
Concepts of Object-Oriented Programming

1

Exercise 6

1. Given the following double linked list: public class DList<T>

a. Change the implementation, such that an array is used for storing the data. The external

observable behavior of the class should not change.
b. The method getFirstNode is not needed anymore. Which classes need to be adapted

if we remove the method?
c. Is there a different behavior between linked-lists and arrays in the main method?

2. Argue for each of the following classes that they preserve encapsulation. Do all the
constructors and methods preserve the invariants? Is it guaranteed that other classes do not
violate the consistency of the objects?

protected class Node<T> {
 Node<T> prev, next;
 T data;
}
private Node<T> first,last;
public DList() {
 first = new Node<T>();
 last = new Node<T>();
 first.next = last;
 last.prev = first;
}

public DList(T[] d){
 this();
 for(T x : d) {add(x);}
}

public T getFirst() {
 return getFirstNode().data;
}
protected Node<T> getFirstNode(){

return first.next;
}

public void add(T d) {
 Node<T> n =new Node<T>();
 n.data = d;
 n.prev = last.prev;
 n.next = last;
 last.prev.next = n;
 last.prev = n;
}

public static void main(String[] args) {
 Integer[] ia = new Integer[] {1, 2, 3};
 DList<Integer> dl = new DList<Integer>(ia);
 ia[0] = 5;
 System.out.println("First element: " + dl.getFirst());
}

public class A {
 private int a;
 private int b;

 /*@ invariant a >= b; @*/
 /*@ requires ta >= 0; @*/

 public A(int ta) {
 a = ta;
 b = 0;
 }

 public void increment() {
 ++a;
 ++b;
 }
}

public class A {
 public int a;
 public int b;

 /*@ invariant a >= b; @*/
 /*@ requires ta >= 0; @*/

 public A(int ta) {
 a = ta;
 b = 0;
 }

 public void increment() {
 ++a;
 ++b;
 }
}

public class A {
 private int a;
 private int b;
 public int c;

 /*@ invariant a >= b; @*/
 /*@ requires ta >= 0; @*/

 public A(int ta) {
 a = ta;
 b = 0;
 }

 public void increment() {
 ++a;
 ++b;
 }

Concepts of Object-Oriented Programming

2

3. Encapsulation question from a previous exam!

This example addresses the relation between encapsulation techniques and security aspects.
Given the following scenario: A system environment, represented by the object of type
Environment, manages what people have access to secure parts of the system. The ID of the
persons are stored as an int in the class Authorization . Environment and
Authorization are implemented in the following way:

package System;
public interface Environment {
 public void insertAuthorization (Authorization b);
 public Authorization getAuthorization();
}
package System;
public class Authorization {
 private int[] ids;
 public Authorization() { ids = new int[5]; }
 protected void setIDs(int[] p) {
 ids = p; }
 public int[] getIDs() { return ids; }
}

 The interaction between Environment and Authorization looks like the following:

1. Objects of type Authorization can be created by an arbitrary class and can be
transfered to the system environment with the method insertAuthorization.

2. insertAuthorization saves the transfered reference and stores the ID of the
registered person into the field IDs of the Authorization object using the method
setIDs. (Keep in mind, that Environment and Authorization are declared in the
same package!)

3. An arbitrary user of the system can fetch the IDs of the registered people with the methods
getAuthorization and getIDs accessing them read only. For example, to make
comparisons between ids.

The interaction between Environment and Authorization is called a secure system, if no class
outside of the package System is allowed to modify the IDs stored into the Authorization object.

Exercise:

a. The above implementation is not secure. Describe how an attacker can manipulate the list of
ids using the method getIDs. In this case an attacker is a class declared outside of the
package system.

b. Implement your solution for question a as method
 public static void attack(Environment u) {...}
in class Attack of package Attacker.

c. Explain how to modify the implementation of class Authorization, to prohibit the attack.
The modified Authorization class still has to allow the read only interaction described
above.
The interface Environment as well as the implementation must not be modified.

d. Describe how an attacker could manipulate the list of IDs without using the method getIDs.
e. Implement your solution for question d as method

 public static void attack(Environment u) {...}
in a class Attack in the package Attacker.

f. Explain how to modify the implementation of class Authorization to prohibit the attack
from question d. There are the same requirements as in question c.

