Effects of Parking on Urban Traffic Performance

Presenter Jin Cao
Examiners Monica Menendez
 Kay W. Axhausen
 Yafeng Yin
 Yanfeng Ouyang
 Andreas Wieser
Urban Parking & Traffic Performance

Under a given demand?

Long term effect

Direct effect
Dissertation Outline

I. Parking as the bottleneck
 Parking Search

II. Parking causes bottleneck
 Parking Maneuvers

III. Data collection/usage
 Parking Data

On-street parking spots

Parking Patrol

Guidance
Parking search

Existing studies

- Empirical studies
- Multi-agent simulations
- Traffic assignment

Only ...

- Localized conclusions
- High data requirements
- Core: behaviour
- Assume drivers know
- High data requirements
- Core: traffic distribution

Macroscopic Model

YES!

Parking

Dynamic

Traffic
Parking-state based transition matrix

3 parking-related states:

- Non-searching
- Searching
- Parking (parked)

Traffic system

Parking system
Parking-state based transition matrix

Transition events:

- **Enter the area**
- **Non-searching**
- **Start to search**
- **Searching**
- **Leave the area**
- **Depart parking**
- **Parking (parked)**
- **Access parking**

Cumulative over time

“Queuing” Diagram

13.05.2016 Jin Cao
Transition matrix \(\rightarrow\) queuing diagram

Cumulative number of vehicles going through each transition event

Total travel time

Time Slices

“Queuing diagram” of vehicles on urban networks
Parking-state based transition matrix

Separate time into very small slices…

Matrix

transition events
searching state

Parking

vehicles parked
available parking

Traffic

vehicles driving
travel speed
Methodology

In each time slice, how many vehicles
Introduction

Parking search

Parking maneuvers

Parking data

Conclusion

Homogenous Network

Parking spots

Searchers

- $\# \text{ available spaces}$

100%

- Enough parking

- NOT enough

- Parking are all taken

- Cars all find

- Travel distance

- Travel distance

N_s

Parking supply

- $\# \text{ available spaces}$
Application

Searching
- # searchers
- share of searching traffic
- searching time
- searching distance

Traffic
- density
- speed
- travel distance

Parking
- occupancy

Pollution
Real example → City of Zurich (Jelmoli area)

- 332 off-street parking spaces
- 207 on-street parking spaces
- 106 links
- 7.7 kilometers
Real example → City of Zurich (Jelmoli area)

searchers

![Graph showing # searchers over time](https://example.com/graph.png)
Real example → City of Zurich (Jelmoli area)

Search time (FIFO)
Real example → City of Zurich (Jelmoli area)

We validated available parking

![Number of available parkings over time](image)
Part I: Conclusion

Limited number of inputs
- Demand
- Supply
- Traffic
- Network

Macroscopic outputs
- Traffic
- Parking
- Searching
- Environmental

Applications
- Parking policy
- Traffic control
- Parking information

Potential extensions
- Heterogeneous networks
- Demand variations
- Pricing/reservation
Parking causes bottleneck

Parking Maneuvers

On-street parking spots
Parking near intersections

Waste green time \rightarrow intersection service rate reduction \rightarrow lingering delay

13.05.2016 Jin Cao
Methodology (downstream maneuver)

Traffic demand
Signal control
Parking location
Parking skills
Methodology (downstream maneuver)

Distance boundaries for different levels of delay:

\[l_1 = \left(1 - \alpha - \frac{\Delta t}{g}\right) \cdot \beta \]

\[l_2 = \begin{cases}
(x - \frac{\Delta t}{g}) \cdot \beta & \text{if } x \in (1 - \alpha, 1] \\
(1 - \frac{\Delta t}{g}) \cdot \beta & \text{if } x \in (1, \frac{c}{g}]
\end{cases} \]
Methodology (downstream maneuver)

Except for very low traffic demand…
There is service rate reduction caused by parking

The reduction depends on parking location
Comparison between upstream and downstream parking maneuvers

<table>
<thead>
<tr>
<th></th>
<th>undersaturated</th>
<th>highly oversaturated</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reduction caused by parking</td>
<td>far upstream, downstream</td>
<td>upstream, far upstream</td>
</tr>
</tbody>
</table>

Reduction caused by parking
Model validation

Zurich
73% case <20% error

Munich
81% case <20% error
Part II: Conclusion

Outputs
- Service rate reduction
- Parking location suggestion

Applications
- Guide parking provision
- Evaluate general delays

Potential extensions
- Multiple lanes
- Multiple parking turnover
- Network
Data collection/usage

Parking Data
Part III/1: Parking patrol survey

Patrol survey is often used for
- average parking duration
- turnover

Research Questions

Accuracy Survey intensity Cost
Methodology

Analytical

Parking duration

Uniform

- Survey Error – Survey Intensity
- Intensity <1/3, result not usable

\[
Y = \frac{\delta}{T} \cdot \frac{1}{1 - X} - 1 = \frac{1}{1 + \beta} \cdot \frac{1}{\frac{1}{2} \cdot \beta - \sqrt{\beta^2 - 1} \cdot X} \cdot \frac{1}{1 - X} - 1
\]

\[
Y = \frac{4Z\beta^2 - 4Z}{4Z\beta^2 - 2\beta - 1 - (\beta - 2Z)^2} - 1
\]

