
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2009

2

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing – Object Structures

3

Peter Müller – Concepts of Object-Oriented Programming

Object Structures
 Objects are the building blocks of object-oriented

programming
 However, interesting abstractions are almost

always provided by sets of cooperating objects

 Definition:
An object structure is a set of objects that are
connected via references

6.1 Object Structures and Aliasing – Object Structures

4

Peter Müller – Concepts of Object-Oriented Programming

Example 1: Array-Based Lists
class ArrayList {
 private int[] array;
 private int next;

 public void add(int i) {
 if (next==array.length) resize();
 array[next] = i;
 next++;
 }

 public void addElems(int[] ia)
 { … }

 …
}

array:
next:

list

…

length:
0:

array

…

1:
2:

6.1 Object Structures and Aliasing – Object Structures

5

Peter Müller – Concepts of Object-Oriented Programming

Example 2: Doubly-Linked Lists

header:
3 size:

LinkedList

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

n:
p:

Entry

e:

Object Object Object

next:
2 nextIndex:

ListItr

6.1 Object Structures and Aliasing – Object Structures

6

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing

7

Peter Müller – Concepts of Object-Oriented Programming

Alias

 Definition:
A name that has been assumed temporarily

[WordNet, Princeton University]

6.2 Object Structures and Aliasing – Aliasing

8

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Procedural Programming
 var-parameters are

passed by reference
(call by name)

 Modification of a var-
parameter is
observable by caller

 Aliasing: Several
variables (here: p, q)
refer to same memory
cell

 Aliasing can lead to
unexpected side-effects

program aliasTest
procedure assign(var p: int, var q: int);
begin

 p := 25;

end;
 begin
 var x: int := 1;
 assign(x, x);

 end
end.

{ p = 1 ∧ q = 1 }
p := 25;
{ p = 25 ∧ q = 25 }

{ x = 25 }

6.2 Object Structures and Aliasing – Aliasing

9

Peter Müller – Concepts of Object-Oriented Programming

Aliasing in Object-Oriented Programming
 Definition:

An object o is aliased if two or more variables hold
references to o.

 Variables can be
- Fields of objects (instance variables)
- Static fields (global variables)
- Local variables of method executions, including this
- Formal parameters of method executions
- Results of method invocations or other expressions

6.2 Object Structures and Aliasing – Aliasing

10

Peter Müller – Concepts of Object-Oriented Programming

Static Aliasing
 Definition:

An alias is static if all
involved variables are
fields of objects or
static fields.

 Static aliasing occurs in
the heap memory

array:
next:

list1

array:
next:

list2

array

list1.array[0] = 1;
list2.array[0] = -1;
System.out.println(list1.array[0]);

6.2 Object Structures and Aliasing – Aliasing

11

Peter Müller – Concepts of Object-Oriented Programming

Dynamic Aliasing
 Definition:

An alias is dynamic
if it is not static.

 Dynamic aliasing
involves stack-
allocated variables

array:
next:

list1

array

int[] ia = list1.array;
list1.array[0] = 1;
ia[0] = -1;
System.out.println(list1.array[0]);

6.2 Object Structures and Aliasing – Aliasing

12

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Efficiency
 In OO-programming,

data structures are
usually not copied
when passed or
modified

 Aliasing and

destructive updates
make OO-programming
efficient

class SList {
 SList next;
 Object elem;
 void rest() { return next; }
 void set(Object e) { elem = e; }
}

void foo(SList slist) {
 SList rest = slist.rest();
 rest.set(“Hello”); }

SList SList SList SList

rest slist

6.2 Object Structures and Aliasing – Aliasing

13

Peter Müller – Concepts of Object-Oriented Programming

Intended Aliasing: Sharing
 Aliasing is a direct

consequence of object
identity

 Objects have state that
can be modified

 Objects have to be
shared to make
modifications of state
effective

3

LinkedList

Entry

Entry Entry Entry

2

ListItr

6.2 Object Structures and Aliasing – Aliasing

14

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Capturing
 Capturing occurs when

objects are passed to a
data structure and then
stored by the data
structure

 Capturing often occurs in
constructors (e.g.,
streams in Java)

