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Abstract 

This paper presents an enriched, agent-based small scale scenario with dynamic demand and 

an integrated public transport system based on the commonly used Sioux Falls road network. 

The scenario aims to provide a realistic, fully dynamic demand with heterogeneous socio-

demographic users and a high degree of spatial resolution.  Real world survey and land-use 

data is used to generate a diverse synthetic population and accurate activity locations. The 

socio-demographic characteristics include age and sex on individual and income on household 

levels. The assignment of home and work locations employs land-use and building 

information, census data from the City of Sioux Falls, South Dakota as well as commonly 

used static OD-matrices from LeBlanc et al., 1975. 

This enriched Sioux Falls scenario can serve as a convenient test-case for the study of 

different transportation policies as well as a test bed for the extension and development of 

agent-based simulation frameworks. It is important to note that the scenario does not aim to 

replicate the real City of Sioux Falls, SD, and remains a fictitious test-case scenario.  In this 

work, we use Multi-agent Transport Simulation (MATSim) in order to evaluate the stochastic 

user-equilibrium of the compiled supply and demand. 

The scenario data, as well as simulations input and output, can be obtained by following the 

instructions at www.matsim.org/scenario/sioux-falls.  
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1 Introduction 

Since the early days of transport planning, simple and robust scenarios were required in order 

to test, demonstrate and compare methods and algorithms. A simplified road network based on 

the city of Sioux Falls, South Dakota, became very popular within the transport research 

community, as it was readily available. The scenario was first introduced by Morlok et al. 

(1973) as a traffic equilibrium network and consequently used and later adapted as a 

benchmark and test scenario in many publications, i.e. LeBlanc et al. (1975), Abdulaal and 

LeBlanc (1979a), Suwansirikul et al.  (1987), Friesz et al. (1992), Meng et al. (2001), Bar-

Gera et al. (2013) to name but a few. A more exhaustive list of Sioux Falls variants used as a 

benchmark continuous network design problem can be found on the webpage related to 

transportation network test problems, managed by Prof. Hillel Bar-Gera from Ben-Gurion 

University of the Negev (Bar-Gera, 2014). 

With the emergence of dynamic activity-based modelling approaches and the development of 

agent-based simulation tools such as MATSim and TRANSims, new small-scale scenarios 

with dynamic demand and a high level of disaggregated information became necessary to test 

and demonstrate the new approaches. The challenges are that such scenarios have to stay 

computationally manageable and be compiled out of freely available data sources in order to 

ensure comparability and free public access. Furthermore, the socio-demographic 

characteristics and spatial distributions should resemble real world scenarios, but without 

necessarily exactly replicating a particular place.  

In this paper, we extend the classic static Sioux Falls scenario and enrich it with dynamic 

demand and land-use information. The goal of this work is the development of a scenario 

featuring various layers of disaggregated information on the demand and supply side, which 

can serve users and developers of agent-based simulation tools as a convenient test-case to 

study different transportation policies as well as a test bed for new software extensions. Multi-

Agent Transportation Simulation framework (MATSim) is used to run the developed scenario, 

but as all necessary information is stored in database tables, the scenario is easily adaptable to 

other activity- and agent based simulation tools. As a starting point, we use the classic Sioux 

Falls network, supplement it with an extensive bus network and make use of real micro-census 

and land-use information from the real city of Sioux Falls, to create diverse demand with 

varying socio-demographic characteristics. 

On the demand side of the activity-based model only two simple activity chains are initially 

included, in order to keep the scenario accessible and to facilitate interpretation and 

understanding of the possible effects of policies under study. Modelling only home – work – 

home and home – other – home activity chains, destinations are assigned using a parameter-

free radiation model (Simini et al. 2012). 
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In the following, we present the generation of supply-side, road and public transport networks 

as well as the demand side, synthetic population generation and assignment of home and work 

locations, in greater detail. The developed scenario is tested using the agent-based simulation 

framework MATSim (www.matsim.org). The scenario data, as well as simulations input and 

output, can be obtained by following instructions at www.matsim.org/scenario/sioux-falls. 

In the remainder of the paper, we distinguish between Sioux Falls (the scenario) and the City of 

Sioux Falls (the actual city in South Dakota, United States). 

2 Supply generation 

A transportation test network should ensure sufficient complexity of travellers’ choice 

dimensions while limiting computational effort. To this end, the Sioux Falls test network was 

introduced by Morlok et al. (1973) as a starting point. The structure of this network captures 

the major arterial roads of the City of Sioux Falls, but was never intended to replicate the real 

city or all characteristics of its transportation system, such as travel times and mode share. The 

network, comprised of 76 arcs, 24 nodes and 552 origin-destination pairs, was extended with a 

bus network consisting out of 5 bus lines by Abdulaal and LeBlanc (1979b), who used it to 

evaluate methods for combining modal split and equilibrium assignment models. Adjusting the 

capacities of the roads and placing the bus stops for the 5 bus lines in regular intervals, we 

substantially build upon the aforementioned authors’ network design.   

As we are interested in using the network within a dynamic traffic assignment and queue-based 

traffic models, flow capacities of single links are a major parameter of interest. In their study, 

LeBlanc et. al. (1975) used parameters for the travel time function dependent on flow for each 

of the 76 links, an approach fundamentally different to a queue-based model, which is used in 

MATSim. Furthermore, in order to apply real land-use information, a resemblance of the 

network shape and node locations to the existing road network is crucial. Therefore, using a 

map of the City of Sioux Falls, nodes of the toy Sioux Falls network are matched to the major 

intersections of the city, so that the 76 links roughly overlap with the major arterial roads of the 

city (Figure 1). For setting physical road parameters such as road length, number of lanes and 

associated maximum car flow rates, 2 types of road links are defined: highways and urban 

roads. The following characteristics have been chosen: 

Urban road: 2 lanes with flow capacity 800 – 1000 cars per lane per hour; 

Highway: 3 lanes with flow capacity 1700 – 1900 cars per lane per hour. 

The length of all links is set equal to the Euclidian distance between intersections. As the urban 

links represent only major roads of the city, 2 lanes per direction is a good approximation of 

real conditions. For a few sections of highway, 3 lanes per direction might be a slightly 



5 

 

exaggerated value. The corresponding flow capacities were chosen according to values 

indicated in literature such as the Highway Capacity Manual (TRB, 2000) or other related 

research publications (e.g. Ng and Small, 2011). 

