
Concepts of
Object-Oriented Programming

Peter Müller
Chair of Programming Methodology

Autumn Semester 2009

2

Peter Müller – Concepts of Object-Oriented Programming

Reuse
 Inheritance

- Only one object at run time
- Relation is fixed at compile time
- Often coupled with subtyping

 Aggregation

- Establishes “has-a” relation
- Two objects at run time
- Relation can change at run time
- No subtyping in general

Person

Student

a1:
a2:

hans

…

Car Motor

m:
x:

myCar

…

zy:
a:

V8

…

3. Inheritance

3

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

4

Peter Müller – Concepts of Object-Oriented Programming

Inheritance versus Subtyping
 Subtyping expresses classification

- Substitution principle
- Subtype polymorphism

 Inheritance is a means of code reuse
- Specialization

 Inheritance is usually coupled with subtyping
- Inheritance of all methods leads to structural subtypes
- Coupling is also a useful default for nominal subtyping

 Terminology: Subclassing = Subtyping + Inheritance

3.1 Inheritance – Inheritance and Subtyping

5

Peter Müller – Concepts of Object-Oriented Programming

Simulation of Subclassing with Delegation
 Subclassing can be

simulated by a
combination of subtyping
and aggregation
- Useful in languages with

single inheritance
 OO-programming can do

without inheritance, but
not without subtyping

 Inheritance is not a core
concept

Person

Student
extends

Student

StudentImpl

Person

PersonImpl Has-a

<:
<:

<:

3.1 Inheritance – Inheritance and Subtyping

6

Peter Müller – Concepts of Object-Oriented Programming

Simulation of Subclassing: Example
interface Person {
 void print();
}

class PersonImpl
 implements Person {

 String name;
 void print() { … }
 PersonImpl(String n) { name = n; }
}

interface Student extends Person {
 int getRegNum();
}

class StudentImpl implements Student {
 Person p;
 int regNum;
 StudentImpl(String n, int rn) { p = new PersonImpl(n); regNum = rn; }
 int getRegNum() { return regNum; }
 void print() { p.print(); System.out.println(regNum); }
}

Subtyping

Subtyping

Subtyping

Delegation

Aggregation

Specialization

3.1 Inheritance – Inheritance and Subtyping

7

Subtyping, Inheritance, and Subclassing

 How to define the subtype, inheritance, and
subclass relationship between these two classes?

Peter Müller – Concepts of Object-Oriented Programming

class Circle {
 Point center;
 float radius;

 float getRadius() { … }

 float area() { … }
}

class Ellipse {
 Point center;
 float radiusA;
 float radiusB;

 float getRadiusA() { … }
 float getRadiusB() { … }

 float area() { … }

 void rotate() { … }
}

3.1 Inheritance – Inheritance and Subtyping

8

Circles and Ellipses: Subtyping
 A circle is an ellipse!

 We need to enrich Circle’s interface
- Methods getRadiusA and getRadiusA return radius
- Method rotate does nothing for Circle

Peter Müller – Concepts of Object-Oriented Programming

class Circle <: Ellipse {
 Point center;
 float radius;
 float getRadius() { … }
 float area() { … }
}

class Ellipse {
 Point center;
 float radiusA;
 float radiusB;
 float getRadiusA() { … }
 float getRadiusB() { … }
 float area() { … }
 void rotate() { … }
}

3.1 Inheritance – Inheritance and Subtyping

9

Circles and Ellipses: Inheritance
 An ellipse has more features than a circle

 Reuse center, radius, and getRadius
 Add extra fields and operations to Ellipse
 Override method area

Peter Müller – Concepts of Object-Oriented Programming

class Circle {
 Point center;
 float radius;
 float getRadius() { … }
 float area() { … }
}

class Ellipse inherits Circle {

 float radiusB;
 float getRadiusB() { … }
 float area() { … }
 void rotate() { … }
}

3.1 Inheritance – Inheritance and Subtyping

10

Circles and Ellipses: Subclassing
 Subclassing includes subtyping

- We must have an “is-a” relation

Peter Müller – Concepts of Object-Oriented Programming

class Circle extends Ellipse {

}

class Ellipse {
 Point center;
 float radiusA;
 float radiusB;

 float area() {
 return radiusA * radiusB * 3.14;
 }

 void rotate() {
 // swap radiusA and radiusB
 }
}

class Circle extends Ellipse {
 // invariant radiusA == radiusB

 Circle(int r) {
 radiusA = r;
 radiusB = r;
 }
} Possibly override

rotate to improve
performance

3.1 Inheritance – Inheritance and Subtyping

11

Sets and Bounded Sets

 How to define the subtype, inheritance, and
subclass relationship between these two classes?

Peter Müller – Concepts of Object-Oriented Programming

class Set {
 int size; // number of elements

 …

 void add(Object o) {
 // add o to set
 }

 boolean contains(Object o) { … }
}

class BoundedSet {
 int size; // number of elements
 int capacity; // maximum number
 …

 void add(Object o) {
 // add o if there is still space
 }

 boolean contains(Object o) { … }
}

3.1 Inheritance – Inheritance and Subtyping

12

Peter Müller – Concepts of Object-Oriented Programming

Subtyping: BoundedSet <: Set
 BoundedSet

specializes add
method

 Precondition of add
is strengthened

 Clients using Set
might fail when using
a BoundedSet

 BoundedSet is not a
behavioral subtype of
Set

class Set {
 …

 void add(Object o) { … }
}

class BoundedSet extends Set {
 int size, capacity;

 void add(Object o) {
 if (size < capacity) super.add(o);
 }
}

 // requires true
 // ensures contains(o)

 // requires size < capacity
 // ensures contains(o)

3.1 Inheritance – Inheritance and Subtyping

13

Subtyping: BoundedSet <: Set (cont’d)

 Clients cannot rely on the properties of unbounded
set (have to test for result of add)

