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Abstract

Visual location recognition is the task of determining the
place depicted in a query image from a given database of
geo-tagged images. Location recognition is often cast as an
image retrieval problem and recent research has almost ex-
clusively focused on improving the chance that a relevant
database image is ranked high enough after retrieval. The
implicit assumption is that the number of inliers found by
spatial verification can be used to distinguish between a
related and an unrelated database photo with high preci-
sion. In this paper, we show that this assumption does not
hold for large datasets due to the appearance of geomet-
ric bursts, i.e., sets of visual elements appearing in similar
geometric configurations in unrelated database photos. We
propose algorithms for detecting and handling geometric
bursts. Although conceptually simple, using the proposed
weighting schemes dramatically improves the recall that
can be achieved when high precision is required compared
to the standard re-ranking based on the inlier count. Our
approach is easy to implement and can easily be integrated
into existing location recognition systems.

1. Introduction
Given a database of geo-tagged images, the task of a vi-

sual location recognition system is to determine the place
depicted in a query photo [2, 5, 30, 34, 35]. Knowing which
database images show the same place as the query, the posi-
tion (potentially also the orientation) from which the query
photo was taken can either be approximated [7, 13, 37] or
computed precisely [26,40] from the known positions of the
matching database images. Location recognition techniques
play an important role for several applications such as loop-
closure in robotics [9], landmark recognition [4, 7], visual
navigation [26], and image-based localization [6, 14, 29].

Typically, two tasks must be accomplished to solve
the visual location recognition problem: (i) find a set of
database images visually similar to the query and (ii) de-

termine which, if any, of the retrieved images depict the
same place as the query. The first step is another canonical
problem of computer vision, namely image retrieval [31].
Consequently, most work on location recognition focuses
on optimizing the retrieval step, with the aim to maximize
the portion of queries where at least one relevant database
photo is contained in the N most similar retrieved images,
the so-called recall@N . Image retrieval largely ignores the
spatial relations between features in the query image. Thus,
the recall@N can be improved further through spatial ver-
ification: the (approximate) geometric transformation be-
tween the query and the top-ranked images after retrieval is
estimated [24,32,33] and the database images are re-ranked
based on the number of inliers to the transformation.

Improving the retrieval step is clearly a key factor for
solving the location recognition problem. Yet, only improv-
ing the recall@N is not sufficient for quite a few applica-
tions which require high precision. For example, to support
loop-closure in SLAM systems one must recognize previ-
ously visited locations with high precision, since the loop
closure (a.k.a. pose graph optimization) itself tolerates only
a small number of mistakes [18]. Similarly, tools which au-
tomatically annotate photos with the place where they were
taken [11] become useless if the user must search and cor-
rect too many mistakes. Thus, a second key capability of
a location recognition system is to decide with high pre-
cision (i.e., low false-positive rate) which of the retrieved
images actually depict the same place – ideally the bulk of
the queries should satisfy recall@1.

As explained, the standard way to refine the raw list of
retrieved images is geometric verification with a suitable
transformation. But the re-ranking is surprisingly primitive:
typically, images are simply re-ordered by the number of
inliers to the transformation, respectively discarded if that
number falls below some threshold. Interestingly, the re-
sults reported in previous work actually suggest that this is
not a suitable strategy if high precision is required. E.g., [2]
reports a recall@1 of ≈70% on the large-scale Pittsburgh
dataset [35], but a recall@50 of ≈90%. In other words, for
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Figure 1. Geometric bursts, i.e., geometrically consistent structures of similar appearance, cause problems to location recognition: database
images depicting an unrelated place can often attain more inliers to the estimated geometric model than photos of the same place.

20% of all query images an unrelated image has a higher
inlier count than any photo taken at the same place, even
after spatial verification! Somewhat surprisingly, this ob-
servation has received very little attention in the literature.

It is known that visual words appearing in visual bursts
[16] or words that are likely to co-occur together [8] require
special handling. In much the same way, large databases
often contain geometric bursts, i.e., geometric configura-
tions of visually similar features that are shared between
different places. Fig. 1 illustrates this phenomenon. By def-
inition, geometric bursts appear in multiple location of the
database. Hence, they violate the basic assumption under-
lying geometric verification: even spatial configurations of
several features are not always unique, making it impossible
to distinguish between a correct and a wrong location.

