
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2009

2

Highly
Dynamic
Execution Model

Highly
Dynamic
Execution Model
→ Active objects
→ Message passing

Classification and
Specialization

Correctness

→ Interfaces
→ Encapsulation
→ Simple, powerful concepts

Cooperating Program Parts
with Well-Defined Interfaces
Cooperating Program Parts
with Well-Defined Interfaces

→ Objects (data + code)
→ Interfaces
→ Encapsulation

1.2 Introduction – Core Concepts

Meeting the Requirements

→ Classification, subtyping
→ Polymorphism
→ Substitution principle

Peter Müller – Concepts of Object-Oriented Programming

3

Billion Dollar Mistake

“I call it my billion-dollar mistake. It was the
invention of the null reference in 1965. […]
This has led to innumerable errors, vulnerabilities,
and system crashes, which have probably caused a
billion dollars of pain and damage in the last forty
years. […]
More recent programming languages like Spec# have
introduced declarations for non-null references. This
is the solution, which I rejected in 1965.” [Hoare, 2009]

Peter Müller – Concepts of Object-Oriented Programming

8. Initialization

4

Peter Müller – Concepts of Object-Oriented Programming

8. Initialization

8.1 Simple Non-Null Types
8.2 Object Initialization
8.3 Initialization of Global Data

8. Initialization

5

Main Usages of Null-References

Peter Müller – Concepts of Object-Oriented Programming

 void add(Object k, Object v) {
 if(key.equals(k))
 value = v;
 else if(next == null)
 next = new Map(k, v);
 else next.add(k, v);
 }

 Object get(Object k) {
 if(key.equals(k)) return value;
 if(next == null) return null;
 return next.get(k);
 }
}

class Map {
 Map next;
 Object key;
 Object value;

 Map(Object k, Object v) {
 key = k;
 value = v;
 }

null terminates
recursion

All fields are
initialized to null

null indicates
absence of an

object

8.1 Initialization – Simple Non-Null Types

6

Main Usages of Null-References (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

 void add(Object k, Object v) {
 if(key.equals(k))
 value = v;
 else if(next == null)
 next = new Map(k, v);
 else next.add(k, v);
 }

 Object get(Object k) {
 if(key.equals(k)) return value;
 if(next == null) return null;
 return next.get(k);
 }
}

class Map {
 Map next;
 Object key;
 Object value;

 Map(Object k, Object v) {
 key = k;
 value = v;
 }

Most variables
hold non-null

values

8.1 Initialization – Simple Non-Null Types

7

Non-Null Types
 Non-null type T! consists

of references to T-objects

 Possibly-null type T?
consists of references to
T-objects plus null
- Corresponds to T in most

languages

 A language designer
would choose a default

Peter Müller – Concepts of Object-Oriented Programming

class Map {
 Map? next;
 Object! key;
 Object! value;

 Map(Object! k, Object! v) {
 key = k;
 value = v;
 }
 …
}

8.1 Initialization – Simple Non-Null Types

8

Type Safety
 (Simplified) type invariant:

If the static type of an expression e is a non-null
type then e’s value at run time is different from null

 Goal: prevent null-dereferencing statically
- Require non-null types for the receiver of each field

access, array access, method call
- Analogous to preventing “message not understood”

errors with classical type systems

Peter Müller – Concepts of Object-Oriented Programming

8.1 Initialization – Simple Non-Null Types

9

 The values of a type T! are a
proper subset of T?
- S! <: T!
- S? <: T?
- T! <: T?

 Downcasts from possibly-null

types to non-null types
require run-time checks

Peter Müller – Concepts of Object-Oriented Programming

Subtyping and Casts
class T { … }

class S extends T { … }

T! nnT = …
T? pnT = …
S! nnS = …

nnT = nnS;
pnT = pnS;
pnT = nnT;

object?

T?

S?

object!

T!

