }

…
}

7.1 Ownership Types – Readonly Types

4

Peter Müller – Concepts of Object-Oriented Programming

Drawbacks of Alias Prevention
 Aliases are helpful to

share side-effects
 Cloning objects is not

efficient

 In many cases, it suffices
to restrict access to
shared objects

 Common situation: grant
read access only

addr:

peter

…
street:

city:

home

…addr:

annette

…

prof7:

ETH

…

7.1 Ownership Types – Readonly Types

5

Requirements for Readonly Access
 Mutable objects

- Some clients can mutate the
object, but others cannot

- Access restrictions apply to
references, not whole objects

 Prevent field updates
 Prevent calls of mutating

methods
 Transitivity

- Access restrictions extend to
references to sub-objects

Peter Müller – Concepts of Object-Oriented Programming

No:

Natel

…

street:
city:

home

…

phone:

addr:

peter

…

prof7:

ETH

…

7.1 Ownership Types – Readonly Types

6

Peter Müller – Concepts of Object-Oriented Programming

interface ReadonlyAddress {
public String getStreet();
public String getCity();

}

Readonly Access via Supertypes

 Clients use only the methods in the interface
- Object remains mutable
- No field updates
- No mutating method in the interface

class Address
implements ReadonlyAddress {

… /* as before */ }

class Person {
private Address addr;
public ReadonlyAddress

getAddr()
{ return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

… }

7.1 Ownership Types – Readonly Types

7

Peter Müller – Concepts of Object-Oriented Programming

Limitations of Supertype Solution
 Reused classes

might not implement
a readonly interface
- See discussion of

structural subtyping
 Interfaces do not

support arrays,
fields, and non-public
methods

7.1 Ownership Types – Readonly Types

class Address {
…
private PhoneNo phone;
public PhoneNo getPhone()
{ return phone; } }

interface ReadonlyAddress {
…
public PhoneNo getPhone();

}

interface ReadonlyAddress {
…
public ReadonlyPhoneNo getPhone();

}

 Transitivity has to be encoded explicitly
- Requires sub-objects to implement readonly interface

8

Peter Müller – Concepts of Object-Oriented Programming

Supertype Solution is not Safe
 No checks that

methods in readonly
interface are actually
side-effect free

 Readwrite aliases can
occur, e.g., through
capturing

 Clients can use casts
to get full access

class Person {
private Address addr;
public ReadonlyAddress getAddr()
{ return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

…
}

void m(Person p) {
ReadonlyAddress ra = p.getAddr();
Address a = (Address) ra;
a.setCity(“Hagen”);

}

7.1 Ownership Types – Readonly Types

9

Readonly Access in Eiffel
 Better support for fields

- Readonly supertype can contain getters
- Field updates only on “this” object

 Command-query separation
- Distinction between mutating and inspector methods
- But queries are not checked to be side-effect free

 Other problems as before
- Reused classes, transitivity, arrays, aliasing, downcasts

Peter Müller – Concepts of Object-Oriented Programming

7.1 Ownership Types – Readonly Types

10

Readonly Access in C++: const Pointers

 C++ supports readonly
pointers
- No field updates
- No mutator calls

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity(void)
{ return city; }

void setCity(string s)
{ city = s; }

};

class Person {
Address* addr;

public:
const Address* getAddr()
{ return addr; }

void setAddr(Address a)
{ /* clone */ }

};C++ C++

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(“Hagen”);
cout << a->getCity();

} C++Compile-time
error

Compile-time
errors

7.1 Ownership Types – Readonly Types

11

Readonly Access in C++: const Functions

 const Functions must
not modify their receiver
object

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity(void) const
{ return city; }

void setCity(string s)
{ city = s; }

};

class Person {
Address* addr;

public:
const Address* getAddr()
{ return addr; }

void setAddr(Address a)
{ /* clone */ }

};C++ C++

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(“Hagen”);
cout << a->getCity();

} C++Compile-time
errorCall of const

function allowed

7.1 Ownership Types – Readonly Types

12

It wouldn’t be C++ …

 const-ness can be cast
away
- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity(void) const
{ return city; }

void setCity(string s) const {
Address* me = (Address*) this;
me->city = s;

