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Topic: Catalytic Divergent Synthesis
1 Selectivity definition 
1.1 Diastereoselectivity: preferential formation of one diastereomer over another 
1.1.1 Type A: simple diastereoselectivity
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	Sauer ACIE 1967, 6, 16  


1.1.2 Type B: induced diastereoselectivity
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	Overman Tet. Lett. 1982, 23, 2355


1.2 Enantioselectivity: preferential formation of one enantiomer over another
1.2.1 Type A: generation of new chiral center
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	Noyori JACS 1987, 109, 5856


1.2.2 Type B: enantiodiscrimination 
	[image: image4.emf]
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	Jacobsen Science 1997, 277, 936 & JACS 2002, 124, 1307


1.3 Regioselective: A regioselective reaction is one in which one direction of bond making or breaking occurs preferentially over all other possible directions.
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	Trost Science 1983, 219, 245


1.4 Chemoselectivity is the preferential reaction of a chemical reagent with one of two or more different functional groups.
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	Yudin ACIE 2010, 49, 262


1.5 Product-selectivity is the preferential formation of two (or more) distinct products that are not stereo- or regioisomers. This area of research is currently gaining interest within the synthetic community.
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	Chiba JACS 2011, 133, 13942


2 Selective catalysis
2.1 Why selective catalysis?
- Object of selective catalysis is to use fewer protecting groups, cutting synthetic protocols, thereby contributing to atom economy, step economy, reduced time, and increased efficiency.
- Biological systems have an amazing combination of stereo-, regio-, and chemoselectivity. 

- Chemists can use the following metrics to predict selectivity: redox potential, pKa, HSAB, and A (steric) values.
	In an ideal case, we would like to have 4 distinct catalysts to perform, in this particular case,  both chemo-, and enantioselective catalysis 
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2.2 The underlying principle
	The same rationale and physical organic chemistry concepts apply to asymmetric catalysis as well as catalytic divergent synthesis:
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	Miller ACIE 2006, 45, 5616 


2.3 Energetic factors in the selectivity

	- In some cases, a partition experiment can elucidate the energetic factors behind the competing pathways. This may allow for the use of temperature to control a desired pathway by adjusting the relative energy given to the intermediate.
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	Bode ACIE 2011, 50, 1673


3 Two classes of catalytic divergent synthesis

3.1 We propose two classes of catalytic divergent synthesis; these differ in their mechanistic nuances:
	Class A: Divergency arising from a common intermediate:
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	Bode Chem. Sci. 2012, 3, 192


	Class B: Divergency arising from two catalyst-substrate complexes with two available pathways:
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	Yoon ACIE 2010, 49, 930


4 Types of selectivity: 
	- Innate selectivity: the selectivity comes from a substrate-controlled process.

- Catalyst-controlled selectivity: the catalyst, ligand, or an additive induces the selectivity.
Innate selectivity can be viewed as similar as traditional “background rate” in asymmetric catalysis. Catalytic divergent synthesis may involve overcoming this intrinsic barrier in favor of the desired pathway. 
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	Sanford Org. Lett. 2006, 8, 2523


- Innate selectivity may be absolute 
	Chemospecificity arises when a pair of functional groups react preferentially only with one another (i.e. below the ketoacid couples only with the hydroxylamine, even in the presence of 2 other amines).
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	Bode ACIE 2006, 45, 1248


5 Methods to achieve selectivity (either regio-, chemo-, or product-selectivity)
5.1 Change of substrate (substrate control selectivity)
	- Circumvent the intrinsic preference of functional groups by modifying the substrate 
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	Jamison Science 2007, 317, 1189


5.2 Change of the reaction condition such as solvent, pH, or temperature
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	- Depending on the excitation energy given to the diester, chemoselective cleavage is possible.
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	Bochet JOC 2002, 67, 5567


5.3 Introduction of a directing group (substrate control selectivity
	- Circumvent the intrinsic preference of functional groups by modifying the substrate or adding a catalyst
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	Fagnou JACS 2007, 129, 12072


