
Concepts of Object-Oriented
Programming

Prof. Dr. Peter Müller

Chair of Programming Methodology

Exercises 3: Java and other OO Languages

Concepts of Object-Oriented Programming

23. Java and other OO Languages

Agenda for Today

 Finish Java Overview

 Quick look at Scala, Squeak, C++, and C#

Concepts of Object-Oriented Programming

33. Java and other OO Languages

Core Concepts: Summary

 Core concepts of the OO-paradigm
- Object model
- Interfaces and encapsulation
- Classification and polymorphism

 Core concepts are abstract concepts to meet the
new requirements

 To apply the core concepts we need ways to
express them in programs

 Language concepts enable and facilitate the
application of the core concepts

Concepts of Object-Oriented Programming

43. Java and other OO Languages

Subtyping

 Substitution principle
Objects of subtypes can be used wherever objects
of supertypes are expected

 Subtype polymorphism
Program parts working with supertype objects work
as well with subtype objects

Concepts of Object-Oriented Programming

53. Java and other OO Languages

Inheritance versus Subtyping

 Subtyping expresses classification
 Inheritance is a means of code reuse
 Inheritance is usually coupled with subtyping

- Terminology: Subclassing = Subtyping + Inheritance

 Issues
- Subtyping without inheritance
- Inheritance without subtyping

Concepts of Object-Oriented Programming

63. Java and other OO Languages

 Subtype objects must fulfill contracts of
supertypes, but
- Subtypes can have stronger invariants
- Overriding methods of subtypes can have

weaker preconditions
stronger postconditions

than corresponding supertype methods

 Concept is called Behavioral Subtyping
 Consequence of substitution principle

Rules for Subtyping: Summary

Concepts of Object-Oriented Programming

73. Java and other OO Languages

CAT calls in Eiffel

 Changed Availability or Type
 Removing a feature from the interface
 Using a subtype for a parameter in an overriding

feature
 Behavior not specified
 Depends on the Eiffel compiler used

Concepts of Object-Oriented Programming

83. Java and other OO Languages

class SUPER

feature
 f is
 do
 print("Hello World!%N")
 end

 g(p: SUPER) is
 do
 print("g in SUPER%N")
 end
end -- class SUPER

Concepts of Object-Oriented Programming

93. Java and other OO Languages

class SUB

inherit SUPER undefine f redefine g end
feature {NONE}
 f is do
 print("My private message%N")
 end

feature
 g(p: SUB) is do
 print("g in SUB%N")
 p.subm
 end

 subm is do
 print("New feature of SUB called!%N")
 end

Concepts of Object-Oriented Programming

103. Java and other OO Languages

Using the classes

local
 sup: SUPER
 sup2: SUPER
 sub: SUB
do
 create sub
 sup := sub
 sup.f
 sup.g(sup)
 create sup2
 sup.g(sup2)
end

Concepts of Object-Oriented Programming

113. Java and other OO Languages

Exercise 3.1 – Behavioral Subtyping
 Java is invariant in the parameter types and type

arguments
 However, the behavior of a subtype could still violate

behavioral subtyping

class Super {
 void m(Object o) {/* always ok */ }
}

 class Sub extends Super {
 void m(Object o) {
 if (!o instanceof MyType)

 thrown new IllegalArgumentException();
 ... }}

Concepts of Object-Oriented Programming

123. Java and other OO Languages

Exercise 3.2

@Override
public boolean equals(Object obj) {
 if (obj instanceof StaticCallVariable) {
 StaticCallVariable scv =
 (StaticCallVariable) obj;
 return callingMethod.equals(scv.callingMethod)
 && calledMethod.equals(scv.calledMethod)
 && instrLocation == scv.instrLocation;
 }
 return false;
}

 Improved code:

Concepts of Object-Oriented Programming

133. Java and other OO Languages

Exercise 3.3: Overriding Example – Setup

class Upper {}
class Middle extends Upper {}
class Lower extends Middle {}

class Super {
void foo(Middle a1) {
 System.out.println(
"Super.foo("+a1+")");
}

}
class Sub extends Super {

void foo(Upper a1) {
 System.out.println(
"Sub.foo("+a1+")");
}

}

Super super1;

Sub sub1;

Lower lower1 =
new Lower();

Upper upper1 =
new Upper();

Concepts of Object-Oriented Programming

143. Java and other OO Languages

Overriding Example – Main

System.out.println("Calls on Super object:");
super1 = new Super();

1 super1.foo(lower1);
2 super1.foo(upper1);

System.out.println("\nCalls on Sub object in
Super reference:");

super1 = new Sub();
3 super1.foo(lower1);
4 super1.foo(upper1);

System.out.println("\nCalls on Sub object in
Sub reference:");

sub1 = new Sub();
5 sub1.foo(lower1);
6 sub1.foo(upper1);

Compilation Error!

Compilation Error!

Super: foo(Middle a1)
Sub: foo(Upper a1)

Concepts of Object-Oriented Programming

153. Java and other OO Languages

Overriding Example - Output

Calls on Super object:

1 Super.foo(Lower@765291)

Calls on Sub object in Super reference:

3 Super.foo(Lower@765291)

Calls on Sub object in Sub reference:

5 Super.foo(Lower@765291)

6 Sub.foo(Upper@26e431)

Super: foo(Middle a1)
Sub: foo(Upper a1)

Concepts of Object-Oriented Programming

163. Java and other OO Languages

Scala
 There are many more programming languages that

compile down to Java Bytecode
 One “hot” language is Scala

http://www.scala-lang.org/

 “Scala is a general purpose programming language
designed to express common programming patterns
in a concise, elegant, and type-safe way. It smoothly
integrates features of object-oriented and functional
languages. It is also fully interoperable with Java.”