} };

class Person {
Address* addr;

public:
const Address* getAddr()
{ return addr; }

void setAddr(Address a)
{ /* clone */ }

};

C++ C++

void m(Person* p) {
const Address* a = p->getAddr();
a->setCity(“Hagen”);

}
C++

Call of const
function allowed

7.1 Ownership Types – Readonly Types

13

It wouldn’t be C++ … (cont’d)

 const-ness can be cast
away
- No run-time check

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;

public:
string getCity(void) const
{ return city; }

void setCity(string s)
{ city = s; }

};

class Person {
Address* addr;

public:
const Address* getAddr()
{ return addr; }

void setAddr(Address a)
{ /* clone */ }

};C++ C++

void m(Person* p) {
const Address* a = p->getAddr();
Address* ma = (Address*) a;
ma->setCity(“Hagen”);

} C++

7.1 Ownership Types – Readonly Types

14

class Phone {
public:
int number;

};

Readonly Access in C++: Transitivity

 const pointers are not
transitive

 const-ness of sub-
objects has to be
indicated explicitly

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;
Phone* phone;

public:
Phone* getPhone(void) const
{ return phone; }

…
};

C++

C++

void m(Person* p) {
const Address* a = p->getAddr();
Phone* p = a->getPhone();
p->number = 2331…;

} C++

7.1 Ownership Types – Readonly Types

15

Transitivity (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Address {
string city;
Phone* phone;

public:
const Phone* getPhone(void) const {
phone->number = 2331;
return phone;

}
…

};
C++

const functions may
modify objects other

than the receiver

7.1 Ownership Types – Readonly Types

16

Readonly Access in C++: Discussion
Pros
 const pointers provide

readonly pointers to
mutable objects
- Prevent field updates
- Prevent calls of non-

const functions
 Work for library classes
 Support for arrays,

fields, and non-public
methods

Cons
 const-ness is not

transitive

 const pointers are
unsafe
- Explicit casts

 Readwrite aliases can
occur

Peter Müller – Concepts of Object-Oriented Programming

7.1 Ownership Types – Readonly Types

17

Peter Müller – Concepts of Object-Oriented Programming

Pure Methods
 Tag side-effect free

methods as pure
 Pure methods

- Must not contain field
update

- Must not invoke non-
pure methods

- Must not create objects
- Can only be overridden

by pure methods

class Address {
private String street;
private String city;
public pure String getStreet()
{ … }

public void setStreet(String s)
{ … }

public pure String getCity()
{ … }

public void setCity(String s)
{ … }

…
}

7.1 Ownership Types – Readonly Types

18

Peter Müller – Concepts of Object-Oriented Programming

Types
 Each class or interface T

introduces two types

 Readwrite type rw T
- Denoted by T in programs

 Readonly type ro T
- Denoted by readonly T in

programs

class Person {
private Address addr;
public readonly Address

getAddr() { … }
…

}

class Person {
private Address addr;
public ReadonlyAddress

getAddr() { return addr; }
public void setAddr(Address a)
{ addr = a.clone(); }

… }

7.1 Ownership Types – Readonly Types

19

Peter Müller – Concepts of Object-Oriented Programming

Subtype Relation
 Subtyping among readwrite

and readonly types is
defined as in Java
- S extends or implements T ⇒

rw S <: rw T
- S extends or implements T ⇒

ro S <: ro T
 Readwrite types are

subtypes of corresponding
readonly types
- rw T <: ro T

class T { … }

class S extends T { … }

S rwS = …
T rwT = …
readonly S roS = …
readonly T roT = …

rwT = rwS;
roT = roS ;
roT = rwT;

rwT = roT ;

7.1 Ownership Types – Readonly Types

20

Peter Müller – Concepts of Object-Oriented Programming

class Address {
…
private int[] phone;
public int[] getPhone() { … }

}

Type Rules: Transitive Readonly

 Accessing a value of a
readonly type or
through a readonly type
should yield a readonly
value