Peter Müller – Concepts of Object-Oriented Programming

class Set {
 …
 // requires true
 // ensures result => contains(o)
 boolean add(Object o) {
 …;
 return true;
 }
}

class BoundedSet extends Set {
 int size, capacity;

 // requires true
 // ensures result => contains(o)
 // ensures result == old(size < capacity)
 boolean add(Object o) {
 if (capacity <= size) return false;
 return super.add(o);
 }
}

Does not
specify result

3.1 Inheritance – Inheritance and Subtyping

14

Peter Müller – Concepts of Object-Oriented Programming

Subtyping: Set <: BoundedSet
 Set must respect

BoundedSet’s
invariant and history
constraint

 Set.add cannot
increase capacity
when full

 Set is not a
behavioral subtype of
BoundedSet

class Set extends BoundedSet {
 // requires true
 // ensures contains(o)
 void add(Object o) { … }
}

class BoundedSet {
 int size, capacity;

 // requires size < capacity
 // ensures contains(o)
 void add(Object o) { … }
}

 // invariant size <= capacity
 // constraint old(capacity) == capacity

3.1 Inheritance – Inheritance and Subtyping

15

Peter Müller – Concepts of Object-Oriented Programming

Subtyping: Set <: BoundedSet (cont’d)
 Hack: Assign a very

high number to
capacity in Set

 To maintain
invariant, Set.add still
requires precondition

 At least for static
verification, Set
behaves still like a
bounded set

class Set extends BoundedSet {
 // requires true
 // ensures contains(o)
 void add(Object o) { … }
}

class BoundedSet {
 int size, capacity;

 // requires size < capacity
 // ensures contains(o)
 void add(Object o) { … }
}

 // invariant size <= capacity
 // constraint old(capacity) == capacity

class Set extends BoundedSet {
 // requires size < capacity
 // ensures contains(o)
 void add(Object o) { … }
}

3.1 Inheritance – Inheritance and Subtyping

16

Peter Müller – Concepts of Object-Oriented Programming

Discussion
 The presented classes for Set and BoundedSet are

not behavioral subtypes
- Syntactic requirements are met
- Semantic requirements are not met

 Large parts of the implementation are identical

- This code should be reused

3.1 Inheritance – Inheritance and Subtyping

17

Peter Müller – Concepts of Object-Oriented Programming

Solution 1: Aggregation
 BoundedSet uses Set

 Method calls are

delegated to Set

 No subtype relation
- No polymorphism
- No behavioral

subtyping
requirements

class Set {
 …
 void add(Object o) { … }
 int size() { … }
}

class BoundedSet {
 Set rep;
 int capacity;

 void add(Object o) {
 if (rep.size() < capacity) rep.add(o);
 }

 int size() { return rep.size(); }
}

3.1 Inheritance – Inheritance and Subtyping

18

Peter Müller – Concepts of Object-Oriented Programming

A Variant of the Problem
 Aggregation seems okay

for Set and BoundedSet
 Similar examples require

subtyping
 Polygons and Rectanges

- Polygon: Unbounded set
of vertices

- Rectangle: Bounded set of
(exactly four) vertices

- A rectangle is a polygon!

class Polygon {
 Vertex[] vertices;
 …
 void addVertex(Vertex v) { … }
}

class Rectangle
 extends Polygon {
 // vertices contains 4 vertices
 …
 void addVertex(Vertex v) {
 // unsupported operation
 }
} Not what

we want

3.1 Inheritance – Inheritance and Subtyping

19

Peter Müller – Concepts of Object-Oriented Programming

Solution 2: Creating New Objects
class Polygon {
 Vertex[] vertices;
 …

 Polygon addVertex(Vertex v) {
 … // add v to vertices
 return this;
 }
}

class Rectangle extends Polygon {
 // vertices contains 4 vertices
 …

 Polygon addVertex(Vertex v) {
 return new Pentagon(
 vertices[0], vertices[1],
 vertices[2], vertices[3], v);
 }
}

 // requires true
 // ensures result.hasVertex(v)

 // requires true
 // ensures result.hasVertex(v)

void foo (Polygon[] p, Vertex v) {
 for(int i=0; i < p.length; i++) { p[i].addVertex(v).display(); }
}

3.1 Inheritance – Inheritance and Subtyping

20

Peter Müller – Concepts of Object-Oriented Programming

class BoundedSet extends Set {
 int size, capacity;

 Set add(Object o) {
 if (size < capacity)
 return super.add(o);
 else {
 Set res = new Set();
 res.addAll(this);
 res.add(o);
 return res;
 }
 }
}

Solution 2 for BoundedSet
class Set {
 …

 Set add(Object o) {
 … // add o
 return this;
 }
}

 // requires true
 // ensures result.contains(o)

 // requires true
 // ensures result.contains(o)

3.1 Inheritance – Inheritance and Subtyping

21

Discussion of Solution 2
 BoundedSet.add may

return Set object

 No problem for
polymorphic client code

 Error-prone for clients
of BoundedSet
- Dynamic type checks

necessary

Peter Müller – Concepts of Object-Oriented Programming

BoundedSet bs = …;
bs = (BoundedSet) bs.add(“X”);
int c = bs.getCapacity();

BoundedSet:
 Set add(Object o)

static Set union(Set a, Set b) {
 Set res = new Set();
 forall e ∈ a { res = res.add(e); }
 forall e ∈ b { res = res.add(e); }
 return res;
}

 Most likely not what users of BoundedSet want

3.1 Inheritance – Inheritance and Subtyping

22

Solution 3: Weak Superclass Contract
 Behavioral sub-

typing is relative to
a contract

 Idea: Introduce
superclass with
weakest contract
- Make every

syntactic subtype a
behavioral subtype

 No effective
polymorphism

Peter Müller – Concepts of Object-Oriented Programming

abstract class AbstractSet {
 // invariant true
 // constraint true
 …
 // requires false
 // ensures true
 void add(Object o)
 { // add o to set }
}

class Set extends AbstractSet {
 // requires true
 // ensures contains(o)
 void add(Object o) { super.add(o); }
}