S!

nnT = (T!) pnT;
nnT = (!) pnT;

8.1 Initialization – Simple Non-Null Types

10

Type Rules
 Most type rules of Java remain

unchanged

 Additional requirement:
expressions whose value gets
dereferenced at run-time must
have a non-null type
- Receiver of field access
- Receiver of array access
- Receiver of method call
- Expression of a throw statement

Peter Müller – Concepts of Object-Oriented Programming

nnT.f = 5;
nnS.foo();

T! nnT = …
T? pnT = …
S! nnS = …

pnT.f = 5;
pnS.foo();

Compile-time error:
possible

null-dereferencing

8.1 Initialization – Simple Non-Null Types

11

Comparing against null

Peter Müller – Concepts of Object-Oriented Programming

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …
 Map? n = next;
 if(n == null) return null;
 return n.get(k);
 }
}

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …
 Map? n = next;
 if(n == null) return null;
 return ((!) n).get(k);
 }
} Compile-time error:

possible
null-dereferencing

Shorthand for
cast to Map!

8.1 Initialization – Simple Non-Null Types

12

Dataflow Analysis

 Data-flow analysis is a technique for gathering
information about the possible set of values
calculated at various points in a computer program.
A program's control flow graph is used to determine
those parts of a program to which a particular value
assigned to a variable might propagate. [Wikipedia]

Peter Müller – Concepts of Object-Oriented Programming

8.1 Initialization – Simple Non-Null Types

13

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …
 Map? n = next;
 if(n == null) return null;
 return n.get(k);
 }
}

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …
 Map? n = next;
 if(n == null) return null;
 return n.get(k);
 }
}

Comparing against null (cont’d)

Peter Müller – Concepts of Object-Oriented Programming

n may be
null or not

n is null
n is different

from null

Map? n = next;

if(n == null)

return null;

…

Control Flow Graph

return n.get(k);

8.1 Initialization – Simple Non-Null Types

Dataflow analysis
guarantees that
this call is safe

14

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …

 if(next == null) return null;
 return next.get(k);
 }
}

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …

 if(next == null) return null;
 return next.get(k);
 }
}

Limitations of Data Flow Analysis

Peter Müller – Concepts of Object-Oriented Programming

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …
 Map? n = next;
 if(n == null) return null;
 return n.get(k);
 }
}

8.1 Initialization – Simple Non-Null Types

15

Limitations of Data Flow Analysis (cont’d)
 Receiver expression must

not access heap locations

 Data flow analysis tracks
values of local variables,
but not heap locations
- Tracking heap locations is in

general non-modular
 In concurrent programs,

other threads could modify
heap locations

Peter Müller – Concepts of Object-Oriented Programming

class Map {
 Map? next;
 …
 Object? get(Object! k) {
 …
 if(next == null) return null;
 someObject.foo(this);
 return next.get(k);
 }
}

void foo(Map! m) {
 m.next = null;
}

8.1 Initialization – Simple Non-Null Types

16

Peter Müller – Concepts of Object-Oriented Programming

8. Initialization

8.1 Simple Non-Null Types
8.2 Object Initialization
8.3 Initialization of Global Data

8. Initialization

17

Constructing New Objects

 Idea: make sure all non-null fields are initialized
when the constructor terminates
- Weaken type invariant accordingly

Peter Müller – Concepts of Object-Oriented Programming

class Map {
 Map? next;
 Object! key;
 Object! value;

 Map(Object! k, Object! v) {
 key = k;
 value = v;
 }
}

All fields are
initialized to null Type invariant is

violated here!

8.2 Initialization – Object Initialization

18

Definite Assignment of Local Variables
 Java and C# do not initialize local variables
 Definite assignment rule: every local variable must

be assigned to before it is first used
- Checked by compiler using a data flow analysis
- Also checked during bytecode verification

Peter Müller – Concepts of Object-Oriented Programming

int abs(int p) {
 int result;
 if(p >= 0) result = p;
 else result = –p;
 return result;
}

if(p >= 0)

result = p; result = –p;

return result;

8.2 Initialization – Object Initialization

19

Definite Assignment of Fields
 Idea: apply definite assignment rule for fields in

constructor
- Eiffel’s solution for attached types

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 Vector! cache;
 Demo(Vector? d) {
 if(d == null)
 cache = new Vector();
 else
 cache = d.clone();
 }
}

if(d == null)

cache = new Vector(); cache = d.clone();