Person p = …
readonly Address a;
a = p.getAddr();

int[] ph = a.getPhone();

class Person {
private Address addr;
public readonly Address

getAddr() { return addr; }
…

}

7.1 Ownership Types – Readonly Types

21

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …
readonly Address a;
a = p.getAddr();

int[] ph = a.getPhone();

ro Address rw int[]►

ro int[]

 The type of
- A field access
- An array access
- A method invocation

is determined by the
type combinator ►

7.1 Ownership Types – Readonly Types

22

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Transitive Readonly (cont’d)

► rw T ro T

rw S rw T ro T

ro S ro T ro T

Person p = …
readonly Address a;
a = p.getAddr();

readonly int[] ph = a.getPhone();

ro Address rw int[]►

ro int[]

 The type of
- A field access
- An array access
- A method invocation

is determined by the
type combinator ►

7.1 Ownership Types – Readonly Types

23

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Readonly Access
 Expressions of readonly

types must not occur as
receiver of
- a field update
- an array update
- an invocation of a non-pure

method

 Readonly types must not
be cast to readwrite types

readonly Address roa;
roa.street = “Rämistrasse”;
roa.phone[0] = 41;
roa.setCity(“Hagen”);

readonly Address roa;
Address a = (Address) roa;

7.1 Ownership Types – Readonly Types

24

Peter Müller – Concepts of Object-Oriented Programming

Discussion
 Readonly types enable safe sharing of objects
 Very similar to const pointers in C++, but:

- Transitive
- No casts to readwrite types

 All rules for pure methods and readonly types can
be checked statically by a compiler

 Readwrite aliases can still occur, e.g., by capturing

7.1 Ownership Types – Readonly Types

25

Peter Müller – Concepts of Object-Oriented Programming

7. Ownership Types

7.1 Readonly Types
7.2 Topological Types

7.2 Ownership Types

26

Object Topologies

 Read-write aliases
can still occur, e.g.,
by capturing or
leaking

 We need to
distinguish “internal”
references from
other references

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private Address addr;
private Company employer;
public readonly Address getAddr()
{ return addr; }

public void setAddr(Address a)
{ addr = a.clone(); }

public Company getEmployer()
{ return employer; }

public void setEmployer(Company c)
{ employer = c; }

…
}

7.2 Ownership Types – Topological Types

27

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures
 Interface objects that are

used to access the
structure

 Internal representation
of the object structure

 Arguments of the object
structure

LinkedList

Entry

Entry Entry Entry

ListItr

7.2 Ownership Types – Topological Types

28

Peter Müller – Concepts of Object-Oriented Programming

Ownership Model
 Each object has zero or

one owner objects
 The set of objects with the

same owner is called a
context

 The ownership relation is
acyclic

 The heap is structured into
a forest of ownership trees

LinkedList

Entry

Entry Entry Entry

ListItr

7.2 Ownership Types – Topological Types

Owner of
Entry objects

Context of
objects owned

by list head

29

Peter Müller – Concepts of Object-Oriented Programming

OwnershipTypes
 We use types to express

ownership information

 peer types for objects in
the same context as this

 rep types for
representation objects in
the context owned by this

 any types for argument
objects in any context

LinkedList

Entry

Entry Entry Entry

ListItr

7.2 Ownership Types – Topological Types

rep
reference

peer
reference

any
reference

30

Example

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {
private rep Entry header;
…

}

class Entry {
private any Object element;
private peer Entry previous, next;
…

}

7.2 Ownership Types – Topological Types

A list owns
its nodes

Lists store
elements with

arbitrary owners

All nodes have
the same owner

31

Type Safety
 Run-time type information consists of

- The class of each object
- The owner of each object

 Type invariant: the static ownership information of
an expression e reflects the run-time owner of the
object o referenced by e’s value
- If e has type rep T then o’s owner is this
- If e has type peer T then o’s owner is the owner of this
- If e has type any T then o’s owner is arbitrary