Cannot
be called

3.1 Inheritance – Inheritance and Subtyping

23

Solution 4: Inheritance w/o Subtyping
 Some languages

support inheritance
without subtyping
- C++:

private and protected
inheritance

- Eiffel:
expanded inheritance

 No polymorphism

Peter Müller – Concepts of Object-Oriented Programming

class Set {
public:
 // requires true
 // ensures contains(o)
 void add(int o) { … }
 bool contains(int o) { … }
 …
}

C++

class BoundedSet : private Set {
public:
 void add(int o) { … }
 Set::contains
 …
} C++

Override
method Make method

public

void foo(BoundedSet b) {
 Set s = b; // compile-time error
} C++

3.1 Inheritance – Inheritance and Subtyping

24

Aggregation vs. Private Inheritance
 Both solutions allow code reuse without

establishing a subtype relation
- No subtype polymorphism
- No behavioral subtyping requirements

 Aggregation causes more overhead
- Two objects at run-time
- Boilerplate code for delegation
- Access methods for protected fields

 Private inheritance may lead to unnecessary
multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

3.1 Inheritance – Inheritance and Subtyping

25

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

26

Peter Müller – Concepts of Object-Oriented Programming

Method Binding
 Static binding:

At compile time, a method declaration is selected
for each call based on the static type of the receiver
expression

 Dynamic binding:
At run time, a method declaration is selected for
each call based on the dynamic type of the receiver
object

3.2 Inheritance – Dynamic Method Binding

27

Peter Müller – Concepts of Object-Oriented Programming

Static vs. Dynamic Method Binding
 Dynamic method binding enables specialization

and subtype polymorphism
 However, there are important drawbacks

- Performance: Overhead of method look-up at run-time
- Versioning: Dynamic binding makes it harder to evolve

code without breaking subclasses
 Defaults

- Dynamic binding: Eiffel, Java, Scala, dynamically-typed
languages

- Static binding: C++, C#

3.2 Inheritance – Dynamic Method Binding

28

Peter Müller – Concepts of Object-Oriented Programming

Fragile Baseclass Scenario
 Software is not static

- Maintenance
- Bugfixing
- Reengineering

 Subclasses can be affected
by changes to superclasses

 How should we apply
inheritance to make our code
robust against revisions of
superclasses?

Develop
Superclass

Implement
Subclass

Modify
Superclass

3.2 Inheritance – Dynamic Method Binding

29

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
 int size;

 int getSize()
 { return size; }
 void add(Object o)
 { super.add(o); size++; }
}

Example 1: Selective Overriding
class Bag {
 …
 int getSize() {
 // count elements
 }

 void add(Object o)
 { … }

 void addAll(Object[] arr) {
 for(int i=0; i < arr.length; i++)
 add(arr[i]);
 }
}

Object[] oa = … // 5 elements
CountingBag cb =
 new CountingBag();
cb.addAll(oa);
System.out.println(cb.getSize());

3.2 Inheritance – Dynamic Method Binding

30

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
 int size;

 int getSize()
 { return size; }
 void add(Object o)
 { super.add(o); size++; }
}

Example 1: Selective Overriding (cont’d)
class Bag {
 …
 int getSize() {
 // count elements
 }

 void add(Object o)
 { … }

 void addAll(Object[] arr) {
 // add elements of arr
 // directly (not using add)
 }
}

Object[] oa = … // 5 elements
CountingBag cb =
 new CountingBag();
cb.addAll(oa);
System.out.println(cb.getSize());

3.2 Inheritance – Dynamic Method Binding

31

Peter Müller – Concepts of Object-Oriented Programming

class CountingBag extends Bag {
 int size;
 // invariant size==super.getSize()
 …
 void add(Object o)
 { super.add(o); size++; }

}

Example 1: Discussion
class Bag {
 …
 int getSize() {
 … // count elements
 }

 // requires true
 // ensures ∀i. 0 <= i < arr.length:
 // contains(arr[i])
 void addAll(Object[] arr) {
 for(int i=0; i < arr.length; i++)
 add(arr[i]);
 }
}

Subclass: Using
inheritance, rely on

interface documentation,
not on implementation

Subclass: Override all
methods that could

break invariants

void addAll(Object[] arr) {
 for(int i=0; i < arr.length; i++)
 add(arr[i]);
 }

Superclass: Do not change
calls to dynamically-bound

methods

3.2 Inheritance – Dynamic Method Binding

32

Peter Müller – Concepts of Object-Oriented Programming

class Math {

 float squareRt(float f) {
 return √ f;
 }

 float fourthRt(float f) {
 return √√ f;
 }
}

class MyMath extends Math {

 float squareRt(float f) {
 return –√f;
 }
}

Example 2: Unjustified Assumptions

MyMath m = new MyMath();
System.out.println
 (m.fourthRt(16));

3.2 Inheritance – Dynamic Method Binding

33

Peter Müller – Concepts of Object-Oriented Programming

class Math {

 float squareRt(float f) {
 return √ f;
 }

 float fourthRt(float f) {
 return squareRt(squareRt(f));
 }
}

class MyMath extends Math {

 float squareRt(float f) {
 return –√f;
 }
}

Example 2: Unjustified Assumptions (c’d)

MyMath m = new MyMath();
System.out.println
 (m.fourthRt(16));

3.2 Inheritance – Dynamic Method Binding

class Math {
 // requires f >= 0
 // ensures result ^ 2 = f
 float squareRt(float f) {
 return √ f;
 }
 // requires f >= 0
 // ensures result ^ 4 = f
 float fourthRt(float f) {
 return squareRt(squareRt(f));
 }
}

