
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2009

2

History of Programming Languages
1. Introduction

1950s

1960s

1970s

1980s

1990s

2000s

Imperative Object-Oriented Declarative

• Algol 60

• Simula 67

Cobol •

• Prolog • Pascal

• LISP

• Smalltalk 80
• Modula-2

• Fortran I

Scheme •

Java •

• PL/I

• C++ Common LISP •

C •

• Ada 83

• C#

• Basic
Smalltalk •

• Haskell
• SML

• ML

• Eiffel
Oberon • • Modula-3

• Sather

GUIs

Internet

Networks

Software
Crisis

Peter Müller – Concepts of Object-Oriented Programming

Python •
• Ruby

Scala •

Caml •

Multi-Core
F# •

3

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Language Design
1.5 Course Organization

1.1 Introduction

Peter Müller – Concepts of Object-Oriented Programming

4 1.1 Introduction – Requirements

New Requirements in SW-Technology

Distributed
Programming

GUIs Computation
as Simulation

Reuse
Extendibility

and
Adaptability

Adaptable
Standard

Functionality Describing
Dynamic System

Behavior

Running
Simulations

Modeling
Entities of the

Real World

Distribution
of Data and

Code Communication

Concurrency

Documented
Interfaces

Quality

Peter Müller – Concepts of Object-Oriented Programming

5

Example: Reusing Imperative Programs
 Scenario: University Administration System

- Models students and professors
- Stores one record for each student and each professor in

a repository
- Procedure printAll prints all records in the repository

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

6

An Implementation in C

typedef struct {
 char *name;
 char *room;
 char *institute;
} Professor;

typedef struct {
 char *name;
 int regNum;
} Student;

void printStudent(Student *s)
 { … }

void printProf(Professor *p)
 { … }

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

7

An Implementation in C (cont’d)
typedef struct {
 enum { STU,PROF } kind;
 union {
 Student *s;
 Professor *p;
 } u;
} Person;

typedef Person **List;

void printAll(List l) {
 int i;
 for (i=0; l[i] != NULL; i++)
 switch (l[i] -> kind) {
 case STU:
 printStudent(l[i] -> u.s);
 break;
 case PROF:
 printProf(l[i] -> u.p);
 break;
 }
}

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

8

Extending and Adapting the Program
 Scenario: University Administration System

- Models students and professors
- Stores one record for each student and each professor in

a repository
- Procedure printAll prints all records in the repository

 Extension: Add assistants to system
- Add record and print function for assistants
- Reuse old code for repository and printing

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

9

Step 1: Add Record and Print Function
typedef struct {
 char *name;
 char *room;
 char *institute;
} Professor;

typedef struct {
 char *name;
 int regNum;
} Student;

void printStudent(Student *s)
 { … }

void printProf(Professor *p)
 { … }

1.1 Introduction – Requirements

typedef struct {
 char *name;
 char PhD_student; /* ‘y‘, ‘n‘ */
} Assistant;

void printAssi(Assistant *a)
 { … }

Peter Müller – Concepts of Object-Oriented Programming

10

Step 2: Reuse Code for Repository
typedef struct {
 enum { STU,PROF } kind;
 union {
 Student *s;
 Professor *p;

 } u;
} Person;

typedef Person **List;

void printAll(List l) {
 int i;
 for (i=0; l[i] != NULL; i++)
 switch (l[i] -> kind) {
 case STU:
 printStudent(l[i] -> u.s);
 break;
 case PROF:
 printProf(l[i] -> u.p);
 break;

 }
}

1.1 Introduction – Requirements

 ,ASSI

 Assistant *a;

 case ASSI:
 printAssi(l[i] -> u.a);
 break;