8.2 Initialization – Object Initialization

20

Problem 1: Method Calls

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 Vector! cache;

 Demo() {
 int size = optimalSize();
 cache = new Vector(size);
 }

 int optimalSize() {
 return 16;
 }
}

class Sub extends Demo {
 Vector! data;

 Sub(Vector! d) {
 data = d.clone();
 }

 int optimalSize() {
 return data.size() * 2;
 }
}

Vector! v = new Vector();
Sub! s = new Sub(v);

Implicit
super-call

Dynamically
bound

NullPointer
Exception

8.2 Initialization – Object Initialization

21

Problem 2: Call-backs

Peter Müller – Concepts of Object-Oriented Programming

class Demo implements Observer {
 static Subject! subject;

 Demo() {
 subject.register(this);
 }

 void update(…) { }
}

class Sub extends Demo {
 Vector! data;

 Sub(Vector! d) { data = d.clone(); }
 void update(…) { … data.size() … }
}

Vector! v = new Vector();
Sub! s = new Sub(v);

Implicit
super-call

NullPointer
Exception

class Subject {
 void register(Observer! o) {
 …
 o.update(…);
 }
}

Dynamically
bound

8.2 Initialization – Object Initialization

22

Problem 3: Escaping via Method Calls

Peter Müller – Concepts of Object-Oriented Programming

class Demo implements Observer {
 static Subject! subject;

 Demo() {
 subject.register(this);
 }

 void update(…) { }
}

class Sub extends Demo {
 Vector! data;

 Sub(Vector! d) { data = d.clone(); }
 void update(…) { … data.size() … }
}

class Subject extends Thread {
 List<Observer!>! list;

 void register(Observer! o)
 { list.add(o); }

 void run() {
 while(true) {
 if(sensorValueChanged())
 for(Observer! o: list)
 o.update(…);
 }
 }
 …
}

No call-
back

NullPointer
Exception

Call may occur
at any time

8.2 Initialization – Object Initialization

23

Problem 4: Escaping via Field Updates

Peter Müller – Concepts of Object-Oriented Programming

class Node {
 Node! next; // a cyclic list
 Process! proc;

 Node(Node! after, Process! p) {
 this.next = after.next;
 after.next = this;
 proc = p;
 }
}

class Scheduler extends Thread {
 Node! current;

 void run() {
 while(true) {
 current.proc.preempt();
 current = current.next;
 current.proc.resume();
 Thread.sleep(1000);
 }
 }
 …
}

NullPointer
Exception

Assume scheduler
runs now, with
current == after

8.2 Initialization – Object Initialization

24

class Node {
 Node! next; // a cyclic list
 String! label;

 Node(String! l) {
 this.next = this;
 this.setLabel(l);
 }

 void setLabel(String! l) {
 this.label = l;
 }
}

Definite Assignment of Fields: Summary
 Sound and modular

checking of definite
assignment for fields
requires that a partly-
initialized object must
not escape from its
constructor
- Not passed as receiver

or argument to a
method call

- Not stored in a field or
an array

Peter Müller – Concepts of Object-Oriented Programming

Field update is safe:
object does not

escape

Method call is safe:
no reading of fields

of new object

8.2 Initialization – Object Initialization

25

Raw Objects and Raw Types
 Idea: design a modular analysis that determines

which objects are potentially under construction
- We call such objects raw objects
- The type of a raw object is called a raw type

 Type invariant:
If the static type of an expression e is a non-raw,
non-null type then e’s value at run time is different
from null
- Reading a non-null field of a raw receiver yields a

possibly-null value

Peter Müller – Concepts of Object-Oriented Programming

8.2 Initialization – Object Initialization

26

Raw Types
 For a class or interface T, we

introduce four types
- T! and T? as before
- raw T!
- raw T?

 Raw types comprise more
elements than non-raw types
- T! <: raw T!
- T? <: raw T?