Rely on interface
documentation of

dynamically-bound method,
not on implementation

class MyMath extends Math {
 // requires f >= 0
 // ensures result ^ 2 = f
 float squareRt(float f) {
 return –√f;
 }
} Superclass: Do not change

calls to dynamically-bound
methods

34

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {

 void inc2() {
 inc1();
 }
}

Example 3: Mutual Recursion
class C {
 int x;

 void inc1() {
 x = x + 1;
 }

 void inc2() {
 x = x + 1;
 }
}

CS cs = new CS();
cs.x = 5;
cs.inc2();
System.out.println(cs.x);

3.2 Inheritance – Dynamic Method Binding

35

Peter Müller – Concepts of Object-Oriented Programming

class CS extends C {

 void inc2() {
 inc1();
 }
}

Example 3: Mutual Recursion (cont’d)
class C {
 int x;

 void inc1() {
 inc2();
 }

 void inc2() {
 x = x + 1;
 }
}

CS cs = new CS();
cs.x = 5;
cs.inc2();
System.out.println(cs.x);

3.2 Inheritance – Dynamic Method Binding

class C {
 int x;
 // requires true
 // ensures x = old(x) + 1
 void inc1() {
 inc2();
 }
 // requires true
 // ensures x = old(x) + 1
 void inc2() {
 x = x + 1;
 }
}

class CS extends C {
 // requires true
 // ensures x = old(x) + 1
 void inc2() {
 inc1();
 }
}

Subclass: Avoid
specializing classes

that are expected to be
changed (often) Superclass: Do not change

calls to dynamically-bound
methods

36

Peter Müller – Concepts of Object-Oriented Programming

class MyMgr extends DiskMgr {
 void delete() {
 … // erase whole hard disk
 }
}

Example 4: Additional Methods
class DiskMgr {

 void cleanUp() {
 … // remove temporary files
 }
}

MyMgr mm = new MyMgr();
…
mm.cleanUp();

3.2 Inheritance – Dynamic Method Binding

37

Peter Müller – Concepts of Object-Oriented Programming

class MyMgr extends DiskMgr {
 void delete() {
 … // erase whole hard disk
 }
}

Example 4: Additional Methods (cont’d)

MyMgr mm = new MyMgr();
…
mm.cleanUp();

Subclass: Avoid
specializing classes

that are expected to be
changed (often)

3.2 Inheritance – Dynamic Method Binding

class DiskMgr {
 void delete() {
 … // remove temporary files
 }

 void cleanUp() {
 delete();
 }
} Superclass: Do not change

calls to dynamically-bound
methods

38

Peter Müller – Concepts of Object-Oriented Programming

Summary: Rules for Proper Subclassing
 Use subclassing only if there is an “is-a” relation

- Syntactic and behavioral subtypes
 Do not rely on implementation details

- Use precise documentation (contracts where possible)
 When evolving superclasses, do not mess around

with dynamically-bound methods
- Do not add, remove, or change order of calls

 Do not specialize superclasses that are expected to
change often

3.2 Inheritance – Dynamic Method Binding

39

Binary Methods
 Binary methods take

receiver and one explicit
argument

 Often behavior should be
specialized depending on
the dynamic types of both
arguments

 Recall that covariant
parameter types are not
statically type-safe

Peter Müller – Concepts of Object-Oriented Programming

class Object {
 boolean equals(Object o) {
 return this == o;
 }
}

class Cell {
 int val;
 boolean equals(Cell o) {
 // compare values
 }
}

3.2 Inheritance – Dynamic Method Binding

40

Binary Methods: Example

 Dynamic binding for
specialization based on
dynamic type of
receiver

 How to specialize

based on dynamic type
of explicit argument?

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s) {
 // general code for all shapes
 }
}

class Rectangle extends Shape {
 Shape intersect(Rectangle r) {
 // efficient code for two rectangles
 }
}

3.2 Inheritance – Dynamic Method Binding

41

Solution 1: Explicit Type Tests
 Type test and

conditional for
specialization based
on dynamic type of
explicit argument

 Problems

- Tedious to write
- Code is not extensible
- Requires type cast

Peter Müller – Concepts of Object-Oriented Programming

class Rectangle extends Shape {
 Shape intersect(Shape s) {
 if(s instanceof Rectangle) {
 Rectangle r = (Rectangle) s;
 // efficient code for two rectangles
 } else {
 return super.intersect(s);
 }
 }
}

3.2 Inheritance – Dynamic Method Binding

42

Solution 2: Double Invocation

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s)
 { return s.intersectShape(this); }

 Shape intersectShape(Shape s)
 { // general code for all shapes }

 Shape intersectRectangle(Rectangle r)
 { return intersectShape(r); }
} class Rectangle extends Shape {

 Shape intersect(Shape s)
 { return s.intersectRectangle(this); }

 Shape intersectRectangle(Rectangle r)
 { // efficient code for two rectangles }
}

 Additional
dynamically-bound
call for specialization
based on dynamic
type of explicit
argument

3.2 Inheritance – Dynamic Method Binding

43

Solution 2: Double Invocation (cont’d)

 Double invocation

is also called
Visitor Pattern

 Problems

- Even more tedious to write
- Requires modification of superclass

(not possible for equals method)

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s)
 { return s.intersectShape(this); }

 Shape intersectShape(Shape s)
 { // general code for all shapes }

 Shape intersectRectangle(Rectangle r)
 { return intersectShape(r); }
}

Corresponds to
Node.accept

Corresponds to
Visitor.visitX

Corresponds to
Node and Visitor

3.2 Inheritance – Dynamic Method Binding

44

Solution 3: Multiple Dispatch
 Some research

languages allow
method calls to be
bound based on the
dynamic type of
several arguments