Peter Müller – Concepts of Object-Oriented Programming

11

Reuse in Imperative Languages
 No explicit language support for extension and

adaptation
 Adaptation usually requires modification of reused

code
 Copy-and-paste reuse

- Code duplication
- Difficult to maintain
- Error-prone

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

12 1.1 Introduction – Requirements

New Requirements in SW-Technology

Distributed
Programming

GUIs Computation
as Simulation

Reuse
Extendibility

and
Adaptability

Adaptable
Standard

Functionality Describing
Dynamic System

Behavior

Running
Simulations

Modeling
Entities of the

Real World

Distribution
of Data and

Code Communication

Concurrency

Documented
Interfaces

Quality

Peter Müller – Concepts of Object-Oriented Programming

13

Cooperating Program Parts
with Well-Defined Interfaces

Highly
Dynamic
Execution Model

Classification and
Specialization

Correctness

1.1 Introduction – Requirements

Core Requirements

Extendibility
and

Adaptability

Adaptable
Standard

Functionality Describing
Dynamic System

Behavior

Running
Simulations

Modeling
Entities of the

Real World

Distribution
of Data and

Code Communication

Concurrency

Documented
Interfaces

Quality

Peter Müller – Concepts of Object-Oriented Programming

14

From Requirements to Concepts

What are the concepts of a programming paradigm
 That structure programs into cooperating program

parts with well-defined interfaces?
 That are able to express classification and

specialization of program parts without modifying
reused code?

 That enable the dynamic adaptation of program
behavior?

 That facilitate the development of correct
programs?

1.1 Introduction – Requirements

Peter Müller – Concepts of Object-Oriented Programming

15

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Language Design
1.5 Course Organization

1.2 Introduction

Peter Müller – Concepts of Object-Oriented Programming

16

Peter Müller – Concepts of Object-Oriented Programming

Object Model: The Philosophy
1.2 Introduction – Core Concepts

“The basic philosophy underlying object-oriented
programming is to make the programs as far as
possible reflect that part of the reality they are going
to treat. It is then often easier to understand and to
get an overview of what is described in programs.
The reason is that human beings from the outset are
used to and trained in the perception of what is going
on in the real world. The closer it is possible to use
this way of thinking in programming, the easier it is to
write and understand programs.“

[Object-oriented Programming in the BETA Programming Language]

17

The Object Model
 A software system is a set of cooperating objects
 Objects have state and processing ability
 Objects exchange messages

a1:
a2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}

a:

obj2

m(p1,p2) {..}
n(p,r) {..}

obj2 . m(“COOP”,1)

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming

18

Peter Müller – Concepts of Object-Oriented Programming

Characteristics of Objects
1.2 Introduction – Core Concepts

 Objects have
- State
- Identity
- Lifecycle
- Location
- Behavior

 Compared to imperative programming,

- Objects lead to a different program structure
- Objects lead to a different execution model

19

Peter Müller – Concepts of Object-Oriented Programming

Variant 2: sharing Variant 1: copying

Object Identity: Example
1.2 Introduction – Core Concepts

 Consider
r = l.rest(); r.set(4711); int i = l.next.get();

n:
obj1

1 e:
n:
obj2

2 e:
null n:

obj3

3 e:
n:
obj1

1 e:
n:
obj2

2 e:
null n:

obj3

3 e:

l

n:
obj4

2 e:
null n:

obj5

3 e:
r

l

r

4711 e:

4711 e:

20

f1:
f2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}
h1(p,q) {..}
h2(r) {..}
h3() {..}

hf1:
hf2:
hf3:

f1:
f2:

obj1

m(p1,p2) {..}
m1() {..}
m2(p) {..}

Interfaces and Encapsulation
 Objects have well-defined

interfaces
- Publicly accessible fields
- Publicly accessible methods

 Implementation is hidden
behind interface
- Encapsulation
- Information hiding

 Interfaces are the basis for
describing behavior

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming

21

Classification and Polymorphism
 Classification:

Hierarchical structuring
of objects

 Objects belong to
different classes
simultaneously

 Substitution principle:
Subtype objects can be
used wherever supertype
objects are expected

1.2 Introduction – Core Concepts

Person

Assistant Professor Student

Bachelor
Student

Master
Student

PhD
Student

Peter Müller – Concepts of Object-Oriented Programming

22

Peter Müller – Concepts of Object-Oriented Programming

Classification
1.2 Introduction – Core Concepts

 Definition
Classifying is a general technique to hierarchically
structure knowledge about concepts, items, and
their properties.
The result is called classification.