 No downcasts from raw to
non-raw types

Peter Müller – Concepts of Object-Oriented Programming

rT = t;
pnT = t;
pnT = rT;

T! t = …
raw T! rT = …
raw T? pnT = …

t = rT;
t = (T!) rT;

class T { … }

class S extends T { … }

Compile-time
error

8.2 Initialization – Object Initialization

27

Modular Analysis
 To make the analysis

modular, we require
annotations
- For method and constructor

parameters
- For method results

 No raw types allowed for
fields

 All other raw annotations
will be inferred

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 Vector! cache;

 Demo() {
 int size = optimalSize();
 cache = new Vector(size);
 }

 int raw optimalSize() {
 return 16;
 }
} Receiver is of a

raw type

8.2 Initialization – Object Initialization

28

Checking Constructor Bodies
 Definite assignment check

 For each constructor in a
class C, we check that it
assigns a non-null value
to each field of C that has
a non-null type

 Method calls and
escaping of receiver are
permitted

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 Vector! cache;

 Demo() {
 int size = optimalSize();
 cache = new Vector(size);
 }

 int raw optimalSize() {
 return 16;
 }
}

8.2 Initialization – Object Initialization

29

Raw Receivers and Parameters
 Parameters of methods

and constructors have raw
types if they are annotated
as raw

 Receivers of methods
have raw types if they are
annotated as raw

 Receivers of constructors
have raw types by default

 Overriding with contra-
variant parameter types

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 Vector! cache;

 Demo() {
 int size = optimalSize();
 cache = new Vector(size);
 }

 int raw optimalSize() {
 return 16;
 }
} this is of a

raw type

this is of a
raw type

8.2 Initialization – Object Initialization

30

Inference: Field Access
 Fields of partly-initialized

objects may themselves be
partly initialized

 Expression e.f is of a raw
type iff e is of a raw type
and f is of a reference type

 Expression e.f is of a
non-null type iff e is of a
non-raw type and f is of a
non-null type

Peter Müller – Concepts of Object-Oriented Programming

class Node {
 Node! next; // a cyclic list

 Node() {
 // this.next == null
 this.next = this;
 }
} this is of a

raw type this.next is also
of a raw type

Type invariant
is satisfied

8.2 Initialization – Object Initialization

31

Inference: Method Calls
 Expression e.m(…) is of a raw type if m’s declared

result type is raw
- No need to consult implementation of m

 Normal type rule takes care of argument and result

passing
- If formal parameter type is non-raw, the actual argument

must have a non-raw type

 Overriding with co-variant result types

Peter Müller – Concepts of Object-Oriented Programming

8.2 Initialization – Object Initialization

32

Inference: Object Creation

 The receiver of a
constructor has a raw type

 When does it become non-

raw?

 At the end of the
constructor?

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 String! name;
 Demo() {
 name = “Tony”;
 }
}

class Sub extends Demo {
 Vector! data;

 Sub() {
 data = new Vector();
 }
}

this is not
fully initialized

8.2 Initialization – Object Initialization

33

Inference: Object Creation (cont’d)
 The receiver of

a constructor
has a raw type

 When does it

become non-
raw?

 After the new-

expression?

Peter Müller – Concepts of Object-Oriented Programming

class C {
 Demo! demo;
 C(raw Demo! d) { demo = d; }
 String! foo() { return demo.myC.toString(); }
}

class Demo {
 C! myC;
 Demo() {
 C! c = new C(this);
 c.foo();
 myC = c;
 }
}

c is not fully
initialized

NullPointer
Exception

8.2 Initialization – Object Initialization

34

Inference: Object Creation (cont’d)
 Observation:

- All objects reachable from a constructor were reachable
from one of the arguments or have been created during
the execution of the constructor

- Static fields have always non-raw types
 Consequence:

- If all arguments to a constructor have non-raw types,
then the new object and all objects reachable from it are
fully initialized when the new-expression terminates

- Recall that each constructor assigns non-null values to
all non-null fields of its class

