Konzepte objektorientierter
Programmierung

Prof. Dr. Peter Muller

Chair of Programming Methodology

Exercises 7: Aliasing

7. Aliasing

Home-work 1

class Exa {
/* 1nvariant \type(a) <: A; */
Object a;

/* requires \type(c) <: C; */
/* ensures \type(\result) <: B; */
Object m(Object ¢c) { ... }

}

Temporary violations of invariant possible!

Concepts of Object-Oriented Programming

7. Aliasing

Home-work 2

class Super {
Bm(Cc) { -.-1}
}

class Sub extends Super {

Em(Fc){.--1%

ks
C <: F
E <: B

Concepts of Object-Oriented Programming

7. Aliasing

Home-work 2
= Assume: F<:C,and B<: E
Super s = new Sub();

Ccl = new CQ);
B bl =s.m(Ccl);

Concepts of Object-Oriented Programming

7. Aliasing

Exercise 1

class Motor {
boolean 1sOK() {/*...*/ }

boolean |sRunn|ng(){/* */ }
void start() { 7*...*/ }

}

class Wheel {
void deflate() { /7*...*/ }

boolean 1sOK() {/*...*/ }

}
class MotorTrouble extends Exception {
public Motor motor;
public MotorTrouble(Motor m) {
motor = m;

T

C(}cepts of Object-Oriented Programming

7. Aliasing

Exercise 1 — The Invariant

public class Car {

/*@ 1nvariant engine.isRunning() ==>
@ (\forall Int 1;

@ 1 >= 0 && 1 < wheels.length;
@ wheels[1] = null &&

@ wheels[1].1s0K())

@*/

Concepts of Object-Oriented Programming

7. Aliasing

Problem 1 — Public Fields

public class Car {
public Motor engine;
public Wheel[] wheels;

Car ¢c = new Car(...);

c.start();

// remove a wheel -> breaks 1nvariant
c.wheels[0] = null;

Concepts of Object-Oriented Programming

7. Aliasing

Solution for Problem 1

» Use proper Information Hiding
= Make all fields private or protected

Concepts of Object-Oriented Programming

7. Aliasing

Problem 2 — Capturing

public class Car {
public Car(Motor m, Wheel[] w) {
engine = m;
wheels = w;

}

Motor m = new Motor();

Car ¢ = new Car(m, w);

c.start();

// stop the motor, car still thinks 1t runs

m.stop();

Concepts of Object-Oriented Programming Fogs

7. Aliasing

10

Solution for Problem 2 — Capturing

= Never directly store parameters as internal state
*= Clone the given objects

= For arrays you need a deep copy, otherwise the
array elements might still be aliased

Concepts of Object-Oriented Programming B

7. Aliasing

11

Problem 3 — Leaking through Return Value

public Motor getMotor() {
return engine; }

public Wheel[] getWheels() {
return wheels; }

Car ¢ = new Car(m, w);
c.start();

// change wheel while driving
c.getWheels()[0] = new Wheel();

Concepts of Object-Oriented Programming

7. Aliasing

12

Solution for Problem 3 — Leaking

= Never return a reference to the internal state to the
outside

= Always clone the objects
= Again for arrays you need a deep copy

Concepts of Object-Oriented Programming w

7. Aliasing

13

Problem 4 — Leaking through Exception

public void start() throws MotorTrouble {
1T(engine == null || 'engine.i1sOK()) {
throw new MotorTrouble(engine);
} else { engine.start(); }

}

try { ... }
catch(MotorTrouble mt) {

mt.motor.reset();

}

Concepts of Object-Oriented Programming w

7. Aliasing

14

Solution for Problem 4 — Exceptions

= EXceptions can give access to internal state
= Examine what information you really want to share
= Maybe only pass a String with this information

Concepts of Object-Oriented Programming B

7. Aliasing 15

Invariants for Java (Simple Solution)

= Assumption: The invariants of object X may only
refer to private attributes of X

= For each invariant, we have to show

- That all exported methods and constructors of class T
preserve the invariants of all objects of T and T's
subclasses

- That all constructors in addition establish the invariants
of the new object

Concepts of Object-Oriented Programming Fogs

7. Aliasing

16

Invariants can refer to all attributes

public class Super {

private Int T,

}

public class Sub extends Super {

/>0 invarirant f > 0; Q0*/

Concepts of Object-Oriented Programming

7. Aliasing 17

Exercise 2.a: Invariants for Java

(Extended Solution)

= Assumption: The invariants of object X may refer to
private and default attributes of X

= For each invariant, we have to show

- That all exported methods and constructors of class T
preserve the invariants of all objects of all classes In
T’'s package and all subclasses of classes in T's
package

- That all constructors in addition establish the invariants
of the new object

Concepts of Object-Oriented Programming B

7. Aliasing

18

Exercise 2.b: Invariants of T objects

public class T {
/* default */ 1nt T;

/>0 tnvarrant ¥ > 0; Q*/

void violate() { ¥ = -10
}

Concepts of Object-Oriented Programming

7. Aliasing 19

Exercise 2.b: Invariants of objects in T's package

public class A {
/* default */ Int T;

/>0 1nvaritant f > 0; Q*/
}

public class T {
private A myA;

void violate() { myA.f = -10; }
}

Concepts of Object-Oriented Programming

7. Aliasing

20

Exercise 2.b:
Invariants of objects of T’'s subclasses

public class T {
/* default */ Int T;

void violate() { f = -10; }
¥

public class SubT extends T {

/>*@ invarrant f > 0; @*/

}

Concepts of Object-Oriented Programming

7. Aliasing

21

Exercise 2.b:
Subclasses of all classes in T's package

public class A {
/* default */ int f; }

public class SubA extends A
/*@ invariant f > 0; @*/ }

public class T {
private A myA;

void violate() { myA.f = -10; }
}

Concepts of Object-Oriented Programming

7. Aliasing

22

Exercise 3.a

B should provide at least as much access as A

class A {
public 1nvariant ¥ > O;
private int T;

}

class B extends A{

// invariant ¥ > 0 must holds
// B can not access T

Concepts of Object-Oriented Programming Fogs

7. Aliasing

23

Exercise 3.b

A should provide at least as much access as B

class A {
private invariant f > 0O;

public Int T;
}

class B extends A{

// B can change T
// invariant ¥ > 0 can not be checked

Concepts of Object-Oriented Programming w

