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Highly  
Dynamic 
Execution Model 

Highly 
Dynamic 
Execution Model 
→ Active objects 
→ Message passing 

Classification and  
Specialization 

Correctness  
 
 
→ Interfaces 
→ Encapsulation 
→ Simple, powerful concepts 

Cooperating Program Parts  
with Well-Defined Interfaces 
Cooperating Program Parts  
with Well-Defined Interfaces 
 
→ Objects (data + code) 
→ Interfaces 
→ Encapsulation 

1.2 Introduction – Core Concepts 

Meeting the Requirements 
  
 
 
→ Classification, subtyping 
→ Polymorphism 
→ Substitution principle 

Peter Müller – Concepts of Object-Oriented Programming 
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Billion Dollar Mistake 
 

“I call it my billion-dollar mistake. It was the 
invention of the null reference in 1965. […]  
This has led to innumerable errors, vulnerabilities, 
and system crashes, which have probably caused a 
billion dollars of pain and damage in the last forty 
years. […]  
More recent programming languages like Spec# have 
introduced declarations for non-null references. This 
is the solution, which I rejected in 1965.”     [Hoare, 2009] 

 

Peter Müller – Concepts of Object-Oriented Programming 

8. Initialization 
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Peter Müller – Concepts of Object-Oriented Programming 

8. Initialization 

8.1 Simple Non-Null Types 
8.2 Object Initialization 
8.3 Initialization of Global Data 

8. Initialization 
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Main Usages of Null-References 

Peter Müller – Concepts of Object-Oriented Programming 

  void add( Object k, Object v ) { 
    if( key.equals( k ) ) 
      value = v; 
    else if( next == null ) 
      next = new Map( k, v ); 
    else next.add( k, v ); 
  } 
 

  Object get( Object k ) { 
    if( key.equals( k ) ) return value; 
    if( next == null ) return null; 
    return next.get( k ); 
  } 
}   

class Map { 
  Map next; 
  Object key; 
  Object value; 
 

  Map( Object k, Object v ) { 
    key = k;  
    value = v; 
  } 

null terminates 
recursion 

All fields are 
initialized to null 

null indicates 
absence of an 

object 

8.1 Initialization – Simple Non-Null Types 
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Main Usages of Null-References (cont’d) 

Peter Müller – Concepts of Object-Oriented Programming 

  void add( Object k, Object v ) { 
    if( key.equals( k ) ) 
      value = v; 
    else if( next == null ) 
      next = new Map( k, v ); 
    else next.add( k, v ); 
  } 
 

  Object get( Object k ) { 
    if( key.equals( k ) ) return value; 
    if( next == null ) return null; 
    return next.get( k ); 
  } 
}   

class Map { 
  Map next; 
  Object key; 
  Object value; 
 

  Map( Object k, Object v ) { 
    key = k;  
    value = v; 
  } 

Most variables 
hold non-null 

values 

8.1 Initialization – Simple Non-Null Types 
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Non-Null Types 
 Non-null type T! consists 

of references to T-objects 
 

 Possibly-null type T? 
consists of references to 
T-objects plus null 
- Corresponds to T in most 

languages 
 

 A language designer 
would choose a default 

Peter Müller – Concepts of Object-Oriented Programming 

class Map { 
  Map? next; 
  Object! key; 
  Object! value; 
 

  Map( Object! k, Object! v ) { 
    key = k;  
    value = v; 
  } 
  … 
} 

8.1 Initialization – Simple Non-Null Types 
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Type Safety 
 (Simplified) type invariant: 

If the static type of an expression e is a non-null 
type then e’s value at run time is different from null 
 

 Goal: prevent null-dereferencing statically 
- Require non-null types for the receiver of each field 

access, array access, method call 
- Analogous to preventing “message not understood” 

errors with classical type systems 

Peter Müller – Concepts of Object-Oriented Programming 

8.1 Initialization – Simple Non-Null Types 
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 The values of a type T! are a 
proper subset of T? 
- S! <: T! 
- S? <: T? 
- T! <: T? 

 
 Downcasts from possibly-null 

types to non-null types 
require run-time checks 

Peter Müller – Concepts of Object-Oriented Programming 

Subtyping and Casts 
class T { … } 

class S extends T { … } 

T! nnT  = … 
T? pnT = … 
S! nnS = … 

nnT   = nnS;  
pnT   = pnS; 
pnT   = nnT; 

object? 

