
Concepts of Object-Oriented Programming

 1 / 2

Exercise Sheet 12

1. Given is the following class, and beside a translation of method m to byte code (some

details were left out). The command ldc pushes a reference to the specified constant on the

stack. Answer the questions below with detailed explanations to confirm your answer.

class Example2 {

 void m(Object arg) {

 Object local;

 local = “Hello”;

 local.concat(“ World!”);

 arg.concat(“Ohh!”);

 …

 }
}

A. Is there a problem with the use of the local variable local in the sourcecode?

B. Is there a problem with the use of the local variable local in the bytecode

verification?

C. Is there a problem with the use of the parameter arg in the sourcecode?

D. Is there a problem with the use of the parameter arg in the bytecode verification?

2. Given are the following classes and interfaces:

interface IFace {

 void m();

}

class Cl1 implements IFace {

 public void m() { System.out.println("Cl1.m"); }

}

class Cl2 implements IFace {

 public void m() { System.out.println("Cl2.m"); }

}

public class Test1 {

 public static void main(String[] args) {

 xxx(true);

 xxx(false);

 }

 public static void xxx(boolean param) {

 IFace iface = null;

 if(param) { iface = new Cl1();}

else { iface = new Cl2(); }

 iface.m(); }}

A. What type will be calculated for the variable iface of the method xxx during the

bytecode verification?

void m(java.lang.Object)

 0: ldc #2; //String “Hello”

 2: astore 2

 3: aload 2

 4: ldc #3; //String “ World!”

 6: invokevirtual String.concat (…)

 10: aload 1

 11: ldc #5; //String “Ohh!”

 13: invokevirtual String.concat (…)

Concepts of Object-Oriented Programming

 2 / 2

B. When will the method call iface.m() be checked: during compilation, bytecode

verification, or execution?

C. How would your answer to B change if IFace was a class instead of an interface?

What if it was an abstract class?

D. If an attacker was to rewrite the method call iface.m()in the corresponding bytecode

to a nonexistent call, say iface.funny(), what effect would this have on the

bytecode verification?

E. How would your answer change in D if IFace was a class instead of an interface?

3. For each of the following programs, you must explain the difference between the Java

compiler and the bytecode verifier. Assume that the declared class is of type C. For the

bytecode examples you must explain the verification step by step. Be detailed!

 Java Program Bytecode translation

Program 1 int v = 5;

v = this;

01: iconst 5

02: istore 1

03: aload 0

04: astore 1

Program 2

int v = 5;

v = this;

v = v + 1;

01: iconst 5

02: istore 1

03: aload 0

04: astore 1

05: iload 1

06: iconst 1

07: iadd

08: istore 1

4. Given the example from the lecture:

Where types(start) = ([],[D,E,T]) and D <: C and E <: C.

A. Assume that the Java compiler has provided the type assignment types(body)=

([Object],[C,C,T]). Verify that the program is still type safe. Give more

possibilities for the type assignment for body that would preserve type safety.

B. Assume that instruction 4 has been changed to an aload 0 and then a virtual method call

D.m. Which of your type assignments in question A would guarantee type safety?

C. Assume that instruction 4 has been changed to an aload 2 and then a virtual method call

C.n. Which of your type assignments would guarantee that this call will be type safe?

0: aload 0

1: astore 2

2: aload 1

3: goto 1

4: return

start:

body:

