Tutorial for evaluation of parameter points of SDE based models in Matlab

In this tutorial we will describe an implementation of Matlab code for evaluation of parameter points for stochastic differential, which will be illustrated on two example models.

Example model 1:
The evaluation of parameter points is first illustrated for a one-compartment model:

 										(1)

, (measurement model)						(2)
	

where is a state variable (e.g., concentration of a chemical species) with , the input , the measurement noise variance (standard deviation:). The reaction rate parameter is set to to generate artificial data from the model at 21 time points between 0 and 10 time units (Fig. 1A).

We now reformulate Eq. (1) as a stochastic differential equation and assume that parameter is unknown (and that the rest of the parameters are known):

, (process model, SDE)			(3)

where is a coefficient for the Wiener process in the SDE defined in E	q. (3).

A						B
[image:][image:]
Figure 1

We then evaluated the negative log-likelihood function for different combinations of values of and (Fig. 1B). As expected the optimum was obtained for and for (since the data generating model coincides with the evaluated model when).

Example model 2:
We next use the Matlab implementation to evaluate parameter points for a model of two-compartments:

 									(4)

									(5)

, (measurement model)					(6)

where and are state variables, where and , the input , and the parameters are set to , , and . Eqs. (4)-(5) are used to generate artificial data for and at 21 time points between 0 and 10 time units, with measurement noise at time point (var, std:), which is presented in Fig. 2A.

We then reformulate the ODEs in Eqs. (4)-(5) on the form of SDEs:

, 					(7)

, 				 (8)

where and are coefficient of the Wiener processes in Eqs. (7)-(8).

A						B
[image:][image:]
C
[image:]
Figure 2

The negative log-likelihood function was evaluated for different combinations of and (Fig. 2B). As expected the optimum was obtained for and for the data generating model with correct values for the structural model parameters.

The log-likelihood function was also investigated for (Fig. 2C), with all other parameters set to the correct values. In this case the second equation is incorrectly specified, which must be compensated for with the stochastic term in the second equation (). Therefore, as expected, the optimum is obtained for and ().

Description of the Matlab scripts and functions:
Our package for evaluation of the parameter points of SDE models requires that SBtoolbox2 and the add-on package SBPD is installed on the system (www.sbtoolbox2.org).

run_script(M1,M2).m: This script is the starting point to try the Matlab implementation for parameter point evaluations. The model is defined, artificial data is generated, a number of parameter points are evaluated, and the results are plotted (M1: model1, M2: model2).
costfunc.m: Function used to evaluate the cost (negative log-likelihood) function with the EKF.
EKF.m: The extended Kalman filter.
logLikelihoodFunction.m: This function uses the residuals and corresponding covariance matrices computed in the EKF to evaluate the negative log-likelihood function.

addPS.m: Adds model components for the covariance matrix of the state variables and coefficients of the Wiener processes ().
TAsimulate.m: This function is used to simulate a model for which the state variable ODEs as well as the corresponding covariance matrix is propagated. This function is a rewritten version of SBsimulate.m, as available in SBtoolbox (www.sbtoolbox2.org).
TAcreateTempODEfile.m: Function used to initiate TAcreateODEfile.m (see below). This function is a rewritten version of SBcreateTempODEfile.m, as available in SBtoolbox (www.sbtoolbox2.org).
TAcreateODEfile.m: Function used to automatically construct a Matlab function for evaluation of the right hand side of a system of ODEs for the state variables, together with a system of ODEs for propagation of the states uncertainty matrix. This function is a rewritten version of SBcreateODEfile.m, as available in SBtoolbox (www.sbtoolbox2.org).

image4.wmf
A

oleObject50.bin

image48.wmf
2

0

s

>

oleObject51.bin

image49.wmf
2

4

s

»

oleObject52.bin

image50.wmf
s

oleObject53.bin

oleObject4.bin

image5.wmf
(0)10

A

=

oleObject5.bin

image6.wmf
1

u

=

oleObject6.bin

image7.wmf
0.01

S

=

oleObject7.bin

image8.wmf
0.1

oleObject8.bin

image9.wmf
k

oleObject9.bin

image10.wmf
1

k

=

oleObject10.bin

image11.wmf
k

oleObject11.bin

image12.wmf
()

dAukAdtd

sw

=-+

oleObject12.bin

image13.wmf
1

(0,||)

kkk

dNtt

w

-

-

:

oleObject13.bin

image14.wmf
s

oleObject14.bin

image15.wmf

image16.wmf

image17.wmf
k

oleObject15.bin

image18.wmf
s

oleObject16.bin

oleObject17.bin

image19.wmf
0

s

=

image1.wmf
()

dA

ukA

dt

=-

oleObject18.bin

oleObject19.bin

image20.wmf
1

()

()

M

kA

dA

u

dtKA

=-

+

oleObject20.bin

image21.wmf
1

2

()

()

M

kA

dB

kB

dtKA

=-

+

oleObject21.bin

image22.wmf
[,]

T

kkkk

yABe

=+

oleObject22.bin

oleObject23.bin

image23.wmf
A

oleObject1.bin

oleObject24.bin

image24.wmf
B

oleObject25.bin

image25.wmf
(0)10

A

=

oleObject26.bin

image26.wmf
(0)0

B

=

oleObject27.bin

image27.wmf
1

u

=

oleObject28.bin

image28.wmf
1

1

k

=

image2.wmf
kkk

yAe

=+

oleObject29.bin

image29.wmf
2

1

k

=

oleObject30.bin

image30.wmf
2

M

K

=

oleObject31.bin

oleObject32.bin

oleObject33.bin

image31.wmf
k

e

oleObject34.bin

image32.wmf
k

oleObject2.bin

oleObject35.bin

oleObject36.bin

oleObject37.bin

image33.wmf
1

11

()

()

M

kA

dAudtd

KA

sw

=-+

+

oleObject38.bin

image34.wmf
1,1

(0,||)

kkk

dNtt

w

-

-

:

oleObject39.bin

image35.wmf
1

222

()

()

M

kA

dBkBdtd

KA

sw

=-+

+

oleObject40.bin

image36.wmf
2,1

(0,||)

kkk

dNtt

w

-

-

:

image3.wmf
(0,)

k

eNS

:

oleObject41.bin

image37.wmf
1

s

oleObject42.bin

image38.wmf
2

s

oleObject43.bin

image39.wmf

image40.wmf

image41.wmf

image42.wmf
1

s

oleObject44.bin

oleObject3.bin

image43.wmf
2

s

oleObject45.bin

image44.wmf
1

0

s

=

oleObject46.bin

image45.wmf
2

0

s

=

oleObject47.bin

image46.wmf
2

10

k

=

oleObject48.bin

image47.wmf
22

d

sw

oleObject49.bin