Setting the number of lanes to minimum 2 lanes per direction will allow more flexibility in 

using the scenario for different policy studies, e.g. investigation of effects from conversion of 

one car lane into a bus-only lane.  

Figure 1 Comparison of the Sioux Falls Network by LeBlanc et al. (1975) with the 

adjusted geometry network (graph on the left from Meng and Yang, 2002; 

background on the right from www.openstreetmap.org). 

 
 

 

 

 

 
 

 

The public transportation network, shown in Figure 2, was implemented as a bus network 

consisting out of 5 bus lanes, with the routes proposed by Abdullal and LeBlanc (1979). Bus 

stops were located 600m apart, and offset 5m from the road link and are displayed in Figure 2 

on the right (in two cases on the Route 2 the distance between the consecutive stops was 

reduced in order to use the same stop facilities as by Route 1, where the two lines run parallel 

on same links). Furthermore, drawing from the feature set of MATSim, each bus stop was 

assigned to have a bus bay (basically a separate bus-only link, which can hold infinite number 

of buses), so that no road lanes are blocked during the boarding and alighting process at the bus 

stops. In order to make the bus service a competitive mode of transport with a significant 

number of users, a relatively short headway of 5 minutes was chosen for our tests.  
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Figure 2 Comparison of the Sioux Falls Network with public transport lines from 

Abdullal and LeBlanc (1979) with the new Sioux Falls Network with bus stops 

located 600m apart. 

 
 

  
 

 

 

Due to the design of MATSim’s queue simulation, agents are only handled at the beginning 

and end of each network link, and cannot enter or leave a link along its length. They enter and 

leave the network at links ending at the points (nodes) closest to their origin and destination 

coordinates. Therefore, origins and destinations located along very long links will lead to a loss 

of spatial detail, as all origins and destinations along the length of the link are effectively 

assigned the same coordinate. Consequently, to improve the level of spatial detail, all links 

were evenly split into smaller links with maximal length of 500 meters each. Following this 

operation, the network detail increased from 27 to 282 nodes and the number of links increased 

from 76 to 334. 

The link:node ratio decreases from 76/27 = 2.81 to 334/282 = 1.18, because newly created 

links do not share nodes. So, for two links going in opposite directions between the same two 

nodes, each will be split into n newly created links with n-1 newly created nodes. 

Consequently, the effective network topology remains unchanged, since the number of 

intersections are the same as for the original network (27), as well as the number of paths 

between intersections (76). 
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3 Demand generation 

The generation of a disaggregated, agent-based demand description, which closely resembles 

reality, not only in terms of trip origins and destination, but also with respect to associating 

travel patterns with socio-demographic characteristics is difficult. 

LeBlanc et al. (1975), as well as some of the later papers using the Sioux Falls test network, 

employed a pre-defined OD-Matrix without further specification of its origin. Though a rather 

simple disaggregation and transformation of this demand to an agent-based model is possible 

(Balmer et al. , 2006), additional data is still required to assign socio-demographic 

characteristics to each person in a meaningful way. 

A realistic socio-demographically heterogeneous demand population is crucial for unlocking 

the potential of agent-based simulation; allowing the use of the scenario for further software 

development, as well as detailed policy studies with a focus on user heterogeneity. Therefore, 

in order to represent a household structure, demographic profile and income distribution as 

realistically as possible, a synthetic population using census data from census districts in and 

around City of Sioux Falls was generated. In the following sections, we address the process of 

synthetic population generations, home and work location assignment as well as choice of trip 

chains and temporal activity restrictions in detail. 

3.1 Synthetic population generation with Entropy Maximization 

A realistic population of individuals grouped into households is essential to an agent-based test 

scenario. Demographic attributes and household roles and responsibilities affect various 

aspects of the daily activity/travel schedule, and are strong predictors of choices such as 

mobility tool ownership, home and activity location and transportation mode, to name a few. 

As a full census of the study area is not publicly available, we produced a synthetic population 

of households that matches the aggregate distribution of demographic attributes (age, sex and 

household income) recorded during the 2010 US Census for the 27 census tracts inside and 

adjoining the city centre of Sioux Falls (Figure 3). The population is composed of household 

and person records taken from the (anonymous) 5-year sample (2007-2011) of the American 

Community Survey, covering 5.0% of all households in Sioux Falls. 
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Figure 3 2010 US Census Tracts with geometry adjusted Sioux Falls road network and 

residential buildings located within the rectangular study area around it. 

 
 

 

 

Based on a survey of the state of the art of population synthesis in (Müller and Axhausen 

2011), we followed the synthetic reconstruction approach proposed by Beckman et al. (1996), 

which is composed of two steps: fitting and generation. In the fitting step, a weight is assigned 

to each household record in the sample, such that the sum of the weights for each demographic 

category will match the (control) total for that category from the census. In the generation step, 

the weights are used to determine the probability of a household being sampled in a process of 

sampling with replacement that continues until the total number of households for a census 

tract is reached. The process is repeated for each of the 27 census tracts, to produce a total of 

107,486 persons in 43,936 households. 

While the process of sampling with replacement is simple and well understood, various 

approaches for the fitting step have been proposed (Müller and Axhausen 2011). We are 

interested in finding a set of household weights that will retain the joint distribution of 

demographic attributes in the sample as closely as possible, while matching all control totals 

from the census. The joint structure would be fully retained in the case where all household 

weights were exactly the same (uniform weights), therefore the fitting procedure should aim to 

minimize the difference between assigned weights and uniform weights. 

The entropy optimization approach proposed by Bar-Gera et al. (2009) minimizes the entropy 

of assigned weights relative to uniform weights, subject to the constraint that the sum of 
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weights in each category should match the household and person control totals. We applied this 

method to the Sioux Falls scenario, using a Python implementation by Kirill Müller (Institute 

for Transport Planning and Systems (IVT), ETH Zurich). Weighted sampling with replacement 

was performed using the sample() method, in the base package of the R system of statistical 

computing (R Core Team, 2013). 