5.4 Innate vs. reagent-controlled selectivity
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OAc
Br



NaCH(CHO2Me)2



no cat
SN2



OAc
(MeO2HC)2HC



Pd(PPh3)4 Br



75 %



CH(CHO2Me)2 77 %



π-allylation
via



Br
[Pd]



"inniate"



reagent-
controlled












	Trost Science 1983, 219, 245


5.5 Reagent vs. catalyst-controlled selectivity
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	Trost Science 1983, 219, 245


6 Regioselective Catalysis

6.1 Definitions and Key Principles

	Regioisomer: The positional isomers formed from the different directions of bond formation/cleavage
Note: The term “regiospecific” to refer to a reaction that is 100% regioselective is discouraged, and has no correlation to the difference between “stereoselective” and “stereospecific”
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	IUPAC Gold Book (http://goldbook.iupac.org/)

	Controlling regioselectivity in reactions of non-aromatic pi-systems is dependent on electronic and steric factors- charged intermediates and polarized transition states dictate relative position of nucleophile and electrophile
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	Clayden, et al. Organic Chemistry, Oxford Uni. Press. 2011


	The regioselectivity of aromatic substitution reactions is heavily influenced by the inherent electron distribution of the conjugated pi-system. The canonical example is the regioselectivity of the Friedel-Crafts reaction:
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	Clayden, et al. Organic Chemistry, Oxford Uni. Press. 2011


	It is worth mentioning that issues of regioselectivity are normally encountered in reactions of functional groups with relatively weak dipoles. In the example below, the red attack would lead to a regioisomeric product, but this product is not formed due to the required inversion of polarity this implies. 
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	For example, see MacMillan JACS 2003, 125, 10808 & Maruoka JACS 2006, 128, 6046


	6.2 Regioselective Functionalization of Alkenes and Alkynes

	The design of catalytic regioselective reactions can overcome poor selectivity inherent to the substrate. For example, Tsuji-Wacker oxidation of allylic carbamates gives a nearly 1:1 ratio of aldehyde and ketone products. This is likely because the electronic bias of the bond formation is counteracted by the sterics of the neighbouring group, leading to poor selectivity in the intermolecular attack of water on the Pd-activated alkene: 
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	- Sigman has designed a new ligand/oxidant combination that renders this reaction remarkably selective and illustrates some design elements that could have general implications for Pd-catalyzed activation of alkenes. - Key elements include the use of electronically asymmetric ligands to pre-organize both reactants, a complexed nucleophile to make the addition intramolecular (migratory insertion) and a cationic metal for high reactivity and maximum electronic bias in the transition state. These factors combine to precisely control the site of attack.

	[image: image27.emf]


N N



O



electon-poor
donor



electon-rich
donor



Pd
OO



t-Bu R



defined, pre-coordinated
Nu-Pd-alkene complex



electron-rich
nucleophile



electron-poor
alkene



coordinatively saturated
Pd centre (prevents extra



substrate ligation)



single isomer



N
N



O



Pd
Cl Cl



18% AgSbF6
TBHP (aq)



69%



NCbz
O



Me
Me NCbz



O



MeMe



Me



O



(5 mol %)



2



via












	Sigman, Acc. Chem. Res. 2011, doi: 10.1021/ar200236v

	This catalyst system can even completely reverse the inherent selectivity of the substrate: 
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	Aldehyde selective: Feringa, JACS, 2009, 131, 9473 & Ketone selective: Sigman, JACS, 2011, 133, 8317.


	Regioselectivity can be altered by the appropriate choice of catalyst- Pd vs Cu-catalyzed diamination of dienes proceeds with reversal of internal/terminal selectivity based on a change in the mechanism.
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	Pd-Catalyzed: Shi, JACS, 2007, 129, 762; Shi, JACS, 2010, 132, 3523 

Cu-Catalzyed: Shi, OL, 2007, 9, 2589.


	The ligand environment around the same metal can also play an important role: Fe-catalyzed hydroboration of dienes with reversal of regioselectivity. 

