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Application1: modelling physiological time series

Motivation

I Human heart rate is an important physiological trait.

I Measurement over long periods only viable with poor sensors.

I Motivation Gaussian process model for heart rate.
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Application1: modelling physiological time series

The problem
Dataset

4 days of heart data
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Application1: modelling physiological time series

The problem
Dataset

zoomed view
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Application1: modelling physiological time series Overview

model
The Inference Model
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I (a) Gaussian process prior on latent heart rate

I (b) Clustering of auxiliary data to extract noise classes

I (c) Heavy tailed noise model taking classes into account
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Application1: modelling physiological time series Gaussian process prior for heart rate

A GP prior for heart rate

I Covarianc function for short
range fluctuations

I Long-range perdiodic signal

I Sum of (a) and (b)

I Log transformation (asymmetry)
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Application1: modelling physiological time series Gaussian process prior for heart rate

A GP prior for heart rate

I Short-range covariance

CS(x, x
′) = C1 Matern3/2(x, x

′, δS)

I Periodic covariance

CL(x, x
′) = C0 exp

[
− (x− x′)2

2δ2L

]
exp

[
−2 ·

sin2( 2πpL · (x− x
′))

A2
L

]
I Total covariance

C(x, x′) = CL(x, x
′) + CS(x, x

′)

I Non-linear transformation, reflecting strict positivity and asymmetry
of heart rate

y∗t = logβ(yt)
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Application1: modelling physiological time series Gaussian process prior for heart rate

Clustering of auxiliary data

I Every datapoint can be member in one of K clusters.

I Use clustering approach to determine cluster membership

πn = {πn,1, . . . , πn,K} where

K∑
k=1

πn,k = 1
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Application1: modelling physiological time series Gaussian process prior for heart rate

Robust noise model

I Remember: standard robust noise model, accounting for outliers

p(yn | fn) = πokN
(
yn
∣∣ fn, σ2)+ (1− πok)N

(
yn
∣∣ fn, σ2∞)

I Here: clustering results (auxiliaries S) encode useful information.

z1

y1|f1 S1

z2

y2|f2 S2

zN

yN |fN SN

π

I Generalize likelihood K noise components, one for each cluster and
use data-specific mixture probabilities πn

p(yn | fn) =
K∑
k=1

πk,nN
(
yn
∣∣ fn, σ2k)
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Application1: modelling physiological time series Results

Regression for Heart Data

Single data set

I Clustering
color-coded and
Hinton diagrams

I Three clusters
- g,b,r-values
for responsi-
bilities

I Noise parameters
{σc}3c=1

optimised along
with other hyper
parameters
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Application1: modelling physiological time series Results

Regression for Heart Data

Double data-set

I Two sensors for
one heart

I GPs overlap well
within error-bars

I Lower panel:
difference plot
and error bars
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Application1: modelling physiological time series Results

Fill-in test
Motivation

I Evaluate predictive performance to benchmark alternative models
I Fill-in test:

I Model is trained on a subset of the data to predict the remainder.
I Log probability as criteria rewards models with appropriately sized error

bars.
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Application1: modelling physiological time series Results

Block size 1 minute

Block size 1 minute
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Application1: modelling physiological time series Results

Block size 60 minute

Block size 60 minutes
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I Larger blocks removed rewards
long range covariance
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Application 2: differential gene expression
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Application 2: differential gene expression Overview

Response to External Stimuli

I Organisms such as plants respond to
external stimuli:

I Heat/Cold
I Starvation
I Biotic stresses (fungus)
I ...

I Changes in observed gene expression
levels.
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Application 2: differential gene expression Overview

Differential Gene Expression

I An important goal is the identification
of differentially expressed genes.

I Identification of involved regulatory
components.

I Uncovering parts of the biological
network.
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Application 2: differential gene expression Overview

Differential Gene Expression in Time Series
Time Series

I The response to external stimuli is a dynamic process.

