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Agenda for Today

 Finish Java Overview

 Quick look at Scala, Squeak, C++, and C#
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Core Concepts: Summary

 Core concepts of the OO-paradigm
- Object model
- Interfaces and encapsulation
- Classification and polymorphism

 Core concepts are abstract concepts to meet the 
new requirements

 To apply the core concepts we need ways to 
express them in programs

 Language concepts enable and facilitate the 
application of the core concepts
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Subtyping

 Substitution principle
Objects of subtypes can be used wherever objects 
of supertypes are expected 

 Subtype polymorphism
Program parts working with supertype objects work 
as well with subtype objects
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Inheritance versus Subtyping

 Subtyping expresses classification
 Inheritance is a means of code reuse
 Inheritance is usually coupled with subtyping

- Terminology: Subclassing = Subtyping + Inheritance

 Issues
- Subtyping without inheritance
- Inheritance without subtyping
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 Subtype objects must fulfill contracts of 
supertypes, but
- Subtypes can have stronger invariants
- Overriding methods of subtypes can have

weaker preconditions
stronger postconditions

than corresponding supertype methods

 Concept is called Behavioral Subtyping
 Consequence of substitution principle

Rules for Subtyping: Summary
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CAT calls in Eiffel

 Changed Availability or Type
 Removing a feature from the interface
 Using a subtype for a parameter in an overriding 

feature
 Behavior not specified
 Depends on the Eiffel compiler used



Concepts of Object-Oriented Programming

83. Java and other OO Languages

class SUPER

feature 
  f is
  do
    print("Hello World!%N")
  end

  g(p: SUPER) is
  do
    print("g in SUPER%N")
  end
end -- class SUPER
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class SUB

inherit SUPER undefine f redefine g end
feature {NONE}
  f is do
    print("My private message%N")
  end

feature
  g( p: SUB ) is do
    print("g in SUB%N")
    p.subm
  end

  subm is do
    print("New feature of SUB called!%N")
  end
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Using the classes

local
  sup:  SUPER
  sup2: SUPER
  sub:  SUB
do
  create sub
  sup := sub
  sup.f
  sup.g( sup )
  create sup2
  sup.g( sup2 )
end
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Exercise 3.1 – Behavioral Subtyping
 Java is invariant in the parameter types and type 

arguments
 However, the behavior of a subtype could still violate 

behavioral subtyping

class Super {
  void m(Object o) {/* always ok */ }
}

  class Sub extends Super {
  void m(Object o) {
    if (!o instanceof MyType)

        thrown new IllegalArgumentException();
    ... }}
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Exercise 3.2

@Override
public boolean equals(Object obj) {
  if (obj instanceof StaticCallVariable) {
    StaticCallVariable scv =
       (StaticCallVariable) obj;
    return callingMethod.equals(scv.callingMethod)
      && calledMethod.equals(scv.calledMethod)
      && instrLocation == scv.instrLocation;
  }
  return false;
}

 Improved code:
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Exercise 3.3: Overriding Example – Setup

class Upper {}
class Middle extends Upper {}
class Lower extends Middle {}

class Super {
void foo( Middle a1 ) {
  System.out.println(
"Super.foo("+a1+")");
}

}
class Sub extends Super {

void foo( Upper a1 ) {
  System.out.println(
"Sub.foo("+a1+")");
}

}

Super super1;

Sub   sub1;

Lower lower1 =
new Lower();

Upper upper1 =
new Upper();
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Overriding Example – Main

System.out.println("Calls on Super object:");
super1 = new Super();

1 super1.foo( lower1 );
2 super1.foo( upper1 );

System.out.println("\nCalls on Sub object in 
Super reference:");

super1 = new Sub();
3 super1.foo( lower1 );
4 super1.foo( upper1 );

System.out.println("\nCalls on Sub object in 
Sub reference:");

sub1 = new Sub();
5 sub1.foo( lower1 );
6 sub1.foo( upper1 );

Compilation Error!

Compilation Error!