23

Peter Müller – Concepts of Object-Oriented Programming

Classification of Vertebrates
1.2 Introduction – Core Concepts

Vertebrate

Fish Amphibian Reptile Bird Mammal

Whale Artiodactyl Primate …

Arrows represent
the “is-a” relation

Goal: Apply
classification to
software artifacts

24

Peter Müller – Concepts of Object-Oriented Programming

Characteristics of Classifications
 We can classify objects or fields
 Classifications can be trees or DAGs
 Classifications of objects form “is-a” relation
 Classes can be abstract or concrete

 Substitution principle

Objects of subtypes can be used wherever objects
of supertypes are expected

1.2 Introduction – Core Concepts

25

Peter Müller – Concepts of Object-Oriented Programming

Polymorphism
 Definition of Polymorphism:

The quality of being able to assume different forms
[Merriam-Webster Dictionary]

 In the context of programming:

A program part is polymorphic if it can be used for
objects of several types

1.2 Introduction – Core Concepts

26

Peter Müller – Concepts of Object-Oriented Programming

Subtype Polymorphism
 Subtype polymorphism is a direct consequence of

the substitution principle
- Program parts working with supertype objects work as

well with subtype objects
- Example: printAll can print objects of class Person,

Student, Professor, etc.

 Other forms of polymorphism (not core concepts)
- Parametric polymorphism (generic types)
- Ad-hoc polymorphism (method overloading)

1.2 Introduction – Core Concepts

27

Peter Müller – Concepts of Object-Oriented Programming

Parametric Polymorphism: Example
 Parametric

polymorphism uses
type parameters

 One implementation

can be used for
different types

 Type mismatches can

be detected at compile
time

1.2 Introduction – Core Concepts

class List<G> {
 G[] elems;
 void append(G p) { … }
}

List<String> myList;
myList = new List<String>();
myList.append(“String”);

myList.append(myList);

28

Peter Müller – Concepts of Object-Oriented Programming

Ad-hoc Polymorphism: Example
 Ad-hoc polymorphism

allows several methods
with the same name but
different arguments

 Also called overloading

 No semantic concept:
can be modeled by
renaming easily

1.2 Introduction – Core Concepts

class Any {
 void foo(Polar p) { … }
 void foo(Coord c) { … }
}

x.foo(new Coord(5, 10));

29

Peter Müller – Concepts of Object-Oriented Programming

Specialization
 Definition of Specialization:

Adding specific properties to an object or refining a
concept by adding further characteristics.

 Example: Professional specialization

1.2 Introduction – Core Concepts

30

Peter Müller – Concepts of Object-Oriented Programming

Specializing
 Start from general objects or

types
 Extend these objects and their

implementations (add properties)
 Requirement: Behavior of

specialized objects is compliant to
behavior of more general objects

 Program parts that work for the
more general objects work as well
for specialized objects

 Implementation inheritance, reuse

1.2 Introduction – Core Concepts

Person

Professor Student

31

Peter Müller – Concepts of Object-Oriented Programming

class Person {
 String name;
 …
 void print() {
 System.out.println(name);
 }
}

Example: Specialization

 Develop implementation
for type Person

 Specialize it

1.2 Introduction – Core Concepts

32

Peter Müller – Concepts of Object-Oriented Programming

Example: Specialization (cont’d)
1.2 Introduction – Core Concepts

class Student extends Person {
 int regNum;
 …
 void print() {
 super.print();
 System.out.println(regNum);
 }
}

class Professor extends Person {
 String room;
 …
 void print() {
 super.print();
 System.out.println(room);
 }
}

 Inheritance of
- Fields
- Methods

 Methods can be

overridden in
subclasses

33

Highly
Dynamic
Execution Model

Highly
Dynamic
Execution Model
→ Active objects
→ Message passing

Classification and
Specialization

Correctness

→ Interfaces
→ Encapsulation
→ Simple, powerful concepts

Cooperating Program Parts
with Well-Defined Interfaces
Cooperating Program Parts
with Well-Defined Interfaces