 Examples: CLU,
Cecil, Fortress,
MultiJava

Peter Müller – Concepts of Object-Oriented Programming

class Shape {
 Shape intersect(Shape s) {
 // general code for all shapes
 }
}

class Rectangle extends Shape {
 Shape intersect(Shape@Rectangle r) {
 // efficient code for two rectangles
 }
} Static type

of r
Dispatch

on r

3.2 Inheritance – Dynamic Method Binding

45

Solution 3: Multiple Dispatch (cont’d)
 Multiple dispatch is statically type-safe

 Problems

- Performance overhead of method look-up at run-time
- Extra requirements are needed to ensure there is a

“unique best method” for every call

Peter Müller – Concepts of Object-Oriented Programming

Shape client(Shape s1, Shape s2) {
 return s1.intersect(s2);
}

Calls Rectangle.intersect
only if s1 and s2 are of

type Rectangle

3.2 Inheritance – Dynamic Method Binding

46

Binary Methods: Summary
 The behavior of binary methods often depends on

the dynamic types of both arguments

 Type tests
- One single-dispatch call and one case distinction

 Double invocation (Visitor Pattern)
- Two single-dispatch calls

 Multiple dispatch
- One multiple-dispatch call

Peter Müller – Concepts of Object-Oriented Programming

3.2 Inheritance – Dynamic Method Binding

47

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

48

Motivation
 All object-oriented

languages support
multiple subtyping
- One type can have

several supertypes
- Subtype relation forms a

DAG
 Often it is also useful to

reuse code from
several superclasses
via multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

 Enroll in classes
 Study
 Maintain credit points

 Salary
 Office
 Teach

3.3 Inheritance – Multiple Inheritance

49

Simulating Multiple Inheritance
 Java and C# support only single inheritance
 Multiple inheritance is simulated via delegation

- Not elegant

Peter Müller – Concepts of Object-Oriented Programming

Student

StudentImpl
Has-a

<:

PhDStudent

Assistant

extends

Single
inheritance

Aggregation
+ delegation

<:

Interface

3.3 Inheritance – Multiple Inheritance

50

Problems of Multiple Inheritance
 Ambiguities

- Superclasses may contain fields and methods with
identical names and signatures

- Which version should be available in the subclass?

 Repeated inheritance (diamonds)
- A class may inherit from a superclass more than once
- How many copies of the superclass members are there?
- How are the superclass fields initialized?

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

51

Ambiguities: Example

Peter Müller – Concepts of Object-Oriented Programming

void client(PhDStudent p) {
 int w = p.workLoad();
 p.mentor = NULL;
}

Which method
should be called?

Which field
should be
accessed?

class Student {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class Assistant {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class PhDStudent :
 public Student, pubic Assistant {
};

C++

3.3 Inheritance – Multiple Inheritance

52

Ambiguity Resolution: Explicit Selection

 Subclass has two
members with
identical names

 Ambiguity is resolved
by client

 Clients need to know
implementation details

Peter Müller – Concepts of Object-Oriented Programming

void client(PhDStudent p) {
 int w = p.Assistant::workLoad();
 p.Student::mentor = NULL;
}

class Student {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class Assistant {
public:
 Professor* mentor;
 virtual int workLoad() { … }
 … };

C++

class PhDStudent :
 public Student, pubic Assistant {
};

C++

3.3 Inheritance – Multiple Inheritance

53

Ambiguity Resolution: Merging Methods

 Related inherited
methods can often be
merged into one
overriding method

 Usual rules for

overriding apply
- Type rules
- Behavioral subtyping

Peter Müller – Concepts of Object-Oriented Programming

class PhDStudent :
 public Student, public Assistant {
public:
 virtual int workLoad() {
 return Student::workLoad() +
 Assistant::workLoad();
 }
};

C++

void client(PhDStudent p) {
 int w = p.workLoad();
}

Overrides both
inherited methods

Correspond to
super-calls in Java

3.3 Inheritance – Multiple Inheritance

54

Merging Unrelated Methods
 Unrelated methods

should not be merged
in a meaningful way
- Even if signatures match

 Subclass should

provide both methods,
but with different
names

Peter Müller – Concepts of Object-Oriented Programming

class Student {
public:
 virtual bool test() { // take exam }
 … };

C++

class Assistant {
public:
 virtual bool test() { // unit test }
 … };

C++

class PhDStudent :
 public Student, pubic Assistant {
public:
 virtual bool test()
 { return Student::test(); }
};

C++

Clients can call
Assistant::test

Violates
behavioral
subtyping

3.3 Inheritance – Multiple Inheritance

55

Ambiguity Resolution: Renaming
 Inherited methods can

be renamed
 Dynamic binding takes

renaming into account

 C++/CLI provides similar
features

Peter Müller – Concepts of Object-Oriented Programming

class Student
feature
 test: BOOLEAN is … end
end

Eiffel

class Assistant
feature
 test: BOOLEAN is … end
end

Eiffel

class PhDStudent inherit
 Student
 rename test as takeExam
 redefine takeExam end
 Assistant
end

Eiffel

client(s: Student): BOOLEAN is
do
 Result := s.test()
end

For PhDStudent
bound to takeExam

3.3 Inheritance – Multiple Inheritance

56

Repeated Inheritance: Example

 How many address
fields should
PhDStudent have?

 How are they
initialized?

Peter Müller – Concepts of Object-Oriented Programming

class Student : public Person {
 …
}; C++

class Assistant : public Person {
 …
}; C++

class Person {
 Address address;
 …
};

C++

PhDStudent

Assistant

extends

Student

Person

extends

class PhDStudent :
 public Student, pubic Assistant {
}; C++

3.3 Inheritance – Multiple Inheritance

57

How Many Copies of Superclass Fields?

