
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2009

2

Peter Müller – Concepts of Object-Oriented Programming

Reuse
 Inheritance

- Only one object at run time
- Relation is fixed at compile time
- Often coupled with subtyping

 Aggregation

- Establishes “has-a” relation
- Two objects at run time
- Relation can change at run time
- No subtyping in general

Person

Student

a1:
a2:

hans

…

Car Motor

m:
x:

myCar

…

zy:
a:

V8

…

3. Inheritance

3

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

4

Peter Müller – Concepts of Object-Oriented Programming

Inheritance versus Subtyping
 Subtyping expresses classification

- Substitution principle
- Subtype polymorphism

 Inheritance is a means of code reuse
- Specialization

 Inheritance is usually coupled with subtyping
- Inheritance of all methods leads to structural subtypes
- Coupling is also a useful default for nominal subtyping

 Terminology: Subclassing = Subtyping + Inheritance

3.1 Inheritance – Inheritance and Subtyping

5

Peter Müller – Concepts of Object-Oriented Programming

Simulation of Subclassing with Delegation
 Subclassing can be

simulated by a
combination of subtyping
and aggregation
- Useful in languages with

single inheritance
 OO-programming can do

without inheritance, but
not without subtyping

 Inheritance is not a core
concept

Person

Student
extends

Student

StudentImpl

Person

PersonImpl Has-a

<:
<:

<:

3.1 Inheritance – Inheritance and Subtyping

6

Peter Müller – Concepts of Object-Oriented Programming

Simulation of Subclassing: Example
interface Person {
 void print();
}

class PersonImpl
 implements Person {

 String name;
 void print() { … }
 PersonImpl(String n) { name = n; }
}

interface Student extends Person {
 int getRegNum();
}

class StudentImpl implements Student {
 Person p;
 int regNum;
 StudentImpl(String n, int rn) { p = new PersonImpl(n); regNum = rn; }
 int getRegNum() { return regNum; }
 void print() { p.print(); System.out.println(regNum); }
}

Subtyping

Subtyping

Subtyping

Delegation

Aggregation

Specialization

3.1 Inheritance – Inheritance and Subtyping

7

Subtyping, Inheritance, and Subclassing

 How to define the subtype, inheritance, and
subclass relationship between these two classes?

Peter Müller – Concepts of Object-Oriented Programming

class Circle {
 Point center;
 float radius;

 float getRadius() { … }

 float area() { … }
}

class Ellipse {
 Point center;
 float radiusA;
 float radiusB;

 float getRadiusA() { … }
 float getRadiusB() { … }

 float area() { … }

 void rotate() { … }
}

3.1 Inheritance – Inheritance and Subtyping

8

Circles and Ellipses: Subtyping
 A circle is an ellipse!

 We need to enrich Circle’s interface
- Methods getRadiusA and getRadiusA return radius
- Method rotate does nothing for Circle

Peter Müller – Concepts of Object-Oriented Programming

class Circle <: Ellipse {
 Point center;
 float radius;
 float getRadius() { … }
 float area() { … }
}

class Ellipse {
 Point center;
 float radiusA;
 float radiusB;
 float getRadiusA() { … }
 float getRadiusB() { … }
 float area() { … }
 void rotate() { … }
}

3.1 Inheritance – Inheritance and Subtyping

9

Circles and Ellipses: Inheritance
 An ellipse has more features than a circle

 Reuse center, radius, and getRadius
 Add extra fields and operations to Ellipse
 Override method area

Peter Müller – Concepts of Object-Oriented Programming

class Circle {
 Point center;
 float radius;
 float getRadius() { … }
 float area() { … }
}

class Ellipse inherits Circle {

 float radiusB;
 float getRadiusB() { … }
 float area() { … }
 void rotate() { … }
}

3.1 Inheritance – Inheritance and Subtyping

10

Circles and Ellipses: Subclassing
 Subclassing includes subtyping

- We must have an “is-a” relation

Peter Müller – Concepts of Object-Oriented Programming

class Circle extends Ellipse {

}

class Ellipse {
 Point center;
 float radiusA;
 float radiusB;

 float area() {
 return radiusA * radiusB * 3.14;
 }

 void rotate() {
 // swap radiusA and radiusB
 }
}

class Circle extends Ellipse {
 // invariant radiusA == radiusB

 Circle(int r) {
 radiusA = r;
 radiusB = r;
 }
} Possibly override

rotate to improve
performance

3.1 Inheritance – Inheritance and Subtyping

11

Sets and Bounded Sets

 How to define the subtype, inheritance, and
subclass relationship between these two classes?

Peter Müller – Concepts of Object-Oriented Programming

class Set {
 int size; // number of elements

 …

 void add(Object o) {
 // add o to set
 }

 boolean contains(Object o) { … }
}

class BoundedSet {
 int size; // number of elements
 int capacity; // maximum number
 …

 void add(Object o) {
 // add o if there is still space
 }

 boolean contains(Object o) { … }
}

3.1 Inheritance – Inheritance and Subtyping

12

Peter Müller – Concepts of Object-Oriented Programming

Subtyping: BoundedSet <: Set
 BoundedSet

specializes add
method

 Precondition of add
is strengthened

 Clients using Set
might fail when using
a BoundedSet

 BoundedSet is not a
behavioral subtype of
Set

class Set {
 …

 void add(Object o) { … }
}

class BoundedSet extends Set {
 int size, capacity;

 void add(Object o) {
 if (size < capacity) super.add(o);
 }
}

 // requires true
 // ensures contains(o)

 // requires size < capacity
 // ensures contains(o)

3.1 Inheritance – Inheritance and Subtyping

13

Subtyping: BoundedSet <: Set (cont’d)

