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Chapter 1

Introduction

Modeling a mechanical system can be de�ned as the mathematical idealization of the

physical processes governing its evolution. This requires the de�nitions of basic vari-

ables (describing system geometry, loading, material properties), response variables

(displacement, strain, stresses) and the relationships between these various quantities.

For a long time, researchers have focused their attention on improving structural mod-

els (beams, shells, continua, ...) and constitutive laws (elasticity, plasticity, damage

theories, ...). With the development of computer science, a great amount of work has

been devoted to numerically evaluate approximated solutions of the boundary value

problems describing the mechanical system. The �nite element method is probably

nowadays the most advanced approach for solution of these problems.

However the increasing accuracy of the constitutive models and the constant enhance-

ment of the computational tools does not solve the problem of identi�cation of the

model parameters and the uncertainties associated with their estimation. Moreover, in

most civil engineering applications, the intrinsic randomness of materials (soil, rock,

concrete, ...) or loads (wind, earthquake motion, ...) is such that deterministic models

using average characteristics at best lead to rough representations of the reality.

Accounting for randomness and spatial variability of the mechanical properties of ma-

terials is one of the tasks of stochastic or probabilistic mechanics, which has developed

fast in the last ten years. The aim of this report is to present a state-of-the-art review

of the existing methods in this �eld. Having industrial applications of these methods

in mind, attention will be mainly focused on �nite element approaches. The literature

on this topic has been classi�ed by Matthies et al. (1997). A collective state-of-the-art

report on computational stochastic mechanics has been published by Schuëller (1997).

A recent special issue of Computer Methods in Applied Mechanics and Engineering

(January 1999) presents the latest developments of various approaches. These three

contributions will be used as a basis for the present report, where only those parts
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related to the present concerns will be developed1.

1 Classi�cation of the stochastic mechanics ap-

proaches

The existing theories for stochastic mechanics approaches will be classi�ed here with

respect to the type of results they primarily yield. Three categories are distinguished :

� the theories aiming at calculating the �rst two statistical moments of the response

quantities, i.e. the mean, variance and correlation coe�cients. They are mainly

based on the perturbation method.

� the reliability methods, aiming at evaluating the probability of failure of the sys-

tem. They are based on the de�nition of a limit state function. As failure is

usually associated with rare events, the tails of the probability density functions

(PDFs) of response quantities are of interest in this matter.

� the stochastic �nite element methods aiming at evaluating the global probabilistic

structure of the response quantities considered as random processes. We will

present in this report the so-called spectral approach (SSFEM).

It has been noted in the reviewed literature that these three categories of approaches

are investigated by di�erent communities of researchers having few interactions with

each other. We will try to show in this report that the ingredients utilized in these

methods have many common features.

Note that the above classi�cation is somewhat subjective. Indeed results obtained as

byproducts of the main analysis tend to break the walls between these classes, as shown

in the following examples, which will be investigated in detail later on :

� By means of sensitivity analysis, it is always possible to compute the PDF of a

response quantity after the main reliability analysis.

� The expression of response random processes obtained by SSFEM are generally

not used directly. Closed form expressions yield the second-moment statistics,

and the PDFs can be obtained by simulation.

However, it is expected that methods pertaining to one of the above categories will

not be e�cient in the computation of byproducts. As mentioned before, due to the

compartmentalization of the research groups, no signi�cant comparisons have been

made so far.
1The book by Haldar and Mahadevan (2000) should be mentioned for the sake of completeness.

Due to its recent publication, it could not be reviewed for the present report.



2. Outline 5

2 Outline

A common ingredient of all the methods mentioned above is the need to represent

the spatial variability of the input parameters. This is done by using a random �eld

representation. For computational needs, these random �elds have to be discretized in

an optimal way. Chapter 2 covers the methods for discretization of random �elds.

Chapter 3 deals with second moment methods in the context of �nite element analysis.

These methods give results in terms of response variability. They appear to be the

earliest approaches in probabilistic �nite element analysis.

Chapter 4 is devoted to reliability methods and their coupling with �nite element anal-

ysis. The ingredients for reliability approaches are �rst introduced in a general context.

Then the speci�c modi�cations to be introduced in the �nite element context are pre-

sented. This approach was �rst proposed by Der Kiureghian and Taylor (1983).

Chapter 5 is devoted to the spectral stochastic �nite element method (SSFEM). This

method was introduced by Ghanem and Spanos (1991a). The main concepts will be

presented as well as a summary of the applications found in the literature.

As a conclusion, we will present a scheme for comparing the SSFEM and the reliability

approaches on the problem of evaluating small probabilities of occurrence as well as

the PDF of a given response quantity for a speci�c example. As noticed before, no

comparison of this type has been reported in the literature so far.





Chapter 2

Methods for discretization of random

�elds

The engineering applications in the scope of this report require representation of un-

certainties in the mechanical properties of continuous media. The mathematical theory

for this is random �elds. For de�nitions and general properties, the reader is referred

to Lin (1967) and Vanmarcke (1983).

1 Generalities

The introduction of probabilistic approaches in mechanical problems requires advanced

mathematical tools. This section is devoted to the presentation of some of them. Should

the reader be already familiar with this material, the following will give him/her at

least the notation used throughout the report.

1.1 Probability space and random variables

Classically, the observation of a random phenomenon is called a trial. All the possible

outcomes of a trial form the sample space of the phenomenon, denoted hereinafter by

�. An event E is de�ned as a subset of � containing outcomes � 2 �. Probability

theory aims at associating numbers to events, i.e. their probability of occurrence. Let

P denote this so-called probability measure. The collection of possible events having

well-de�ned probabilities is called the �-algebra associated with �, denoted here by

F . Finally the probability space constructed by means of this notions is denoted by

(� ; F ; P ).

A real random variable X is a mapping X : (� ; F ; P ) �! R. For continuous random

variables, the probability density function (PDF) and cumulative distribution function
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(CDF) are denoted by fX(x) and FX(x), respectively, the subscript X being possibly

dropped when there is no risk of confusion. To underline the random nature of X, the

dependency on the outcomes may be added in some cases as in X(�). A random vector

� is a collection of random variables.

The mathematical expectation will be denoted by E [�]. The mean, variance and n-th

moment of X are :

� � E [X] =

Z 1

�1

x fX(x) dx(2.1-a)

�2 = E
�
(X � �)2

�
=

Z 1

�1

(x� �)2 fX(x) dx(2.1-b)

E [Xn] =

Z 1

�1

xn fX(x) dx(2.1-c)

Furthermore, the covariance of two random variables X and Y is :

Cov [X ; Y ] = E [(X � �X)(Y � �Y )](2.2)

Introducing the joint distribution fX;Y (x ; y) of these variables, Eq.(2.2) can be rewrit-

ten as :

Cov [X ; Y ] =

Z 1

�1

Z 1

�1

(x� �X)(y � �Y ) fX;Y (x ; y) dx dy(2.3)

1.2 Random �elds and related Hilbert spaces

The vectorial space of real random variables with �nite second moment (E [X2] <1) is

denoted by L2(� ; F ; P ). The expectation operation allows to de�ne an inner product

and the related norm as follows :

< X ; Y > � E [XY ](2.4-a)

k X k =
p
E [X2](2.4-b)

It can be shown (Neveu, 1992) that L2(� ; F ; P ) is complete, which makes it a Hilbert

space.

A random �eld H(x ; �) can be de�ned as a curve in L2(� ; F ; P ), that is a collection

of random variables indexed by a continuous parameter x 2 
, where 
 is an open set

of Rd describing the system geometry. This means that for a given xo, H(xo ; �) is a

random variable. Conversely, for a given outcome �o, H(x ; �o) is a realization of the

�eld. It is assumed to be an element of the Hilbert space L2(
) of square integrable

functions over 
, the natural inner product associated with L2(
) being de�ned by :

< f ; g >L2(
)=

Z



f(x) g(x) d
(2.5)
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Hilbert spaces have convenient properties to develop approximate solutions of boundary

value problems, such as the Galerkin procedure.

A random �eld is called univariate or multivariate depending on whether the quantity

H(x) attached to point x is a random variable or a random vector. It is one- or

multidimensional according to the dimension d of x, that is d = 1 or d > 1. For the

sake of simplicity, we consider in the following univariate multidimensional �elds. In

practical terms, this corresponds to the modeling of mechanical properties including

Young's modulus, Poisson's ratio, yield stress, etc., as statistically independent �elds.

The random �eld is Gaussian if any vector fH(x1) ; ::: H(xn) g is Gaussian. A Gaus-

sian �eld is completely de�ned by its mean �(x), variance �2(x) and autocorrelation

coe�cient �(x ; x0) functions. Moreover, it is homogeneous if the mean and variance

are constant and � is a function of the di�erence x0�x only, the one-argument function

being in this case denoted by ~�(�). The correlation length is a characteristic parameter

appearing in the de�nition of the correlation function (see examples Eqs.(2.35)-(2.37)).

For one-dimensional homogeneous �elds, the power spectrum is de�ned as the Fourier

transform of the autocorrelation function, that is :

SHH(!) =
1

2 �

Z 1

�1

~�(x) e�i!x dx(2.6)

A discretization procedure is the approximation of H(�) by Ĥ(�) de�ned by means of

a �nite set of random variables f�i ; i = 1 ; ::: ng, grouped in a random vector denoted

by � :

H(x)
Discretization�! Ĥ(x) = F [x ; �](2.7)

The main topic here is to de�ne the �best� approximation with respect to some er-

ror estimator, that is the one using the minimal number of random variables. The

discretization methods can be divided into three groups :

� point discretization, where the random variables f�ig are selected values of

H(�) at some given points xi.

� average discretization, where f�ig are weighted integrals ofH(�) over a domain

e :

�i =

Z

e

H(x)w(x) d
(2.8)

� series expansion methods, where the �eld is exactly represented as a series in-

volving random variables and deterministic spatial functions. The approximation

is then obtained as a truncation of the series.

Reviews of several discretization methods can be found in Li and Der Kiureghian

(1993); Ditlevsen (1996); Matthies et al. (1997). The main results are collected in the

sequel.
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2 Point discretization methods

In the context of �nite element method, a spatial discretization of the system geometry

(the mesh) is utilized for the approximation of the mechanical response of the structure.

2.1 The midpoint method (MP)

Introduced by Der Kiureghian and Ke (1988), this method consists in approximating

the random �eld in each element 
e by a single random variable de�ned as the value

of the �eld at the centroid xc of this element :

Ĥ(x) = H(xc) ; x 2 
e(2.9)

The approximated �eld Ĥ(�) is then entirely de�ned by the random vector

� = fH(x1c) ; ::: H(xNe
c )g (Ne being the number of elements in the mesh). Its mean

� and covariance matrix ��� are obtained from the mean, variance and autocorrela-

tion coe�cient functions of H(�) evaluated at the element centroids. Each realization

of Ĥ(�) is piecewise constant, the discontinuities being localized at the element bound-
aries. It has been shown (Der Kiureghian and Ke, 1988) that the MP method tends to

over-represent the variability of the random �eld within each element.

2.2 The shape function method (SF)

Introduced by Liu et al. (1986a,b), this method approximates H(�) in each element

using nodal values xi and shape functions as follows :

Ĥ(x) =

qX
i=1

Ni(x)H(xi) x 2 
e(2.10)

where q is the number of nodes of element e, xi the coordinates of the i-th node and Ni

polynomial shape functions associated with the element. The approximated �eld Ĥ(�)
is obtained in this case from � = fH(x1) ; ::: H(xN)g, where fxi ; i = 1 ; ::: Ng is the

set of the nodal coordinates of the mesh.

The mean value and covariance of the approximated �eld Ĥ(�) read :

E
h
Ĥ(x)

i
=

qX
i=1

Ni(x)�(xi)(2.11)

Cov
h
Ĥ(x) ; Ĥ(x0)

i
=

qX
i=1

qX
j=1

Ni(x)Nj(x
0) Cov [H(xi) ; H(xj)](2.12)

Each realization of Ĥ(�) is a continuous function over 
, which is an advantage over

the midpoint method.
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2.3 The integration point method

This method is mentioned by Matthies et al. (1997) referring to Brenner and Bucher

(1995). Assuming that every integration appearing in the �nite element resolution

scheme is obtained from integrand evaluation at each Gauss point of each element, the

authors discretize the random �eld by associating a single random variable to each of

these Gauss points. This gives accurate results for short correlation length. However

the total number of random variables involved increases dramatically with the size of

the problem.

2.4 The optimal linear estimation method (OLE)

This method is presented by Li and Der Kiureghian (1993). It is sometimes referred to as

the Kriging method. It is a special case of the method of regression on linear functionals,

see Ditlevsen (1996). In the context of point discretization methods, the approximated

�eld Ĥ(�) is de�ned by a linear function of nodal values � = fH(x1) ; ::: H(xq)g as

follows :

Ĥ(x) = a(x) +

qX
i=1

bi(x)�i = a(x) + bT (x) � �(2.13)

where q is the number of nodal points involved in the approximation. The functions

a(x) and bi(x) are determined by minimizing in each point x the variance of the error

Var
h
H(x)� Ĥ(x)

i
subject to Ĥ(x) being an unbiased estimator of H(x) in the mean.

These conditions write :

8x 2 
; Minimize Var
h
H(x)� Ĥ(x)

i
(2.14)

with E
h
H(x)� Ĥ(x)

i
= 0(2.15)

Eq.(2.15) requires :

�(x) = a(x) + bT (x) � E [�] � a(x) + bT (x) ���(2.16)

Then the variance error is :

Var
h
H(x)� Ĥ(x)

i
= E

��
H(x)� Ĥ(x)

�2�
(2.17)

which turns out to be after basic algebra :

Var
h
H(x)� Ĥ(x)

i
= �2(x)� 2

qX
i=1

bi(x) Cov [H(x) ; �i]

+

qX
i=1

qX
j=1

bi(x) bj(x)Cov [�i ; �j]

(2.18)
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The minimization problem is solved point-wise for bi(x). Requiring that the partial

di�erential of (2.18) with respect to bi(x) be zero yields :

8 i = 1 ; ::: q � Cov [H(x) ; �i] +

qX
j=1

bj(x)Cov [�i ; �j] = 0(2.19)

which can be written in a matrix form :

��H(x)� +��� � b(x) = 0(2.20)

where ��� is the covariance matrix of �. The optimal linear estimation �nally writes :

Ĥ(x) = �(x) +�T
H(x)� ���1

�� �
�
�� ��

�
(2.21)

Isolating the deterministic part, Eq.(2.21) may be rewritten as :

Ĥ(x) =
�
�(x)��T

H(x)� ���1
�� ���

�
+

qX
i=1

�i
�
��1
�� ��H(x)�

�
i

(2.22)

from which it is seen that OLE is nothing but a shape function discretization method

where, setting the mean function aside, the shape functions read :

NOLE
i (x) � ���1

�� ��H(x)�

�
i
=

qX
j=1

�
��1
��

�
ij
�(x)�(xj) �(x ; xj)(2.23)

The variance of the error is (Li and Der Kiureghian, 1993) :

Var
h
H(x)� Ĥ(x)

i
= �2(x)��T

H(x)� ���1
�� ��H(x)�(2.24)

The second term in Eq.(2.24) is identical to Var
h
Ĥ(x)

i
. Thus the variance of the

error is simply the di�erence between the variances of H(x) and Ĥ(x). Since the error

variance is always positive, it follows that Ĥ(x) always under-estimates the variance

of the original random �eld. Moreover it can be proven (Ditlevsen, 1996) that :

Cov
h
Ĥ(x) ; H(x)� Ĥ(x)

i
= 0(2.25)

Thus requiring the error variance to be minimized is equivalent to requiring the error

and the approximated �eld to be uncorrelated. Both statements can be interpreted as

follows : in the Hilbert space of random variables L2(� ; F ; P ), Ĥ(x) is the projection

of H(x) onto the hyperplane mapped by the points f�ig(Neveu, 1992).

3 Average discretization methods

3.1 Spatial average (SA)

The spatial average method was proposed by Vanmarcke and Grigoriu (1983), Vanmar-

cke (1983). Provided a mesh of the structure is available, it de�nes the approximated
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�eld in each element as a constant being computed as the average of the original �eld

over the element :

Ĥ(x) =

R

e
H(x) d
e

j
ej � �He ; x 2 
e(2.26)

Vector � is then de�ned as the collection of these random variables, that is

�T = f �He ; e = 1 ; ::: Neg. The mean and covariance matrix of � are computed from

the mean and covariance function of H(x) as integrals over the domain 
e. Vanmarcke

(1983) gives results for homogeneous �elds and two-dimensional rectangular domains.

The case of axisymmetric cylindrical elements is given in Phoon et al. (1990). It has

been shown that the variance of the spatial average over an element under-represents

the local variance of the random �eld (Der Kiureghian and Ke, 1988).

Di�culties involved in this method are reported by Matthies et al. (1997) :

� the approximation for non rectangular elements (which can be dealt with by a

collection of non overlapping rectangular ones) may lead to a non-positive de�nite

covariance matrix.

� The probability density function of each random variable �i is almost impossible

to obtain except for Gaussian random �elds. For the sake of exhaustivity, recent

work from Knabe et al. (1998) on spatial averages should be mentioned.

3.2 The weighted integral method

This method was developed by Deodatis (1990, 1991), Deodatis and Shinozuka (1991)

and also investigated by Takada (1990a,b) in the context of stochastic �nite elements.

It is claimed not to require any discretization of the random �eld and thus seems to be

particularly attractive. In the context of linear elasticity, the main idea is to consider the

element sti�ness matrices as basic random quantities. More precisely, using standard

�nite element notations, the sti�ness matrix associated with a given element occupying

a volume 
e reads :

ke =

Z

e

BT �D �B d
e(2.27)

where D denotes the elasticity matrix, and B is a matrix that relates the components

of strains to the nodal displacements.

Consider now the elasticity matrix obtained as a product of a deterministic matrix by

a univariate random �eld (e.g. Young's modulus) :

D(x ; �) =Do [1 +H(x ; �)](2.28)
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where Do is the mean value1 and H(x ; �) is a zero-mean process. Thus Eq.(2.27) can

be rewritten as :

ke(�) = keo +�ke(�) ; �ke(�) =

Z

e

H(x ; �)BT �Do �B d
e(2.29)

Furthermore the elements in matrix B are obtained by derivation of the element shape

functions with respect to the coordinates. Hence they are polynomials in the latter, say

(x ; y ; z). A given member of �ke is thus obtained after matrix product (2.29) as :

�keij(�) =

Z

e

Pij(x; y; z)H(x ; �) d
e(2.30)

where the coe�cients of polynomial Pij are obtained from those of B and Do. Let us

write Pij as :

Pij(x; y; z) =
NWIX
l=1

alij x
�ly�lz
l(2.31)

where NWI is the number of monomials in Pij, each of them corresponding to a set of

exponents f�l ; �l ; 
lg. Substituting for (2.31) in (2.30) and introducing the following

weighted integrals of random �eld H(�) :

�el (�) =

Z

e

x�ly�lz
lH(x ; �)d
e(2.32)

it follows that :

�keij(�) =
NWIX
l=1

alij �
e
l (�)(2.33)

Collecting now the coe�cients alij in a matrix �kel , the (stochastic) element sti�ness

matrix can �nally be written as :

ke = keo +
NWIX
l=1

�kel �
e
l(2.34)

In the above equation, keo and f�kel ; l = 1 ; :::NWIg are deterministic matrices and �el
are random variables. As an example, a truss element requires only 1, a two-dimensional

beam element 3, and a plane stress quadrilateral element 3 such weighted integrals and

associated matrices.

As pointed out by Matthies et al. (1997), the weighted integral method is actually

mesh-dependent as it can be seen from Eq.(2.32). The original random �eld is actually

projected onto the space of polynomials involved in the B- matrices, that is basically

onto the space spanned by the shape functions of the �nite elements. This is an implicit

1For the sake of clarity, the dependency of random variables on outcomes � is given in this section.
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kind of discretization similar to the shape function approach (see section 2.2). Moreover,

if the correlation length of the random �eld is small compared to the size of integration

domain 
e, the accuracy of the method is questionable. Indeed, the shape functions

usually employed for elements with constants properties (e.g. prismatic beams with

constant Young's modulus and cross-section) may not give good results when these

properties are rapidly varying in the element. The problem of accuracy of the weighted

integrals approach seems not have been addressed in detail in the literature. A com-

prehensive study including the de�nition and computation of error estimators would

help clarify this issue.

Applications of the weighted integral method for evaluating response variability of the

system will be discussed later (Chapter 3, section 4).

4 Comparison of the approaches

Li and Der Kiureghian (1993) carry out an exhaustive comparison of the above dis-

cretization methods, i.e. MP, SA, SF and OLE. Two-dimensional univariate homoge-

neous Gaussian random �elds were considered, with three di�erent correlation struc-

tures, namely exponential, square exponential, and cardinal sine :

�A(x ; x
0) = exp(�k x� x

0 k
a

)(2.35)

�B(x ; x
0) = exp(�k x� x

0 k2
a2

)(2.36)

�C(x ; x
0) =

sin(
2:2 k x� x0 k

a
)

2:2 k x� x0 k
a

(2.37)

where a is a measure of the correlation length. A square mesh (element size l) is chosen,

and the following error estimator is computed on a given element 
e as a function of

l=a :

Err(
e) = sup
x2
e

Var
h
H(x)� Ĥ(x)

i
Var [H(x)]

(2.38)

Applying OLE, four di�erent sets of discretization points are used, namely the nodes of

the element under consideration, or the nodes of 3, 5 or 7 adjacent elements respectively.

As far as the size of � in OLE is concerned, results are reported in Figure 2.1. It

appears that any point outside the 1� 1 grid is non informative for type A correlation

model. The error is quite large even for re�ned mesh (l=a < 0:2). For both type B

and type C models, the error is negligible as soon as l=a < 0:5 (attention should be

paid to the di�erent scales on the �gures corresponding to correlation type A, B and

C respectively).
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Figure 2.1: Discretization errors for OLE method with varying grid and element size

(after Li and Der Kiureghian (1993))

Comparisons between OLE and the other methods (MP, SA, SF) are reported in �g-

ure 2.2 and call for the following comments :

� For type A correlation, the error remains large even for a small element size

(l=a < 0:2). This is due to the non di�erentiable nature of the random �eld in

this case (because the autocorrelation function is not di�erentiable at the origin,

see Vanmarcke (1983))

� For type B and C, the error is negligible as soon as l=a < 0:5. Thus when the

available information about the correlation structure is limited to correlation

length a, the choice of type A model should be avoided.

� It is seen that OLE gives better results than SF in all cases. As mentioned before,

OLE is basically a SF approach, where the shape functions are not prescribed

polynomials, but the �optimal� functions to minimize the variance of the error.

� Other results comparing the approximated correlation structure ��� to the initial

one is also given by Li and Der Kiureghian (1993). In all cases, OLE leads to better

accuracy in the discretization than MP, SA and SF.
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Figure 2.2: Comparison of errors for MP, SA, SF and OLE for varying element size

(after Li and Der Kiureghian (1993))

5 Series expansion methods

5.1 Introduction

The discretization methods presented up to now involved a �nite number of random

variables having a straightforward interpretation : point values or local averages of the

original �eld. In all cases, these random variables can be expressed as weighted integrals

of H(�) over the volume of the system :

�i(�) =

Z



H(x ; �)w(x) d
(2.39)

The weight functions w(x) corresponding to MP, SA, SF and OLE methods are sum-

marized in table 2.1, column #2. In this table, �(:) denotes the Dirac function and 1
e
is the characteristic function of element e de�ned by :

1
e(x) =

(
1 if x 2 
e

0 otherwise
(2.40)



18 Chapter 2. Methods for discretization of random �elds

Table 2.1: Weight functions and deterministic basis unifying MP, SF, SA, OLE methods

Method weight function w(x) 'i(x)

MP �(x� xc) 1
e(x)

SA
1
e(x)

j
ej 1
e(x)

SF �(x� xi)
polynomial shape

functions Ni(x)

OLE �(x� xi)

�best� shape functions

NOLE
i (x) according to

the correlation struc-

ture (See Eq.(2.23))

By means of these random variables �i(�), the approximated �eld can be expressed as

a �nite summation :

Ĥ(x ; �) =
NX
i=1

�i(�)'i(x)(2.41)

where the deterministic functions 'i(x) are reported in table 2.1, column #3.

Eq.(2.41) can be viewed as the expansion of each realization of the approximated �eld

Ĥ(x ; �o) 2 L2(
) over the basis of f'i(�)g's, �i(�o) being the coordinates. From this

point of view, the basis used so far are not optimal (for instance, in case of MP, SA

and SF, because the basis functions f'i(�)g have a compact support (e.g. each element


e)).

The discretization methods presented in the present section aim at expanding any

realization of the original random �eld H(x ; �o) 2 L2(
) over a complete set of de-

terministic functions. The discretization occurs thereafter by truncating the obtained

series after a �nite number of terms.

5.2 The Karhunen-Loève expansion

5.2.1 De�nition

The Karhunen-Loève expansion of a random �eld H(�) is based on the spectral decom-

position of its autocovariance function CHH(x ; x
0) = �(x) �(x0) �(x ; x0). The set of

deterministic functions over which any realization of the �eld H(x ; �o) is expanded is
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de�ned by the eigenvalue problem :

8 i = 1 ; :::

Z



CHH(x ; x
0)'i(x

0) d
x0 = �i 'i(x)(2.42)

Eq.(2.42) is a Fredholm integral equation. The kernel CHH(� ; �) being an autocovariance
function, it is bounded, symmetric and positive de�nite. Thus the set of f'ig form a

complete orthogonal basis of L2(
). The set of eigenvalues (spectrum) is moreover real,
positive, numerable, and has zero as only possible accumulation point. Any realization

of H(�) can thus be expanded over this basis as follows :

H(x ; �) = �(x) +
1X
i=1

p
�i �i(�)'i(x)(2.43)

where f�i(�); i = 1 ; ::: g denotes the coordinates of the realization of the random �eld

with respect to the set of deterministic functions f'ig. Taking now into account all

possible realizations of the �eld, f�i; i = 1 ; ::: g becomes a numerable set of random

variables.

When calculating Cov [H(x) ; H(x0)] by means of (2.43) and requiring that it be equal

to CHH(x ; x
0), one easily proves that :

E [�k�l] = �kl (Kronecker symbol)(2.44)

This means that f�i; i = 1 ; ::: g forms a set of orthonormal random variables with

respect to the inner product (2.4-a). In a sense, (2.43) corresponds to a separation of

the space and randomness variables in H(x ; �).

5.2.2 Properties

The Karhunen-Loève expansion possesses other interesting properties :

� Due to non accumulation of eigenvalues around a non zero value, it is possible

to order them in a descending series converging to zero. Truncating the ordered

series (2.43) after the M -th term gives the KL approximated �eld :

Ĥ(x ; �) = �(x) +
MX
i=1

p
�i �i(�)'i(x)(2.45)

� The covariance eigenfunction basis f'i(x)g is optimal in the sense that the mean
square error (integrated over 
) resulting from a truncation after the M -th term

is minimized (with respect to the value it would take when any other complete

basis fhi(x)g is chosen).
� The set of random variables appearing in (2.43) is orthonormal, i.e. verifying

(2.44), if and only if the basis functions fhi(x)g and the constants �i are solution
of the eigenvalue problem (2.42).
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� Due to the orthonormality of the eigenfunctions, it is easy to get a closed form for

each random variable appearing in the series as the following linear transform :

�i(�) =
1p
�i

Z



[H(x ; �)� �(x)] 'i(x) d
(2.46)

Hence when H(�) is a Gaussian random �eld, each random variable �i is Gaus-

sian. It follows that f�ig form in this case a set of independent standard normal

variables. Furthermore, it can be shown (Loève, 1977) that the Karhunen-Loève

expansion of Gaussian �elds is almost surely convergent.

� From Eq.(2.45), the error variance obtained when truncating the expansion after

M terms turns out to be, after basic algebra :

Var
h
H(x)� Ĥ(x)

i
= �2(x)�

MX
i=1

�i '
2
i (x) = Var [H(x)]� Var

h
Ĥ(x)

i
(2.47)

The righthand side of the above equation is always positive because it is the

variance of some quantity. This means that the Karhunen-Loève expansion always

under-represents the true variance of the �eld.

5.2.3 Resolution of the integral eigenvalue problem

Eq.(2.42) can be solved analytically only for few autocovariance functions and geome-

tries of 
. Detailed closed form solutions for triangular and exponential covariance

functions for one-dimensional homogeneous �elds can be found in Spanos and Ghanem

(1989), Ghanem and Spanos (1991b), where 
 = [�a ; a]. Extension to two-dimensional
�elds de�ned for similar correlation functions on a rectangular domain can be obtained

as well.

Except in these particular cases, the integral eigenvalue problem has to be solved

numerically. A Galerkin-type procedure suggested in Ghanem and Spanos (1991a);

Ghanem and Spanos (1991b, chap. 2) will be now described. Let fhi(:)g be a complete
basis of the Hilbert space L2(
). Each eigenfunction of CHH(x ; x

0) may be represented

by its expansion over this basis, say :

'k(x) =
1X
i=1

d ki hi(x)(2.48)

where d ki are the unknown coe�cients. The Galerkin procedure aims at obtaining the

best approximation of 'k(:) when truncating the above series after the N -th term. This

is accomplished by projecting 'k onto the space HN spanned by fhi(:) ; i = 1 ; ::: Ng.
Introducing a truncation of (2.48) in (2.42), the residual reads :

�N (x) =
NX
i=1

d ki

�Z



CHH(x ; x
0) hi(x

0) d
x0 � �k hi(x)

�
(2.49)
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Requiring the truncated series being the projection of 'k(:) onto HN implies that this

residual is orthogonal to HN in L2(
). This writes :

< �N ; hj >�
Z



�N(x) hj(x) d
 = 0 j = 1 ; ::: N(2.50)

After some basic algebra, these conditions reduce to a linear system :

CD = �BD(2.51)

where the di�erent matrices are de�ned as follows :

Bij =

Z



hi(x) hj(x) d
(2.52-a)

Cij =

Z



Z



CHH(x ; x
0) hi(x) hj(x

0) d
x d
x0(2.52-b)

Dij = d ji(2.52-c)

�ij = �ij�j (�ij Kronecker symbol)(2.52-d)

This is a discrete eigenvalue problem which may be solved for eigenvectors D and

eigenvalues �i. This solution scheme can be implemented using the �nite element mesh

shape functions as the basis f(hi(�)g (see Ghanem and Spanos (1991b, chap. 5.3) for

the example of a curved plate). Other complete sets of deterministic functions can also

be chosen, as described in the next section.

5.2.4 Conclusion

Due to its useful properties, the Karhunen-Loève expansion has been widely used in

stochastic �nite element approaches. Details and further literature will be given in

Chapters 5.

The main issue when using the Karhunen-Loève expansion is to solve the eigenvalue

problem (2.42). In most applications found in the literature, the exponential autoco-

variance function is used in conjunction with square geometries to take advantage of

the closed form solution in this case. This poses a problem in industrial applications

(where complex geometries will be encountered), because :

� the scheme presented in Section 5.2.3 for numerically solving(2.42) requires ad-

ditional computations,

� the obtained approximated basis f'i(�)g is no more optimal.