In this paper, we investigate ways to explicitly handle
geometric bursts by analyzing the geometric relations be-
tween the different database images retrieved by a query.
Namely, we make the following contributions: (i) we intro-
duce the concept of geometric burstiness. (ii) we demon-
strate that geometric bursts are an important cause for false
positives and have a significant impact on the precision of
location recognition. (iii) we show how to dramatically
increase the recall for a given precision with an appropri-
ately weighted inlier count that better accounts for geomet-
ric bursts. (iv) our approach is designed such that it oper-
ates online at query time, and requires neither costly pre-
processing nor any additional storage. It can be used as a
drop-in replacement for the conventional inlier count, with-
out any changes to the underlying retrieval system, and we
make source code available at https://github.com/
tsattler/geometric_burstiness.

2. Related Work

Location recognition, also referred to as place recogni-
tion, relies on image retrieval techniques such as inverted
files [31], quantized feature matching with large visual vo-
cabularies [22, 24], vocabulary trees [23], and fast approxi-
mate spatial matching [24, 33]. Hamming embedding [15]
simulates the similarity between two descriptors at little ad-

ditional run-time and memory overhead by using compact
binary representations. Thus, Hamming embedding allows
to remove many of the unrelated votes caused by visual
word quantization [29]. To overcome the limited viewpoint
invariance of modern features such as SIFT [20], [4, 7, 26]
rectify images prior to feature extraction, with the help of
vanishing points. [7] show that combining rectified and reg-
ular images increases the overall performance. Instead of
using invariant features, [34] densely sample the scene by
generating synthetic renderings from novel viewpoints.

Recent work on place recognition focused on the prob-
lems caused by repetitive structures and uninformative fea-
tures. Repetitive structures lead to bursts of visual ele-
ments, i.e., a visual word occurs very often in an image [16].
While [16] handle the repetitions of a single word, [8] de-
tect and handle sets of co-occurring features, showing that
the classical tf-idf weighting cannot handle that case. [35]
recognize that repetitive structures are not only a nuisance,
but can provide valuable information about a place. They
propose to consider the features in a repetitive pattern as a
soft assignment of a single visual element, and show that
their explicit handling of repetitions outperforms the stan-
dard scheme [16] that down-weights visual bursts.

In order to improve and accelerate the retrieval perfor-
mance, [30, 36] select only an informative subset of all
database features that are repeatable and/or unique for each
place. [17] proceed more conservatively and only remove
confusing features that are also found in unrelated places of
the database. Both [6, 12] learn SVM classifiers on top of
the Bag-of-Words image representation for each place, so
as to properly weight informative and confusing features.
All these methods [6, 12, 17, 30, 36] must query every sin-
gle database photo against the database. [2] argue that this
is infeasible for large databases due to its quadratic compu-
tational complexity. Instead, they propose to handle repeti-
tions and uninformative features online at query time, by
density estimation in the space of Hamming descriptors,
which can be computed efficiently. All these methods aim
to improve the retrieval stage before spatial verification. In
contrast, we focus on providing a better measure for decid-
ing between related and unrelated places after verification.

https://github.com/tsattler/geometric_burstiness
https://github.com/tsattler/geometric_burstiness


Instead of using visual words, [37, 38] exploit the full
feature descriptors for matching. They do not vote for indi-
vidual database images, but instead use the geo-tags of all
matching images to cast votes for the geo-position of the
query image. [39] take that idea one step further and use
a 3D model of the scene to better constrain the voting, for
both the position and orientation of the image. However, us-
ing full descriptors soon becomes infeasible at large scale.

Closely related to location recognition is the image-
based localization problem, where the goal is to recover the
full camera pose of a given query image relative to a 3D
scene model [19,28]. Image-based localization systems put
emphasis on computing the camera pose with a high preci-
sion. They use the full feature descriptors for matching and
more restrictive geometric models for spatial verification,
while image retrieval-based approaches traditionally use vi-
sual words for matching and approximate geometric mod-
els for verification. As a result, image-based localization
by large achieves a much higher recall than place recog-
nition methods in the high precision regime, although [27]
recently showed that a similar recall at high precision can
be achieved with quantized features as well. However,
there are no theoretical reasons why location recognition
approaches should perform worse. In this paper, we show
that by handling geometric bursts, location recognition ap-
proaches can reach similar or better levels of recall in the
high precision regime without using the full descriptors and
using only an affine model for geometric verification.