T? 

S? 

object! 

T! 

S! 

nnT   = ( T! ) pnT; 
nnT   = ( ! ) pnT; 

8.1 Initialization – Simple Non-Null Types 
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Type Rules 
 Most type rules of Java remain 

unchanged 
 

 Additional requirement:  
expressions whose value gets 
dereferenced at run-time must 
have a non-null type 
- Receiver of field access 
- Receiver of array access 
- Receiver of method call 
- Expression of a throw statement 

Peter Müller – Concepts of Object-Oriented Programming 

nnT.f = 5; 
nnS.foo( ); 

T! nnT  = … 
T? pnT = … 
S! nnS = … 

pnT.f = 5; 
pnS.foo( ); 

Compile-time error: 
possible  

null-dereferencing 

8.1 Initialization – Simple Non-Null Types 
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Comparing against null 

Peter Müller – Concepts of Object-Oriented Programming 

class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
    Map? n = next; 
    if( n == null ) return null; 
    return n.get( k ); 
  } 
}   

class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
    Map? n = next; 
    if( n == null ) return null; 
    return ( (!) n ).get( k ); 
  } 
}   Compile-time error: 

possible  
null-dereferencing 

Shorthand for 
cast to Map! 

8.1 Initialization – Simple Non-Null Types 
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Dataflow Analysis 
 

 Data-flow analysis is a technique for gathering 
information about the possible set of values 
calculated at various points in a computer program. 
A program's control flow graph is used to determine 
those parts of a program to which a particular value 
assigned to a variable might propagate.      [Wikipedia] 

 

Peter Müller – Concepts of Object-Oriented Programming 

8.1 Initialization – Simple Non-Null Types 
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class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
    Map? n = next; 
    if( n == null ) return null; 
    return n.get( k ); 
  } 
}   

class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
    Map? n = next; 
    if( n == null ) return null; 
    return n.get( k ); 
  } 
}   

Comparing against null (cont’d) 

Peter Müller – Concepts of Object-Oriented Programming 

n may be 
null or not 

n is null 
n is different 

from null 

Map? n = next; 

if( n == null ) 

return null; 

… 

Control Flow Graph 

return n.get( k ); 

8.1 Initialization – Simple Non-Null Types 

Dataflow analysis 
guarantees that 
this call is safe 
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class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    …  
 
    if( next == null ) return null; 
    return next.get( k ); 
  } 
}   

class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
 
    if( next == null ) return null; 
    return next.get( k ); 
  } 
}   

Limitations of Data Flow Analysis 

Peter Müller – Concepts of Object-Oriented Programming 

class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
    Map? n = next; 
    if( n == null ) return null; 
    return n.get( k ); 
  } 
}   

8.1 Initialization – Simple Non-Null Types 
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Limitations of Data Flow Analysis (cont’d) 
 Receiver expression must 

not access heap locations 
 

 Data flow analysis tracks 
values of local variables, 
but not heap locations 
- Tracking heap locations is in 

general non-modular 
 In concurrent programs, 

other threads could modify 
heap locations 

 
Peter Müller – Concepts of Object-Oriented Programming 

class Map { 
  Map? next; 
  … 
  Object? get( Object! k ) { 
    … 
    if( next == null ) return null; 
    someObject.foo( this ); 
    return next.get( k ); 
  } 
}   

void foo( Map! m ) { 
  m.next = null; 
} 

8.1 Initialization – Simple Non-Null Types 
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Peter Müller – Concepts of Object-Oriented Programming 

8. Initialization 

8.1 Simple Non-Null Types 
8.2 Object Initialization 
8.3 Initialization of Global Data 

8. Initialization 
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Constructing New Objects 

 Idea: make sure all non-null fields are initialized 
when the constructor terminates 
- Weaken type invariant accordingly  

Peter Müller – Concepts of Object-Oriented Programming 

class Map { 
  Map? next; 
  Object! key; 
  Object! value; 
 

  Map( Object! k, Object! v ) { 
    key = k;  
    value = v; 
  } 
} 

All fields are 
initialized to null Type invariant is 

violated here! 