To the author's opinion, it should be possible, for general geometries, to embed 
 in a

square-shape volume and use the latter to solve in a closed form (when possible) the

eigenvalue problem. Surprisingly, this assertion, earlier made by Li and Der Kiureghian

(1993), did not receive attention in the literature.
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5.3 Orthogonal series expansion

5.3.1 Introduction

The Karhunen-Loève expansion presented in the above section is an e�cient repre-

sentation of random �elds. However, it requires solving an integral eigenvalue problem

to determine the complete set of orthogonal functions f'i ; i = 1 ; ::: g, see Eq.(2.42).
When no analytical solution is available, these functions have to be computed numer-

ically (see Section 5.2.3). The orthogonal series expansion method (OSE) proposed by

Zhang and Ellingwood (1994) avoids solving the eigenvalue problem (2.42) by selecting

ab initio a complete set of orthogonal functions. A similar idea had been used earlier

by Lawrence (1987).

Let fhi(x)g1i=1 be such a set of orthogonal functions, i.e. forming a basis of L2(
). For
the sake of simplicity, let us assume the basis is orthonormal, i.e. :Z




hi(x) hj(x) d
 = �ij ( Kronecker symbol)(2.53)

Let H(x ; �) be a random �eld with prescribed mean function �(x) and autocovariance

function CHH(x ; x
0). Any realization of the �eld is a function of L2(
), which can be

expanded by means of the orthogonal functions fhi(x)g1i=1. Considering now all possible

outcomes of the �eld, the coe�cients in the expansion become random variables. Thus

the following expansion holds :

H(x ; �) = �(x) +
1X
i=1

�i(�) hi(x)(2.54)

where �i(�) are zero-mean random variables2.

Using the orthogonality properties of the hi's, it can be shown after some basic algebra

that :

�i(�) =

Z



[H(x ; �)� �(x)] hi(x) d
(2.55-a)

(���)kl � E [�k �l] =

Z



Z



CHH(x ; x
0) hk(x) hl(x

0) d
x d
x0(2.55-b)

If H(�) is Gaussian, Eq.(2.55-a) proves that f�ig1i=1 are zero-mean Gaussian random

variables, possibly correlated. In this case, the discretization procedure associated with

OSE can then be summarized as follows :

� Choose a complete set of orthogonal functions fhi(x)g1i=1 (Legendre polynomials
were used by Zhang and Ellingwood (1994)) and select the number of terms

retained for the approximation, e.g. M .

2The notation in this section is slightly di�erent from that used by Zhang and Ellingwood (1994)

for the sake of consistency in the present report.
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� Compute the covariance matrix ��� of the zero-mean Gaussian vector
� = f�1 ; ::: �Mg by means of Eq.(2.55-b). This fully characterizes �.

� Compute the approximate random �eld by :

Ĥ(x ; �) = �(x) +
MX
i=1

�i(�) hi(x)(2.56)

5.3.2 Transformation to uncorrelated random variables

The discretization of Gaussian random �elds using OSE involves correlated Gaussian

random variables � = f�1 ; ::: �Mg. It is possible to transform them into an uncorre-

lated standard normal vector � by performing a spectral decomposition of the covari-

ance matrix ��� :

��� �� = � ��(2.57)

where � is the diagonal matrix containing the eigenvalues �i of ��� and � is a matrix

whose columns are the corresponding eigenvectors. Random vector � is related to �

by :

� = � ��1=2 � �(2.58)

Let us denote by f� k
i ; i = 1 ; :::Mg the coordinates of the k-th eigenvector. From

(2.58), each component �i of � is given by :

�i(�) =
MX
k=1

� k
i

p
�k �k(�)(2.59)

Hence :

Ĥ(x ; �) = �(x) +
MX
i=1

 
MX
k=1

� k
i

p
�k �k(�)

!
hi(x)

= �(x) +
MX
k=1

p
�k �k(�)

 
MX
i=1

� k
i hi(x)

!(2.60)

Introducing the following notation :

'k(x) =
MX
i=1

� k
i hi(x)(2.61)

Eq.(2.60) �nally writes :

Ĥ(x ; �) = �(x) +
MX
k=1

p
�k �k(�)'k(x)(2.62)
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The above equation is an approximate Karhunen-Loève expansion of the random �eld

H(�), as seen by comparing with Eq.(2.43).

By comparing the above developments with the numerical solution of the eigenvalue

problem associated with the autocovariance function (2.42) (see Section 5.2.3), the fol-

lowing important conclusion originally pointed out by Zhang and Ellingwood (1994)

can be drawn : the OSE using a complete set of orthogonal functions fhi(x)g1i=1 is

strictly equivalent to the Karhunen-Loève expansion in the case when the eigenfunc-

tions 'k(x) of the autocovariance function CHH are approximated by using the same

set of orthogonal functions fhi(x)g1i=1.

5.4 The EOLE method

5.4.1 De�nition and properties

The expansion optimal linear estimation method (EOLE) was proposed by Li and

Der Kiureghian (1993). It is an extension of OLE (see section 2.4) using a spectral

representation of the vector of nodal variables �.

Assuming that H(�) is Gaussian, the spectral decomposition of the covariance matrix

��� of � = fH(x1) ; ::: H(xN ) is :

�(�) = �� +
NX
i=1

p
�i �i(�)�i(2.63)

where f�i ; i = 1 ; ::: Ng are independent standard normal variables and (�i ; �i) are

the eigenvalues and eigenvectors of the covariance matrix ��� verifying :

����i = �i�i(2.64)

Substituting for (2.63) in (2.13) and solving the OLE problem yields :

Ĥ(x ; �) = �(x) +
NX
i=1

�i(�)p
�i
�i

T�H(x)�(2.65)

As in the Karhunen-Loève expansion, the series can be truncated after r terms, the

eigenvalues �i being sorted �rst in descending order.

5.4.2 Variance error

The variance of the error for EOLE is :

Var
h
H(x)� Ĥ(x)

i
= �2(x)�

rX
i=1

1

�i

�
�T
i �H(x)�

�2
(2.66)
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As in OLE and KL, the second term in the above equation is identical to the variance

of Ĥ(x). Thus EOLE also always under-represents the true variance. Due to the form

of (2.66), the error decreases monotonically with r, the minimal error being obtained

when no truncation is made (r = N). This allows to de�ne automatically the cut-o�

value r for a given tolerance in the variance error.

Remark The truncation of (2.65) after r terms according to the greatest eigenvalues

of ��� is equivalent to selecting the most important random variables �i in (2.63). This

technique of reduction is actually general and has been applied in other contexts such

as :

� reducing the number of random variables in the shape functions method (Liu

et al., 1986b),

� reducing the number of random variables before simulating random �eld realiza-

tions (Yamazaki and Shinozuka, 1990)

� reducing the number of terms in the Karhunen-Loève expansion.

6 Comparison between KL, OSE, EOLE

6.1 Early results

6.1.1 EOLE vs. KL

The accuracy of the KL and EOLE methods has been compared by Li and Der Ki-

ureghian (1993) in the case of one-dimensional homogeneous Gaussian random �elds.

The error estimator (2.38) was computed for di�erent orders of expansion r. The results

are plotted in �gure 2.3.

It appears that even when KL is exact (i.e. when the exponential decaying covariance

kernel is used) the KL maximal3 error is not always smaller than the EOLE error

for a given cut-o� number r. A deeper analysis shows, as pointed out by Li and Der

Kiureghian (1993), that the KL point-wise error variance Var
h
H(x)� Ĥ(x)

i
for a

given r is smaller than the EOLE error in the interior of the discretization domain 
,

however larger at the boundaries.

6.1.2 OSE vs. KL

Zhang and Ellingwood (1994) applied the OSE method to a one-dimensional Gaussian

random �eld de�ned over a �nite domain [�a ; a]. The following orthonormal basis

3Estimator (2.38) is de�ned as a Sup.
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Figure 2.3: Comparison of errors for KL and EOLE methods with type A correlation

Eq.(2.35) (after Li and Der Kiureghian (1993))

fhi(x)g1i=0 de�ned by means of the Legendre polynomials was used :

hn(x) =

r
2n+ 1

2 a
Pn

�x
a

�
(2.67)

where Pn is the n-th Legendre polynomial. The authors introduced two error estimators

based on the covariance function to evaluate the respective accuracy of KL and OSE

methods. To reach a prescribed tolerance, it appears that the number of terms M to

be included in OSE is one or two more than the number of terms required by KL.

6.2 Full comparison between the three approaches

To investigate in fuller detail the accuracy of the series expansion methods and allow

a full comparison between the three approaches, a Matlab toolbox for random �eld

discretization has been implemented as part of this study. This implementation is

described in detail in Part II, Chapter 2.
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6.2.1 De�nition of a point-wise error estimator

The following point-wise estimator of the error variance is de�ned :

"rr(x) =
Var

h
H(x)� Ĥ(x)

i
Var [H(x)]

(2.68)

This measure is independent of the mean and standard deviation when H(x) is homo-

geneous (See Part II, Chapter 2, Section 4). In the following numerical application, a

one-dimensional homogeneous Gaussian random �eld having the following characteris-

tics is chosen :

� Domain 
 = [0 ; 10],

� Correlation length a = 5.

6.2.2 Results with exponential autocorrelation function

Figure 2.4 represents the estimator (2.68) for the three discretization schemes at dif-

ferent orders of expansion. On each �gure, the mean value of "rr(x) over 
 is also

given. As expected from the properties of the Karhunen-Loève expansion described in

Section 5.2.2, the KL approach provides the lowest mean error. The EOLE error is

close to the KL error while the OSE error is slightly greater (20 points were chosen for

the EOLE discretization, which means that the size of each element in the EOLE-mesh

is LRF � a=10). As already stated by Li and Der Kiureghian (1993), the point-wise

variance error at the boundaries of 
 is larger for KL than for EOLE. It is empha-

sized that the error is still far from zero even when r = 10. This is due to the fact

that the Gaussian random �eld under consideration is non di�erentiable because of the

exponential autocorrelation function.

6.2.3 Results with exponential square autocorrelation function

The results for exponential square autocorrelation function (see Eq.(2.36)) are pre-

sented in �gure 2.5. As there is no analytical solution to the eigenvalue problem as-

sociated with the Karhunen-Loève expansion in this case, only EOLE and OSE are

considered. It appears that EOLE gives better accuracy in this case also.

6.2.4 Mean variance error vs. order of expansion

The mean of "rr(x) over the domain 
 is displayed in �gure 2.6 as a function of the

order of expansion r for each discretization scheme and for both types of autocorrelation

functions.
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Figure 2.4: Point-wise estimator for variance error, represented for di�erent discretiza-

tion schemes and di�erent orders of expansion (exponential autocorrelation function)

As expected, at any order of expansion, the smallest mean error is obtained by KL (if

applicable). EOLE is almost always better than OSE. The EOLE-mesh re�nement nec-

essary to get a fair representation depends strongly on the autocorrelation function, as

seen in �gure 2.7. If the exponential type is considered (�gure 2.7-a), EOLE is more ac-

curate than OSE only if LRF=a � 1=6 in the present example. If the exponential square

type is considered (�gure 2.7-b), then EOLE is more accurate than OSE whatever the

mesh re�nement.

It should be noted that, for a given order of expansion r, the variance error obtained in

case of the exponential square autocorrelation function is much smaller than that ob-

tained for the exponential autocorrelation function, whatever the discretization scheme.

For r � 5, it is totally negligible for our choice of parameters.
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Figure 2.5: Point-wise estimator for variance error, represented for di�erent discretiza-

tion schemes and di�erent orders of expansion (exponential square autocorrelation func-

tion)

6.2.5 Conclusions

The series expansion discretization schemes (KL, EOLE and OSE) all ensure a rather

small variance error as soon as a few terms are included.

When the exponential autocorrelation function is used, KL should be selected, since it

gives the best accuracy. EOLE is more accurate than OSE if the underlying mesh is

su�ciently re�ned (i.e. LRF =a � 1=6). As already stated by Li and Der Kiureghian

(1993), EOLE is more e�cient with a �ne mesh and a low order of expansion than

with a rough mesh and a higher order of expansion.

When the exponential square autocorrelation function is used, EOLE is more accurate

than OSE whatever the mesh re�nement. The ratio LRF =a � 1=2�1=3 is recommended
in this case. Generally speaking, the variance error computed with an exponential

square autocorrelation function is far smaller than that computed for the exponential

case. Thus in practical applications, if there is no particular evidence of the form of
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Figure 2.6: Mean variance error vs. order of expansion for di�erent autocorrelation

structures

the autocorrelation function, the exponential square form should be preferred, since it

allows practically an exact discretization (mean variance error < 10�6) with only a few

terms. This result holds for both EOLE and OSE discretization schemes. Furthermore,

this form of autocorrelation function implies a di�erentiable process, which would be

more realistic for most physical processes.

7 Non Gaussian random �elds

The case of non Gaussian �elds has been addressed by Li and Der Kiureghian (1993) in

the case when they are de�ned as a non-linear transformation (also called translation)
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Figure 2.7: Mean variance error vs. order of expansion - di�erent EOLE-mesh re�ne-

ments and OSE

of a Gaussian �eld :

HNG(�) = NL(H(�))(2.69)

The discretized �eld is then simply obtained by :

ĤNG(�) = NL(Ĥ(�))(2.70)

This class of transformations includes the Nataf transformation (see details in sec-

tion 2.4 of Chapter 4). From a practical point of view, it includes the lognormal ran-

dom �elds, which are of great importance for modeling material properties due to its

non-negative domain.

Although it has not be used in the literature, the translation procedure could be applied

with any of the series expansion schemes described in the last section including KL and

OSE.
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8 Selection of the random �eld mesh

Several of the methods of discretization presented in this chapter require the selection of

a random �eld mesh, e.g. the MP, SA, SF, OLE, EOLE methods. A critical parameter

for e�cient discretization is the typical size of an element or the grid size.

Several authors including Der Kiureghian and Ke (1988) and Mahadevan and Haldar

(1991) have pointed out that the �nite element- and the random �eld meshes have to

be designed based upon di�erent criteria. Namely :

� the design of the �nite element mesh is governed by the stress gradients of the

response. Should some singular points exist (crack, edge of a rigid punch, ...), the

mesh would have to be locally re�ned.

� The typical element size LRF in the random �eld mesh is related to the correlation

length of the autocorrelation function.

Depending on the discretization method, di�erent recommendations about the element

size can be found in the literature :

� Der Kiureghian and Ke (1988) proposed the value :

LRF � a

4
to

a

2
(2.71)

by repeatedly evaluating the reliability index of a beam with stochastic rigidity

using meshes with decreasing element size.

� This range was con�rmed by Li and Der Kiureghian (1993) (see details in sec-

tion 4) by computing the error estimator (2.38) and by Zeldin and Spanos (1998)

by comparing the power spectra of H(�) and Ĥ(�).

� In the context of reliability analysis (see Chapter 4), Der Kiureghian and Ke

(1988) and Mahadevan and Haldar (1991) reported numerical di�culties of the

procedure when the length LRF is too small. In this case indeed, the random vari-

ables appearing in the discretization are highly correlated and the diagonalization

of the associated covariance matrix leads to numerical instabilities.

� As far as the EOLE method is concerned, the short study presented in sec-

tion 6 allows to conclude that LRF should be taken between a=10 and a=5 for the

exponential autocorrelation function and between a=4 and a=2 for other cases.

However, in contrast to point- and average discretization methods, the fact that

LRF is rather small does not imply that the number of random variables r used

in the discretization is large, since r is prescribed as an independent parameter.
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The correlation length being usually constant over 
, the associated mesh can be

constructed on a regular pattern (segment, square, cube). However, in the context of

reliability analysis, Liu and Liu (1993) showed that the re�nement of the random �eld

mesh should be connected to the gradient of the limit state function (see details in

Chapter 4). This seems to be a common feature with the �nite element mesh : when

the response quantities of interest are localized in a speci�c subdomain of the system,

it is possible to choose a coarse mesh in the regions far away from this subdomain.

In the applications, some authors simply construct the random �eld mesh by grouping

several elements of the �nite element mesh in a single one (see Liu and Der Kiureghian

(1991a); Zhang and Der Kiureghian (1993, 1997)). This allows to reduce dramatically

the size of the random vector �. Any realization of Ĥ(�) is also easily mapped onto the
�nite element mesh for the mechanical analysis.

To the author's knowledge, no application involving two really independent meshes and

a general mapping procedure of the random �eld realization onto the �nite element

mesh has been proposed so far. This technique needs to be adopted for large industrial

applications, where the �nite element mesh is generally automatically generated, having

variable element size with unprescribed orientation. Indeed, in this case, it would not

be practical to de�ne the random �eld mesh by grouping elements of the �nite element

mesh.

9 Conclusions

This chapter has presented a review of methods for discretization of random �elds

that have been used in conjunction with �nite element analysis. Comparisons of the

e�ciency of these methods found in the literature have been reported, and new results

regarding the series expansion methods have been presented. The question of the design

of the random �eld mesh has been �nally addressed. As a conclusion, advantages and

weaknesses of each method are brie�y summarized below :

� The point discretization methods described in Section 2 have common advan-

tages : the second order statistics are readily available from those of the �eld.

The marginal PDF of each random variable is the same as that of the �eld. How-

ever, the joint PDF is readily available only when the random �eld is Gaussian.

The number of random variables involved in the discretization increases rapidly

with the size of the �nite element problem.

� Methods yielding continuous realizations of the approximate �eld (e.g. SF, OLE)

are preferable to those yielding piecewise constant realizations (e.g.MP, SA) since

they provide more accurate representations for the same mesh re�nement.

� The SA method is practically limited to Gaussian �elds since the statistics of the

random variables involved in the discretization cannot be determined in any other
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case. However, it may be extended to non Gaussian �elds obtained by translation

of a Gaussian �eld, see Section 7.

� The expansion methods (e.g. KL, OSE) do not require a random �eld mesh. The

former is the most e�cient in terms of the number of random variables required

for a given accuracy. However, it requires the solution of an integral eigenvalue

problem. The latter uses correlated random variables, which can be transformed

into uncorrelated variables by solving a discrete eigenvalue problem. When no

closed-form solution of the KL integral eigenvalue problem exists, KL and OSE

are equivalent.

� Although applicable to any kind of �eld, both of these methods are mainly e�-

cient for Gaussian random �elds, since the variables involved in the discretization

are Gaussian in this case. As an extension, non Gaussian random �elds obtained

by translation can be dealt with, see Section 7.

� It is possible to reduce the number of random variables involved in a discretization

procedure by a spectral decomposition of their covariance matrix. Only those

eigenvalues with greatest value are retained in the subsequent analysis. This

reduction technique has been applied in conjunction with SF. Coupled with OLE,

it yields EOLE.

� Disregarding the analytical KL method (which is only applicable to few correla-

tion structures of the random �eld and geometry of the system), EOLE and OSE

are the most appealing methods.

Both methods provide analytical expressions for the realization of the approxi-

mate �eld, involving its autocovariance function or the orthogonal basis functions

respectively. These realizations are continuous. In terms of accuracy, EOLE is bet-

ter than OSE if the random �eld mesh is su�ciently re�ned (LRF � a=5� a=10,

where a is the correlation length).

The covariance matrix of the random variables involved in EOLE is readily avail-

able, since these variables correspond to selected points in the domain 
. Solving

an eigenvalue problem is then necessary to achieve the discretization.

Regarding the OSE method, each term of the covariance matrix has to be com-

puted as a weighted integral of the autocovariance function, see Eq.(2.55-b).



Chapter 3

Second moment approaches

1 Introduction

Historically, probability theory was introduced in mechanics in order to estimate the

response variability of a system, that is the dispersion of the response around a mean

value when the input parameters themselves vary around their means. The aim is to

understand how uncertainties in the input propagate through the mechanical system.

For this purpose, second order statistics of the response are to be evaluated.

Suppose the input randomness in geometry, material properties and loads is described

by a set of N random variables, each of them being represented as the sum of its mean

value and a zero-mean random variable �i. The input variations around the mean are

thus collected in a zero-mean random vector � = f�1 ; ::: �Ng. In the context of �nite

element analysis, the second moment methods aim at evaluating the statistics of the

nodal displacements, strains and stresses from the mean values of the input variables

and the covariance matrix of �.

The perturbation method introduced in the late 1970's has been employed in a large

number of studies. The general formulation is presented in Section 2. Di�erent examples

of application in conjunction with random �eld discretization are presented in Section 3.

The weighted integral method, which is a combination of a perturbation-based approach

with the discretization scheme presented in Chapter 2, Section 3.2 is presented in

Section 4. The quadrature method proposed recently to compute directly the moments

of response quantities is presented in Section 5.

2 Principles of the perturbation method

The perturbation method was applied by many researchers including Handa and An-

dersson (1981) and Hisada and Nakagiri (1981, 1985) in structural mechanics, Baecher
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and Ingra (1981) and Phoon et al. (1990) for geotechnical problems, and Liu et al.

(1986a,b) for non-linear dynamic problems. It uses a Taylor series expansion of the

quantities involved in the equilibrium equation of the system around their mean values.

Then the coe�cients in the expansions of the left- and right-hand sides are identi�ed

and evaluated by perturbation analysis.

In the context of �nite element analysis for quasi-static linear problems, the equilibrium

equation obtained after discretizing the geometry generally reads :

K �U = F(3.1)

Suppose the input parameters used in constructing the sti�ness matrix K and the

load vector F are varying around their mean. As a consequence, the three quantities

appearing in the above equation will also vary around the values Ko ; U
o ; F o they

take for these mean values of the input parameters.

The Taylor series expansions of the terms appearing in (3.1) around their mean values

read1 :

K = Ko +
NX
i=1

KI
i �i +

1

2

NX
i=1

NX
j=1

KII
ij �i �j + o(k � k2)(3.2)

U = U o +
NX
i=1

U I
i �i +

1

2

NX
i=1

NX
j=1

U II
ij �i �j + o(k � k2)(3.3)

F = F o +
NX
i=1

F I
i �i +

1

2

NX
i=1

NX
j=1

F II
ij �i �j + o(k � k2)(3.4)

where the �rst (resp. second) order coe�cients ()Ii (resp. ()
II
ij ) are obtained from the

�rst and second order derivatives of the corresponding quantities evaluated at � = 0,

e.g. :

KI
i =

@K

@�i �=0
(3.5)

KII
ij =

@2K

@�i @�j �=0
(3.6)

By substituting (3.2)-(3.4) in (3.1) and identifying the similar order coe�cients on both

sides of the equation, one obtains successively :

U o = K�1
o � F o(3.7)

U I
i = K�1

o � �F I
i �KI

i �U o
�

(3.8)

U II
ij = K�1

o � �F II
ij �KI

i �U I
j �KI

j �U I
i �KII

ij �U o
�

(3.9)

1For the sake of simplicity, the dependency of the random variables �i on the basic outcomes � 2 �

is not written in the sequel.
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From these expressions, the statistics of U is readily available from that of �. The

second order estimate of the mean is obtained from (3.3) :

E [U ] � U o +
1

2

NX
i=1

NX
j=1

U II
ij Cov [�i ; �j](3.10)

where the �rst term U o is the �rst-order approximation of the mean. The �rst order

estimate of the covariance matrix reads :

Cov [U ; U ] �
NX
i=1

NX
j=1

U I
i �
�
U I

j

�T
Cov [�i ; �j] =

NX
i=1

NX
j=1

@U

@�i �=0

@UT

@�j �=0
Cov [�i ; �j]

(3.11)

Introducing the correlation coe�cients of the random variables (�i ; �j) :

�ij =
Cov [�i ; �j]

��i ��j
(3.12)

the above equation can be rewritten as :

Cov [U ; U ] �
NX
i=1

NX
j=1

@U

@�i �=0

@UT

@�j �=0
�ij ��i ��j(3.13)

It is seen that each term of the summation involves the sensitivity of the response to

the parameters �i (partial derivatives of U) as well as the variability of these parame-

ters (��i). Eq.(3.13) thus allows to interpret what quantities are most important with

respect to the response variance. The second-order approximation of the covariance

matrix can also be derived. It involves up to fourth moments of � and is therefore

more intricate to implement and longer to evaluate.

Formulas for the statistics of element strain and stresses have been developed by many

authors including Hisada and Nakagiri (1981) and Liu et al. (1986b).

3 Applications of the perturbation method

In this section, attention is focused on the use of the perturbation method coupled with

random �eld discretization techniques.

3.1 Spatial average method (SA)

Using the SA method (see Chapter 2, Section 3.1), Baecher and Ingra (1981) obtained

the second moment statistics of the settlement of a foundation over an elastic soil mass

with random Young's modulus and compared the results with existing one-dimensional

analysis.
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Vanmarcke and Grigoriu (1983) obtained the �rst and second order statistics of

the nodal displacements of a cantilever beam. Extending the SA formalism to two-

dimensional axisymmetric problems, Phoon et al. (1990) obtained the �rst order statis-

tics of the settlement of a pile embedded in an elastic soil layer with random Young's

modulus.

3.2 Shape functions method (SF)

Using the SF discretization method (see Chapter 2, Section 2.2), Liu et al. (1986a,b)

applied the perturbation method to static and dynamic non-linear problems, including :

� wave propagation in a one-dimensional elastoplastic bar with random yield stress

(Liu et al., 1986b);

� static plane stress response of a cantilever beam (same reference);

� static elastoplastic plate with a circular hole, including random cyclic loading

and random yield stress (Liu et al., 1986a);

� turbine blade (shell element) with random side load and length (same reference).

The results compare fairly well with Monte Carlo simulations. However the coe�cient

of variation of the random quantities is limited to 10% in all these examples.

4 The weighted integral method

4.1 Introduction

This approach, proposed by Deodatis (1990, 1991), Deodatis and Shinozuka (1991)

and Takada (1990a,b), couples the perturbation method with the representation of the

stochastic sti�ness matrix presented in Chapter 2, Section 3.2. This representation can

be put in the following form :

ke = keo +
NWIX
l=1

�kel �
e
l(3.14)

where �el are zero-mean weighted integrals of the random �eld and �kel are determin-

istic matrices. By assembling these contributions over the N elements of the system, a

global stochastic sti�ness matrix involving NWI �N random variables is obtained.
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4.2 Expansion of the response

In the context of the perturbation method, the following �rst-order Taylor series ex-

pansion of the vector of nodal displacements U is used :

U = U o +
NX
e=1

NWIX
l=1

�el
@U

@�el �el=0
(3.15)

Assuming deterministic loads, applying (3.7)-(3.8) to this particular case yields :

U = U o �
NX
e=1

NWIX
l=1

�el K
�1
o � @K

@�el
�U o(3.16)

4.3 Variability response functions

From Eq.(3.16) the covariance matrix of the response writes :

Cov [U ; U ] =
NX

e1=1

NX
e2=1

NWIX
l1=1

NWIX
l2=1

K�1
o � @K

@�e1l1
�U o �U oT � @K

T

@�e2l2
� �K�1

o

�T � Cov ��e1l1 ; �e2l2 �
(3.17)

The last term in the above expression is obtained from the de�nition (2.32) of the

weighted integrals. For example, in the one-dimensional case :

Cov
�
�e1l1 ; �

e2
l2

� � E
�
�e1l1 �

e2
l2

�
=

Z

e1

Z

e2

x
�l1
1 x

�l2
2 E [H(x1)H(x2)] dx1 dx2(3.18)

where :

E [H(x1)H(x2)] � CHH(x1 � x2)(3.19)

is the autocovariance function of H(�). Introducing the power spectral density function
SHH(!) satisfying :

CHH(x1 � x2) =

Z
R

SHH(!) e
i!(x1�x2) d!(3.20)

one �nally obtains :

Cov
�
�e1l1 ; �

e2
l2

�
=

Z
R

SHH(!)

Z

e1

x
�l1
1 ei!x1 dx1

Z

e2

x
�l2
2 ei!x2 dx2

=

Z
R

SHH(!) v
e1e2
l1l2

(!) d!

(3.21)

where ve1e2l1l2
(!) is de�ned as :

ve1e2l1l2
(!) =

Z

e1

x
�l1
1 ei!x1 dx1

Z

e2

x
�l2
2 ei!x2 dx2(3.22)
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Substituting (3.21) in (3.17) and gathering the diagonal terms into the vector Var [U ]

leads to :

Var [U ] =

Z
R

SHH(!)V (!) d!(3.23)

In the above equation, V (!) is a vector having N components, each of them being

the variability response function Vi(!) at the corresponding degree of freedom. From

(3.17),(3.21), it is seen that these functions Vi(!) depend on the deterministic sti�ness

matrices Ko, �k
e
l , the response mean value U o and some functions ve1e2l1l2

(!) given by

Eq.(3.22). These functions can be given closed-form expressions after some algebra in

the one-dimensional case (Deodatis, 1990). Each Vi(!) gives the contribution of a given

scale of �uctuation of the input random �eld (characterized by !) to the variance of

the nodal displacement Ui.

Deodatis (1990) examined the following upper bound for the variance of Ui. Taking

indeed each component of (3.23) separately, the following trivial inequality holds :

Var [Ui] �
Z
R

SHH(!)max jVi(!)j d! � �2H max jVi(!)j(3.24)

where �2H is the variance of the input random �eld, see Eq.(2.28).

The above equation yields an upper bound on the response variance, which is inde-

pendent of the correlation structure of the input �eld. This is valuable since this kind

of data is di�cult to obtain in practice. However, Eq.(3.24) has limited practical use

because the quantities max jVi(!)j are not easily available. In the application of this

method to a frame structure, Deodatis (1990) computed these maximum values graph-

ically after plotting the functions Vi(!).

5 The quadrature method

An original approach called quadrature method has been recently proposed by

Baldeweck (1999) to compute the moments of response quantities (e.g. nodal displace-

ments) obtained by a �nite element code. It is based on the quadrature of the integrals

de�ning these moments.

5.1 Quadrature method for a single random variable

Consider a random variable X whose probability density function (PDF) is denoted

by fX(x) and suppose the moments of Y = g(X) are to be determined. By de�nition,

the i-th moment of Y is given by :

E
�
Y i
� � E

�
gi(X)

�
=

Z
R

[g(x)]i fX(x) dx(3.25)
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The quadrature of the above integral is its approximation by a weighted summation of

the values of the integrand :

E
�
gi(X)

� � NPX
k=1

wk [g(xk)]
i(3.26)

where (wk ; xk) are integration weights and points associated with fX respectively, and

NP is the order of the quadrature scheme. For instance, if X has a uniform distribution

over [�1 ; 1], the integration points in the above equation are the well-known Gauss

points. More generally, it is possible to compute integration weights and points associ-

ated with other PDFs fX at any order. Baldeweck (1999) gives tables for normal and

lognormal distributions up to order 10.

5.2 Quadrature method applied to mechanical systems

Suppose the uncertainties of a given mechanical system are described by the vector of

basic random variablesX = fX1 ; ::: XNg having a prescribed joint distribution. After

a probabilistic transformation (see chapter 4, Section 2.4 for details) it is possible to

assume that the Xi's are uncorrelated standard normal variates. The statistics of a

given response quantity S (e.g. nodal displacement, strain- or stress component) is to

be determined. The i-th moment of S can be computed as :

E
�
Si(X1 ; ::: XN)

�
=

Z
RN

[s(x1 ; ::: ; xN )]
i '(x1) : : : '(xN ) dx1 : : : dxN(3.27)

where '(:) is the PDF of a standard normal variate, and s(x1 ; ::: ; xN ) is usually known

in an algorithmic sense, i.e. through a �nite element code. Generalizing Eq.(3.26),

Eq.(3.27) can be estimated as :

E
�
Si(X1 ; ::: XN)

� � NPX
k1=1

� � �
NPX
kN=1

wk1 : : : wkN [s(xk1 ; ::: ; xkN )]
i(3.28)

It is seen that NPN evaluations of S (i.e. �nite element runs) are needed a priori.