Peter Müller – Concepts of Object-Oriented Programming

8.2 Initialization – Object Initialization

35

Inference: Object Creation: Example 1

Peter Müller – Concepts of Object-Oriented Programming

class C {
 Demo! demo;
 C(raw Demo! d) { demo = d; }
 String! foo() { return demo.myC.toString(); }
}

class Demo {
 C! myC;
 Demo() {
 C! c = new C(this);
 c.foo();
 myC = c;
 }
}

c has
raw type

NullPointerException
is prevented

Compile-time
error: foo expects
non-raw receiver

8.2 Initialization – Object Initialization

36

Inference: Object Creation: Example 2

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 C! myC;
 Demo(Demo! d) {
 C! c = new C(d);
 c.foo();
 myC = c;
 }
}

c has non-raw
type

Call is
permitted

8.2 Initialization – Object Initialization

class C {
 Demo! demo;
 C(raw Demo! d) { demo = d; }
 String! foo() { return demo.myC.toString(); }
}

NullPointerException
is prevented

Note that formal
parameter type

is still raw

37

Example
class A {
 String! name;

 A(String! s) {
 this.name = s;
 this.foo();
 }

 void foo() {
 …
 }
}

class B extends A {
 String! path;

 B(String! s, String! p) {
 super(s);
 this.path = p;
 }

 void foo() {
 … this.path.length …
 }
}

NullPointer
Exception

class A {
 String! name;

 A(String! s) {
 this.name = s;
 this.foo();
 }

 void foo() {
 …
 }
}

Compile-time
error: foo expects
non-raw receiver

Peter Müller – Concepts of Object-Oriented Programming

8.2 Initialization – Object Initialization

38

class B extends A {
 String! path;

 B(String! s, String! p) {
 super(s);
 this.path = p;
 }

 void foo() {
 … this.path.length …
 }
}

class B extends A {
 String! path;

 B(String! s, String! p) {
 super(s);
 this.path = p;
 }

 void foo() {
 … this.path.length …
 }
}

Example (cont’d)
class A {
 String! name;

 A(String! s) {
 this.name = s;
 this.foo();
 }

 void raw foo() {
 …
 }
}

Peter Müller – Concepts of Object-Oriented Programming

8.2 Initialization – Object Initialization

class B extends A {
 String! path;

 B(String! s, String! p) {
 super(s);
 this.path = p;
 }

 void raw foo() {
 … this.path.length …
 }
} Compile-time error:

this.path is of type
raw String?

and, thus, not guaranteed
to be non-null

foo must take
raw receiver

(contra-variance)

39

Lazy Initialization

 Creating objects and
initializing their fields is time
consuming
- Long application start-up time

 Lazy initialization: initialize

fields when they are first used
- Spreads initialization effort over

longer time period

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 private Vector? data;

 Demo() {
 // do not initialize data
 }

 public Vector! getData() {
 if(data == null)
 data = new Vector();
 return data;
 }
}

8.2 Initialization – Object Initialization

Not initialized
by constructor

Clients get non-
null guarantee

40

Non-Null Arrays
 Arrays are objects whose fields are numbered
 An array type describes two kinds of references

- The reference to the array object
- The references to the array elements
- Both can be non-null or possibly-null

Peter Müller – Concepts of Object-Oriented Programming

Person! [] ! a;
Person? [] ! b;
Person! [] ? c;
Person? [] ? d;

Non-null array with
non-null elements

Non-null array with
possibly-null

elements

Possibly-null array
with non-null

elements

Possibly-null array
with possibly-null

elements

8.2 Initialization – Object Initialization

41

Problems of Array Initialization
 Our solution for non-null

fields does not work for
non-null array elements
- No constructor for arrays
- Arrays are typically

initialized using loops
- Static analyses ignore

loop conditions
 In general, definite

assignment cannot be
checked by compiler

Peter Müller – Concepts of Object-Oriented Programming

class Demo {
 String! [] ! s;

 Demo(int l) {
 if(l % 2 == 1)
 l = l + 1;
 s = new String! [l];

 for(int i = 0; i < l / 2; i++) {
 s[i*2] = “Even“;
 s[i*2 + 1] = “Odd“;
 }
 }
}

When do the
elements have
to contain non-
null references?

Are all elements
of s initialized?