8.2 Initialization – Object Initialization 
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Definite Assignment of Local Variables 
 Java and C# do not initialize local variables 
 Definite assignment rule: every local variable must 

be assigned to before it is first used 
- Checked by compiler using a data flow analysis 
- Also checked during bytecode verification 

Peter Müller – Concepts of Object-Oriented Programming 

int abs( int p ) { 
  int result; 
  if( p >= 0 )  result = p; 
  else  result = –p; 
  return result; 
} 

if( p >= 0 ) 

result = p; result = –p; 

return result; 

8.2 Initialization – Object Initialization 
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Definite Assignment of Fields 
 Idea: apply definite assignment rule for fields in 

constructor 
- Eiffel’s solution for attached types 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  Vector! cache; 
  Demo( Vector? d ) { 
    if( d == null )   
      cache = new Vector( ); 
    else   
      cache = d.clone( ); 
  } 
} 

if( d == null ) 

cache = new Vector( ); cache = d.clone( ); 

  

8.2 Initialization – Object Initialization 



20 

Problem 1: Method Calls 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  Vector! cache; 
 

  Demo( ) { 
    int size = optimalSize( ); 
    cache = new Vector( size ); 
  } 
 

  int optimalSize( ) {  
    return 16; 
  } 
} 

class Sub extends Demo { 
  Vector! data; 
 

  Sub( Vector! d ) { 
    data = d.clone( ); 
  } 
 

   
  int optimalSize( ) { 
    return data.size( ) * 2;  
  } 
} 

Vector! v = new Vector( ); 
Sub! s = new Sub( v ); 

Implicit 
super-call 

Dynamically 
bound 

NullPointer
Exception  

8.2 Initialization – Object Initialization 
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Problem 2: Call-backs 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo implements Observer { 
  static Subject! subject; 
 

  Demo( ) { 
    subject.register( this ); 
  } 
 

  void update( … ) { } 
} 

class Sub extends Demo { 
  Vector! data; 
 

  Sub( Vector! d ) { data = d.clone( ); } 
  void update( … ) { … data.size( ) … } 
} 

Vector! v = new Vector( ); 
Sub! s = new Sub( v ); 

Implicit 
super-call 

NullPointer
Exception  

class Subject { 
  void register( Observer! o ) { 
    … 
    o.update( … ); 
  } 
} 

Dynamically 
bound 

8.2 Initialization – Object Initialization 
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Problem 3: Escaping via Method Calls 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo implements Observer { 
  static Subject! subject; 
 

  Demo( ) {  
    subject.register( this );  
  } 
 

  void update( … ) { } 
} 

class Sub extends Demo { 
  Vector! data; 
 

  Sub( Vector! d ) { data = d.clone( ); } 
  void update( … ) { … data.size( ) … } 
} 

class Subject extends Thread { 
  List<Observer!>! list; 
 

  void register( Observer! o )  
  { list.add( o ); } 
 

  void run( ) { 
    while( true ) { 
      if( sensorValueChanged( ) ) 
        for( Observer! o: list )  
          o.update( … ); 
    } 
  } 
  … 
} 

No call-
back 

NullPointer
Exception  

Call may occur 
at any time 

8.2 Initialization – Object Initialization 
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Problem 4: Escaping via Field Updates 

Peter Müller – Concepts of Object-Oriented Programming 

class Node { 
  Node! next;   // a cyclic list 
  Process! proc; 
 

  Node( Node! after, Process! p  ) { 
    this.next = after.next; 
    after.next = this; 
    proc = p; 
  } 
} 

class Scheduler extends Thread { 
  Node! current; 
 

  void run( ) { 
    while( true ) { 
      current.proc.preempt( ); 
      current = current.next; 
      current.proc.resume( ); 
      Thread.sleep( 1000 ); 
    } 
  } 
  … 
} 

NullPointer
Exception  

Assume scheduler 
runs now, with 
current == after 

8.2 Initialization – Object Initialization 



24 

class Node { 
  Node! next;   // a cyclic list 
  String! label; 
 

  Node( String! l ) { 
    this.next = this; 
    this.setLabel( l ); 
  } 
 
 
  void setLabel( String! l ) { 
    this.label = l; 
  } 
} 

Definite Assignment of Fields: Summary 
 Sound and modular 

checking of definite 
assignment for fields 
requires that a partly-
initialized object must 
not escape from its 
constructor 
- Not passed as receiver 

or argument to a 
method call 

- Not stored in a field or 
an array 

Peter Müller – Concepts of Object-Oriented Programming 

Field update is safe: 
object does not 

escape 

Method call is safe: 
no reading of fields 

of new object 

8.2 Initialization – Object Initialization 
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Raw Objects and Raw Types 
 Idea: design a modular analysis that determines 

which objects are potentially under construction 
- We call such objects raw objects 
- The type of a raw object is called a raw type 