→ Objects (data + code)
→ Interfaces
→ Encapsulation

1.2 Introduction – Core Concepts

Meeting the Requirements

Extendibility
and

Adaptability

Adaptable
Standard

Functionality
Modeling

Entities of the
Real World

Describing
Dynamic System

Behavior Running
Simulations

Concurrency

Communication

Distribution
of Data and

Code

Documented
Interfaces

Quality

→ Classification, subtyping
→ Polymorphism
→ Substitution principle

Peter Müller – Concepts of Object-Oriented Programming

34

Core Concepts: Summary
 Core concepts of the OO-paradigm

- Object model
- Interfaces and encapsulation
- Classification and polymorphism

 Core concepts are abstract concepts to meet the
new requirements

 To apply the core concepts we need ways to
express them in programs

 Language concepts enable and facilitate the
application of the core concepts

1.2 Introduction – Core Concepts

Peter Müller – Concepts of Object-Oriented Programming

35

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Language Design
1.5 Course Organization

1.3 Introduction

Peter Müller – Concepts of Object-Oriented Programming

36

Example: Dynamic Method Binding
 Classification and

polymorphism
- Algorithms that work with

supertype objects can be
used with subtype objects

1.3 Introduction – Language Concepts

void printAll(Person[] l) {
 for (int i=0; l[i] != null; i++)
 l[i] . print();
}

 Dynamic binding:
Method implementation is
selected at runtime,
depending on the type of
the receiver object

- Subclass objects are
specialized

Person

Assistant Professor Student

Bachelor
Student

Master
Student

PhD
Student

Peter Müller – Concepts of Object-Oriented Programming

37

OO-Concepts and Imperative Languages
 What we have seen so far

- New concepts are needed to meet new requirements
- Core concepts serve this purpose
- Language concepts are needed to express core

concepts in programs
 Open questions

- Why do we need OO-programming languages?
- Can’t we use the language concepts as guidelines when

writing imperative programs?
 Let’s do an experiment …

- Writing object-oriented programs in C

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

38

Types and Objects

 Declare types typedef char* String;
typedef struct sPerson Person;

1.3 Introduction – Language Concepts

struct sPerson {
 String name;

};

 void (*print)(Person*);
 String (*lastName)(Person*);

 Declare records with
- Fields
- Methods

(function pointers)

Peter Müller – Concepts of Object-Oriented Programming

39

Methods and Constructors

 Define constructors Person *PersonC(String n) {
 Person *this = (Person *)
 malloc(sizeof(Person));
 this -> name = n;
 this -> print = printPerson;
 this -> lastName = LN_Person;
 return this;
}

1.3 Introduction – Language Concepts

 Define methods void printPerson(Person *this) {
 printf(“Name: %s\n“, this->name);
}

String LN_Person(Person *this)
 { … }

Peter Müller – Concepts of Object-Oriented Programming

40

 Use constructors,
fields, and methods

Person *p;
p = PersonC(“Tony Hoare“);
p->name = p->lastName(p);
p->print(p);

Using the “Object”
1.3 Introduction – Language Concepts

struct sPerson {
 String name;
 void (*print)(Person*);
 String (*lastName)(Person*);
};

 Declaration

Peter Müller – Concepts of Object-Oriented Programming

41

Inheritance and Specialization
typedef struct sStudent Student;
struct sStudent {
 String name;
 void (*print)(Student*);
 String (*lastName)(Student*);
 int regNum;
};

1.3 Introduction – Language Concepts

void printStudent(Student *this) {
 printf(“Name: %s\n“, this->name);
 printf(“No: %d\n“, this->regNum);
}

 Copy code
 Adapt function

signatures

 Define specialized
methods

Peter Müller – Concepts of Object-Oriented Programming

42

Inheritance and Specialization (cont’d)
1.3 Introduction – Language Concepts

Student *StudentC(String n, int r) {
 Student *this = (Student *)
 malloc(sizeof(Student));

 this -> name = n;
 this -> print = printStudent;

 this -> lastName =
 (String (*)(Student*)) LN_Person;
 this -> regNum = r;

 return this;
}

 Reuse LN_Person for
Student

 View Student as
Person (cast)