Super: foo(Middle a1)
Sub:   foo(Upper a1)
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Overriding Example - Output

Calls on Super object:

1 Super.foo(Lower@765291)

Calls on Sub object in Super reference:

3 Super.foo(Lower@765291)

Calls on Sub object in Sub reference:

5 Super.foo(Lower@765291)

6 Sub.foo(Upper@26e431)

Super: foo(Middle a1)
Sub:   foo(Upper a1)
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Scala
 There are many more programming languages that 

compile down to Java Bytecode
 One “hot” language is Scala

http://www.scala-lang.org/

 “Scala is a general purpose programming language 
designed to express common programming patterns 
in a concise, elegant, and type-safe way. It smoothly 
integrates features of object-oriented and functional 
languages. It is also fully interoperable with Java.”
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Scala – Type Inference

case class MyPair[A, B](x: A, y: B);

object InferenceTest3 extends 
Application {

  def id[T](x: T) = x
  val p = new MyPair(1, "scala")
  val q = id(1)
}
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Scala – Pattern Matching

abstract class Tree
case class Branch(left: Tree,
           right: Tree) extends Tree
case class Leaf(x: Int) extends Tree

def sumLeaves(t: Tree): Int = t match {
  case Branch(l, r) =>
       sumLeaves(l) + sumLeaves(r)
  case Leaf(x) => x
}
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Scala – Higher-Order Functions
class Decorator(left: String,right: String)
{
  def layout[A](x: A) =
    left + x.toString() + right
}

object FunTest extends Application {
  def apply(f: Int=>String, v: Int) = f(v)
  val decorator = new Decorator("[", "]")
  println(apply(decorator.layout, 7))
}
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Squeak
 “Squeak is a highly portable, open-source Smalltalk 

with powerful multimedia facilities. Squeak is the 
vehicle for a wide range of projects from educational 
platforms to commercial web application 
development.”

 “Squeak is based on Smalltalk which was created 
more than 35 years ago. Smalltalk defined the term 
object orientation and is the first language in which 
everything is built from objects.”

 http://squeak.org/
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Squeak
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C++

 ISO/IEC 14882 Standard from 1998
 Originally developed by Bjarne Stroustrup

“C++ is a general purpose programming language 
with a bias towards systems programming that 
- is a better C 
- supports data abstraction 

- supports object-oriented programming 
- supports generic programming.”

Bjarne Stroustrup
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Hello World in C++

#include <iostream>

int main() {

   std::cout << "Hello, world!\n";

}
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Some Features of C++

 Everything that C has
 Adds OO features
 Operator overloading
 Flexible template mechanism
 Large Standard Template Library STL
 Huge library support, though not uniform
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Inheritance and Method Binding in C++

 Multiple Inheritance
 Change of visibility of inherited classes
 Static method binding by default
 Dynamic method binding with virtual keyword
 Abstract classes by using pure virtual functions
 Method overriding and overloading
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Example for C++

class Super {

   public:
    virtual void m() = 0;

}

class Sub : public Super, private Impl, 
public IFace {

   public:
    void m();

}

void Sub::m() { cout << “Sub::m\n”; }
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C++ References

http://www.research.att.com/~bs/

http://www.open-std.org/jtc1/sc22/wg21/
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C#

“C# (pronounced "C Sharp") is a simple, modern, 
object oriented, and type-safe programming 
language.
It will immediately be familiar to C and C++ 
programmers. 
C# combines the high productivity of Rapid 
Application Development (RAD) languages and the 
raw power of C++.“

ECMA-334 C# Language Specification 
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Hello World in C#

using System;

class Hello {

   static void Main() {

     Console.WriteLine("hello, world");

   }

} 
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Some Features of C#

Basically everything from Java, plus:
 Definable value types struct and enum
 Four kinds of parameters: value, reference (ref 

keyword), and output parameters (out keyword), 
and parameter arrays (params keyword)

 Properties
 Indexers
 Operator overloading
 Delegates & Events
 Unsafe code sections
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Array types: Rectangular or Jagged

class Test {

 static void Main() {

    int[] a1;   // single-dim array of int

    int[,] a2;  // 2-dimensional array of int

    int[,,] a3; // 3-dimensional array of int

    int[][] j2; // "jagged" array: array of

                // (array of int)

    int[][][] j3; // array of (array of

                  // (array of int))

  }

} 
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Inheritance and Method Binding in C#

 Single implementation inheritance
 Multiple interface subtyping
 Static method binding by default
 Dynamic method binding with virtual keyword
 Abstract classes and methods by using abstract 

keyword
 Keywords override and new distinguish between 

method overriding or hiding
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Example for C#

using System;

public abstract class Super {

   public abstract void m();

}

public class Sub : Super, IFace {

   public [override | new] void m() {
    Console.WriteLine(“Sub.m”);
 }

}
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C# References

http://msdn.microsoft.com/library/
default.asp?url=/library/en-us/cscon/
html/vcoricstartpage.asp

(base URL) + vclrfaquicksurveyof
 (one word)  csharpfeatures_pg.asp

http://genamics.com/developer/
csharp_comparative.htm

http://www.go-mono.com/
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Questions?
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