The resulting synthetic population is composed of repetitions of 1,671 out of the 1,991 

households in the sample; households with an undeclared/unknown household income were 

excluded from the process. Figure 4 shows the deviation from the ideal case of uniform 

weights for the synthetic population, i.e. where each household in the sample occurs 

43,936/1,671 = 26.3 times in the synthetic population. The maximum cumulative deviation 

from uniform weights is 6061 households, occurring at the 651
st
 observation in the ordered list 

of sample households. 

The accuracy of the synthesis is shown in Figure 5, where the number of persons or households 

per control category is plotted for each census tract, against the corresponding control total 

from the census. The (normalized) root mean square deviation (RMSD / NRMSD) of the 

synthetic population for each control category and census tract combination appears in Table 1. 

Figure 4 Cumulative number of households in the synthetic population, plotted against 

observation number sorted by decreasing number of occurrences of each 

sample household in the synthetic population. 
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Figure 5 Number of persons/households per control category in synthetic population for 

each census tract versus the corresponding control total from US Census 2010. 

 
 

 

 

Table 1 (N)RMSD of synthetic population for each control category / census tract 

combination. 

 Age Sex Household Income 

RMSD 21.56 47.94 12.14 

NRMSD 0.019 0.017 0.022 

    

Table 2 shows the overview of number of households, number of persons as well as averages 

of socio demographic characteristics for each tract. As can be seen, the population shows 

noticeable spatial diversity, especially related to household income. 
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Table 2 Synthetic population characteristics per census tract. 

Census 

tract 

Number of 

households 

Number of 

persons 

Avg. household 

size 

Avg. 

age 

Avg. household 

income (USD) 

124 1162 5137 4.42 35.12 61056 

125 1866 4527 2.43 37.28 54576 

126 1058 2509 2.37 31.39 40656 

127 1552 3505 2.26 36.85 48794 

128 1185 2995 2.53 37.71 58274 

129 1749 5267 3.01 30.62 60273 

130 1306 3043 2.33 37.77 59542 

132 1283 3616 2.82 35.15 98774 

133 1540 3215 2.09 38.22 46654 

134 1263 2533 2.01 36.32 51239 

135 2125 4570 2.15 34.20 38785 

136 1673 3471 2.07 36.12 44133 

137 1278 3217 2.52 36.90 54528 

138 1916 4660 2.43 30.70 57329 

139 2586 4521 1.75 38.78 38479 

142 1444 3483 2.41 38.45 72536 

143 2111 4718 2.23 41.05 57607 

144 2190 4918 2.25 43.18 100613 

145 2073 5309 2.56 34.48 49609 

146 1305 2984 2.29 38.03 94239 

147 992 2002 2.02 41.98 58211 

148 2674 7133 2.67 36.72 99832 

151 794 2058 2.59 38.73 93973 

152 2123 5322 2.51 40.51 135434 

160 1655 4680 2.83 35.65 83964 

161 1184 3106 2.62 29.41 65089 

165 1849 4987 2.70 37.00 71031 

 

The distribution of income for all household of the synthetic population is shown in Figure 6. It 

exhibits an approximately log-normal shape as is to be expected for income. The distinctive 

peaks in income groups of 30k-40k USD and 60k-70k USD can be attributed to the categories 

used in the reporting procedure. Figures 7 and 8 visualize the population density and spatial 

income distribution using a 100x100m grid. As the population density stays fairly constant 

with only a few cells with densities significantly above average, the income distribution shows 

a clear spatial pattern, with high income households located in the south-eastern part of the 

city. 
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Figure 6 Household income distribution (in USD). 

 
 

 

 

Figure 7 Home locations of synthetic population (total persons per 100m x 100m cell). 
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Figure 8 Mean household income (per 100m x 100m cell). 

  
  

 

 

 

 

3.2 Home location assignment 

The population synthesis, as presented in Section 3.1, provides the total number of households 

and persons at the census tract level. As the agent-based model allows for spatial resolution at 

the building level, we are required to assign a specific home location to each household. 

For this assignment, we used the dataset of buildings, located in close proximity to the Sioux 

Falls road network. This dataset from May, 2013, contains information on all residential 

buildings, including number of units in each building. It was kindly provided by the City of 

Sioux Falls GIS division. 

In the process, each household is randomly assigned to a residential unit within the tract it 

belongs to. In case the number of households exceeds the number of units in a specific tract, 

we allow for multiple occupants per unit after all units are full. This is particularly relevant for 

the peripheral tracts (e.g. 129, 132, 160), as these tracts extend beyond the rectangular study 

area around the road network and therefore contain buildings and units which are located 

outside this area. This results in a high density of home locations on peripheral parts of the 

study area, right outside the road network. However, as the majority of the road network in 

these areas represents highways, the increased demand from these regions can be considered as 
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representative of traffic influx into the city centre from the outskirts and is in line with the goal 

of generating a high demand on the network during the peak hours. 

3.3 Trip chains and work and secondary location assignment 

In order to keep the scenario clear, only two trip chain types are selected for the initial 

population: home – work – home and home – other – home.  The survey data used to generate 

the synthetic population contains the mode of transport to work for persons not working at 

home. Assuming that the employment status of a person correlates with their income, and 

given that we have controlled for income during population synthesis, we assign for all 

repetitions of a person occurring in the synthetic population the same employment status as 

was recorded for that person in the survey.  

We thus identified a total of 56904 commuting workers. For secondary activity trip chains, the 

population without a work trip and older than 21 years was chosen, resulting in a total of 27206 

persons performing secondary activities.  

The OD-Matrix presented by LeBlanc et al. (1975) contains total of 360600 trips (the trip table 

printed in LeBlanc et al. (1975) actually contains 3.6 million trips, but was later revised by 

Abdullal and LeBlanc (1979b) as erroneously labelled with thousands of vehicles per day; the 

correct units are hundreds vehicles per day; see Appendix 1). This is approximately twice as 

many trips as the number of trips resulting from the two preceding steps in our demand 

generation, which  sum up to 168220 trips in total. The significant difference in total numbers 

has several roots. Firstly, our model does not take into account any other trip types such as 

educational, commercial, freight and through traffic. Secondly, the assumption about the 

number secondary trips are rather arbitrary and e.g. do not take into account secondary trips 

after work activities. And thirdly the origin and assumptions behind the OD-Matrix from 

LeBlanc et al. (1975) are not stated in any publications reviewed.  

