
The Eigensystem Realization Algorithm (ERA) 
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Note:  The ERA is implemented for the case 
of free response data. Therefore Impact 
(Hammer, drop-weight) tests would be 
generally suitable. 
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The ERA works by exploiting the relationship of the series of outputs  
from different points (channels)  of the structure to fundamental 
system properties (Markov Parameters) 
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These constant parameters are termed  
& are system characteristics: 
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Which is equivalent 
to the matrix product: 
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In order to obtain these matrices we perform  
Singular Value Decomposition for H1: 
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Matrix Realization 

Note:   The Decomposition  1H PQ= is not unique! 

In fact by using a different number of shifts k, and total 
measurements n, different alternatives can occur. And this is due 
to the fact that if matrices  (A, B, C) are a realization of the 
system: 

Then matrices,  1 1,  TB, CTTAT − − are also a realization through the 
system: 1
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Under the transformation: x Tx=

Therefore the state       that 
occurs from the ERA is not 
necessarily the      that 
corresponds to the 
structural dofs but some 
transformation of it. 
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x



Matrix Realization 

By using the new observability and 
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Then, using  the Shifted Hankel Matrix : 
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Extension for Random Input 

It has already been mentioned that the ERA operates using output 
measurements of impulse response data.  However, it possible to 
appropriately extend the method so as to account for response to a 
measured input loading. 

The ERA as an input-output Id method 

Assuming measurements of the input f(t) and output of the system x(t) are 
available from m measurement locations. The Frequency Response 
Function (FRF) may be extracted as: 
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Then by applying the Inverse Fourier Transfom, the Impulse Response 
Functions (IRF) per measurement channel (usually this implied per dof) are 
obtained. The ERA method, as described previously can then be 
implemented on the IRFs which essentially simulate the system’s response 
to impulse. 
 



Extension for Random Input 

As mentioned in Lecture 1,  the system’s response to  a random input can 
be obtained via discrete convolution with the IRF:  

Proof of the FRF  extraction formula: 
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On the other hand, the cross-correlation of two discrete time signals is 
defined as: 
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However, convolution in the time domain is multiplication in the frequency 
domain. Thus, by taking the Fourier Transform we obtain: 



Extension for White Noise (Ambient Data) 

For the case of ambient (operational) loads, it may be assumed that the excitation and responses 
are each stationary random processes. Assuming that the structural parameter matrices are 
deterministic, postmultiplying the Eq. of motion by a reference scalar response process               
and taking the expected value of each side yields: 

The Natural Excitation Technique  (NExT) 
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where  denote the displacement and excitation stochastic vector process 
respectively.  Additionally, for weakly (or strongly) stationary processes, we know that: 
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2 1,   ,  where  denotes the m  derivative.m
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Recognizing that the responses of the system are uncorrelated to the disturbance for t>0, and 
assuming that the random vector processes        are weakly stationary, we can write: , ,X X X 

Thus, the vector of displacement process correlation functions, satisfies the homogeneous 
differential equation of motion. Using a similar approach it can be shown that the acceleration 
process correlation functions also satisfy this equation (Beck et al. 1994). We can therefore employ 
the ERA for the correlation signals! 
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