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Motivation

Curve fitting

Tasks we are interested in:

I Making predictions

I Comparison of alternative
models
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Motivation

Further reading, useful material

I Christopher M. Bishop: Pattern Recognition and Machine learning.
I Good background, covers most of the course material and much more!
I This lecture is largely inspired by chapter 3 of the book.
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Linear Regression

Regression
Noise model and likelihood

I Given a dataset D = {xn, yn}Nn=1, where xn = {xn,1, . . . , xn,D} is D
dimensional, fit parameters θ of a regressor f with added Gaussian
noise:

yn = f(xn;θ) + εn where p(ε |σ2) = N
(
ε
∣∣ 0, σ2) .

I Equivalent likelihood formulation:

p(y |X) =
N∏

n=1

N
(
yn
∣∣ f(xn), σ

2
)
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Linear Regression

Regression
Choosing a regressor

I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn
∣∣wT · xn + c, σ2

)
I Consider bias free case, c = 0,

otherwise inlcude an additional
column of ones in each xn.
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I Choose f to be linear:

p(y |X) =

N∏
n=1

N
(
yn
∣∣wT · xn + c, σ2

)
I Consider bias free case, c = 0,

otherwise inlcude an additional
column of ones in each xn. Equivalent graphical model
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Linear Regression

Linear Regression
Maximum likelihood

I Taking the logarithm, we obtain

ln p(y |w,X, σ2) =
N∑

n=1

lnN
(
yn
∣∣wTxn, σ

2
)

= −N
2
ln 2πσ2 − 1

2σ2

N∑
n=1

(yn −wT · xn)
2

︸ ︷︷ ︸
Sum of squares

I The likelihood is maximized when the squared error is minimized.

I Least squares and maximum likelihood are equivalent.
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Linear Regression

Linear Regression and Least Squares

y

x

f (xn , w )

y
n

xn

(C.M. Bishop, Pattern Recognition and Machine Learning)

E(w) =
1

2

N∑
n=1

(yn −wTxn)
2

O. Stegle & K. Borgwardt Linear models Tübingen 8



Linear Regression

Linear Regression and Least Squares

I Derivative w.r.t a single weight entry wi

d

dwi
ln p(y |w, σ2) =

d

dwi

[
− 1

2σ2

N∑
n=1

(yn −w · xn)
2

]

=
1

σ2

N∑
n=1

(yn −w · xn)xi

I Set gradient w.r.t to w to zero

∇w ln p(y |w, σ2) =
1

σ2

N∑
n=1

(yn −w · xn)x
T
n = 0

=⇒ wML = (XTX)−1XT︸ ︷︷ ︸
Pseudo inverse

y

I Here, the matrix X is defined as X =

 x1,1 . . . x1, D
. . . . . . . . .
xN,1 . . . xN,D


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Linear Regression

Polynomial Curve Fitting

I Use the polynomials up to degree K to construct new features from x

f(x,w) = w0 + w1x+ w2x
2 + · · ·+ wKx

K

= wTφ(x),

where we defined φ(x) = (1, x, x2, . . . , xK).

I Similarly, φ can be any feature mapping.

I Possible to show: the feature map φ can be expressed in terms of
kernels (kernel trick).
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Linear Regression

Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
overfitting.

x

t

M = 0

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression

Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
overfitting.

x

t

M = 3

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression

Polynomial Curve Fitting
Overfitting

I The degree of the polynomial is crucial to avoid under- and
overfitting.

x

t

M = 9

0 1

−1

0

1

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression

Regularized Least Squares

I Solutions to avoid overfitting:
I Intelligently choose K
I Regularize the regression weights w

I Construct a smoothed error function

E(w) =
1

2

N∑
n=1

(
yn −wTφ(xn)

)2
︸ ︷︷ ︸

Squared error

+
λ

2
wTw︸ ︷︷ ︸

Regularizer
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Linear Regression

Regularized Least Squares
More general regularizers

I A more general regularization approach:

E(w) =
1

2

N∑
n=1

(
yn −wTφ(xn)

)2
︸ ︷︷ ︸

Squared error

+
λ

2

D∑
d=1

|wd|q︸ ︷︷ ︸
Regularizer
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Regularizer

q = 0 .5 q = 1 q = 2 q = 4
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Linear Regression

Regularized Least Squares
More general regularizers

I A more general regularization approach:

