Chemical Analysis of Complex Biological Systems by Raman Spectroscopy

Shirin M. Usmani

Victor Rodriguez

November 15th, 2016
OUTLINE

A. RAMAN SPECTROSCOPY
B. CAROTENOIDs
C. RAMAN MICROSCOPY
D. PHOTobleaching
E. POLARIZATION
F. MAPPING
G. OTHER METHODS
PRINCIPLE OF INELASTIC AND ELASTIC SCATTERING

- Low probability event
- 1 in 10^8 photons inelastically scattered
- Insensitive technique

PRINCIPLE OF INELASTIC AND ELASTIC SCATTERING

Li and Church, Journal of Food and Drug Analysis, 29-48, 2014
TECHNOLOGICAL ADVANCES

- Efficient laser sources: Diode lasers, gas-based lasers, pulsed or continuous-wave

- Low-noise detectors: Charge-coupled devices (CCDs), electron-multiplying CCDs

- Effective Rayleigh filters: Dielectric edge filters, notch filters, Single or multistage monochromators

- High-throughput optics
RAMAN SPECTROSCOPIC MICROSCOPE SYSTEM

CAROTENOIDs

CAROTENOIDES

FT-RAMAN SPECTRA OF PURE CAROTENOID STANDARDS

β-carotene

α-carotene

Lutein

C=C

C—C

- CH₃

Schulz, H., et al. *Biopolymers*, 212-221, 2005
CAROTENOIDS ANALYSIS: \textit{IN-SITU}

Schulz, H., et al. \textit{Biopolymers}, 212-221, 2005
Chemical Analysis of Complex Biological Systems by Raman Spectroscopy

FLUORESCENCE

- Sample dependent
- Use of near-IR source
- 4 picosecond optical Kerr shutter

MICROSCOPY + RAMAN SPECTROSCOPY = NON-DESTRUCTIVE ANALYSIS

C=C : 1525 cm⁻¹

Schulz, H., et al. Biopolymers, 212-221, 2005
RESOLUTION: SPATIAL

\[\Delta x = 0.61\lambda/\text{NA} \]

- shorter wavelength and high-magnification optics

Spectral Resolution

- Higher excitation wavelength

\[\text{C=C} : 1525 \text{ cm}^{-1} \]

Depends on the scientific question:
- molecular information
 OR
- localized information

Schulz, H., et al. *Biopolymers*, 212-221, 2005
PENETRATION DEPTH

- Shorter wavelength, higher energy but more scattered
- Hence, ideal for studying the surface of a tomato sample
- But, need longer wavelength if information needed about the carotenoid composition of a tomato core

PHOTOBLEACHING

- Changes in the electronic structure
- Important for **samples containing** carotenoids
- Carotenoids signal steadily decreases.

PHOTOBLEACHING

- The variance affects **Reproducibility**
- Orders of magnitude stronger

DEALING WITH COMPOUNDS SUSCEPTIBLE TO PHOTOBLEACHING:

Post-acquisition data treatment:

- Omitting carotenoid spectral regions

Most variation in 1157 cm$^{-1}$ and 1525 cm$^{-1}$

DEALING WITH COMPOUNDS SUSCEPTIBLE TO PHOTOBLEACHING:

- Elimination of these peaks does not eliminate variation.
- The width of the carotenoid bands force to discard other spectral features hidden beneath.

DEALING WITH COMPOUNDS SUSCEPTIBLE TO PHOTOBLEACHING:

Spectra processing:

EMSC: background signal correction using Extended Multiplicative Scatter Correction

EMSC-SIS: Extended Multiplicative Scatter Correction and Spectral Interference Subtraction

DEALING WITH COMPOUNDS SUSCEPTIBLE TO PHOTOBLEACHING:

Photodecomposition:

- Before data acquisition
- Long time 30-60 min
 - a) 10min
 - b) 30min
 - c) 50min
 - d) 70min

The difference spectra can be used to study the carotenoids and their interactions with the biological matrix.

POLARIZATION:

The Raman spectrum depends on the orientation and polarization of light.

Intensities vary depending on the angle between polarizability tensor of a specific molecular vibration and the exciting source.

Polarized Raman spectroscopy: information about structure and orientation

B: cellulose parallel along the fiber from 2774 to 3026 cm$^{-1}$

C: cellulose oriented with a high angle in respect to the fiber from 1067 to 1106 cm$^{-1}$ (orientation-sensitive cellulose band 1097 cm$^{-1}$)

Cross-section of wood *L. Procera*
MAPPING:

Large data sets that require computational processing

- Pre-processing (minimizing variability):
 - Cosmic rays
 - Fluorescence
 - Poor signal to noise ratio
 - Baseline correction (polynomial fitting, derivative spectra)
 - Truncating the spectra
- Feature extraction: PLS or PCA
- Classification: HCA or PCA
MAPPING:
A better understanding on structure, chemical composition of plant cells, tissues and organs.

Raman spectrum is a combination of the spectra of the single compounds.

OTHER METHODS:

- **HPTLC/AMD**

![Graph showing carotenoids](image)

- **HPLC** is the most used method for quantification, but carotenoids need to be extracted (destructive)
SUMMARY:

- Sample preparation
- Choose instrumentation
- Resonant vs non resonant
- Photobleaching
- Polarization
- Mapping
- Supporting methods
Thank you for your attention!