As stated by Baldeweck, the number of evaluations increases exponentially with the

number of random variables. However, some of the weight products wk1 : : : wkN are

totally negligible compared to others, so that some terms in Eq.(3.28) are not computed.

Remark From Eq.(3.27), it is seen that the method is not a �pure� second moment

approach, since information about the distributions of the basic random variables is

included in the calculation. However, it is presented in this chapter because it gives

primarily the moments of the response quantities.

Baldeweck applied the quadrature method to compute the �rst four moments of the

response quantities. From these �rst moments, a probability distribution function can
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be �tted (so-called Johnson or Pearson distributions). This PDF can be �nally used to

get reliability results.

Several examples in structural mechanics, geotechnics and fracture mechanics are pre-

sented. In each case, the results obtained with the quadrature method compare well

with the other approaches (e.g. perturbation method, Monte Carlo simulation). It is

noted that non-linear problems can be dealt with as easily as linear problems. How-

ever, the limitation on the number of random variables is a severe restriction of this

approach (at most 4 were used in the applications described by Baldeweck (1999)).

6 Advantages and limitations of second moment ap-

proaches

General formulations and di�erent applications of the perturbation method have been

presented in this chapter for linear as well as nonlinear structures. From this analysis,

the following conclusions can be drawn :

� Due to its relative simplicity, the �rst-order perturbation method is practical to

get an estimate of the response variance, see Eq.(3.13). It is applicable at low

cost to a wide range of problems.

� Due to the Taylor series expansion, accurate results are expected only in case of

small variability of the parameters. The upper limit on the coe�cient of variation

(COV) for which the results are acceptable strongly depends on the degree of

nonlinearity of the system. Fair comparisons with Monte Carlo simulations have

been obtained for COV up to 20%. However the upper limit may di�er a lot with

respect to the kind of mechanical problems under consideration. It is important to

note that, while the results from perturbation analysis are distribution-free (i.e.

they only require the second moments of the input variables), the Monte Carlo

results by necessity must be obtained for speci�c distributions. In this sense the

comparison is dependent on the assumed distribution in the Monte Carlo analysis.

It is emphasized that the choice of Gaussian distributions is questionable when

describing material properties that are positive in nature. In most of the papers

referred to in this chapter, Monte Carlo simulations of Gaussian random �elds are

used as �reference� calculations to assess the validity of the various approaches. No

discussion about the possible non physical negative outcomes in the simulation

could be found in these papers though.

� the derivatives ofK and F have to be derived with respect of each parameter �i,

possibly at the second order level. This derivations are usually performed at the

element level before assembling the system. In most situations, they can be done

analytically, leading however to intricate formulæ. These calculations can be time



6. Advantages and limitations of second moment approaches 43

consuming, particularly when the second order terms are included. Higher-order

approximations are totally intractable.

The weighted integral method described in Section 4 allows to obtain a) second order

statistics of the response given a prescribed input random �eld and b) an upper bound

on the response variance which is independent of the correlation structure of the �eld.

It is claimed that the method does not use any particular discretization scheme for

the random �eld. However, as stated in Chapter 2, Section 3.2, the accuracy of the

method for problems in which the correlation length is small compared to the size of

the structure may not be good. This has been illustrated by Zhang and Der Kiureghian

(1997, Chap. 2) on the example of an elastic rod in tension, having constant cross-

section and random Young's modulus. Moreover, the following severe limitations of the

method have to be recognized :

� it is limited to elastic structures, where the Young's modulus is modeled as a ran-

dom �eld. Although extension of the method to nonlinear problems was claimed

(Deodatis and Shinozuka, 1991), such a derivation could not be found in the

literature.

� by making use of the �rst-order perturbation method, it is limited to relatively

small coe�cients of variation of the input.

� the bounds (3.24) on the response variance are di�cult to compute in practice,

due to the complex expression of the response variability functions V (!).

� the number of random variables involved in the computation equals NWI � N

(e.g. NWI is 3 for beam-column elements). The method is thus time consuming

for systems having a large number of elements.

Due to its simplicity, the quadrature method is appealing for problems involving a

reduced set of random variables. It is neither limited to linear problems nor small coef-

�cients of variation. However, further exploration of this approach would be necessary

to assess its validity in a more general context.





Chapter 4

Finite element reliability analysis

1 Introduction

Reliability methods aim at evaluating the probability of failure of a system whose mod-

eling takes into account randomness. Classically, the system is decomposed into com-

ponents and the system failure is de�ned by various scenarii about the joint failure of

components. Thus the determination of the probability of failure of each component is

of paramount importance. This chapter will focus on the well-established procedures

for evaluating this so-called component reliability, �rst from a general point of view,

then in the context of �nite element analysis.

2 Ingredients for reliability

2.1 Basic random variables and load e�ects

Let us denote by � the set of all basic random variables pertaining to the component

(e.g. a given structure) describing the randomness in geometry, material parameters

and loading. If needed, suppose that one of the discretization scheme described in

Chapter 2 has been applied to represent random �elds as functions of a �nite set of

random variables. For each realization of �, the state of the structure is determined by

load e�ect quantities, such as displacements, strains, stresses, measures of damage, etc...

Let S denote a vector of such e�ects, whose values enter in the de�nition of the failure

of the system. These two vectors are related through the mechanical transformation :

S = S(�)(4.1)

which is de�ned, in all but simple situations, in an algorithmic sense, e.g. through a

�nite element computer code.
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2.2 Limit state surface

To assess the reliability of a structure, a limit state function g depending on load e�ects

is de�ned as follows :

� g(S) > 0 de�nes the safe state of the structure.

� g(S) � 0 de�nes the failure state. In a reliability context, it does not necessarily

mean the breakdown of the structure, but the fact that certain requirements of

serviceability or safety limit states have been reached or exceeded.

The values of S satisfying g(S) = 0 de�ne the limit state surface of the structure.

Examples of limit state functions are :

� g(S) = �max � �, if the failure occurs when the displacement � at a given point

exceeds a given threshold �max.

� g(S) = �o� J2(�), if the failure occurs when a given point yields (�o is the yield

stress and J2(�) the equivalent Von Mises stress).

Let us denote now by fS(s) the joint probability density function of S. The probability

of failure is then given by :

Pf =

Z
g(S)�0

fS(s)ds(4.2)

The above equation contains in itself two major di�culties :

� The joint PDF of the response quantities, fS(s), is usually not known, the avail-

able information being given in terms of the basic variables �.

� The multi-fold integral (4.2) over the failure domain is not easy to compute.

Thus approximate methods have been developed in the last 25 years. Exhaustive pre-

sentation of this domain can be found in the monograph by Ditlevsen and Madsen

(1996). In the sequel, only the main concepts are summarized.

2.3 Early reliability indices

Early work in structural reliability aimed at determining the failure probability in terms

of the second moment statistics of the resistance and demand variables. Suppose these

are lumped into two random variables denoted by R and S respectively. The safety

margin is de�ned by :

Z = R� S(4.3)
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Cornell's reliability index (Cornell, 1969) is then de�ned by :

�C =
�Z
�Z

(4.4)

It can be given the following interpretation : if R and S were to be jointly normal, so

would be Z. The probability of failure of the system would then be :

Pf = P(Z � 0) = P

�
Z � �Z
�Z

� ��Z
�Z

�
� �(��C)(4.5)

where �(:) is the standard normal cumulative distribution function. In this case, �C
can be described as a function of the second moment statistics of R and S :

�C =
�R � �Sp

�2R + �2S � 2 �RS �R �S
(4.6)

Let us consider now a general case where Z is actually a limit state function :

Z = g(S)(4.7)

the mean �S and covariance matrix �SS being known. The mean and covariance of

Z are not available in the general case where g(S) is non-linear. Using the Taylor

expansion around the mean value of S :

Z = g(�S) + (rsg)
T
S=�S

� (S � �S) + o
�k (S � �S)

2 k�(4.8)

the following �rst-order approximations are obtained :

�Z � g(�S)(4.9)

�2Z � (rsg)
T
S=�S

��SS � (rsg)S=�S(4.10)

This procedure leads to the de�nition of the so-called mean value �rst order second

moment reliability index by using Eqs.(4.9)-(4.10) in (4.4) :

�MVFOSM =
g(�S)q

(rsg)
T
S=�S

��SS � (rsg)S=�S
(4.11)

The main problem with this reliability index is that it is not invariant with respect to

changing the limit state function for an equivalent one (for instance by replacing g(�)
by g3(�)). Variations can be important in some problems (Ditlevsen and Madsen, 1996,

chap. 5).

The problem of invariance was solved by Hasofer and Lind (1974) in a second moment

context by recasting the problem in the standard space using a linear transformation of

random variables. Essentially, the authors showed that the point of linearization should

be selected as the point on the limit state surface nearest to the origin in the standard

space, the distance to this point being the �rst-order second moment reliability index

�FOSM. Later, a non-linear probability transformation was employed to account for

probability distribution of the variables including non Gaussian distributions. This

method is described in the sequel.
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2.4 Probabilistic transformation

Consider a transformation of the basic random variables � :

Y = Y(�)(4.12)

such that Y is a Gaussian random vector with zero mean and unit covariance matrix.

The exact expression of the probability transformation Y = Y(�) depends on the joint
PDF of �. Several cases sorted by ascending order of di�culty are listed in the sequel

as examples :

� � is a Gaussian random vector with mean �� and covariance matrix���. The

diagonalization of the symmetric positive de�nite matrix ��� allows to write :

� = A � Y + ��(4.13)

where A is obtained by the Cholesky decomposition of ��� :

�� = A �AT(4.14)

The probability transformation and its Jacobian then write :

Y(�) = A�1 � (�� ��)(4.15-a)

Jy ;� = A�1(4.15-b)

� � is a vector of independent non normal variables whose PDF fi(xi) and

CDF Fi(xi) are given. The probability transformation in this case is diagonal :

yi = ��1 [Fi(xi)] ; i = 1 ; ::: N(4.16)

and its Jacobian reads :

Jy ;� = diag

�
f(xi)

'(yi)

�
(4.17)

� � is a vector of dependent non normal variables. In many applications, the

joint PDF of these random variables is not known. The available information is

often limited to the marginal distributions (PDF or CDF) and correlation matrix

R, whose coe�cients read :

�ij =
Cov [�i ; �j]

�i �j
(4.18)

The problem of constructing joint PDFs compatible with given marginal PDFs and

correlations was solved by Der Kiureghian and Liu (1986). The authors proposed

two di�erent models :
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� the Morgenstern model : it is limited to small correlations (j�ijj < 0:3)) and

the closed form expression for the joint PDF and CDF become tedious to

manage when dealing with a large number of random variables.

� the Nataf model : it is de�ned in a convenient closed form for any number of

random variables and complies with almost any valid correlation structure.

Due to these characteristics, only the Nataf model is presented now. From the

marginal PDF of Xi, the following random vector Z is de�ned :

Zi = ��1 [Fi(�i)](4.19)

Assuming now that Z is a Gaussian standard normal vector with yet to be

computed correlation matrix Ro, its joint PDF is given by :

fZ(z) = 'n(z ; Ro) � 1

(2 �)n=2
p
detRo

exp

�
�1

2
zT �R�1

o � z
�

(4.20)

Using the inverse transformation of (4.19), the joint PDF of � then reduces to :

f�(�) = f1(x1) : : : fn(xn)
'n(z ; Ro)

'(z1) : : : '(zn)
(4.21)

To complete the de�nition, the correlation matrix Ro should �nally be chosen

such that the correlation coe�cient of any pair (�i ; �j) computed from (4.21)

matches the prescribed correlation coe�cient �ij. This condition leads to the

following implicit equation in �o; ij :

�ij =

Z 1

�1

Z 1

�1

�
xi � �i
�i

� �
xj � �j
�j

�
'2(zi ; zj ; �o; ij) dzi dzj(4.22)

Approximate relations for �o; ij(�ij) for a large number of PDF types are given by

Der Kiureghian and Liu (1986), Liu and Der Kiureghian (1986), Ditlevsen and

Madsen (1996).

From a reliability point of view, assuming the basic variables � have a Nataf joint

PDF, vector Z de�ned by (4.19) is Gaussian with zero mean and correlation

matrix Ro = Lo � LT
o . The probability transformation to the standard normal

space thus writes :

Y(�) = L�1o �Z
= L�1o � ���1 [F1(x1)] ; :::��1 [Fn(xn)]	T(4.23)

Its Jacobian writes :

Jy ;� = L�1o � diag
�
f(xi)

'(yi)

�
(4.24)
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� The Rosenblatt transformation introduced by Hohenbichler and Rackwitz (1981)

is an alternative possibility when conditional PDFs of � are known. It is de�ned

as follows : 8>>>><
>>>>:

y1 = ��1[F (x1)]

y2 = ��1[F (x2jx1)]
: : :

yn = ��1[F (xnjx1 ; ::: xn)]

(4.25)

Unfortunately, it is not invariant by permutation of the variables �i (Ditlevsen

and Madsen, 1996).

2.5 FORM, SORM

The mapping of the limit state function onto the standard normal space by using the

probabilistic transformation (4.12) is described by :

g(S) � g(S(�)) = g(S � Y�1(Y )) = G(Y )(4.26)

Hence the probability of failure can be rewritten as :

Pf =

Z
G(y)�0

'(y) dy(4.27)

where '(Y ) denotes the standard normal PDF of Y :

' =
1

(2 �)n=2
exp

�
�1

2
k y k2

�
(4.28)

This PDF has two interesting properties, namely it is rotationally symmetric and decays

exponentially with the square of the norm k y k. Thus the points making signi�cant

contributions to the integral (4.27) are those with nearest distance to the origin of the

standard normal space.

This leads to the de�nition of the reliability index � (Ditlevsen and Madsen, 1996), see

�gure 4.11 :

� = �T � y�(4.29-a)

y� = argmin fk y k j G(y) � 0g(4.29-b)

This quantity is obviously invariant under changes in parametrization of the limit state

function, since it has an intrinsic de�nition, i.e. the distance of the origin to the limit

state surface.

1Rigorously speaking, this de�nition is only valid when G(0) > 0. If 0 lies in the failure domain, �

is actually negative, with its absolute value given by Eq.(4.29).
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The solution y� of the constrained optimization problem Eq.(4.29-b) is called the design

point or the most likely failure point in the standard normal space. When the limit state

function G(y) is linear in y, it is easy to show that :

Pf = �(��)(4.30)

where �(�) is the standard normal CDF.

�

y
� �

y1

yn

G(y) = 0

Figure 4.1: Geometrical de�nition of the design point

When G(y) is non-linear, the First Order Approximation Method (FORM) consists in :

� evaluating the reliability index � by solving (4.29),

� obtaining an approximation of the probability of failure by :

Pf � Pf1 = �(��)(4.31)

Geometrically, this is equivalent to replacing the failure domain by the halfspace outside

the hyperplane tangent to the limit state surface at y = y�. Generally speaking, FORM

becomes a better approximation when � is large.

To enhance the precision of Eq.(4.31), second order approximation methods (SORM)

have been proposed. The idea is to replace the limit state surface by a quadratic surface

whose probabilistic content is known analytically. Two kinds of approximations are

usually used, namely the curvature �tting (Breitung, 1984; Der Kiureghian and de

Stefano, 1991) which requires the second derivative of G(y) at the design point y�

and the point �tting where semi-paraboloids interpolate the limit state surface at given

points around the design point (Der Kiureghian et al., 1987).



52 Chapter 4. Finite element reliability analysis

Recently, higher order approximation methods (HORM) have been proposed by

Grandhi and Wang (1999), where the limit state surface is approximated by higher

order polynomials. The amount of computation needed appears to be huge compared

to the improvement it yields.

2.6 Determination of the design point

2.6.1 Early approaches

As mentioned earlier, the classical reliability methods (FORM/SORM) require the

determination of the design point, which is de�ned as the point on the limit state sur-

face closest to the origin, in the standard normal space. The constrained optimization

problem (4.29) is equivalent to :

y� = argmin

�
Q(y) =

1

2
k y k2 j G(y) � 0

�
(4.32)

Introducing the Lagrangian of the problem :

L(y ; �) = 1

2
k y k2 +�G(y)(4.33)

Eq.(4.32) reduces to solving :

(y� ; ��) = argminL(y ; �)(4.34)

Assuming su�cient smoothness of the functions involved, the partial derivatives of L
have to be zero at the solution point. Hence :

y� + ��rG(y�) = 0(4.35)

G(y�) = 0(4.36)

The positive Lagrange multiplier �� can be obtained from (4.35), then substituted in

the same equation. This yields the �rst-order optimality conditions :

krG(y�) k �y�+ k y� k �rG(y�) = 0(4.37)

This means that the normal to the limit state surface at the design point should point

towards the origin.

Hasofer and Lind (1974) suggested an iterative algorithm to solve (4.34), which was

later used by Rackwitz and Fiessler (1978) in conjunction with probability transfor-

mation techniques. This algorithm (referred to as HLRF in the sequel) generates a

sequence of points yi from the recursive rule :

yi+1 =
rG(yi)

T � yi �G(yi)

krG(yi) k
rG(yi)

krG(yi) k
(4.38)
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Eq.(4.38) can be given the following interpretation : at the current iterative point yi,

the limit state surface is linearized, i.e. replaced by the trace in the y-space of the

hyperplane tangent to G(y) at y = yi. Eq.(4.38) is the solution of this linearized

optimization problem, which corresponds to the orthogonal projection of yi onto the

trace of the tangent hyperplane.

As the limit state function and its gradient is usually de�ned in the original space, it

is necessary to make use of a probabilistic transformation such as those described in

Section 2.4. The Jacobian of the transformation is used in the following relationship :

ryG(y) =r�g(�) J� ;y(4.39)

The HLRF algorithm has been widely used due to its simplicity. However it may not

converge in some cases, even for rather simple limit state functions. Der Kiureghian and

de Stefano (1991) have shown that it certainly diverges when a principal curvature of

the limit state surface at the design point satis�es the condition j��ij > 1. Thus several

modi�ed versions of this algorithm have been developed (Abdo and Rackwitz, 1990;

Liu and Der Kiureghian, 1991b). The latter reference presents a comprehensive review

of general purpose optimization algorithms, including the gradient projection method

(GP), the augmented lagrangian method (AL), the sequential quadratic programming

method (SQP), the HLRF and the modi�ed HLRF (mHLRF). All these algorithms

have been implemented in the computer program CALREL (Liu et al., 1989) for

comparison purposes, and tested with several limit state functions. It appears that the

most robust as well as e�cient methods are SQP and mHLRF.

Although the modi�ed mHLRF was an improvement over the original HLRF, no proof

of its convergence could be derived. Thus further work has been devoted in �nding an

unconditionally stable algorithm.

2.6.2 The improved HLRF algorithm(iHLRF)

Zhang and Der Kiureghian (1995, 1997) proposed an improved version of HLRF denoted

by iHLRF for which unconditional convergence could be proven. It is based on the

following recast of the HLRF recursive de�nition (4.38) :

yi+1 = yi + �i di(4.40)

with �i = 1(4.41)

di =
rG(yi)

T � yi �G(yi)

krG(yi) k
rG(yi)

krG(yi) k
� yi(4.42)

In the above equations, di and �i are the search direction and the step size respectively.

The original HLRF can be improved by computing an optimal step size �i 6= 1.

For this purpose, a merit function m(y) is introduced. At each iteration, after com-

puting (4.42), a line search is carried out to �nd �i such that the merit function is
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minimized, that is :

�i = argmin fm(yi + �di)g(4.43)

This non-linear problem is not easy to solve. It is replaced by the problem of �nding

a value �i such that the merit function is su�ciently reduced (if not minimal). The

so-called Armijo rule (Luenberger, 1986) is an e�cient technique. It reads :

�i = max
k2N

�
bk j m(yi + bk di)�m(yi) � �abk krm(yi) k2

	
; a; b > 0(4.44)

Zhang and Der Kiureghian (1995, 1997) proposed the following merit function :

m(y) =
1

2
k y k2 +c jG(y)j(4.45)

This expression has two properties :

� The HLRF search direction d (Eq.(4.42)) is a descent direction for it, that is d

satis�es : 8y ; rm(y)T � d � 0 provided c >
k y k

krG(y) k .

� It attains its minimum at the design point provided the same condition on c is

ful�lled.

Both properties are su�cient to ensure that the global algorithm de�ned by

Eqs.(4.40),(4.42),(4.44) is unconditionally convergent (Luenberger, 1986).

2.6.3 Conclusion

When the solution of the mechanical problem S(�) is obtained by a �nite element code,
each evaluation of g(S(�)) � G(y) and its gradient r�g(�) have a non negligible cost

(see Section 3 for a detailed presentation). Thus an e�cient optimization algorithm for

determining the design point should call the smallest number of each evaluation. From

this point of view, the iHLRF algorithm is the most e�cient algorithm. The reader is

referred to Liu and Der Kiureghian (1991b) and Zhang and Der Kiureghian (1997) for

detailed cost comparisons.

3 Gradient of a �nite element response

3.1 Introduction

As mentioned in the preceding section, the design point is determined by an iterative

algorithm which makes use of the gradient of the limit state function in the standard
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normal space ryG(y). The limit state function is usually de�ned in the original space

in terms of load e�ects, which are related to the basic random variables �. The chain

rule of di�erentiation allows to write :

ryG(y) �ry g(S(�(y))) =rsg(s) �r�S(�) � J� ;y(4.46)

In this expression, rsg(s) is usually known analytically, and J� ;y = J�1y ;� is given

by Eqs.(4.15-b), (4.17), (4.24) depending on the probabilistic transformation. At this

point, only the gradient of the mechanical transformation r�S(�) remains unknown.
Its evaluation however is not an easy task.

Evaluating the gradient of the system response with respect to given input parame-

ters comes under response sensitivity analysis. Outside reliability analysis, measures

of sensitivity are useful in various applications such as optimal structural design and

determination of importance of parameters.

For our purpose of determining the design point, the evaluation of the gradient has

to be e�cient (because of the numerous calls in the iHLRF algorithm) and accurate

(because its value enters an iterative convergent procedure, which is driven by toler-

ance checking). The straightforward application of a �nite di�erence scheme may be

inappropriate in this context. The size of the vector of basic random variables � being

N , one gradient would require at least N +1 complete �nite element analysis. The ac-

curacy depends on the size of the �nite variation of the parameters and is thus di�cult

to �x in advance.

A computationally more e�cient approach employs the perturbation method (Liu et al.,

1986b). Recalling the formalism developed in Chapter 3, the �rst order variation of the

nodal displacement vector U I
i is given by :

U I
i =K�1

o � �F I
i �KI

i �U 0
�

(4.47)

Thus the same mean value sti�ness matrixKo is used for evaluating all the components

of the displacement gradient vector. This method requires basically one complete �nite

element analysis and N forward resolutions (4.47), where i = 1 ; ::: N .

A much more e�cient approach called direct di�erentiation method has been proposed

to circumvent the drawbacks of the above methods. It is presented in the sequel �rst

for an elastic linear problem. Then the extension to geometrically non-linear structures

(Liu and Der Kiureghian, 1989, 1991b), dynamics of J2-elastoplastic structures (Zhang

and Der Kiureghian, 1993), plane stress elastoplastic damaged structures (Zhang and

Der Kiureghian, 1997; Der Kiureghian and Zhang, 1999) will be brie�y summarized.
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3.2 Direct di�erentiation method in the elastic case

In the �nite element formulation for static problems, the balance between the vector

of internal forces R and the vector of external forces F writes :

R =
[
e

Z

e

Bt � � d
e =
[
e

�Z

e

NT � �obo d
e +

Z
@
e

NT � to dSe
�
= F(4.48)

where
S
e denotes the assembling procedure over all elements, B gives the strain tensor

from the nodal displacements,N contains the shape functions, �obo and to are the body

and surface forces respectively.

All these quantities depend on basic random variables. Let �m ; �l ; �g be those vari-

ables representing uncertain material properties, external loads and the geometry of

the structure respectively. Let X be the vector of nodal coordinates, U the vector

of nodal displacements. In case of small strain linear elastic structures, the following

relationships hold :

X = X [�g](4.49)

U = U [X(�g) ; �m ; �l](4.50)

R = R [X(�g) ; U(X(�g) ; �m ; �l) ; �m](4.51)

F = F [X(�g) ; �l](4.52)

Thus Eq.(4.48) can be formally rewritten as :

R [X(�g) ; U(X(�g) ; �m ; �l) ; �m] = F [X(�g) ; �l](4.53)

To simplify the presentation, it is assumed in this section that the limit state function

only depends on the displacement vector U :

g(S(�)) � g(U(�))(4.54)

Thus its gradient becomes :

r�g(S(�)) =rUg(U) �r�U(4.55)

To obtain the gradient of the displacement vector U , Eq.(4.53) is di�erentiated with

respect to each set of variables �m ; �l ; �g.

3.2.1 Sensitivity to material properties

Di�erentiating (4.53) with respect to �m yields :

@R

@U
r�mU +

@R

@�m

= 0(4.56)
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Introducing the sti�ness matrix K =
@R

@U
we obtain from the above equation :

K �r�mU = � @R

@�m

(4.57)

Di�erentiating the left hand side of (4.48) with respect to �m gives :

@R

@�m

=
[
e

Z

e

BT � @�

@�m

d
e(4.58)

The stresses in element 
e are obtained from the nodal displacements ue by :

� =D(�m) �B � ue(4.59)

Thus :

@R

@�m
=
[
e

Z

e

BT � @D
@�m

�B � ue d
e(4.60)

The right hand side of (4.60) is then obtained by evaluating derivative quantities in

each element, then assembling them in a global vector exactly as a regular vector of

nodal forces.

Examples � Suppose the Young's modulus of the material is represented by a random

�eld and �m is the vector of random variables used in its discretization. If the midpoint

method is used, any element �em of �m represents the constant Young's modulus in

element e. The elasticity matrix in this element thus reduces to :

D(�m) =D(�em) = �emDo(4.61)

Eq.(4.60) then simpli�es into :

@R

@�m
=
[
e

Z

e

BT �Do �B � ue d
e(4.62)

If a series expansion method (e.g. KL, OSE, EOLE) is used, the elasticity matrix in

each point x 2 
e can be written as

D(�m ; x) = (A1 +A2 � �m) �Do(4.63)

thus depending linearly on the random variables � (see Eq.(2.65) for the exact expres-

sion). In this case, Eq.(4.60) reduces to :

@R

@�m
=
[
e

Z

e

BT �A2 �Do �B � ue d
e(4.64)
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3.2.2 Sensitivity to load variables

Taking the derivative of Eq.(4.53) with respect to �l yields :

K �r�lU =
@F

@�l

(4.65)

where :

@F

@�l
=
[
e

�Z

e

NT � @�obo
@�l

d
e +

Z
@
e

NT � @to
@�l

dSe

�
(4.66)

Usually �l contains load intensity factors for point-wise, surface or body forces. Hence

the derivatives in the above equation are analytical.

3.2.3 Sensitivity to geometry variables

Taking the derivative of Eq.(4.53) with respect to �g yields :

@R

@X

@X

@�g
+K � @U

@�g
=

@F

@X

@X

@�g
(4.67)

which simpli�es in :

K �r�gU =

�
@F

@X
� @R

@X

�
� @X
@�g

(4.68)

In this expression, @X
@�g

is easy to compute since X is usually an explicit function of
�
g. The di�erence inside the brackets should however be paid more attention, since the

domain of integration 
e in (4.48) is dependent on X . To carry out these derivatives,

it is necessary to map the integral domains onto a �xed con�guration. Such a mapping

is a standard scheme for the so-called isoparametric elements. The derivation of all

these quantities for truss and four-node plane elements can be found in Liu and Der

Kiureghian (1989).

3.2.4 Practical computation of the response gradient

By compiling Eqs.(4.57),(4.65),(4.68), the response gradient with respect to � can be

written as :

K �r�U =
@F

@�
� @R

@�
(4.69)

which is simply a set of N linear systems (N being the length of �) and requires thus

N repeated solutions of the following type :

r�iU =K�1 �
�
@F

@�i
� @R

@�i

�
(4.70)
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However the quantity of interest is not r�U in itself, but the product rUg(U) �r�U
(see Eq.(4.55)). The adjoint method was proposed (Liu and Der Kiureghian, 1991a)

to obtain this quantity directly with a single linear system resolution. It consists in

solving �rst for an auxiliary vector � :

K �� =rUg(4.71)

Then the following equality holds :

r�g(U(�)) =rT
Ug �K�1 �

�
@F

@�
� @R

@�

�

= �T �
�
@F

@�
� @R

@�

�(4.72)

This procedure allows to reduce from N to 1 the number of forward substitutions.

Note that the inverse sti�ness matrix used in solving (4.71) is readily available from

the initial �nite element run.

In summary, the computation of the response gradient requires the partial derivatives

@F =@� and @R=@� at the element level, their assembly in a global vector, a forward

substitution for an auxiliary vector � and �nally a matrix product (4.72).

The assumption (4.54) is now relaxed. If strains or stresses appear in the limit state

function (S = U ; � ; "), they are derived with respect to the parameters as well. For

instance, one can write :

@�

@�
=

@D

@�
�B � ue +D@B

@�
� ue +D �B@ue

@�
(4.73)

where these expressions have to be expanded for each type of variable (�m ; �l ; �g).

The adjoint method is then used to obtain directly the product rsg �r�S.

3.2.5 Examples

Der Kiureghian and Ke (1988) considered the reliability of elastic structures, namely

a beam with stochastic rigidity and applied load. Both random �elds were assumed

to be homogeneous and Gaussian. They were discretized by the MP method on the

one hand, the SA method on the other hand. These methods respectively over- and

under-represent the variance of the original �eld. Thus they allow to bound the exact

results (within the framework of FORM approximations).

Two limit state functions were de�ned, one in terms of midspan de�ection and another

in terms of bending moment. The reliability index is computed with di�erent correlation

lengths and element sizes. It appears that good accuracy is obtained when the ratio

between element size and correlation length is 1=4 to 1=2. The convergence of MP and

SA to one another proved the validity of these methods.
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Der Kiureghian and Ke (1988) also considered a plate made of two materials with

stochastic properties. The limit state function was de�ned in terms of exceedance of

the principal stress in one given point. It appears that the closer the elastic properties

to each other, the higher the reliability index.

The orthogonal series expansion method (see Chapter 2, Section 5.3) was applied by

Zhang and Ellingwood (1994) to the reliability analysis of �xed-end beam having Gaus-

sian random �exural rigidity EI. The reliability index was computed for various trun-

cated expansions of the �eld involving an increasing number of terms M . The conver-

gence is attained for M=6-10 depending on the choice of the autocovariance function.

Using a Karhunen-Loève expansion of the �eld (with exponentially decaying autoco-

variance function, i.e. analytical expressions for its eigenfunctions), the convergence

was obtained using 1 to 2 terms less in the expansion.

