
Concepts of Object-Oriented Programming

 1 / 2

Exercise Sheet 13

1. Given is the following interface, which is supposed to represent a set of integers.

interface IntSet {

 // requires !has(i)
 // ensures has(i)
 void add(int i);

 // requires has(i)
 // ensures !has(i)
 void remove(int i);

 boolean isEmpty();
 boolean has(int i);
}

 a. Implement class ArrayIntSet that realizes the interface by storing the integers in an
 array. Specify the class by invariants, pre- and postconditions, and modifies clauses.

 b. Argue that all assertions and preconditions of called methods hold in the client code
 below. Strengthen your specification in class ArrayIntSet in case it proved to be too
 weak.

 // requires iset != null

// requires iset.has(0) && iset.has(5) && !iset.has(10)
void foo(ArrayIntSet iset) {
 assert iset.has(5);
 iset.remove(0);
 assert !iset.has(10);
 assert iset.has(5);
 iset.add(10);
 assert iset.has(5);

 }

 c. Does your specification in ArrayIntSet preserve information hiding? If not, rewrite
 the specification accordingly.

Concepts of Object-Oriented Programming

 2 / 2

2. Given is the following class:

class List {
 int i;
 List next;
 // invariant next != null => i == next.i

 // increment i in the whole list
 void inc() { … }
}

a. Write a formal specification for method inc().
b. Write down what can be assumed and what needs to be proven for inc() in the
 standard invariant semantics.
c. Write a recursive implementation of the method inc().
d. Verify if the implementation fulfills the assertions defined in b.
e. If not, write an alternative solution that fulfills the assertions.
f. Reconsider your previous solutions if the refined invariant semantics is applied.

3. Homework.

The solution in Java to implement the observer pattern is to have the observers extend and
implement the java.util.Observer interface. Program an observer pattern that uses
reflection and removes the necessity of using a pre-defined interface.