 Problem: Alias can be
used to by-pass interface
of data structure

array:
next:

list1

array

class ArrayList {
 private int[] array;
 private int next;
 public void addElems(int[] ia)
 { array = ia; next = ia.length; }
 …
}

6.2 Object Structures and Aliasing – Aliasing

15

Peter Müller – Concepts of Object-Oriented Programming

Unintended Aliasing: Leaking
 Leaking occurs when

data structure pass a
reference to an object,
which is supposed to be
internal to the outside

 Leaking often happens
by mistake

 Problem: Alias can be
used to by-pass
interface of data
structure

array:
next:

list1

array

class ArrayList {
 private int[] array;
 private int next;
 public int[] getElems()
 { return array; }
 …
}

6.2 Object Structures and Aliasing – Aliasing

16

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6.3 Object Structures and Aliasing – Problems of Aliasing

17

Peter Müller – Concepts of Object-Oriented Programming

Observation
 Many well-established techniques of object-

oriented programming work for individual objects,
but not for object structures in the presence of
aliasing

 “The big lie of object-oriented programming is that
objects provide encapsulation” [Hogg, 1991]

 Examples

- Information hiding and exchanging implementations
- Encapsulation and consistency

6.3 Object Structures and Aliasing – Problems of Aliasing

18

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations

 Interface including contract remains unchanged

class ArrayList {
 private int[] array;
 private int next;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void addElems(int[] ia)
 { array = ia; next = ia.length; }

 …
}

class ArrayList {
 private Entry header;

 // requires ia != null
 // ensures ∀i. 0<=i<ia.length:
 // isElem(old(ia[i]))
 public void addElems(int[] ia)
 { … /* create Entry for each

 element */ }
 …
}

6.3 Object Structures and Aliasing – Problems of Aliasing

19

Peter Müller – Concepts of Object-Oriented Programming

Exchanging Implementations (cont’d)

 Aliases can be used
to by-pass interface

 Observable behavior
is changed!

int foo(ArrayList list) {
 int[] ia = new int[3];
 list.addElems(ia);
 ia[0] = -1;
 return list.getFirst();
}

list
3

array

0
0
0

ia

list

Entry

Entry

0

Entry

0

Entry

0

3

array

0
0
0

ia

-1

-1

6.3 Object Structures and Aliasing – Problems of Aliasing

20

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures
 Consistency of object

structures depends on
fields of several objects

 Invariants are usually

specified as part of the
contract of those objects
that represent the
interface of the object
structure

class ArrayList {
 private int[] array;
 private int next;

 // invariant array != null &&
 // 0<=next<=array.length &&
 // ∀i.0<=i<next: array[i] >= 0

 public void add(int i) { … }
 public void addElems(int[] ia)
 { … }

 …
}

6.3 Object Structures and Aliasing – Problems of Aliasing

21

Peter Müller – Concepts of Object-Oriented Programming

Consistency of Object Structures (cont’d)

 Aliases can be used to
violate invariant

 Making all fields private is
not sufficient to
encapsulate internal state

int foo(ArrayList list) { // invariant of list holds
 int[] ia = new int[3];
 list.addElems(ia); // invariant of list holds
 ia[0] = -1; // invariant of list violated
}

list

3

array

0
0
0

ia

-1

6.3 Object Structures and Aliasing – Problems of Aliasing

22

System

Security Breach in Java 1.1.1

Class

Identity Identity[]

Identity

Identity
Identity[]

class Malicious {

 void bad() {
 Identity[] s;
 Identity trusted = java.Security…;
 s = Malicious.class.getSigners();
 s[0] = trusted;
 /* abuse privilege */
 }

} Identity[] getSigners()

 { return signers; }

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

23

Problem Analysis

 Difficult to prevent
- Information hiding:

not applicable to arrays
- Restriction of Identity

objects: not effective
- Secure information flow:

read access permitted
- Run-time checks:

too expensive
System

Class

Identity Identity[]

Identity

Identity
Identity[]