I Hence the response should be studied as a function of time.
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Application 2: differential gene expression Overview

Differential Gene Expression in Time Series
Challenges

I Time series expression profiles vary smoothly over time.

I Noisy observations – outliers.

I Multiple replicates.

I Few observations.

I Temporal patterns (intervals) of differential gene expression.
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Application 2: differential gene expression A Gaussian process two-sample test

Gaussian process Model
Model comparison

I The basic idea – a comparison of two models:
I The shared model: Expression levels are explained by a single process.
I The independent model: Expression levels are explained by two

separate processes.
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Application 2: differential gene expression A Gaussian process two-sample test

Gaussian process model
Bayesian Network: Shared Model

I Data in conditions A and B
observed at N time points with
R replicates.

I A Gaussian process prior
incorporates beliefs about
smoothness.

I Noise is is modeled separately
per-replicate, σA/Br .
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Application 2: differential gene expression A Gaussian process two-sample test

Gaussian process model
Bayesian Network: Shared Model

I Data in conditions A and B
observed at N time points with
R replicates.

I A Gaussian process prior
incorporates beliefs about
smoothness.

I Noise is is modeled separately
per-replicate, σA/Br .

O. Stegle & K. Borgwardt GP Applications Tübingen 23



Application 2: differential gene expression A Gaussian process two-sample test

Gaussian process model
Bayesian Network: Both Models

I The independent model follows in an analogous manner.

Shared model HS Independent model HI
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Application 2: differential gene expression A Gaussian process two-sample test

Gaussian Process Model
Inference

I Models are compared using the Bayes factor

Score = log

Independent model︷ ︸︸ ︷
P (DA,DB |HI)

P (DA,DB |HS)︸ ︷︷ ︸
Shared model

.

I Writing out the GP models explicitly leads to

Score = log
P (YA |HGP,T

A, )P (YB |HGP,T
B, )

P (YA ∪YB |HGP,TA ∪TB, )
.

(YA/B : expression levels in conditions A and B; TA/B : observation time points)
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Application 2: differential gene expression A Gaussian process two-sample test

Gaussian Process Model
Shared Model

I Given observed data from both conditions D = {YA/B,TA/B} the
posterior distribution over latent function values f is

P (f |Y,T,θK,θL) ∝N (f |0,KT(θK))

×
∏

c∈{A,B}

R∏
r=1

N∏
n=1

pL(y
c
r,tn | ftn ,θL),

I Covariance funciton (kernel)

I Noise model

I Hyperparameters θS = {θK,θL} (length scale, noise levels)

I For Gaussian noise, pL(y
c
r,t | f cr,t,θL) = N

(
ycr,t

∣∣∣ f cr,t, (σcr)2), the

model is tractable in closed form.
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Application 2: differential gene expression A Gaussian process two-sample test

Gaussian Process Model
Shared Model

I Given observed data from both conditions D = {YA/B,TA/B} the
posterior distribution over latent function values f is

P (f |Y,T, θK,θL ) ∝N
(
f
∣∣∣0, KT(θK)

)
×

∏
c∈{A,B}

R∏
r=1

N∏
n=1

pL(y
c
r,tn | ftn ,θL) ,

I Covariance funciton (kernel)

I Noise model

I Hyperparameters θS = {θK,θL} (length scale, noise levels)

I For Gaussian noise, pL(y
c
r,t | f cr,t,θL) = N

(
ycr,t

∣∣∣ f cr,t, (σcr)2), the

model is tractable in closed form.