Peter Müller – Concepts of Object-Oriented Programming

An existential
type

7.2 Ownership Types – Topological Types

32

Peter Müller – Concepts of Object-Oriented Programming

Subtyping and Casts
 For types with identical

ownership modifier, subtyping
is defined as in Java
- rep S <: rep T
- peer S <: peer T
- any S <: any T

 rep types and peer types are
subtypes of corresponding
any types
- rep T <: any T
- peer T <: any T

class T { … }

class S extends T { … }

peer T peerT = …
any T anyT = …
rep S repS = …
rep T repT = …

repT = repS;
anyT = repT;
peerT = (peer T) anyT;
repT = (rep T) anyT;

repT = peerT;
peerT = repT;
repT = anyT;

7.2 Ownership Types – Topological Types

33

Example (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class LinkedList {
private rep Entry header;
public void add(any Object o) {
rep Entry newE = new rep Entry(o, header, header.previous);
…

}
}

class Entry {
private any Object element;
private peer Entry previous, next;
public Entry(any Object o, peer Entry p, peer Entry n) { … }

}

7.2 Ownership Types – Topological Types

Ownership information
is relative to this

reference (viewpoint)

Ownership information
is relative to this

reference (viewpoint)

34

Viewpoint Adaptation: Example 1

peer ► peer = peer

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

EntryEntry Entry

List

35

Viewpoint Adaptation: Example 2

rep ► peer = rep

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

List

EntryEntry Entry

36

Peter Müller – Concepts of Object-Oriented Programming

Type Rules: Field Access
 The field read

is correctly typed if
- e is correctly typed
- τ(e) ► τ(f) <: τ(v)

v = e.f;

 The field write

is correctly typed if
- e is correctly typed
- τ(v) <: τ(e) ► τ(f)

e.f = v;

 Analogous rules for method invocations
- Argument passing is analogous to field write
- Result passing is analogous to field read

7.2 Ownership Types – Topological Types

37

Viewpoint Adaptation

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T ? any T

rep S rep T ? any T

any S ? ? any T

7.2 Ownership Types – Topological Types

v = e.f;

e.f = v;

τ(e) ► τ(f) <: τ(v)

τ(v) <: τ(e) ► τ(f)

38

Read vs. Write Access

any Address a = joe.addr;

class Person {
public rep Address addr;
public peer Person spouse;
…

}

peer Person joe, jill;

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

joe.spouse = jill;

this

joe

jill

joe.addr = new rep Address();joe.addr = new rep Address();

39

The lost Modifier
 Some ownership

relations cannot be
expressed in the type
system

 Internal modifier lost for
fixed, but unknown
owner

 Reading locations with
lost ownership is allowed

 Updating locations with
lost ownership is unsafe

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

any Address a = joe.addr;

class Person {
public rep Address addr;
public peer Person spouse;
…

}

peer Person joe, jill;

joe.spouse = jill;

joe.addr = new rep Address();

lost Address

lost Address

40

The lost Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

7.2 Ownership Types – Topological Types

v = e.f;

e.f = v;

τ(e) ► τ(f) <: τ(v)

τ(v) <: τ(e) ► τ(f)
τ(e) ► τ(f) does not
have lost modifier

 Subtyping
- rep T <: lost T
- peer T <: lost T
- lost T <: any T

Another
existential type

41

The self Modifier

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

class Person {
public rep Address addr;
public peer Person spouse;
…

}

peer Person joe;

this

joe

joe.addr = new rep Address();

this.addr = new rep Address();

 Internal modifier self only for the this literal

42

The self Modifier: Details

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

v = e.f;

e.f = v;

τ(e) ► τ(f) <: τ(v)

τ(v) <: τ(e) ► τ(f)
τ(e) ► τ(f) does not
have lost modifier

 Subtyping
- self T <: peer T

► peer T rep T any T

peer S peer T lost T any T

rep S rep T lost T any T

any S lost T lost T any T

lost S lost T lost T any T

self S peer T rep T any T

43

Example: Sharing

 Different Person objects
have different Address
objects
- No unwanted sharing

Peter Müller – Concepts of Object-Oriented Programming

class Person {
public rep Address addr;
…

}

this

joe

7.2 Ownership Types – Topological Types

44

Example: Internal vs. External Objects

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private rep Address addr;

public rep Address getAddr() {
return addr;