 Clients cannot rely on the properties of unbounded
set (have to test for result of add)

Peter Müller – Concepts of Object-Oriented Programming

class Set {
 …
 // requires true
 // ensures result => contains(o)
 boolean add(Object o) {
 …;
 return true;
 }
}

class BoundedSet extends Set {
 int size, capacity;

 // requires true
 // ensures result => contains(o)
 // ensures result == old(size < capacity)
 boolean add(Object o) {
 if (capacity <= size) return false;
 return super.add(o);
 }
}

Does not
specify result

3.1 Inheritance – Inheritance and Subtyping

14

Peter Müller – Concepts of Object-Oriented Programming

Subtyping: Set <: BoundedSet
 Set must respect

BoundedSet’s
invariant and history
constraint

 Set.add cannot
increase capacity
when full

 Set is not a
behavioral subtype of
BoundedSet

class Set extends BoundedSet {
 // requires true
 // ensures contains(o)
 void add(Object o) { … }
}

class BoundedSet {
 int size, capacity;

 // requires size < capacity
 // ensures contains(o)
 void add(Object o) { … }
}

 // invariant size <= capacity
 // constraint old(capacity) == capacity

3.1 Inheritance – Inheritance and Subtyping

15

Peter Müller – Concepts of Object-Oriented Programming

Subtyping: Set <: BoundedSet (cont’d)
 Hack: Assign a very

high number to
capacity in Set

 To maintain
invariant, Set.add still
requires precondition

 At least for static
verification, Set
behaves still like a
bounded set

class Set extends BoundedSet {
 // requires true
 // ensures contains(o)
 void add(Object o) { … }
}

class BoundedSet {
 int size, capacity;

 // requires size < capacity
 // ensures contains(o)
 void add(Object o) { … }
}

 // invariant size <= capacity
 // constraint old(capacity) == capacity

class Set extends BoundedSet {
 // requires size < capacity
 // ensures contains(o)
 void add(Object o) { … }
}

3.1 Inheritance – Inheritance and Subtyping

16

Peter Müller – Concepts of Object-Oriented Programming

Discussion
 The presented classes for Set and BoundedSet are

not behavioral subtypes
- Syntactic requirements are met
- Semantic requirements are not met

 Large parts of the implementation are identical

- This code should be reused

3.1 Inheritance – Inheritance and Subtyping

17

Peter Müller – Concepts of Object-Oriented Programming

Solution 1: Aggregation
 BoundedSet uses Set

 Method calls are

delegated to Set

 No subtype relation
- No polymorphism
- No behavioral

subtyping
requirements

class Set {
 …
 void add(Object o) { … }
 int size() { … }
}

class BoundedSet {
 Set rep;
 int capacity;

 void add(Object o) {
 if (rep.size() < capacity) rep.add(o);
 }

 int size() { return rep.size(); }
}

3.1 Inheritance – Inheritance and Subtyping

18

Peter Müller – Concepts of Object-Oriented Programming

A Variant of the Problem
 Aggregation seems okay

for Set and BoundedSet
 Similar examples require

subtyping
 Polygons and Rectanges

- Polygon: Unbounded set
of vertices

- Rectangle: Bounded set of
(exactly four) vertices

- A rectangle is a polygon!

class Polygon {
 Vertex[] vertices;
 …
 void addVertex(Vertex v) { … }
}

class Rectangle
 extends Polygon {
 // vertices contains 4 vertices
 …
 void addVertex(Vertex v) {
 // unsupported operation
 }
} Not what

we want

3.1 Inheritance – Inheritance and Subtyping

19

Peter Müller – Concepts of Object-Oriented Programming

Solution 2: Creating New Objects
class Polygon {
 Vertex[] vertices;
 …

 Polygon addVertex(Vertex v) {
 … // add v to vertices
 return this;
 }
}

class Rectangle extends Polygon {
 // vertices contains 4 vertices
 …

 Polygon addVertex(Vertex v) {
 return new Pentagon(
 vertices[0], vertices[1],
 vertices[2], vertices[3], v);
 }
}

 // requires true
 // ensures result.hasVertex(v)

 // requires true
 // ensures result.hasVertex(v)

void foo (Polygon[] p, Vertex v) {
 for(int i=0; i < p.length; i++) { p[i].addVertex(v).display(); }
}

3.1 Inheritance – Inheritance and Subtyping

20

Peter Müller – Concepts of Object-Oriented Programming

class BoundedSet extends Set {
 int size, capacity;

 Set add(Object o) {
 if (size < capacity)
 return super.add(o);
 else {
 Set res = new Set();
 res.addAll(this);
 res.add(o);
 return res;
 }
 }
}

Solution 2 for BoundedSet
class Set {
 …

 Set add(Object o) {
 … // add o
 return this;
 }
}

 // requires true
 // ensures result.contains(o)

 // requires true
 // ensures result.contains(o)

3.1 Inheritance – Inheritance and Subtyping

21

Discussion of Solution 2
 BoundedSet.add may

return Set object

 No problem for
polymorphic client code

 Error-prone for clients
of BoundedSet
- Dynamic type checks

necessary

Peter Müller – Concepts of Object-Oriented Programming

BoundedSet bs = …;
bs = (BoundedSet) bs.add(“X”);
int c = bs.getCapacity();

BoundedSet:
 Set add(Object o)

static Set union(Set a, Set b) {
 Set res = new Set();
 forall e ∈ a { res = res.add(e); }
 forall e ∈ b { res = res.add(e); }
 return res;
}