As no information on the real number and distribution of work places within the relevant area 

was available to us, the OD-Matrix from LeBlanc et al. (1975) was taken as an indicator of the 

number of work locations in each zone. Subsequently, the assignment of work places to 

individual workers was performed using a parameter free radiation model presented by Simini 

et al. (2012). 

Although the total number of trips differs, we can use the OD-Matrix of LeBlanc as an 

indicator of workplace attraction for each zone. Given the number of home-based trips 

originating in each zone, we try to resemble the total share of trips originating in each zone as 

indicated in LeBlanc’s OD-Matrix. Therefore the number of work places in each zone is 

assigned with a goal to match the share from total trips. 
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In LeBlanc’s network, each zone is represented by a node in the network. In the case of our 

scenario, where the origins and destinations are represented by single buildings, we apply 

Voronoi decomposition to define zones around each node and accordingly assign a zone 

number to each building. The resulting zoning from Voronoi decomposition within the study 

area is shown in Figure 9. 

Figure 9 24 zones created by Voronoi decomposition method. 

 
 

 
 

 

As described above, in order to match the proportions of trips from each zone in the Sioux 

Falls OD-Matrix, we initially neglect the secondary activity trips and assume that the OD-

matrix  only contains home – work – home activity chains. As home-based trips represent 

exactly 50% of all trips, we apply the following simple calculation for share of workplaces in a 

zone  : 

         (
         

   

          
  

        
            

 ) 
( 1 ) 

                            ( 2 ) 

            
       

∑         
              

( 3 ) 

      
    Number of trips originating in zone z (OD-Matrix from LeBlanc et al. 

(1975), see Appendix 1) 

           Total number of trips (OD-Matrix from LeBlanc et al. (1975)) 

         Workers in zone z, as identified generated in the synthetic population 
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             Total number of workers within the synthetic population 

            Number of workplaces in zone z 

 

First, a weight for each zone is defined based on the difference between the proportion of all 

trips starting in the zone and number of workers, which inevitably corresponds to the number 

of home-work trips originating from this zone (home and work locations within the same zone 

are not permitted). As the total number of workplaces corresponds to the number of workers in 

the synthetic population, the number of workplaces in each zone is defined using the calculated 

weights. 

For the assignment of secondary activity locations for the 27206 persons, no capacity 

restrictions are enforced. All buildings that have commercial use or are marked as community 

facilities, are considered as potential activity locations.  The location assignment is again 

performed with a parameter free radiation model (Simini et al., 2012). 

Figure 10 shows the Euclidian distance distribution between home - work and home – 

secondary activity locations, as a result of assignment by the radiation model. Both 

distributions show a very similar pattern, with the home – secondary activity distribution 

having a slightly larger number of longer trips. The y-axes, which indicates number of trips, 

have different scales, as the number of work trips is approximately twice the number of trips to 

secondary activity locations. 

Figure 10 Distribution of Euclidian distances between home – work) and home – 

secondary locations. 

  
  

 

Distance between home and work location 

 (200m bins) 

Distance between home and secondary activity location 

(200m bins) 
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Figure 11 Number of work locations displayed  per Voronoi node cell / zone and using a 

heatmap visualization. 

   
   

  

 

 

Figure 12 Number of secondary activity displayed  per Voronoi node cell / zone and using 

a heatmap visualization. 
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The spatial distribution and resulting numbers of work places and secondary activity locations 

in each zone are displayed in Figures 11 and 12. Both work and secondary activity locations 

show a significant correlation in their spatial distribution, with high densities in the east-central 

and southern parts of the city. 

3.4 Activity timings and trip start distribution 

The evolutionary nature of the MATSim framework allows agents to adapt their departure 

times from iteration to iteration. The performance of modified plans is evaluated considering 

the constraints for each activity type. These constraints can include earliest and latest activity 

start times; typical and minimal activity duration; and opening times of facilities where the 

corresponding activities are performed. Starting with rather simple assumptions of normally 

distributed departure times for home – work - home trips during morning and evening peak-

hours and uniform distribution of secondary activity trips through the day, we use MATSim’s 

evolutionary approach to  create a relaxed, stable state demand for these constraints.  The 

initial departure time distribution, including its parameters, is shown in Figure 13 and Tables 3 

and 4. The constraint parameters used in the simulation and the resulting departure time 

distribution after reaching an equilibrium will be discussed in detail in the following section. 

Figure 13 Initial activity end (departure time) distribution (5 min bins). 
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Table 3 Initial distribution of work activities. 

Departure from activity Distribution Mean Std. Deviation 

Home – Work – Home    

   From Home Normal 7:30am 15min 

   From Work Normal 17:30pm 15min 

 

Table 4 Initial distribution of secondary activities. 

Departure from activity Distribution From Till 

Home – Secondary – Home    

   From Home Uniform 7:45am 7:45pm 

   From Secondary Uniform 1h 15min after departure from home 

3.5 Car ownership 

In order to exploit the full potential of a disaggregated demand and to add another degree of 

realism to the scenario, we apply a car ownership model on the household level to the synthetic 

population. From the large number of available car ownership models (see Jong et al. (2004) 

for comprehensive overview), we have chosen an ordered probit model estimated by Giuliano 

and Dargay (2006) based on the US Nationwide Personal Transportation Survey (NPTS) 1995. 

All parameters of this model are available within the synthetic population and land-use 

information of the Sioux Falls scenario. Next to socio-demographic characteristics of a 

household (number of adults, children, pensioners, household income), the model uses 

attributes of residential location (population density, public transport access and dwelling 

type). Including public transport accessibility as a variable allows to account for characteristics 

of the scenario with its added area-wide bus network (Figure 14).  
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Figure 14 Public transport accessibility: distribution of distances between households 

residential location and closest bus stop (Euclidian distance). 

 
 

 

Distance [meters] 

 
Giuliano and Dargay (2006) define a latent ordinal preference index    which is used to 

determine the number of cars owned based on estimated constant threshold. It is defined as 

          ( 4 ) 

with   being a vector of explanatory variables and   the vector of parameters related to these 

variables. The number of cars owned by a household follows from the rule: 

    if        

   if         ( 5 ) 

   if                                                      

with zero, one or two vehicles per household.  The estimated parameters for Unites States by 

Giuliano and Dargay are used to model car ownership in Sioux Falls scenario are shown in 

Table 5. 
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Table 5 Estimated parameters by Giuliano and Dargay (2006). 