3.3 Case of geometrically non-linear structures

Liu and Der Kiureghian (1989) presented exhaustively the response gradient compu-

tation for geometrically non-linear structures. In this case, Eqs.(4.51),(4.52) should be

replaced by :

R = R [X(�g) ; U(X(�g) ; �m ; �l) ; �m](4.74)

F = F [X(�g) ; U(X(�g) ; �m ; �l) ; �l](4.75)

Included in the above reference is the derivation of all partial derivatives of interest for

truss and plane four-node elements. A summary of the procedure can also be found in

Liu and Der Kiureghian (1991a). It is emphasized that the non-linearities do not make

the gradient computation more expensive, provided the sti�ness matrix is replaced by

the tangent sti�ness matrix. The latter is computed during the iterative procedure for

solving for the displacements U . Interestingly, the gradient computations do not in-

volve any additional iteration. In conjunction with the gradient method, the gradient

response is also obtained by a single forward resolution. However the analytical ex-

pressions for the partial derivatives and their coding is much more cumbersome in the

non-linear case.

In the above reference, the gradient operators were coded in FEAP (Zienkiewicz and

Taylor, 1989). The reliability of a square plate with a hole having random geometry was

investigated. The applied load had a random intensity. The elastic material properties

(E ; �) were modeled as lognormal and uniform-bounded random �elds respectively. As

a whole the problem involved 85 random variables, including 30 for each �eld (30 ele-

ments were used for MP discretization), 24 for the coordinates of the hole and 1 for the

load intensity. Thus all types of uncertainties were mixed in the same problem. The

reliability problem was investigated using FORM and SORM, in conjunction with two



3. Gradient of a �nite element response 61

limit state functions de�ned as threshold exceedance of stress and displacements re-

spectively. The CPU was shown to be divided by 100 by using the direct di�erentiation

method rather than �nite di�erence for gradient computation.

3.4 Dynamic response sensitivity of elastoplastic structures

Zhang and Der Kiureghian (1993) extended the direct di�erentiation method to dy-

namic problems involving elastoplastic materials. The class of problems considered has

the following discretized equation of motion2 :

M(�) �U(t ; �) +C(�) _U(t ; �) +R [U(t ; �) ; �] = P (t ; �)(4.76)

where the dots denote the time derivatives. The response gradient with respect to � is

denoted by ;

V =
@U

@�
(4.77)

By di�erentiating Eq.(4.76) with respect to �, the gradient (4.77) turns out to satisfy :

M �V +C _V +K(U)V =
@P

@�
� @M

@�
�U � @C

@�
_U � @R

@� U �xed
(4.78)

Eqs.(4.77),(4.78) are solved by using a step-by-step implicit numerical integration

method. The following usual linear approximations are used :

�Un+1 = L1
�
Un+1 ; Un ; _Un ; �Un

�
(4.79)

_Un+1 = L2
�
Un+1 ; Un ; _Un ; �Un

�
(4.80)

When substituting for (4.79), (4.80) in (4.76), a non-linear system of equations is

obtained, which is usually solved by a Newton-Raphson scheme. When convergence is

achieved, the gradient vector V n+1 is obtained by a single forward substitution as in

the linear case (see Section 3.2). The matrix used in this substitution is identical to

that used for determining Un+1, and is thus readily available in an inverted form.

The quantities appearing in the right hand side contain the derivatives of the internal

forces @R=@�. In case of non-linear constitutive laws including path dependence (such

as plasticity), this derivative is complicated. Zhang and Der Kiureghian (1993) present

the complete derivation in the case of J2 plasticity including isotropic and kinematic

hardening.

The �rst example presented in the above paper is a plane strain analysis of a strip

with a circular hole. Cyclic loading under quasi-static conditions was applied. The

response gradient with respect to yield stress and hardening parameters was computed

2For the sake of simplicity of the notation, only one sensitivity parameter � is shown in this section.
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using DDM and �nite di�erence with various �nite variation size. Convergence from

the latter to the former when variation size tends to zero was assessed.

The second example is a truss structure under dynamic loading. Geometrical non-

linearities due to large displacements are taken into account. The material of the truss

follows J2 plasticity with linear hardening.

In both cases, the CPU time for the gradient computation is a small fraction of the

time required for the response run. This result is applicable to any number of variables

provided the adjoint method is used.

3.5 Plane stress plasticity and damage

Zhang and Der Kiureghian (1997) further developed the above formulation for plane

stress J2 plasticity. In this case, the discretized constitutive laws take a special form

because of the zero stress constraint. A coupling with the damage model by Lemaitre

and Chaboche (1990) is introduced and the sensitivity formulas developed.

As an example, a plate with a hole having initial damage (modeled as a lognormal

random �eld) is investigated. The loading is a periodic traction on a side. The limit

state function is de�ned as the excursion of damage at any point within the plate

above a given threshold. Time and space variability is thus introduced in the reliability

analysis.

This leads to a system reliability problem, the failure modes being related to di�erent

locations of the �rst damage threshold crossing. A similar study is presented by Der

Kiureghian and Zhang (1999). It is emphasized that taking into account the spatial

variability in reliability dramatically changes the result, i.e. the reliability index.

4 Sensitivity analysis

The determination of the design point requires the computation of the gradient of the

mechanical response. This can lead to tedious analytical developments and coding when

the direct di�erentiation method is used, but allows for addressing strongly non-linear

reliability problems. However, the gradient computation contains information which

can be used for sensitivity analysis. This is a readily available byproduct of any FORM

analysis.

The relative importance of the basic standard normal random variables entering the

reliability analysis can be measured by means of the vector �� de�ned as :

�� =
y�

k y� k(4.81)
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where y� denotes the coordinates of the design point in the standard normal space.

Precisely, the ordering of the elements of �� indicates the relative importance of the

random variables in the standard normal space.

Of greatest interest is also the sensitivity of the reliability index � with respect to

parameters � entering the de�nition of the limit state function (g(� ; �g)) or the prob-
ability distribution function f�(� ; �f ) of the basic random variables �. In the former

case, the sensitivity of � is (Ditlevsen and Madsen, 1996, chap. 8) :

d�

d�g
=

1

kryG(y�(�g) ; �g) k
@g(� ; �g)

@�g
(4.82)

In the latter case, it involves the partial derivative of the probability transformation

(4.12) and turns out to be :

d�

d�f
= ��(�f )

T � @Y(�
�(�f ) ; �f )

@�f
(4.83)

where �� is given by (4.81). The sensitivity of the probability of failure to parameters

is obtained as :

dPf
d�

= �'(�) d�
d�

(4.84)

The papers referred to in Section 3 all include sensitivity analysis of the reliability

index, which gives better insight of the problems under consideration.

A special use of the sensitivity analysis is the following. Suppose the limit state function

is de�ned in terms of one load e�ect, say, one component of displacement uio and a

threshold :

g(U) = uio � u(4.85)

Obviously, the probability of failure associated with this limit state function is identical

to the cumulative distribution function of uio evaluated at u. It follows that the PDF

of ui can be computed as the sensitivity of Pf with respect to parameter u. This

type of reasoning was applied in Liu and Der Kiureghian (1991a) and Zhang and Der

Kiureghian (1997) to determine the complete PDF of a response quantity.

Sensitivity analysis can also be used to identify random variables whose uncertainty

has insigni�cant in�uence on the reliability index and which can be replaced by deter-

ministic values (e.g. the median values of such variables) (Madsen, 1988).

Another interesting application of sensitivity analysis can be found in Mahadevan and

Haldar (1991), based on an idea �rst introduced by Der Kiureghian and Ke (1985).

The problem under consideration is to determine whether a parameter representing

a distributed load or a material property should be modeled as a random variable

or a random �eld in a reliability study. By �rst considering all parameters as random
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variables, the authors determined the importance vector �� (see Eq.(4.81)). From their

numerical investigation, it appears that only those parameters �i corresponding to

j��i j > 0:3 deserve to be modeled as random �elds for a better accuracy of the results.

The examples considered to determine this empirical value of 0.3 included a clamped

beam, a portal frame and a two-dimensional plate with a hole.

To conclude, it is worth mentioning a recent book from Kleiber et al. (1997) entirely

dedicated to �nite element sensitivity analysis of linear and non-linear problems.

5 Response surface method

5.1 Introduction

In the previous sections, ingredients for a direct coupling between reliability analysis

and �nite element computations have been presented. It has been observed that the

two most important issues making this �marriage� possible are :

� an unconditionally stable algorithm for the determination of the design point in

the standard normal space (e.g. the iHLRF algorithm described in section 2.6),

� a practical method for computing gradients of the limit state function. The direct

di�erentiation method described in section 3 turns out to be the most e�cient ap-

proach. It can be applied to general problems including those involving material

as well as geometric non-linearity and dynamics. However, it requires analytical

developments that may become cumbersome when non-linear problems are ad-

dressed. These developments and the corresponding implementation have to be

done from scratch for every class of problems. In contrast, the �nite di�erence

approach for gradient computation can be applied without modifying the �nite

element code, but requires much more computational e�ort (each gradient re-

quires (N + 1) evaluations of the limit state function, where N is the number of

basic random variables).

As a consequence, when a large number of random variables is used together with

the �nite di�erence method (for instance, when a commercial �nite element code is

used, the source code of which not being accessible), the direct approach may eventu-

ally be really time consuming (Lemaire, 1998). The response surface method o�ers an

alternative in this case.

5.2 Principle of the method

Let X = fX1 ; ::: XNg be the vector of basic random variables. The basic idea of the

response surface method is to approximate the exact limit state function g(X), which
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is usually known only through an algorithmic procedure, by a polynomial function

ĝ(X). In practice, quadratic functions are used in the form :

g(x) � ĝ(x) = ao +
NX
i=1

ai xi +
NX
i=1

aii x
2
i +

NX
i=1

NX
j=1;j 6=i

aij xi xj(4.86)

where the set of coe�cients a = fao ; ai ; aii ; aijg3, which correspond to the constant,

linear, square, and cross terms respectively, are to be determined.

It is argued that a limited number of evaluation of the limit state function (i.e. number

of �nite element runs) is required to build the surface. Then the reliability analysis

can be performed by means of the analytical expression (4.86) instead of the true limit

state function. This approach is particularly attractive when simulation methods such

as importance sampling (Bucher and Bourgund, 1990) are used to get the reliability

results.

5.3 Building the response surface

The determination of the unknown coe�cients a = fao ; ai ; aii ; aijg is performed by

the least-square method. After choosing a set of �tting points fxk ; k = 1 ; :::NFg, for
which the exact value yk = g(xk) is computed, the following error is minimized with

respect to a :

"rr(a) =
NFX
k=1

�
yk � ĝ(xk)

�2
(4.87)

Recasting Eq.(4.86) in the form :

ĝ(x) = f1 ; xi ; x2i ; xixjgT � fao ; ai ; aii ; aijg � V T (xk) � a(4.88)

the least-square problem becomes :

Find a = Argmin

(
NFX
k=1

�
yk � V T (xk) � a�2

)
(4.89)

After basic algebra (see for instance Faravelli (1989)), the solution of the above problem

turns out to be :

a =
�VT � V��1 � VT � y(4.90)

where V is the matrix whose rows are the vectors V (xk) (see Eq.(4.88)) and y is the

vector whose components are yk = g(xk).

3The subscripts (i; j) vary as described in Eq.(4.86). The variation is not explicitly written here

for the sake of simplicity.
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The various response surface methods proposed in the literature di�er only in the

terms retained in the polynomial expression (4.86) (e.g. with or without cross terms),

and the selection of the coordinates of the �tting points fxk ; k = 1 ; :::NFg, i.e., the
experimental design used in the regression analysis. It is emphasized that NF � N is

required to be able to solve (4.90). Furthermore, the �tting points have to be chosen

in a consistent way in order to get independent equations, i.e. an invertible VT � V.

5.4 Various types of response surface approaches

Early applications of this method to the analysis of slope stability can be found in

Wong (1985). The author employed the so-called factorial experimental design. For each

random variable Xi, lower and upper values of realizations (x�i ; x
+
i ) are selected. As a

whole, 2N �tting points are de�ned by all the possible combinations fx�1 ; x�2 ; ::: x�Ng.
Wong selected values symmetrically around the mean at a distance of one standard

deviation, that is :

x�i = �i � �i(4.91)

The number of �tting points increases exponentially with the number of random vari-

ables N involved in the reliability problem under consideration.

In order to reduce the number of �tting points in case when N is large, Bucher and

Bourgund (1990) proposed a simpli�ed quadratic expression without cross terms, which

is de�ned by only (2N + 1) coe�cients fao ; ai ; aiig. In a �rst step, the mean vector

�X is chosen as the center point of the response surface. Exactly (2N+1) �tting points

are selected �along the axes� as follows :8>><
>>:
x1 = �X

x2i = �X � f �i ei ; i = 1 ; ::: N

x2i+1 = �X + f �i ei ; i = 1 ; ::: N

(4.92)

where �i is the standard deviation of the i-th random variable, ei is the i-th basis

vector of the space of parameters, whose coordinates are f0 ; ::: ; 1 ; 0 ; ::: g, and f is

an arbitrary number (set equal to 3 by Bucher and Bourgund (1990)).

From this �rst response surface, an estimate of the design point x� is computed. Then

a new center point xM is obtained as a linear interpolation between �X and x�, so

that it approximately zeroes the exact limit state function :

xM = �X + (x� � �X)
g(�X)

g(�X)� g(x�)
(4.93)

A second response surface is then generated around xM . As a whole, the approach

requires only (4N + 3) evaluations of the limit state function, and can thus be carried
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out for structural systems involving a great number of random variables. Importance

sampling is �nally used to get the reliability results.

Rajashekhar and Ellingwood (1993) later considered the approach by Bucher and Bour-

gund (1990) as the �rst two steps of an iterative procedure they pushed forward until

convergence. They also added cross terms to the response surface de�nition, obtaining

better results in the numerical examples.

Analyzing the three papers presented above, Kim and Na (1997) observed that, in each

case, the �tting points are selected around a preselected point (e.g. the mean value of

the basic random vector) and arranged along the axes or the �diagonals� of the space

of parameters, without any consideration on the orientation of the original limit state

surface. The authors argued that these procedures may not converge to the true design

point in some cases.

Alternatively, they proposed to determine a series of linear response surfaces as fol-

lows : In each iteration, the �tting points used in the previous step are projected onto

the previous response surface, and the obtained projection points (which lie closer to

the actual limit state surface) are used for generating the next response surface. In

each iteration, an approximate reliability index is readily available, since the response

surface is linear. In some sense, this method �nds the design point without solving

the minimization problem usually associated with FORM. The authors assessed the

validity of this so-called vector projection method by comparing with Monte Carlo sim-

ulation (with 1,000,000 samples), �rst by using an analytical limit state function, then

by studying a frame structure and a truss.

Starting from the paper by Kim and Na (1997), Das and Zheng (2000) recently proposed

to enhance the linear response surface by adding square terms. The �tting points

de�ning the �nal linear response surface are reused to produce the quadratic surface.

SORM analysis is then performed.

Lemaire (1997) presents a synthetic summary of the response surface methods (called

�adaptive� because of successive re�nement until convergence around the design point)

and draws the following conclusions :

� it is better to cast the response surface in the standard normal space rather than

in the original space for reliability problems. All quantities being adimensional,

there is a better control of the regression.

� Provided enough �tting points are used, the choice of the type of experimental

design is not fundamental.

� The quality of the response surface has to be checked. Di�erent indicators are

proposed to estimate the accuracy, including :

� the back-transformation of the �tting points from the standard normal space

to the original space, in order to exclude non physical points,
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� the conditioning of the experimental matrix VT � V appearing in Eq.(4.90),

� the quality of the regression measured by a correlation coe�cient,

� the belonging of the obtained design point to the original limit state surface.

In order to reuse at best the �nite element results, a data base keeping track of the

�nite element runs should be constructed.

5.5 Comparison between direct coupling and response surface

methods

Few studies have been devoted to the actual comparison of the direct coupling and the

response surface methods. A general discussion on their respective advantages can be

found in Lemaire (1998).

Lemaire (1997) considers the problem of a hollow sphere submitted to internal pressure.

The limit state function is de�ned analytically and FORM analysis is applied to get

the reference results. The response surface method is then applied and gives identical

results after three iterations.

Hornet et al. (1998) and Pendola et al. (2000c) proposed a benchmark problem in non-

linear fracture mechanics. Crack initiation in a steel pipe submitted to internal pressure

and axial tension is under consideration. Di�erent �nite element codes includingAnsys

and Code_Aster4 are used together with the reliability softwares Ryfes5 (developed

by Lemaire and his colleagues), Comrel (developed by Rackwitz and his colleagues)

and Proban (developed by Det Norske Veritas). As far as accuracy is concerned, the

direct coupling and the response surface method give identical results for probabilities

of failure within [10�10 ; 10�1] (corresponding to an increasing axial tension). As far as

e�ciency is concerned, Pendola et al. (2000c) show that the response surface approach

allows to divide by 10 the number of �nite element runs for the speci�c example.

However, a �nite di�erence scheme for gradient computation was applied in the direct

coupling, which is not optimal. In this example, an axisymmetric non-linear �nite

element model was used.

A similar comparison has been carried out by Defaux and Hein�ing (2000) on the

problem of an hyperbolic cooling tower submitted to thermal and wind loading. A

linear elastic three-dimensional �nite element model using thin shell elements was used.

In this case, the direct coupling and the response surface method gave the same results

for similar computational cost.

4This general purpose �nite element code is developed by Electricité de France.
5
Ryfes stands for �Reliability using Your Finite Element Software�.
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5.6 Neural networks in reliability analysis

Before concluding this section, it is worth mentioning the recent introduction of neural

networks in the context of reliability analysis. Basically, neural networks work as pow-

erful interpolation tools, and can thus be used instead of quadratic response functions

to approximate the limit state function. After being trained with a set of input/output

data (here realizations of the vector of basic random variables, and corresponding value

of the limit state function obtained after a �nite element calculation), the neural net-

work can produce reliable output values for any input at low cost.

Hurtado and Alvarez (2000) compare two types of networks called multi-layer percep-

trons and radial basis functions networks. After being trained, the networks are used

together with a crude Monte Carlo simulation to get the probability of failure. A system

reliability problem associated with the collapse of a frame is considered. It appears that

the radial basis functions network provide the best results with a rather small number

of training samples.

Pendola et al. (2000a) introduce neural networks in conjunction with FORM analysis.

The neural network replaces the quadratic response surface obtained after the iterative

procedure described in section 5.4. Applying this approach to the benchmark problem

described in Pendola et al. (2000b), the authors show that the results are identical to

those obtained by the response surface method, the number of �nite element simulations

being however reduced by a factor 2.

5.7 Conclusions

Although the response surface method is an old idea, it seems to have gained new

consideration in recent years. The up-to-date approach consists in generating quadratic

response surfaces iteratively, where the center point converges to the design point.

After convergence, any reliability method can be applied with the response surface,

e.g. FORM, SORM or importance sampling.

From the few existing comparisons between the direct coupling and the response surface

method, it seems that the same accuracy can be obtained by both approaches. When

the response surfaces are carefully generated and checked at each step, convergence to

the design point is always obtained in these comparisons. However, no proof has been

given that this result is general.

As far as e�ciency is concerned, the papers dealing with comparison of approaches

always conclude that the computational cost of the response surface approach is far

less than the direct approach. However all these applications consider a small number

of random variables, typically 3-5. If a larger number of random variables were to be

considered, the cost of generation of each response surface would probably blow up.

Moreover, even for a small number of random variables, the comparisons of e�ciency
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with the direct coupling are not fair, in the sense that gradients are usually computed

by �nite di�erences instead of direct di�erentiation.

As a summary, the response surface method appears to give accurate results for most

problems applied, and may be faster than the direct coupling when a small number

of random variables is considered, and when it is not possible to implement the direct

di�erentiation method (for instance, when a commercial �nite element code is used).

Otherwise, the direct coupling will probably require less or equal amount of computa-

tion. These conclusions can change in the near future due to the introduction of neural

networks in the �eld of reliability analysis.

6 Conclusions

In this chapter, methods coupling reliability and �nite element analysis have been

presented. The classical approach of reliability (FORM/SORM) has been summarized.

The need of computing response gradients was emphasized. For this purpose, the direct

di�erentiation method has been presented. It allows sensitivity analysis for general

problems including material and geometrical non-linearities and dynamics. Using this

approach, the computational cost of the gradient is a small increment over the cost of

the non-linear response itself.

It has been shown that reliability analysis allows for obtaining PDFs of any response

quantity. It should be noticed that this approach will give accurate results only for

the tails of the PDF. Indeed it is based on FORM, which may be inaccurate for low

reliability indices (large probabilities).

The response surface method has been presented as an alternative to direct coupling. It

is also applicable to the most general problems and does not require the implementation

of gradients in the �nite element code. Whether one method is more e�cient than

the other depends fundamentally on the number of random variables included in the

analysis and the way gradients are computed.
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Spectral stochastic �nite element

method

1 Introduction

The spectral stochastic �nite element method (SSFEM) was proposed by Ghanem and

Spanos (1990, 1991a) and presented in a comprehensive monograph by Ghanem and

Spanos (1991b). It is an extension of the deterministic �nite element method (FEM)

for boundary value problems involving random material properties.

To understand what kind of discretization is introduced in SSFEM, let us come back

for a while in the deterministic world, and consider a mechanical system 
 with de-

terministic geometry, material properties and loading. The evolution of such a system

is governed by a set of partial di�erential equations (PDE) and associated boundary

conditions and initial state. When no closed-form solution to these equations exists,

a discretization procedure has to be applied in order to handle the problem numeri-

cally. In the usual �nite element method, the geometry 
 is replaced by a set of points

fxi ; i = 1 ; ::: Ng that are the nodes of the �nite element mesh. Correspondingly the

response of the system, i.e. the displacement �eld u(x) is approximated by means of

nodal displacements fui ; i = 1 ; ::: Ng gathered into a vector U . The set of PDE can

then be transformed to a system of equations in fuigNi=1.
If a material property such as the Young's modulus is now modeled as a random �eld,

the system will be governed by a set of stochastic PDE, and the response will be the

displacement random �eld u(x ; �), where � denotes a basic outcome in the space of

all possible outcomes �1. A spatial discretization procedure such as that described

in the above paragraph results in approximating the response as a random vector of

nodal displacements U(�), each component being a random variable ui(�) yet to be

characterized.

1See notation in Chapter 2, Section 1.1.
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A random variable is completely determined by the value it takes for all possible out-

comes � 2 �. Adopting the same kind of discretization as for the spatial part would

result in selecting a �nite set of points f�1 ; ::: �Qg in �. The Monte Carlo simulation

of the problem corresponds to this kind of strategy. The realizations �i have to be

selected with some rules to ensure that the space � is correctly sampled. It is however

well known that an accurate description of the response would require a large value for

Q.

SSFEM aims at discretizing the �random dimension� in a more e�cient way using series

expansions. Two di�erent procedures are used.

� the input random �eld is discretized using the truncated Karhunen-Loève expan-

sion presented in Chapter 2, Section 5.2.

� Each random nodal displacement ui(�) is represented by its coordinates in an

appropriate basis of the space of random variables L2(� ; F ; P ), namely the

polynomial chaos.

The outline of this chapter will be the following :

� SSFEM will be �rst developed in Section 2 for elastic two-dimensional problems

involving a Gaussian random �eld for modeling the Young's modulus of the ma-

terial.

� Computational issues regarding the peculiar system of equations eventually ob-

tained will be addressed in Section 3.

� Extensions of SSFEM to problems involving non Gaussian input random �elds or

multiple random �elds will be presented in Section 4, as will the so-called hybrid

SSFEM.

� A list of applications found in the literature will be given in Section 5.

� Finally advantages and limitations of SSFEM will be discussed in Section 6.

Some technical developments including the de�nition of the polynomial chaos and the

additional tools related to the discretization of lognormal random �eld are gathered in

an appendix at the end of this chapter.

2 SSFEM in elastic linear mechanical problems

2.1 Introduction

Rather than presenting SSFEM in a general, thus intricate way, the main ideas are

�rst developed in this section on a simple example, namely the accounting of the
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spatial variability of the Young's modulus in an elastic mechanical system. In this case,

the deterministic �nite element method is assumed to be well-known. Hence only the

approximated solution �in the random dimension� is developed.

2.2 Deterministic two-dimensional �nite elements

Using classical notations, the �nite element method in linear elasticity eventually yields

a linear system of size N �N (N being the number of degrees of freedom) :

K �U = F(5.1)

where the global sti�ness matrix K is obtained after assembling the element sti�ness

matrices ke :

ke =

Z

e

BT �D �B d
e(5.2)

In the above equation, D stands for the elasticity matrix and B is the matrix that

relates the components of strain to the element nodal displacements.

2.3 Stochastic equilibrium equation

Suppose now that the material Young's modulus is a Gaussian2 random �eld. The

elasticity matrix in point x can thus be written as :

D(x ; �) � H(x ; �)Do(5.3)

where Do is a constant matrix. The Karhunen-Loève expansion of H(:) writes

(Eq.(2.43)) :

H(x ; �) = �(x) +
1X
i=1

p
�i �i(�)'i(x)(5.4)

Substituting for (5.3),(5.4) in (5.2) yields :

ke(�) = keo +
1X
i=1

kei �i(�)(5.5)

where keo is the mean element sti�ness matrix and kei are deterministic matrices ob-

tained by :

kei =
p
�i

Z

e

'i(x)B
T �Do �B d
e(5.6)

2This assumption, which is not realistic, will be relaxed later.
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Assembling the above element contributions eventually gives the stochastic counterpart

of the equilibrium equation (5.1) (assuming a deterministic load vector F ) :"
Ko +

1X
i=1

Ki �i(�)

#
�U(�) = F(5.7)

In the above equation, Ki are deterministic matrices obtained by assembling kei in a

way similar to the deterministic case.

2.4 Representation of the response using Neumann series

The vector of nodal displacements U(�) is formally obtained by inverting (5.7). How-

ever no closed-form solution for such an inverse exists. An early strategy adopted by

Ghanem and Spanos (1991b) consists in using a Neumann series expansion of the inverse

stochastic sti�ness matrix to get an approximate response. Eq.(5.7) can be rewritten

as :

Ko �
"
I +

1X
i=1

K�1
o �Ki �i(�)

#
�U(�) = F(5.8)

which leads to :

U(�) =

"
I +

1X
i=1

K�1
o �Ki �i(�)

#�1
�U 0 ; U 0 =K�1

o � F(5.9)

The Neumann series expansion of the above equation has the form :

U(�) =
1X
k=0

(�1)k
"
1X
i=1

K�1
o �Ki �i(�)

#k
�U 0(5.10)

whose �rst terms explicitly write :

U(�) =

"
I �

1X
i=1

K�1
o �Ki �i(�) +

1X
i=1

1X
j=1

K�1
o �Ki �K�1

o �Kj �i(�)�j(�) + : : :

#
�U 0

(5.11)

Truncating both the Karhunen-Loève and the Neumann expansions (indices i and k in

Eq.(5.10), respectively) yields an approximate solution for U(�).

2.5 General representation of the response in L2(� ; F ; P )

From (5.11) it is seen that each random displacement ui(�) can be represented as a

series of polynomials in the standard normal variables f�k(�)g1k=1. Reordering all terms
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by means of a single index j, this representation formally writes :

ui(�) =
1X
j=0

uij Pj
�
f�k(�)g1k=1

�
(5.12)

where P0 � 1 and Pj
�
f�k(�)g1k=1

�
are polynomials in standard normal variables, e.g. :

Pj
�
f�k(�)g1k=1

�
= ��1i1 �

�2
i2
: : : �

�p
ip(5.13)

The set of fPjg1j=0 in Eq.(5.13) forms a basis of the space of all random variables

L2(� ; F ; P ), and the coe�cients uij are interpreted as the coordinates of ui(�) in this

basis.

Referring to the inner product de�ned in L2(� ; F ; P ) by Eq.(2.4-a), the above basis

is however not orthogonal. For instance, �1(�) and �
3
1(�) are two basis random variables

whose inner product is E [�41 ] = 3. For further exploitation of the response, such as

computing its moments, an orthogonal basis appears more appealing.

The polynomial chaos3 proposed by Ghanem and Spanos (1991b) possesses this prop-

erty. The details of its construction are quite technical and not essential to the under-

standing of SSFEM. Thus they are given in Appendix A.1 at the end of this chapter.

To proceed, let us assume that any random variable u(�) element of L2(� ; F ; P ) can

be given the following representation :

u(�) =
1X
j=0

uj 	j(�)(5.14)

where f	j(�)g1j=0 is a complete set of orthogonal random variables de�ned as polyno-

mials in f�k(�)g1k=1, satisfying4 :

	o � 1(5.15-a)

E [	j] = 0 j > 0(5.15-b)

E [	j(�)	k(�)] = 0 j 6= k(5.15-c)

The expansion of the nodal displacements vector is consequently written as :

U(�) =
1X
j=0

U j 	j(�)(5.16)

3Also referred to as Wiener chaos from the name of the mathematician who derived it �rst.

4Eq.(5.14) has been preferred to a more detailed notation such as u(�) =

1X

j=0

uj 	j

�
f�k(�)g

M
k=1

�

for the sake of simplicity.
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the �coordinates� U j being deterministic vectors having N components. Note that the

�rst term U o in the above equation is di�erent from the �rst term in the Neumann ex-

pansion (5.11). The latter, denoted by U 0, is that obtained by a perturbation approach

(see Chapter 3, Section 2).

By denoting �o(�) � 1 and substituting the above equation in (5.7), one gets : 
1X
i=0

Ki �i(�)

!
�
 

1X
j=0

U j 	j(�)

!
� F = 0(5.17)

For computational purposes, the series involved in (5.17) are truncated after a �nite

number of terms, precisely (M+1) for the sti�ness matrix expansion ( Karhunen-Loève

expansion) and P for the displacements vector expansion. As a result, the residual in

(5.17) due to the truncation reads :

�M;P =
MX
i=0

P�1X
j=0

Ki �U j �i(�)	j(�)� F(5.18)

The best approximation of the exact solutionU (�) in the spaceHP spanned by f	kgP�1k=0

is obtained by minimizing this residual in a mean square sense. In the Hilbert space

L2(� ; F ; P ), this is equivalent to requiring that this residual be orthogonal to HP ,

which yields :

E [�M;P �	k] = 0 k = 0 ; ::: P � 1(5.19)

Let us introduce the following notation :

cijk = E [�i	j 	k](5.20)

F k = E [	k F ](5.21)

Note that F k is zero for k > 0 in the case of deterministic loading considered in this

report. Using (5.18), Eq.(5.19) can be rewritten as :

MX
i=0

P�1X
j=0

cijkKi �U j = F k k = 0 ; ::: P � 1(5.22)

For the sake of simplicity, let us de�ne :

Kjk =
MX
i=0

cijkKi(5.23)

Hence Eq.(5.22) rewrites :

P�1X
j=0

Kjk �U j = F k k = 0 ; ::: P � 1(5.24)
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In the above equations, each U j is a N�dimensional vector, each Kjk a matrix of size

N �N . The P di�erent equations can be cast in a linear system of size NP �NP as

follows : 2
6664

Koo : : : Ko;P�1

K1o : : : K1;P�1

...
...

KP�1;o : : : KP�1;P�1

3
7775 �
2
6664

U o

U 1

...

UP�1

3
7775 =

2
6664

F o

F 1

...

F P�1

3
7775(5.25)

which may formally be rewritten as :

K � U = F(5.26)

After solving this system for U = fUk ; k = 0 ; ::: P � 1g, the best approximation of

U(�) in the subspace HP spanned by f	kgP�1k=0 is given by :

U(�) =
P�1X
j=0

U j 	j(�)(5.27)

As reported in Appendix A, Section A.1.2, the dimension P of HP is usually 10-35

in application. This means that any nodal displacement is characterized as a random

variable by 15-35 coe�cients. The amount of computation required for solving the linear

system (5.26) is thus much greater than that required for the deterministic analysis of

the same problem.