While the change in regioselectivity is difficult to rationalize, it should be pointed out that the reaction is chemoselective as well- only the conjugated diene reacts. This can be explained by stronger, two-point chelation to the low-valent iron catalyst.
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	Ritter JACS 2009, 131, 12915


	This kind of ligand-dependant regioselectivity has also been demonstrated in catalytic conjugate additions. In this case, the right choice of ligand can lead to preferential nucleophilic attack on the more hindered and less electropositive carbon atom of the maleimide. 
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	Hayashi JACS 2006, 128, 5628


	Hydrometallation of alkynes is a very important synthetic transformation since it provides vinyl organometallics that are very useful in cross-coupling reactions. Control of regioselectivity is essential as the often-sensitive regioisomeric products can be difficult to seperate.

The regioselective hydrostannation of alkynes can be affected by Pd catalysts. Here, the selectivity between internal and terminal stannation is determined by the ligand (larger ligands lead to better terminal selectivity).
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	Chong OL 2008, 5, 861


	Selective synthesis of the internal stannane can be achieved using Mo catalysts. In this case, the presence of the bulky CNt-Bu ligands is proposed to favour placing the Mo center at the less hindered terminal position (note that this also implies that Mo-Sn migratory insertion preceeds Mo-H reductive elimination).
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	Kazmaier OL 1999, 1, 1017; Kazmeier EJOC, 2000, 2761


	Similar control of selectivity can be achieved in hydroalumination of arylalkynes- in this case the catalyst controls both the regio and chemo selectivity, as it directs the hydrometalation and suppresses competitive deprotonation of the acidic terminal proton.
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	Hoveyda JACS 2010, 132, 10961


	Catalytic hydration of alkynes is typically under Markovnikov control as the transition states are highly polarized and use hard nucleophiles. Recently, gold-catalysts  have emerged as highly reactive catalysts for this process, however the influence of the inherent selectivity is obvious from the examples below:
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	Nolan JACS 2009, 131, 448


	In order to reverse the selectivity, a new mechanism is required. Hydration of terminal alkynes catalyzed by Ru complexes leads very selectively to anti-Markovnikov products (aldehydes), especially under the influence of new ligands developed by Hintermann:
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	Catalyst: Hintermann JACS, 2011, 133, 8138

Mechanism: Wakatsuki ACIE 1998, 37, 2867


6.3 Regioselective Functionalization of Arenes

There are three main methods for the regioselective functionalization of arenes- 

1) Reagent-controlled reactions 

2) Chelation-assisted directing-group controlled reactions

3) Catalyst-controlled reactions

While by modern methods nearly any substitution pattern can be achieved on nearly any arene, these are typically achieved by applying a variety of different chemistries to the starting material at hand, exploiting the inherent reactivity of the specific arene involved. General regiocontrol in arene substitution remains an area of intense investigation.
6.3.1 Reagent-Controlled Reactions
	Reactions of monosubstituted alkylbenzenes (o/p directing group) typically favour formation of the para isomer because of the steric hindrance around the ortho position. However, judicious choice of reagents can lead to reversal of regioselectivity- in this case the “naked” iodonium provided by Barluenga’s reagent is guided to the ortho position by pre-complexation with the trifluoroacetamide
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	 Ortho-selective: Barluenga ACIE 2007, 46, 1281

Para-selective: US2003/225266 A1, 2003


	Especially interesting are examples where the expected regioselectivity can be overridden. Cu-catalyzed reactions of pivanilides with diaryliodonium salts are highly meta-selective, despite the nitrogen group being a strong o/p director. Note that Cu(OTf)2 is required to activate the electrophile but plays no role in the selectivity- reactions without copper at higher temperature give the same meta regioisomer
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Discussion on role of Cu(OTf)2, see footnote 14 in Gaunt ACIE 2011, 50, 463

For the mechanism, see Wu JACS, 2011, 133, 7668


6.3.2 Chelation-Assisted Directing Group-Controlled Reactions
	Many reactions take advantage of the coordinating ability of the functional groups on the arene to direct functionalization of adjacent positions. 