Variable  Parameter value 

Intercept       

1 adult in household         

3 or more adults in household       

Children in household       

Pensioner in household         

Income < $20K         

Income $40K - $55K       

Income > $55K       

Density < 1K pers/sqm*       

Density 1K – 4K pers/sqm*         

Density > 10K pers/sqm*         

Transit within 0.5 miles*         

Town/row house         

Apartment         

Threshold parameter       

*1 mile = 1.61 km; 1sqm = 2.59 sqkm;   

   

The reference category is a household with 2 adults, no children, income of $20K - $40K, 

living in a single family detached house and area density of 4000 – 10,000 persons per square 

mile. The model is applied using following definitions: adults age   18, children’s age    18, 

pensioners age   65; population density in the whole study areas < 1K pers/sqm; residential 

buildings with 1 unit are single family detached houses, buildings with 2-6 units are equivalent 

to town/row houses and buildings with more than 6 units are apartment complexes.   

Applying this model to the synthetic population of Sioux Falls scenario leads to total car 

population of 69517 cars, with 6.5% of households owning no car, 28.8% owning one car and 

64.7% owning two cars. These ownership rates are also in line with overall US household car 

ownership rates as presented by Giuliano and Dargay (no car: 8%; 1 car: 30.2%; 2 cars: 

61.9%). 

The intra-household car assignment prioritizes employed members of the household over the 

one with secondary activities. First, the available cars are assigned to the agents having home – 

work – home trip chains. In case of a household consisting out of more employed members as 

there are cars available, the selection members using the cars is performed randomly. 

Afterwards, the car availability for agents performing secondary activities depends on number 

of cars still left unused within the household. The resulting number and share of agents having 

a car available for their trips is shown in Table 6.  
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Table 6 Car availability on person level. 

Persons trip chain Car available No car available 

   home – work – home  48116 (84.6%) 8788 (15.4%) 

   home – secondary – home  17642 (64.8%) 9564 (35.2%) 

 

This translates to a maximum of 65758 cars on the road as 3759 cars were assigned to 

households, which does not have members performing work or secondary activity, as identified 

in Section 3.3. This leads to the maximal possible car mode share of 78.2%, in case every 

available car would be chosen as a mode of transportation. 

4 Simulation results based on dynamic traffic assignment 

The newly augmented Sioux Falls scenario described above, is implemented within the Multi-

Agent Transport Simulation (MATSim) framework, which integrates travel demand based on 

activity schedules with simulation-based dynamic traffic assignment. In the following sections 

we give a brief overview of the MATSim framework and provide references to in-depth 

descriptions of MATSim features. We describe the behavioural models and predefined 

constraints that were chosen for the simulation. The behavioural parameters are crucial for the 

outcome of the simulation and the final equilibrium state. Finally the outcomes of the 

simulation with respect to mode shares, travel times and travel distances are presented and 

discussed. 

4.1 MATSim framework 

Multi-Agent Transport Simulation (MATSim) framework uses an iterative approach for agent-

based dynamic traffic assignments. Integrated simulation of private and public transport based 

on the queuing model allows time-dependent calculation of travel times accounting for spill-

over effects and direct interaction of private and public transport. Based on a co-evolutionary 

algorithm, agents alter their behaviour from iteration to iteration, trying to find optimal routes, 

modes and departure times and therefore maximize the total utility of their daily activity 

schedule. Following each iteration of the queue-based network assignment, the choices of each 

agent are evaluated and scored, allowing agents to select more successful options for execution 

of their schedule in the next iteration. The selection of travel alternatives from the choice set of 

each agent is performed based on a random utility model which, after a number of iterations, 

leads to a convergence of individual and total utilities and therefore to an agent-based 

Stochastic User Equilibrium (SUE) (Nagel and Flötteröd, 2009). 
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As MATSim features a modular architecture, different functions of the simulation package as 

well as various behavioural features can be enabled or disabled. For the simulation presented, 

we use the integrated public transport simulation, where buses share the road space with cars 

and are affected by congestion. The following individual choice dimensions were open for 

agents to explore: 

1. Route choice: In case an agent is selected for rerouting, new routes for all trips in its daily 

schedule are determined based on time dependent link travel times from previous iterations and 

without changing modes. In the case of private transport, the classical Dijsktra Algorithm is 

used. Details on the multi-node Dijkstra routing algorithm of public transport can be found in 

(Rieser, 2010). 

2. Mode choice: In case an agent is selected for mode choice, it can change the mode of its 

journeys. As the mode choice has to be consistent (taking bus in the morning to work and car 

back home is improbable, due to non-availability of the vehicle at the work place), mode 

choice is altered at a sub-tour level (round-trip). For our scenario this means that each agent 

changes the mode of all his trips, as all agents undertake only one tour per day (home – work – 

home or home – secondary – home).  Available modes are car, public transport (bus) and walk. 

3. Departure time choice: This choice dimension enables agents to alter their departure times .  

Selected agents modify their departure times and activity durations of a daily plan randomly 

within a pre-defined time window. For the simulation results presented in the following 

chapter, we used a time window of +- 60min. 

More details on the architecture and functionality of modules handling these choice dimensions 

within the MATSim framework can be found in Balmer et al. (2006), Balmer et al. (2009)  and 

“MATSim-T Multi Agent Transport Simulation” (2013).  

4.2 From database entries to agents with daily activity plans 

The result of the synthetic population generation process, described in section 3.1, is a 

population table with a unique entry for each person, including information on the household it 

belongs to and individual socio-demographic characteristics. In sections 3.2 – 3.4 we presented 

methods that were used to assign home, work and secondary activity locations for each agent, 

according to their employment status and age. 

In order to translate these tables into data suitable for simulation input, a daily activity plan for 

each agent has to be created and written out in XML-format (for detailed specifications of 

MATSim plan files see www.matsim.org). The plan file contains the activity locations, 

planned departure and activity start times for each agent and modes and routes for each trip. In 

case a trip has no routes assigned, as in the case of the initial demand produced for the 

simulation, MATSim routes each trip using one of the common routing algorithms (in our case 
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we have chosen Dijkstra’s algorithm (Dijkstra, 1959). Once all trips have been routed, the 

dynamic demand is loaded on the transportation network and a time frame of 24-30h is 

simulated using MATSim’s queue-based traffic simulation and time step of 1 second. 