 Eiffel: default
 C++: virtual inheritance

 Eiffel: via renaming
 C++: non-virtual

inheritance

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends
Address

3.3 Inheritance – Multiple Inheritance

LoggingSensor

Sensor

extends

Loggable

FileWriter

extends
File

FileWriter

File
extends

58

Inheritance and Object Initialization
 Superclass fields are

initialized before subclass
fields
- Helps preventing use of

uninitialized fields, e.g., in
inherited methods

 Order is typically
implemented via mandatory
call of superclass
constructor at the beginning
of each constructor

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

PhDStudent

extends

Student

Person

extends

super-call

super-call

59

Initialization and Non-Virtual Inheritance
 With non-virtual

inheritance, there are
two copies of the
superclass fields

 Superclass
constructor is called
twice to initialize both
copies
- Here, create two file

handles for two files

Peter Müller – Concepts of Object-Oriented Programming

LoggingSensor

Sensor

extends

Loggable

FileWriter

extends

FileWriter

extends

3.3 Inheritance – Multiple Inheritance

60

Initialization and Virtual Inheritance

 With virtual
inheritance, there is
only one copy of the
superclass fields

 Who gets to call the
superclass
constructor?

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

3.3 Inheritance – Multiple Inheritance

61

Initialization: C++ Solution
 Constructor of

repeated superclass is
called only once

 Smallest subclass
needs to call the
constructor of the
virtual superclass
directly

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

3.3 Inheritance – Multiple Inheritance

62

C++ Solution: Example

Peter Müller – Concepts of Object-Oriented Programming

class Person {
 Address* address;
 int workdays;
public:
 Person(Address* a, int w) {
 address = a;
 workdays = w;
 };
};

class Student : virtual public Person {
public:
 Student(Address* a) : Person(a, 5) { };
};

class Assistant: virtual public Person {
public:
 Assistant(Address* a) : Person(a, 6) { };
};

class PhDStudent : public Student, public Assistant {
public:
 PhDStudent(Address* a) : Person(a, 7), Student(a), Assistant(a) { };
};

3.3 Inheritance – Multiple Inheritance

63

C++ Solution: Discussion

 Non-virtual inheritance is the default
- Virtual inheritance leads to run-time overhead
- Programmers need foresight!

 Constructors cannot rely on the virtual superclass
constructors they call
- For instance, to establish invariants

Peter Müller – Concepts of Object-Oriented Programming

class Student : virtual public Person {
public:
 Student(Address* a) : Person(a, 5) {

 };
};

class Student : virtual public Person {
public:
 Student(Address* a) : Person(a, 5) {
 assert(workdays == 5);
 };
};

Might
fail

3.3 Inheritance – Multiple Inheritance

64

Initialization: Eiffel Solution

 Eiffel does not
force constructors
to call superclass
constructors

 Programmer has

full control over
calls to superclass
constructors

Peter Müller – Concepts of Object-Oriented Programming

PhDStudent

Assistant

extends

Student

Person

extends

?

?

?

?

3.3 Inheritance – Multiple Inheritance

65

Eiffel Solution: Discussion

 Subclasses have to
initialize inherited fields
- Code duplication

 Subclasses need to
understand superclass
implementation

 Constructors of
repeated superclasses
get called twice

 What if these super-
calls have different
arguments?

 Problematic if
constructor has side-
effects

Peter Müller – Concepts of Object-Oriented Programming

No call of superclass
constructor

Policy: Always call
superclass constructor

3.3 Inheritance – Multiple Inheritance

66

class PhDStudent inherit
 Student redefine bar end
 Assistant
… end Eiffel

class PhDStudent inherit
 Student redefine bar select bar end
 Assistant
… end Eiffel

class Assistant inherit Person
end

Renaming Revisited

Peter Müller – Concepts of Object-Oriented Programming

class Student inherit
 Person rename foo as bar end
end

Eiffel

client(p: Person): BOOLEAN is
do
 Result := p.foo()
end

For PhDStudent,
call foo or bar?

3.3 Inheritance – Multiple Inheritance

class Person
feature
 foo: BOOLEAN is … end
end Eiffel

Eiffel

67

Multiple Inheritance
Pros
 Increases

expressiveness

 Avoids overhead of
using delegation
pattern

Cons
 Ambiguity resolution

- Explicit selection
- Merging
- Renaming

 Repeated inheritance
- Complex semantics
- Initialization
- Renaming

 Complicated!

Peter Müller – Concepts of Object-Oriented Programming

3.3 Inheritance – Multiple Inheritance

68

Peter Müller – Concepts of Object-Oriented Programming

3. Inheritance

3.1 Inheritance and Subtyping
3.2 Dynamic Method Binding
3.3 Multiple Inheritance
3.4 Traits

3. Inheritance

69

Mixins and Traits
 Mixins and traits provide a form of reuse

- Methods and state that can be mixed into various classes
- Example: Functionality to persist an object

 Main applications
- Making thin interfaces thick
- Stackable specializations

 Languages that support mixins or traits:
Python, Ruby, Scala, Squeak Smalltalk
- We will focus on Scala’s version of traits

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Traits

70

Scala: Trait Example

Peter Müller – Concepts of Object-Oriented Programming

class Cell {
 var value: Int = 0

 def put(v: Int) = { value = v }
 def get: Int = value
}

Scala

object Main1 {
 def main(args: Array[String]) {
 val a = new Cell with Backup
 a.put(5)
 a.put(3)
 a.undo
 println(a.get)
 }
}

trait Backup extends Cell {
 var backup: Int = 0;

 override def put(v: Int) = {
 backup = value
 super.put(v)
 }
 def undo = { super.put(backup) }
} Scala

Scala

3.4 Inheritance – Traits

71

Scala: Declaration of Traits

Peter Müller – Concepts of Object-Oriented Programming

trait Backup extends Cell {
 var backup = 0;

 override def put(v: Int) = {
 backup = value
 super.put(v)
 }
 def undo = { super.put(backup) }
} Scala