8.2 Initialization – Object Initialization

42

Array Initialization: (Partial) Solutions
 Array initializers

 Pre-filling the array

- Not clear why a default object is any better than null

 Run-time checks

Peter Müller – Concepts of Object-Oriented Programming

String! [] ! s = { “array”, “of”, “non-null”, “String” };

my_array: !ARRAY [!STRING]
create my_array.make_filled (“ ”, 1, l) Eiffel

String! [] ! s = new String! [l];
for(int i = 0; i < l / 2; i++) { /* as before */ }
NonNullType.AssertInitialized(s); Spec#

Changes type from
raw to non-raw

8.2 Initialization – Object Initialization

43

Summary
 Object initialization has to establish invariants

- Non-nullness of fields is just an example

 General guidelines for writing constructors
- Avoid calling dynamically-bound methods on this
- Be careful when new object escapes from constructor
- Be aware of subclass constructors that have not run yet

 Non-null types are available in Spec#

- specsharp.codeplex.com

Peter Müller – Concepts of Object-Oriented Programming

8.2 Initialization – Object Initialization

44

Peter Müller – Concepts of Object-Oriented Programming

8. Initialization

8.1 Simple Non-Null Types
8.2 Object Initialization
8.3 Initialization of Global Data

8. Initialization

45

The Flyweight Pattern

Peter Müller – Concepts of Object-Oriented Programming

‘A‘
Flyweight

Factory Repository

‘B‘
Flyweight

‘C‘
Flyweight

Client Client Client

Shared,
immutable

objects

Shared,
immutable

objects

Global
Factory Object

8.3 Initialization – Initialization of Global Data

46

Global Data
 Most software systems

maintain global data
- Factories
- Caches
- Flyweights
- Singletons

 Main issues
- How do clients access

the global data?
- How is the global data

initialized?

Peter Müller – Concepts of Object-Oriented Programming

‘A‘

Flyweight

Factory Repository

‘B‘

Flyweight

‘C‘

Flyweight

Client Client Client

8.3 Initialization – Initialization of Global Data

47

Initialization of Globals: Design Goals
 Effectiveness

- Ensure that global data is initialized before first access
- Example: non-nullness

 Clarity
- Initialization has a clean semantics and facilitates

reasoning

 Laziness
- Global data is initialized lazily to reduce start-up time

Peter Müller – Concepts of Object-Oriented Programming

8.3 Initialization – Initialization of Global Data

48

Solution 1: Global Vars and Init-Methods

 Global variables
store references to
global data

 Initialization is done

by explicit calls to
init-methods

Peter Müller – Concepts of Object-Oriented Programming

global Factory theFactory;

void init() {
 theFactory = new Factory();
}

class Factory {
 HashMap flyweights;

 Flyweight create(Data d) { … }
 …
}

Flyweight f = theFactory.create(…);

8.3 Initialization – Initialization of Global Data

49

Globals and Init-Methods: Dependencies
 Init-methods are called

directly or indirectly
from main-method

 To ensure effective

initialization, main
needs to know internal
dependencies of
modules

Peter Müller – Concepts of Object-Oriented Programming

Module A

Module B

Module C

Main Call init-
method

Init-method of A
accesses global

data of B

8.3 Initialization – Initialization of Global Data

50

Globals and Init-Methods: Summary
 Effectiveness

- Initialization order needs to be coded manually
- Error-prone

 Clarity
- Dependency information compromises information hiding

 Laziness
- Needs to be coded manually

Peter Müller – Concepts of Object-Oriented Programming

8.3 Initialization – Initialization of Global Data

51

Variation: C++ Initializers
 Global variables can

have initializers
 Initializers are executed

before execution of
main-method
- No explicit calls needed
- No support for lazy

initialization

Peter Müller – Concepts of Object-Oriented Programming

class Factory {
 HashMap* flyweights;

 Flyweight* create(Data* d) { … }
 …
};

Factory* theFactory = new Factory();
C++

 Order of execution determined by order of
appearance in the source code
- Programmer has to manage dependencies