 

 Type invariant: 
If the static type of an expression e is a non-raw, 
non-null type then e’s value at run time is different 
from null 
- Reading a non-null field of a raw receiver yields a 

possibly-null value 

Peter Müller – Concepts of Object-Oriented Programming 

8.2 Initialization – Object Initialization 
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Raw Types 
 For a class or interface T, we 

introduce four types 
- T! and T? as before 
- raw T! 
- raw T? 

 Raw types comprise more 
elements than non-raw types 
- T! <: raw T! 
- T? <: raw T? 

 No downcasts from raw to 
non-raw types 

Peter Müller – Concepts of Object-Oriented Programming 

rT = t; 
pnT = t; 
pnT = rT; 

T! t  = … 
raw T! rT = … 
raw T? pnT = … 

t = rT; 
t = ( T! ) rT; 

class T { … } 

class S extends T { … } 

Compile-time 
error 

8.2 Initialization – Object Initialization 
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Modular Analysis 
 To make the analysis 

modular, we require 
annotations 
- For method and constructor 

parameters 
- For method results 

 No raw types allowed for 
fields 

 All other raw annotations 
will be inferred 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  Vector! cache; 
 

  Demo( ) { 
    int size = optimalSize( ); 
    cache = new Vector( size ); 
  } 
 

  int raw optimalSize( ) {  
    return 16; 
  } 
} Receiver is of a 

raw type 

8.2 Initialization – Object Initialization 
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Checking Constructor Bodies 
 Definite assignment check 

 

 For each constructor in a 
class C, we check that it 
assigns a non-null value 
to each field of C that has 
a non-null type 

 

 Method calls and 
escaping of receiver are 
permitted 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  Vector! cache; 
 

  Demo( ) { 
    int size = optimalSize( ); 
    cache = new Vector( size ); 
  } 
 

  int raw optimalSize( ) {  
    return 16; 
  } 
} 

8.2 Initialization – Object Initialization 
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Raw Receivers and Parameters 
 Parameters of methods 

and constructors have raw 
types if they are annotated 
as raw 

 Receivers of methods 
have raw types if they are 
annotated as raw 

 Receivers of constructors 
have raw types by default 

 Overriding with contra-
variant parameter types 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  Vector! cache; 
 

  Demo( ) { 
    int size = optimalSize( ); 
    cache = new Vector( size ); 
  } 
 

  int raw optimalSize( ) {  
    return 16; 
  } 
} this is of a 

raw type 

this is of a 
raw type 

8.2 Initialization – Object Initialization 
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Inference: Field Access 
 Fields of partly-initialized 

objects may themselves be 
partly initialized 

 

 Expression e.f is of a raw 
type iff e is of a raw type 
and f is of a reference type 

 Expression e.f is of a  
non-null type iff e is of a 
non-raw type and f is of a 
non-null type 

Peter Müller – Concepts of Object-Oriented Programming 

class Node { 
  Node! next;   // a cyclic list 
 

  Node( ) { 
    // this.next == null 
    this.next = this; 
  } 
} this is of a 

raw type this.next is also 
of a raw type 

Type invariant 
is satisfied 

8.2 Initialization – Object Initialization 
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Inference: Method Calls 
 Expression e.m( … ) is of a raw type if m’s declared 

result type is raw 
- No need to consult implementation of m 

 
 Normal type rule takes care of argument and result 

passing 
- If formal parameter type is non-raw, the actual argument 

must have a non-raw type 
 

 Overriding with co-variant result types 

Peter Müller – Concepts of Object-Oriented Programming 

8.2 Initialization – Object Initialization 
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Inference: Object Creation 
 

 The receiver of a 
constructor has a raw type 

 
 When does it become non-

raw? 
 

 At the end of the 
constructor? 

 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  String! name; 
  Demo( ) {  
    name = “Tony”; 
  } 
} 

class Sub extends Demo { 
  Vector! data; 
 

  Sub( ) {  
    data = new Vector( );  
  } 
} 

this is not 
fully initialized 

8.2 Initialization – Object Initialization 
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Inference: Object Creation (cont’d) 
 The receiver of 

a constructor 
has a raw type 

 
 When does it 

become non-
raw? 