This is especially common for Pd-catalyzed reactions, where the directing group also helps stabilize high oxidation state intermediates. In the example below, the pivanilide group directs ortho-palladation of the aromatic ring. Note that consecutive alkylations/arylations are hallmarks of electrophilic substitutions where the product is more nucleophilic than the starting material. Also, contrast this example with the copper-catalyzed reation just above- this will reinforce the importance of directing groups and changes in mechanism. 
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	The main drawback of using directing groups is that their presence in the molecule is often permanent, limiting the overall generality of the process. A new trend is the use of directing groups that can be converted into a range of new products:
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	 Gevorgyan ACIE 2010, 49, 8729


	Different types of regioselectivity can work together to make for very highly selective reactions. In the example below, a chelating group puts the Pd catalyst ortho to the amide. The resulting Pd(IV) intermediate is attacked by the toluene solvent in a reagent controlled fashion- this is an electrophilic palladation that favours the para position of the nucleophile for steric reasons.
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6.3.3 Catalyst-Controlled Reactions

	This is an emerging area which is being hotly pursued and is a step toward ideal regioselectivity in the functionalization of arenes.

A Pd-catalyzed reaction of thiophenes with aryl iodides can be tuned to give either regioisomer simply by changing the ligand. This has been calculated to be a result of a change in mechanism- electron-rich phosphines favour CMD-based direct arylation, while electron-poor phosphites allow a Heck-type carbopalladation.  
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	Itami ACIE 2010, 49, 8946

Calculation of mechanism: Fu CEJ 2011, 17, 13866


	Functionalization of indole has been of long-standing interest in the field of direct arylations. Only very recently have truly catalyst controlled reactions been found that can control the C2/C3 regiochemistry. At present the mechanism and the reason for the switch are unknown, and the selectivities are modest.  
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7 Chemoselective catalysis

7.1 Chemoselective functionalization of nucleophiles 

7.1.1 Selective acylation reactions: the issue of innate relative acidity, steric, or nucleophilicity 
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7.1.2 Reagent-controlled selective acylation of phenolic OH over aliphatic OH group.
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7.1.3 Overriding steric preference.
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7.1.4 Another challenging issue is chemoselective monoacylation for diols. This is possible, for example, in the presence of a catalytic amount of YbCl3 due to the stability of the bidentate complex.  
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7.1.5 Selective O-acylation in the presence of amine
	- Catalytically generated acyl azoliums have been long known to prefer to acylate alcohols and water, rather than amines. This chemoselectivity may be used to acylate hydroxyl groups in the presence of amino groups. Catalytic amidation reaction may be achieved when HOAt or imidazole is used.   
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	- Polymeric Zn catalyst selectively allows for acylation of the hydroxyl group and not the amine due to the enhanced oxophilicity of the Zn ions.
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	- The anionic nature of ligand A attenuates the electrophilicity of Cu(I) and favors coordination of amine. The Cu(I) complex with B is much more electrophilic and favors binding of alcohol. 
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7.1.6 Selective O- vs. N-alkylation 

	Selective Buchwald-Hartwig amination of 1,2 amino alcohol (simple amines and alcohols do not work). The selectivity arises from the relative tightness of chelation, depending on the reaction condition and additive.
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7.2 Chemoselective oxidation and reduction
Depending on the mechanism, selective oxidation reactions may reinforce or override innate steric or nucleophilic preference (similar to the cases above) 
	- Innate steric preference. The catalyst reinforces innate chemoselectivity to achieve complete oxidation of primary over secondary alcohol.
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	- Selective oxidation of secondary alcohol over primary may be achieved by employing Pd & benzoquinone
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	Ru-catalyzed chemoselective amide formation over esterification 
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7.2.1 Chemoselective reduction reactions
	Hantzsch ester for selective reduction of amide in the presence ketone or ester.
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	Chemoselective hydrogenation  of heteroaromatic systems. A proper choice of ligand (steric and/or electronic) can completely control the chemoselectivity. 
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8 Chemoselective -unsaturated carbonyl reactions
	1,2- vs 1,4-Addition: α,β-unsaturated carbonyl compounds are ambident electrophiles- nucleophiles can attack either the C=O or C=C bonds
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	LUMO calculations: Houk, JACS, 1973, 4094. Charges: Tidwell, JOC, 1994, 4506


