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29. Ownership

Exercise 1 – LinkedList
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39. Ownership

Exercise 1 – Entries

class Entry {

readonly Object element;readonly Object element;

peer Entry previous, next;

Entry( readonly Object o,

peer Entry p peer Entry n ) {peer Entry p, peer Entry n ) {

element = o;

previous = p;previous = p;

next = n; }

}
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49. Ownership

Exercise 1 – LinkedList
public class LinkedList {
private rep Entry header;private rep Entry header;
private int size;

public LinkedList() {
header =

new rep Entry(null, null, null);
header.next = header;
header.previous = header;
size = 0;
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59. Ownership

Exercise 1 – LinkedList

public void add( readonly Object o ) {public void add( readonly Object o ) {

rep Entry newE =
new rep Entry(o header header next);new rep Entry(o,header,header.next);

header.next.previous = newE;

header ne t ne Eheader.next = newE;

++size;

}}
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69. Ownership

Exercise 1 – LinkedList

public pure readonly Object get(int idx){public pure readonly Object get(int idx){

if( idx > size ) return null;

readonly Entry e = header.next;

for( int i=0; i<idx; ++i ) {for( int i=0; i<idx; ++i ) {
e = e.next; }

return e element;return e.element;

}
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79. Ownership

Exercise 1 – LinkedList

public pure peer ReadIterator
getReadIterator() {getReadIterator() {

return new peer ReadIterator( 
header );header );

}

public pure peer DeleteIteratorpublic pure peer DeleteIterator
getDeleteIterator() {

return new peer DeleteIterator(return new peer DeleteIterator( 
this, header );

}
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89. Ownership

Exercise 1 – ReadIterator

LinkedList
ReadIt
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99. Ownership

Exercise 1 – ReadIterator
public class ReadIterator {
public ReadIterator(readonly Entry h)public ReadIterator(readonly Entry h) 
{
// the header is a dummy that is y
// never null
current = h;
header = h;
}
public pure boolean hasNext() {
return current.next != header; }

Concepts of Object-Oriented Programming



109. Ownership

Exercise 1 – ReadIterator
public void moveNext() {

current = current.next;current  current.next;

}

public pure readonly Object element() {

return current.element;

}

protected readonly Entry current;

t t d d l h dprotected readonly Entry header;

}
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119. Ownership

Exercise 1 – DeleteIterator

LinkedList
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129. Ownership

Exercise 1 – LinkedList

// precondition that the node belongs to us// precondition that the node belongs to us

/*@ requires e.owner == this; @*/

protected void delete( readonly Entry e ) {

rep Entry re = (rep Entry) e;

if( re.previous != null )
re.previous.next = re.next;

if( re.next != null )
i ire.next.previous = re.previous;

--size;

}
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139. Ownership

Exercise 1 – DeleteIterator
public class DeleteIterator 

extends ReadIterator {

public DeleteIterator( peer LinkedList l,
readonly Entry h ) {

super( h ); list = l;
}

public void delete() {public void delete() {

list.delete(current);

current = current.next;
}

private peer LinkedList list;
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149. Ownership

Exercise 1 – LinkedList

Entries are encapsulated
Readonly access possible

LinkedList

DeleteIt

Readonly access possible
No external modifications
It t h t d l t

Entry

Iterator has to delegate
the modification to
the LinkedList Entry Entry Entrythe LinkedList
LinkedList is in control
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159. Ownership

Exercise 2: List with merge
class Entry {

Object element;j
Entry previous, next;
Entry(Object o, Entry p, Entry n ) {...}

}

class LinkedList {class LinkedList {
private Entry header;
...

}
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169. Ownership

Exercise 2: List with merge
class Entry {

readonly Object element;y j
peer Entry previous, next;
Entry(readonly Object o,

peer Entry p, peer Entry n ) {...}
}

class LinkedList {
rep private Entry header;
...

}
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179. Ownership

Exercise 2 
public void merge(LinkedList other) {

if (other.isEmpty()) {return;}p y

Entry first = other.getHeader().next;
iEntry last = other.getHeader().previous;     

header.previous.next = first;
last.next = header;last.next  header;
first.previous= header.previous;
header.previous = last;        

other.Init();
}}
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189. Ownership

Exercise 2: merge 
List1 List2
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Entry Entry…
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199. Ownership

Exercise 2: modified merge 
List1
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Entry Entry… Entry' Entry'…Entry1 Entryn
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209. Ownership

Exercise 2 
public void merge(LinkedList other) {

if (other.isEmpty()) {return;}p y

readonly Entry entry =
other.getHeader().next;       

while(entry != other.getHeader()){
add(entry.element);add(entry.element);
entry = entry.next; 

}
other.Init();

}
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219. Ownership

Exercise 3
down
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down
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229. Ownership

Exercise 3.a

► l d► peer rep lost ro down
self peer rep lost ro down
peer peer down lost ro downp p
rep rep down lost ro down
lost lost lost lost ro lost
ro lost lost lost ro lostro lost lost lost ro lost
down down down lost ro down
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239. Ownership

Exercise 3.b
readonly

lost

down

reppeer

self
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249. Ownership

Exercise 3.c
The field read The field write

is correctly typed if

v = exp.f;

is correctly typed if

exp.f = v;

s co ect y typed
- exp is correctly typed
- τ(exp) ► τ(f) <: τ(v)

y yp
- exp is correctly typed
- τ(v) <: τ(exp) ► τ(f)

l t t i ( ) ► (f)- lost not in τ(exp) ► τ(f)
- down not in τ(exp) ► τ(f)

Analogous rules are used for method invocations
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259. Ownership

Questions?Questions?
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