2.6 Post-processing of the results

The coe�cients in Eq.(5.27) do not provide a clear interpretation of the response ran-

domness in themselves. The following useful quantities are however readily obtained.

� The mean nodal displacement vector E [U ] is the �rst term of the expansion,

namely U o, since E [	j(�)] = 0 for j > 0.

� The covariance matrix of the components of vector U is :

Cov [U ; U ] =
P�1X
i=1

E
�
	2
i

�
U i �UT

i(5.28)

the coe�cients E [	2
i ] being easily computed due to the de�nition of the 	i's (See

Appendix A.1).

� The probability density function of any component U i of the nodal displacement

vector can by obtained by simulating the basis random variables 	j(�), then

using Eq.(5.27). In the case when this equation is limited to quadratic terms

(second order polynomial chaos), a closed-form expression for the characteristic

function of U has been given by Ghanem (1999a), which can be then numerically

Fourier-transformed to obtain the required PDF.
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� Reliability analysis has been claimed a straightforward byproduct of SSFEM in

Ghanem and Spanos (1991b). However no such application could be found in the

literature.

It seems possible to couple the general reliability tools developed in Chapter 4,

Section 2 with SSFEM. Let us consider for instance a limit state function of the

following form :

g(U(�)) = u� uio(5.29)

where uio is a nodal displacement under consideration and u is a prescribed

threshold. Substituting the io-th component of the vectorial equation (5.27) in

(5.29) yields the following analytical polynomial expression of the limit state

function :

g(U(�)) = u�
P�1X
j=0

uioj 	j (f�k(�)g1k=1)(5.30)

This limit state function is already cast in the standard normal space due to

the de�nition of the polynomials 	j (f�k(�)g1k=1). Moreover, its gradient with

respect to the basic random variables can easily be obtained in closed-form as

well. Determining the design point and associated probability of failure should

thus be straightforward.

Of course, this approach requires having solved (5.25) beforehand and it is prob-

ably not e�cient when a single reliability problem is to be solved. In contrast, it

might be interesting when the probability density function of a response quantity

is to be determined by sensitivity analysis after repeated FORM analyses (see

Chapter 4, Section 4), or when system reliability is under consideration (in the

latter case, a number of previous component reliability analyses is required as

well).

In any case, the accuracy of this approach has to be checked. Especially the

accuracy in representing the tails of the PDF of the response should be carefully

evaluated (these tails are essential in reliability analysis). It may happen that

an acceptable accuracy requires a large number of terms P in the expansion of

the response. This approach must eventually be compared to the classical �nite

element reliability approach developed in chapter 4 in terms of accuracy and

e�ciency.

3 Computational aspects

3.1 Introduction

As it can be seen in Eq.(5.25), the size of the linear system resulting from the SSFEM

approach increases rapidly with the series cut-o� number P . Whenever classical direct
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methods are used to solve the system, the computational time may blow up rapidly.

This is the reason why early applications of SSFEM were limited to a small number

of degrees of freedom N . Only in recent papers was the problem of computational

e�ciency of SSFEM addressed (Ghanem and Kruger, 1996; Pellissetti and Ghanem,

2000).The main results are reported in this section.

3.2 Structure of the stochastic sti�ness matrix

Eqs.(5.23)-(5.24) suggest that the global matrix K is completely determined by the

matricesKi and the coe�cients cijk. Storing K as these building blocksKi along with

the cijk coe�cients reduces the required amount of memory considerably. Ghanem and

Kruger (1996) took the example of a 4-term KL expansion. Using a second (resp. third)

order polynomial chaos, the proposed method requires 11 times (resp. 33 times) less

memory compared to the classical global storage. It turns out that a large number of

coe�cients cijk are zero (see the tables in Ghanem and Spanos (1991b, chap. 3)).

It is recalled that Ko corresponds to the sti�ness matrix of a system having the mean

material properties. In the same way, Ki; i > 0, can be viewed as the sti�ness ma-

trix corresponding to a certain spatial �uctuation of the material properties given by

the eigenfunction 'i(x). Since the mean of these �uctuations is zero, and if they are

bounded within a certain range, the entries of Ko are expected to be dominant in

magnitude. Furthermore, it is easily seen from (5.20) that cojk / �jk since �o � 1 and

the 	j's are orthogonal to one another. Examining now (5.23), this means that Ko

has a contribution only in the Kjj blocks that are on the main diagonal of K. These

arguments tend to prove a diagonal dominance in K which should be taken advantage

of in the solution scheme. Finally the matricesKi all have the same non-zero structure,

which can simplify the storage.

3.3 Solution algorithms

To take advantage of the proposed storage scheme, it is necessary that the solution

method not require explicit assembling of K. Iterative methods such as the conjugate

gradient method are well suited to this situation, since they only require matrix-vector

products. It is thus su�cient to compute the matricesKjk by means of Eq.(5.23) each

time they are operated on. Since only a small number of coe�cient cijk is non zero,

this is not a time-consuming task.

In the context of iterative algorithms for solving linear systems, the spectral condition

number of the matrix (the ratio between its largest and smallest eigenvalues) is of

paramount importance. These algorithms rapidly converge when the condition number

is low. To enhance the convergence, preconditioning techniques (see Demmel (1997)

for a state-of-the-art review) have been proposed. They essentially replace the original
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system K �U = F by :

M�1K �U =M�1 � F(5.31)

where the condition number of M�1K is much lower than that of K.

The Jacobi preconditioner (M = diag (K)) and incomplete factorization precondition-

ers (M = LincU inc, Linc and U inc being the incomplete triangular factors of K) are

usually employed in the context of deterministic �nite elements.

Due to the properties mentioned in Section 3.2, the following preconditioning matrix

was proposed by Ghanem and Kruger (1996) for e�cient solution of the SSFEM linear

system :

M = diag fK̂jjg �

2
6664
K̂oo 0 : : : 0

0 K̂11 0 0
...

...

0 0 : : : K̂P�1;P�1

3
7775 where K̂jj = cojjL

inc
Ko
U inc
Ko

(5.32)

Applying this approach to a system with N = 264 degrees of freedom and P = 5; 15,

the authors showed that the proposed preconditioner allows to divide the number of

iterations by 12-15 compared to the Jacobi preconditioner. Moreover, the former leads

to a number of iterations independent of the coe�cient of variation of the input �eld

whereas the latter does not5.

3.4 Hierarchical approach

The polynomial chaos basis is called hierarchical because increasing the dimension of

the functional space (i.e. P ) does not change the lower-order basis functions. This leads

to the following solution strategy. Suppose the linear system (5.26) is partitioned as

follows : �
K ll Klh

Khl Khh

�
�
�
U l

Uh

�
=

�
F l

F h

�
(5.33)

where ()l and ()h stand for lower and higher order terms, respectively.

If the lower-order solution ~U l =K�1
ll �F l was obtained with su�cient accuracy, it can

be expected to be close to U l appearing in (5.33). Thus an approximate solution of

(5.33) is :

U l = ~U l(5.34)

Uh = K�1
hh

�
F h �Khl � ~U l

�
(5.35)

5The larger the coe�cient of variation, the larger the condition number of K.
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It is then possible to enhance successively the solution (5.27) starting from a lower-order

solution and using (5.35) by adding one basis polynomial at each time. As the lower-

order coe�cients are not modi�ed along the procedure, this could lead to a successive

built-up of error.

On an example application, Ghanem and Kruger (1996) found no signi�cant discrep-

ancy between the results obtained by this procedure and those obtained by a direct

higher-order resolution. However, there is no proof or evidence that this is a general

result. It is likely that the accuracy of the results obtained by the hierarchical approach

decays when the coe�cient of variation of the input �eld increases. A more exhaustive

study should be carried out to assess the validity of this approach.

4 Extensions of SSFEM

4.1 Lognormal input random �eld

The use of Gaussian random �elds is quite common in the context of probabilistic

mechanics. However these �elds are not well suited to modeling material properties

(Young's modulus, yield stress, etc.) which are by their nature positive valued. Indeed

for large coe�cients of variation, realizations of the �eld could include negative out-

comes that are physically meaningless. In contrast, the lognormal �eld appears attrac-

tive in this sense. A lognormal �eld can be de�ned by a transformation of a Gaussian

�eld g(x) as :

l(x) = eg(x)(5.36)

The Karhunen-Loève expansion of a lognormal �eld, although possible, is of no practical

interest since the probabilistic structure of the random variables f�ig appearing in the

expansion cannot be determined. In order to be able to include lognormal �elds in

the SSFEM approach, Ghanem (1999b) proposed to expand them into the polynomial

chaos. Due to the particular form of (5.36), this leads to closed-form expressions.

4.1.1 Lognormal random variable

Let us �rst consider a single lognormal random variable obtained as follows :

l = e�g+�g �(5.37)

where � is a standard normal variable. The polynomial chaos expansion of l reads :

l =
1X
i=0

li	i(�)(5.38)
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where 	i(�) is the i-th Hermite polynomial in this case. Due to the orthogonality

properties of the 	i's, the coe�cients li can be obtained as :

li =
E [exp (�g + �g �)	i(�)]

E [	2
i ]

(5.39)

which, after some algebra, reduces to :

li =
E [	i(� + �g)]

E [	2
i ]

exp [�g +
1

2
�2g ](5.40)

The fraction in the above equation turns out to be
�ig
i!

after some algebra, whereas the

exponential term is nothing but the mean value of l, denoted by �l. Thus the expansion

of any lognormal random variable into the (one-dimensional) polynomial chaos reduces

to :

l = �l

1X
i=0

�ig
i!
	i(�)(5.41)

4.1.2 Lognormal random �eld

Let us now consider the approximate lognormal �eld l(x) de�ned by exponentiating

the following truncated Karhunen-Loève expansion of a Gaussian random �eld g(x) :

l(x) = exp [�g(x) +
MX
i=1

gi(x) �i] = exp [�g(x) + g(x)
T � �](5.42)

The polynomial chaos expansion now reads :

l(x) =
1X
i=0

li(x)	i(�)(5.43)

Closed-form expressions of the coe�cients li(x) are given in appendix A.2 at the end

of this chapter.

To use SSFEM in conjunction with a lognormal input random �eld is now straight-

forward : the procedure described in Section 2 applies, where Eq.(5.4) is replaced by

Eq.(5.38). The stochastic equilibrium equation (see Eq.(5.7)) now writes : 
1X
i=0

Ki	i(�)

!
�U(�) = F(5.44)

After truncation of the latter after P terms, the Galerkin minimization of error leads

to a system of linear equations similar to (5.22), the coe�cients cijk being now replaced

by :

dijk = E [	i	j 	k](5.45)
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The polynomial chaos expansion of the input random �eld introduces a new approxima-

tion in SSFEM, which probably decreases the accuracy of the method. This accuracy

has not been stated by Ghanem and his co-workers. Whether a fair accuracy could be

obtained with a manageable number of terms in the series expansion is of crucial impor-

tance. Unfortunately no comparison with other methods (e.g. Monte Carlo simulation)

are provided in Ghanem (1999b,c). Regarding reliability problems, the accuracy in the

tails of PDFs is probably also a�ected by the use of the polynomial chaos expansion of

the input random �eld.

4.2 Multiple input random �elds

It is usual that more than one material property governs the evolution of a system.

Consider for instance Young's modulus and Poisson's ratio in mechanical problems,

conductivity and heat capacity in heat conduction, etc. In a probabilistic context, all

these quantities have to be modeled as random �elds6.

This is completed in the following manner : each �eld is discretized using di�erent

sets of standard normal variables, say f�1 ; ::: �Mg for the �rst one, f�M+1 ; ::: �M 0g for
the second, etc. All these variables are then merged in a single list, the size of which

determines the dimension of the polynomial chaos expansion of the response. This

technique was applied in the heat conduction example presented by Ghanem (1999c).

Except from the point of view of data management, using multiple input random �elds

seems not a di�cult task. However multiplying by 2 the length of vector � increases

dramatically the size of the polynomial chaos basis (see for instance table 5.2, page 91),

which basically controls the computation time.

4.3 Hybrid SSFEM

4.3.1 Monte Carlo simulation

The SSFEM formalism consists in expanding the response process over a basis of

L2(� ; F ; P ), namely the polynomial chaos. If the basis functions 	i(�) were Dirac

delta functions �(� � �i), where �i denotes a particular sample in �, a collocation-like

procedure along the random dimension would be obtained. Thus the response process

is now considered as the in�nite set of its realizations, and an approximation is de�ned

by a �nite set of �i's. As stated in the introduction, this is in some sense the de�nition

of Monte Carlo simulation.

LetQ be the number of samples. Practically speaking, a linear systemK(�i)�U(�i) = F

is solved for each �i ; i = 1 ; ::: Q. The whole simulation can be cast in the following

6We suppose here the statistical independence of these �elds
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linear system of size NQ�NQ :2
6666664

K(�1) 0 : : : 0

0 K(�2) : : : 0
... 0 : : :

...
...

... : : :
...

0 0 : : : K(�Q)

3
7777775
�

2
6666664

U 1

U 2

...

...

UQ

3
7777775
=

2
6666664

F 1

F 2

...

...

FQ

3
7777775

(5.46)

This system is similar in structure as that of Eq.(5.25), the size of which being NP �
NP . It is simpler because it can be solved by blocks resulting in Q systems of size

N �N . In practical applications, Q is much greater that P (3-4 orders of magnitude).

However, depending on the matrix storage and solving scheme, there should exist a

threshold level for which one procedure (SSFEM or Monte Carlo simulation) becomes

more e�cient than the other.

4.3.2 Coupling SSFEM and MCS

The hybrid SSFEM proposed by Ghanem (1998a) is a coupling of Monte Carlo simu-

lation and SSFEM. Using a P -terms polynomial chaos expansion of the response, and

expanding the residual in terms of a set of delta functions �j(�) = �(�� �j) results in :

U (�) �
P�1X
j=0

U j 	j(�) +

Q�1X
j=0

U �
j �j(�)(5.47)

The above expansion is substituted for in the equilibrium equation, and the obtained

residual is made orthogonal both to the 	j's and the �j's. This leads to a N(P +Q)�
N(P + Q) linear system. Further assumptions resulting in the partial decoupling of

the equations are introduced. The linear system is then solved iteratively at lower cost

than by the direct approach.

4.3.3 Concluding remarks

Details of the hybrid method can be found in Ghanem (1998a). However no convincing

application of these ideas has been published so far. Moreover, the delta functions do

not form a numerable set, and their use as a basis of L2(� ; F ; P ) or a subspace of

it is questionable. The decoupling assumption which leads to the iterative procedure

mentioned above is not really argued. There is globally a lack of mathematical justi-

�cation of the method. Further theoretical research as well as applications are needed

to assess the validity of this approach.

5 Summary of the SSFEM applications

The main applications of SSFEM found in the literature can be summarized as follows :
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� Early applications (Spanos and Ghanem (1989); Ghanem and Spanos (1991a,b))

dealt with one- and two dimensional linear elastic structures : a cantilever beam

with Gaussian �exural rigidity EI subjected to a deterministic transverse load

at its free end, a square plate clamped along one edge and subjected to a uni-

form in-plane tension along the opposite edge with Gaussian Young's modulus, a

clamped curve plate for which the KL expansion had to be computed numerically.

Coe�cients of variation of the response as well as PDF's were determined and

compared to those obtained by Monte Carlo simulation. The number of �nite

elements in these examples was limited to 16. The maximal accuracy adopted in

these examples was a 3rd order - 4-dimensional polynomial chaos. For medium

COV of the input (say 15-30%), only these most accurate results compare fairly

well with the Monte Carlo simulation results.

� Ghanem and Brzkala (1996) addressed the problem of a two-layer soil mass with

deterministic properties in each layer and Gaussian random interface, subjected

to a constant pressure on part of its free surface. In this case, the random �eld

representing the Young's modulus of the material is not Gaussian due to its

non-linear relationship with the Gaussian �eld de�ning the interface. Thus the

sti�ness matrix had to be expanded over the polynomial chaos as in Eq.(5.44).

� Waubke (1996) addressed the problem of deterministic vibrations of a rigid plate

over a two-layer soil mass with random elastic parameters.

� The application of SSFEM to transport of contaminant in unsaturated porous

media was addressed by Ghanem (1998b). The permeability coe�cients as well

as the di�usion coe�cient are modeled as Gaussian random �elds and discretized

using Karhunen-Loève expansion. The e�ective head and the contaminant con-

centration are expanded into the polynomial chaos. The numerical results include

the coe�cients in the expansion of the concentration as well as the variance of

the latter over the domain. No comparison with other approaches (e.g. Monte

Carlo simulation) is given.

� The problem of heat conduction was addressed by Ghanem (1999c). In this case,

both the conductivity and the heat capacity are modeled as Gaussian or lognor-

mal random �elds. As an example, a one-dimensional domain of unit length is

subjected to a constant �ux at one end and perfectly insulated at the other one.

The initial temperature of the domain is uniform. It is divided in 10 elements. The

COV of the input is up to 40%. The results are presented in terms of the coe�-

cients of the polynomial chaos expansion. Neither post-processing of these results

nor comparison with Monte Carlo simulation is provided in this paper. Due to

the relatively small number of terms included in the expansions (M = 2� 3), it

is di�cult to judge the accuracy of the results or even interpret them.

� The �rst application of SSFEM to elasto-plastic problems can be found in Anders

and Hori (1999) introducing some simplifying assumptions. The elasto-plastic
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constitutive law indeed de�nes the plastic strain rate proportional to the deriva-

tive of the yield criterion with respect to the current stress. In a stochastic context,

this would imply di�erentiation with respect to random variables, which is not an

easy task (see Ghanem (1999a) for some theoretical developments and references

on this topic). Moreover, it is not clear how to enforce the negativeness of the

yield criterion when the stress is now a random quantity.

Thus the authors simpli�ed the problem introducing two bounding solids, whose

mechanical properties allow to bound the stresses. The plastic �ow rule is thus

applied with deterministic bounding stresses in each point. Although these as-

sumptions are questionable, this is the only example of real non-linear application

of SSFEM, which shows that a lot of work remains in this matter.

6 Advantages and limitations of SSFEM

In this chapter, SSFEM has been presented in a comprehensive way including the most

recent developments. As an extension of the deterministic �nite element method, this

approach represents the response as a vector of random nodal displacements. Each

component of this vector is characterized by its coe�cients in a series of polynomials

in standard normal variables. Due to this property, the representation of the response

randomness is said to be intrinsic.

Formally, Eq.(5.27) can be interpreted as a polynomial response surface for the dis-

placement �eld, de�ned by means of the basic random variables f�igMi=1. In contrast

with usual response surface methods such as those described in Chapter 4, Section 5,

SSFEM allows to de�ne it at any order in a consistent framework.

Note that in all applications found in the literature, only the Karhunen-Loève expansion

has been used to discretize the input Gaussian random �eld. The use of other schemes

such as OSE or EOLE would however be possible and in some case more practical than

KL (for instance when other correlation structures than that with exponential decay

are dealt with).

The approximate solution Eq.(5.27) is obtained in the context of Galerkin minimization

of residuals. General convergence properties to the exact solution are associated with

this procedure : when the number of terms in the series tends to in�nity, SSFEM tends

to be �exact�.

However the following limitations of the method have to be recognized :

� it is practically limited to linear problems. Material non linearity (e.g. plasticity)

or geometrical non-linearity cannot be dealt with by SSFEM in its latest state of

development.
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� The amount of computation required for a given problem is much greater than

that of the equivalent deterministic problem. Typically 15-35 coe�cients are

needed to characterize each nodal displacement. As a consequence a huge amount

of output data is available. The question of whether this data is really useful for

practical problems has not been addressed.

� The truncation of the series involved in SSFEM introduces approximation. So

far, no error estimator has been developed and no real study of the accuracy of

the method has been carried out, except some comparisons with Monte Carlo

simulations presented in early papers by Ghanem and Spanos.

� Although it is claimed in di�erent papers quoted above that the reliability analysis

is a straightforward post-processing of SSFEM, no application could be found in

the literature. The application of SSFEM to reliability analysis remains broadly

an open problem. Important issues such as the accuracy of SSFEM in representing

the tails of the PDFs of response quantities have to be addressed for this purpose.

� When lognormal random �elds are used, another accuracy issue comes up. Even

for a single variable, only an in�nite number of terms in the expansion reproduces

the lognormal characteristic. This means that the input �eld de�ned by using only

a few terms in the polynomial chaos expansion (Eq.(5.38)) can be far from the

actual lognormal �eld.

As a conclusion, it is noted that SSFEM is a quite new approach. Although limited for

the time being, it deserves further investigation and comparisons with other approaches

to assess its e�ciency.



88 Chapter 5. Spectral stochastic �nite element method

Appendix

A.1 Polynomial chaos expansion

A.1.1 De�nition

The polynomial chaos is a particular basis of the space of random variables

L2(� ; F ; P ) based on Hermite polynomials of standard normal variables.

Classically, the one-dimensional Hermite polynomials are de�ned by :

hn(x) = (�1)n
dn
h
e�

1

2
x2
i

dxn
e
1

2
x2(5.48)

Hermite polynomials of independent standard normal variables are orthogonal to each

other with respect to the inner product of L2(� ; F ; P ) de�ned in (2.4-a), that is :

E [hm(�i(�)) hn(�j(�))] = 0 ; m 6= n(5.49)

Multidimensional Hermite polynomials can be de�ned as products of Hermite polyno-

mials of independent standard normal variables. To further specify their construction,

let us consider the following integer sequences :

� = f�1 ; ::: �pg �j � 0(5.50)

i = fi1 ; ::: ipg ij > 0(5.51)

The multidimensional Hermite polynomial associated with the sequences (i ; �) is :

	i;�(�) =

pY
k=1

h�k(�ik(�))(5.52)

It turns out that the set f	i;�g of all polynomials associated with all possible sequences
(i ; �) of any length p forms a basis in L2(� ; F ; P ).

For further convenience, let us denote by �p
�
�i1(�) ; ::: �ip(�)

�
the set of basis polyno-

mials f	i;�(�) j Pp
k=1 �k = pg and by �p the space they span. �p is a subspace of

L2(� ; F ; P ), usually called homogeneous chaos of order p. The subspaces �p are or-

thogonal to each other in L2(� ; F ; P ). This is easily proven by the fact that they are

spanned by two sets of 	i;� having null intersection. Thus the following relationship,

known as the Wiener Chaos decomposition, holds :

1M
k=0

�k = L2(� ; F ; P )(5.53)
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where
L

denotes the operator of orthogonal summation of subspaces in linear algebra.

Consequently the expansion of any random variable u(�) in the polynomial chaos can

be written as :

u(�) = uo �o +
1X
i1=1

ui1 �1 (�i1(�)) +
1X
i1=1

1X
i2=1

ui1i2 �2 (�i1(�) ; �i2(�)) + : : :(5.54)

In this expression uo ; ui1 ; ui1i2 are the �coordinates� of u(�) associated with 0-th, �rst

and second order homogeneous chaoses respectively. The lower order homogeneous

chaos have the following closed-form expression :

�o = 1(5.55-a)

�1(�i) = �i(5.55-b)

�2(�i1 ; �i2) = �i1�i2 � �i1i2(5.55-c)

�3(�i1 ; �i2 ; �i3) = �i1�i2�i3 � �i1�i2i3 � �i2�i3i1 � �i3�i1i2(5.55-d)

Remark The polynomial chaos can be related to the (non orthogonal) basis associated

with the Neumann series expansion, see Eq.(5.13). For this purpose, let us introduce the

orthogonal projection �p of L2(� ; F ; P ) onto �p. It can be shown that the following

relationship holds7 :

�p(�
�1
i1
(�) : : : �

�p
ip
(�)) = 	i;�(5.56)

A.1.2 Computational implementation

For computational purposes, �nite dimensional polynomial chaoses are constructed by

means of a �nite numberM of orthonormal Gaussian random variables. These variables

are for instance selected from the Karhunen-Loève expansion of the input random �eld.

The polynomial basis formed by means of these M random variables is denoted by

�p(�1 ; ::: �M) and it is called homogeneous chaos of dimension M and order p.

Due to (5.52), the basis �p(�1 ; ::: �M) is generated as follows. To each set ofM integers

f�1 ; ::: �Mg ranging from 0 to p and summing up to p, the following basis vector is

associated :

	� =
MY
i=1

h�i(�i)(5.57)

This formula allows for a systematic construction of the polynomial chaoses of any

order. It can be shown that the dimension of �p(�1 ; ::: �M) is the binomial factor�
M + p� 1

p

�
. The lower-dimensional polynomial chaoses (up to M = 4) have been

7This relationship and other mathematical properties of the polynomial chaos can be found in

Ghanem (1999a).
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tabulated by Ghanem and Spanos (1991b, chap. 2) for di�erent orders (up to p = 4).

As an example, Table 5.1 gives the two-dimensional polynomial chaoses at di�erent

orders.

Table 5.1: Two-dimensional polynomial chaoses

j p j-th basis polynomial 	j

0 p = 0 1

1 p = 1 �1
2 �2
3 �21 � 1

4 p = 2 �1�2
5 �22 � 1

6 �31 � 3�1
7 p = 3 �2 (�

2
1 � 1)

8 �1 (�
2
2 � 1)

9 �32 � 3�2
10 �41 � 6�21 + 3

11 �2 (�
3
1 � 3�1)

12 p = 4 (�21 � 1)(�22 � 1)

13 �1 (�
3
2 � 3�2)

14 �42 � 6�22 + 3

When truncating Eq.(5.54) after order p, the total number of basis polynomials P is

given by :

P =

pX
k=0

�
M + k � 1

k

�
(5.58)

Table 5.2 gives an evaluation of P for certain values of M and p. It is seen that

P is increasing extremely fast with both parameters. Remembering that each scalar

response quantity u ( which was a single number in the deterministic �nite element

method) is now represented by P coe�cients, it is easily seen that SSFEM will require

a large amount of computation. This may be worthwhile, considering that the whole

probabilistic structure of u is (approximately) contained in these P coe�cients.

From a practical point of view, the choice of M is dictated by the discretization of

the input random �elds. In the original SSFEM, the Karhunen-Loève expansion (see

chapter 2, Section 5.2) is used under the assumption that the input �eld is Gaussian.

The choice of M is thus directly related to the accuracy requested in this random

�eld discretization. The higher M , the better higher frequency random �uctuations

of the input will be taken into account. Conversely, parameter p governs the order of

non-linearity captured in describing the solution process. Typical values used in the

applications are M = 4 and p = 2; 3.
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Table 5.2: Number of basis polynomials P (M = number of basis random variables,

p = order of homogeneous chaos expansion)

M p=1 p=2 p=3 p=4

2 3 6 10 15

4 5 15 35 70

6 7 28 83 210

A.2 Karhunen-Loève expansion of lognormal random

�elds

Let us consider the following truncated Karhunen-Loève expansion of a Gaussian ran-

dom �eld g(x) :

ĝ(x ; �) = �g(x) +
MX
i=1

gi(x) �i(�)(5.59)

Gathering the random variables �i(�) in a vector � and the deterministic functions gi(x)

in a vector g(x), we can de�ne the following approximate lognormal random �eld8 :

l(x) = exp [ĝ(x)] = exp [�g(x) + g(x)
T � �](5.60)

Its coe�cients in the polynomial chaos expansion are obtained as in (5.39) by :

li(x) =
E
�
exp

�
�g(x) + g(x)

T � �� 	i

�
E [	2

i ]
(5.61)

The �rst coe�cient corresponding to 	o � 1 is the mean value of l(x), i.e. :

lo(x) = �l(x) = exp [�g(x) +
1

2

MX
i=1

gi(x)
2] = exp [�g(x) +

1

2
�2ĝ(x)](5.62)

where �ĝ(x) is the standard deviation of ĝ(x). The other ones simplify after some

algebra to :

li(x) = �l(x)
E [	i(� + g(x))]

E [	2
i ]

(5.63)

Referring to representation (5.57) of the polynomials 	i(�), the fraction in the above

equation can be written as :

E [	i(� + g(x))]

E [	2
i ]

=

MY
j=1

gj(x)
�j

MY
j=1

�j!

(5.64)

8For the sake of simplicity, the dependency on � is dropped in the sequel.
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Finally, letting M tend to 1, the polynomial chaos expansion of the lognormal �eld

can be written as :

l(x) = �l(x) +
1X
i=1

li(x)	i(�) � �l(x)
X
�

MY
j=1

gj(x)
�j

MY
j=1

�j!

	�(�)(5.65)
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Conclusions

1 Summary of the study

This report has presented several techniques using the �nite element method coupled

with probabilistic approaches. Methods for discretizing random �elds, obtaining second

moment statistics of the response, probabilities of failure, or approximations of the

stochastic response process itself have been reviewed. In each case, advantages and

limitations have been analyzed and examples of application taken from the literature

have been reported.

So far, these examples deal with simple geometries (beams, square plates, sometimes

plates with a hole) and few elements (up to one hundred). Thus the random �eld

discretization obtained directly or indirectly from the �nite element mesh involves a

manageable number of variables. However, some work remains on the topic of treating

in a really independent fashion the random �eld- and �nite element meshes (both

of them being for instance generated automatically with respect to their respective

criteria), and connect them properly.

Perturbation-based approaches were presented in Chapter 3. From a practical point

of view, they can easily give information about response variability (i.e. mean and

standard deviation). They require gradient operators at the element level in the �nite

element code. For strongly non-linear limit state functions, they are expected to be

accurate only with small coe�cients of variation of the input variables. This could be

a limitation when geomaterials are involved. The CPU time becomes very large when

the number of random variables is medium (say 20-50). The second order approach

may be intractable in this case.

The �nite element reliability approach (see Chapter 4) is based on the coupling of

�nite element calculations and a reliability algorithm determining the design point. It

allows to compute the probability of failure of a system with respect to a given limit

state function. Due to this coupled formulation, it is possible to use state-of-the-art
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�nite element codes by linking them to the reliability program. It has been applied

to general non-linear problems including plasticity, plane stress plasticity and damage.

It is applicable to industrial problems in its current state of development. Current

research on this topic is related to time- and space-variant reliability.

The spectral stochastic �nite element method has been applied to linear problems, and

it is not applicable to general non-linear problems yet. However, it is a rather new ap-

proach and deserves further exploration. The main idea of obtaining an approximation

of the stochastic response process itself is de�nitely attractive due to the wide spec-

trum of byproducts it can yield. The SSFEM method is computationally demanding

but, on the other hand, gives a full characterization of the output quantities. Whether

this information is really needed for practical applications is an open question. So is

also the question of the e�ciency and accuracy of SSFEM in the context of reliability

analysis.

2 Suggestions for further study

As mentioned in the introduction, the various approaches presented in this study are

investigated by di�erent communities of researchers, so that no real comparison of these

methods has been made so far. Such a comparison would be of greatest importance

to assess the relative advantages of each approach and compare the computational

costs for a given problem. It should be emphasized that the examples presented in the

literature do not provide a basis for comparison as themselves, because of the use of

di�erent parameters, computing platforms, etc.

In the context of two-dimensional elastic problems, it is proposed to implement the

SSFEM method and compare it with :

� perturbation method and Monte Carlo simulation for second moment analysis,

� direct coupling between FORM analysis and a deterministic code for reliability

problems.