3. Geometric Burstiness
During conventional image retrieval the spatial configu-

ration of features in query and database images is ignored.
As a consequence, a retrieved database image may contain
many visually similar features, but in a very different ge-
ometric configuration. The purpose of geometric verifica-
tion is to detect images where the feature point locations
are not consistent, i.e., they are unrelated and retrieved by
mistake. The common assumption is that, if one fits a suit-
able image-to-image transformation to the feature matches,
not many inliers will be found for unrelated images. The
inlier count is used to re-rank the top-k retrieved images.
Clearly, the assumption does not hold if the same geometric
configuration occurs repeatedly in the database. Such non-
unique configurations, geometric bursts, are more likely if
the scene is large, and if it contains visually similar objects.
The central message of this paper is that, other than what
one might hope, geometric bursts do occur regularly in re-
alistic databases. That means that one will encounter cases
where unrelated images have the highest inlier counts (c.f .
Fig. 1(left & middle)). With standard re-ranking these at-
tain the highest rank and lower the recall@N . Note that
geometric bursts are not restricted to small image areas.

However, the impact of geometric bursts goes beyond a
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Figure 2. Precision-recall curves obtained by a state-of-the-art lo-
calization recognition system [2] when considering the top-ranked
image after spatial verification (raw inlier count re-ranking).

reduced recall@N : as unrelated database images can have
many inliers for some query images, the inlier count is also
not a suitable measure to decide whether a place has been
correctly recognized or not (c.f . Fig. 1(right)). Fig. 2 shows
that this can result in a much lower recall in the high preci-
sion regime, when one must set a high threshold, e.g., 90%,
to the amount of the correct answers returned by the system.

One obvious strategy to handle geometric bursts is to
remove them in a pre-processing step, by detecting visual
bursts for each database image, similar to the removal of
confusing features proposed in [17]. However, the compu-
tational complexity of such an offline process is quadratic
in the number of database images: each image needs to
be queried against the complete database. As pointed out
by [2], such preprocessing quickly becomes infeasible as
the database size grows. We propose to instead handle ge-
ometric bursts at query time. In [8] it has been shown how
to efficiently detect co-occurrence sets, i.e., sets of visual
words likely to appear together, in the query image dur-
ing retrieval. However, it is unclear how to distinguish co-
occurrence sets between multiple images of the same lo-
cation from geometric bursts that appear at unrelated loca-
tions. Moreover, removing bursts at retrieval time runs the
risk of also losing the correct location [8]. We thus prefer to
handle geometric bursts at the stage where they cause prob-
lems, i.e., after spatial verification. By definition, geometric
bursts visible in a query image will appear in multiple un-
related database images. Given the geo-tags of the database
photos and the inlier matches detected for them, it is there-
fore rather simple to detect geometric bursts on demand and
down-weight their influence on the image ranking. We will
show in Sec. 5 that it is easier to distinguish related and un-
related images with that weighted inlier count. As a result,
our approach greatly increases the recall at high precision.

4. Detecting and Handling Geometric Bursts

Essentially, a geometric burst is a set of visual words that
co-occur repeatedly in the same spatial configuration. [16]
show for visual bursts that appropriate down-weighting im-
proves retrieval, and [8] apply the same weighting scheme
for co-occurrence sets (sets of co-occurring features in an



arbitrary configuration). In Sec. 4.1, we first review this
weighting scheme and discuss how to adapt it for geometric
burstiness. While this simple adaptation already improves
the recall at high precision, it overestimates the importance
of geometric bursts. Sec. 4.2 describes how to remedy this
behavior. Sec. 4.3 then proposes to measure place popular-
ity and include it into the weighting scheme.

4.1. Inter-Image Geometric Burstiness

According to [16], a visual burst is a visual word which
violates the assumption that words appear independently of
each other. Moreover, they distinguish between intra-image
and inter-image burstiness. Intra-image bursts are caused by
repetitive structures found in a single image, whereas inter-
image burstiness refers to visual elements shared between
many database images. In terms of geometric burstiness,
intra-image bursts can easily be handled by enforcing one-
to-one correspondences for the inliers.

