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Graph Mining and Graph Kernels 

An Introduction to Graph Mining 

Graphs are everywhere 
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An Introduction to Graph Mining 

Part I: Graph Mining 

Graph Pattern Mining 

!   Frequent graph patterns 

!   Pattern summarization 

!   Optimal graph patterns 

!   Graph patterns with constraints 

!   Approximate graph patterns 

Graph Classification 

!   Pattern-based approach 

!   Decision tree 

!   Decision stumps 

Graph Compression 

Other important topics (graph model, laws, graph dynamics, social network analysis, 
visualization, summarization, graph clustering, link analysis, …) 
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Applications of Graph Patterns  

!   Mining biochemical structures 

!   Finding biological conserved subnetworks 

!   Finding functional modules 

!   Program control flow analysis 

!   Intrusion network analysis 

!   Mining communication networks 

!   Anomaly detection 

!   Mining XML structures 

!   Building blocks for graph classification, clustering, compression, comparison, correlation analysis, 
and indexing 

!   … 
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Graph Pattern Mining 

multiple graphs setting 
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Graph Patterns 

Interestingness measures / Objective functions 
•  Frequency: frequent graph pattern 

•  Discriminative: information gain,  Fisher score 

•  Significance: G-test 

•  … 

6 



Graph Mining and Graph Kernels 

An Introduction to Graph Mining 

Frequent Graph Pattern 
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Example: Frequent Subgraphs 

(a) caffeine (b) diurobromine (c) viagra 

CHEMICAL COMPOUNDS 

FREQUENT SUBGRAPH 

… 
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Example (cont.) 

PROGRAM CALL GRAPHS 

FREQUENT SUBGRAPHS 
(MIN SUPPORT IS 2) 
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Graph Mining Algorithms 

Inductive Logic Programming (WARMR, King et al. 2001) 

!  Graphs are represented by Datalog facts 
Graph Based Approaches 
!   Apriori-based approach 

!  AGM/AcGM: Inokuchi, et al. (PKDD’00) 

!  FSG: Kuramochi and Karypis (ICDM’01) 

!  PATH#: Vanetik and Gudes (ICDM’02, ICDM’04) 

!  FFSM: Huan, et al. (ICDM’03) and SPIN: Huan et al. (KDD’04) 

!  FTOSM: Horvath et al. (KDD’06) 
!   Pattern growth approach 

!  Subdue: Holder et al. (KDD’94) 

!  MoFa: Borgelt and Berthold (ICDM’02) 

!  gSpan: Yan and Han (ICDM’02) 

!  Gaston: Nijssen and Kok (KDD’04) 

!  CMTreeMiner: Chi et al. (TKDE’05), LEAP: Yan et al. (SIGMOD’08) 
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If a graph is frequent, all of its subgraphs are frequent. 

… heuristics 

Apriori Property  
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Cost Analysis 

isomorphism  
checking 

number of candidates 
• frequent 

• infrequent (X) 
• duplicate (X) data  
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Properties of Graph Mining Algorithms 

Search Order 

!   breadth vs. depth 

!   complete vs. incomplete 

Generation of Candidate Patterns 

!   apriori vs. pattern growth 

Discovery Order of Patterns 

!   DFS order 

!   path  tree  graph 

Elimination of Duplicate Subgraphs 

!   passive vs. active 

Support Calculation 

!   embedding store or not 
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Generation of Candidate Patterns 

… 

G 
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Apriori-Based Approach 
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Pattern-Growth Approach 

(k+2) 
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… 
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22 new graphs 

6 edges 

… 

7 edges 

Discovery Order: Free Extension 
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depth-first search 

4 new graphs 

7 edges 

right-most path start end 

(Yan and Han ICDM’02) 

Discovery Order: Right-Most Extension  
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Duplicates Elimination 

Option 1 
!  Check graph isomorphism of g with each graph (slow) 

Option 2 
!  Transform each graph to a canonical label, create a hash value for this 

canonical label, and check if there is a match with g (faster) 

Option 3 
!  Build a canonical order and generate graph patterns in that order (fastest) 

Existing patterns      g1, …, gN 
Newly discovered pattern    g    
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Performance: Run Time (Wörlein et al. PKDD’05) 

Minimum support (in %) 
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The AIDS antiviral screen compound dataset from NCI/NIH 
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Performance: Memory Usage (Wörlein et al. PKDD’05) 

Minimum support (in %) 
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Graph Pattern Explosion Problem 

!   If a graph is frequent, all of its subgraphs are frequent ─ the Apriori property  

!   An n-edge frequent graph may have 2n subgraphs! 