O. Stegle & K. Borgwardt GP Applications Tübingen 26
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posterior distribution over latent function values f is

P (f |Y,T, θK,θL ) ∝N
(
f
∣∣∣0, KT(θK)

)
×

∏
c∈{A,B}

R∏
r=1

N∏
n=1

pL(y
c
r,tn | ftn ,θL) ,

I Covariance funciton (kernel)

I Noise model

I Hyperparameters θS = {θK,θL} (length scale, noise levels)

I For Gaussian noise, pL(y
c
r,t | f cr,t,θL) = N

(
ycr,t

∣∣∣ f cr,t, (σcr)2), the

model is tractable in closed form.
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Application 2: differential gene expression A Gaussian process two-sample test

Robustness With Respect to Outliers

I Outliers in the expression profile
can obscure the regression
results.

I A mixture noise-model accounts
for outliers.

I Inference in this model is done
using Expectation Propagation.
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Application 2: differential gene expression Experimental Results on Arabidopsis

Illustration of the Model Comparison
A Differentially Expressed Gene

I Shared model.
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Application 2: differential gene expression Experimental Results on Arabidopsis

Illustration of the Model Comparison
A Differentially Expressed Gene

I Independent model.
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Application 2: differential gene expression Experimental Results on Arabidopsis

Illustration of the Model Comparison
A Differentially Expressed Gene

I Model comparison.
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Application 2: differential gene expression Experimental Results on Arabidopsis

Predictive Performance (RECOMB09)

I Data:
I 30,336 Arabidopsis thaliana gene probes
I Biotic stress: fungus infection
I 24 time points, 4 biological replicates

I Evaluation of alternative methods on 2000 randomly chosen
human-labeled probes:

I GP no robust
I GP robust
I F-Test (FT) (MAANOVA package)
I Timecourse (TC) (Tai and Speed)
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Application 2: differential gene expression Experimental Results on Arabidopsis

Predictive Performance (RECOMB09)
ROC Curves
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GP robust (AUC 0.985)
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FT (AUC 0.859)
TC (AUC 0.869)
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Time-local GPTwoSample
Motivation

I Differential expression
is not static over time.

I The response
develops over time.

I Different regulators
may be active at
distinct times and
trigger each other.
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Time-local GPTwoSample
Model

I The shared and
independent model are
interleaved over time.

I Indicator variables ztn
switch between both
models.

I Inference is done using
Gibbs sampling (later).
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Time-local GPTwoSample
Example Results

The example from before
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Example Results

The example from before Periodic differential expression
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Smooth Time-local GPTwoSample

I Transitions between
non-differential and
differential expression
can occur at unobserved
time points and are
smooth.

I Extending the time-local
model with a GP prior as
gating network on the
switch variables.

I Inference using Gibbs
sampling.
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Smooth Time-local GPTwoSample
Gibbs Sampling

I Gibbs sampling exploits tractable
conditional distributions.

I Individual indicators zti are resampled
in turn

P
(
zti = s | z\ti ,T,Y,θS,θI,θG

)
∼ P

(
Y | zti = s, z\ti ,T,θI,θS

)
× P

(
zti = s | z\ti ,θG

)
.

I Data likelihood from GP experts

I Predictive distribution from gating network
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Smooth Time-local GPTwoSample
Example Results

Early differential expression Transient differential expression
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Detecting Transition Points in Arabidopsis Microarray Time Series
Start/Stop Times

I Studying the temporal
distribution of differential
expression across genes.

I Considered were the top 6000
differentially expressed genes.

I Differential expression appears
to occur in two waves with start
times at 20h an 25h after
infection.

I Only very few genes stop
differential behavior within the
measured time interval.

Distribution of differential start/stop time
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Application 2: differential gene expression Detecting Temporal Patterns of Differential Expression

Detecting Transition Points in Arabidopsis Microarray Time Series
Start Times for Gene Categories

I This distribution can be
broke down into gene
categories.

I WRKY Family of
transcription factors is
known to be involved in
stress response.