 Breach caused by unwanted alias
- Leaking of reference

6.3 Object Structures and Aliasing – Problems of Aliasing

Peter Müller – Concepts of Object-Oriented Programming

24

Peter Müller – Concepts of Object-Oriented Programming

Other Problems with Aliasing
 Synchronization in concurrent

programs
- Monitor of each individual object

has to be locked to ensure
mutual exclusion

 Distributed programming
- For instance, parameter passing

for remote method invocation
 Optimizations

- For instance, object inlining is
not possible for aliased objects

6.3 Object Structures and Aliasing – Problems of Aliasing

25

Peter Müller – Concepts of Object-Oriented Programming

6. Object Structures and Aliasing

6.1 Object Structures
6.2 Aliasing
6.3 Problems of Aliasing
6.4 Encapsulation of Object Structures

6. Object Structures and Aliasing

26

Peter Müller – Concepts of Object-Oriented Programming

Alias Modes
 We need better control over the objects in an

object structure to avoid the problems with
aliasing

 Approach
1. Define roles of objects in object structures
2. Assign a tag (alias mode) to every expression to

indicate the role of the referenced object
3. Impose programming rules to guarantee that objects

are only used according to their alias modes

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

27

Peter Müller – Concepts of Object-Oriented Programming

Roles in Object Structures
 Interface objects that are

used to access the
structure

 Internal representation
of the object structure

 Arguments of the object
structure

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

28

Peter Müller – Concepts of Object-Oriented Programming

Interface Objects (peer Mode)
 Interface objects are

used to access the
structure

 Interface objects can be
used in any way objects
are usually used
(passed around,
changed, etc.)

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

29

Peter Müller – Concepts of Object-Oriented Programming

Representations (rep Mode)
 Expressions with mode

“rep” hold references to
the representation of the
object structure

 Objects referenced by
rep-expressions can be
changed

 rep-objects must not be
exported from the object
structure

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

30

Peter Müller – Concepts of Object-Oriented Programming

Arguments (arg Mode)
 Expressions with mode

“arg” hold references to
arguments of the object
structure

 Objects must not be
changed through arg-
references

 arg-objects can be
passed around and
aliased freely

LinkedList

Entry

Entry Entry Entry

ListItr

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

31

Peter Müller – Concepts of Object-Oriented Programming

Meaning of Alias Modes
 Alias modes describe the

role of an object relative
to an interface object

 Informally: References
- With peer mode stay in the

same context
- With rep-mode go from an

interface object into its
context

- With arg-mode may go to
any context

LinkedList

Entry

Entry Entry Entry

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

Dictionary

32

Peter Müller – Concepts of Object-Oriented Programming

(Simplified) Programming Discipline
 Rule 1: No Role Confusion

- Expression with one alias mode must not be assigned to
variables with another mode

 Rule 2: No Representation Exposure
- rep-mode must not occur in an object’s interface
- Methods must not take or return rep-objects
- Fields with rep-mode may only be accessed on this

 Rule 3: No Argument Dependence
- Implementations must not depend on the state of

argument objects

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

33

Peter Müller – Concepts of Object-Oriented Programming

Example 1: LinkedList with Alias Modes
class LinkedList {
 private /* rep */ Entry header;
 private int size;

 public void add(/* arg */ Object o) {
 /* rep */ Entry newE = new /* rep */ Entry(o, header, header.previous);
 … }
}

class Entry {
 private /* arg */ Object element;
 private /* peer */ Entry previous, next;

 public Entry(/* arg */ Object o, /* peer */ Entry p, /* peer */ Entry n) { … }
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

34

Peter Müller – Concepts of Object-Oriented Programming

Example 2: ArrayList with Alias Modes
 Array is internal

representation
of the list

 addElems
confuses alias
modes

class ArrayList {
 private /* rep */ int[] array;
 private int next;

 public void addElems(/* peer */ int[] ia) {
 array = ia;

 next = ia.length;
 }
 …
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

35

Peter Müller – Concepts of Object-Oriented Programming

Example 2: ArrayList with Alias Modes
 Array is internal

representation
of the list

 Clean solution
requires array
copy

class ArrayList {
 private /* rep */ int[] array;
 private int next;

 public void addElems(/* peer */ int[] ia) {
 array = new /* rep */ int[ia.length];
 System.arraycopy(ia, 0, array, 0, ia.length);
 next = ia.length;
 }
 …
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

36

Peter Müller – Concepts of Object-Oriented Programming

No Representation Exposure
 rep-objects can only be referenced

- By their interface objects
- By other rep-objects of the same

object structure
 rep-objects can only be modified

- By methods executed on their
interface objects

- By methods executed on rep-objects
of the same object structure

 Rep-objects are encapsulated
inside the object structure

array:
next:

list1

array

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

37

Peter Müller – Concepts of Object-Oriented Programming

Implementation Exchange Revisited

 Observable behavior remains unchanged!