The implementation issues and comparison results are presented in Part II of the

present report.



Part II

Comparisons of

Stochastic Finite Element Methods

with Matlab





Chapter 1

Introduction

1 Aim of the present study

Part I of the present report reviewed methods coupling �nite element analysis with a

probabilistic description of the input parameters. Emphasis has been put on taking into

account the spatial variability of material properties. This has been done by introducing

the concept of random �elds and the related discretization techniques.

Second moment approaches (including the perturbation and the weighted integral

methods) have been reviewed as well as the so-called �nite element reliability methods.

Finally, the spectral stochastic �nite element method (SSFEM) has been presented,

which is claimed to provide after post-processing second moment as well as reliability

results.

As already stated in Part I, there has been little comparison of SSFEM with the other

approaches, at least no comparison with the perturbation method in the context of

second moment analysis, and no reliability study at all. The current part of this report

aims at making these comparisons and thus evaluating the e�ciency and accuracy of

SSFEM with respect to more classical approaches.

As already discussed in Part I, Chapter 5, SSFEM is only well established for linear

problems so far. Thus elastic two-dimensional mechanical problems have been chosen

for the present study. The conclusions of the study should be understood only in this

context. It is reminded that both the perturbation method and the �nite element

reliability methods can be and have already been applied to general non-linear problems

(including large strains, plasticity) as well as dynamics. These approaches have a much

larger scope than SSFEM, at least in its present stage of development. However, in the

case when all these approaches are applicable (i.e. for linear problems), the present

study will give some new lights about their respective advantages and shortcomings.
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2 Object-oriented implementation in Matlab

In order to carry out the comparisons mentioned above, numerical tools had to be

implemented. The Matlab environment was chosen for this purpose. The �rst reason

is the ease of implementation due to the numerous toolboxes for numerical analysis

provided by Matlab . The second reason is the ability of developing software within

the object-oriented paradigm. AlthoughMatlab is not by itself a fully object-oriented

language, it possesses some special features (e.g. structures, �cell arrays�) that allow to

pack information into some kinds of objects. Having adopted this way of programming,

it should not be a hard task to transfer the Matlab code into a true object-oriented

language like C++1.

In this sense, the computer code produced for the present study can be viewed as a

paste-up for later more robust implementation in C++.

3 Outline

The second part of this report is divided into four chapters. The �rst two chapters are

devoted to implementation issues, the last two chapters to the comparisons mentioned

above.

Chapter 2 presents a new random �eld discretization toolbox within Matlab . This

toolbox is later used by the di�erent programs required by the present study. It prac-

tically implements the spectral discretization schemes discussed in Part I, Chapter 2,

Sections 5-6.

Chapter 3 presents the implementation of the SSFEM method. A detailed description

of the implementation of the polynomial chaos expansion (see Part I, Chapter 5) is

given. Post-processing techniques to get second-moment and reliability results are also

detailed.

Chapter 4 is devoted to second-moment approaches. The formulation of the perturba-

tion method is particularized to the situation when the randomness in the system is

limited to a random �eld describing the Young's modulus of the material. The problem

of simulating random �elds representing material properties is then addressed. Finally

the various methods are compared on the example of computing the settlement of a

foundation over an elastic soil mass with spatially varying Young's modulus.

Chapter 5 is devoted to reliability analysis. The post-processing of SSFEM by FORM

and importance sampling is compared to a direct coupling between FORM and a

1The Matlab routines (�M-�les�) can also be automatically translated to C++ and compiled, if

desired.
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deterministic �nite element code. The serviceability of a foundation over an elastic soil

mass with spatially varying Young's modulus is investigated.





Chapter 2

Implementation of random �eld

discretization schemes

1 Introduction

Taking into account material spatial variability in �nite element analysis requires the

introduction of random �elds and the implementation of discretization schemes such

as those presented in Part I, Chapter 2. In the present chapter, attention is focused on

series expansion methods, i.e. Karhunen-Loève expansion (KL), Expansion Optimal

Linear Estimation (EOLE), and Orthogonal Series Expansion (OSE). In order to get a

versatile tool that can be used by itself, an object-oriented implementation inMatlab

is aimed at. All the input data de�ning the �eld, as well as all the quantities required

to evaluate realizations are gathered in a random �eld object.

The three proposed discretization schemes are basically implemented for Gaussian ran-

dom �elds. As an extension, lognormal �elds are dealt with by exponentiation.

2 Description of the input data

2.1 Gaussian random �elds

The implementation is limited to homogeneous one- or two-dimensional random �elds

whose mean and standard deviation are denoted by � and � respectively. Following the

notation in Part I, Chapter 2, the approximated random �eld is expressed as :

Ĥ(x; �) = �+
MX
i=1

Hi(x) �i(�)(2.1)
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where f�i(�) ; i = 1 ; :::Mg are independent standard normal variables and

fHi(x) ; i = 1 ; :::Mg are deterministic functions. More precisely, depending on the

discretization scheme, these functions are :

� related to the eigenfunctions of the covariance kernel in case of the Karhunen-

Loève expansion (see Part I, Eq.(2.42)),

� related to the autocorrelation function of the �eld in case of EOLE (see Part I,

Eq.(2.65)),

� related to a complete set of deterministic functions fhi(x)g1i=0 ( e.g. Legendre

polynomials) in case of OSE (see Part I, Eq.(2.54)).

The parameters describing a homogeneous random �eld are stored in an object (e.g.

RFinput), which is practically implemented as a structure having the following entries1 :

� RFinput.Type : its value is 'Gaussian' in this case.

� RFinput.Mean : contains the mean value �.

� RFinput.Stdv : contains the standard deviation �.

� RFinput.CorrLength : contains the correlation length of the �eld, cast as a single

scalar ` in case of 1D �elds and as an array of length 2 (e.g. [`x ; `y]) in case of

2D �elds.

� RFinput.CorrType : contains the type of the autocorrelation function. Available

options are 'exp' for exponential type :

�(x ; x0) =

8><
>:
exp(�jx� x0j

`
) for 1D �elds

exp(�jx� x0j
`x

� jy � y0j
`y

) for 2D �elds
(2.2)

and 'exp2' for exponential square type :

�(x ; x0) =

8><
>:
exp(�(x� x0

`
)2) for 1D �elds

exp(�(x� x0

`x
)2 � (

y � y0

`y
)2) for 2D �elds

(2.3)

� RFinput.DiscScheme : contains the name of the discretization scheme. Available

options are 'KL' (only available for exponential autocorrelation function), 'EOLE'

and 'OSE'.

1In Matlab as in C, components of a structure type are usually called �elds and accessed using the

operator �.�. In the sequel, the word �entry� is used instead of ��eld� in order to avoid any confusion

with the random �eld under consideration.
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� RFinput.OrderExp : contains the order of expansion, that is the number of terms

M in the summation (2.1).

� RFinput.NbPts : This entry is required when the EOLE method is chosen and

involves the de�nition of a grid. This entry contains the number of points along

each direction, de�ning a uniform grid over the domain. This is a scalar in case

of 1D �elds and an array of length 2 in case of 2D �elds.

2.2 Lognormal random �elds

By exponentiating the approximate Gaussian �eld (2.1), one gets an approximate log-

normal �eld :

l̂(x ; �) = exp

"
�+

MX
i=1

Hi(x) �i(�)

#
(2.4)

In the context of SSFEM, the latter equation is expanded over the polynomial chaos

basis (Part I, Chapter 5, Section 4.1) as :

l̂(x ; �) = �l +
PX
i=1

li(x)	i(�)(2.5)

The input parameters for such �elds are the same as those for a Gaussian �eld except

the following entries :

� RFinput.Type : its value is 'Lognormal' in this case.

� RFinput.LNMean : contains the mean value �l.

� RFinput.LNStdv : contains the standard deviation �l.

3 Discretization procedure

From the random �eld input and the geometry of the mechanical system (de�ned as

an array containing the mesh nodal coordinates, e.g. COORD), a random �eld object

(e.g. RF) is constructed. It contains both the input data provided by RFinput and the

quantities required for evaluating realizations of the �eld.

3.1 Domain of discretization

The rectangular envelope of the system 
 is determined from the array of nodal coor-

dinates. This envelope de�nes the domain of discretization of the random �eld, and is

denoted by 
RF in the sequel. It is stored in RF.Domain.
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As an alternative, this entry can be input in the form of the following

list : RF.Domain = fxmin ; xmaxg for one-dimensional �elds (resp. RF.Domain =

f[xmin ; ymin] ; [xmax ; ymax]g for two-dimensional �elds. This option is useful when the

random �eld toolbox is used by itself to numerically compare di�erent discretization

schemes.

3.2 The Karhunen-Loève expansion

The approximate random �eld in this case is de�ned by :

Ĥ(x; �) = �+
MX
i=1

�
p
�i 'i(x) �i(�) ; x 2 
RF(2.6)

where (�i ; 'i) are the solution of the eigenvalue problem :Z

RF

�(x ; x0)'i(x
0) d
x0 = �i 'i(x)(2.7)

In case of an exponential autocorrelation function (see Eq.(2.2)) and rectangular do-

main, the latter equation can be solved in closed form.

3.2.1 One-dimensional case

Suppose 
RF = [�a ; a]. The eigenvalue problem (2.7) can be rewritten as :

Z a

�a

e
�
jx� x0j

` 'i(x
0) dx0 = �i 'i(x)(2.8)

where ` is the correlation length. The solution of Eq.(2.8) is (Ghanem and Spanos,

1991b) :

� for i odd, i � 1 :

�i =
2 `

1 + !2i `
2

(2.9-a)

'i(x) = �i cos!ix ; �i =
1r

a+
sin 2!ia

2!i

(2.9-b)

where !i is the solution of :

1

`
� !i tan!ia = 0 in the range [(i� 1)

�

a
; (i� 1

2
)
�

a
](2.10)
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� for i even, i � 2 :

�i =
2 `

1 + !2i `
2

(2.11-a)

'i(x) = �i sin!ix ; �i =
1r

a� sin 2!ia

2!i

(2.11-b)

where !i is the solution of :

1

`
tan!ia + !i = 0 in the range [(i� 1

2
)
�

a
; i
�

a
](2.12)

All coe�cients f�i ; !ig are computed for i = 1 ; :::M and stored as additional entries

of RF.

3.2.2 Two-dimensional case

Following Ghanem and Spanos (1991b), the solution of the two-dimensional eigenvalue

problem is simply obtained by products of one-dimensional solutions, e.g. :

�i = �1Di1 � �1Di2(2.13)

'(x) � '(x ; y) = 'i1(x) � 'i2(y)(2.14)

where superscript 1D refers to the one-dimensional solution given in the above para-

graph. In implementation, the products of the 1D eigenvalues are computed and sorted

in descending order, and the M greatest products are stored together with the corre-

sponding subscripts (i1 ; i2) as additional entries of RF.

3.2.3 Case of non symmetrical domain of de�nition

If 
RF is non symmetric, e.g. 
RF = [xmin ; xmax], a shift parameter is computed :

T =
xmin + xmax

2
(2.15)

Then the eigenvalue problem is solved over :


0RF = 
RF � T =

�
xmin � xmax

2
;
xmax � xmin

2

�
(2.16)

which is symmetric, and Eq.(2.6) is replaced by :

Ĥ(x; �) = �+
MX
i=1

�
p
�i 'i(x� T ) �i(�) ; x 2 
RF(2.17)
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3.3 The EOLE method

The EOLE method requires the de�nition of a grid. In the current implementation,

uniform grids are de�ned within the rectangular domain of discretization 
RF. The

number of points de�ning the grid (in each direction for 2D problems) is speci�ed

in the entry RFinput.NbPts. First the coordinates of all the nodes of this grid are

computed, say fx1 ; :::xNg. The array containing these coordinates is stored in the

entry RF.COORD. It is emphasized that these nodes are di�erent from the nodes of the

structural mesh. In other words, a completely independent de�nition of the structural

mesh and the random �eld mesh is possible.

In case of a homogeneous Gaussian �eld, it can be shown from (Part I, Eq.(2.65)) that

the discretized random �eld reduces to :

Ĥ(x; �) = �+ �
MX
i=1

�i(�)p
�i
�i

TCx;xi(2.18)

where Cx;xi = f�(x� xi) ; i = 1 ; :::Mg, and (�i ; �i) is the solution of the eigenvalue

problem :

C���i = �i�i(2.19)

C�� being the correlation matrix whose terms are given by :

C��(k; l) = �(xk � xl)(2.20)

In implementation, the correlation matrix Eq.(2.20) is �rst computed from the grid

coordinates RF.COORD. Using aMatlab built-in procedure, theM greatest eigenvalues

�i and corresponding eigenvectors �i are then computed and stored as additional entries

of RF. It is noted that the full eigenvalue problem does not have to be solved, if an

algorithm computing the greatest eigenvalues one by one is available.

3.4 The OSE method

3.4.1 General formulation

The discretized random �eld in this case reads (see Eq.(2.54) in Part I) :

Ĥ(x; �) = �+
MX
i=1

hi(x)�i(�)(2.21)

where � = f�1(�) ; ::: �M(�)g is a zero-mean Gaussian vector, whose covariance matrix
��� is de�ned by :

���(k ; l) = E [�k�l] =

Z

RF

Z

RF

�2 �(x ; x0) hk(x) hl(x
0) dx dx0(2.22)
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The spectral decomposition of this covariance matrix is :

��� �� = � ��(2.23)

where � is the diagonal matrix of eigenvalues and � contains the corresponding eigen-

vectors arranged in columns. Consequently, the correlated Gaussian vector � can be

transformed into an uncorrelated vector � as follows :

� = � ��1=2 � �(2.24)

where �1=2 is a diagonal matrix whose terms are the square roots of the diagonal terms

of �. Substituting for (2.24) into (2.21) �nally gives :

Ĥ(x; �) = �+
MX
i=1

p
�i

(
MX
k=1

�k
i hk(x)

)
�i(�)(2.25)

3.4.2 Construction of a complete set of deterministic functions

Following Zhang and Ellingwood (1994), the set of deterministic functions fhn(x)g1n=1
is based upon the Legendre polynomials fPn(x)g1n=0, which can be de�ned by the

recursive equations :

P0(x) = 1 ; P1(x) = x(2.26-a)

Pn+1(x) =
1

n+ 1
[(2n+ 1) xPn(x)� nPn�1(x)] n � 1(2.26-b)

The Legendre polynomials have the following elementary properties :

Pn(�1) = (�1)n(2.27-a)

Pn(0) =

8><
>:
0 if n odd

n!

2n=2
�
n
2

�
!

if n even
(2.27-b)

Pn(1) = 1(2.27-c)

and satisfy the following orthogonality conditions :

Z 1

�1

Pm(x)Pn(x) dx =

8<
:
0 if n 6= m

2

2m+ 1
if n = m

(2.28)

Considering the one-dimensional discretization domain 
RF = [xmin ; xmax], it is pos-

sible to construct a set of orthonormal deterministic functions fhn(x)g1n=1 based upon

the Legendre polynomials as follows :
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hn(x) =

r
2n� 1

2 a
Pn�1(

x� T

a
) n = 1 ; 2 ; :::(2.29)

where :

T =
xmin + xmax

2
(2.30-a)

a =
xmax � xmin

2
(2.30-b)

are the shift and scaling parameters respectively.

The covariance matrix ��� Eq.(2.22) in this case is given by :

���(k ; l) =
�2

2 a

p
(2 k � 1)(2 l � 1)

Z xmax

xmin

Z xmax

xmin

�(x ; x
0)Pk�1(

x� T

a
)Pl�1(

x0 � T

a
) dx dx0

(2.31)

Introducing the mapping :

u =
x� T

a
(2.32-a)

v =
x0 � T

a
(2.32-b)

Eq.(2.31) reduces to

���(k ; l) =
a �2

2

p
(2 k � 1)(2 l � 1)

Z 1

�1

Z 1

�1

� (a u ; a v)Pk�1(u)Pl�1(v) du dv(2.33)

Using a Gaussian integration procedure, the above equation is evaluated by

���(k ; l) =
a �2

2

p
(2 k � 1)(2 l� 1)

NPGX
i=1

NPGX
j=1

wiwj � (aXi ; aXj)Pk�1(Xi)Pl�1(Xj)

(2.34)

where f(wi ; Xi) ; i = 1 ; :::NPGg are the integration weights and points, respectively.

To get an invertible covariance matrix, the number of Gaussian points NPG should

be greater than the number of random variables M . In implementation, NPG = 16

was used in the computation. To e�ciently evaluate Eq.(2.34), two matrices are �rst

computed :

� Matrix C of size NPG� NPG, containing :

C(i ; j) = � (aXi ; aXj)(2.35)
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� Matrix LP of size M � NPG, containing :

LP(k ; l) = Pk�1(Xl)(2.36)

After ��� has been computed using Eqs.(2.34)-(2.36), the spectral decomposition is

performed using aMatlab built-in procedure. The correlation matrix, the eigenvalues

and eigenvectors are stored as additional entries of the object RF. Subsequent evalua-

tions of the �eld are obtained by Eq.(2.25).

3.5 Case of lognormal �elds

Lognormal �elds are treated as the result of the exponentiation of a discretized Gaussian

�eld. From the mean value �l and standard deviation �l (stored in RFinput.LNMean

and RFinput.LNStdv, respectively), the mean value � and standard deviation � of the

underlying Gaussian �eld are �rst computed from :

� =
q
ln(1 + �2

l
=�2

l
)(2.37)

� = ln�l � 1

2
�2(2.38)

They are stored in the entries RF.Mean and RF.Stdv respectively.

Then the underlying Gaussian �eld is discretized using one of the three methods de-

scribed in the preceding sections.

4 Visualization tools

When dealing with Gaussian random �elds, the accuracy of the discretization can be

evaluated by means of the following point estimator :

"rr(x) =
Var

h
H(x)� Ĥ(x)

i
Var [H(x)]

(2.39)

For homogeneous �elds (i.e. Var [H(x)] � �2), this estimator can be given closed form

expressions depending on the discretization scheme :

KL method :

"rr(x) =
1

�2
Var

"
1X

M+1

�
p
�i'i(x) �i(�)

#

=
1X

M+1

�i '
2
i (x)(2.40)

= 1�
MX
i=1

�i '
2
i (x)
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EOLE method (see Eq.(2.66) in Part I) :

"rr(x) = 1�
MX
i=1

1

�i

�
�i

TCx;xi

�2
(2.41)

OSE method Due to the independence of the basic random variables f�ig1i=1 in the

KL and EOLE expansions, it can be seen from Eqs.(2.40)-(2.41) that the variance

of the error is simply the di�erence between the variances of H(x) and ^H(x),

leading to :

"rr(x) = 1�
Var

h
Ĥ(x)

i
�2

(2.42)

Such a result does not hold when dealing with correlated variables. In the case

of OSE method, the expression for error estimator (2.39) requires a little more

algebra. Letting aside the mean value (i.e. assuming in the sequel that � = 0),

and restricting to the one-dimensional case, one can write :

Ĥ(x ; �) =
MX
i=1

hi(x)�i(�)(2.43)

where, due to the orthonormality of the deterministic basis functions :

�
i(�) =

Z



H(y ; �) hi(y) dy(2.44)

The variance of the error can be written as :

Var
h
H(x)� Ĥ(x)

i
= E

��
H(x)� Ĥ(x)

�2�

= E
�
H2(x)

�
+ E

h
Ĥ2(x)

i
� 2E

h
H(x) Ĥ(x)

i(2.45)

From Eq.(2.43), one gets :

E
h
Ĥ2(x)

i
= �2

MX
i=1

MX
j=1

hi(x) hj(x)C��(i ; j)(2.46)

where C�� is given in Eq.(2.22). From Eqs.(2.43)-(2.44), one can write :

E
h
H(x) Ĥ(x)

i
= E

"
H(x)

MX
i=1

hi(x)

Z



H(y) hi(y) dy

#
(2.47)

By regrouping the deterministic terms outside the expectation operation, one

gets :

E
h
H(x) Ĥ(x)

i
=

MX
i=1

hi(x)

Z



hi(y)E [h(x)h(y)] dy

= �2
MX
i=1

hi(x)

Z



hi(y)� (x ; y) dy

(2.48)
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Substituting for Eqs.(2.46),(2.48) in Eq.(2.45), and dividing by E [H2(x)] = �2

gives eventually the error estimator :

"rr(x) = 1 +
MX
i=1

MX
j=1

hi(x) hj(x)C��(i ; j)� 2
MX
i=1

hi(x)

Z



hi(y)� (x ; y) dy

(2.49)

where the integral in the above equation is numerically computed using Gaussian

integration.

A routine plotting the error estimator over the domain 
RF has been implemented. In

addition, the mean value �" of this error estimator over the domain is computed, which

gives an indication on the global accuracy of the discretization :

�" =
1

j
RFj
Z

RF

"rr(x) d
(2.50)

This can be used for instance to determine the order of expansion M yielding a mean

error smaller than a prescribed tolerance. Figure 2.1 shows an example of the output

for di�erent discretization schemes, in case of one-dimensional �eld. So does Figure 2.2

in case of two-dimensional �elds and EOLE discretization scheme.

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

x

εr
r(

x)

Order of expansion : 4

Mean Error over the domain :

KL   : 0.112

EOLE : 0.117

OSE  : 0.132

KL  
EOLE
OSE 

Figure 2.1: Error estimator computed for di�erent discretization schemes - one-

dimensional �eld

5 Conclusion

This chapter has presented the implementation of a random �eld discretization tool-

box within Matlab . Due to the object-oriented programing, this toolbox is easily



112 Chapter 2. Implementation of random �eld discretization schemes

0
10

20
30

40
50

0

10

20

30
0

0.1

0.2

0.3

0.4

Order of expansion :3

Error variance along the discretization domain

Discretization scheme :EOLE

V
ar

 [H
(x

) 
−

 H
app

(x
)]

Figure 2.2: Error estimator computed for EOLE expansion - two-dimensional �eld

extensible to other types of discretization (e.g. OSE based on other deterministic basis

functions than the Legendre polynomials), autocorrelation functions (e.g. with trian-

gular decaying) or three-dimensional �elds. This toolbox has been used to compare the

accuracy of the series expansion discretization methods in Part I, Chapter 2, Section 6.



Chapter 3

Implementation of SSFEM

1 Introduction

1.1 Preliminaries

As presented in Part I, Chapter 5, the Spectral Stochastic Finite Element Method

(SSFEM) aims at representing the mechanical response of a system (e.g. the vector

of nodal displacements) through its coe�cients over a basis of the space of random

variables L2(� ; F ; P ). Any nodal displacement, now considered as a random variable,

is described as a truncated series :

u(�) =
P�1X
j=0

uj 	j

�f�k(�)gMk=1�(3.1)

where f	j

�f�k(�)gMk=1�g is the so-called polynomial chaos basis de�ned by means of M

standard normal variables f�k(�)gMk=1, and fujg are the �coordinates� of the random

variable u over this basis.

As already discussed in Chapter 1, SSFEM is practically applicable only to linear

problems. Thus the current implementation is limited to linear elastic two-dimensional

mechanical problems. Furthermore, the material Young's modulus will be the only

parameter considered as spatially variable, and consequently modeled as a random

�eld.

1.2 Summary of the procedure

As with any �nite element program, SSFEM is organized in three stages :

� The pre-processing stage : The data describing the mechanical model and the

random �eld discretization are provided in theMatlab workspace. In the context
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of an object-oriented implementation, this data is gathered in two objects called

Model and RF respectively. Details of this construction are given in section 2.

The implementation of SSFEM also requires the representation of the polynomial

chaos in a practical computational way. This is done by considering the polyno-

mial chaos as the multidimensional Hermite polynomials. All data regarding the

polynomial chaos is then stored in a single object called PC. Details are given in

section 3.

� The analysis stage : Element sti�ness matrices are computed, then assembled

to form a global linear system of equations, on which boundary conditions are

applied. The unknowns of this system are the set of coe�cients fukjg describing
the probabilistic structure of each nodal displacement uk, see Eq.(3.1). Details

regarding this stage are given in section 4.

� The post-processing stage : The set of coe�cients fukjg are used either for

second-moment or reliability analysis. Details are given in section 5.

Remark All along this chapter,Matlab variable names (e.g. Model, RF, PC) are used

for the sake of clarity. The user can of course choose any other name, provided there is

consistency in the input �le specifying the data to be put in the Matlab workspace.

2 SSFEM pre-processing

2.1 Mechanical model

To get started with a �nite element analysis, the following data describing the mechan-

ical model has to be provided in the Matlab workspace.

� A �ag variable (e.g. TypeDef), set to 0 or 1 whether a plane stress or plane strain

analysis is carried out.

� An array of nodal coordinates (e.g. COORD) of size NbNodes �2, where NbNodes

is the number of nodes of the mesh.

� A connectivity array (e.g. CONEC) of size NbElts � NbNodesElt, where NbElts

is the number of elements and NbNodesElt the maximum number of nodes per

element.

� An element data structure (e.g. ELData) containing the type of each element

(ELData.type) and its constitutive material ((ELData.mat). Each entry is an in-

teger array of size NbElts. For instance 4-node isoparametric elements correspond

to ELData.type(i) = 1 for i = 1 ; ::: NbElts.
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� A material structure (e.g. MATS) containing the parameters of the material con-

stitutive law. For linear elastic isotropic material, the entries corresponding to

material #i are :

� MATS{i}.E : Young's modulus

� MATS{i}.nu : Poisson's ratio

� MATS{i}.initialstress : an array describing the initial stress state in the

structure (a linear variation with respect to coordinates can be speci�ed.)

� MATS{i}.bodyforces : an array of length 2 containing the prescribed body

forces in x and y directions.

� A boundary conditions array (e.g. BC) of size NbNodes � 2. For each node i and

each degree of freedom j = 1 ; 2, BC(i ; j) is set to 1 to impose a zero value of the

corresponding nodal displacement (default value of BC is thus 0).

� A load vector (e.g. LOADS) of size NbNodes � 2, allowing to prescribe nodal loads.

All the above arrays are gathered into a structure called Model. This allows passing all

the parameters of the mechanical model as a single variable to subroutines. The input

data described so far is su�cient to run a deterministic analysis. For each application,

such an analysis is carried out systematically in order to check the data as well as the

quality of the mesh with respect to the output quantity under consideration.

2.2 Random �eld de�nition

The parameters describing the random �eld and its discretization scheme are gathered

in a structure (e.g. RFinput), see Chapter 2, Section 2. From this object and the mesh

coordinates COORD, a random �eld object (e.g. RF) is created as described in Chapter 2,

Section 3.

3 Polynomial chaos

3.1 Introduction

The M -th dimensional p-th order polynomial chaos consists in a set of multidimen-

sional Hermite polynomials in f�1 ; ::: �Mg, whose degree does not exceed p (see Part I,

Chapter 5). In implementation, each of these polynomials is completely de�ned by a

sequence of M non-negative integers f�1 ; ::: �Mg as follows :

	� =
MY
i=1

h�i(�i) ; �i � 0(3.2)
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where hq(:) is the q-th Hermite polynomial. Let us furthermore denote by @� =
MX
i=1

�i

the degree of the list �.

The implementation of the polynomial chaos requires :

� computing and storing the (one-dimensional) Hermite polynomials,

� generating all the lists �, whose degree is less or equal than p. These lists are

numbered from 0 to P � 1 and the polynomials simply denoted by f	j ; j =

0 ; ::: P � 1g1.

In the context of SSFEM, the variables f�1 ; ::: �Mg are standard normal variables.

Furthermore, expectations of products of polynomials appear in the calculation (See

Part I, Chapter 5, Section 2), namely :

� E
�
	2
j

�
, interpreted as the square norm of the basis function 	j in L2(� ; F ; P ).

� cijk = E [�i	j	k]. These coe�cients are required when the input random �eld is

Gaussian.

� dijk = E [	i	j	k]. These coe�cients are required when the input random �eld is

lognormal.

3.2 Implementation of the Hermite polynomials

The Hermite polynomials can be de�ned by a recursive algorithm as follows :

h0(x) = 1(3.3-a)

d hq(x)

dx
= q hq�1(x)(3.3-b)

hq(0) =

8><
>:
0 if q odd

(�1)q=2 q!

2q=2
�
q
2

�
!

if q even
(3.3-c)

Polynomial hq is stored as an array of q + 1 coe�cients computed from those of hq�1
by means of Eqs.(3.3-b)-(3.3-c). The set of polynomials is gathered in a single object

using the cell array feature of Matlab . A cell array Z is basically an array whose

elements Zfig ; i = 1 ; ::: can be of any kind (i.e. not necessarily the same for all of

them). In the present example, this feature is mandatory, since the arrays representing

the Hermite polynomials have di�erent lengths.

1In the actual implementation, subscript j varies from 1 to P to comply withMatlab requirements

on array indexing.
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3.3 Implementation of the polynomial basis

For each degree q = 1 ; ::: p, the goal is to compute all the lists of non-negative integers

whose sum equals q. This problem is equivalent to that of �lling (M + q � 1) boxes

with (M�1) balls as illustrated in Figure 3.1. The correspondence between the integer

sequences and the ball samples is as follows :

� for each integer �i in the sequence, skip �i boxes and put a ball in the next box;

� conversely, for each sample of ball positions, each integer equals the number of

empty boxes (possibly 0) between two consecutive balls.

From this equivalence, the number of lists � of degree @� = q is the number of the

corresponding ball samples, that is the binomial factor

�
M + q � 1

M � 1

�
=

�
M + q � 1

q

�
,

which appears in (Part I, Eq.(5.58)).

1 0 1 0

0 0 0 2

Integer sequence

h1(�1) � h1(�3) = �1 �3

Polynomial basis

h2(�4) = �24 � 1

ball sample

Figure 3.1: Correspondance between ball samples and integer sequences � (M = 4 ; q =

2)

The following recursive algorithm was used to generate all possible ball samples (see

the complete generation in Figure 3.2 in case of (M = 4 ; q = 2)) :

� For a given q, the initial sample corresponds to all balls in the (M�1) �rst boxes,

which corresponds to the list � = f0 ; 0 ; ::: 0 ; qg.

� From the current sample, the next one is recursively obtained by shifting the

rightmost ball by one box to the right. If this is not possible (i.e. the ball is

already in the rightmost box), then the rightmost ball that can be shifted by one

box to the right is found. This ball is shifted, and all the balls lying to its right

are brought back to its immediate right.

For each ball sample, the corresponding integer sequence � is computed and

stored as an array of length M .