 Most likely not what users of BoundedSet want

3.1 Inheritance – Inheritance and Subtyping

22

Solution 3: Weak Superclass Contract
 Behavioral sub-

typing is relative to
a contract

 Idea: Introduce
superclass with
weakest contract
- Make every

syntactic subtype a
behavioral subtype

 No effective
polymorphism

Peter Müller – Concepts of Object-Oriented Programming

abstract class AbstractSet {
 // invariant true
 // constraint true
 …
 // requires false
 // ensures true
 void add(Object o)
 { // add o to set }
}

class Set extends AbstractSet {
 // requires true
 // ensures contains(o)
 void add(Object o) { super.add(o); }
}

Cannot
be called

3.1 Inheritance – Inheritance and Subtyping

23

Solution 4: Inheritance w/o Subtyping
 Some languages

support inheritance
without subtyping
- C++:

private and protected
inheritance

- Eiffel:
expanded inheritance

 No polymorphism

Peter Müller – Concepts of Object-Oriented Programming

class Set {
public:
 // requires true
 // ensures contains(o)
 void add(int o) { … }
 bool contains(int o) { … }
 …
}

C++

class BoundedSet : private Set {
public:
 void add(int o) { … }
 Set::contains
 …
} C++

Override
method Make method

public

void foo(BoundedSet b) {
 Set s = b; // compile-time error
} C++

3.1 Inheritance – Inheritance and Subtyping

24

Aggregation vs. Private Inheritance
 Both solutions allow code reuse without

establishing a subtype relation
- No subtype polymorphism
- No behavioral subtyping requirements

 Aggregation causes more overhead
- Two objects at run-time
- Boilerplate code for delegation
- Access methods for protected fields

 Private inheritance may lead to unnecessary
multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

3.1 Inheritance – Inheritance and Subtyping

25

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

26

Peter Müller – Concepts of Object-Oriented Programming

Method Binding
 Static binding:

At compile time, a method declaration is selected
for each call based on the static type of the receiver
expression

 Dynamic binding:
At run time, a method declaration is selected for
each call based on the dynamic type of the receiver
object

3.2 Inheritance – Dynamic Method Binding

27

Peter Müller – Concepts of Object-Oriented Programming

Static vs. Dynamic Method Binding
 Dynamic method binding enables specialization

and subtype polymorphism
 However, there are important drawbacks

- Performance: Overhead of method look-up at run-time
- Versioning: Dynamic binding makes it harder to evolve

code without breaking subclasses
 Defaults

- Dynamic binding: Eiffel, Java, Scala, dynamically-typed
languages

- Static binding: C++, C#

3.2 Inheritance – Dynamic Method Binding

28

Peter Müller – Concepts of Object-Oriented Programming

Fragile Baseclass Scenario
 Software is not static

- Maintenance
- Bugfixing
- Reengineering

 Subclasses can be affected
by changes to superclasses

 How should we apply
inheritance to make our code
robust against revisions of
superclasses?

Develop
Superclass

Implement
Subclass

Modify
Superclass

3.2 Inheritance – Dynamic Method Binding

29

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
 int size;

 int getSize()
 { return size; }
 void add(Object o)
 { super.add(o); size++; }
}

Example 1: Selective Overriding
class Bag {
 …
 int getSize() {
 // count elements
 }

 void add(Object o)
 { … }

 void addAll(Object[] arr) {
 for(int i=0; i < arr.length; i++)
 add(arr[i]);
 }
}

Object[] oa = … // 5 elements
CountingBag cb =
 new CountingBag();
cb.addAll(oa);
System.out.println(cb.getSize());

3.2 Inheritance – Dynamic Method Binding

30

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
 int size;

 int getSize()
 { return size; }
 void add(Object o)
 { super.add(o); size++; }
}

Example 1: Selective Overriding (cont’d)
class Bag {
 …
 int getSize() {
 // count elements
 }

 void add(Object o)
 { … }

 void addAll(Object[] arr) {
 // add elements of arr
 // directly (not using add)
 }
}

Object[] oa = … // 5 elements
CountingBag cb =
 new CountingBag();
cb.addAll(oa);
System.out.println(cb.getSize());

3.2 Inheritance – Dynamic Method Binding

31

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
 int size;
 // invariant size==super.getSize()
 …
 void add(Object o)
 { super.add(o); size++; }

}

Example 1: Discussion
class Bag {
 …
 int getSize() {
 … // count elements
 }

 // requires true
 // ensures ∀i. 0 <= i < arr.length:
 // contains(arr[i])
 void addAll(Object[] arr) {
 for(int i=0; i < arr.length; i++)
 add(arr[i]);
 }
}

Subclass: Using
inheritance, rely on

interface documentation,
not on implementation

Subclass: Override all
methods that could

break invariants

void addAll(Object[] arr) {
 for(int i=0; i < arr.length; i++)
 add(arr[i]);
 }

Superclass: Do not change
calls to dynamically-bound

methods

3.2 Inheritance – Dynamic Method Binding

32

Peter Müller – Concepts of Object-Oriented Programming

class Math {

 float squareRt(float f) {
 return √ f;
 }

 float fourthRt(float f) {
 return √√ f;
 }
}

class MyMath extends Math {

 float squareRt(float f) {
 return –√f;
 }
}

Example 2: Unjustified Assumptions

MyMath m = new MyMath();
System.out.println
 (m.fourthRt(16));

3.2 Inheritance – Dynamic Method Binding

33

Peter Müller – Concepts of Object-Oriented Programming

class Math {

 float squareRt(float f) {
 return √ f;
 }

 float fourthRt(float f) {
 return squareRt(squareRt(f));
 }
}

class MyMath extends Math {

 float squareRt(float f) {
 return –√f;
 }
}

Example 2: Unjustified Assumptions (c’d)

MyMath m = new MyMath();
System.out.println
 (m.fourthRt(16));