 
 After the new-

expression? 
 

Peter Müller – Concepts of Object-Oriented Programming 

class C { 
  Demo! demo; 
  C( raw Demo! d ) { demo = d; } 
  String! foo( ) { return demo.myC.toString( ); } 
} 

class Demo { 
  C! myC; 
  Demo( ) { 
    C! c = new C( this ); 
    c.foo( ); 
    myC = c; 
  } 
} 

c is not fully 
initialized 

NullPointer
Exception  

8.2 Initialization – Object Initialization 
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Inference: Object Creation (cont’d) 
 Observation:  

- All objects reachable from a constructor were reachable 
from one of the arguments or have been created during 
the execution of the constructor 

- Static fields have always non-raw types 
 Consequence: 

- If all arguments to a constructor have non-raw types, 
then the new object and all objects reachable from it are 
fully initialized when the new-expression terminates 

- Recall that each constructor assigns non-null values to 
all non-null fields of its class 

Peter Müller – Concepts of Object-Oriented Programming 

8.2 Initialization – Object Initialization 
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Inference: Object Creation: Example 1 

Peter Müller – Concepts of Object-Oriented Programming 

class C { 
  Demo! demo; 
  C( raw Demo! d ) { demo = d; } 
  String! foo( ) { return demo.myC.toString( ); } 
} 

class Demo { 
  C! myC; 
  Demo( ) { 
    C! c = new C( this ); 
    c.foo( ); 
    myC = c; 
  } 
} 

c has 
raw type 

NullPointerException 
is prevented  

Compile-time 
error: foo expects 
non-raw receiver 

8.2 Initialization – Object Initialization 
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Inference: Object Creation: Example 2 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  C! myC; 
  Demo( Demo! d ) { 
    C! c = new C( d ); 
    c.foo( ); 
    myC = c; 
  } 
} 

c has non-raw 
type 

Call is 
permitted 

8.2 Initialization – Object Initialization 

class C { 
  Demo! demo; 
  C( raw Demo! d ) { demo = d; } 
  String! foo( ) { return demo.myC.toString( ); } 
} 

NullPointerException 
is prevented  

Note that formal 
parameter type 

is still raw 
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Example 
class A { 
  String! name; 
 

  A( String! s ) { 
    this.name = s; 
    this.foo( ); 
  } 
 

  void foo( ) {  
    …  
  } 
} 

class B extends A { 
  String! path; 
 

  B( String! s, String! p ) { 
    super( s );  
    this.path = p; 
  } 
 

  void foo( ) { 
     … this.path.length …  
  } 
} 

NullPointer
Exception  

class A { 
  String! name; 
 

  A( String! s ) { 
    this.name = s; 
    this.foo( ); 
  } 
 

  void foo( ) {  
    …  
  } 
} 

Compile-time 
error: foo expects 
non-raw receiver 

Peter Müller – Concepts of Object-Oriented Programming 

8.2 Initialization – Object Initialization 
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class B extends A { 
  String! path; 
 

  B( String! s, String! p ) { 
    super( s );  
    this.path = p; 
  } 
 

  void foo( ) { 
     … this.path.length …  
  } 
} 

class B extends A { 
  String! path; 
 

  B( String! s, String! p ) { 
    super( s );  
    this.path = p; 
  } 
 

  void foo( ) { 
     … this.path.length …  
  } 
} 

Example (cont’d) 
class A { 
  String! name; 
 

  A( String! s ) { 
    this.name = s; 
    this.foo( ); 
  } 
 

  void raw foo( ) {  
    …  
  } 
} 

Peter Müller – Concepts of Object-Oriented Programming 

8.2 Initialization – Object Initialization 

class B extends A { 
  String! path; 
 

  B( String! s, String! p ) { 
    super( s );  
    this.path = p; 
  } 
 

  void raw foo( ) { 
     … this.path.length …  
  } 
} Compile-time error: 

this.path is of type  
raw String? 

and, thus, not guaranteed 
to be non-null 

foo must take 
raw receiver 

(contra-variance) 
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Lazy Initialization 
 

 Creating objects and 
initializing their fields is time 
consuming 
- Long application start-up time 

