Chapter 2

The Direct Stiffness Method

Direct Stiffness Method (DSM)

- Computational method for structural analysis
- Matrix method for computing the member forces and displacements in structures
- DSM implementation is the base of most commercial and open-source finite element software
- Based on the displacement method (classical hand method for structural analysis)
- Formulated in the 1950s by Turner at Boeing and started a revolution in structural engineering

Goals of this Chapter

- DSM formulation
- DSM software workflow for ...
- linear static analysis (1 $1^{\text {st }}$ order)
- $2^{\text {nd }}$ order linear static analysis
- linear stability analysis

Chapter 2a

The Direct Stiffness Method: Linear Static Analysis ($1^{\text {st }}$ Order)

Computational Structural Analysis

Modelling is the most important step in the process of a structural analysis !

System Identification (Modelling)

Global coordinate system
Nodes
Elements
Boundary conditions

Node numbers

Loads

Deformations

System Deformations

System identification

nodes, elements, loads and supports deformed shape

Nodal Displacements

Degrees of Freedom

Elements: Truss

$X / Y=$ local coordinate system
$u_{x}=$ displacement in direction of local axis X
$D X=$ displacement of truss end
compatibility $\quad \varepsilon=\frac{D X}{L}$
const. equation $\sigma=E \varepsilon$
equilibrum

$$
P_{2}=-P_{1}=N
$$

$$
N=\int \sigma=F E \varepsilon=\frac{E F}{L} D X
$$

1 dof per node

$$
D X=\left(u_{2}-u_{1}\right) \triangleleft \begin{aligned}
& P_{1}=\frac{E F}{L}\left(u_{1}-u_{2}\right) \\
& P_{2}=\frac{E F}{L}\left(-u_{1}+u_{2}\right)
\end{aligned}
$$

$$
\begin{gathered}
{\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{E F}{L} & -\frac{E F}{L} \\
-\frac{E F}{L} & \frac{E F}{L}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]} \\
\mathbf{p}=\mathbf{k} \mathbf{u}
\end{gathered}
$$

\mathbf{p} : (element) nodal forces
\mathbf{k} : (element) stiffness matrix
\mathbf{u} : (element) displacement vector

Elements: Beam

$u_{x}=$ displacement in direction of local axis X
$u_{y}=$ displacement in direction of local axis Y

3 dof per node

$$
\left[\begin{array}{cccccc}
\frac{E F}{L} & 0 & 0 & -\frac{E F}{L} & 0 & 0 \\
0 & \frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} & 0 & -\frac{12 E I}{L^{3}} & \frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{4 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{2 E I}{L} \\
-\frac{E F}{L} & 0 & 0 & \frac{E F}{L} & 0 & 0 \\
0 & -\frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} & 0 & \frac{12 E I}{L^{3}} & -\frac{6 E I}{L^{2}} \\
0 & \frac{6 E I}{L^{2}} & \frac{2 E I}{L} & 0 & -\frac{6 E I}{L^{2}} & \frac{4 E I}{L}
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4} \\
u_{4} \\
u_{5} \\
\mathbf{k}
\end{array}\right]
$$

Elements: Global Orientation

$$
\begin{aligned}
R(\theta)=\left[\begin{array}{cccccc}
\cos (\theta) & -\sin (\theta) & 0 & 0 & 0 & 0 \\
\sin (\theta) & \cos (\theta) & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & \cos (\theta) & -\sin (\theta) & 0 \\
0 & 0 & 0 & \sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right] & \begin{array}{l}
\mathbf{u}_{\mathrm{glob}}=\mathbf{u}=R \mathbf{u}_{\mathrm{loc}} \\
\\
\\
\text { Note: }
\end{array} R^{-1}=R^{T}
\end{aligned} \quad \begin{aligned}
& \mathbf{k}_{\mathrm{glob}}=\mathbf{k}=R^{T} \mathbf{k}_{\mathrm{loc}} R
\end{aligned}
$$

Beam Stiffness Matrix

$$
p=k u
$$

Element stiffness matrix
in global orientation

Nodal Equilibrum

Equilibrum at node 4: $\quad r_{4}=-k_{5 S E} U_{2}-k_{6 E S} U_{3}-k_{5 E E} U_{4}-k_{6 E E} U_{4}+f_{4}=0$

