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String kernels
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Recall the k-mer kernel on strings

Basic idea: count the number of common contiguous sub-
strings of length k

This is equivalent to:

count the number of occurrences of all k-mers in strings s1

and s2 separately,

compute the inner product between these counts.

ACCTTGTA TGTCCTG
ACC

CCT
CTT

TTG
TGT

GTA

TGT
GTC

TCC
CCT

CTG

ACC  CCT  CTG  CTT  GTA  GTC  TCC  TGT  TTG

f(s1)=(...,1, ..., 1, ..., 0, ..., 1, ..., 1,..., 0, ..., 0, ...,1,...,1,...)

s1 s2

f(s2)=(...,0, ..., 1, ..., 1, ..., 0, ..., 0, ...,1, ..., 1, ...,1,...,0,...)
s1

s2

K(s1,s2)=f(s1)f(s2)’
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Graph kernels
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Graph kernels have traditionally been based on different
ideas

Random walk kernel

Shortest path kernel

Subtree kernel

Cycle kernel

All possible subgraphs kernel

(O(n3))

(O(n4))

(NP-hard)

(NP-hard)

(NP-hard)
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We call graphlets subgraphs of size {3, 4, 5}.
Let G = {graphlet(1), . . . , graphlet(Nk)} be the set of size-k

graphlets and G be a graph of size n.

Define a vector fG of length Nk such that

fGi = #(graphlet(i) v G).

We call fG the k-spectrum of G.

In this figure n = 5, k = 3, fG = (1, 3, 6, 0).
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Given two graphs G and G′ of size n ≥ k, the graphlet kernel
kg is defined as

kg(G,G
′) := f>GfG′.

Problem: if G and G′ have different sizes, this will greatly
skew the counts fG

Solution: normalize the counts to frequency vectors:

DG =
1

#all graphlets in G
fG

and work with the normalized variant of kg

kg(G,G
′) = D>GDG′.



Link to graph reconstruction
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Isomorphism of graphs→ equality of their k-spectra.

Equality of their k-spectra→ isomorphism?

Yes, when n = k + 1 and n ≤ 11...

Graph reconstruction conjecture

Let Gv denote a subgraph of G, obtained by deleting
node v and all the edges incident to it.
Let G and G′ be graphs of size greater than 2 and g :
V → V ′ be an isomorphism function such that Gv is
isomorphic to G′g(v) for all v ∈ V . Then G is isomorphic
to G′.

G
M



Link to graph reconstruction
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Recursive definition of the graphlet kernel

Given two graphsG andG′ of size n ≥ k, let M and M′ deno-
te the set of size-n-1 subgraphs of G and G′ respectively.

G
M

The recursive graph kernel based on these subgraphs is de-
fined as

kn(G,G
′) =


1

(n−k)2

∑
S∈M,S ′∈M′ kn−1(S, S

′) if n > k,

δ(G ∼= G′) if n = k

where δ(G ∼= G′) is 1 ifG andG′ are isomorphic, 0 otherwise.

The graphlet kernel is defined as kg(G,G′) := kn(G,G
′).



How to reduce runtime?
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The kernel is defined, but how to compute graphlet distributi-
ons?

Counting size-k graphlets by exhaustive enumeration takes
O(nk).

This is too expensive.

We propose 2 schemes to speed up the computation. We
show that

sampling a fixed number of graphlets suffices to bound
the l1 deviation of the empirical estimates of the graphlet
distribution from the true distribution.
for graphs of degree bounded by d, the exact number
of all graphlets of size k can be determined in time
O(ndk−1). Large real world graphs are often sparse with
d� n.



Sampling from graphs
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Given a multiset X := {Xj}mj=1 of independent identically dis-
tributed (iid) random variablesXj ∼ D, the empirical estimate
of D is defined as

D̂m(i) =
1

m

m∑
j=1

δ(Xj = i),

where i ∈ A, and δ is an indicator function.
Let D be a probability distribution on the finite set A =
{1, . . . , a}. Let X := {Xj}mj=1, with Xj ∼ D. For a given ε > 0
and δ > 0,

m =

⌈
2
(
log 2 · a + log

(
1
δ

))
ε2

⌉
samples suffice to ensure that P

{
||D − D̂m||1 ≥ ε

}
≤ δ.



Sampling from graphs
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Example

Consider size-5 graphlets with ε = 0.05, δ = 0.05

a = 34, as there are 34 pairwise non-isomorphic gra-
phlets of size 5

1 2 3 4 5 6 1110987 12

13 14 15 16 17 18 212019 24

272625 30

22 23

28 29 333231 34

We obtain m = 21251 independent from the size of gra-
phs we want to compare
21251� n5, ∀n > 9.