[16] handle inter-image visual burstiness as follows: let
sim(Qi,Dm

j ) be the similarity score between the ith feature
in the query imageQ and the jth feature in the mth database
image Dm, e.g., computed via Hamming embedding. The
sum of similarity scores for the ith query feature across all
database images is thus given by

sim∑(Qi) =
∑
m

∑
j

sim(Qi,Dm
j ) . (1)

[16] use this sum to weight each similarity score

sim(Qi,Dm
j ) by multiplying with

√
sim(Qi,Dm

j )

sim∑(Qi)
.

Obviously, this weighting scheme can be adapted to the
case of geometric bursts. A match (Qi,Dm

j ) contributes a
value of 1 to the inlier count for image Dm if it is an inlier
to the estimated model and a value of 0 otherwise, i.e.,

simgeo(Qi,Dm
j ) =

{
1 if (Qi,Dm

j ) is an inlier
0 otherwise

. (2)

The ith feature in the query image is a part of at most one
inlier match, thus the geometric equivalent

simgeo,
∑(Qi) =

k∑
m=1

∑
j

simgeo(Qi,Dm
j ) (3)

to Eqn. (1) is simply the number of database images in
which Qi is an inlier of the geometric verification. Notice
that while Eqn. (1) considers all database images, Eqn. (3)
only includes the top-k ranked images after retrieval for
which spatial verification is performed1.

1 To avoid confusion, top-k will refer to the k images with the highest
similarity score after retrieval. The recall@N measure then considers the
N highest ranked images after applying spatial verification on the top-k
images and re-ranking based on the (raw or weighted) number of inliers.

Figure 3. Two images from the San Francisco dataset depicting
the same clock tower from different viewpoints.

A query feature Qi participates in a geometric burst if it
forms part of the inlier set for at least two database images
Dm 6= Dl. To assign a lower weight to features from a ge-
ometric burst, we use an inter-image-weighted inlier count

Iinter-image(Dm) =
∑

inlier match (Qi,Dm
j )

1√
simgeo,

∑(Qi)
(4)

over all verified matches (Qi,Dm
j ) from the query imageQ

to the database image Dm. In Sec. 5, we will experiment
with various weighting functions, as well as a variant that
completely removes features from geometric bursts.

4.2. Inter-Place Geometric Burstiness

Usually, place recognition databases contain multiple
photos of each place, e.g., street-level panoramas taken at
regular intervals as in online mapping services. Two im-
ages depicting the same location will inherently share com-
mon features. Thus, it is likely that a geometric burst de-
tected within one of them is also detected in the other one.
Eqn. (3) treats each view separately and thus overestimates
the burstiness of the underlying features. Consequently, the
weighted inlier count, Eqn. (4), underestimates the sim-
ilarity between the query and database images. Rather
than identifying geometric bursts on a per-image level, it
would be more appropriate to identify bursts on a per-place
level. In the following, we provide a workable definition
of a “place” and with that definition compute an inter-place
burstiness measure.

Defining places. Fig. 3 shows a fundamental difficulty
of visual location recognition. Two database images were
taken at different places that are far apart, but they con-
tain the same clock tower. Note the subtle problem: fea-
tures on the front side of the tower in the two images depict
the same physical points, nevertheless they form a geomet-
ric burst, since the tower is visible from multiple locations
and can confuse place recognition. The example highlights
a simple, but important fact: visual similarity alone is un-
suitable to define a place (even if one had perfect descrip-
tors that unambiguously encode 3D points), simply because
vision is a long-range sensor. To solve this problem, we
must exploit the geo-tags g(Dm) ∈ R2 of each database
image, obtained, e.g., from GPS or Structure-from-Motion.



One natural approach is to define a place as the set of all
database images whose geo-tags fall into a pre-defined cell
in scene space, e.g., on a regular lattice or a Voronoi tes-
sellation found with k-means clustering. A regular grid is
tempting, but will lead to quantization artifacts near the cell
boundaries, because it ignores the distribution of the geo-
tags. We therefore adaptively cluster at query time based
on the spatially verified database images. At first glance,
this approach seems suboptimal. However, we only need to
consider a few spatially verified images2. Compared to the
time required for retrieval and spatial verification, we found
the time required for clustering to be negligible.