 
 Lazy initialization: initialize 

fields when they are first used 
- Spreads initialization effort over 

longer time period 
 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  private Vector? data; 
 

  Demo( ) { 
    // do not initialize data 
  } 
 
 
  public Vector! getData( ) {  
    if( data == null ) 
      data = new Vector( ); 
    return data; 
  } 
} 

8.2 Initialization – Object Initialization 

Not initialized 
by constructor 

Clients get non-
null guarantee 
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Non-Null Arrays 
 Arrays are objects whose fields are numbered 
 An array type describes two kinds of references 

- The reference to the array object 
- The references to the array elements 
- Both can be non-null or possibly-null 

Peter Müller – Concepts of Object-Oriented Programming 

Person! [ ] ! a; 
Person? [ ] ! b; 
Person! [ ] ? c; 
Person? [ ] ? d; 
 

Non-null array with 
non-null elements 

Non-null array with 
possibly-null 

elements 

Possibly-null array 
with non-null 

elements 

Possibly-null array 
with possibly-null 

elements 

8.2 Initialization – Object Initialization 
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Problems of Array Initialization 
 Our solution for non-null 

fields does not work for 
non-null array elements 
- No constructor for arrays 
- Arrays are typically 

initialized using loops 
- Static analyses ignore 

loop conditions 
 In general, definite 

assignment cannot be 
checked by compiler 

Peter Müller – Concepts of Object-Oriented Programming 

class Demo { 
  String! [ ] ! s; 
 
  Demo( int l ) { 
    if( l % 2 == 1 )  
      l = l + 1; 
    s = new String! [ l ]; 
 

    for( int i = 0; i < l / 2; i++ ) { 
      s[ i*2 ] = “Even“; 
      s[ i*2 + 1 ] = “Odd“; 
    } 
  } 
}  

When do the 
elements have 
to contain non-
null references? 

Are all elements 
of s initialized? 

8.2 Initialization – Object Initialization 
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Array Initialization: (Partial) Solutions 
 Array initializers 

 
 

 Pre-filling the array 
 
 
- Not clear why a default object is any better than null 

 Run-time checks 

Peter Müller – Concepts of Object-Oriented Programming 

String! [ ] ! s = { “array”, “of”, “non-null”, “String” }; 

my_array: !ARRAY [ !STRING ]  
create my_array.make_filled ( “ ”, 1, l ) Eiffel 

String! [ ] ! s = new String! [ l ]; 
for( int i = 0; i < l / 2; i++ ) { /* as before */ } 
NonNullType.AssertInitialized( s ); Spec# 

Changes type from 
raw to non-raw 

8.2 Initialization – Object Initialization 
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Summary 
 Object initialization has to establish invariants 

- Non-nullness of fields is just an example 
 

 General guidelines for writing constructors 
- Avoid calling dynamically-bound methods on this 
- Be careful when new object escapes from constructor 
- Be aware of subclass constructors that have not run yet 

 
 Non-null types are available in Spec# 

- specsharp.codeplex.com 
 

Peter Müller – Concepts of Object-Oriented Programming 

8.2 Initialization – Object Initialization 
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Peter Müller – Concepts of Object-Oriented Programming 

8. Initialization 

8.1 Simple Non-Null Types 
8.2 Object Initialization 
8.3 Initialization of Global Data 

8. Initialization 
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The Flyweight Pattern 

Peter Müller – Concepts of Object-Oriented Programming 

‘A‘ 
Flyweight 

Factory Repository 

‘B‘ 
Flyweight 

‘C‘ 
Flyweight 

Client Client Client 

Shared, 
immutable 

objects 

Shared, 
immutable 

objects 

Global  
Factory Object 

8.3 Initialization – Initialization of Global Data 
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Global Data 
 Most software systems 

maintain global data 
- Factories 
- Caches 
- Flyweights 
- Singletons 

 Main issues 
- How do clients access 

the global data? 
- How is the global data 

initialized? 
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‘A‘ 

Flyweight 

Factory Repository 

‘B‘ 

Flyweight 

‘C‘ 

Flyweight 

Client Client Client 
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Initialization of Globals: Design Goals 
 Effectiveness 

- Ensure that global data is initialized before first access 
- Example: non-nullness 

 

 Clarity 
- Initialization has a clean semantics and facilitates 

reasoning 
 

 Laziness 
- Global data is initialized lazily to reduce start-up time 

Peter Müller – Concepts of Object-Oriented Programming 
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Solution 1: Global Vars and Init-Methods 
 