3.2 Inheritance – Dynamic Method Binding

class Math {
 // requires f >= 0
 // ensures result ^ 2 = f
 float squareRt(float f) {
 return √ f;
 }
 // requires f >= 0
 // ensures result ^ 4 = f
 float fourthRt(float f) {
 return squareRt(squareRt(f));
 }
}

Rely on interface
documentation of

dynamically-bound method,
not on implementation

class MyMath extends Math {
 // requires f >= 0
 // ensures result ^ 2 = f
 float squareRt(float f) {
 return –√f;
 }
} Superclass: Do not change

calls to dynamically-bound
methods

34

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {

 void inc2() {
 inc1();
 }
}

Example 3: Mutual Recursion
class C {
 int x;

 void inc1() {
 x = x + 1;
 }

 void inc2() {
 x = x + 1;
 }
}

CS cs = new CS();
cs.x = 5;
cs.inc2();
System.out.println(cs.x);

3.2 Inheritance – Dynamic Method Binding

35

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {

 void inc2() {
 inc1();
 }
}

Example 3: Mutual Recursion (cont’d)
class C {
 int x;

 void inc1() {
 inc2();
 }

 void inc2() {
 x = x + 1;
 }
}

CS cs = new CS();
cs.x = 5;
cs.inc2();
System.out.println(cs.x);

3.2 Inheritance – Dynamic Method Binding

class C {
 int x;
 // requires true
 // ensures x = old(x) + 1
 void inc1() {
 inc2();
 }
 // requires true
 // ensures x = old(x) + 1
 void inc2() {
 x = x + 1;
 }
}

class CS extends C {
 // requires true
 // ensures x = old(x) + 1
 void inc2() {
 inc1();
 }
}

Subclass: Avoid
specializing classes

that are expected to be
changed (often) Superclass: Do not change

calls to dynamically-bound
methods

36

Peter Müller – Concepts of Object-Oriented Programming

class MyMgr extends DiskMgr {
 void delete() {
 … // erase whole hard disk
 }
}

Example 4: Additional Methods
class DiskMgr {

 void cleanUp() {
 … // remove temporary files
 }
}

MyMgr mm = new MyMgr();
…
mm.cleanUp();

3.2 Inheritance – Dynamic Method Binding

37

Peter Müller – Concepts of Object-Oriented Programming

class MyMgr extends DiskMgr {
 void delete() {
 … // erase whole hard disk
 }
}

Example 4: Additional Methods (cont’d)

MyMgr mm = new MyMgr();
…
mm.cleanUp();

Subclass: Avoid
specializing classes

that are expected to be
changed (often)

3.2 Inheritance – Dynamic Method Binding

class DiskMgr {
 void delete() {
 … // remove temporary files
 }

 void cleanUp() {
 delete();
 }
} Superclass: Do not change

calls to dynamically-bound
methods

38

Peter Müller – Concepts of Object-Oriented Programming

Summary: Rules for Proper Subclassing
 Use subclassing only if there is an “is-a” relation

- Syntactic and behavioral subtypes
 Do not rely on implementation details

- Use precise documentation (contracts where possible)
 When evolving superclasses, do not mess around

with dynamically-bound methods
- Do not add, remove, or change order of calls

 Do not specialize superclasses that are expected to
change often

3.2 Inheritance – Dynamic Method Binding

39

Binary Methods
 Binary methods take

receiver and one explicit
argument

 Often behavior should be
specialized depending on
the dynamic types of both
arguments

 Recall that covariant
parameter types are not
statically type-safe

Peter Müller – Concepts of Object-Oriented Programming

class Object {
 boolean equals(Object o) {
 return this == o;
 }
}

class Cell {
 int val;
 boolean equals(Cell o) {
 // compare values
 }
}

3.2 Inheritance – Dynamic Method Binding

40

Binary Methods: Example

 Dynamic binding for
specialization based on
dynamic type of
receiver

 How to specialize

based on dynamic type
of explicit argument?

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s) {
 // general code for all shapes
 }
}

class Rectangle extends Shape {
 Shape intersect(Rectangle r) {
 // efficient code for two rectangles
 }
}

3.2 Inheritance – Dynamic Method Binding

41

Solution 1: Explicit Type Tests
 Type test and

conditional for
specialization based
on dynamic type of
explicit argument

 Problems

- Tedious to write
- Code is not extensible
- Requires type cast

Peter Müller – Concepts of Object-Oriented Programming

class Rectangle extends Shape {
 Shape intersect(Shape s) {
 if(s instanceof Rectangle) {
 Rectangle r = (Rectangle) s;
 // efficient code for two rectangles
 } else {
 return super.intersect(s);
 }
 }
}

3.2 Inheritance – Dynamic Method Binding

42

Solution 2: Double Invocation

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s)
 { return s.intersectShape(this); }

 Shape intersectShape(Shape s)
 { // general code for all shapes }

 Shape intersectRectangle(Rectangle r)
 { return intersectShape(r); }
} class Rectangle extends Shape {

 Shape intersect(Shape s)
 { return s.intersectRectangle(this); }

 Shape intersectRectangle(Rectangle r)
 { // efficient code for two rectangles }
}

 Additional
dynamically-bound
call for specialization
based on dynamic
type of explicit
argument

3.2 Inheritance – Dynamic Method Binding

43

Solution 2: Double Invocation (cont’d)

 Double invocation

is also called
Visitor Pattern

 Problems

- Even more tedious to write
- Requires modification of superclass

(not possible for equals method)

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s)
 { return s.intersectShape(this); }