Our method is inspired by the initialization procedure of
k-means++ clustering [3]: D1 is the database image with
the largest number of inliers. Its geo-tag g(D1) defines the
center of the first cluster. We iteratively select the database
image Dm furthest away from all previously chosen clus-
ter centers. This process is terminated once there exists no
more image Dm that is more than dmax meters away from
its closest cluster center, or all k verified images have been
considered. The termination criterion is chosen to reflect
that nearby images should belong to the same place. Next,
we assign each verified database image Dm to its closest
cluster center c(Dm). Each cluster then defines one place.

Inter-place burstiness. Given the set of places obtained
via clustering, we adapt the geometric burstiness weighting
scheme to avoid overestimating the number of geometric
bursts. For a feature Qi in the query image, let D(Qi) be
the set of database images containing an inlier match for
Qi. The set of relevant places is then given by

c(Qi) = {c(Dm) | Dm ∈ D(Qi)} . (5)

We can now normalize over places rather than images to
define an inter-place-weighted inlier count

Iinter-place(Dm) =
∑

inlier match(Qi,Dm
j )

1

|c(Qi)|
. (6)

Compared to Eqn. (4), Eqn. (6) counts each geometric burst
at most once per place to assess a query feature Qi. In the
experiments, we show that this greatly improves recall at
high precision. In Eqn. (6), we have dropped the square
root as we found that the new criterion performs slightly
better without it. We will experiment with different weight-
ing functions in Sec. 5.

Exploiting metadata. Some datasets provide detailed
metadata for each database image. For example, the San
Francisco dataset [7] provides a “carto id”, a unique identi-
fier for the building visible in each database image. Natu-
rally, this information can be used as an alternative way of
defining places. In Sec. 5 we show that using such metadata

2Typically, 10 to 1000 top-ranked images are spatially verified.

does not necessarily improve over the data-driven cluster-
ing, possibly because the “carto id” is somewhat ambiguous
if more than one building is visible in the foreground.

4.3. Inter-Place Burstiness with Place Popularity

So far, we proposed a method which weights the indi-
vidual features of Q differently in the computed inlier sum.
Once we have the database images clustered to places, we
can also use the popularity of the individual places to fur-
ther refine the weighting scheme. For a database imageDm,
let C(Dm) be the set of images from its place. The place’s
popularity p(C(Dm)) is given as the number of features of
Q which are inliers for at least one of the images in C(Dm):

p(C(Dm)) = |{i | D(Qi) ∩ C(Dm) 6= ∅}| . (7)

The inter-place-popularity-weighted inlier count is then de-
fined in the following way:

Iinter-place + pop(Dm) = Iinter-place(Dm) · p(C(Dm))

max
l
p(C(Dl))

. (8)

Therefore, all retrieved database images not located at the
most popular place are further down-weighted.

4.4. Discussion

The weighting scheme proposed above is conceptually
simple, and very easy to implement. It requires neither any
additional matching or verification steps nor any external
data. Notwithstanding its simplicity, re-weighting accord-
ing to geometric burstiness brings drastic improvements
compared to the traditional inlier count, as we will show
in Sec. 5. The simplicity of our method naturally raises the
question whether a different, possibly more sophisticated,
way of handling bursts would perform even better.

In Sec. 5.2, we experiment with different weighting
schemes for both Eqn. (4) and Eqn. (6). For example, we
use

√
|c(Qi)| instead of |c(Qi)| in Eqn. (6), to assign more

importance to inliers found on geometric bursts. Our results
will show that changing the weighting function has only a
small impact on the overall performance of Eqn. (6), which
is in agreement with the results of [16] for visual bursts. At
the same time, we observe a significant loss when Eqn. (4) is
used instead. This suggests that detecting which geometric
bursts come from the same scene structure is more impor-
tant than the exact weighting function. We also show that
the performance of the proposed method depends only little
on the exact definition of what constitutes a place.

There is one obvious difference between visual and ge-
ometric bursts: visual bursts (and similarly co-occurrence
sets) are defined independent of the feature’s position in the
image. In contrast, geometric bursts essentially correspond
to geometrically consistent regions in the images. We tried
to account for this difference by dividing the query image



Figure 4. Two images from the San Francisco dataset prominently
displaying the same building from different sides.

into tiles and counting the number of geometric bursts per
tile rather than per feature, but this did not improve the re-
sults (improper setting of tile size even worsens the results).

