

Yunus Emre Harmanc FS2015

Overview

- Key Features of SAP2000
- Modelling of Elements
- Analysis Capabilities
- Viewing Results
- Tutorial Example: Static and Dynamic Analysis of a 3D Truss Frame
- Further Reading/Tutorials
- Q&A

Key Features

- Powerful and Integrated Structural Analysis and Design Software
- Fully Interactive Graphical Interface for quickly creating models
- Frame, Shell, Solid and Non-linear Link Elements

Key Features

- Extensive Analysis Options including Linear-Static, Linear-Dynamic, Nonlinear-Dynamic
- Automated design of Concrete and Steel Members to various International Codes
- Fully formatted, customized reporting
- DXF Import and Export Link to AutoCAD

- Simple Frame Elements for
 - Beam, Column
 - Truss, Bracing, etc.
- Non-Linear Link Element for
 - Hook, Gap, Damper
 - Base Isolators
 - Friction
- Plastic Hinge Element

- Automatic section property calculation for standard shapes
- Built-in steel sections for several Standards including AISC, CISC, EN, BS etc.

Section Name	HP8X36	
stract Data from Section P	roperty File	
Open File c:\compu	ters and structures\sa	p2000 Import
roperties		
Section Properties Mod	dification Factors	Material STEEL 💌
limensions		
Outside height (13)	8.02	
Top flange width (t2)	8.155	
Top flange thickness (tf)	0.445	3
Web thickness (tw)	0.445	
Bottom flange width (t2b)	8.155	
Dettern flamme thickness (16h.)	0.445	

- Gravity Load
- Point Load
- Uniform Load
- Trapezoidal Load
- Prestress
- Temperature Variation

- Applied to Element Section in any direction
- Applied to Nodes and Groups

• Load due to Prestress can be applied to Frame Elements as Cables in Patterns and Load Cases

Non-Linear Link Element

- For use with the dynamic time history analysis option
- Link may be placed between any two joints or from joint to ground
- Viscous damper with nonlinear exponent on velocity
- Gap (compression only)

20/02/2015

Modelling of Elements

• Force versus deformation plots of nonlinear systems for energy dissipation studies

- General quadrilateral or triangular element
- Isotropic, Orthotropic and Anisotropy material

- Six degrees of freedom per joint
- Shell, plate or membrane action

Tutor

• Thick shell option

- Gravity and uniform loading
- Pressure loading
- Temperature and thermal gradient loading

Statistics: Overview

Solid Elements

- Three dimensional 8 node brick element
- Anistropic material
- Gravity, thermal, surface pressure and pressure gradient loading

Joint restraints

- General Spring
 Connection
- Global and skewed springs

	Coupled 6x6 user-						
	defined	enrina	otiffne				44
	option	u1 u1	u2	u3 0.	r1 0.	r2 0.	r3 0.
	modeli	u2 0. u3 0.	0.	0.	0.	0.	0.
		r1 0.	0.	0.	0.	0.	0.
		r2 0.	0.	0.	0.	0.	0.
0/1	02/201E	,	,	,	,	,	,

6

Joint constraints

• Generalized joint constraint optic virgid bodies, diaphragms, rods and the

Constraint Name WELD1 Weld Tolerance I. Weld Tolerance I. Constraint ROD1 Constraint Axis Auto Y Axis Auto Y Axis ROD1		
Weld Tolerance Weld Tolerance 1. Constraint 1. Constraint Name ROD1 Constraint Axis © X Axis © X Axis © Auto © Y Axis ROd © Z Axis Rod	Constraint Name	WELD1
Constraint Name ROD1 Constraint Axis O X Axis O Auto O Y Axis O Z Axis Rod	Weld Tolerance	Weld 1.
Constraint Name ROD1 Constraint Axis Auto O X Axis Auto O Y Axis Rod O Z Axis Rod	TTTO LOO	
Constraint Name ROD1 Constraint Axis Auto O X Axis Auto O Y Axis Rod O Z Axis Rod		
Constraint Axis C X Axis C Auto C Y Axis C Z Axis Rod		
© X Axis © Auto © Y Axis © Z Axis Rod	Constraint Name	ROD1
C Y Axis C Z Axis Rod	Constraint Name	ROD1
C Z Axis Rod	Constraint Name Constraint Axis C X Axis	ROD1
	Constraint Name Constraint Axis C X Axis	ROD1 Auto

Weld Constraint

Dia	phragm Constraint	
	Constraint Name DIA	PH1
	Constraint Axis	
	C Y Axis Dian	hragm
	 Z Axis 	

Joint Loads and Displacements

- Applied force and applied displa
- Inclined Supports and joint loca

- Static and/or dynamic response spectrum analysis
- P-delta analysis with either static or dynamic analysis
- Blocked active column equation solver
- Automated fast profile optimization
- Non-linear Pushover Analysis

- Modal Analysis
- Eigenvalue analysis with a iteration algorithm
- Ritz analysis for fast predo
- Harmonic Steady-State An

ynamic Analysis Parameters			
Number of Modes	1		
Type of Analysis			
Eigenvectors	Ritz Vectors		
EigenValue Parameters			
Frequency Shift (Center)	0.		
Cutoff Frequency (Radius)	0.		
Relative tolerance	1.000E-05		
Include Residual-Mass Modes			
Starting Ritz Vectors			
List of Loads	Bitz Load Vectors		

$$Ku(t) + M \overset{\bullet}{u}(t) = r(t) = p \cos(\varpi t) \qquad [K - \Omega^2 M] \Phi = 0$$

Time History Analysis

- Ground acceleration and Multiple
- Sequential history cases
- Time history Windows AVI file
- Results can be combined with other] enveloping or step by step steel and (

3 D View

Response Spectrum Analysis

- Multiple response spectrum cases in
- Modal combinations by the SRSS, th GMC (Gupta) method
- Directional combination 1--- 40 method

Spectral Acceleration Response

Viewing Results

- 3D perspective graphical and deformed structural
- Static deformed shapes a
- Static and dynamic load

Viewing Results

- View Loading diagrams
- Bending moment and shear force diagrams
- Stress contours

Viewing Results

- Instantaneous graphical and tabulated output details for specific joint or element with right button click
- Multiple windows display parameters

Tutorial Example: Static and Dynamic Analysis of a 3D Truss Frame

Tutorial Example

- 3D RC-Frame (C30/37) with slabs.
- 3x2 spans, 2 storeys
- Dimensions:
 - Span in x-dir= 5m; y-dir= 4m; storey height = 3m
 - Beams: h=50; w = 30 cm
 - Columns: w1 = w2 = 60 cm
 - Slabs: t = 20cm
- Loads: Self weight, live load, SLS (Factors=1)

Tutorial Example

Further Reading

- <u>http://www.csiamerica.com/products/sap2000/</u> <u>watch-and-learn</u>
- <u>http://ocw.mit.edu/courses/civil-and-environmental-engineering/1-051-structural-engineering-design-fall-2003/projects/SAP2000_Tutorial2.pdf</u>
- <u>http://www.grad.hr/csi/web manuals/01%20</u>
 <u>%20%20SapStart.pdf</u>.
- <u>http://ctgttp.edu.free.fr/TRUNGWEB/Bai%20Giang/8ai%20giang%20va%20Vi%20du%20SAP/SAPWEB01.pdf</u>

Q&A