 

 Global variables 
store references to 
global data 

 
 Initialization is done 

by explicit calls to 
init-methods 

 

Peter Müller – Concepts of Object-Oriented Programming 

global Factory theFactory; 
 

void init( ) { 
  theFactory = new Factory( ); 
} 
 

class Factory { 
  HashMap flyweights; 
 

  Flyweight create( Data d ) { … } 
  … 
} 

Flyweight f = theFactory.create( … ); 

8.3 Initialization – Initialization of Global Data 
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Globals and Init-Methods: Dependencies 
 Init-methods are called 

directly or indirectly 
from main-method 

 
 To ensure effective 

initialization, main 
needs to know internal 
dependencies of 
modules 

Peter Müller – Concepts of Object-Oriented Programming 

Module A 

Module B 

Module C 

Main Call init-
method 

Init-method of A 
accesses global 

data of B 
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Globals and Init-Methods: Summary 
 Effectiveness 

- Initialization order needs to be coded manually 
- Error-prone 

 

 Clarity 
- Dependency information compromises information hiding 

 

 Laziness 
- Needs to be coded manually 

Peter Müller – Concepts of Object-Oriented Programming 
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Variation: C++ Initializers 
 Global variables can 

have initializers 
 Initializers are executed 

before execution of 
main-method 
- No explicit calls needed 
- No support for lazy 

initialization 
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class Factory { 
  HashMap* flyweights; 
 

  Flyweight* create( Data* d ) { … } 
  … 
}; 
 

Factory* theFactory = new Factory( ); 
C++ 

 Order of execution determined by order of 
appearance in the source code 
- Programmer has to manage dependencies 

8.3 Initialization – Initialization of Global Data 
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Solution 2: Static Fields and Initializers 
 

 Static fields store 
references to global data 

 

 Static initializers are 
executed by the system 
immediately before a 
class is used 

Peter Müller – Concepts of Object-Oriented Programming 

class Factory { 
  static Factory theFactory; 
  HashMap flyweights; 
 

  static { 
    theFactory = new Factory( ); 
  } 
   

  Flyweight create( Data d ) { … } 
  … 
} Java 

Factory o = Factory.theFactory; 
Flyweight f = o.create( … ); 

8.3 Initialization – Initialization of Global Data 
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Execution of Static Initializers 
 A class C’s static initializer 

runs immediately before 
first 
- Creation of a C-instance 
- Call to a static method of C 
- Access to a static field of C 

 and before static initializers 
of C’s subclasses 

 Initialization is done lazily 
 System manages 

dependencies 
Peter Müller – Concepts of Object-Oriented Programming 

class Factory { 
  static Factory theFactory; 
  HashMap flyweights; 
 

  static { 
    theFactory = new Factory( ); 
  } 
   

  Flyweight create( Data d ) { … } 
  … 
} Java 

Factory o = Factory.theFactory; 
Flyweight f = o.create( … ); 

Initialization 
triggered here 

8.3 Initialization – Initialization of Global Data 
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Debug.log( “Start of program execution” ); 

Static Initializers: Mutual Dependencies 

Peter Müller – Concepts of Object-Oriented Programming 

class UniqueID { 
  static int next; 
 

  static { 
    next = 1; 
    Debug.log( “…” ); 
  } 
   

  static int getID( ) { 
    return next++;  
  } 
} 

Java 

class Debug { 
  static int session; 
  static Vector logfile; 
 

  static { 
    session = UniqueID.getID( ); 
    logfile = new Vector( ); 
  } 
   

  static void log( String msg ) { 
    logfile.add( msg ); 
  } 
} 

Initialize 
Debug 

Initialize 
UniqueID 

Initialization 
already in progress 

NullPointerException 

8.3 Initialization – Initialization of Global Data 
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Static Initializers: Side Effects 
 

 Static initializers may have 
arbitrary side effects 

 
 Reasoning about programs 

with static initializers is non-
modular 
- Need to know when initializers run 

Peter Müller – Concepts of Object-Oriented Programming 

C.x = 0; 
D.y = ‘?’; 
assert C.x == 0; 

class D { 
  static char y; 
 

  … 
} 

class C { 
  static int x; 
 