Concepts of Object-Oriented Programming

173. Java and other OO Languages

Scala – Type Inference

case class MyPair[A, B](x: A, y: B);

object InferenceTest3 extends
Application {

 def id[T](x: T) = x
 val p = new MyPair(1, "scala")
 val q = id(1)
}

Concepts of Object-Oriented Programming

183. Java and other OO Languages

Scala – Pattern Matching

abstract class Tree
case class Branch(left: Tree,
 right: Tree) extends Tree
case class Leaf(x: Int) extends Tree

def sumLeaves(t: Tree): Int = t match {
 case Branch(l, r) =>
 sumLeaves(l) + sumLeaves(r)
 case Leaf(x) => x
}

Concepts of Object-Oriented Programming

193. Java and other OO Languages

Scala – Higher-Order Functions
class Decorator(left: String,right: String)
{
 def layout[A](x: A) =
 left + x.toString() + right
}

object FunTest extends Application {
 def apply(f: Int=>String, v: Int) = f(v)
 val decorator = new Decorator("[", "]")
 println(apply(decorator.layout, 7))
}

Concepts of Object-Oriented Programming

203. Java and other OO Languages

Squeak
 “Squeak is a highly portable, open-source Smalltalk

with powerful multimedia facilities. Squeak is the
vehicle for a wide range of projects from educational
platforms to commercial web application
development.”

 “Squeak is based on Smalltalk which was created
more than 35 years ago. Smalltalk defined the term
object orientation and is the first language in which
everything is built from objects.”

 http://squeak.org/

Concepts of Object-Oriented Programming

213. Java and other OO Languages

Squeak

Concepts of Object-Oriented Programming

223. Java and other OO Languages

C++

 ISO/IEC 14882 Standard from 1998
 Originally developed by Bjarne Stroustrup

“C++ is a general purpose programming language
with a bias towards systems programming that
- is a better C
- supports data abstraction

- supports object-oriented programming
- supports generic programming.”

Bjarne Stroustrup

Concepts of Object-Oriented Programming

233. Java and other OO Languages

Hello World in C++

#include <iostream>

int main() {

 std::cout << "Hello, world!\n";

}

Concepts of Object-Oriented Programming

243. Java and other OO Languages

Some Features of C++

 Everything that C has
 Adds OO features
 Operator overloading
 Flexible template mechanism
 Large Standard Template Library STL
 Huge library support, though not uniform

Concepts of Object-Oriented Programming

253. Java and other OO Languages

Inheritance and Method Binding in C++

 Multiple Inheritance
 Change of visibility of inherited classes
 Static method binding by default
 Dynamic method binding with virtual keyword
 Abstract classes by using pure virtual functions
 Method overriding and overloading

Concepts of Object-Oriented Programming

263. Java and other OO Languages

Example for C++

class Super {

 public:
 virtual void m() = 0;

}

class Sub : public Super, private Impl,
public IFace {

 public:
 void m();

}

void Sub::m() { cout << “Sub::m\n”; }

Concepts of Object-Oriented Programming

273. Java and other OO Languages

C++ References

http://www.research.att.com/~bs/

http://www.open-std.org/jtc1/sc22/wg21/

Concepts of Object-Oriented Programming

283. Java and other OO Languages

C#

“C# (pronounced "C Sharp") is a simple, modern,
object oriented, and type-safe programming
language.
It will immediately be familiar to C and C++
programmers.
C# combines the high productivity of Rapid
Application Development (RAD) languages and the
raw power of C++.“

ECMA-334 C# Language Specification

Concepts of Object-Oriented Programming

293. Java and other OO Languages

Hello World in C#

using System;

class Hello {

 static void Main() {

 Console.WriteLine("hello, world");

 }

}

Concepts of Object-Oriented Programming

303. Java and other OO Languages

Some Features of C#

Basically everything from Java, plus:
 Definable value types struct and enum
 Four kinds of parameters: value, reference (ref

keyword), and output parameters (out keyword),
and parameter arrays (params keyword)

 Properties
 Indexers
 Operator overloading
 Delegates & Events
 Unsafe code sections

Concepts of Object-Oriented Programming

313. Java and other OO Languages

Array types: Rectangular or Jagged

class Test {

 static void Main() {

 int[] a1; // single-dim array of int

 int[,] a2; // 2-dimensional array of int

 int[,,] a3; // 3-dimensional array of int

 int[][] j2; // "jagged" array: array of

 // (array of int)

 int[][][] j3; // array of (array of

 // (array of int))

 }

}

Concepts of Object-Oriented Programming

323. Java and other OO Languages

Inheritance and Method Binding in C#

 Single implementation inheritance
 Multiple interface subtyping
 Static method binding by default
 Dynamic method binding with virtual keyword
 Abstract classes and methods by using abstract

keyword
 Keywords override and new distinguish between

method overriding or hiding

Concepts of Object-Oriented Programming

333. Java and other OO Languages

Example for C#

using System;

public abstract class Super {

 public abstract void m();

}

public class Sub : Super, IFace {

 public [override | new] void m() {
 Console.WriteLine(“Sub.m”);
 }

}

Concepts of Object-Oriented Programming

343. Java and other OO Languages

C# References

http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cscon/
html/vcoricstartpage.asp

(base URL) + vclrfaquicksurveyof
 (one word) csharpfeatures_pg.asp

http://genamics.com/developer/
csharp_comparative.htm

http://www.go-mono.com/

Concepts of Object-Oriented Programming

353. Java and other OO Languages

Questions?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