Traits extend exactly
one superclass (and
possibly other traits) Traits may

have fields

Traits may
declare
methods

Traits may
override

superclass
methods

3.4 Inheritance – Traits

72

Scala: Mixing-in Traits

 Class must be a subclass of its traits’ superclasses
- Otherwise we would get multiple inheritance

Peter Müller – Concepts of Object-Oriented Programming

class FancyCell extends Cell with Backup {
 …
} Scala

def main(args: Array[String]) {
 val a = new Cell with Backup
 …
} Scala

Traits can be mixed-
in when classes are

instantiated

Traits can be mixed-
in when classes are

declared

3.4 Inheritance – Traits

73

Traits and Types
 Each trait defines a type

- Like classes and
interfaces

- Trait types are abstract

 Extending or mixing-in a
trait introduces a
subtype relation

Peter Müller – Concepts of Object-Oriented Programming

trait Backup extends Cell {
 …
} Scala

class FancyCell
 extends Cell with Backup {
 …
} Scala

val a: Backup = new FancyCell
val b: Cell = a

Scala

3.4 Inheritance – Traits

74

Example: Thin and Thick Interfaces
 Traits can extend

thin interfaces by
additional
operations

 Allows very specific
types with little
syntactic overhead
- See structural

subtyping

Peter Müller – Concepts of Object-Oriented Programming

class ThinCollection {
 def add(s: String) = { … }
 def contains(s: String): Boolean = { … }
}

trait AddAll extends ThinCollection {
 def addAll(a: Array[String]) = {
 val it = a.elements
 while(it.hasNext) { add(it.next) }
 }
}

def client (p: ThinCollection with AddAll, a: Array[String]) = { p.addAll(a) }

3.4 Inheritance – Traits

75

Ambiguity Resolution

 Ambiguity is resolved by
merging
- No scope-operator like in

C++
- No renaming like in Eiffel

Peter Müller – Concepts of Object-Oriented Programming

trait Student {
 var mentor: Professor
 def workLoad: Int = 5
}

trait Assistant {
 var mentor: Professor
 def workLoad: Int = 6
}

class PhDStudent
 extends AnyRef
 with Student
 with Assistant { }

PhDStudent

Student Assistant

3.4 Inheritance – Traits

76

Ambiguity Resolution (cont’d)
 Subclass overrides both

mixed-in methods
 Does not work for mutable

fields

Peter Müller – Concepts of Object-Oriented Programming

trait Student {
 def workLoad: Int = 5
}

trait Assistant {
 def workLoad: Int = 6
}

class PhDStudent extends AnyRef with Student with Assistant {
 override def workLoad: Int = {
 super[Student].workLoad +
 super[Assistant].workLoad
 }
}

3.4 Inheritance – Traits

77

class Person {
 def workLoad: Int = 0
}

Ambiguity Resolution and Diamonds

 If two inherited methods
override a common
superclass method, no
merging is required

 What is the behavior of
workLoad in PhDStudent?

Peter Müller – Concepts of Object-Oriented Programming

trait Student extends Person {
 override def workLoad: Int = 5
}

trait Assistant extends Person {
 override def workLoad: Int = 6
}

class PhDStudent
 extends AnyRef
 with Student
 with Assistant { }

Person

PhDStudent

Student Assistant

3.4 Inheritance – Traits

78

Linearization
 The key concept to understanding the semantics of

Scala traits

 Bring supertypes of a type in a linear order
 For a class C, compute order from back to front:

1. Linearize superclass of C
2. Linearize supertraits of C (in the order of with-clauses)
Do not include types that have been linearized already

 Overriding and super-calls are defined according to
this linear order

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Traits

79

Linearization Example

Peter Müller – Concepts of Object-Oriented Programming

AnyRef

Person

Any

PhDStudent mix-in

extends Student Assistant

extends

extends

extends

class Person

trait Student extends Person

trait Assistant extends Person

class PhDStudent
 extends AnyRef
 with Student
 with Assistant

3.4 Inheritance – Traits

80

class Person {
 def workLoad: Int = 0
}

Overriding and Super-Calls

 PhDStudent’s workLoad
method is inherited from
Assitant
- Assistant’s workLoad

overrides Student’s
- Student’s workLoad

overrides Person’s
Peter Müller – Concepts of Object-Oriented Programming

trait Student extends Person {
 override def workLoad: Int = 5
}

trait Assistant extends Person {
 override def workLoad: Int = 6
}

Person

PhDStudent

Student Assistant

3.4 Inheritance – Traits

class PhDStudent
 extends AnyRef
 with Student
 with Assistant { }

81

Overriding and Super-Calls (cont’d)
 PhDStudent’s

workLoad overrides
mehods from Assistant
and Student
- Super-call refers to

predecessor in the
linear order, Assitant

 Now Assistant’s and
Student’s workLoad do
not override each other
- No super-calls allowed

Peter Müller – Concepts of Object-Oriented Programming

trait Student
 { def workLoad: Int = 5 }

trait Assistant
 { def workLoad: Int = 6 }

class PhDStudent extends AnyRef
 with Student with Assistant {
 def override workLoad: Int =
 super.workLoad
}

PhDStudent

Student Assistant

3.4 Inheritance – Traits

82

Repeated Inheritance

 Subclass inherits only
one copy of repeated
superclass
- Like Eiffel and virtual

inheritance in C++

Peter Müller – Concepts of Object-Oriented Programming

class A {
 var f: Int
 def foo = println("A::foo“)
}

trait B extends A {
 override def foo = println(“B::foo“)
}

trait C extends A {
 override def foo = println(“C::foo“)
}

class D extends A with B with C {
}

A

D

B C

3.4 Inheritance – Traits

83

Initialization Order

 Classes and traits are
initialized in the
reverse linear order

Peter Müller – Concepts of Object-Oriented Programming

class A {
 println("Constructing A")
}

trait B extends A {
 println("Constructing B")
}

trait C extends A {
 println("Constructing C")
}

class D extends A with B with C {
 println("Constructing D")
}

A

D

B C

3.4 Inheritance – Traits

84

Initialization of Repeated Superclasses
 Each constructor is called

exactly once
- Good if constructor has side-

effects
- Who gets to call the superclass

constructor?