  … 
} 

class D { 
  static char y; 
 

  static { C.x = C.x + 1; } 
} 

8.3 Initialization – Initialization of Global Data 
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Static Initializers: Summary 
 Effectiveness 

- Static initializers may be interrupted 
- Reading un-initialized fields is possible 

 Clarity 
- Reasoning requires to keep track of which initializers 

have run already 
- Side effects through implicit executions of static 

initializers can be surprising 
 Laziness 

- Static initializers are not called upfront (but also not as 
late as possible) 

Peter Müller – Concepts of Object-Oriented Programming 
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Static Fields and Procedural Style  
 Procedural style: make all 

fields and operations of 
the global data static 
- Use class object as global 

object 
 Disadvantages 

- No specialization via 
subtyping and overriding 

- No dynamic exchange of 
data structure 

- Not object-oriented 

Peter Müller – Concepts of Object-Oriented Programming 

class Factory { 
  static HashMap flyweights; 
 

  static { 
    flyweights = new HashMap( ); 
  } 
   

  static   
  Flyweight create( Data d ) {  
    …  
  } 
  … 
} 

Java 

8.3 Initialization – Initialization of Global Data 
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Variation: Scala’s Singleton Objects 
 Scala provides language 

support for singletons 
- Singleton objects may extend 

classes or traits 
- But they cannot be specialized 

 Not every global object is a 
singleton 

 Initialization is defined by 
translation to Java 
- Inherits all pros and cons of 

static initializers 

Peter Müller – Concepts of Object-Oriented Programming 

object Factory { 
  val flyweights: HashMap[ … ] 
   

  def  
  create( d: Data ): Flyweight = 
    …  
  … 
} Scala 

8.3 Initialization – Initialization of Global Data 
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Solution 3: Eiffel’s Once Methods 
 

 Once methods are 
executed only once 

 
 Result of first execution is 

cached and returned for 
subsequent calls  

Peter Müller – Concepts of Object-Oriented Programming 

class FlyweightMgr 
feature 
  theFactory: Factory 
  once  
    create Result 
  end 
  … 
end Eiffel 

o := manager.theFactory 
f := o.createFlyweight( … ) 

8.3 Initialization – Initialization of Global Data 
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Once Methods: Mutual Dependencies 
 Mutual dependencies 

lead to recursive calls 
 

 Recursive calls return 
the current value of 
Result 
- Typically not a 

meaningful value 

Peter Müller – Concepts of Object-Oriented Programming 

factorial ( i: INTEGER ): INTEGER 
  require 0 <= i 
once 
  if i <= 1 then Result := 1 
  else 
    Result := i * factorial ( i – 1 ) 
  end 
end Eiffel 

check factorial( 3 ) = 0 end 
check factorial( 30 ) = 0 end 
 

8.3 Initialization – Initialization of Global Data 
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Once Methods: Parameters 
 

 Arguments to once 
methods are used for 
the first execution 

 
 Arguments to 

subsequent calls are 
ignored 
 

Peter Müller – Concepts of Object-Oriented Programming 

factorial ( i: INTEGER ): INTEGER 
  require 0 <= i 
once 
  if i <= 1 then Result := 1 
  else 
    Result := i * factorial ( i – 1 ) 
  end 
end Eiffel 

check factorial( 3 ) = 0 end 
check factorial( 30 ) = 0 end 
check factorial( 1 ) = 0 end 

8.3 Initialization – Initialization of Global Data 

check factorial( 1 ) = 1 end 
check factorial( 3 ) = 1 end 
check factorial( 30 ) = 1 end 
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Once Methods: Summary 
 Effectiveness 

- Mutual dependencies lead to recursive calls 
- Reading un-initialized fields is possible 

 

 Clarity 
- Reasoning requires to keep track of which once methods 

have run already (use of arguments, side effects) 
 

 Laziness 
- Once methods are executed only when result is needed 

(as late as possible) 
 

Peter Müller – Concepts of Object-Oriented Programming 
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Initialization of Global Data: Summary 
 No solution ensures that global data is initialized 

before it is accessed 
- How to establish invariants over global data? 
- For instance, solutions would not be suitable to ensure 

that global non-null variables have non-null values 
 

 No solution handles mutual dependencies 
- Maybe programmer should determine initialization order, 

with appropriate restrictions 

Peter Müller – Concepts of Object-Oriented Programming 

8.3 Initialization – Initialization of Global Data 
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