}

public void setAddr(rep Address a) {
addr = a;

}

public void setAddr(any Address a) {
addr = new rep Address(a);

}
}

Clients receive a
lost-reference

Cannot be called
by clients

Cloning
necessary

Address is part of
Person’s internal
represenations

7.2 Ownership Types – Topological Types

45

Internal vs. External Objects (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private any Company employer;

public any Company getEmployer() {
return employer;

}

public void setEmployer(any Company c) {
employer = c;

}
}

Can be called
by clients

Company is shared
between many
Person objects

7.2 Ownership Types – Topological Types

46

Owner-as-Modifier Discipline
 Topological type system can be used to strengthen

encapsulation
- Prevent modifications of internal objects
- Treat any and lost as readonly types
- Treat self, peer, and rep as readwrite types

 Additional rules enforce owner-as-modifier
- Field write e.f = v is valid only if τ(e) is self,

peer, or rep
- Method call e.m(…) is valid only if τ(e) is self,

peer, or rep, or called method is pure

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

47

Owner-as-Modifier Discipline (cont’d)

 A method may modify only objects directly or
indirectly owned by the owner of the current this
object

o

Peter Müller – Concepts of Object-Oriented Programming

7.2 Ownership Types – Topological Types

this

48

Internal vs. External Objects Revisited

Peter Müller – Concepts of Object-Oriented Programming

class Person {
private rep Address addr;
private any Company employer;

public rep Address getAddr() { return addr; }

public void setAddr(any Address a) {
addr = new rep Address(a);

}

public any Company getEmployer() { return employer; }

public void setEmployer(any Company c) { employer = c; }
}

Company is shared;
cannot be modified

Clients receive
(transitive)

readonly reference
Accidental capturing

is prevented

7.2 Ownership Types – Topological Types

49

Peter Müller – Concepts of Object-Oriented Programming

(Simplified) Programming Discipline
 Rule 1: No Role Confusion

- Expression with one alias mode must not be
assigned to variables with another mode

 Rule 2: No Representation Exposure
- rep-mode must not occur in an object’s interface
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on

this
 Rule 3: No Argument Dependence

- Implementations must not depend on the state of
argument objects

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

Different
types for

different roles

Viewpoint
adaptation

for rep types

Like with
programming

discipline

50

Peter Müller – Concepts of Object-Oriented Programming

Achievements
 rep and any types enable

encapsulation of whole
object structures

 Encapsulation cannot be
violated by subclasses,
via casts, etc.

 The technique fully
supports subclassing
- In contrast to solutions with

final, private inner classes,
etc.

class ArrayList {
protected rep int[] array;
private int next;
…

}

class MyList extends ArrayList {
public peer int[] leak() {
return array;

}
}

7.2 Ownership Types – Topological Types

51

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {
private int[] array;
private int next;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem(old(ia[i]))
public void addElems(int[] ia)
{ array = ia; next = ia.length; }

…
}

class ArrayList {
private Entry header;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem(old(ia[i]))
public void addElems(int[] ia)
{ … /* create Entry for each

element */ }
…

}

6.3 Object Structures and Aliasing – Problems of Aliasing

52

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)
class ArrayList {
private rep int[] array;
private int next;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem(old(ia[i]))
public void
addElems(any int[] ia)
{ System.arraycopy(…);

next = ia.length; }
…

}

class ArrayList {
private rep Entry header;

// requires ia != null
// ensures ∀i. 0<=i<ia.length:
// isElem(old(ia[i]))
public void
addElems(any int[] ia)
{ … /* create Entry for each

element */ }
…

}

7.2 Ownership Types – Topological Types

Accidental capturing
is prevented

53

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)
class ArrayList {
private rep int[] array;
private int next;

public any int[] getElems()
{ return ia; }

…
}

class ArrayList {
private rep Entry header;

public void any int[] getElems()
{ /* create new array */ }

…
}

7.2 Ownership Types – Topological Types

Leaking is still
possible

peer ArrayList list = new peer ArrayList();
list.prepend(0);
any int[] ia = list.getElems();
list.prepend(1);
assert ia[0] == 1;