There is one obvious situation in which the weighting
scheme fails: consider the building in Fig. 4. If all inliers
are found on a surface visible from many places, down-
weighting them will have no effect on the ranking. In such
cases, higher-level information is needed, e.g., reasoning
based on the outlines of the nearby buildings.

5. Experimental Evaluation
In this section, we evaluate the weighting schemes for

geometric bursts proposed in Sec. 4 on two standard bench-
mark datasets for place recognition, San Francisco [7] and
Pittsburgh [35]. We show that accounting for geometric
bursts significantly improves the recall in the high precision
regime as well as the overall recall.

San Francisco Landmarks dataset [7]. The San Fran-
cisco dataset consists of 1.06M database images extracted
from about 150k panoramic images captured by a vehi-
cle driving through the streets of San Francisco. The 803
query images are taken with multiple mobile phones. Each
database image is annotated with a “carto id” denoting the
building visible in the image and a list of relevant “carto
ids” is also provided for each query image. A query image
is then considered to be successfully localized if the top-
ranked database image is annotated with a relevant “carto
id”. We use the 2014 version of the ground truth [2].

Pittsburgh dataset [35]. The database photos for the Pitts-
burgh dataset were obtained by extracting 254k perspec-
tive images from about 10.6k panoramas downloaded from
Google Street View (which leads to a rather large distance
between the panorama locations). 24k query images then
come from a separate set of Google Street View panoramas
taken from Google’s Pittsburgh Research Dataset. Both sets
of panoramas have quite accurate GPS coordinates which
defines the localization task: A query image is consid-
ered being localized if the GPS position of the top-ranked
database photo is within 25m of the query image’s position.

Place recognition pipeline [2]. We use our own implemen-
tation of a state-of-the-art location recognition system [2],
referred to as DisLoc, to perform image retrieval and spatial

verification. DisLoc uses 64-bit Hamming embedding [15]
to compute the similarity between a query and database fea-
ture, which is weighted based on the density of the descrip-
tor space surrounding the database feature. As a result, less
weight is assigned to matches found in dense parts of the de-
scriptor space, effectively down-weighting visual elements
that appear often. Inter-image visual burstiness weighting
[16] is used to handle visual burst. As in [2], upright Root-
SIFT [1, 20] descriptors are extracted from Hessian-Affine
keypoints [21] and are assigned to the closest out of 200k
words. To lessen quantization artifacts, each query feature
is assigned to its 5 closest words. As in [2], fast approxi-
mate spatial verification with an affine model [24] is used to
verify the top-200 images found by the retrieval step. Fig. 2
shows that our implementation performs slightly worse than
[2], i.e., the improvements reported in this paper do not
come from a better implementation.

5.1. Baseline Comparisons

First, we compare the weighting schemes for geometric
bursts proposed in Sec. 4 with two baselines: the raw inlier
count and the effective inlier count [14,27]. The latter mea-
sure is defined as follows: each inlier feature in the query
image covers the area Ai contained in a circle of radius r
around itself, with r set to 12 pixels in our experiments.
Given n inliers, the effective inlier count is computed as

Ieff =
|
⋃

iAi|∑n
i=1 |Ai|

· n , (9)

where |Ai| = π · r2 denotes the size of the area covered
by the ith inlier feature. Eqn. (9) thus compares the actual
area covered by all inliers with the area that can be cov-
ered if none of the circles are overlapping. This measure
down-weights inliers found in a small region of the query
image. Following the setup from [7], we obtain precision-
recall curves by varying a threshold on the number of in-
liers for the raw count and thresholds on the weighted inlier
counts for the effective and the two burstiness inlier counts.

The goal of our first experiment is to show that both the
inter-image-weighted inlier count Iinter-image, Eqn. (4), and
the inter-place-weighted inlier count Iinter-place, Eqn. (6), en-
able us to find a better threshold to distinguish between cor-
rect and wrong place recognitions. Thus, in this experi-
ment, we only consider the verified database images with
the largest raw number of inliers found for each query im-
age and do not re-rank based on the weighted inlier counts.
As can be seen in Fig. 5(a-b), the effective inlier count con-
sistently outperforms the raw inlier count, while in turn both
burstiness measures outperform the effective inlier count.
The latter shows that geometric bursts are not restricted to
small image regions.