Peter Müller – Concepts of Object-Oriented Programming

43

Student *s;
Person *p;
s = StudentC(“Susan Roberts“, 0);
p = (Person *) s;
p -> name = p -> lastName(p);
p -> print(p);

Subclassing and Dynamic Binding
1.3 Introduction – Language Concepts

 Student has all fields
and methods of Person

 Casts are necessary

void printAll(Person **l) {
 int i;
 for (i=0; l[i] != NULL; i++)
 l[i] -> print(l[i]);
}

 Array l can contain
Person and Student
objects

 Methods are selected
dynamically

Peter Müller – Concepts of Object-Oriented Programming

44

Discussion of the C Solution: Pros
 We can express objects, fields, methods,

constructors, and dynamic method binding
 By imitating OO-programming, the union in Person

and the switch statement in printAll became
dispensable

 The behavior of reused code (Person, printAll) can
be adapted (to introduce Student) without changing
the implementation

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

45

Discussion of the C Solution: Cons
 Inheritance has to be replaced by code duplication
 Subtyping can be simulated, but it requires

- Casts, which is not type safe
- Same memory layout of super and subclasses

(same fields and function pointers in same order), which
is extremely error-prone

 Appropriate language support is needed to apply
object-oriented concepts

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

46

A Java Solution
class Person {
 String name;
 void print() {
 System.out.println(“Name: “ +

name);
 }
 String lastName() { … }
 Person(String n) { name = n; }
}

class Student extends Person {
 int regNum;
 void print() {
 super.print();
 System.out.println(“No: “ +

regNum);
 }
 Student(String n, int i) {
 super(n);
 regNum = i;
 }
}

1.3 Introduction – Language Concepts

void printAll(Person[] l) {
 for (int i=0; l[i] != null; i++)
 l[i].print();
}

Peter Müller – Concepts of Object-Oriented Programming

47

Discussion of the Java Solution
 The Java solution uses

- Inheritance to avoid code duplication
- Subtyping to express classification
- Overriding to specialize methods
- Dynamic binding to adapt reused algorithms

 Java supports the OO-language concepts
 The Java solution is

- Simpler and smaller
- Easier to maintain (no duplicate code)
- Type safe

1.3 Introduction – Language Concepts

Peter Müller – Concepts of Object-Oriented Programming

48

Concepts: Summary
1.3 Introduction – Language Concepts

Cooperating
Program Parts
with Interfaces

Highly Dynamic
Execution

Model

Classification
and

Specialization

Correctness

Requirement

Object Model

Classification and
Polymorphism

Interfaces and
Encapsulation

Core Concept

Inheritance

Classes

Etc.

Subtyping

Dynamic
Binding

Language
Concept

Inheritance
w/o Subtyping

Multiple
Inheritance

Single
Inheritance

Language
Constructs

Etc.

Peter Müller – Concepts of Object-Oriented Programming

49

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Language Design
1.5 Course Organization

1.4 Introduction

Peter Müller – Concepts of Object-Oriented Programming

50

What is a Good OO-Language?
 One that many people use?

- No! (Or do you think C++ is a good language?)

 One that makes programmers productive?
- No! (Or would you feel good if the Airbus flight controller

was written in Python?)

 A good language should resolve design trade-offs
in a way suitable for its application domain

Peter Müller – Concepts of Object-Oriented Programming

1.4 Introduction- Language Design

51

Design Goals: Simplicity
 Syntax and semantics

can easily be
understood by users
and implementers of
the language

 But not small number
of constructs

 Simple languages:
BASIC, Pascal, C

 It is not known whether
the Java 5 type system
(generics) is decidable

Peter Müller – Concepts of Object-Oriented Programming

factorial (i: INTEGER): INTEGER
 require 0 <= i
once
 if i <= 1 then Result := 1
 else
 Result := i
 Result := Result * factorial (i – 1)
 end
end Eiffel