 Shape intersectShape(Shape s)
 { // general code for all shapes }

 Shape intersectRectangle(Rectangle r)
 { return intersectShape(r); }
}

Corresponds to
Node.accept

Corresponds to
Visitor.visitX

Corresponds to
Node and Visitor

3.2 Inheritance – Dynamic Method Binding

44

Solution 3: Multiple Dispatch
 Some research

languages allow
method calls to be
bound based on the
dynamic type of
several arguments

 Examples: CLU,
Cecil, Fortress,
MultiJava

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s) {
 // general code for all shapes
 }
}

class Rectangle extends Shape {
 Shape intersect(Shape@Rectangle r) {
 // efficient code for two rectangles
 }
} Static type

of r
Dispatch

on r

3.2 Inheritance – Dynamic Method Binding

45

Solution 3: Multiple Dispatch (cont’d)
 Multiple dispatch is statically type-safe

 Problems

- Performance overhead of method look-up at run-time
- Extra requirements are needed to ensure there is a

“unique best method” for every call

Peter Müller – Concepts of Object-Oriented Programming

Shape client(Shape s1, Shape s2) {
 return s1.intersect(s2);
}

Calls Rectangle.intersect
only if s1 and s2 are of

type Rectangle

3.2 Inheritance – Dynamic Method Binding

46

Binary Methods: Summary
 The behavior of binary methods often depends on

the dynamic types of both arguments

 Type tests
- One single-dispatch call and one case distinction

 Double invocation (Visitor Pattern)
- Two single-dispatch calls

 Multiple dispatch
- One multiple-dispatch call

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

47

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

48

Motivation
 All object-oriented

languages support
multiple subtyping
- One type can have

several supertypes
- Subtype relation forms a

DAG
 Often it is also useful to

reuse code from
several superclasses
via multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

 Enroll in classes
 Study
 Maintain credit points

 Salary
 Office
 Teach

3.3 Inheritance – Multiple Inheritance

49

Simulating Multiple Inheritance
 Java and C# support only single inheritance
 Multiple inheritance is simulated via delegation

- Not elegant

Peter Müller – Concepts of Object-Oriented Programming

Student

StudentImpl
Has-a

<:

PhDStudent

Assistant

extends

Single
inheritance

Aggregation
+ delegation

<:

Interface

3.3 Inheritance – Multiple Inheritance

50

Problems of Multiple Inheritance
 Ambiguities

- Superclasses may contain fields and methods with
identical names and signatures

- Which version should be available in the subclass?

 Repeated inheritance (diamonds)
- A class may inherit from a superclass more than once
- How many copies of the superclass members are there?
- How are the superclass fields initialized?

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

51

Ambiguities: Example

Peter Müller – Concepts of Object-Oriented Programming

void client(PhDStudent p) {
 int w = p.workLoad();
 p.mentor = NULL;
}

Which method
should be called?

Which field
should be
accessed?

class Student {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class Assistant {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class PhDStudent :
 public Student, pubic Assistant {
};

C++

3.3 Inheritance – Multiple Inheritance

52

Ambiguity Resolution: Explicit Selection

 Subclass has two
members with
identical names

 Ambiguity is resolved
by client

 Clients need to know
implementation details

Peter Müller – Concepts of Object-Oriented Programming

void client(PhDStudent p) {
 int w = p.Assistant::workLoad();
 p.Student::mentor = NULL;
}

class Student {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class Assistant {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class PhDStudent :
 public Student, pubic Assistant {
};

C++

3.3 Inheritance – Multiple Inheritance

53

Ambiguity Resolution: Merging Methods

 Related inherited
methods can often be
merged into one
overriding method

 Usual rules for

overriding apply
- Type rules
- Behavioral subtyping

Peter Müller – Concepts of Object-Oriented Programming

class PhDStudent :
 public Student, public Assistant {
public:
 virtual int workLoad() {
 return Student::workLoad() +
 Assistant::workLoad();
 }
};

C++

void client(PhDStudent p) {
 int w = p.workLoad();
}

Overrides both
inherited methods

Correspond to
super-calls in Java

3.3 Inheritance – Multiple Inheritance

54

Merging Unrelated Methods
 Unrelated methods

should not be merged
in a meaningful way
- Even if signatures match

 Subclass should

provide both methods,
but with different
names

Peter Müller – Concepts of Object-Oriented Programming

class Student {
public:
 virtual bool test() { // take exam }
 … };

C++

class Assistant {
public:
 virtual bool test() { // unit test }
 … };

C++

class PhDStudent :
 public Student, pubic Assistant {
public:
 virtual bool test()
 { return Student::test(); }
};

C++

Clients can call
Assistant::test

Violates
behavioral
subtyping

3.3 Inheritance – Multiple Inheritance

55

Ambiguity Resolution: Renaming
 Inherited methods can

be renamed
 Dynamic binding takes

renaming into account

 C++/CLI provides similar
features

Peter Müller – Concepts of Object-Oriented Programming

class Student
feature
 test: BOOLEAN is … end
end

Eiffel

class Assistant
feature
 test: BOOLEAN is … end
end

Eiffel

class PhDStudent inherit
 Student
 rename test as takeExam
 redefine takeExam end
 Assistant
end

Eiffel

client(s: Student): BOOLEAN is
do
 Result := s.test()
end

For PhDStudent
bound to takeExam

3.3 Inheritance – Multiple Inheritance

56

Repeated Inheritance: Example

 How many address
fields should
PhDStudent have?

 How are they
initialized?

Peter Müller – Concepts of Object-Oriented Programming

class Student : public Person {
 …
}; C++

class Assistant : public Person {
 …
}; C++

class Person {
 Address address;
 …
};

C++

PhDStudent

Assistant

extends

Student

Person

extends

class PhDStudent :
 public Student, pubic Assistant {
}; C++

3.3 Inheritance – Multiple Inheritance

57

How Many Copies of Superclass Fields?