8.1 Substrate-controlled chemoselective addition to -unsaturated carbonyl reactions
	The selectivity is determined by a combination of the nature of the leaving group and nucleophile:
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	Fleming, Molecular Orbitals and Organic Chemical Reactions, 2010, p 188


8.2 Catalyst-controlled chemoselective reduction or addition to -unsaturated carbonyls 
	- Ligand controlled 1,2 vs. 1,4 reductions as a result of “subtle and complex interactions between the substrate, solvent, and bulky ligands.”
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	Lipshutz Tetrahedron 2011, doi:10.1016/j.tet.2011.10.056
For selective non-metal-catalyzed 1,4-reduction, see MacMillan JACS 2005, 7, 32 & List JACS 2006, 128, 13368  


	- Diene ligands can provide exquisite chemo- and enantioselectivity - additions to unsaturated aldehydes proceed by 1,4-addition, not 1,2. This is in stark contrast to a Rh/phosphine catalyst, which furnishes the 1,2-additon product exclusively. 
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	- Changing counterion can change the preference for selective 1,2- vs 1,4-conjugate addition
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9 Chemoselective arene functionalization 
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Bond Strenth (in kcal/mol)

C-C 
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C-O
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C-N 
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C-F 

115

C-Cl 

84

C-Br 

72
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58



	Blanksby and Ellison Acc. Chem. Res. 2003, 36, 255


9.1 C-X substitution
	- Chemoselective Suzuki-Miyaura cross-coupling. It was found that monoligated Pd (favored with PtBu) favors C-Cl insertion and bisligated Pd (the active species with PCy3) favors C-OTf insertion.
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For rationale: Houk and Schoenebeck JACS 2010, 132, 2496 & Schoenebeck ACIE 2011, 50, 8192


	- Changing the ligand and Pd sources can affect the chemoselectivity of cross-coupling reaction. A working hypothesis postulates that the more bulky ligand directs an oxidative addition at the less hindered para position while oxidative addition is irreversible at the ortho position for a system with less bulky ligand.
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9.2 C-H functionalization
	

	

	Parameter: kinetics (rate) vs.

thermodynamic (bond strength or pKa)

Rates of C-H oxidation normally follow tertiary C-H> ethereal C-H ≈ benzylic C-H > secondary C-H > primary C-H.

These are general rules dependent upon electronic factors and not steric bias.
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	Blanksby and Ellison Acc. Chem. Res. 2003, 36, 255 & Bordwell Acc. Chem. Res. 1988, 21, 456  


9.2.1 Aryl C-H functionalization: depending on the mechanism, formal classification of C-H bond functionalization may change
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	- Changing the base, along with the Pd source, may allow for selectively C-H bond activation by selective deprotonation at a different site. 
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	Fagnou JACS 2008, 130, 3266 & Tetrahedron 2009, 65, 3155 & Chem. Lett. 2010, 39, 1118


	- Pd catalyst mediates standard cross-coupling reaction. Switching to iron leads to a directed C-H activation/ortho arylation in the presence of a leaving group.
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	- Ortho iodination can be achieved with an acidic directing group. In order to achieve mono-iodination, it was necessary to use a tetra-alkyl ammonium salt as an additive. Mono-iodination normally occurs on less hindered side.
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9.3 Chemoselective alkane functionalization
- Rh-catalyzed C-H acitivation/annulation 
	Du Bois and co-workers observed that product formation could be catalyst dependent slightly in favor of steric factors when comparing a secondary C-H to a benzylic C-H.
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	- Depending on the choice of ligand, an aziridine or a product obtained from an allylic C-H oxidation can be obtained. Carboxylate ligands tend to give aziridine adducts and carboximidates give the product arising from allylic C-H oxidation.
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	- N-arylation is favored for Cu due to a large energy difference (14 kcal/mol) between M-C vs M-N complex.