 Observable
behavior is
changed

54

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures
 Consistency of object

structures depends on
fields of several objects

 Invariants are usually
specified as part of the
contract of those objects
that represent the
interface of the object
structure

class ArrayList {
private int[] array;
private int next;

// invariant array != null &&
// 0<=next<=array.length &&
// ∀i.0<=i<next: array[i] >= 0

public void add(int i) { … }
public void addElems(int[] ia)
{ … }

…
}

6.3 Object Structures and Aliasing – Problems of Aliasing

55

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Object Structures
 The invariant of object o

may depend on
- Encapsulated fields of o
- Fields of objects o

references through rep-
references

 Interface objects have
full control over their
rep-objects

class ArrayList {
private rep int[] array;
private int next;

// invariant array != null &&
// 0<=next<=array.length &&
// ∀i.0<=i<next: array[i] >= 0

public void add(int i) { … }
public void addElems

(any int[] ia) { … }

…
}

7.2 Ownership Types – Topological Types

56

System

Security Breach in Java 1.1.1

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

void bad() {
Identity[] s;
Identity trusted = java.Security…;
s = Malicious.class.getSigners();
s[0] = trusted;
/* abuse privilege */
}

} Identity[] getSigners()
{ return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

57

System

Security Breach in Java 1.1.1 (cont’d)

Class

IdentityIdentity[]

Identity

Identity
Identity[]

class Malicious {

void bad() {
any Identity[] s;
Identity trusted = java.Security…;
s = Malicious.class.getSigners();
s[0] = trusted;
}

}

rep Identity[] getSigners()
{ return signers; }

Peter Müller – Concepts of Object-Oriented Programming

rep Identity[] signers;

7.2 Ownership Types – Topological Types

58

Peter Müller – Concepts of Object-Oriented Programming

Ownership Types: Discussion
 Ownership types express heap topologies and

enforce encapsulation
 Owner-as-modifier is helpful to control side effects

- Maintain object invariants
- Prevent unwanted modifications

 Other applications also need restrictions of read
access
- Exchange of implementations
- Thread synchronization

 Ownership types are an area of current research

7.2 Ownership Types – Topological Types

	Concepts of �Object-Oriented Programming
	7. Ownership Types
	Object Structures Revisited
	Drawbacks of Alias Prevention
	Requirements for Readonly Access
	Readonly Access via Supertypes
	Limitations of Supertype Solution
	Supertype Solution is not Safe
	Readonly Access in Eiffel
	Readonly Access in C++: const Pointers
	Readonly Access in C++: const Functions
	It wouldn’t be C++ …
	It wouldn’t be C++ … (cont’d)
	Readonly Access in C++: Transitivity
	Transitivity (cont’d)
	Readonly Access in C++: Discussion
	Pure Methods
	Types
	Subtype Relation
	Type Rules: Transitive Readonly
	Type Rules: Transitive Readonly (cont’d)
	Type Rules: Transitive Readonly (cont’d)
	Type Rules: Readonly Access
	Discussion
	7. Ownership Types
	Object Topologies
	Roles in Object Structures
	Ownership Model
	OwnershipTypes
	Example
	Type Safety
	Subtyping and Casts
	Example (cont’d)
	Viewpoint Adaptation: Example 1
	Viewpoint Adaptation: Example 2
	Type Rules: Field Access
	Viewpoint Adaptation
	Read vs. Write Access
	The lost Modifier
	The lost Modifier: Details
	The self Modifier
	The self Modifier: Details
	Example: Sharing
	Example: Internal vs. External Objects
	Internal vs. External Objects (cont’d)
	Owner-as-Modifier Discipline
	Owner-as-Modifier Discipline (cont’d)
	Internal vs. External Objects Revisited
	(Simplified) Programming Discipline
	Achievements
	Exchanging Implementations
	Exchanging Implementations (cont’d)
	Exchanging Implementations (cont’d)
	Consistency of Object Structures
	Invariants for Object Structures
	Security Breach in Java 1.1.1
	Security Breach in Java 1.1.1 (cont’d)
	Ownership Types: Discussion