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

 Constructors of superclasses of traits must not take
arguments
- Fields must be initialized in subclasses
- Support through abstract constants
- Programmers need foresight

3.4 Inheritance – Traits

85

Overriding and Super-Calls Revisited

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

class A {
 def foo = println("A::foo“)
}

trait B extends A {
 override def foo =
 { println(“B::foo“); super.foo }
}

trait C extends A {
 override def foo =
 { println(“C::foo“); super.foo }
}

class D extends A with B with C { }

def client (d: D) = { d.foo }

3.4 Inheritance – Traits

86

Stackable Specializations
 With traits,

specializations can be
combined in flexible
ways

 With multiple
inheritance, methods of
repeated superclasses
are called twice

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

A

D

B C

Specialized
method contains

super-call

Merged
method

3.4 Inheritance – Traits

87

Traits and Behavioral Subtyping

 Overriding of trait
methods depends on
order of mixing

 Behavioral subtyping
can be checked only
when traits are mixed in

Peter Müller – Concepts of Object-Oriented Programming

A

D

B C

trait B extends A {
 override def foo =
 { println(“B::foo“); super.foo }
}

trait C extends A {
 override def foo =
 { println(“C::foo“); super.foo }
}

class D extends A with B with C { }

class D extends A with C with B { }

3.4 Inheritance – Traits

88

Reasoning About Traits
 Traits are very dynamic,

which complicates static
reasoning

 Traits do not know how
their superclasses get
initialized

 Traits do not know which
methods they override

 Traits do not know where
super-calls are bound to

Peter Müller – Concepts of Object-Oriented Programming

trait B extends A {
 override def foo =
 { println(“B::foo“); super.foo }
}

trait C extends A {
 override def foo =
 { println(“C::foo“); super.foo }
}

3.4 Inheritance – Traits

89

Traits: Summary
 Traits partly solve problems of multiple inheritance

- Linearization resolves some issues with ambiguities and
initialization

 Other problems remain
- Resolving ambiguities between unrelated methods
- Initializing superclasses

 And new problems arise
- No specification inheritance between trait methods
- What to assume about superclass initialization and

super-calls
 Traits pose several research challenges

Peter Müller – Concepts of Object-Oriented Programming

3.4 Inheritance – Traits

	Concepts of �Object-Oriented Programming
	Reuse
	3. Inheritance
	Inheritance versus Subtyping
	Simulation of Subclassing with Delegation
	Simulation of Subclassing: Example
	Subtyping, Inheritance, and Subclassing
	Circles and Ellipses: Subtyping
	Circles and Ellipses: Inheritance
	Circles and Ellipses: Subclassing
	Sets and Bounded Sets
	Subtyping: BoundedSet <: Set
	Subtyping: BoundedSet <: Set (cont’d)
	Subtyping: Set <: BoundedSet
	Subtyping: Set <: BoundedSet (cont’d)
	Discussion
	Solution 1: Aggregation
	A Variant of the Problem
	Solution 2: Creating New Objects
	Solution 2 for BoundedSet
	Discussion of Solution 2
	Solution 3: Weak Superclass Contract
	Solution 4: Inheritance w/o Subtyping
	Aggregation vs. Private Inheritance
	3. Inheritance
	Method Binding
	Static vs. Dynamic Method Binding
	Fragile Baseclass Scenario
	Example 1: Selective Overriding
	Example 1: Selective Overriding (cont’d)
	Example 1: Discussion
	Example 2: Unjustified Assumptions
	Example 2: Unjustified Assumptions (c’d)
	Example 3: Mutual Recursion
	Example 3: Mutual Recursion (cont’d)
	Example 4: Additional Methods
	Example 4: Additional Methods (cont’d)
	Summary: Rules for Proper Subclassing
	Binary Methods
	Binary Methods: Example
	Solution 1: Explicit Type Tests
	Solution 2: Double Invocation
	Solution 2: Double Invocation (cont’d)
	Solution 3: Multiple Dispatch
	Solution 3: Multiple Dispatch (cont’d)
	Binary Methods: Summary
	3. Inheritance
	Motivation
	Simulating Multiple Inheritance
	Problems of Multiple Inheritance
	Ambiguities: Example
	Ambiguity Resolution: Explicit Selection
	Ambiguity Resolution: Merging Methods
	Merging Unrelated Methods
	Ambiguity Resolution: Renaming
	Repeated Inheritance: Example
	How Many Copies of Superclass Fields?
	Inheritance and Object Initialization
	Initialization and Non-Virtual Inheritance
	Initialization and Virtual Inheritance
	Initialization: C++ Solution
	C++ Solution: Example
	C++ Solution: Discussion
	Initialization: Eiffel Solution
	Eiffel Solution: Discussion
	Renaming Revisited
	Multiple Inheritance
	3. Inheritance
	Mixins and Traits
	Scala: Trait Example
	Scala: Declaration of Traits
	Scala: Mixing-in Traits
	Traits and Types
	Example: Thin and Thick Interfaces
	Ambiguity Resolution
	Ambiguity Resolution (cont’d)
	Ambiguity Resolution and Diamonds
	Linearization
	Linearization Example
	Overriding and Super-Calls
	Overriding and Super-Calls (cont’d)
	Repeated Inheritance
	Initialization Order
	Initialization of Repeated Superclasses
	Overriding and Super-Calls Revisited
	Stackable Specializations
	Traits and Behavioral Subtyping
	Reasoning About Traits
	Traits: Summary

