
Konzepte objektorientierter
ProgrammierungProgrammierung

P f D P t MüllProf. Dr. Peter Müller

Chair of Programming MethodologyChair of Programming Methodology

Exercises 7: Aliasing

27. Aliasing

Home-work 1

class Exa {
/* invariant \type(a) <: A; *//* invariant \type(a) <: A; */
Object a;

/* requires \type(c) <: C; */
/ \ \ //* ensures \type(\result) <: B; */
Object m(Object c) { ... }

}

Temporary violations of invariant possible!

Concepts of Object-Oriented Programming

37. Aliasing

Home-work 2

class Super {
B m(C c) { }B m(C c) { ... }

}

class Sub extends Super {
E m(F c) { ... }

}

C <: F
E <: B

Concepts of Object-Oriented Programming

E <: B

47. Aliasing

Home-work 2

Assume: F <: C, and B <: E

Super s = new Sub();
C c1 = new C();C c1 = new C();
B b1 = s.m(c1);

Concepts of Object-Oriented Programming

57. Aliasing

Exercise 1
class Motor {

boolean isOK() {/*...*/ }
b l i i (){/* */ }boolean isRunning(){/*...*/ }
void start() { /*...*/ }
...

}}
class Wheel {

void deflate() { /*...*/ }
/ /boolean isOK() {/*...*/ }

...
}
class MotorTrouble extends Exception {

public Motor motor;
public MotorTrouble(Motor m) {

t

Concepts of Object-Oriented Programming

motor = m;
}

}

67. Aliasing

Exercise 1 – The Invariant

public class Car {

/*@ invariant engine.isRunning() ==>
@ (\f ll i t i@ (\forall int i;
@ i >= 0 && i < wheels.length;
@ wheels[i] != null &&@ wheels[i] ! null &&
@ wheels[i].isOK())
@*/

Concepts of Object-Oriented Programming

77. Aliasing

Problem 1 – Public Fields
public class Car {
public Motor engine;public Motor engine;
public Wheel[] wheels;

Car c = new Car();Car c = new Car(...);
c.start();
// remove a wheel -> breaks invariant// remove a wheel > breaks invariant
c.wheels[0] = null;

Concepts of Object-Oriented Programming

87. Aliasing

Solution for Problem 1

Use proper Information Hiding
Make all fields private or protectedMake all fields private or protected

Concepts of Object-Oriented Programming

97. Aliasing

Problem 2 – Capturing
public class Car {
public Car(Motor m, Wheel[] w) {public Car(Motor m, Wheel[] w) {

engine = m;
wheels = w;

}

Motor m = new Motor();Motor m = new Motor();
Car c = new Car(m, w);
c.start();c.start();
// stop the motor, car still thinks it runs
m.stop();

Concepts of Object-Oriented Programming

107. Aliasing

Solution for Problem 2 – Capturing

Never directly store parameters as internal state
Clone the given objectsClone the given objects
For arrays you need a deep copy, otherwise the
array elements might still be aliasedarray elements might still be aliased

Concepts of Object-Oriented Programming

117. Aliasing

Problem 3 – Leaking through Return Value
public Motor getMotor() {

return engine; }return engine; }

public Wheel[] getWheels() {
return wheels; }

Car c = new Car(m w);Car c = new Car(m, w);
c.start();
// change wheel while driving// change wheel while driving
c.getWheels()[0] = new Wheel();

Concepts of Object-Oriented Programming

127. Aliasing

Solution for Problem 3 – Leaking

Never return a reference to the internal state to the
outsideoutside
Always clone the objects
Again for arrays you need a deep copyAgain for arrays you need a deep copy

Concepts of Object-Oriented Programming

137. Aliasing

Problem 4 – Leaking through Exception
public void start() throws MotorTrouble {
if(engine == null || !engine.isOK()) {if(engine null || !engine.isOK()) {
throw new MotorTrouble(engine);

} else { engine.start(); }

try { }

}

try { ... }
catch(MotorTrouble mt) {
mt.motor.reset();mt.motor.reset();

}

Concepts of Object-Oriented Programming

147. Aliasing

Solution for Problem 4 – Exceptions

Exceptions can give access to internal state
Examine what information you really want to shareExamine what information you really want to share
Maybe only pass a String with this information

Concepts of Object-Oriented Programming

157. Aliasing

Invariants for Java (Simple Solution)(p)
Assumption: The invariants of object X may only
refer to private attributes of Xrefer to private attributes of X

For each invariant we have to showFor each invariant, we have to show
- That all exported methods and constructors of class T

preserve the invariants of all objects of T and T’s p j
subclasses

- That all constructors in addition establish the invariants
of the new objectof the new object

Concepts of Object-Oriented Programming

167. Aliasing

Invariants can refer to all attributes
public class Super {

private int f;

public class Sub extends Super {

}

public class Sub extends Super {

/*@ invariant f > 0; @*// @ invariant f > 0; @ /

}

Concepts of Object-Oriented Programming

177. Aliasing

Exercise 2.a: Invariants for Java
(Extended Solution)

Assumption: The invariants of object X may refer to
private and default attributes of X

For each invariant, we have to show
- That all exported methods and constructors of class T

th i i t f ll bj t f ll l ipreserve the invariants of all objects of all classes in
T’s package and all subclasses of classes in T’s
package

- That all constructors in addition establish the invariants
of the new object

Concepts of Object-Oriented Programming

187. Aliasing

Exercise 2.b: Invariants of T objects

public class T {public class T {
/* default */ int f;

/*@ invariant f > 0; @*/

void violate() { f = -10; }
}

Concepts of Object-Oriented Programming

197. Aliasing

Exercise 2.b: Invariants of objects in T’s package
public class A {
/* default */ int f;/ default / int f;

/*@ invariant f > 0; @*/

public class T {

}

public class T {
private A myA;

void violate() { myA.f = -10; }
}

Concepts of Object-Oriented Programming

207. Aliasing

Exercise 2.b:
I i t f bj t f T’ b lInvariants of objects of T’s subclasses
public class T {
/* d f lt */ i t f/* default */ int f;

void violate() { f = -10; }void violate() { f 10; }
}

public class SubT extends T {

/*@ i i t f > 0 @*//*@ invariant f > 0; @*/

}

Concepts of Object-Oriented Programming

}

217. Aliasing

Exercise 2.b:
S b l f ll l i T’ kSubclasses of all classes in T’s package
public class A {
/* default */ int f; }/* default */ int f; }

public class SubA extends Apublic class SubA extends A
/*@ invariant f > 0; @*/ }

public class T {
private A myA;

void violate() { myA.f = -10; }
}

Concepts of Object-Oriented Programming

}

227. Aliasing

Exercise 3.a

B should provide at least as much access as A

class A {
public invariant f > 0;
private int f;

}

l B t d A{class B extends A{
...
// invariant f > 0 must holds
// B can not access f// B can not access f

}

Concepts of Object-Oriented Programming

237. Aliasing

Exercise 3.b

A should provide at least as much access as B

class A {
private invariant f > 0;p
public int f;

}

class B extends A{
...
// B can change f
// i i f 0 b h k d// invariant f > 0 can not be checked

}

Concepts of Object-Oriented Programming