E(w) =
1

2

N∑
n=1

(
yn −wTφ(xn)

)2
︸ ︷︷ ︸

Squared error

+
λ

2

D∑
d=1

|wd|q︸ ︷︷ ︸
Regularizer

q = 0 .5 q = 1 q = 2 q = 4

QuadraticLasso

sparse

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Linear Regression

Loss functions and other methods

I Even more general: vary the loss function

E(w) =
1

2

N∑
n=1

L(yn −wTφ(xn))︸ ︷︷ ︸
Loss

+
λ

2

D∑
d=1

|wd|q︸ ︷︷ ︸
Regularizer

I Many state-of-the-art machine learning methods can be expressed
within this framework.

I Linear Regression: squared loss, squared regularizer.
I Support Vector Machine: hinge loss, squared regularizer.
I Lasso: squared loss, L1 regularizer.

I Inference: minimize the cost function E(w), yielding a point estimate
for w.
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Linear Regression

Regularized Least Squares
Probabilistic equivalent

I So far: minimization of error functions.
I Back to probabilities?

E(w) =
1

2

N∑
n=1

(
yn −wTφ(xn)

)2
︸ ︷︷ ︸

Squared error

+
λ

2
wTw︸ ︷︷ ︸

Regularizer

I Similarly: most other choices of regularizers and loss functions can be
mapped to an equivalent probabilistic representation.
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2
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Bayesian linear regression
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Bayesian linear regression

Bayesian linear regression

I Likelihood as before

p(y |X,w, σ2) =
N∏

n=1

N
(
yn
∣∣wT · φ(xn), σ

2
)

I Define a conjugate prior over w

p(w) = N (w |m0,S0)
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Bayesian linear regression

Bayesian linear regression

I Posterior probability of w

p(w |y,X, σ2) ∝
N∏

n=1

N
(
yn
∣∣wT · φ(xn), σ

2
)
· N (w |m0,S0)

= N
(
y
∣∣w ·Φ(X), σ2I

)
· N (w |m0,S0)

= N (w |µw,Σw)

I where

µw = Σw

(
S−1
0 m0 +

1

σ2
Φ(X)Ty

)
Σw =

[
S−1
0 +

1

σ2
Φ(X)TΦ(X)

]−1
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Bayesian linear regression

Bayesian linear regression
Prior choice

I A common choice is a prior that corresponds to regularized regression

p(w) = N
(

w

∣∣∣∣0, 1λI

)
.

I In this case

µw = Σw

(
S−1
0 m0 +

1

σ2
Φ(X)Ty

)
Σw =

[
S−1
0 +

1

σ2
Φ(X)TΦ(X)

]−1
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Bayesian linear regression

Bayesian linear regression
Prior choice

I A common choice is a prior that corresponds to regularized regression

p(w) = N
(

w

∣∣∣∣0, 1λI

)
.

I In this case

µw = Σw

(
1

σ2
Φ(X)Ty

)
Σw =

[
λI +

1

σ2
Φ(X)TΦ(X)

]−1
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Bayesian linear regression

Bayesian linear regression
Example

0 Data points

(C.M. Bishop, Pattern Recognition and Machine Learning)

O. Stegle & K. Borgwardt Linear models Tübingen 20



Bayesian linear regression

Bayesian linear regression
Example

1 Data point

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bayesian linear regression

Bayesian linear regression
Example

20 Data points

(C.M. Bishop, Pattern Recognition and Machine Learning)
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Bayesian linear regression

Making predictions

I Prediction for fixed weight ŵ at input x? trivial:

p(y? |x?, ŵ, σ2) = N
(
y?
∣∣∣ ŵTφ(x?), σ2

)
I Integrate over w to take the posterior uncertainty into account

p(y? |x?,D) =
∫
w
p(y? |x?,w, σ2)p(w |X,y, σ2)

=

∫
w
N
(
y?
∣∣wTφ(x?), σ2

)
N (w |µw,Σw)

= N
(
y?
∣∣µT

wφ(x
?), σ2 + φ(x?)TΣwφ(x

?)
)

I Key:
I prediction is again Gaussian
I Predictive variance is increase due to the posterior uncertainty in w.
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∣∣∣ ŵTφ(x?), σ2

)
I Integrate over w to take the posterior uncertainty into account

p(y? |x?,D) =
∫
w
p(y? |x?,w, σ2)p(w |X,y, σ2)

=

∫
w
N
(
y?
∣∣wTφ(x?), σ2

)
N (w |µw,Σw)

= N
(
y?
∣∣µT

wφ(x
?), σ2 + φ(x?)TΣwφ(x

?)
)

I Key:
I prediction is again Gaussian
I Predictive variance is increase due to the posterior uncertainty in w.