!   In the AIDS antiviral screen dataset with 400+ compounds, at the support level 5%, there are > 1M 

frequent graph patterns 

Conclusions: Many enumeration algorithms are available 

                       AGM, FSG, gSpan, Path-Join, MoFa, FFSM, SPIN, Gaston,       

                       and so on, but three significant problems exist 

Problem 1: Interpretation Problem 
Problem 2: Exponential Pattern Set 
Problem 3: Threshold Setting 
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Pattern Summarization (Xin et al., KDD’06, Chen et al. CIKM’08) 

!  Too many patterns may not lead to more explicit knowledge 

!  It can confuse users as well as further discovery (e.g., clustering, classification, 
indexing, etc.) 

!  A small set of “representative” patterns that preserve most of the information 
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Pattern Distance 

… … 

patterns data 

distance 

measure 1: pattern based 
•  pattern containment 
•  pattern similarity 

measure 2: data based 
•  data similarity 

patterns 
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Closed and Maximal Graph Pattern 

Closed Frequent Graph 

!   A frequent graph G is closed if there exists no supergraph of G that carries the same support as G 

!   If some of G’s subgraphs have the same support, it is unnecessary to output these subgraphs 

(nonclosed graphs) 

!   Lossless compression: still ensures that the mining result is complete 

Maximal Frequent Graph 

!   A frequent graph G is maximal if there exists no supergraph of G that is frequent 
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Number of Patterns: Frequent vs. Closed 

Minimum support 
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CLOSEGRAPH (Yan and Han, KDD’03) 

… 

A Pattern-Growth Approach 

G 

G1 

G2 

Gn 

k-edge 

(k+1)-edge 

At what condition, can we 
stop searching their supergraph 

i.e., early termination? 

If G and G’ are frequent, G is a 
subgraph of G’.  If in any part 
of graphs in the dataset 
where G occurs, G’ also 
occurs, then we need not grow 
G, since none of G’s supergraphs 
will be closed except those of G’. 
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Handling Tricky Cases 

(graph 1) 

a 

c 

b 

d 

(pattern 2) 

(pattern 1) 

(graph 2) 
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Maximal Graph Pattern Mining (Huan et al. KDD’04) 

Tree-based Equivalence Class 

!   Trees are sorted in their canonical order 

!   Graphs are in the same equivalence class if they have the same canonical spanning tree 

Locally Maximal 
  A frequent subgraph g is locally maximal if it is maximal in its equivalence 

class, i.e., g has no frequent supergraphs that share the same canonical 
spanning tree as g 

  Every maximal graph pattern must be locally maximal 
  Reduce enumeration of subgraphs that are not locally maximal 
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Graph Pattern with Other Measures 
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Challenge: Non Anti-Monotonic 

Anti-Monotonic 

Non Monotonic 

Non-Monotonic: Enumerate all subgraphs, then check their score? 

Enumerate subgraphs  
: small-size to large-size 
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Frequent Pattern Based Mining Framework 

Exploratory task 

Graph clustering 

Graph classification 

Graph index 

Graph Database Frequent Patterns Graph Patterns  

1. Bottleneck : millions, even billions of patterns 

2. No guarantee of quality 
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Optimal Graph Pattern 
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Direct Pattern Mining Framework 

Exploratory task 

Graph clustering 

Graph classification 

Graph index 

Graph Database Optimal Patterns 

Direct 
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Upper-Bound 
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Upper-Bound: Anti-Monotonic (cont.) 

Rule of Thumb :  
If the frequency difference of a graph pattern in 
the positive dataset and the negative dataset 
increases, the pattern becomes more interesting 

We can recycle the existing graph mining algorithms to 
accommodate non-monotonic functions.  
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Vertical Pruning 
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Horizontal Pruning: Structural Proximity  

36 



Graph Mining and Graph Kernels 

An Introduction to Graph Mining 

Results: NCI Anti-Cancer Screen Datasets 

Name # of Compounds Tumor Description 

MCF-7 27,770 Breast 

MOLT-4 39,765 Leukemia 

NCI-H23 40,353 Non-Small Cell Lung 

OVCAR-8 40,516 Ovarian 

P388 41,472 Leukemia 

PC-3 27,509 Prostate 

SF-295 40,271 Central Nerve System 

SN12C 40,004 Renal 

SW-620 40,532 Colon 

UACC257 39,988 Melanoma 

YEAST 79,601 Yeast anti-cancer 

Link: http://pubchem.ncbi.nlm.nih.gov 

Chemical Compounds:  anti-cancer or not 

# of vertices: 10 ~ 200 
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LEAP (Yan et al. SIGMOD’08) 

Vertical Pruning 
Vertical Pruning + 
Horizontal Pruning 
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Graph Pattern with Topological Constraints 
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Constraint-Based Graph Pattern Mining 

!   Highly connected subgraphs in a large graph usually are not artifacts (group, functionality) 

  Recurrent patterns discovered in multiple graphs are more robust than the 
patterns mined from a single graph 
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No Downward Closure Property 

Given two graphs G and G’, if G is a  
subgraph of  G’, it does not imply that the  
connectivity of G’ is less than that of G, and  
vice versa. 

