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Graph Kernels Are All About...
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How similar are two graphs?
How similar is their structure?
How similar are their node labels and edge labels?

G G’

Applications
Function prediction for molecules and proteins
Comparison of parts of images in computer vision
Comparison of semantic structures in NLP



Today’s Talk
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Introduction: What are graph kernels?

Motivation: Why is there a need for scalable graph ker-
nels?

Past: Fast computation of random walk graph kernels

Present: Scalable hash-based graph kernels

Future: Scalable interpretable graph kernels



Graph Mining
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Graphs are everywhere
Bioinformatics
Computer Vision
Natural Language Processing

Hot topics in databases/data mining
Frequent subgraph mining
Dense subgraph mining
Graph indexing and search

Recent trends
Data: Growing size of graphs is a
challenge for classic approaches
Methods: Machine Learning
approaches to graph mining



Kernels in a Nutshell I
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Kernels
Key concept: Move learning task to feature space H.
Naive explicit approach:

Map objects x and x′ via mapping φ to H.
Measure their similarity in H as 〈φ(x), φ(x′)〉.

Kernel Trick: Compute inner product in H as kernel in
input space k(x, x′) = 〈φ(x), φ(x′)〉.

R2 ⇒ H



Kernels in a Nutshell II
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Graph kernels
Kernels on pairs of graphs
(not pairs of nodes)
Instance of R-Convolution kernels (Haussler, 1999):

Decompose objects x and x′ into substructures.
Pairwise comparison of substructures via kernels to
compare x and x′.

A graph kernel makes the whole family of kernel me-
thods applicable to graphs.

G G’



Learning with Graph Kernels
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Define a graph kernel
Lots of attention (decades of research in chemoinforma-
tics, early work on graph kernels)

Compute this graph kernel
Little attention on efficiency on large graphs (ICDM 2005, NIPS 2006c,

AISTATS 2009a, NIPS 2009, JMLR 2010)

Plug kernel values into a kernel method
Lots of interest in developing new kernel methods

Apply kernel method to an application problem
Bioinformatics



Complete Graph Kernels

Karsten Borgwardt and Oliver Stegle: Computational Approaches for Analysing Complex Biological Systems, Page 8

Complete graph kernels (Gärtner et al., 2003)
If the mapping φ is injective, then computing the corre-
sponding kernel k is as hard as deciding graph isomor-
phism.
Wanted: Polynomial-time kernel (non-injective) which
combines expressivity with efficiency

Walk-based graph kernels (Kashima et al., 2003)
Count common walks in two graphs G and G′.
The more common walks, the more similar G and G′.
Common walk means series of nodes and edges with
identical labels.



Product Graph Kernels
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Elegant computation (Gärtner et al., 2003)
Form a direct product graph of G and G′.
Count walks in this product graph.
Each walk in product graph corresponds to one walk in
each of the two input graphs:

k×(G,G′) =

|V×|∑
i,j=1

[

∞∑
k=0

λkAk
×]ij = e> (1− λA×)−1︸ ︷︷ ︸

n2×n2

e

Setbacks
Lack of efficiency: scales as O(n6)

Tottering: walks allow to go back and forth between the
same two nodes
Halting: short walks are overweighted



Speeding Up Graph Kernels
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Fast product graph kernel
Compute product graph kernel via Sylvester Equations
and Kronecker Products in O(n3) (NIPS 2006c).

Shortest path kernel
Avoid tottering and halting by a graph kernel based on
shortest path distances (ICDM 2005); scales as O(n4).

Graphlet kernel
Enumerate or sample unlabeled subgraphs of limited
size g from each graph (AISTATS 2009); scales as
O(ndg−1).

Unresolved problem
How do scale up graph kernels to large, labeled graphs?



Subtree Kernels
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Classic ‘subtree kernel’ (Ramon et al., 2003)
Given two graphs G and G′ with n nodes each.
Compare all pairs of nodes v and v′ from G and G′

Compare all subsets of their neighbours recursively
Runtime O(n2 4d h)

4:
3:

2: 1:

3: 2: 1:

G'

G



Weisfeiler-Lehman Procedure
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A new subtree kernel
Count common labels after each iteration
Process N graphs simultaneously
Use a global hash function for compression



Fast Subtree Kernels
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Weisfeiler-Lehman Kernel (NIPS 2009)
Algorithm: Perform the following three steps h times:
1. Sorting: Represent each node v as a sorted list Lv of

its neighbours (O(m))
2. Compression: Compress this list into a hash va-

lue h(Lv) (O(m))
3. Relabeling: Relabel v with h(Lv) as its new node label

(O(n))

Analysis
per pair of graphs: Runtime O(m h) (versus O(n2 4d h)
for the classic kernel)
for N graphs: Runtime O(N m h + N 2 n h) (naive
O(N 2 m h))



WL Kernel: Pairwise vs. Global
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WL Kernel: Runtime & Accuracy
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Outlook: Feature Selection
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Interpretability
Why are two graphs similar? → feature selection
among graphs, that is selecting discriminative subgra-
phs
Their number may grow exponentially with graph size.
In general, selecting an optimal group of k features re-
quires a runtime which is exponential in k.

Roadmap
Our subtree kernels operate in a feature space of size
N n h — not exponential in n and hence more feasible
to search.
Alternatively, explore theoretically-founded strategies
for finding discriminative subgraphs of arbitrary shape
(Thoma et al., SDM 2009; Thoma et al., SADM 2010).



Summary
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Today’s talk
Motivation

Graph kernels allow to apply kernel methods to graph
data.
Efficient graph kernels are the key to exploit this in
practice.

Past: Speed-up of random walk kernels to O(n3)

Present: Hash-based subtree kernels in O(m h)

Future: Feature selection on graphs using kernels
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