O. Stegle & K. Borgwardt Linear models Tübingen 21
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Model comparison and hypothesis testing

Model comparison
Motivation

I What degree of polynomials
describes the data best?

I Is the linear model at all
appropriate?

I Association testing.
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Model comparison and hypothesis testing

Model comparison
Motivation

I What degree of polynomials
describes the data best?

I Is the linear model at all
appropriate?

I Association testing.

?

Phenome

Genome
ATGACCTGAAACTGGGGGACTGACGTGGAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGCAACTGGGGGACTGACGTGCAACGGT
ATGACCTGAAACTGGGGGATTGACGTGGAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT
ATGACCTGCAACTGGGGGATTGACGTGCAACGGT

in
di
vi
du

al
s

phenotypes

SNPs

yyyyyy1
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Model comparison and hypothesis testing

Bayesian model comparison

I How do we choose among alternative models?

I Assume we want to choose among models H0, . . . ,HM for a
dataset D.

I Posterior probability for a particular model i

p(Hi | D) ∝ p(D |Hi)︸ ︷︷ ︸
Evidence

p(Hi)︸ ︷︷ ︸
Prior

O. Stegle & K. Borgwardt Linear models Tübingen 24
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Model comparison and hypothesis testing

Bayesian model comparison
How to calculate the evidence

I The evidence is not the model likelihood!

p(D |Hi) =

∫
θ
p(D |θ)p(θ) for model parameters θ.

I Remember:

p(θ |Hi,D) =
p(D |Hi,θ)p(θ)

p(D |Hi)
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Model comparison and hypothesis testing

Bayesian model comparison
How to calculate the evidence

I The evidence is not the model likelihood!

p(D |Hi) =

∫
θ
p(D |θ)p(θ) for model parameters θ.

I Remember:

p(θ |Hi,D) =
p(D |Hi,θ)p(θ)

p(D |Hi)

posterior =
likelihood · prior

Evidence
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Model comparison and hypothesis testing

Bayesian model comparison
Ocam’s razor

I The evidence integral penalizes
overly complex models.

I A model with few parameters
and lower maximum likelihood
(H1) may win over a model with
a peaked likelihood that requires
many more parameters (H2).

wMAP w

Likelihood
H2

H1

(C.M.

Bishop, Pattern Recognition and Machine Learning)
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Model comparison and hypothesis testing

Application to GWA

I Consider an association study.
I H0: p(y |H0,X,θ) = N

(
y
∣∣0, σ2I

)
(no association)

θ = {σ2}
I H1: p(y |H1,X,θ) = N

(
y
∣∣wT ·X, σ2I

)
(linear association)

θ = {σ2,w}
I Choosing conjugate priors for σ2 and w, the required integrals are

tractable in closed form.
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Model comparison and hypothesis testing

Application to GWA
Scoring models

I The ratio of the evidences, the Bayes factor is a common scoring
metric to compare two models:

BF = ln
p(D |H1)

p(D |H0)
.

O. Stegle & K. Borgwardt Linear models Tübingen 28
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Model comparison and hypothesis testing

Application to GWA
Posterior probability of an association

I Bayes factors are useful, however we would like a probabilistic answer
how certain an association really is.

I Posterior probability of H1

p(H1 | D) =
p(D |H1)p(H1)

p(D)

=
p(D |H1)p(H1)

p(D |H1)p(H1) + p(D |H0)p(H0)

I p(H1 | D) + p(H0 | D) = 1, prior probability of observing a real
association.
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Summary

Summary

I Curve fitting and linear regression.

I Maximum likelihood and least squares regression are identical.

I Construction of features using a mapping φ.

I Regularized least squares.

I Bayesian linear regression.

I Model comparison and ocam’s razor.
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	lecture2_frontpage
	
	blueLinear modelsblack

	lecture2.pdf
	Motivation
	Outline
	Linear Regression
	Bayesian linear regression
	Model comparison and hypothesis testing
	Summary