4.3 Activity constraints and behavioural parameters 

One of the core characteristics of agent-based models is the decision-making heuristics of 

individual agents. Even simple rules on individual level lead to emergence of complex 

collective behaviour  and convoluted system dynamics (see Helbing (2011) for a general 

overview). 

As mentioned above, the MATSim framework uses an agent-based SUE formulation, which 

relies on co-evolutionary iterative learning and a utility-based approach to model behaviour on 

individual level. Following a trial and error approach, every agent optimizes its daily activity 

schedule from iteration to iteration and accumulates a certain number of possible daily 

schedules, also called plans, in its memory.  This is analogous to choice set generation and is 

followed by a probabilistic approach for selection of a plan from the choice set of plans using a 

multinomial logit model. During the choice set generation phase, agents change routes, modes 

or departure times from iteration to iteration, as specified in the configuration, and evaluate the 

outcome of the executed daily activity chains after the network loading. The ultimate goal of 

each individual agent is the maximization of its total utility gained through the day, which 

eventually leads to the convergence of the system to a state that can be considered as the 

stochastic user equilibrium. Detailed discussion of this approach is presented by (Nagel and 

Flötteröd, 2009). 

Choice dimension and choice set generation 

The process of choice set generation based on utility maximization for each agent is highly 

dependent on the chosen utility functions. In MATSim the total utility of each agent is a sum of 

2 major utility functions: the utility gained by performing activities and (dis-)utility of 

traveling: 

        ∑        ∑       

 

   

 

   

 

where        is the utility of a given, daily plan; m is the total number activities and trips. The 

number of activities and plans is assumed to be the same; for the sake of consistency, the first- 

and last activity should be of the same type and are counted as one.        is the (positive) 

utility from performing activity i;         is the (negative) utility from undertaking a trip i. 
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Utility from performing activities 

The utility earned from activity performance is calculated using a logarithmic approach, 

presented by (Charypar and Nagel, 2005): 

       (      )               ( 
      

    
 ) 

where         is the total utility gained from performing activity   for the time        ;       is the 

marginal utility of an activity at its typical duration;      is the typical duration of the activity  ; 

     is a scaling parameter, which becomes relevant in case the activities can be dropped from 

the daily schedule. 

Disutility of traveling 

The disutility of traveling is calculated for each trip and based on the mode of transportation: 

Car                                                         

Public transport                                                     

Walk                                 

where U is the total disutility from trip  , which depends on the trip duration       and the 

monetary    cost caused by the trip. The monetary cost can contain fixed cost per trip, as in the 

case of a flat fare for public transport usage; or distance dependent cost, such as petrol and 

maintenance cost in case of car.     is an alternative specific constant, which allows to capture 

effects neglected by the model, e.g. additional cost resulting from searching and paying for 

parking. 

Activity constraints 

The activity constraints define the time intervals and typical utility duration parameter within 

the activity utility function, changing the response of the logarithmic function along the utility 

axis. Consequently, the relation between the time window for an activity and its typical 

duration affect how peaked or spread out the demand in the peak-hours will be and therefore 

the degree of congestion of the network.  

For the evaluation of the Sioux Falls scenario, we use two different constraint sets to 

demonstrate the consequences of  these constrains on demand peak spreading and the stability 

of the network under the resulting distinct peak-loads. The defined activity constrains are listed 

in Table 7.  
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Table 7 Activity constraints. 

Activity Typical duration Opening Time Closing Time 

Case 1: Rigid work constraints 

Home 13 h always open always open 

Work 9 h 8 a.m. 18 p.m. 

Secondary 1 h 8 a.m. 8 p.m. 

Case 2: Soft work constrains 

Home 13 h always open always open 

Work 9 h 8 a.m. 20 p.m. 

Secondary 1 h 8 a.m. 8 p.m. 

    

In case an agent arrives at the activity location before the opening time or departs after closing 

time, the “idle” time is indirectly penalized by opportunity cost of time – utility which could be 

gained by performing an activity longer. MATSim also offers an option of adding additional 

disutility for early and late arrivals, which was not used in this case. 

Behavioural parameters 

The behavioural parameters used in utility functions of activities and trips are based on the 

estimated demand model for Sydney by Tirachini, Hensher, and Rose (2012). The time-related 

parameters derived in their model have to be adjusted for application in the activity-based 

context. In order to provide a value for marginal utility of performing an activity, the travel 

mode with smallest disutility is set as a baseline, under the assumption that travelling with this 

mode is as good or as bad as idling and doing nothing. Therefore, the corresponding 

parameters are split into opportunity costs of time and a mode-specific disutility of travelling, 

as was done previously by Kickhöfer et al. (2011), Kickhöfer et al. (2013), Kaddoura et al. 

(2013), Kickhöfer and Nagel (2013), who employed the same parameters within their 

MATSim based studies.  

Previous studies (Tirachini et al., 2012, Kickhöfer and Nagel, 2013, Kaddoura et al. 2013) also 

used a pre-defined modal split for the calibration of the mode specific constants. In our case 

such a target does not exist. Matching the modal split of the real City of Sioux Falls would lead 

to a public transport mode share below 1%, which is not the objective of this scenario. 

Therefore, in case of car, we define the mode specific constant based on assumptions for 

access/egress times of parking locations of total 10 min and associated parking costs of $61 per 

trip. The mode-specific constants of public transport and walk are assumed to be zero. 

Furthermore, MATSim provides option for additionally penalizing the waiting time at transit 

                                                 
1 As initially provided by Tirachini et al. (2012), all monetary values ($) in this paper are stated in Australian Dollar (AUS). 1 

AUD = 0.88 USD (21.01.2014). 
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stops. Waiting time thereby is defined as the time between agents arrival at the transit stop and 

boarding a public transport vehicle. As Tirachini et al. (2012) do not explicitly provide a 

parameter for waiting time at the bus stop, we assume that it is perceived in the same way as 

the travel time on the bus, which is a rather optimistic assumption. An overview of the 

parameters employed and the assumed monetary costs is given in Tables 8 and 9 respectively.  