The improvement in recall we gain by accounting for ge-
ometric bursts is dramatic: At 95% precision, the raw and
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Figure 5. Comparison against baseline measures: (a-b) without
and (c-d) with re-ranking using the respective measure.

effective inlier counts achieve 53.4% respectively 57.3% re-
call on San Francisco. In contrast, our weighting schemes
for geometric burstiness achieve 63.5% and 70.1%. At 90%
precision, the raw and effective counts obtain 7.2% and 18%
recall on Pittsburgh while the inter-image count obtains
25.8% and the inter-place measure achieves 51.1% recall.
These results clearly demonstrate the importance of han-
dling geometric bursts. Interestingly, all measures perform
poorly on the Pittsburgh dataset when a precision higher
than 90% is required. We visually inspected over 400 out of
6381 query images for which the top-ranked database photo
is unrelated but still receives a high weighted inlier score.
One common failure case is that all inliers are solely found
on geometric bursts, e.g., identical facades of a building or
buildings seen from afar. As discussed in Sec. 4.4, such
cases cannot be resolved by considering geometric bursts.

Fig. 5(c-d) demonstrates that accounting for geometric
bursts not only enables a better decision between correctly
and incorrectly retrieved places. It also improves the overall
recall when used for re-ranking.

5.2. Ablation Study

In the next experiment, we evaluate the impact of differ-
ent parameter settings for the burstiness schemes.

Different weighting schemes. We test the impact of differ-
ent weighting schemes for the number of geometric bursts.
For example, we replace the term 1/

√
simgeo,

∑(Qi) in
Eqn. (4) with 1/simgeo,

∑(Qi) to give less weight to in-
liers participating in many geometric bursts. In addition,
we experiment with removing inliers participating in geo-
metric bursts, i.e., inliers to two or more images, respec-
tively places. Fig. 6(a-b) shows the results from this ab-
lation study. As can be seen, the weighting function used
has a large impact on the inter-image count since, e.g.,
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Figure 6. Ablation study for our method on the two datasets. All
results are after re-ranking using the respective measure. Colors
denote different inlier counts, while the line style, e.g., dashed or
dotted, denotes different ways to compute these counts.

simgeo,
∑(Qi) overestimates the number of geometric bursts

for each query feature. Removing inliers participating in
bursts further decreases the performance as it does not ac-
count for the fact that multiple database photos can depict
the same place. The fact that the linear weighting performs
similar as the square-root weighting on Pittsburgh comes
from the fact that the database images are taken further
apart, so there are fewer photos depicting the same place.

In contrast to the inter-image count, the inter-place count
is much less sensitive to the weighting function used, with
the linear weighting performing slightly better than the
other weighting functions. This demonstrates that the main
importance lies in detecting related bursts rather than in the
way bursty inlier features are weighted.

Different place definitions. So far, we have only used
the place clustering scheme described in Sec. 4.2, with the
maximum distance set to dmax = 25m. Next, we compare
this scheme against using a regular grid of side length 25m.
For San Francisco, we also compare against using the “carto
id” of the database images for clustering. For the inter-place
count, we use the linear weighting. The results of the exper-
iments are shown in Fig. 6(c-d). On San Francisco, where
the database images are taken more densely, the adaptive
clustering scheme performs better than the fixed grid, offer-
ing a recall of 71.2% at 95% precision compared to 65.6%
for the fixed grid. However, using the “carto ids” to define
places does not offer a significant advantage.

The sparser sampling on the Pittsburgh dataset leads to
less quantization artifacts. As a result, using either the adap-
tive clustering or the regular grid results in virtually the
same recall-precision curve. Independently of the place def-
inition, the inter-place count gives better results than the



inter-image count. This again demonstrates the importance
of accounting for the fact that multiple database images can
depict the same part of the scene.