1.4 Introduction- Language Design

52

Design Goals: Expressiveness
 Language can (easily)

express complex
processes and
structures

 Expressive languages:
C#, Scala, Python

 Often conflicting with
simplicity

Peter Müller – Concepts of Object-Oriented Programming

Expr

UnOp BinOp Number

def simplify(expr: Expr): Expr =
expr match {
 case UnOp(“–“, UnOp("–“,e)) => e
 case BinOp("+", e, Number(0)) => e
 case BinOp(“*", e, Number(1)) => e
 case _ => expr
} Scala

1.4 Introduction- Language Design

53

Design Goals: (Static) Safety
 Language discourages

errors and allows
errors to be discovered
and reported, ideally at
compile time

 Safe languages: Java,
C#, Scala

 Often conflicting with
expressiveness

Peter Müller – Concepts of Object-Oriented Programming

l = []
l.append(7)
foo(l, 5)

List<Integer> l;
l = new ArrayList<Integer>();
l.add(7);
foo(l, 5);

List<Integer> l;
l = new ArrayList<Integer>();
l.add(7);
foo(l, “Hello“);

l = []
l.append(7)
foo(l, “Hello“)

int foo(List<Integer> l, int i) {
 if (l.get(0) != i) return i / 5;
 else return 0;
}

Java

def foo(l, i):
 if l[0] != i: return i / 5
 else: return 0

Python

1.4 Introduction- Language Design

54

Design Goals: Modularity
 Language allows

modules to be
compiled separately

 Modular languages:
Java, C#, Scala

Peter Müller – Concepts of Object-Oriented Programming

#include <stdio.h>

int main(int argc, char* argv[]) {
 printf(“%d\n", bar(5, 7));
 printf(“%d\n", bar());
 return 0;
}

Client.o: …
undefined reference to `_bar'

int foo(int p) {
 return p;
}

C

1.4 Introduction- Language Design

55

C arrays

Java arrays

Design Goals: Performance
 Programs written in the

language can be
executed efficiently

 Efficient languages:
C, C++, Fortran

 Often conflicting with
safety and productivity

 Sequence of memory
locations

 Access is simple look-up
(only 2-5 machine
instructions)

Peter Müller – Concepts of Object-Oriented Programming

 Sequence of memory
locations plus length

 Access is look-up plus
bound-check

1.4 Introduction- Language Design

56

Design Goals: Productivity
 Language leads to

low costs of writing
programs

 Closely related to
expressiveness

 Languages for high
productivity:
Visual Basic, Python

 Often conflicting with
static safety

Peter Müller – Concepts of Object-Oriented Programming

def qsort(lst):
 if len(lst) <= 1:
 return lst

 pivot = lst.pop(0)

 greater_eq = \
 qsort([i for i in lst if i >= pivot])
 lesser = \
 qsort([i for i in lst if i < pivot])

 return lesser + [pivot] + greater_eq

Python

1.4 Introduction- Language Design

57

Design Goals: Backwards Compatibility
 Newer language

versions work and
interface with programs
in older versions

 Backwards compatible
languages: Java, C

 Often in conflict with
simplicity and
performance

Peter Müller – Concepts of Object-Oriented Programming

class Client {
 static void main(String[] args) {
 Tuple t = new Tuple();
 t.set("Hello", new Client());
 }
}

class Tuple<T> {
 T first; T second;

 void set(T first, T second) {
 this.first = first;
 this.second = second;
 }
}

Java

1.4 Introduction- Language Design

58

1. Introduction

1.1 Requirements
1.2 Core Concepts
1.3 Language Concepts
1.4 Language Design
1.5 Course Organization

1.5 Introduction

Peter Müller – Concepts of Object-Oriented Programming

59

After this Course, you should be able
 To understand the core and language concepts
 To understand language design trade-offs
 To compare OO-languages

 To learn new languages faster
 To apply language concepts and constructs

correctly

 To write better object-oriented programs

1.5 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

60

Approach
 We discuss the

- Concepts of
 as opposed to languages, implementations, etc.