Bounded degree graphs
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There is a large fraction of graphs on which complete coun-
ting of graphlets can be performed efficiently: graphs of
bounded degree d.

We present 2 algorithms which exploit the low degree:

one for enumerating all connected graphlets,
one for counting all graphlets.

Both have O(ndk−1) runtime complexity, but the first one is
faster in practice



Bounded degree graphs
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Count connected graphlets of size k, k ∈ {3, 4, 5}
Notice that most connected graphlets contain size-k simple

paths

Provided this, the idea is simple:

enumerate simple paths of k nodes (O(ndk−1))
for each path, look up adjacencies among these k nodes
to decide which graphlet we obtain (O(1) provided that
we have a data structure allowing for this)
each graphlet will be counted as many times, as the
number of k-node paths it contains → divide counts by
these numbers

1 2



Bounded degree graphs
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Problem: while for size-3 graphlets all connected graphlets
contain simple paths of k nodes, this is no more the case
for size-4 and 5 graphlets.

I II III IV

Solution:

To count I, we look up the
(
di

3

)
neighbor triplets of each

vi, and check if they induce the graphlet we are interes-
ted in (O(nd3))
II, III and IV contain I. So we first enumerate all occur-
rences of I, and then check the neighbors of each no-
de in I to see if they induce the graphlets in question
(O(nd4))



Bounded degree graphs
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Count all graphlets of size k, k ∈ {3, 4, 5}
The basic idea:

enumerate all connected graphlets
obtain counts of disconnected graphlets by subtracting
previously obtained quantities from precomputed quan-
tities



Bounded degree graphs
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Count all graphlets of size k, k ∈ {3, 4, 5} (continued)

Example: 3-node graphlets

There are 4 types of 3-node graphlets: denote them Fi, i ∈
{0, 1, 2, 3}, Fi contains i edges

Current edge
|F3|=|F3|+#(red nodes)

|F2|=|F2|+#(green nodes)

|F1|=|F1|+(n-2-#(red and green nodes))

|F1|=|F2|=|F3|=0
For all edges do (0(nd)) 

(0(d)) 

 First count graphlets containing at least one edge

|F3|=|F3|/6, |F2|=|F2|/4, |F1|=|F1|/2
|F0|=       - (|F1|+|F2|+|F3|)

 

(  ) n
3



Experiments
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Statistics on datasets

dataset size classes # nodes # edges d
MUTAG 188 2 (125 vs. 63) 17.7 38.9 4
PTC 344 2 (192 vs. 152) 26.7 50.7 4
Enzyme 600 6 (100 each) 32.6 124.3 9
D & D 1178 2 (691 vs. 587) 284.4 1921.6 52

MUTAG, PTC - chemicals

Enzyme, D & D - biological datasets

We did not consider node labels
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Classification accuracy for k = 4
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Runtime
Kernel MUTAG PTC Enzymes D & D
RW 42.3” 2’ 39” 10’ 45” > 1 day
SP 23.2” 2’ 35” 5’ 1” > 1 day
GK A3 1016 21.5” 29.7” 39” 2’ 9”
GK A3 1154 23.1” 42.6” 48.7” 2’ 19”
GK A3 4061 1’ 18” 2’ 39” 1’ 51” 6’ 35”
GK A3 4615 1’ 38” 3’ 1” 2’ 51” 5’ 58”
GK A3 all 0.35” 0.9” 3.34” 2’ 34”
GK C3 0.14” 0.36” 1.3” 2’ 14”
GK A4 1986 1’ 39” 3’ 2” 4’ 20” 11’ 35”
GK A4 2125 1’ 46” 3’ 16” 4’ 36” 12’ 21”
GK A4 7942 6’ 33” 12’ 3” 16’ 35” 42’ 45”
GK A4 8497 6’ 57” 12’ 49” 17’ 38” 45’ 36”
GK A4 all 4.38” 10.8” 49.3” 2h 44’ 59”
GK C4 0.26” 0.9” 4.1” 35’ 22”
GK A5 5174 3’ 14” 8’ 1” 16’ 57” 1h 29’ 54”
GK A5 5313 3’ 18” 8’ 6” 17’ 3” 1h 1’ 54”
GK A5 20696 8’ 56” 18’ 28” 42’ 2” 1h 30’ 18”
GK A5 21251 9’ 5” 18’ 4” 27’ 2h 6’ 45”
GK A5 all 7’ 17” 16h 2’ 16” 20h 26’ 8” > 1 day
GK C5 0.79” 2.1” 40.7” > 1 day



Conclusion
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We have proposed efficient graph kernels based on coun-
ting or sampling limited size subgraphs in a graph

Our methods for efficient counting of graph features are
not limited to being used in graph kernels

Future research: take node labels into account
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