Table 8 Behavioural parameters. 

Estimated parameter by  

(Tirachini, Hensher, and Rose 2012) 

Adjustment for activity-based 

framework 

Sioux Falls 

Scenario 

   ̂    n.a.          ̂       +0.96 [utils/h] 

  ̂       -0.96  [utils/h]           ̂             0 [utils/h] 

  ̂      -1.14 [utils/h]          ̂            -0.18 [utils/h] 

  ̂        -2.1 [utils/h]            ̂              -1.14 [utils/h] 

  ̂        -           -0.18 [utils/h] 

  ̂  -0.062 [utils/$]      ̂  -0.062  [utils/$] 

  ̂      0 [utils]                               $ -0.562 [utils] 

  ̂     -2.080 [utils]       0 [utils] 

  ̂       -0.092 [utils]         0 [utils] 

       

Table 9 Monetary cost overview  (EUR = Euro; $ = Australian Dollar (AUD)). 

 
Tirachini et al. 

(2012)  
Kadoura et al. 

(2013)  

Kickhöfer and 

Nagel (2013)  

Sioux Falls 

Scenario 

PT Fare 2.1 $ 0 - 8.9 $ not specified 2 $ 

Car cost per km 0.14 $/km 0.4 $/km 0.30 EUR/km 0.4 $/km 

Parking cost not specified not specified not specified 6 $/trip 

      

4.4 Simulation results 

Simulation procedure and simulation parameters 

Starting with the initial demand, 2900 iterations are performed, where agents modify their 

routes, modes and departure times. The re-planning rate, which determines the number of 

agents mutating their daily plan after each iteration were set to 1% for each choice dimension.  

After a relaxed system state with (almost) constant average travel times and constant average 

realized utility from iteration to iteration is reached, all re-planning modules are switched off 

and an additional 100 iterations without re-planning are performed, where agents select one of 
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the plans saved in the memory using the multinomial logit approach.  The number of plans 

which each agent can keep in its memory is limited to 6. After a total of 3000 iterations, the 

outcome of the last iteration is considered to be in SUE and is used for the analysis.    

As a consequence of the stochastic nature of the simulation resulting from application of the 

random utility model, the outcome of the simulation is dependent on the initial random seed. 

This issue has been addressed in detail by Horni, Charypar, and Axhausen (2011), where the 

variability in link volumes showed little variability on a daily basis but substantial variability 

when the link volumes were compared hourly. Though a detailed evaluation of variability and 

distribution of outcome lies outside the scope here, we conduct 5 runs with different random 

seeds and address differences in the outcomes in the evaluation below. Analysis of travel time 

and travel distance distribution is performed only for the simulation with the default MATSim 

random seed.    

MATSim specific parameters used for the simulation can be found in Appendix 2.  

Stochastic User Equilibrium  

It can be observed from Tables 10, 11 and 12 that the investigated indicators such as mode 

share, travel times and travel distances show only minimal variability depending on the random 

seed. This holds for both cases with different activity constraints as described in Section 4.3, 

indicating robust convergence of the system towards the Stochastic User Equilibrium. 

Comparing the both cases, the less pronounced demand peaks of case 2 lead to less variability 

throughout all indicators than the more peaked demand in case 1. Though no explicit 

investigation of the variability of results from iteration to iteration in the neighbourhood of the 

relaxed system state is performed in this work,  the variability for different random seeds 

appears to lie within the same magnitude as the inter-iteration variability and is almost 

indistinguishable from it.   

For both sets of activity constraints, car is the dominant mode of transportation with a mode 

share of ca. 64% (Table 10).  According to the car availability rates set in Section 3.5, this 

implies that ca. 14% of agents, who have a car available, prefer not to use it. From Tables 10 

and 11 as well as Figures 15 and 16 can be observed  that the car mode produces the shortest 

travel times and serves as the dominant means of transportation, especially for longer trips. 

This relates to the average car speed of  42 km/h and average bus speed of  35 km/h for case 1 

(car: 53 km/h, bus 37 km/h for case 2), which indicated a relatively uncongested network 

conditions. The walking speed is defined as a constant simulation parameter and is set to 

3km/h. The length of the walking trip is defined as Euclidian distance times a factor of 1.3.  
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Mode share 

Table 10 Mode shares in the relaxed system state (3000 iterations) for 5 different random 

seeds and 2 sets of activity time constrains (see Section 4.3). 

Mode 
Seed 1 

(default: 4711) 
Seed 2 

(956450029) 
Seed 3 

(737696784) 
Seed 4 

(10327469) 
Seed 5 

(483123812) 
Mean 

Std. 

deviation 

Case 1 

Car 63.86% 63.95% 63.89 % 63.88 % 63.94 % 63.90% 0.035 % 

Bus 26.45% 26.41 % 26.44% 26.47% 26.31% 26.42% 0.056 % 

Walk 9.69% 9.64 % 9.68% 9.65% 9.75% 9.68% 0.039 % 

Case 2 

Car 64.85% 64.84% 64.83% 64.87% 64.88% 64.85% 0.019 % 

Bus 27.23% 27.24% 27.26% 27.22% 27.21% 27.23% 0.017 % 

Walk 7.92% 7.92% 7.91% 7.92% 7.91% 7.92% 0.005 % 

 

Travel times 

Table 11 Average travel times in the relaxed system state (3000 iterations) for 5 different 

random seeds and 2 sets of activity time constrains (see Section 4.3). 9′06″ = 9 

minutes, 06 seconds. 

Mode Seed 1 
(default: 4711) 

Seed 2 
(956450029) 

Seed 3 
(737696784) 

Seed 4 
(10327469) 

Seed 5 
(483123812) 

Mean 
Std. 

deviation 

Case 1 

Car 9′06″ 9′03″ 8′58″ 9′00″ 9′02″ 9′02″ 3.0″ 

Bus 31′21″ 31′39″ 31′33″ 31′30″ 31′34″ 31′31″ 6.7″ 

Walk 26′34″ 26′33″ 26′31″ 26′33″ 26′41″ 26′34″ 3.8″ 

Total 16′41″ 16′42″ 16′38″ 16′39″ 16′41″ 16′40″ 1.6″ 

Case 2  

Car 6′11″ 6′11″ 6′12″ 6′10″ 6′14″ 6′11″ 1.4″ 

Bus 29′59″ 29′56″ 29′57″ 29′57″ 29′57″ 29′57″ 1.1″ 

Walk 25′39″ 25′40″ 25′38″ 25′42″ 25′44″ 25′41″ 2.4″ 

Total 14′12″ 14′12″ 14′13″ 14′11″ 14′14″ 11′13″ 1.1″ 
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Figure 15 Histograms of travel times. 