- Object-Oriented
 as opposed to imperative, declarative

- Programming
 as opposed to analysis, design, etc.

 We study and compare solutions in different
languages such as Eiffel, Java, Scala, Spec#
- Java is used for most examples and exercises

 We look at code and analyze programs

1.5 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

61

Course Outline (tentative)
2. Types and Subtyping
3. Inheritance
4. Static Safety
5. Parametric Polymorphism
6. Object Structures and Aliasing
7. Extended Typing
8. Object and Class Initialization
9. Object Consistency
10.Reflection
11.Higher-Order Features

1.5 Introduction – Course Organization

Highly Dynamic
Execution Model

Cooperating
Program Parts

Classification and
Specialization

Correctness

Peter Müller – Concepts of Object-Oriented Programming

62

Literature
 Poetzsch-Heffter, Arnd: Concepts of Object-

Oriented Programming. Springer-Verlag, 2000
 Budd, Timothy: An Introduction to Object-Oriented

Programming. Addison-Wesley, 1991
 Meyer, Bertrand: Object-Oriented Software-

Construction (2nd edition). Prentice Hall, 1997

 Horstmann, Cay S. and Cornell, Gary: Core Java,
Band 1 – Grundlagen. Markt+Technik, 2003

 See course web page for a comprehensive list

1.5 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

63

Exam

 Written exam in the exam session

 Exam will be in English

1.5 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

64

Course Infrastructure

 Web page:
http://www.pm.inf.ethz.ch/education/courses/coop

 Slides will be available on the web page two days
before the lecture

 Responsible assistant:
Yannis Kassios
ioannis.kassios@inf.ethz.ch

1.5 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

65

Exercise Sessions

 Friday, 10:00-12:00, starting September 25

 Arsenii Rudich : IFW B 42 (at 8:00-10:00)
- For students who can’t make 10:00-12:00

 Yannis Kassios: IFW B 42
- Last name A – E

 Alex Summers: IFW C 42
- Last name F – O

 Pietro Ferrara: CAB G 56
- Last name P – Z

1.5 Introduction – Course Organization

Peter Müller – Concepts of Object-Oriented Programming

	Concepts of �Object-Oriented Programming
	History of Programming Languages
	1. Introduction
	New Requirements in SW-Technology
	Example: Reusing Imperative Programs
	An Implementation in C
	An Implementation in C (cont’d)
	Extending and Adapting the Program
	Step 1: Add Record and Print Function
	Step 2: Reuse Code for Repository
	Reuse in Imperative Languages
	New Requirements in SW-Technology
	Core Requirements
	From Requirements to Concepts
	1. Introduction
	Object Model: The Philosophy
	The Object Model
	Characteristics of Objects
	Object Identity: Example
	Interfaces and Encapsulation
	Classification and Polymorphism
	Classification
	Classification of Vertebrates
	Characteristics of Classifications
	Polymorphism
	Subtype Polymorphism
	Parametric Polymorphism: Example
	Ad-hoc Polymorphism: Example
	Specialization
	Specializing
	Example: Specialization
	Example: Specialization (cont’d)
	Meeting the Requirements
	Core Concepts: Summary
	1. Introduction
	Example: Dynamic Method Binding
	OO-Concepts and Imperative Languages
	Types and Objects
	Methods and Constructors
	Using the “Object”
	Inheritance and Specialization
	Inheritance and Specialization (cont’d)
	Subclassing and Dynamic Binding
	Discussion of the C Solution: Pros
	Discussion of the C Solution: Cons
	A Java Solution
	Discussion of the Java Solution
	Concepts: Summary
	1. Introduction
	What is a Good OO-Language?
	Design Goals: Simplicity
	Design Goals: Expressiveness
	Design Goals: (Static) Safety
	Design Goals: Modularity
	Design Goals: Performance
	Design Goals: Productivity
	Design Goals: Backwards Compatibility
	1. Introduction
	After this Course, you should be able
	Approach
	Course Outline (tentative)
	Literature
	Exam
	Course Infrastructure
	Exercise Sessions