� The set of all polynomials is �nally gathered in a cell array.
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�24 � 1

Polynomial basis

�1 �4

�22 � 1

�3 �4

�23 � 1

�1 �3

�2 �4

�2 �3

�1 �2

�21 � 1

Ball sample

0 0 0 2

Integer sequence

0 0 1 1

0 0 2 0

0 1 0 1

0 1 1 0

0 2 0 0

1 0 0 1

1 0 1 0

1 1 0 0

2 0 0 0

Figure 3.2: Recursive generation of the polynomial chaos (M = 4 ; q = 2)

3.4 Computation of expectation of products

3.4.1 Products of two polynomials

By de�nition, Hermite polynomials in standard normal variables are orthogonal with

respect to the expectation operator :

E [hp(�) hq(�)] = �pq p!(3.4)

where �pq is the Kronecker symbol. By extension, the polynomials f	j ; j = 0 ; ::: P�1g
are also orthogonal and satisfy :

E [	� �	�] = ��� �
MY
i=1

�i!(3.5)

where ��� is the Kronecker symbol, whose value is 1 if sequences � and � are identical

and 0 otherwise.
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3.4.2 The product of two polynomials and a standard normal variable

When dealing with Gaussian random �elds within SSFEM, the coe�cients cijk =

E [�i	j	k] are required. For further derivation, let us consider that 	j (resp. 	k) cor-

responds to the integer sequence � (resp. �), see Eq.(3.2). From the independence of

the standard normal variables f�1 ; ::: �Mg, it follows that :

cijk � E [�i	�	�] = E [�i h�i(�i) h�i(�i)] �
Y
l 6=i

E [h�l(�l) h�l(�l)](3.6)

Thus if for any given j0 6= i, �j0 and �j0 are di�erent, the above product vanishes

due to the orthogonality of h�j0 and h�j0 . Otherwise, � and � di�er only by their i-th

component and Eq.(3.6) reduces to :

cijk � E [�i	�	�] = E [�ih�i(�i)h�i(�i)] �
Y
l 6=i

�l!(3.7)

The problem is now reduced to that of computing E [� hp(�)hq(�)], when � is a standard

normal variable, and hp ; hq are Hermite polynomials in �.

Introducing the probability density function of �, one gets :

E [� hp(�)hq(�)] =

Z
R

1p
2 �

hp(x) hq(x) x e
� 1

2
x2 dx(3.8)

By partial integration, the above expression becomes :

E [� hp(�)hq(�)] = E

�
d

d�
fhp(�)hq(�)g

�
= E

�
dhp(�)

d�
hq(�) +

dhq(�)

d�
hp(�)

�
(3.9)

Using Eq.(3.3-b), one �nally gets :

E [� hp(�)hq(�)] = p! �p�1;q + q! �p;q�1(3.10)

This result is substituted for in Eq.(3.7) to eventually get cijk.

3.4.3 Products of three polynomials

When dealing with lognormal random �elds within SSFEM, the coe�cients fdijk =

E [	i	j	k]g are required. From Eq.(3.2) and the independence of the standard normal

variables f�1 ; ::: �Mg, it follows that :

dijk =
MY
l=1

E [h�l(�l)h�l(�l)h
l(�l)](3.11)

which requires the expectation of a product of three Hermite polynomials in �l. Unfor-

tunately, no simple formula similar to Eq.(3.10) can be derived in this case. Thus the

rather ine�cient following algorithm is used :
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� The coe�cients of the polynomial product is algebraically computed using a

Matlab built-in function :

Ql(�l) � h�l(�l)h�l(�l)h
l(�l) =

�l+�l+
lX
r=0

arl �l
r(3.12)

� Using the linearity of the expectation operator and the closed form solution for

the moments of the standard normal variable �l, one obtains :

E [Ql(�l)] = E [h�l(�l)h�l(�l)h
l(�l)] =

�l+�l+
lX
r = 0
r even

arl
r!

2r=2
�
r
2

�
!

(3.13)

� Eq.(3.13) is used for l = 1 ; :::M and the results are multiplied according to

Eq.(3.11).

Due to the symmetry in the subscripts of the coe�cients subscripts, only those dijk
that are associated with 0 � i � j � k � P � 1 are computed and stored.

3.5 Conclusion

This technical section has described the practical implementation of the polynomial

chaos. All the basis polynomials and related coe�cients are eventually gathered in a

single object called PC, de�ned as aMatlab structure. It is emphasized that except in

Ghanem and Spanos (1991b), no details about the implementation of SSFEM could be

found in the literature. The method proposed by Ghanem and Spanos used symbolic

calculus, which is much more complicated to implement than the approach proposed

in the present report. It is believed that the present chapter provides new solutions to

this problem.

4 SSFEM Analysis

As any �nite element software, the core of the SSFEM program consists in comput-

ing element sti�ness matrices and nodal forces, assembling element contributions and

solving the obtained linear system. These di�erent steps are described in detail in the

sequel.
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4.1 Element stochastic sti�ness matrix

In the context of two-dimensional elastic problems with spatially variable Young's

modulus, the element sti�ness matrix is given by (Chapter 5, Section 2) :

ke(�) =

Z

e

H(x ; �)BT �Do �B d
e(3.14)

where H(x ; �) is the random �eld representing the material Young's modulus and Do

is the elasticity matrix computed with unit Young's modulus. Substituting for the trun-

cated series expansion (2.1) into (3.14) leads to computing the following deterministic

matrices :

� the mean element sti�ness matrix :

�k
e
=

Z

e

�BT �Do �B d
e(3.15)

� M weighted element sti�ness matrices :

kei =

Z

e

Hi(x)B
T �Do �B d
e i = 1 ; :::M(3.16)

For 4-node isoparametric elements, a 2�2 Gaussian integration scheme was used

to compute these integrals2.

Equivalent nodal forces resulting from initial stresses �o and body forces b were com-

puted as follows :

f e =

Z

e

�BT � �o d
e +

Z

e

NT � b d
e(3.17)

where N stands for the matrix of the element shape functions and B for the matrix

yielding the strain components from the nodal displacements.

4.2 Assembly procedures

A standard assembling technique is used to get the mean and weighted global sti�ness

matrices, i.e. :

�K =
[
e

�k
e
=
[
e

Z

e

�BT �Do �B d
e(3.18-a)

Ki =
[
e

kei =
[
e

Z

e

Hi(x)B
T �Do �B d
e(3.18-b)

2A 3 � 3 scheme was tried but gave practically the same result for larger computation time, and

was thus abandoned.
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This step is called the �rst level of assembly.

The Galerkin technique associated with SSFEM then leads to the following system of

equations using the above matrices (see Part I, Eq.(5.22)) :

MX
i=0

P�1X
j=0

cijkKi �U j = F k k = 0 ; ::: P � 1(3.19)

where the terms corresponding to i = 0 are the mean quantities, i.e., Ko � �K and

U o � �U . Moreover, in case of deterministic loading, the vectors F k appearing in

the right hand side of Eq.(3.19) are all zero except the �rst one F o. Introducing the

notation :

Kjk =
MX
i=0

cijkKi = cojk �K +
MX
i=1

cijkKi j ; k = 0 ; ::: P � 1(3.20)

Eqs.(3.19) can be cast in the following form :2
6664

Koo : : : Ko;P�1

K1o : : : K1;P�1

...
...

KP�1;o : : : KP�1;P�1

3
7775 �
2
6664

U o

U 1

...

UP�1

3
7775 =

2
6664
F o

0
...

0

3
7775(3.21)

which may be rewritten formally as :

K � U = F(3.22)

Building the above matrixK from theKjk matrices is called the second level of assem-

bly. In implementation, the matrices Kjk are �rst computed using (3.20). Attention is

paid to summing up only those terms associated with cijk 6= 0. Then Kjk is plugged

into the large matrix K as indicated in (3.21). The number of unknowns in the system

(3.21) is N � P , where N is the number of degrees of freedom of the structure (i.e.

twice the number of nodes in two-dimensional continuum analysis), and P is the size

of the polynomial chaos basis.

4.3 Application of the boundary conditions

The boundary conditions are assumed to be deterministic and given in terms of a set

of �xed degrees of freedom I (i.e. for which the nodal displacement is set to zero).

Considering Eq.(3.21), this writes :

uj
k = 0 8 k 2 I ; 8 j = 0 ; ::: P � 1(3.23)

where uj
k is the k-th component of vector U j in (3.21).

The Lagrange multiplier technique is used, where a partial back-substitution of the con-

straints equations fujk = 0g leads to the following operations onto the global sti�ness
matrix K :
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� 8 k 2 I ; 8 j = 0 ; ::: P � 1, row and column #(j N + k) are all set to zero, then

the diagonal term is set equal to 1.

� The corresponding right-hand side component Fj
k is set equal to 0.

However the same result can be obtained with greater computational e�ciency by

applying the boundary conditions onto the Kpq matrices before the second level of

assembly. Precisely, the following operations are applied on each Kpq :

� if p 6= q, for each k 2 I, row and column #k of Kpq are set equal to 0.

� if p = q, the same operation is applied, then the diagonal term Kpq(k ; k) is set

equal to 1.

4.4 Storage and solver

As in deterministic �nite element analysis, all the matrices involved in the calculation

(i.e. �K ; Ki ; Kjk) are sparse, that is, contain a great number of zeros. Thus the sparse

storage option in Matlab is used in their declaration. In this case, only the non zero

terms of are stored together with the indices of their position.

After having declared these matrices as sparse, the user can perform any operation

without worrying about the storage issues, which greatly simpli�es the implementa-

tion. The solution of the problem, i.e. U = fU o ; :::UP�1g is �nally obtained using a

Matlab built-in solver.

By running examples, it appeared that the most time consuming step in the analysis is

the second level of assembly. The solving step itself usually represented a small fraction

of the total computation time. This can be explained by the fact that an interpreted

code is used for the assembly steps, whereas the solver is a compiled Matlab routine.

A di�erent behavior would be expected if the program were to be fully compiled.

5 SSFEM post-processing

The crude output of the SSFEM analysis is a set of nodal displacement coe�cients

U = fUo ; :::UP�1g which allow to represent the random vector of nodal displacements

as :

U(�) =
P�1X
j=0

U j	j

�f�k(�)gMk=1�(3.24)
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5.1 Strain and stress analysis

For any given element 
e, let us gather the nodal displacements into a vector :

ue(�) =
P�1X
j=0

uej 	j

�f�k(�)gMk=1�(3.25)

The strain- and stress components at a given point x are random variables obtained

as :

�(x ; �) = B(x)
P�1X
j=0

uej 	j

�f�k(�)gMk=1�(3.26)

�(x �) =

"
�+

MX
i=1

�i(�)

#
DoB(x)

P�1X
j=0

uej 	j

�f�k(�)gMk=1�(3.27)

5.2 Second moment analysis

The second order statistics of the nodal displacements are given by :

E [U ] = �U � U o(3.28)

Cov [U ; U ] =
P�1X
i=1

E
�
	2
i

�
U i �UT

i(3.29)

Similar results can be obtained for strain and stress components by means of Eqs.(3.26)-

(3.27).

5.3 Reliability analysis

As described in Part I, Chapter 4, reliability analysis is based on the de�nition of a

limit state function depending on the output of the mechanical analysis. For the sake of

simplicity, only displacement-based limit state functions are considered in the sequel :

g(U(�)) = u� ui0(�)(3.30)

where uio(�) is a (random) nodal displacement under consideration and u is a prescribed

threshold. Substituting the io-th component of the vectorial equation (3.24) in (3.30)

yields the following analytical polynomial expression of the limit state function in terms

of M standard normal variables f�k(�)gMk=1 :

g(U(�)) = u�
P�1X
j=0

uioj 	j

�f�k(�)gMk=1�(3.31)
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In the latter equation, the coe�cients uioj are known from the analysis stage, see sec-

tion 4.

A FORM analysis using the iHLRF algorithm can be carried out to determine the design

point �� and the corresponding values of the reliability index � and the probability of

failure. Thereafter, importance sampling around the design point can be performed in

order to get a more accurate value of the probability of failure. This is computationally

cheap since the expression of the limit state function is analytical.

It is emphasized that the limit state function is already de�ned in terms of standard

normal variables, which avoids any probabilistic transformation within the iHLRF al-

gorithm (see Part I, Chapter 4, Section 2.4).

Moreover, the gradient of g(U(�)) can be given a closed form expression. Indeed, re-

calling the integer sequence representation (3.2) of 	j � 	�, one gets :

@	�

@�k
=

(
0 if �k = 0

�k h�k�1(�k) �
Q

l 6=k h�l(�l) otherwise
(3.32)

5.4 Probability density function of a response quantity

The probability density function (PDF) of uio can also be determined using sensitivity

analysis. From (3.31) one gets :

Pf = P
�
u � uio

�
= 1� Fio(u)(3.33)

where Fio is the cumulative distribution function (CDF) of random variable uio. Using

now Eq.(4.84) of Part I, the PDF of uio is :

fio(u) =
dFio
du

= �dPf
du

= '(�(u))
d�

du
(3.34)

Using Eq.(4.82) of Part I, one has :

d�

du
=

1

kr� g(U(��(u)) ; u) k �
@g(� ; u)

@u
(3.35)

In this expression, the derivative of g with respect to u is simply 1 due to the form of

(3.31). Thus substituting for (3.35) in (3.34) �nally yields :

fio(u) =
'(�(u))

kr� g(U(��(u)) ; u) k(3.36)

To compute the entire PDF of a nodal displacement, a FORM analysis is carried out

for di�erent thresholds u, for which Eq.(3.36) is evaluated.



126 Chapter 3. Implementation of SSFEM

6 Conclusions

This chapter has presented the implementation of the Spectral Stochastic Finite El-

ement Method (SSFEM) in the Matlab environment. Object-oriented programming

was aimed at, �rst to allow a versatile utilization of the code, second to build a base

for later implementation in a true object-oriented language like C++.

An original implementation of the polynomial chaos basis was proposed, which is be-

lieved to be simpler than the only other implementation found in the literature, i.e.

that by Ghanem and Spanos (1991b).

The SSFEM procedure was described in detail from data pre-processing to solution and

to post-processing. Results obtained from the second moments (resp. reliability) post-

processing should now be compared with other approaches, i.e. perturbation method

and Monte Carlo simulation (resp. direct coupling between a deterministic �nite ele-

ment code and the FORM procedure). This is the goal of Chapter 4 (resp. Chapter 5).



Chapter 4

Second moment analysis

1 Introduction

The aim of this chapter is to compare second moment methods for elastic two-

dimensional mechanical problems involving spatial variability of material properties.

Precisely, modeling the Young's modulus of the material as a random �eld, the mean

value and standard deviation of response quantities such as nodal displacements are

computed. Three di�erent methods have been implemented.

� The crude Monte-Carlo simulation consists in simulating samples of the random

�eld, then carrying out a deterministic �nite element analysis of the mechanical

problem, and �nally, statistically treating the response quantities of interest.

� The perturbation method presented in Part I, Chapter 3, Section 2 is applied

at �rst and second order, the speci�c formulation associated with random �elds

being �rst discussed.

� The SSFEM method is applied followed by the post-processing procedure de-

scribed in Chapter 3, Section 5.2.

These three approaches are applied to compute the statistics of the settlement of a

foundation over an elastic layer, whose heterogeneity is accounted for by modeling its

Young's modulus as a random �eld.
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2 Monte Carlo simulation

2.1 Introduction

The principle of the Monte Carlo method is to simulate a large number of samples (here

realizations of the random �eld) then compute for each sample the response quantity

under consideration (here a given nodal displacement) and then perform a statistical

treatment of the sample population.

This approach requires being able to analyze by �nite elements a structure whose

material properties (e.g. Young's modulus) are realizations of a random �eld. To prop-

erly take into account the spatial variability, a deterministic �nite element code called

Femrf was implemented for two-dimensional elastic problems.

2.2 The �nite element code Femrf

The only di�erence between Femrf and a standard �nite element code is in the way

the element sti�ness matrices are computed. Considering a realization H(x ; �o) of the

random �eld modeling the material Young's modulus, the element sti�ness matrix is

given by (See Eq.3.14) :

ke(�o) =

Z

e

H(x ; �o)B
T (x) �Do �B(x) d
e(4.1)

Using the isoparametric formulation, this integral is recast over a reference domain 
R
(unit square in the case of 4-node quadrangles) as follows :

ke(�o) =

Z

R

H(x(�) ; �o)B
T (�) �Do �B(�) jJx;�j d
R(4.2)

where Jx;� is the determinant of the mapping x(�).

Using Gaussian integration, the latter equation becomes :

ke(�o) �
NPGX
i=1

wiH(x(�i) ; �o)B
T (�i) �Do �B(�i) jJx;�j(4.3)

where NPG is the number of integration points, whose coordinates are �i and related

weights are wi. Thus Eq.(4.3) requires the evaluation of the current realization �o of

the random �eld at point x(�i).

In practical calculations, H(x(�i) ; �0) is replaced by a truncated series expansion as
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follows :

Ĥ(x(�i) ; �0) = �+
MX
i=1

Hi(x(�i)) �i(�o) if H(�) Gaussian(4.4)

Ĥ(x(�i) ; �0) = exp

"
�+

MX
i=1

Hi(x(�i)) �i(�o)

#
if H(�) lognormal, � be-

ing the mean value of

the underlying Gaussian

�eld in this case.

(4.5)

Adequate routines have been implemented to compute Eqs.(4.4)-(4.5) depending on

the nature of the random �eld. They are called by the routine computing the element

sti�ness matrix Eq.(4.3).

In the context of Monte-Carlo simulation, �o corresponds to the generation of M ran-

dom numbers � = f�1(�o) ; ::: �M(�o)g according to a standard normal distribution.

This is done using the Matlab built-in random number generator.

2.3 Statistical treatment of the response

Unbiased estimates of the mean and variance of a given statistical sample are given by

EMC [U ] =
1

Nsim

NsimX
i=1

U(�i)(4.6)

VarMC [U ] =
1

Nsim � 1

"
NsimX
i=1

U 2(�i)� Nsim

�
EMC [U ]

�2#
(4.7)

where Nsim is the number of samples considered, U(�i) is the nodal displacement vector

associated with sample �i, and U
2(�i) is the vector containing the square values of the

nodal displacements.

In implementation, the sums
P

iU(�i) and
P

iU
2(�i) are updated continuously after

each �nite element run. The accuracy of the Monte-Carlo simulation is estimated by

the coe�cient of variation of the empirical mean (4.6), which is given by :

COV MC =

q
VarMC [U ]

p
NsimEMC [U ]

(4.8)

Typical values for COV MC are 0.01 - 0.05.

2.4 Remarks on random �elds representing material properties

A number of papers published on stochastic �nite element methods including random

�elds (e.g. Liu et al. (1986b,a); Ghanem and Spanos (1991a,b); Deodatis and Shinozuka
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(1991); Anders and Hori (1999)) assess the validity of the proposed approach by com-

paring the results with those obtained by a Monte Carlo simulation. In practice, these

authors use Gaussian random �elds.

When material properties are modeled, the use of Gaussian random �elds is question-

able. Indeed realizations of Gaussian random variables can be negative valued, whereas

the material properties are positive in nature. The results obtained by Monte Carlo

simulation in this case are de�nitely doubtful due to the possible negative outcomes.

Either these negative outcomes have to be discarded, which introduces a bias in the

simulation, or non physical results (e.g. corresponding to negative Young's modulus)

are included. Moreover, the general result, which says that Monte Carlo simulation is

asymptotically exact (the more samples, the best result) does no longer hold : in this

case indeed, the more samples, the more non physical outcomes.

This problem has not received much attention in the literature, the authors of the

papers mentioned above do not even bring up the question. From the remarks above,

the following strategy will be adopted in the present study : Monte Carlo simulation

of Young's modulus will only be performed with lognormal distributions.

3 Perturbation method for structures with spatially

varying materials properties

3.1 Introduction

The perturbation method is based on a Taylor series expansion of the quantities in-

volved in the equilibrium equation K � U = F . In this chapter, the randomness in

the input is limited to spatial variability of the material Young's modulus. Thus the

basic variables used in the Taylor series expansion areM independent standard normal

variates � = f�1 ; ::: �Mg used in the random �eld discretization, and the formulation of

the perturbation method presented in a general context in Part I, Chapter 3, Section 2

can be simpli�ed.

The second order Taylor series expansions of K(�) and U(�) respectively are :

K(�) � Ko +
NX
i=1

KI
i �i +

1

2

NX
i=1

NX
j=1

KII
ij �i �j(4.9)

U(�) � U o +
NX
i=1

U I
i �i +

1

2

NX
i=1

NX
j=1

U II
ij �i �j(4.10)

where the notation used in the above equations has been introduced in Part I, Chap-

ter 3, Section 2. Moreover, the load vector F is assumed deterministic in the sequel.
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3.2 Derivatives of the global sti�ness matrix

The perturbation method is �distribution-free� in essence, which means that the input

should be limited to the second moments of the basic random variables. However,

when random �elds are used, the Taylor series expansion depends on the discretization

scheme implicitly selected.

In the following derivations, the series expansion discretization schemes of a Gaus-

sian random �eld are implicitly considered. Under this assumption, the global sti�ness

matrix has the form :

K(�) =
[
e

Z

e

"
�+

MX
i=1

Hi(x) �i

#
BT �Do �B d
(4.11)

Thus the derivative of K with respect to �i is :

KI
i �

@K

@�i �=0
=
[
e

Z

e

Hi(x)B
T �Do �B d
(4.12)

that is, the global weighted sti�ness matrix Ki, see Eqs.(3.16)-(3.18-b). Furthermore,

the second derivatives KII
ij are all zero.

From Eqs.(4.9)- (4.10), the Taylor series expansion of the equilibrium equation is :

 
Ko +

MX
i=1

KI
i

! 
U o +

MX
i=1

U I
i �i +

1

2

MX
i=1

MX
j=1

U II
ij �i�j

!
= F(4.13)

By identifying the coe�cients of �i and �i�j on both sides, one �nally gets :

U o = K�1
o � F(4.14)

U I
i = �K�1

o �Ki �U = �Li �U where Li =K�1
o �Ki(4.15)

U II
ij = U II

ji = �K�1
o

�
KI

i �U I
j +K

I
j �U I

i

�
= � �Li �U I

i +Lj �U I
j

�
(4.16)

= (Li �Lj +Lj �Li) �U o

3.3 Second moments of the response

The second-order statistics of the response can be now computed from

Eqs.(4.10),(4.14)-(4.16). Recalling that f�1 ; ::: �Mg are independent standard normal

variables, it follows that :

E [�i] = 0(4.17-a)

Cov [�i ; �j] = �ij (Kronecker symbol)(4.17-b)
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Thus the �rst- and second-order estimates of the nodal displacement mean values are :

EI [U ] = U o(4.18-a)

EII [U ] = U o +
1

2

MX
i=1

L2
i �U o(4.18-b)

The �rst-order approximation of the covariance matrix of U is :

CovI [U ; U ] =
MX
i=1

U I
i �U I

i

T
(4.19)

The second-order approximation of the covariance matrix of U can be easily derived

using the following properties :

E [�i �j �k] = 0(4.20-a)

E [�i �j �k �l] = �ij�kl + �ik�jl + �il�jk(4.20-b)

After some algebra, one �nally obtains :

CovII [U ; U ] = CovI [U ; U ] +
1

4

MX
i=1

MX
j=1

U II
ii �U II

jj

T
+

1

2

MX
i=1

MX
j=1

U II
ij �U II

ij

T
(4.21)

3.4 Remark on another possible Taylor series expansion

In the above derivations, the random �eld was implicitly considered as Gaussian to

carry out the Taylor series expansion of K. If it were to be considered as lognormal

(which, in some sense, corresponds to selecting a di�erent point around which the

expansions are carried out), the global sti�ness matrix would write :

K(�) =
[
e

Z

e

exp

"
�+

MX
i=1

Hi(x) �i

#
BT �Do �B d
(4.22)

In this case, the derivatives of K with respect to �i are :

KI
i � @K

@�i �=0
=
[
e

Z

e

e�Hi(x)B
T �Do �B d
(4.23)

KII
ij � =

@2K

@�i @�j �=0
=
[
e

Z

e

e�Hi(x)Hj(x)B
T �Do �B d
(4.24)

It is emphasized that the value of the random �eld computed for � = 0 (i.e e�) is not

the mean value of the �eld. The latter is indeed � = e�+�
2=2, where � is the standard

deviation of the approximate underlying Gaussian �eld. This means that the expansion
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in this case would not be carried out around the mean value Ko. Thus the accuracy

of the results is expected to be worse than that obtained in the previous section.

Moreover, the computation of the second order terms U II
ij now involves the non zero

matrices KII
ij , which makes the whole computation much more time consuming. This

type of expansion will not be used in the numerical applications.

4 Settlement of a foundation on an elastic soil mass

4.1 Deterministic problem statement

Consider an elastic soil layer of thickness t lying on a rigid substratum. A superstructure

to be founded on this soil mass is idealized as a uniform pressure P applied over a length

2B of the free surface (see Figure 4.1). The soil is modeled as an elastic linear isotropic

material. A plane strain analysis is carried out.

A

2B

t E ; �

Figure 4.1: Settlement of a foundation - problem statement

Due to the symmetry, half of the structure is modeled by �nite elements. Rigorously

speaking, there is no more symmetry in the system when random material properties

are introduced. However, it is believed that this simpli�cation does not signi�cantly

in�uence the results. The parameters selected for the computation are gathered in

Table 4.1. A re�ned mesh was �rst used to get the �exact� maximum displacement

under the foundation (point A in Figure 4.1). Then di�erent meshes were tried in

order to design an optimal mesh, i.e. allowing to get 1% accuracy in the maximum

settlement using the smallest number of elements. The mesh displayed in Figure 4.2-a

was eventually chosen. It contains 99 nodes and 80 elements.

For the input parameters given in Table 4.1, the maximum displacement obtained

with the most re�ned mesh is uexactA = 5:49 cm, the value obtained with the mesh in

Figure 4.2-a is uo = 5:43 cm. The deformed shape is plotted in Figure 4.2-b.
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Table 4.1: Settlement of a foundation - Parameters of the deterministic model

Soil layer thickness t 30 m

Foundation width 2B 10 m

Applied pressure P 0.2 MPa

Soil Young's modulus E 50 MPa

Soil Poisson's ratio � 0.3

Mesh width L 60 m

a - Mesh b - Deformed shape

Figure 4.2: Settlement of a foundation - Mesh and deformed shape obtained by a

deterministic analysis

4.2 Case of homogeneous soil layer

4.2.1 Closed form solution for lognormal Young's modulus

In this section, the Young's modulus E of the soil layer is assumed to be homogeneous

and follow a lognormal distribution LN(� ; �), that is :

E = e�+� � � = N(0 ; 1)(4.25)

where the parameters (� ; �) can be computed from the mean �E and coe�cient of

variation �E = �E=�E of E by :

� =
q
ln(1 + �2E)(4.26)

� = ln �E � 1

2
�2(4.27)

Due to the linearity of the problem, the maximum settlement UA corresponding to any

value E of the Young's modulus can be computed as :

UA(E) = uo
�E
E

(4.28)
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Using Eq.(4.25), the above equation rewrites :

UA(E) = eln(uo �E)���� �(4.29)

Thus the maximum settlement UA follows a lognormal distribution

LN(ln(uo �E)� � ; ��), whose mean value and standard deviation, after some

basic algebra, are given by :

�UA = uo (1 + �2E)(4.30)

�UA = �UA � �E = uo �E (1 + �2E)(4.31)

These analytical expressions are used in the sequel to assess the validity of the �rst- and

second order- perturbation and SSFEM methods. Results are presented for di�erent

coe�cients of variation �E.

4.2.2 Numerical results

The di�erent softwares developed for dealing with random �elds are used in this ex-

ample by setting the correlation length of the random �eld equal to ` = 10000 m,

and by choosing only one random variable (M = 1) in the discretization procedure.

SSFEM is applied considering the random �eld as lognormal. The perturbation method

corresponds to the derivation in Section 3.3, i.e assuming implicitly a Gaussian repre-

sentation of the random �eld.
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Figure 4.3: Settlement of a foundation - Homogeneous Young's modulus with lognormal

distribution - Perturbation results
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Figure 4.4: Settlement of a foundation - Homogeneous Young's modulus with lognormal

distribution - SSFEM results

Perturbation method Results regarding the perturbation method are given in Fig-

ure 4.3. Considering a �good� approximation as one giving less than 5% discrepancy

from the exact result, it appears that the (constant) �rst-order estimate of the mean is

acceptable only for �E < 0:2. In contrast, the second-order estimate is almost the exact

value, whatever �E in the range under consideration. This can be partially explained by

the fact that the exact Taylor series expansion of the sti�ness matrix has only constant

and linear terms.

The �rst-order estimate of the standard deviation is linearly increasing with �E, which

is a fair approximation as long as �E < 0:2. The second-order estimate gives much

better accuracy for larger COV �E.

As a conclusion, it is seen on this example that the �rst-order perturbation method

cannot be expected to give satisfactory results for medium to large coe�cients of vari-

ation of the input random �eld. In contrast, the second-order approach is much more

accurate, whatever the value of �E. Furthermore, using the expansion described in

Section 3.3, the latter is inexpensive to apply due to the fact that the second-order

derivatives KII
ij are all zero.

SSFEM method Results regarding the SSFEM approach are given in Figure 4.4

for di�erent orders of expansion. As only one random variable is used to discretize the

underlying random �eld, the size of the polynomial chaos of order p is P = p+ 1. The

polynomial chaos is used to expand both the global sti�ness matrix and the vector of

nodal displacements, as described in Part I, Chapter 5, Section 4.1.

It appears that a good accuracy is obtained with p = 3 for any COV of the Young's

modulus, whereas p = 2 is enough if the COV �E is less than 0.3. It can be seen in
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Figure 4.4-b that the �rst order result is closer to the exact solution than the second

order. No satisfactory explanation to this behavior could be found.

4.3 Case of heterogeneous soil layer

4.3.1 Problem statement

To account for the heterogeneity in the soil, the Young's Modulus is now modeled as a

homogeneous lognormal random �eld having the following properties :

� mean value : �E = 50 MPa,

� standard deviation : �E = �E � �E where the coe�cient of variation �E varies

within [0 ; 0:5],

� exponential square correlation structure with correlation length ` = 30 m.

The discretized lognormal �eld is obtained by exponentiation of an EOLE expansion

of the underlying Gaussian �eld.

Di�erent EOLE grids were tried, each of them corresponding to a uniform mesh, whose

element size LRF satis�es LRF =` = 1=2� 1=10. The mean of the error variance (2.50)

has been computed in each case for di�erent orders of expansion M , the results are

reported in Table 4.2.

Table 4.2: Settlement of a foundation - Mean error �" in the EOLE discretization (See

Eq.(2.50))

M LRF=` = 1=2 LRF =` = 1=3 LRF=` = 1=4 LRF =` = 1=5 LRF=` = 1=10

1 0.467 0.462 0.461 0.460 0.459

2 0.236 0.228 0.226 0.225 0.224

3 0.151 0.143 0.140 0.139 0.138

4 0.085 0.078 0.076 0.075 0.074

5 0.048 0.041 0.038 0.037 0.036

If selecting a tolerance of 10% for the accuracy in the discretization, it appears from

Table 4.2 that M = 4 should be selected. For our choice of parameters, the re�nement

of the EOLE grid does not signi�cantly improve the accuracy, for a given M . Thus

LRF =` = 1=2 is selected in the computations, which corresponds to a 5� 3 point grid.

As there is no closed form solution to the statistics of the response, a Monte Carlo

simulation is performed. For each coe�cient of variation �E, 1000 samples are used

(the obtained simulation error measured by Eq.(4.8) is increasing from 0.1% to 1.5%

when the COV of the input random �eld varies from 0.05 to 0.5)
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4.3.2 Numerical results

The mean value �UA and the standard deviation �UA of the maximum settlement UA
are plotted in Figure 4.5 as a function of the COV of the input.
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Figure 4.5: Settlement of a foundation - Young's modulus modeled by a lognormal

random �eld

For any COV, �UA and �UA are smaller than the values they take in case of homoge-

neous Young's modulus (See Figures 4.3-4.4). As in the case of homogeneous Young's

modulus, the �rst-order estimate of the mean has acceptable accuracy only if �E < 0:2.

The �rst-order estimate of the standard deviation is reasonably accurate for the range

of �E considered. Both the second-order perturbation and the second-order SSFEM

methods give good accuracy for any COV in the range under consideration.

