
19. Ownership

Concepts of Object-Oriented
ProgrammingProgramming

Prof Dr Peter MüllerProf. Dr. Peter Müller

Chair of Programming Methodologyg g gy

E i 9 O hiExercises 9: Ownership

29. Ownership

Exercise 1 – LinkedList

LinkedList

Entry

Entry Entry Entry

Concepts of Object-Oriented Programming

39. Ownership

Exercise 1 – Entries

class Entry {

readonly Object element;readonly Object element;

peer Entry previous, next;

Entry(readonly Object o,

peer Entry p peer Entry n) {peer Entry p, peer Entry n) {

element = o;

previous = p;previous = p;

next = n; }

}

Concepts of Object-Oriented Programming

}

49. Ownership

Exercise 1 – LinkedList
public class LinkedList {
private rep Entry header;private rep Entry header;
private int size;

public LinkedList() {
header =

new rep Entry(null, null, null);
header.next = header;
header.previous = header;
size = 0;

Concepts of Object-Oriented Programming

}

59. Ownership

Exercise 1 – LinkedList

public void add(readonly Object o) {public void add(readonly Object o) {

rep Entry newE =
new rep Entry(o header header next);new rep Entry(o,header,header.next);

header.next.previous = newE;

header ne t ne Eheader.next = newE;

++size;

}}

Concepts of Object-Oriented Programming

69. Ownership

Exercise 1 – LinkedList

public pure readonly Object get(int idx){public pure readonly Object get(int idx){

if(idx > size) return null;

readonly Entry e = header.next;

for(int i=0; i<idx; ++i) {for(int i=0; i<idx; ++i) {
e = e.next; }

return e element;return e.element;

}

Concepts of Object-Oriented Programming

79. Ownership

Exercise 1 – LinkedList

public pure peer ReadIterator
getReadIterator() {getReadIterator() {

return new peer ReadIterator(
header);header);

}

public pure peer DeleteIteratorpublic pure peer DeleteIterator
getDeleteIterator() {

return new peer DeleteIterator(return new peer DeleteIterator(
this, header);

}

Concepts of Object-Oriented Programming

}

89. Ownership

Exercise 1 – ReadIterator

LinkedList
ReadIt

Entry

ReadIt

Entry Entry Entry

Concepts of Object-Oriented Programming

99. Ownership

Exercise 1 – ReadIterator
public class ReadIterator {
public ReadIterator(readonly Entry h)public ReadIterator(readonly Entry h)
{
// the header is a dummy that is y
// never null
current = h;
header = h;
}
public pure boolean hasNext() {
return current.next != header; }

Concepts of Object-Oriented Programming

109. Ownership

Exercise 1 – ReadIterator
public void moveNext() {

current = current.next;current current.next;

}

public pure readonly Object element() {

return current.element;

}

protected readonly Entry current;

t t d d l h dprotected readonly Entry header;

}

Concepts of Object-Oriented Programming

119. Ownership

Exercise 1 – DeleteIterator

LinkedList

DeleteIt

ReadIt

Entry

ReadIt

Entry Entry Entry

Concepts of Object-Oriented Programming

129. Ownership

Exercise 1 – LinkedList

// precondition that the node belongs to us// precondition that the node belongs to us

/*@ requires e.owner == this; @*/

protected void delete(readonly Entry e) {

rep Entry re = (rep Entry) e;

if(re.previous != null)
re.previous.next = re.next;

if(re.next != null)
i ire.next.previous = re.previous;

--size;

}

Concepts of Object-Oriented Programming

}

139. Ownership

Exercise 1 – DeleteIterator
public class DeleteIterator

extends ReadIterator {

public DeleteIterator(peer LinkedList l,
readonly Entry h) {

super(h); list = l;
}

public void delete() {public void delete() {

list.delete(current);

current = current.next;
}

private peer LinkedList list;

Concepts of Object-Oriented Programming

}

149. Ownership

Exercise 1 – LinkedList

Entries are encapsulated
Readonly access possible

LinkedList

DeleteIt

Readonly access possible
No external modifications
It t h t d l t

Entry

Iterator has to delegate
the modification to
the LinkedList Entry Entry Entrythe LinkedList
LinkedList is in control

Concepts of Object-Oriented Programming

159. Ownership

Exercise 2: List with merge
class Entry {

Object element;j
Entry previous, next;
Entry(Object o, Entry p, Entry n) {...}

}

class LinkedList {class LinkedList {
private Entry header;
...

}

Concepts of Object-Oriented Programming

169. Ownership

Exercise 2: List with merge
class Entry {

readonly Object element;y j
peer Entry previous, next;
Entry(readonly Object o,

peer Entry p, peer Entry n) {...}
}

class LinkedList {
rep private Entry header;
...

}

Concepts of Object-Oriented Programming

179. Ownership

Exercise 2
public void merge(LinkedList other) {

if (other.isEmpty()) {return;}p y

Entry first = other.getHeader().next;
iEntry last = other.getHeader().previous;

header.previous.next = first;
last.next = header;last.next header;
first.previous= header.previous;
header.previous = last;

other.Init();
}}

Concepts of Object-Oriented Programming

189. Ownership

Exercise 2: merge
List1 List2

Header

Entry Entry…

Header

Entry Entry…Entry1 Entryn
… Entry1 Entrym

…
merge

List1

Header

List2

HeaderHeader

Entry1 Entryn
… Entry1 Entrym

…

Header

Concepts of Object-Oriented Programming

199. Ownership

Exercise 2: modified merge
List1

Header

Entry Entry… Entry' Entry'…Entry1 Entryn
… Entry 1 Entry m

…

ListList2

Header

Entry1 Entrym
…

Concepts of Object-Oriented Programming

209. Ownership

Exercise 2
public void merge(LinkedList other) {

if (other.isEmpty()) {return;}p y

readonly Entry entry =
other.getHeader().next;

while(entry != other.getHeader()){
add(entry.element);add(entry.element);
entry = entry.next;

}
other.Init();

}

Concepts of Object-Oriented Programming

219. Ownership

Exercise 3
down

O1

rep

peer
O5

down rep
down

O2

O
rep

down down
O2

O3

O4

rep
O4

Concepts of Object-Oriented Programming

229. Ownership

Exercise 3.a

► l d► peer rep lost ro down
self peer rep lost ro down
peer peer down lost ro downp p
rep rep down lost ro down
lost lost lost lost ro lost
ro lost lost lost ro lostro lost lost lost ro lost
down down down lost ro down

Concepts of Object-Oriented Programming

239. Ownership

Exercise 3.b
readonly

lost

down

reppeer

self

Concepts of Object-Oriented Programming

249. Ownership

Exercise 3.c
The field read The field write

is correctly typed if

v = exp.f;

is correctly typed if

exp.f = v;

s co ect y typed
- exp is correctly typed
- τ(exp) ► τ(f) <: τ(v)

y yp
- exp is correctly typed
- τ(v) <: τ(exp) ► τ(f)

l t t i () ► (f)- lost not in τ(exp) ► τ(f)
- down not in τ(exp) ► τ(f)

Analogous rules are used for method invocations

Concepts of Object-Oriented Programming

259. Ownership

Questions?Questions?

Concepts of Object-Oriented Programming