 Eiffel: default
 C++: virtual inheritance

 Eiffel: via renaming
 C++: non-virtual

inheritance

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends
Address

3.3 Inheritance – Multiple Inheritance

LoggingSensor

Sensor

extends

Loggable

FileWriter

extends
File

FileWriter

File
extends

58

Inheritance and Object Initialization
 Superclass fields are

initialized before subclass
fields
- Helps preventing use of

uninitialized fields, e.g., in
inherited methods

 Order is typically
implemented via mandatory
call of superclass
constructor at the beginning
of each constructor

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

PhDStudent

extends

Student

Person

extends

super-call

super-call

59

Initialization and Non-Virtual Inheritance
 With non-virtual

inheritance, there are
two copies of the
superclass fields

 Superclass
constructor is called
twice to initialize both
copies
- Here, create two file

handles for two files

Peter Müller – Concepts of Object-Oriented Programming

LoggingSensor

Sensor

extends

Loggable

FileWriter

extends

FileWriter

extends

3.3 Inheritance – Multiple Inheritance

60

Initialization and Virtual Inheritance

 With virtual
inheritance, there is
only one copy of the
superclass fields

 Who gets to call the
superclass
constructor?

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

3.3 Inheritance – Multiple Inheritance

61

Initialization: C++ Solution
 Constructor of

repeated superclass is
called only once

 Smallest subclass
needs to call the
constructor of the
virtual superclass
directly

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

3.3 Inheritance – Multiple Inheritance

62

C++ Solution: Example

Peter Müller – Concepts of Object-Oriented Programming

class Person {
 Address* address;
 int workdays;
public:
 Person(Address* a, int w) {
 address = a;
 workdays = w;
 };
};

class Student : virtual public Person {
public:
 Student(Address* a) : Person(a, 5) { };
};

class Assistant: virtual public Person {
public:
 Assistant(Address* a) : Person(a, 6) { };
};

class PhDStudent : public Student, public Assistant {
public:
 PhDStudent(Address* a) : Person(a, 7), Student(a), Assistant(a) { };
};

3.3 Inheritance – Multiple Inheritance

63

C++ Solution: Discussion

 Non-virtual inheritance is the default
- Virtual inheritance leads to run-time overhead
- Programmers need foresight!

 Constructors cannot rely on the virtual superclass
constructors they call
- For instance, to establish invariants

Peter Müller – Concepts of Object-Oriented Programming

class Student : virtual public Person {
public:
 Student(Address* a) : Person(a, 5) {

 };
};

class Student : virtual public Person {
public:
 Student(Address* a) : Person(a, 5) {
 assert(workdays == 5);
 };
};

Might
fail

3.3 Inheritance – Multiple Inheritance

64

Initialization: Eiffel Solution

 Eiffel does not
force constructors
to call superclass
constructors

 Programmer has

full control over
calls to superclass
constructors

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

?

?

?

?

3.3 Inheritance – Multiple Inheritance

65

Eiffel Solution: Discussion

 Subclasses have to
initialize inherited fields
- Code duplication

 Subclasses need to
understand superclass
implementation

 Constructors of
repeated superclasses
get called twice

 What if these super-
calls have different
arguments?

 Problematic if
constructor has side-
effects

Peter Müller – Concepts of Object-Oriented Programming

No call of superclass
constructor

Policy: Always call
superclass constructor

3.3 Inheritance – Multiple Inheritance

66

class PhDStudent inherit
 Student redefine bar end
 Assistant
… end Eiffel

class PhDStudent inherit
 Student redefine bar select bar end
 Assistant
… end Eiffel

class Assistant inherit Person
end

Renaming Revisited

Peter Müller – Concepts of Object-Oriented Programming

class Student inherit
 Person rename foo as bar end
end

Eiffel

client(p: Person): BOOLEAN is
do
 Result := p.foo()
end

For PhDStudent,
call foo or bar?

3.3 Inheritance – Multiple Inheritance

class Person
feature
 foo: BOOLEAN is … end
end Eiffel

Eiffel

67

Multiple Inheritance
Pros
 Increases

expressiveness

 Avoids overhead of
using delegation
pattern

Cons
 Ambiguity resolution

- Explicit selection
- Merging
- Renaming

 Repeated inheritance
- Complex semantics
- Initialization
- Renaming

 Complicated!

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

68

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

69

Mixins and Traits
 Mixins and traits provide a form of reuse

- Methods and state that can be mixed into various classes
- Example: Functionality to persist an object

 Main applications
- Making thin interfaces thick
- Stackable specializations

 Languages that support mixins or traits:
Python, Ruby, Scala, Squeak Smalltalk
- We will focus on Scala’s version of traits

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Traits

70

Scala: Trait Example

Peter Müller – Concepts of Object-Oriented Programming

class Cell {
 var value: Int = 0

 def put(v: Int) = { value = v }
 def get: Int = value
}

Scala

object Main1 {
 def main(args: Array[String]) {
 val a = new Cell with Backup
 a.put(5)
 a.put(3)
 a.undo
 println(a.get)
 }
}

trait Backup extends Cell {
 var backup: Int = 0;

 override def put(v: Int) = {
 backup = value
 super.put(v)
 }
 def undo = { super.put(backup) }
} Scala

Scala

3.4 Inheritance – Traits

71

Scala: Declaration of Traits

Peter Müller – Concepts of Object-Oriented Programming

trait Backup extends Cell {
 var backup = 0;

 override def put(v: Int) = {
 backup = value
 super.put(v)
 }
 def undo = { super.put(backup) }
} Scala