Distribution of differential start time
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Detecting Transition Points in Arabidopsis Microarray Time Series
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Application 3: Modeling transcriptional regulation using Gaussian
processes

Outline

Application1: modelling physiological time series
Overview
Gaussian process prior for heart rate
Results

Application 2: differential gene expression
Overview
A Gaussian process two-sample test
Experimental Results on Arabidopsis
Detecting Temporal Patterns of Differential Expression

Application 3: Modeling transcriptional regulation using Gaussian
processes

Summary

O. Stegle & K. Borgwardt GP Applications Tübingen 39



Application 3: Modeling transcriptional regulation using Gaussian
processes

Motivation

I This part of the course is inspired and based on results of a
publication by Neil D. Lawrence et al.
Modelling transcriptional regulation using Gaussian processes
ftp://ftp.dcs.shef.ac.uk/home/neil/gpsim.pdf.
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Application 3: Modeling transcriptional regulation using Gaussian
processes

Motivation

I Microarray technologies allow to
measure mRNA levels.

I The functional proteins and their
concentration levels remain unobserved.

I Motivation: Infer the hidden protein
concentrations?
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Application 3: Modeling transcriptional regulation using Gaussian
processes

A single gene model

I The change in gene expression abundance yi for a gene i is
approximately described by a differential equation model of the form

dyi(t)

dt
= Bi + Sif(t)−Diyi(t)

I f(t) regulatory transcription factor.
I Bi basal transcription rate.
I Si sensitivity of the gene to the transcription factor.
I Di decay rate of the mRNA.

I Goal: infer the unobserved activation f(t) from mRNA measurements
of multiple target genes.
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Application 3: Modeling transcriptional regulation using Gaussian
processes

Derivative observations

I The key to solving this problem are derivative observations.

I Given knowledge about the derivative of a function f we would like to
infer its function values:

dy =
∂f(t)

∂t

I We wish to find the joint probability of function values and function
derivatives

cov(dyi, yj) =
∂

∂ti
cov(yi, yj)

cov(dyi, dyj) =
∂2

∂ti∂tj
cov(yi, yj)

I Using these covariance functions we can combine function
observations and derivatives as training data in GP regression.
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Application 3: Modeling transcriptional regulation using Gaussian
processes

Derivative observations
Squared exponential kernel

I For the squared exponential kernel we obtain:

cov(yi, yj) = k(ti, tj) = A2e−0.5
(ti−tj)

2

L2

cov(dyi, yj) = −cov(yi, yj)
(ti − tj)
L2

cov(dyi, dyj) = cov(yi, yj)
1

L2

[
δi,j −

1

L2
(ti − tj)2

]
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Application 3: Modeling transcriptional regulation using Gaussian
processes

Derivative observations
Example

(From E. Solak et al.

Derivative observations in Gaussian Process models of dynamic systems)
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Application 3: Modeling transcriptional regulation using Gaussian
processes

Back to the ODE model for gene regulation

dyi(t)

dt
= Bi + Sif(t)−Diyi(t)

I An explicit solution of the ODE system can be derived (standard ODE
techniques)

yi(t) =
Bi
Di

+ kie
−Dit + Sie

−Dit

∫ t

0

f(u) exp(Diu)du

yi(t) =
Bi
Di

+ Li[f ](t)

I Realizing that Li is a linear operator (like taking the derivative), we
can again evaluate the covariance between f(t) and Li[f ](t).
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Application 3: Modeling transcriptional regulation using Gaussian
processes

ODE model for gene regulation
Inference results

(From N. D. Lawrence et al.

Modelling transcriptional regulation using Gaussian processes)
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Summary

Outline

Application1: modelling physiological time series
Overview
Gaussian process prior for heart rate
Results

Application 2: differential gene expression
Overview
A Gaussian process two-sample test
Experimental Results on Arabidopsis
Detecting Temporal Patterns of Differential Expression

Application 3: Modeling transcriptional regulation using Gaussian
processes

Summary
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Summary

Summary

I The design and choice of covariance functions allows for flexible
modeling tasks.

I Prior on heart rate
I Derivative observations, ODE systems

I Model comparison using Gaussian processes.
I Testing for differential gene expression.
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