Konzepte objektorientierter
Programmierung

Prof. Dr. Peter Muller

Chair of Programming Methodology

Exercises 1: Introduction

1. Introduction

Who's talking?

Werner M. Dietl
Werner .Dietl@inf.ethz.ch
RZ F5

Course homepage:
http://pm.ethz.ch/teaching/as2008/K0O0P

Eidgendssisehe Technische Hoshschule Zhrich
Swiss Bederal Irsfitate of Techngla

Konzepte objektorientierter Programmierung

1. Introduction

1. Introduction for t

N4 vl -

.:T
ITI
f'D
O

= Content
= Examination
= Simulating OO Iin C — Alternatives

N
D
)

Konzepte objektorientierter Programmierung

1. Introduction

Content

= EXxercises present...

= ... more examples

= ... other programming languages

= ... research papers

= Exercises open for questions regarding the lecture

= You are encouraged to bring your laptop!

Konzepte objektorientierter Programmierung B

1. Introduction

Examination
= Written exam In the exam period

= Exam will be in English

= Content of lectures and exercises
= Type: 2V 1U

= Credits for Students: 5

= Credits for PhDs: 4 (with exam) or 3 (without exam)

Konzepte objektorientierter Programmierung Eidgs

1. Introduction— OO in C

Systematic Look at Simulating OO Iin C

= Subtyping
= Attribute and Method
Access

* |[nheritance
= Dynamic Binding
= Overriding

= Calling Overridden
Methods

= Multiple Subtyping

public class Student

}

extends Person {

public Student(String name,

int reg) {
super(name);
this.reg num = reg;

}

public void print() {
super.print();
System.out.printin(
“"No: “ + reg_num);

}

protected Int reg_num,;

Konzepte objektorientierter Programmierung

1. Introduction — OO in C — Lecture Example

Simulating OO Iin C — Lecture Example

» Use a struct for each class and function pointers
for methods

= Each subclass needs to exactly copy the base
class attribute and method layout

= We can change function parameters to the subtype
structure

= Dynamic method binding works, because
whichever method is at the named memory location
will be executed struct sPerson {

String *name;

void Cprint)(Person*);
String* (*lastName)(Person*);

};

ETH

Konzepte objektorientierter Programmierung Eignadeahe Tochte Sovbrsul T

1. Introduction — OO in C — Lecture Example 8

How does this work?

Pointers to Superclass

Superclass
Data
Additional
Subclass —
Data t

Konzepte objektorientierter Programmierung Exdguadssivahe Tashnisshe Hasbeshule Eguch

Swiss Eederal Insfilate of Teehnalogy Zurigh

1. Introduction — OO in C — Lecture Example

How can this go wrong?

= Lack of Type Safety!

= |f there is an incorrect
structure in the array
(e.g. order of elements
was changed)

= |tis Interpreted as
though it is of the
superclass type

= Lots of trouble possible:

access to invalid data,
arbitrary function calls

Konzepte objektorientierter Programmierung

1. Introduction — OO in C — Lecture Example 10

Example of incorrect behavior

= \We have a new Animal printall result:
structure: . R
strucg ?Animal)E - Name: Max Gans
Vol *print) (Animal ™) ; -
void (*bite)(Animal*)> Nos T
String *name; -— 1 ———-
¥ Name: Karl Heinrich Huber

——_—— 2 __
Name: Meister Klug
No of PhDs: 2

* |t also has a print method

= Therefore we try to put it
Into the Person array and

pass it to the printAll -——= 3 ----

method Animal Fifi bites your arm
= The bite method is called! off!
= A lot worse could happen! Bye.

Konzepte objektorientierter Programmierung B

1. Introduction — OO in C — Lecture Example

Example of wrong behavior:

What we think to have: What there really is:
struct sPerson { struct sAnimal {
String *name; void (Cprint) (Animal®);

void (*print)(Person*); = void (*bite)Animal™);
String* (*lastName)(Person*); String *name;

T T

Why didn’t the compiler catch this? | Note: It's not simply that print

d = ProfC("Meister Klug”, 2): IS the second item in Person,
_ e ’ ’ therefore we call the second
a = AnimalC(C"'Fifi1");

item in Animal!

test[2] = (Person*) d; The data layout in memory is
test[3] = (Person*) a; Important.

Konzepte objektorientierter Programmierung e

1. Introduction — OO in C — Lecture Example

12

Analysis of this Solution

= Subtyping only by imposing the same data layout
= Member access via struct

= |[nheritance only by explicitly calling other functions
= Dynamic Binding because of same data layout

= Multiple subtyping not possible

= Very error prone and tedious to write

Konzepte objektorientierter Programmierung

1. Introduction — OO in C — Alternative Implementation 13

OO In C — Alternative Implementation

= Basic idea: reuse the struct of the superclass
= Person Is the same as In the last example

»= Child classes simply use the superclass structure
as the first data member:

struct sStudent {
Person pers;

INt reg_num;

}

= Easy for multiple levels of single subtyping

Konzepte objektorientierter Programmierung e

1. Introduction — OO in C — Alternative Implementation 14

How do we access the components?

= Nice and clean with component access:

inttStudent(&(this->stud), n, reqg).;

this->stud.pers.print =
(void (*)(Person *)) printGraduate;

= Flatten the hierarchy by a cast:

inttStudent((Student *) this, n, reg);
((Person *) this)->print =
(void (*)(Person *)) printBachelor;

Konzepte objektorientierter Programmierung Fdye

1. Introduction — OO in C — Alternative Implementation 15

How does this work?

Pointers to Base Objects

Base Object
Data
Additional
Subclass —
Data t

Konzepte objektorientierter Programmierung Exdguadssivahe Tashnisshe Hasbeshule Eguch

Swiss Eederal Insfilate of Teehnalogy Zurigh

1. Introduction — OO0 in C 16

Analysis of this Solution

= Subtyping still only by imposing the same data layout

= But by reusing the existing structures we do not have to
type as much and are less likely to make errors

= Member access via struct, either with casts or
subcomponent access

* |nheritance only by explicitly calling other functions
= Dynamic Binding because of same data layout
= Multiple subtyping not possible

= Basic lack of type safety, structures are cast around as
programmer thinks is best

Konzepte objektorientierter Programmierung Eidge

1. Introduction — OO0 in C 17

Other Solutions

= The mapping of OO into C could be spun even
further

= The first C++ and Objective-C compilers created C-
code instead of binary code

» The Eiffel compiler also creates C code

= For some historical comments also see OOSE 34.4
pages 1106 ff.

Konzepte objektorientierter Programmierung

1. Introduction — OO in Java

18

Java Solution Revisited

= Java provides all the language constructs needed
for Object-Oriented programming

= Keyword class introduces a new data structure
consisting of attributes and methods

= Classes can inherit from each other:
public class Graduate extends Student {

= Similar to including the structure of the superclass
In the new class

= Safe types with subtyping, no need for insecure
casting

Konzepte objektorientierter Programmierung B

1. Introduction — OO in Java

19

Java Solution Revisited

= Polymorphic method calls

= Encapsulation

» |[nformation Hiding

= Many other advantages that we will hear of later

Konzepte objektorientierter Programmierung B