8.3 Initialization – Initialization of Global Data

52

Solution 2: Static Fields and Initializers

 Static fields store
references to global data

 Static initializers are
executed by the system
immediately before a
class is used

Peter Müller – Concepts of Object-Oriented Programming

class Factory {
 static Factory theFactory;
 HashMap flyweights;

 static {
 theFactory = new Factory();
 }

 Flyweight create(Data d) { … }
 …
} Java

Factory o = Factory.theFactory;
Flyweight f = o.create(…);

8.3 Initialization – Initialization of Global Data

53

Execution of Static Initializers
 A class C’s static initializer

runs immediately before
first
- Creation of a C-instance
- Call to a static method of C
- Access to a static field of C

 and before static initializers
of C’s subclasses

 Initialization is done lazily
 System manages

dependencies
Peter Müller – Concepts of Object-Oriented Programming

class Factory {
 static Factory theFactory;
 HashMap flyweights;

 static {
 theFactory = new Factory();
 }

 Flyweight create(Data d) { … }
 …
} Java

Factory o = Factory.theFactory;
Flyweight f = o.create(…);

Initialization
triggered here

8.3 Initialization – Initialization of Global Data

54

Debug.log(“Start of program execution”);

Static Initializers: Mutual Dependencies

Peter Müller – Concepts of Object-Oriented Programming

class UniqueID {
 static int next;

 static {
 next = 1;
 Debug.log(“…”);
 }

 static int getID() {
 return next++;
 }
}

Java

class Debug {
 static int session;
 static Vector logfile;

 static {
 session = UniqueID.getID();
 logfile = new Vector();
 }

 static void log(String msg) {
 logfile.add(msg);
 }
}

Initialize
Debug

Initialize
UniqueID

Initialization
already in progress

NullPointerException

8.3 Initialization – Initialization of Global Data

55

Static Initializers: Side Effects

 Static initializers may have
arbitrary side effects

 Reasoning about programs

with static initializers is non-
modular
- Need to know when initializers run

Peter Müller – Concepts of Object-Oriented Programming

C.x = 0;
D.y = ‘?’;
assert C.x == 0;

class D {
 static char y;

 …
}

class C {
 static int x;

 …
}

class D {
 static char y;

 static { C.x = C.x + 1; }
}

8.3 Initialization – Initialization of Global Data

56

Static Initializers: Summary
 Effectiveness

- Static initializers may be interrupted
- Reading un-initialized fields is possible

 Clarity
- Reasoning requires to keep track of which initializers

have run already
- Side effects through implicit executions of static

initializers can be surprising
 Laziness

- Static initializers are not called upfront (but also not as
late as possible)

Peter Müller – Concepts of Object-Oriented Programming

8.3 Initialization – Initialization of Global Data

57

Static Fields and Procedural Style
 Procedural style: make all

fields and operations of
the global data static
- Use class object as global

object
 Disadvantages

- No specialization via
subtyping and overriding

- No dynamic exchange of
data structure

- Not object-oriented

Peter Müller – Concepts of Object-Oriented Programming

class Factory {
 static HashMap flyweights;

 static {
 flyweights = new HashMap();
 }

 static
 Flyweight create(Data d) {
 …
 }
 …
}

Java

8.3 Initialization – Initialization of Global Data

58

Variation: Scala’s Singleton Objects
 Scala provides language

support for singletons
- Singleton objects may extend

classes or traits
- But they cannot be specialized

 Not every global object is a
singleton

 Initialization is defined by
translation to Java
- Inherits all pros and cons of

static initializers

Peter Müller – Concepts of Object-Oriented Programming

object Factory {
 val flyweights: HashMap[…]

 def
 create(d: Data): Flyweight =
 …
 …
} Scala

8.3 Initialization – Initialization of Global Data

59

Solution 3: Eiffel’s Once Methods

 Once methods are
executed only once

 Result of first execution is

cached and returned for
subsequent calls

Peter Müller – Concepts of Object-Oriented Programming

class FlyweightMgr
feature
 theFactory: Factory
 once
 create Result
 end
 …
end Eiffel

o := manager.theFactory
f := o.createFlyweight(…)