- C-arylation is favored for Pd due to the equilibrium between the M-C and M-N complexes. The outcome then follows Curtin-Hammett situation – red. eim. from M-C complex is lower in energy by 2.4 kcal/mol.
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10 Chemoselective olefin metathesis reaction 
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	For a general review of olefin metathesis reaction: Hoveyda Nature 2007, 450, 243 

- Olefin metathesis reaction has emerged as one of the most powerful synthetic tools. Many class of reactions (CM, RCM, ROMP) have been investigated; several reports have demonstrated that catalyst structure or type can influence the distribution of metathesis products, i.e. the chemoselectivity.
For a review in chemoselective metathesis reaction: Nolan Chem. Soc. Rev. 2010, 39, 3305


10.1 Innate reactivity of olefins in metathesis reactions

	- Grubbs and co-workers developed an empirical system for categorizing olefins in metathesis. For example, terminal olefins and allylic alcohols fall under the type I. Type IV olefins are spectators (no catalyst deactivation) and are slow cross-metathesis. 
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	Grubbs JACS 2003, 125, 11360


10.2 Catalyst controlled chemoselective metathesis reaction 

	- Large phosphine ligand in Grubb I catalyst is too sterically hindered  for RCM.
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	- NHC ligand prefers the thermodynamic product vs. the phosphine ligand prefers the kinetic (RCM) product
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11 Product-selective catalysis
This is a recent area of research that deals with catalyst-controlled reactions with the preferential formation of two (or more) unrelated products that are not stereo- or regioisomers. Many of these reactions were discovered serendipitously, and rational design of this kind of selectivity is not easy. However, advances in understanding this type of selectivity and development of this mode of catalysis is especially relevant in modern synthesis, in which increased efficiency and selective functionalization of complex targets is highly desirable. We highlight here some notable examples, whose explanation illustrate the case.

	- By adjusting the strength of the base (pKa), selective generation of a reactive species may be achieved.
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	Bode PNAS 2010, 107, 20661


	- Selectivity arises from different affinity of each metal to the alkyne and allene. Pt(II) and Pt(IV) activate the alkyne and Au(I) activates the allene towards nucleophilic attack by the hydroxyl

	[image: image78.emf]


HO
R



Me
Me



Me
Me



PtCl2 or PtCl4 (5 mol%)
toluene, reflux 36 h



[AuCl(PPh3)] (2 mol %)
AgSbF6 (2 mol %)



CH2Cl2, reflux, 1h



HO
R



Me
Me



Me
Me



M



MeMe



Me
Me



RH



O



MeMe



Me
Me



RH



M
HO H



H+



HO
R



Me
Me



Me
Me



M



O



R



H
Me



Me Me



Me
M O



R



Me



Me Me



Me



M



M



R = CH2iPr



85% yield



72% yield
-H+












	 Fensterbank and Malacria CEJ 2008, 14, 1482


	- Selectivity arises from tuning of the electronic nature of the ligands for Au catalysis
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	 Duschek and Kirsch OL 2008, 10, 2605
For a brief review on electronic tuning of ligand in Au catalysis, see Kirsch ChemCatChem 2011, 3, 649 


	- Direct olefination of 1,4-dien-3-ones remains a synthetic challenge. Competing catalytic Meyer−Schuster rearrangement versus Nazarov-type electrocyclization may be selectively promoted by V vs Au catalysts.
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	 West JOC 2011, 76, 50


	-  Changing the metal catalyst from Pd to Rh allows for acceleration of decarbonylation over reductive elimination, although only with moderate selectivity. As an improvement to the previous system, changing the metal catalyst from Pd to Cu allows for acceleration of decarboxylation over reductive elimination, with better selectivity.

	[image: image81.emf]


120oC



O



arylation



esterification



32-98%



46-95%



R



R



R20% Pd(TFA)2
O



OH



R
RB(OH)2



R



fast red. elim



slow red. elim
Cu



O



Ar1Ar2-CO2



Ag2CO3



120oC



20% Cu(OTf)2



Ag2CO3



O



O



Pd
O



Ar1Ar2 O












	Liu Chem. Comm. 2011, 47, 677 


18