Popularity-based weighting. Fig. 6(c-d) show the re-
sults obtained with the inter-place-popularity-weighted in-
lier count (using the place clustering scheme described in
Sec. 4.2). On the San Francisco dataset, the improvement
compared to the inter-place count is modest as the recall at
95% precision increases from 71.2% to 72.4%. However,
the improvement measured on Pittsburgh is more signifi-
cant as the recall at 90% precision increases from 54.3% to
59.4%. The inter-place-popularity count penalizes database
images that do not come from the place with the largest
number of inliers. The smaller improvement on San Fran-
cisco can be explained by the fact that location recognition
performs better on this dataset, i.e., most of the correctly
retrieved images come from the most popular place.

The maximum recall our implementation can achieve
when verifying the 200 top-ranked images is 87.92% for
San Francisco and 88.98% for Pittsburgh, respectively. Us-
ing the inter-place-popularity count, we achieve a recall@1
of 82.57% for San Francisco and 74.15% for Pittsburgh.

5.3. Comparison with State-of-the-Art

We compare our implementation of DisLoc+inter-place-
popularity with state-of-the-art place recognition [2, 7, 35]
and image-based localization approaches [27, 39]. Since
there is no 3D model for the Pittsburgh dataset, the com-
parison is only performed on San Francisco. [27, 39] use a
3D model provided by [19] while all other methods only
use images. Whereas our approach considers the relation-
ship between inliers in multiple images, all other meth-
ods score images and/or poses independently of each other.
For [7,27,35], we use results kindly provided by the authors
to draw the precision-recall curves.

The Adaptive weights method from [35] does not per-
form spatial verification. Thus, we use the similarity scores
after retrieval to obtain the precision-recall curve. [7] use
histogram equalization before extracting upright SIFT fea-
tures [20] and a GPS prior (Hist.Eq. w/ GPS). The method
from [39] uses a 3D model to vote for the most likely cam-
era pose, followed by a RANSAC-based refinement step
[10]. The Hyperpoints approach from [27] uses a fine vo-
cabulary of 16M words [22] instead of the original point de-
scriptors to obtain the 2D-3D matches required for pose es-
timation. For completeness, we also report the results origi-
nally obtained by [2] with spatial verification (DisLoc+sp).

Fig. 7 shows the results of the comparison. As can be
seen, [2] can significantly outperform existing methods sim-
ply by accounting for geometric bursts. Compared to [7],
we improve recall from 70.1% to 80.5% for 90% precision.
For 95% precision, we improve the 63.5% recall achieved
by [27] to 72.4%. Our recall is close to the 74.2% obtained
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Figure 7. Combining [2] with our proposed scheme for handling
geometric bursts not only provides significantly better results over
the original method but also outperforms state-of-the-art methods
for both place recognition and image-based localization.

inliers Ieff Iinter-image Iinter-place Iinter-place+pop
Oxford105k (mAP) 0.710 0.730 0.708 0.735 0.745
Paris106k (mAP) 0.613 0.619 0.611 0.649 0.682

Table 1. Image retrieval results reporting mean average precision.

by [39] with the help of a GPS prior and higher than the
67.5% reported by [39] without a GPS prior.

5.4. Image Retrieval Results

Finally, we show that handling geometric bursts also im-
proves standard image retrieval performance. We trained
vocabularies with 200k words on Paris6k [25] and Ox-
ford5k [24] for Oxford105k [24] and Paris106k [25], re-
spectively. Spatial verification is performed for the 1000
top-ranked images. Due to a lack of geo-tags, we define
places based on the filename prefixes of the images, e.g.,
“keble”, which corresponds to the original Flickr queries.
Tab. 1 shows the mean average precision (mAP) values ob-
tained with the different (weighted) inlier counts. Both
inter-place burstiness variants outperform the raw and ef-
fective inlier counts, while the inter-image scheme overesti-
mates the number of geometric bursts and performs worse.

6. Conclusions
In this paper, we have shown that geometric bursts, i.e.,

sets of visual elements that appear in a consistent spatial
configuration in multiple unrelated database images, can
significantly impact the recall that can be achieved by lo-
cation recognition approaches. We have proposed a sim-
ple and easy-to-implement method for detecting and down-
weighting geometric bursts. Our approach can serve as a
drop-in replacement for the classic re-ranking after spatial
verification based on the number of inliers and our experi-
mental results show that this simple approach dramatically
increases the recall in the high precision regime. Just by
using our weighting scheme, an existing place recognition
method achieves state-of-the-art localization performance.
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