Simulation

Parking duration

Gamma & hyper-exponential

Survey Error, Y

Gamma parameter = 2

Survey Intensity, X

13.05.2016 Jin Cao
Validation

Ballston garage (2800 stalls)
Washington, D.C., US

Max-bill-Platz (60 stalls)
Zurich, Switzerland

Survey intensity

1/3

error

1/3

Survey intensity

error

estimated
real error

Not usable

k=1

k=4
Survey correction method

![Error vs Budget (unit L)](chart)

- **Budget is too low**
- **Result not usable**

Survey error vs Error after correction:
- At 100 unit L, error is 13%.
- At 160 unit L, error is 4%.
- At 200 unit L, error is 3%.

13.05.2016 Jin Cao
Part III/2: Parking guidance system

PGIs
- Parking information
- Reduce searching

Research Questions
PGIs useful?
When? How much reduction?
Probability find parking

without PGIs

\[
p = \begin{cases}
 1 - (1 - \frac{v \cdot t}{L})^{N_p}, & \text{if } t \in [0, \frac{L}{v \cdot N_s}] \\
 \frac{N_p}{N_s} + \left[\frac{N_p}{N_s} - 1 + \left(1 - \frac{1}{N_s} \right)^{N_p} \right] \cdot \log_{N_s} \left(\frac{N_p}{N_s} \cdot \frac{v \cdot t}{L} \right), & \text{if } t \in \left[\frac{L}{v \cdot N_s}, \frac{L}{v} \cdot \frac{N_p}{N_s} \right], \text{ if } N_p \leq N_s \\
 1 - (1 - \frac{v \cdot t}{L})^{N_p}, & \text{if } t \in \left[\frac{L}{v \cdot N_s}, \frac{L}{v} \right], \text{ if } N_p \geq N_s \\
 1 + \left(1 - \frac{1}{N_s} \right)^{N_p} \cdot \log_{N_s} \left(\frac{v \cdot t}{L} \right), & \text{if } t \in \left[\frac{L}{v}, \infty \right)
\end{cases}
\]

with PGIs

\[
p_{opt} = \begin{cases}
 \frac{N_p}{N_s}, & \text{if } N_p \leq N_s \\
 1, & \text{if } N_p \geq N_s
\end{cases}
\]
PGIs effectiveness under static conditions

PGIs
Effectiveness Indicator

\[\beta = N_s \cdot \int_0^\infty (p_{opt} - p) \, dt = \begin{cases} N_s \cdot \int_0^{\frac{N_p}{N_s}} (p_{opt} - p) \, dt, & \text{if } N_p \leq N_s \\ N_s \cdot \int_0^{\frac{N_p}{N_s}} (p_{opt} - p) \, dt, & \text{if } N_p \geq N_s \end{cases} \]

A: total parking supply

searchers / A

available spaces / A

=1- occupancy
PGIs effectiveness under *dynamic* conditions

Input
- Parking demand
- Parking occupancy

Construct hypothetical condition where PGIs are equipped.

\[
\begin{align*}
occ_{opt}^i &= occ_{opt}^{i-1} + \frac{1}{A} \cdot (p_{opt}^{i-1} \cdot N_{s\,opt}^{i-1} - N_d^i) \\
N_{p\,opt}^i &= (1 - occ_{opt}^i) \cdot A \\
N_{s\,opt}^i &= N_{s\,opt}^{i-1} \cdot (1 - p_{opt}^{i-1}) + N_i
\end{align*}
\]

Potential searching time reduction

\[
T - T_{opt} = \sum_{i=1}^{I} (N_s^i - N_{s\,opt}^i) \cdot t
\]
Real example → City of Zurich (Jelmoli area)

Effectiveness Indicator

10:30-11:30
Reduction 59%

15:00-16:00
Reduction 51%

Other time
Reduction 7%
Part III: Conclusion

Generalized

- Can be used under various conditions
- Findings

Directly usable tools

- Correction method for patrol surveys
- Cruising reduction estimation due to PGIs

Applications

- Parking operators
- Traffic manager and local authorities
- Parking consultant companies
Final Conclusion

Part I: Macroscopic view of the overall system
Part II: Microscopic of parking caused traffic bottleneck
Part III: Practical issues in parking data collection/usage

Contribution

Methodological
- Macroscopic model
- Generalized conclusions

Pragmatic
- Generalized findings
- Directly usable tools

Method
- Analytical
- Simulation
- Field measurements

Validation
- Mostly real data

Future work
- Heterogeneous networks
- Real time parking estimation
- Parking policy/pricing
Publications