 
 

 

Case 1, Seed 1, 5min bins 
 

Case 2, Seed 1, 5min bins 
 

 

Travel Distances 

Table 12 Average travel distances in the relaxed system state (3000 iterations) for 5 

different random seeds and 2 sets of activity time constrains (see Section 4.3).  

Mode Seed 1 
(default: 4711) 

Seed 2 
(956450029) 

Seed 3 
(737696784) 

Seed 4 
(10327469) 

Seed 5 
(483123812) 

Mean 
Std. 

deviation 

Case 1        

Car 5309m 5310m 5311m 5309m 5311m 5310m 1.0m 

Bus 
3352m 

(2422m) 

3355m 

(2422m) 

3353m 

(2421m) 

3351m 

(2420m) 

3358m 

(2427m) 

3354m 

(2422m) 

2.8m 

(2.7m) 

Walk 1021m 1020m 1019m 1021m 1026m 1021m 2.7m 

Total 4376m 4380m 4378m 4377m 4379m 4378m 1.6m 

Case 2          

Car 5245m 5245m 5245m 5245m 5245m 5245m 0.0m 

Bus 
3326m 

(2396m) 

3326m 

(2396m) 

3327m 

(2397m) 

3327m 

(2397m) 

3325m 

(2396m) 

3326m 

(2396m) 

1.0m 

(0.6m) 

Walk   986m   987m   986m   988m   989m   987m 1.3m 

Total 4386m 4385m 4385m 4386m 4386m 4386m 0.6m 

*The values in brackets for the bus mode show the  in-vehicle distance 
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Figure 16 Histograms of travel distances. 

 
 

 

Case 1, Seed 1, 500m bins 
 

Case 2, Seed 1, 500m bins 
 

 

Trip time distribution 

Figure 17 shows the distribution of departure and arrival times as well as number of agents en 

route in the relaxed system state, after 3000 iterations. The rather rigid activity constraints, as 

set for case 1, lead to distinct rush hour peaks. Especially in the evening, the number of 

departures and with it also agents on the road peaks at 6pm, the end time of the work activity. 

Such distinct peaks might appear uncommon in the American or European context, but can be 

observe in cities with a rigid working hours culture, e.g. Singapore (Chakirov and Erath, 2011).  
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Figure 17 Departure Time, Arrival Times and Number of Agents En Route distributions 

(Case 1, Seed 1, 5 min bins) 

 
 

 
 

 

Macroscopic Fundamental Diagram  

Geroliminis and Daganzo (2007, 2008) have demonstrated that some urban areas exhibit a 

“Macroscopic Fundamental Diagram”, where the number of vehicles in the network is related 

to the space-mean flow of the network. Importantly, they showed that this MFD is a property 

of the network itself, and not very sensitive to changes in demand.  

In order to be able to reproduce a MFD, the area has to be of a certain minimal size and mainly 

consist of similar road types. From the perspective of this study, the interesting question is if 

the Sioux Falls scenario provides a sufficient size in order to demonstrate MFD properties, as 

stated by Geroliminis and Daganzo (2007, 2008). 

Figure 18 shows the density/flow MFD of the relaxed state of case 1 with the default random 

seed (Seed 1). Here only urban road links (see Figure 1) have been taken into account. As it 

can be seen, the diagram shows only a part of a typical MFD, as the oversaturated part, where 

the critical capacity of the network is reached and the flow decreases, does not appear. But 

when we look at the MFD of the system after first iteration, with average travel times of about 

52 minutes and highly congested network in the rush hour, a full MFD can be observed (Figure 

19). The large number of vehicles in the network produces a drop in space-mean flow that 

persists from 7:30 until noon, with significant hysteresis in the time following maximum 
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vehicle density. The effect is less pronounced in the evening, when vehicles face increasing 

capacity as they move away from the city centre. 

The disappearance of the full MFD with increasing iterations is interesting; it appears that 

through the individual time, mode and route adjustments of the individual agents, the system 

finds a close to maximum space mean flow that can be accommodated (approx. 1300 

veh/lane/hr).  

Figure 18 MFD of relaxed system (Case 1, Seed 1, 3000 it, 10 min bins). 
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Figure 19 MFD of initial (un-optimized) system (Case 1, Seed 1, 1 it, 10 min bins). 

 
 

 

 

5 Conclusion 

In this work, we present an extended Sioux Falls test scenario with an integrated private and 

public transportation network and an agent-based, dynamic demand. To our knowledge, this is 

the first attempt to create a publicly accessible test scenario, with realistic, socio-

demographically diverse and spatially distributed demand. This scenario can be used for 

development, testing and evaluation of models and tools within an agent-based simulation 

framework. Especially for concepts dependent on households’ and individuals’ socio-

demographics, such as value of time, or for initial implementation of computationally intensive 

methods, such as certain optimization techniques, the scale and detail of this scenario prove 

highly advantageous. The future extension of this scenario might include more detailed 

modelling of secondary activities, including more complex activity chains and incorporation of 

educational activities. 

We hope that this work will contribute to the further development of detailed test and 

benchmark scenarios, in order to further facilitate comparability and tool development in the 

fields of transport planning and transportation economics.  
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Appendix 1 

Figure 20 Matrix of trips between each node pair from LeBlanc et al. (1975).  The units 

are hundreds of vehicles per day (in LeBlanc et al. (1975) the trip table was initially 

erroneously labelled as thousands of vehicles per day and later corrected in Abdulaal and 

LeBlanc (1979b) to hundreds of vehicles per day). 
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Appendix 2 

beelineDistanceFactor 1.3 

walkSpeed 3 km/h 

stuckTime 3600 sec 

timeStepSize 1 sec 

maxAgentPlanMemorySize 6 

ChangeExpBeta 0.7 

TimeAllocationMutator – MutationRange 3600 sec 

MATSim specific parameters used for the simulation 