G G’ 
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Pruning Patterns vs. Data (Zhu et al. PAKDD’07) 
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~9000 genes 150 x ~(9000 x 9000) = 12 billion edges 

. . . . . . . . . 

transform graph mining 

Patterns discovered in multiple graphs are more reliable and significant  

frequent  
dense  

subgraph 

Mining Gene Co-expression Networks 
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Summary Graph 

. . . 

M graphs  ONE summary graph 

overlap clustering 

Scale Down 
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Vertexlet (Yan et al. ISMB’07) 
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Approximate Graph Patterns  
(Kelley et al. PNAS’03, Sharan et al. PNAS’05) 

PathBlast 
!   Exhaustive search: the highest-scoring paths with four nodes are identified 

NetworkBlast 
!   Local search: start from high-scoring seeds, refine them, and expand them 

!   Filter overlapping graph patterns 

Conserved clusters within the protein interaction networks 
of yeast, worm, and fly 
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Graph Classification 

Structure-based Approach 

•  Local structures in a graph, e.g., neighbors surrounding a vertex, paths with fixed length 

Pattern-based Approach 

•  Subgraph patterns from domain knowledge or from graph mining 

•  Decision Tree (Fan et al. KDD’08) 

•  Boosting (Kudo et al. NIPS’04) 

•  LAR-LASSO (Tsuda, ICML’07) 

Kernel-based Approach  

•  Random walk (Gärtner ’02, Kashima et al. ’02, ICML’03, Mahé et al. ICML’04) 
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Structure/Pattern-based Classification 

Basic Idea  

!   Transform each graph in the dataset into a feature vector,  

    where xi is the frequency of the i-th structure/pattern in  Gi.  Each vector is associated with a 
class label.   Classify these vectors in a vector space 

Structure Features  

!   Local structures in a graph, e.g., neighbors surrounding a vertex, paths with fixed length 

!   Subgraph patterns from domain knowledge 

!  Molecular descriptors 

!   Subgraph patterns from data mining  

Enumerate all of the subgraphs and select the best features? 
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Graph Patterns from Data Mining 

!   Sequence patterns (De Raedt and Kramer IJCAI’01) 

!   Frequent subgraphs (Deshpande et al, ICDM’03) 

!   Coherent frequent subgraphs (Huan et al. RECOMB’04) 

!  A graph G is coherent if the mutual information between G and each of its own subgraphs is 
above some threshold 

!   Closed frequent subgraphs (Liu et al. SDM’05) 

!   Acyclic Subgraphs (Wale and Karypis, technical report ’06) 
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Decision-Tree (Fan et al. KDD’08) 

Basic Idea  
!   Partition the data in a top-down manner and construct the tree using the best feature at each step 

according to some criterion 

!   Partition the data set into two subsets, one containing this feature and the other does not 

Optimal graph pattern mining 
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Boosting in Graph Classification (Kudo et al. NIPS’04) 

Simple classifiers: A rule is a tuple <t,y>.  

If a molecule contains substructure t,  it is classified as y. 

!   Gain 

!   Applying boosting 

Optimal graph pattern mining 

New Development: Graph in LAR-LASSO (Tsuda, ICML’07) 
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Graph Classification for Bug Isolation  
(Chao et al. FSE’05, SDM’06) 

Input Output 

Instrument 

Program Flow Graph 

Correct Runs Faulty Runs 

… … 

correct outputs crash / incorrect outputs 

Change Input 

Program 
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Graph Classification for Malware Detection 

Input Output 

Instrument 

System Call Graph 

Malicious Behavior 

… … 

Benign Programs Malicious Programs 

Change Program 

Benign Behavior 

Program 
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Graph Compression (Holder et al., KDD’94) 

Extract common subgraphs and simplify graphs by condensing these subgraphs 
into nodes 
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Conclusions 

Graph mining from a pattern discovery perspective 

!   Graph Pattern Mining 

!   Graph Classification 

!   Graph Compression 

Other Interesting Topics 

!   Graph Model, Laws, and Generators 

!   Graph Dynamics 

!   Social Network Analysis 

!   Graph Summarization 

!   Graph Visualization 

!   Graph Clustering 

!   Link Analysis 
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