class ArrayList {
 private /* rep */ int[] array;
 private int next;
 public void addElems

 (/* peer */ int[] ia) {
 array = new /* rep */ int[ia.length];
 System.arraycopy

 (ia, 0, array, 0, ia.length);
 next = ia.length;
 }
 … }

class ArrayList {
 private /* rep */ Entry header;

 public void addElems

 (/* peer */ int[] ia)
 { … /* create Entry for each

 element */ }
 …
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

38

Peter Müller – Concepts of Object-Oriented Programming

Invariants for Object Structures
 The invariant of object o

may depend on
- Encapsulated fields of o
- Fields of objects o

references through rep-
references

 Interface objects have
full control over their
rep-objects

class ArrayList {
 private /* rep */ int[] array;
 private int next;

 // invariant array != null &&
 // 0<=next<=array.length &&
 // ∀i.0<=i<next: array[i] >= 0

 public void add(int i) { … }
 public void addElems

 (/* peer */ int[] ia) { … }

 …
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

39

Peter Müller – Concepts of Object-Oriented Programming

No Argument Dependence
 Objects referenced through

arg-references may be freely
aliased

 Object structures have no
control over the state of their
argument objects

 Invariants must not depend on
fields of argument objects, but
can depend on their identity

LinkedList

Entry

Entry Entry Entry

 private /* arg */ T v, w;
 // invariant v != w -- legal
 // invariant v.f != w.f -- illegal

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

40

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Modular Programs
 Rules for rep-mode can

in general not be
checked modularly

 Subclasses can add
new methods or
override methods

 In Java, rep exposure
can be prevented by
- Access modifiers
- Final
- Inner Classes

class ArrayList {
 protected /* rep */ int[] array;
 private int next;
 …
}

class MyList extends ArrayList {
 public int[] leak() {
 return array;
 }
}

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

41

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: LinkedList
 All fields are private
 Entry is a private inner class of LinkedList

- References are not passed out
- Subclasses cannot manipulate or leak Entry-objects

 ListItr is a private inner class of LinkedList
- Interface ListIterator provides controlled access to

ListItr-objects
- ListItr-objects are passed out, but in a controlled fashion
- Subclasses cannot manipulate or leak ListItr-objects

 Subclassing is severely restricted

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

42

Peter Müller – Concepts of Object-Oriented Programming

Alias Control in Java: String
 All fields are private

 References to internal

character-array are not
passed out (no
representation exposure)

 Subclassing is prohibited

(final)

6.4 Object Structures and Aliasing – Encapsulation of Object Structures

value:
…:

String

char[]

	Concepts of �Object-Oriented Programming
	6. Object Structures and Aliasing
	Object Structures
	Example 1: Array-Based Lists
	Example 2: Doubly-Linked Lists
	6. Object Structures and Aliasing
	Alias
	Aliasing in Procedural Programming
	Aliasing in Object-Oriented Programming
	Static Aliasing
	Dynamic Aliasing
	Intended Aliasing: Efficiency
	Intended Aliasing: Sharing
	Unintended Aliasing: Capturing
	Unintended Aliasing: Leaking
	6. Object Structures and Aliasing
	Observation
	Exchanging Implementations
	Exchanging Implementations (cont’d)
	Consistency of Object Structures
	Consistency of Object Structures (cont’d)
	Security Breach in Java 1.1.1
	Problem Analysis
	Other Problems with Aliasing
	6. Object Structures and Aliasing
	Alias Modes
	Roles in Object Structures
	Interface Objects (peer Mode)
	Representations (rep Mode)
	Arguments (arg Mode)
	Meaning of Alias Modes
	(Simplified) Programming Discipline
	Example 1: LinkedList with Alias Modes
	Example 2: ArrayList with Alias Modes
	Example 2: ArrayList with Alias Modes
	No Representation Exposure
	Implementation Exchange Revisited
	Invariants for Object Structures
	No Argument Dependence
	Alias Control in Modular Programs
	Alias Control in Java: LinkedList
	Alias Control in Java: String