Global System of Equations

$\mathbf{U 1}_{1}$	\mathbf{U}_{2}	\mathbf{U}_{3}	\mathbf{U}_{4}	$\Rightarrow F=K U$
$\mathbf{r}_{1}=-\left\{\begin{array}{l} \mathbf{k}_{1 \mathrm{EEF}^{+}} \\ \mathbf{k}_{3 \mathrm{Ss}}{ }^{+} \\ \mathbf{k}_{4 \mathrm{Ss}} \end{array}\right.$	$\mathrm{k}_{3 \text { SE }}$	$\mathrm{k}_{4 \mathrm{SE}}$	$\}+f_{1}=0$	
$\mathbf{r}_{2}=-\left\{\begin{array}{l} \mathbf{k}_{3 \mathrm{ES}} \\ \end{array}\right.$	$\begin{aligned} & \mathbf{k}_{2 \mathrm{EE}}^{+} \\ & \mathbf{k}_{3 \mathrm{EE}}{ }^{+} \\ & \mathbf{k}_{55 \mathrm{~S}} \end{aligned}$		$\left.\mathrm{k}_{5 \mathrm{SE}}\right\}+\mathrm{f}_{2}=0$	
$r_{3}=-\left\{k_{\text {4ES }}\right.$		$\begin{aligned} & \mathbf{k}_{4 \mathrm{EE}}+ \\ & \mathbf{k}_{6 \mathrm{SS}} \end{aligned}$	$\left.\mathrm{k}_{6 \mathrm{SE}}\right\}+\mathrm{f}_{3}=0$	
$\mathbf{r}_{4}=-\{$	$\mathrm{k}_{5 \text { ES }}$	$k_{6 E S}$	$\left.\begin{array}{l} \mathbf{k}_{5 E E}+ \\ \mathbf{k}_{6 E E} \end{array}\right\}+\mathbf{f}_{4}=0$	
	- K		$+F=0$	

Global System of Equations

$\mathbf{F}=$ global load vector $=$ Assembly of all $\mathbf{f e}$
$\mathbf{K}=$ global stiffness matrix $=$ Assembly of all $\mathbf{k} e$
$\mathbf{U}=$ global displacement vector $=$ unknown
$\mathbf{F}=\mathbf{K} \mathbf{U}=$ equilibrium at every node of the structure

Solving the Equation System

What are the nodal displacements (= U) for a given structure (= stiffness matrix \mathbf{K}) due to a given load (= load vector \mathbf{F}) ?

$$
\begin{aligned}
& \mathbf{K} \mathbf{U}=\mathbf{F} \quad \text { left multiply } \mathbf{K}^{-1} \\
\Rightarrow & \mathbf{K}^{-1} \mathbf{K} \mathbf{U}=\mathbf{K}^{-1} \mathbf{F} \quad \Rightarrow \mathbf{U}=\mathbf{K}^{-1} \mathbf{F}
\end{aligned}
$$

Inversion possible only if \mathbf{K} is non-singular (i.e. the structure is sufficiently supported = stable)

Beam Element Results

1. Element nodal displacements

Disassemble \mathbf{u} from resulting global displacements \mathbf{U}
2. Element end forces

Calculate element end forces $=\mathbf{p}=\mathbf{k} \mathbf{u}$
3. Element stress and strain along axis

Calculate moment/shear from end forces (equilibrium equation)
Calculate curvature/axial strain from moments/axial force
4. Element deformations along axis

Calculate displacements from strain (direct integration)

Lateral Load

1. Adjust global load vector

$$
\Rightarrow c \Rightarrow c \Rightarrow f_{\mathrm{x}}
$$

$$
\mathbf{f}=\text { local load vector }=>\text { add to global load vector } \mathbf{F}
$$

2. Adjust element stresses
e.g. bending moment M :

Linear Static Analysis ($1^{\text {st }}$ order)

Workflow of computer program

1. System identification: Elements, nodes, support and loads
2. Build element stiffness matrices and load vectors
3. Assemble global stiffness matrix and load vector
4. Solve global system of equations ($\Rightarrow>$ displacements)
5. Calculate element results

Exact solution for displacements and stresses