Traits extend exactly
one superclass (and
possibly other traits) Traits may

have fields

Traits may
declare
methods

Traits may
override

superclass
methods

3.4 Inheritance – Traits

72

Scala: Mixing-in Traits

 Class must be a subclass of its traits’ superclasses
- Otherwise we would get multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

class FancyCell extends Cell with Backup {
 …
} Scala

def main(args: Array[String]) {
 val a = new Cell with Backup
 …
} Scala

Traits can be mixed-
in when classes are

instantiated

Traits can be mixed-
in when classes are

declared

3.4 Inheritance – Traits

73

Traits and Types
 Each trait defines a type

- Like classes and
interfaces

- Trait types are abstract

 Extending or mixing-in a
trait introduces a
subtype relation

Peter Müller – Concepts of Object-Oriented Programming

trait Backup extends Cell {
 …
} Scala

class FancyCell
 extends Cell with Backup {
 …
} Scala

val a: Backup = new FancyCell
val b: Cell = a

Scala

3.4 Inheritance – Traits

74

Example: Thin and Thick Interfaces
 Traits can extend

thin interfaces by
additional
operations

 Allows very specific
types with little
syntactic overhead
- See structural

subtyping

Peter Müller – Concepts of Object-Oriented Programming

class ThinCollection {
 def add(s: String) = { … }
 def contains(s: String): Boolean = { … }
}

trait AddAll extends ThinCollection {
 def addAll(a: Array[String]) = {
 val it = a.elements
 while(it.hasNext) { add(it.next) }
 }
}

def client (p: ThinCollection with AddAll, a: Array[String]) = { p.addAll(a) }

3.4 Inheritance – Traits

75

Ambiguity Resolution

 Ambiguity is resolved by
merging
- No scope-operator like in

C++
- No renaming like in Eiffel

Peter Müller – Concepts of Object-Oriented Programming

trait Student {
 var mentor: Professor
 def workLoad: Int = 5
}

trait Assistant {
 var mentor: Professor
 def workLoad: Int = 6
}

class PhDStudent
 extends AnyRef
 with Student
 with Assistant { }

PhDStudent

Student Assistant

3.4 Inheritance – Traits

76

Ambiguity Resolution (cont’d)
 Subclass overrides both

mixed-in methods
 Does not work for mutable

fields

Peter Müller – Concepts of Object-Oriented Programming

trait Student {
 def workLoad: Int = 5
}

trait Assistant {
 def workLoad: Int = 6
}

class PhDStudent extends AnyRef with Student with Assistant {
 override def workLoad: Int = {
 super[Student].workLoad +
 super[Assistant].workLoad
 }
}

3.4 Inheritance – Traits

77

class Person {
 def workLoad: Int = 0
}

Ambiguity Resolution and Diamonds

 If two inherited methods
override a common
superclass method, no
merging is required

 What is the behavior of
workLoad in PhDStudent?

Peter Müller – Concepts of Object-Oriented Programming

trait Student extends Person {
 override def workLoad: Int = 5
}

trait Assistant extends Person {
 override def workLoad: Int = 6
}

class PhDStudent
 extends AnyRef
 with Student
 with Assistant { }

Person

PhDStudent

Student Assistant

3.4 Inheritance – Traits

78

Linearization
 The key concept to understanding the semantics of

Scala traits

 Bring supertypes of a type in a linear order
 For a class C, compute order from back to front:

1. Linearize superclass of C
2. Linearize supertraits of C (in the order of with-clauses)
Do not include types that have been linearized already

 Overriding and super-calls are defined according to
this linear order

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Traits

79

Linearization Example

Peter Müller – Concepts of Object-Oriented Programming

AnyRef

Person

Any

PhDStudent mix-in

extends Student Assistant

extends

extends

extends

class Person

trait Student extends Person

trait Assistant extends Person

class PhDStudent
 extends AnyRef
 with Student
 with Assistant

3.4 Inheritance – Traits

80

class Person {
 def workLoad: Int = 0
}

Overriding and Super-Calls

 PhDStudent’s workLoad
method is inherited from
Assitant
- Assistant’s workLoad

overrides Student’s
- Student’s workLoad

overrides Person’s
Peter Müller – Concepts of Object-Oriented Programming

trait Student extends Person {
 override def workLoad: Int = 5
}

trait Assistant extends Person {
 override def workLoad: Int = 6
}

Person

PhDStudent

Student Assistant

3.4 Inheritance – Traits

class PhDStudent
 extends AnyRef
 with Student
 with Assistant { }

81

Overriding and Super-Calls (cont’d)
 PhDStudent’s

workLoad overrides
mehods from Assistant
and Student
- Super-call refers to

predecessor in the
linear order, Assitant

 Now Assistant’s and
Student’s workLoad do
not override each other
- No super-calls allowed

Peter Müller – Concepts of Object-Oriented Programming

trait Student
 { def workLoad: Int = 5 }

trait Assistant
 { def workLoad: Int = 6 }

class PhDStudent extends AnyRef
 with Student with Assistant {
 def override workLoad: Int =
 super.workLoad
}

PhDStudent

Student Assistant

3.4 Inheritance – Traits

82

Repeated Inheritance

 Subclass inherits only
one copy of repeated
superclass
- Like Eiffel and virtual

inheritance in C++

Peter Müller – Concepts of Object-Oriented Programming

class A {
 var f: Int
 def foo = println("A::foo“)
}

trait B extends A {
 override def foo = println(“B::foo“)
}

trait C extends A {
 override def foo = println(“C::foo“)
}

class D extends A with B with C {
}

A

D

B C

3.4 Inheritance – Traits

83

Initialization Order

 Classes and traits are
initialized in the
reverse linear order

Peter Müller – Concepts of Object-Oriented Programming

class A {
 println("Constructing A")
}

trait B extends A {
 println("Constructing B")
}

trait C extends A {
 println("Constructing C")
}

class D extends A with B with C {
 println("Constructing D")
}

A

D

B C

3.4 Inheritance – Traits

84

Initialization of Repeated Superclasses
 Each constructor is called

exactly once
- Good if constructor has side-

effects
- Who gets to call the superclass

constructor?