8.3 Initialization – Initialization of Global Data

60

Once Methods: Mutual Dependencies
 Mutual dependencies

lead to recursive calls

 Recursive calls return
the current value of
Result
- Typically not a

meaningful value

Peter Müller – Concepts of Object-Oriented Programming

factorial (i: INTEGER): INTEGER
 require 0 <= i
once
 if i <= 1 then Result := 1
 else
 Result := i * factorial (i – 1)
 end
end Eiffel

check factorial(3) = 0 end
check factorial(30) = 0 end

8.3 Initialization – Initialization of Global Data

61

Once Methods: Parameters

 Arguments to once
methods are used for
the first execution

 Arguments to

subsequent calls are
ignored

Peter Müller – Concepts of Object-Oriented Programming

factorial (i: INTEGER): INTEGER
 require 0 <= i
once
 if i <= 1 then Result := 1
 else
 Result := i * factorial (i – 1)
 end
end Eiffel

check factorial(3) = 0 end
check factorial(30) = 0 end
check factorial(1) = 0 end

8.3 Initialization – Initialization of Global Data

check factorial(1) = 1 end
check factorial(3) = 1 end
check factorial(30) = 1 end

62

Once Methods: Summary
 Effectiveness

- Mutual dependencies lead to recursive calls
- Reading un-initialized fields is possible

 Clarity
- Reasoning requires to keep track of which once methods

have run already (use of arguments, side effects)

 Laziness
- Once methods are executed only when result is needed

(as late as possible)

Peter Müller – Concepts of Object-Oriented Programming

8.3 Initialization – Initialization of Global Data

63

Initialization of Global Data: Summary
 No solution ensures that global data is initialized

before it is accessed
- How to establish invariants over global data?
- For instance, solutions would not be suitable to ensure

that global non-null variables have non-null values

 No solution handles mutual dependencies
- Maybe programmer should determine initialization order,

with appropriate restrictions

Peter Müller – Concepts of Object-Oriented Programming

8.3 Initialization – Initialization of Global Data

	Concepts of �Object-Oriented Programming
	Meeting the Requirements
	Billion Dollar Mistake
	8. Initialization
	Main Usages of Null-References
	Main Usages of Null-References (cont’d)
	Non-Null Types
	Type Safety
	Subtyping and Casts
	Type Rules
	Comparing against null
	Dataflow Analysis
	Comparing against null (cont’d)
	Limitations of Data Flow Analysis
	Limitations of Data Flow Analysis (cont’d)
	8. Initialization
	Constructing New Objects
	Definite Assignment of Local Variables
	Definite Assignment of Fields
	Problem 1: Method Calls
	Problem 2: Call-backs
	Problem 3: Escaping via Method Calls
	Problem 4: Escaping via Field Updates
	Definite Assignment of Fields: Summary
	Raw Objects and Raw Types
	Raw Types
	Modular Analysis
	Checking Constructor Bodies
	Raw Receivers and Parameters
	Inference: Field Access
	Inference: Method Calls
	Inference: Object Creation
	Inference: Object Creation (cont’d)
	Inference: Object Creation (cont’d)
	Inference: Object Creation: Example 1
	Inference: Object Creation: Example 2
	Example
	Example (cont’d)
	Lazy Initialization
	Non-Null Arrays
	Problems of Array Initialization
	Array Initialization: (Partial) Solutions
	Summary
	8. Initialization
	The Flyweight Pattern
	Global Data
	Initialization of Globals: Design Goals
	Solution 1: Global Vars and Init-Methods
	Globals and Init-Methods: Dependencies
	Globals and Init-Methods: Summary
	Variation: C++ Initializers
	Solution 2: Static Fields and Initializers
	Execution of Static Initializers
	Static Initializers: Mutual Dependencies
	Static Initializers: Side Effects
	Static Initializers: Summary
	Static Fields and Procedural Style
	Variation: Scala’s Singleton Objects
	Solution 3: Eiffel’s Once Methods
	Once Methods: Mutual Dependencies
	Once Methods: Parameters
	Once Methods: Summary
	Initialization of Global Data: Summary