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

 Constructors of superclasses of traits must not take
arguments
- Fields must be initialized in subclasses
- Support through abstract constants
- Programmers need foresight

3.4 Inheritance – Traits

85

Overriding and Super-Calls Revisited

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

class A {
 def foo = println("A::foo“)
}

trait B extends A {
 override def foo =
 { println(“B::foo“); super.foo }
}

trait C extends A {
 override def foo =
 { println(“C::foo“); super.foo }
}

class D extends A with B with C { }

def client (d: D) = { d.foo }

3.4 Inheritance – Traits

86

Stackable Specializations
 With traits,

specializations can be
combined in flexible
ways

 With multiple
inheritance, methods of
repeated superclasses
are called twice

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

A

D

B C

Specialized
method contains

super-call

Merged
method

3.4 Inheritance – Traits

87

Traits and Behavioral Subtyping

 Overriding of trait
methods depends on
order of mixing

 Behavioral subtyping
can be checked only
when traits are mixed in

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

trait B extends A {
 override def foo =
 { println(“B::foo“); super.foo }
}

trait C extends A {
 override def foo =
 { println(“C::foo“); super.foo }
}

class D extends A with B with C { }

class D extends A with C with B { }

3.4 Inheritance – Traits

88

Reasoning About Traits
 Traits are very dynamic,

which complicates static
reasoning

 Traits do not know how
their superclasses get
initialized

 Traits do not know which
methods they override

 Traits do not know where
super-calls are bound to

Peter Müller – Concepts of Object-Oriented Programming

trait B extends A {
 override def foo =
 { println(“B::foo“); super.foo }
}

trait C extends A {
 override def foo =
 { println(“C::foo“); super.foo }
}

3.4 Inheritance – Traits

89

Traits: Summary
 Traits partly solve problems of multiple inheritance

- Linearization resolves some issues with ambiguities and
initialization

 Other problems remain
- Resolving ambiguities between unrelated methods
- Initializing superclasses

 And new problems arise
- No specification inheritance between trait methods
- What to assume about superclass initialization and

super-calls
 Traits pose several research challenges

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Traits

	Concepts of �Object-Oriented Programming
	Reuse
	3. Inheritance
	Inheritance versus Subtyping
	Simulation of Subclassing with Delegation
	Simulation of Subclassing: Example
	Subtyping, Inheritance, and Subclassing
	Circles and Ellipses: Subtyping
	Circles and Ellipses: Inheritance
	Circles and Ellipses: Subclassing
	Sets and Bounded Sets
	Subtyping: BoundedSet <: Set
	Subtyping: BoundedSet <: Set (cont’d)
	Subtyping: Set <: BoundedSet
	Subtyping: Set <: BoundedSet (cont’d)
	Discussion
	Solution 1: Aggregation
	A Variant of the Problem
	Solution 2: Creating New Objects
	Solution 2 for BoundedSet
	Discussion of Solution 2
	Solution 3: Weak Superclass Contract
	Solution 4: Inheritance w/o Subtyping
	Aggregation vs. Private Inheritance
	3. Inheritance
	Method Binding
	Static vs. Dynamic Method Binding
	Fragile Baseclass Scenario
	Example 1: Selective Overriding
	Example 1: Selective Overriding (cont’d)
	Example 1: Discussion
	Example 2: Unjustified Assumptions
	Example 2: Unjustified Assumptions (c’d)
	Example 3: Mutual Recursion
	Example 3: Mutual Recursion (cont’d)
	Example 4: Additional Methods
	Example 4: Additional Methods (cont’d)
	Summary: Rules for Proper Subclassing
	Binary Methods
	Binary Methods: Example
	Solution 1: Explicit Type Tests
	Solution 2: Double Invocation
	Solution 2: Double Invocation (cont’d)
	Solution 3: Multiple Dispatch
	Solution 3: Multiple Dispatch (cont’d)
	Binary Methods: Summary
	3. Inheritance
	Motivation
	Simulating Multiple Inheritance
	Problems of Multiple Inheritance
	Ambiguities: Example
	Ambiguity Resolution: Explicit Selection
	Ambiguity Resolution: Merging Methods
	Merging Unrelated Methods
	Ambiguity Resolution: Renaming
	Repeated Inheritance: Example
	How Many Copies of Superclass Fields?
	Inheritance and Object Initialization
	Initialization and Non-Virtual Inheritance
	Initialization and Virtual Inheritance
	Initialization: C++ Solution
	C++ Solution: Example
	C++ Solution: Discussion
	Initialization: Eiffel Solution
	Eiffel Solution: Discussion
	Renaming Revisited
	Multiple Inheritance
	3. Inheritance
	Mixins and Traits
	Scala: Trait Example
	Scala: Declaration of Traits
	Scala: Mixing-in Traits
	Traits and Types
	Example: Thin and Thick Interfaces
	Ambiguity Resolution
	Ambiguity Resolution (cont’d)
	Ambiguity Resolution and Diamonds
	Linearization
	Linearization Example
	Overriding and Super-Calls
	Overriding and Super-Calls (cont’d)
	Repeated Inheritance
	Initialization Order
	Initialization of Repeated Superclasses
	Overriding and Super-Calls Revisited
	Stackable Specializations
	Traits and Behavioral Subtyping
	Reasoning About Traits
	Traits: Summary