4.4 E�ciency of the approaches

In order to fully compare the three methods used in this chapter, computation times

have been reported in Table 4.3. The time unit corresponds to a deterministic analysis

with constant Young's modulus.

Regarding the Monte Carlo simulation, the computation time comes almost only from

the successive deterministic �nite element runs. The second order perturbation method

requires about twice as much time as the �rst order.

As far as SSFEM is concerned, there is a huge di�erence between the computational

cost of the �rst- and the second-order methods. Higher order computations could not

be carried out. This can be explained by the fact that the discretization of the random

�eld required M = 4 random variables to get an acceptable accuracy, leading to a
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Table 4.3: Settlement of a foundation - Comparison of computation times

Method CPT

Deterministic �nite element analysis with

constant Young's modulus
1

Deterministic �nite element analysis with

Young's modulus obtained from discretized

random �eld

4.47

Monte Carlo simulation (1000 samples) 4508

1st order perturbation method 11.8

2nd order perturbation method 21

1st order SSFEM 19.5

2nd order SSFEM 1446

large size of the polynomial chaos basis even for small order (e.g., p = 3). Completely

di�erent computation times would have been observed in the �rst example (i.e in case

of lognormal Young's modulus), where only one random variable was used.

It is emphasized that the computed times reported in Table 4.3 are related to the dis-

cretization scheme employed (here EOLE) and would be di�erent if another discretiza-

tion scheme was chosen. They are of course related to the Matlab implementation,

i.e., in an interpreted language. They would probably be completely di�erent in a fully

compiled implementation.

5 Conclusions

In this chapter, three second moment methods have been presented in the context of

spatial variability of material properties and applied to a geomechanical problem.

The particular formulation of each method in the present context has been derived. It

appears that the perturbation method is inexpensive to apply up to second order, due

to the fact that the second-order derivatives of the sti�ness matrix with respect to the

basic random variables are zero.

The accuracy of each method has been investigated for di�erent values of the coe�cient

of variation of the input random �eld. The cost of each approach has been �nally

evaluated.

After compiling all the results, it appears that the second-order perturbation method is

the most attractive for problems involving random �elds, because it is inexpensive and

accurate even for large coe�cients of variation of the input. The SSFEM approach also

gives accurate results when applied at second and higher orders. The computation time



140 Chapter 4. Second moment analysis

may however blow up when more than 2 or 3 random variables are used to discretize

the random �eld.



Chapter 5

Reliability analysis of mechanical

problems involving random spatial

variability

1 Introduction

The aim of this chapter is to compare two di�erent approaches for solving reliability

problems based on elastic two-dimensional analyses involving random spatial variability

of material properties.

� The �rst approach called direct coupling consists in coupling a deterministic �nite

element code with the iHLRF algorithm presented in Part I, Chapter 4. To take

into account the spatial variability, the deterministic code Femrf described in

Chapter 4, Section 2.2 is used. Details are given in Section 2.

� The second approach consists in post-processing the results of a SSFEM analysis

as described in Chapter 3, Section 5.3.

Both approaches are applied to compute the reliability index associated with the max-

imum settlement of a foundation lying on an elastic soil layer.

A parametric study is carried out using a Gaussian (resp. lognormal) random �eld in

Section 3 (resp. Section 4). Comparisons of the two approaches described above are

made by varying successively :

� the order of expansion in the random �eld discretization as well as that of the

polynomial chaos expansion,

� the admissible threshold in the limit state function,
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� the correlation length of the random �eld,

� the coe�cient of variation of the input.

E�ciency is investigated by comparing the computation time required by each ap-

proach.

Remark As already stated in Chapter 4, Gaussian random �elds are not well suited

to model material properties, due to possible negative outcomes. In the context of

reliability analysis, even the computed design point could happen to correspond to

non physical values, for instance when large coe�cients of variation of the input are

considered. However, as Gaussian random �elds have been used extensively in the lit-

erature together with the Karhunen-Loève expansion, they will be used for comparison

purposes in Section 3.

2 Direct coupling approach : key points of the imple-

mentation

2.1 Utilization of the �nite element code Femrf

In the context of FORM analysis, a given realization of the basic random variables

�(�o) = f�1(�o) ; ::: �M(�o)g is provided by the iHLRF algorithm at each iteration. A

deterministic �nite element analysis is carried out with Femrf, where �(�o) is used in

the computation of the element sti�ness matrices, see Eqs.(4.3)-(4.5).

2.2 Direct di�erentiation method for gradient computation

The FORM analysis requires the computation of the gradient of the limit state function.

As already described in Part I, Chapter 4, Section 3, the most e�ective method for this

purpose is the so-called direct di�erentiation method. The general formulation presented

in that section is now applied to problems for which the randomness is limited to

random �elds describing the material's Young's modulus.

The limit state function under consideration in the present study is :

g(U(�)) = u� uio(�)(5.1)

where uio is the nodal displacement under consideration and u is a prescribed threshold.

Accordingly, the gradient of the limit state function with respect to the basic random

variables � = f�1 ; ::: �Mg is given by :

r� g
T (U(�)) =rT

U g(U) �r�U(�)(5.2)
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Furthermore, due to the form of (5.1), one has :

rT
U g(U) = [0 ; ::: 0 ; �1 ; 0 ; ::: ](5.3)

where the only non zero component is the io-th one. The gradient of U with respect

to � is obtained from Eqs.(4.57)-(4.60) of Part I :

@U

@�i
= �K�1 �

[
e

�Z

e

BT � @D
@�i

�B d
 � ue
�

(5.4)

where K is the global elastic sti�ness matrix, B the matrix yielding the strain com-

ponents from the nodal displacements ue, and D is the elasticity matrix. In case of

Gaussian random �elds, the latter has the form :

D = H(x)Do � (�+
MX
i=1

Hi(x) �i)Do(5.5)

Hence the partial derivative is :

@D

@�i
=

@H(x)

@�i
Do = Hi(x)Do(5.6)

Substituting (5.6) in (5.4) yields :

@U

@�i
= �K�1 �

[
e

�Z

e

Hi(x)B
T �Do �B d
 � ue

�
(5.7)

Comparing the latter equation with (3.18-b), one �nally obtains :

@U

@�i
= �K�1 �Ki �U(5.8)

where Ki is the i-th global weighted sti�ness matrix. Substituting for Eqs.(5.3) and

(5.8) in (5.2) �nally gives the following closed-form expression for the gradient of the

limit state function :

r� g
T (U(�)) = [0 ; ::: 0 ; 1 ; 0 ; ::: ] �K�1 � [K1 �U ; ::: ; KM �U ](5.9)

For optimal e�ciency, the leftmost product � = [0 ; ::: 0 ; 1 ; 0 ; ::: ] �K�1 is carried out

�rst. Then the products Ki �U are evaluated and arranged column-wise in a matrix of

size N �M . This matrix is eventually multiplied by �. This procedure is the so-called

adjoint method described in Part I, Chapter 4, Section 3.2.

3 Settlement of a foundation on an elastic soil mass -

Gaussian input random �eld

3.1 Introduction

The deterministic problem under consideration has been described in Chapter 4, Sec-

tion 4.1. The assessment of the serviceability of the foundation is now investigated.
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The limit state function considered in the sequel is de�ned in terms of the maximum

settlement UA at the center of the foundation :

g(U(�)) = u� UA(�)(5.10)

where u is a given threshold.

In this section, the random �eld modeling the Young's modulus of the soil is supposed

to be Gaussian, and has the following properties :

� mean value �E = 50 MPa,

� variable standard deviation �E, corresponding to a coe�cient of variation �E =

�E=�E 2 [0 ; 0:5],

� exponential autocorrelation function. As all the applications of SSFEM found in

the literature make use of this kind of correlation structure together with the

Karhunen-Loève discretization scheme, this form is assumed in this section. To

get a fair representation of the random �eld (i.e., �" � 10%) with a manageable

number of terms in the expansion (i.e., M � 4), the random �eld is assumed

to be one-dimensional along the depth. This corresponds to a layered structure

for the soil mass, which is physically meaningful. In actual computations, the

two-dimensional random �eld toolbox is used with a di�erent correlation length

in each direction (see Chapter 2, Section 2.1), i.e `x = 10000 m, `y = 30 m.

� variable admissible maximum settlement u.

3.2 In�uence of the order of expansion

In this section, the coe�cient of variation of the random �eld is set equal to 0.2, and

the threshold in the limit state function is set to 10 cm. It is noted that the maximum

settlement uo obtained from a deterministic �nite element analysis with homogeneous

Young's modulus equal to 50 MPa is uo = 5:42 cm.

3.2.1 Direct coupling

The reliability index �direct is computed for di�erent orders of expansion M of the

input random �eld. Results are reported in Table 5.1 together with the accuracy of the

discretization (estimator �" de�ned in Eq.(2.50)).
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Table 5.1: In�uence of the accuracy in the random �eld discretization - Direct coupling

approach

M �" �direct
1 0.269 2.694

2 0.129 2.631

3 0.082 2.627

4 0.060 2.627

5 0.048 2.627

3.2.2 SSFEM +FORM

When applying the SSFEM method, the order p of the polynomial chaos expansion

has to be speci�ed. Together with the order of expansion M , this de�nes the size P of

the polynomial chaos basis (see Eq.(5.58) in Part I).

The reliability index �SSFEM is computed for di�erent values of M and p, the results

are reported in Table 5.2 together with the value �direct obtained by direct coupling.

Table 5.2: In�uence of the orders of expansion M and p - SSFEM approach

M �direct p P �SSFEM
1 2 4.665

2 3 3.008

1 2.694 3 4 2.741

4 5 2.685

5 6 2.681

1 3 4.510

2 6 2.904

2 2.631 3 10 2.656

4 15 2.611

5 21 2.614

1 4 4.487

3 2.627 2 10 2.889

3 20 2.645

4 2.627 1 5 4.480

2 15 2.885
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3.2.3 Analysis of the results

For our choice of parameters, it appears that the direct coupling allows to get 2-

digit accuracy in the reliability index �direct as soon as M � 2, which corresponds

approximately to �" � 10%.

For each value of M , �SSFEM converges to �direct when the order p of the polynomial

chaos expansion is increased. At least p = 3 should be selected to have 5% accuracy in

the reliability index.

Is it noted that for the �nite element model under consideration (which has 198 degrees

of freedom), the maximum size of the polynomial chaos basis that leads to reasonable

computation times is P=21. This corresponds to (M = 2 ; p = 5). The size of the

resulting SSFEM system of equations is 198� 21 = 4148.

3.3 In�uence of the threshold in the limit state function

In this section, the accuracy of SSFEM for increasing values of the reliability index

is investigated. The order of expansion is M = 2 (�" = 0:129) and the coe�cient of

variation of the input is 0.2. The reliability index is computed for di�erent thresholds

of maximum settlement u by means of direct coupling and SSFEM (di�erent orders of

polynomial chaos expansion are used in this case). Results are reported in Table 5.3.

When direct coupling is used, it is observed that the number of iterations required by

the iHLRF algorithm to get the design point increases with �direct. However the accuracy

of the results does not depend on the value of � (the same computations have been

carried out using 3 terms in the Karhunen-Loève expansion; the results are equal to

those given in Table 5.3 with less than 1% discrepancy).

When using SSFEM up to order 5, it appears that fair results (i.e less than 5% discrep-

ancy between �SSFEM and �direct) are obtained only for u � 20 cm (� � 4). For � � 5,

a good accuracy using SSFEM would require higher orders of expansion (p > 5), which

becomes intractable in our example. Moreover, the example was cooked up so that

M = 2 provides a su�cient accuracy in the discretization, which then allows to use up

to 5-th order polynomial chaos expansions. Usually, the number of random variables

necessary to get a good discretization is larger (e.g. � 4), and only the second order

SSFEM method would be practically applicable. From Table 5.3, it is seen that, on

the present example, the second order SSFEM method gives a fair estimation of the

reliability index only if the latter is less or equal then 4.

It is noticed that, if the SSFEM program was implemented in a fully compiled lan-

guage, and thus much faster than the current implementation in Matlab , one or two

additional orders in the polynomial chaos expansion may be a�ordable. In any case,

there would be a limit value for � for which the results are no more accurate.
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As a conclusion, the estimation of large reliability indices by direct coupling requires

possibly additional iterations, but this corresponds to a constant order of magnitude

of the computer processing time. In contrast, using SSFEM in this context requires

increasing the order of expansion p, leading rapidly to intractable calculations.
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Table 5.3: In�uence of the threshold in the limit state function - Direct coupling and

SSFEM results

u (cm) �direct # Iterations p �SSFEM
1 0.392

2 0.504

6 0.553 4 3 0.564

4 0.564

5 0.552

1 2.451

2 1.859

8 1.856 6 3 1.821

4 1.842

5 1.858

1 4.509

2 2.904

10 2.631 7 3 2.655

4 2.610

5 2.614

1 6.568

2 3.787

12 3.143 7 3 3.298

4 3.161

5 3.126

1 9.656

2 4.926

15 3.648 10 3 4.065

4 3.782

5 3.674

1 14.803

2 6.523

20 4.139 12 3 5.054

4 4.535

5 4.304

1 25.096

2 9.093

30 4.601 13 3 6.498

4 5.564

5 5.118
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3.4 In�uence of the correlation length of the input

In this section, the case of short correlation length of the input random �eld is inves-

tigated. The random �eld representing the Young's modulus is one-dimensional along

the depth and its correlation length is 10 m. The coe�cient of variation of the �eld is

0.2 and the threshold in the limit state function is uo = 10 cm. The reliability index

is computed for di�erent orders of expansion M (direct coupling) and di�erent orders

of polynomial chaos expansion p (SSFEM). Results are reported in Table 5.4 together

with the mean of the error variance �" of the discretized �eld.

Table 5.4: In�uence of the correlation length of the input random �eld (` = 10 m) -

Direct coupling and SSFEM results

M �" �direct p �SSFEM
1 6.198

2 3.978

1 0.550 3.441 3 3.583

4 3.474

5 3.443

1 5.778

2 2 3.690

0.335 3.215 3 3.327

4 3.232

5 3.208

1 5.671

3 0.232 3.181 2 3.625

3 3.277

4 0.175 3.180 1 5.646

2 3.608

5 0.140 3.179 - -

10 0.071 3.179 - -

When comparing column#2 of Table 5.4 with column#2 of Table 5.1 (which corre-

sponds to ` = 30 m), it is seen that, in order to get an acceptable discretization error, a

larger number of terms M is now required. However, as soon as M � 5, i.e., �" < 14%,

a two-digit accuracy on the reliability index is obtained when direct coupling is used.

When using SSFEM, it appears that fair results (i.e less than 5% discrepancy between

�SSFEM and �direct) are obtained as soon as M � 2-3, and p � 3. Higher orders of

polynomial chaos expansion are intractable.

As a conclusion, the direct coupling approach is applicable whatever the correlation

length of the �eld, because it is still computationally inexpensive even when M = 10
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or more. In contrast, it would not be possible to apply SSFEM with p > 2 when M

is more than 10, which means that the obtained reliability index would probably be

inaccurate.

3.5 In�uence of the coe�cient of variation of the input

In this section, the order of expansionM is set equal to 2 and the threshold in the limit

state function is u =20 cm. The reliability index is computed for di�erent coe�cients

of variation of the input random �eld. Results are reported in Table 5.5.

When the direct coupling is used, convergence of the iHLRF algorithm is always ob-

tained, the number of iterations required varying from 4 to 12 depending on the level

of � (the higher �, the more iterations). The values obtained are within 1% of those

obtained with M = 3. It is observed that the reliability index strongly decreases when

the variability of the input increases.

When SSFEM is used, bad results are obtained for �E = 0.1 as expected, because this

value induces a relatively large reliability index (see Section 3.3). For larger �E however,

the results are not very good either. Some FORM analyses carried out after SSFEM

do not converge, some others converge to a wrong design point, especially when the

order of the polynomial chaos is large. This may be explained by the fact that the

polynomial response surface associated with SSFEM is undulatory in this case (due to

higher order polynomials) and may have several local design points. As an example,

for the case of �E=0.4, it is observed that the convergence to the true reliability index

is not monotonic with increasing p. Thus the result obtained for a given order cannot

be a priori positioned with respect to the true value.

From these examples, it appears that SSFEM coupled with FORM cannot be applied

safely for large coe�cients of variation of the input (e.g. �E > 0:3), whereas the results

obtained by the direct coupling are reliable whatever �E.

3.6 One-dimensional vs. two-dimensional random �elds

As mentioned in Section 3.1, the random �eld modeling of the Young's modulus was

one-dimensional in the previous applications. This was necessary to get an acceptable

discretization error �" with a manageable number of terms in the expansion (M = 2-3).

The random �eld is now considered to be two-dimensional and isotropic, with a cor-

relation length ` = 30 m. The coe�cient of variation of the �eld is set equal to 0.2

and the threshold in the limit state function is u =10 cm. The direct coupling and the

SSFEM method are applied with di�erent orders of expansion M and p. Results are

reported in Table 5.6
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Table 5.5: In�uence of the coe�cient of variation of the input random �eld - Direct

coupling and SSFEM results (M = 2)

�E �direct p �SSFEM
1 30.706

2 13.769

0.1 8.277 3 10.702

4 9.578

5 9.043

1 14.803

2 6.523

0.2 4.132 3 5.054

4 4.535

5 4.303

1 9.257

2 3.925

0.3 2.759 3 2.994

4 2.666

5 2.467

1 6.301

2 2.455

0.4 2.069 3 1.708

4 0.807y

5 2.045y

1 4.380

2 1.370

0.5 1.655 3 3.062

4 1.592y

5 1.227

y For these values, the iHLRF algorithm applied after SSFEM has not converged after 30

iterations.

It can be seen from column #2 that the discretization error �" is much larger than

that obtained for a one-dimensional random �eld. For instance, even 50 terms in the

Karhunen-Loève expansion do not allow to have �" < 5%.

The direct coupling can still be applied up to this order of expansion though. Indeed,

as it will be explained in Section 3.7, the computation time for direct coupling is

approximately linear with M. The best result obtained with direct coupling here is

�direct = 2:826, which is probably a slight over-estimate of the true reliability index.

In contrast, as already mentioned above, SSFEM is limited to a rather small order of
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Table 5.6: In�uence of the choice of a one-dimensional vs. two-dimensional input ran-

dom �eld - Direct coupling and SSFEM results

M �" �direct p �SSFEM
1 7.647

2 4.924

1 0.586 4.212 3 4.427

4 4.281

5 4.232

1 5.823

2 2 3.748

0.442 3.271 3 3.387

4 3.293

5 3.269

1 5.736

3 0.362 3.239 2 3.692

3 3.343

1 5.303

4 0.303 3.019 2 3.414

3 3.098

5 0.273 2.946 - -

10 0.177 2.876 - -

50 0.059 2.826 - -

expansion in practice, and thus gives poor results in the case under consideration in

this section: the best result obtained by the method is here for M = 4 and p = 3

yielding �SSFEM = 3:098, which means at best 10% accuracy in the reliability index.

3.7 Evaluation of the e�ciency

In this section, a comparison between the computer processing time (CPT) required

by the direct coupling and the SSFEM methods is carried out. CPT corresponding to

the set of parameters used in Section 3.2 are reported in Table 5.7. The bold characters

correspond to choices of parameters (M ; p) giving a fair estimation of the reliability

index.

From column #2 of Table 5.7, one can see that the CPT required by the direct coupling

is increasing linearly with the order of expansion M . This can be easily explained: the

only step that is modi�ed in the �nite element analysis when M is changed is the

computation of the element sti�ness matrices. Each of these matrices requires the

evaluation of the random �eld realization at four points (the Gauss points), and each
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Table 5.7: Computer processing time required by direct coupling and SSFEM methods -

Gaussian random �elds

M
CPT y Direct

Coupling (")
p

CPTy

SSFEM (")

1 2.3

2 2.5

1 20.6 3 3.2

4 4.0

5 4.8

1 3.9

2 8.0

2 33.6 3 22.6

4 58.2

5 129.0

1 4.7

3 43.7 2 30.3

3 296.4

4 1888.7

4 53.8 1 8.7

2 127.4

5 65.8 1 11.4

y The CPT for a deterministic �nite element run with constant Young's modulus was 0.57".

evaluation takes a time exactly proportional to the order of expansionM (See Eq.(4.4)).

The number of gradients computed is also proportional to M .

In contrast, when using SSFEM, the CPT increases extremely fast with the order of

the polynomial chaos expansion. Thus the method can be e�ciently applied only when

a small number of terms M allows to describe the random �eld accurately, and when

the reliability index under consideration is su�ciently small so that the second order

SSFEM already gives a fair estimate.

3.8 Application of importance sampling

3.8.1 Introduction

The SSFEM approach allows to get an approximation of the random response of the

structure in terms of polynomials in standard normal variables, see Eq.(3.1). In the

context of reliability analysis, this allows to de�ne analytical limit state functions, as
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described in Chapter 3, Section 5.3.

With such an expression, all kinds of methods can be used to determine the probability

of failure of the system. So far, only the �rst-order reliability method (FORM) has been

applied. It could be argued that FORM is not the better way of post-processing the

SSFEM results, since:

� the analytical polynomial expression of the limit state function contains informa-

tion that is lost when the linearization resulting from FORM is used.

� the limit state surface obtained from SSFEM could be globally accurate, however

not necessarily around the true design point, which means that applying FORM

could give poor results.

Moreover, since the limit state function is inexpensive to evaluate due to its analytical

expression, simulation methods such as importance sampling become attractive.

3.8.2 Numerical results

An importance sampling routine has been developed in Matlab in order to post-

process the SSFEM results after FORM analysis. The sampling probability density

function is Gaussian with unit standard deviation and it is centered on the design

point determined by FORM.

The same choice of parameters as in Section 3.2 is made in the current section. For each

order of expansion M (resp. p), importance sampling is applied using 10,000 samples.

The obtained probability of failure is then transformed into the reliability index �ISSSFEM
for comparison purposes. The results are gathered in Table 5.8.

The �rst-order reliability method is exact forM = 1 whatever p (because the limit state

surface is reduced to a single point), and when p = 1 whatever M (because the limit

state surface is an hyperplane). For all these cases, it can be seen in Table 5.8 that im-

portance sampling gives exactly the same results as FORM (the last-digit discrepancy

being explained by the fact that only 10,000 samples are used in the simulation).

Signi�cant discrepancies between the two approaches appear only for higher orders of

polynomial chaos expansion, e.g., p � 3. In any case, they do not exceed 2% of the

value of the reliability index, which means that the FORM result is satisfactory in all

cases.

From this short study, the following conclusions can be drawn :

� for the example under consideration, the limit state surface de�ned analytically

after the SSFEM analysis is su�ciently smooth so that the �rst-order reliability

method gives good results.
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Table 5.8: Post-processing of the SSFEM results - Comparison between FORM and

importance sampling

M p �FORMSSFEM �ISSSFEM
1 4.665 4.669

2 3.008 3.012

1 3 2.741 2.738

4 2.685 2.689

1 4.510 4.515

2 2.904 2.891

2 3 2.656 2.633

4 2.611 2.578

5 2.614 2.580

1 4.487 4.490

3 2 2.889 2.872

3 2.645 2.608

� after having determined the design point by FORM, importance sampling allows

to evaluate more accurately the probability of failure at low cost, due to the

analytical de�nition of the limit state function.

� the fact that �FORMSSFEM ans �ISSSFEM are close indicates that errors observed in the

reliability estimates by SSFEM in the previous sections are due to the truncation

of the polynomial chaos expansions and not due to the FORM approximation.

3.9 Probability distribution function of a response quantity

As already mentioned, after the SSFEM solution is obtained, any additional reliability

analysis is computationally inexpensive due to the fact that the limit state function

is de�ned analytically and thus easy to evaluate. This allows to compute at low cost

the probability density function of a response quantity, as described in Chapter 3,

Section 5.4.

As an example, the PDF of the nodal displacement UA (corresponding to the maximum

settlement) is plotted in Figure 5.1. 200 points are used, i.e., 200 reliability problems

are solved1. To improve the e�ciency, the starting point of each analysis is chosen

as the design point of the previous analysis. This allows convergence of the iHLRF

algorithm within 3 iterations.

It can be seen that the obtained PDF has its mode close to uo = �5:42 cm (which is

the value obtained from a deterministic �nite element analysis) and that it looks like

1This is done in a matter of seconds on a personal computer.
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Figure 5.1: Probability density function of the maximum displacement obtained by

multiple FORM analyses after SSFEM

a lognormal distribution, in agreement with the results of Chapter 4, Section 4.2. It

should be emphasized that the far tails of the PDF computed by this method may be

inaccurate, as observed in Section 3.3.

3.10 Conclusions

From the above comprehensive parametric study, the following conclusions can be

drawn :

� The reliability index �direct obtained by direct coupling of the iHLRF algorithm

and a deterministic �nite element code converges to a limit when the discretiza-

tion error �" tends to zero. This convergence is always obtained by upper values.

As soon as �" � 10%, the method gives a 2-digit accuracy for �, whatever its

value (at least in the range [0:5 ; 8] that has been considered).

The CPT for each iteration is increasing linearly with the order of expansion

M . When an accurate discretization of the random �eld requires a large order of

expansion (e.g. M = 50), the method is still applicable.

The number of iterations in the iHLRF algorithm tends to increase with the value

of � (from 4 to 13 in our examples).

The accuracy of the �rst-order reliability index is insensitive to the coe�cient of

variation of the �eld.
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� Generally speaking, the reliability index �SSFEM obtained for a given discretiza-

tion error �" (i.e a givenM) converges to �direct when the order p of the polynomial

chaos increases. This means that SSFEM may be applicable in some cases to solve

reliability problems. However, this convergence presents an unstable behavior,

which makes the method unreliable.

When � � 2 � 3, the value p = 3 is required to get 5% accuracy on the result

(Section 3.2). When � is larger (� � 4� 8, Section 3.3), the convergence is much

slower and p = 3 yields more than 15% error on �.

In practice, the size of the polynomial chaos basis was limited to P = 21 to get

reasonable computer processing times2. This makes the method inapplicable :

� when the correlation length of the input random �eld is small to medium,

because of the large number of terms required in the Karhunen-Loève ex-

pansion for a fair discretization (Section 3.6).

� when the reliability index is large, because of the high order of the polyno-

mial chaos expansion required.

Furthermore, when large coe�cients of variation of the input are used (�E � 0:3),

the SSFEM approach followed by FORM may not converge or may converge to

a wrong result (Section 3.5).

Finally, it is noted that importance sampling after FORM analysis is inexpensive

to carry out due to the analytical expression of the limit state function. Thus it

allows to re�ne the evaluation of the probability of failure of the system at low

cost.

� When both methods are employed and give the same results, the SSFEM analysis

can be post-processed to compute the PDF of the response quantity appearing

in the limit state function (see derivations in Chapter 3, Section 5.4). It can also

be used to perform several FORM analyses with di�erent limit-state functions.

This seems to be the only case where SSFEM could give something more than

the direct coupling approach. The direct coupling results are needed however in

order to check the validity of the SSFEM solution.

2Slightly greater values can certainly be obtained in a fully compiled implementation. However,

this does not change fundamentally the conclusions.
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4 Settlement of a foundation over an elastic soil

mass - Lognormal input random �eld

4.1 Introduction

In this section, the direct coupling and SSFEM methods are applied together with a

one-dimensional lognormal random �eld modeling the Young's modulus of the material.

As far as direct coupling is concerned, the only di�erence with the preceding section

is the way the random �eld realizations are evaluated in Femrf: Eq.(4.5) is now used

instead of Eq.(4.4). As far as SSFEM is concerned, the introduction of lognormal �elds

requires the sti�ness matrices to be expanded into the polynomial chaos, as explained

in Part I, Chapter 5, Section 4.1.

It is emphasized that the discretization of the random �eld is not exactly identical

for the two approaches. When using the direct coupling, it corresponds to the expo-

nentiation of a truncated series expansion of a Gaussian �eld. When using SSFEM,

it corresponds to a truncated polynomial chaos expansion such as that described in

Part I, Chapter 5, Section 4.1.

The deterministic problem under consideration is the same as in Section 3. The mean

value and coe�cient of variation of the Young's modulus are �E = 50MPa and �E = 0:2

respectively. The autocorrelation function is exponential, the correlation length in each

direction being `x = 10000 m and `y = 30 m respectively. The threshold in the limit

state function is u = 10 cm.

The parametric study presented in this section is limited to the in�uence of the orders

of expansion on the reliability index, as well as the threshold in the limit state function.

Indeed, it is believed that the poor results obtained in Section 3 for small correlation

length and/or large coe�cient of variation of the �eld would not be better when a

lognormal �eld is considered.

4.2 In�uence of the orders of expansion

The reliability index is computed by both approaches for di�erent orders of expansion

M and p, the results are reported in Table 5.9.

Focusing on column #2, it appears that the direct approach gives a 2-digit accuracy

for the reliability index as soon as M � 2, as in the case of Gaussian input random

�eld.

Broadly speaking, �SSFEM tends to �direct when the order of the polynomial chaos

expansion p increases. However, there seems to be a slight discrepancy in the limit.

For instance, for M=1, �SSFEM converges to 3.560 instead of 3.528. This comes from
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Table 5.9: In�uence of the orders of expansion M and p - Lognormal input random

�eld

M �direct p P �SSFEM
1 2 4.717

2 3 3.714

1 3.528 3 4 3.569

4 5 3.561

5 6 3.560

1 3 4.562

2 3.452 2 6 3.617

3 10 3.474

4 15 3.467

3 3.447 1 4 4.539

2 10 3.606

4 3.447 1 5 4.532

2 15 3.603

the fact that the representations of the lognormal �eld are not identical in the two

approaches, as mentioned above.

4.3 In�uence of the threshold in the limit state function

In this section, the accuracy of SSFEM for increasing values of the reliability index is

investigated. The order of expansion of the input random �eld isM = 2. The reliability

index is computed for di�erent thresholds of maximum settlement u by means of direct

coupling and SSFEM (di�erent orders of polynomial chaos expansion are used in this

case). Results are reported in Table 5.10.

When direct coupling is used, it is observed that the number of iterations required by

the iHLRF algorithm to get the design point increases slightly with �direct, however not

as much as in the case of Gaussian �elds (see Table 5.3). The accuracy of the results

does not depend on the value of � (the same computations have been carried out

using 3 terms in the Karhunen-Loève expansion; the results are equal to those given in

Table 5.10 with less than 1% discrepancy).

As far as SSFEM is concerned, there is convergence of �SSFEM to a limit when p

increases. This limit is always slightly greater than �direct because of the di�erence in

the random �eld discretization schemes. It is noted that the convergence rate related to

increasing p is better than in the Gaussian case. When using a 4-th order polynomial

chaos expansion, the reliability index is obtained within 1-2% accuracy whatever its

value.
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Table 5.10: In�uence of the threshold in the limit state function - Lognormal input

random �eld

u (cm) �direct # Iterations p �SSFEM
1 0.401

2 0.477

6 0.473 4 3 0.488

4 0.488

1 2.481

2 2.195

8 2.152 6 3 2.165

4 2.166

1 4.562

2 3.617

10 3.452 6 3 3.474

4 3.467

1 6.642

2 4.858

12 4.514 6 3 4.559

4 4.534

1 9.763

2 6.494

15 5.810 7 3 5.918

4 5.846

1 14.964

2 8.830

20 7.480 7 3 7.737

4 7.561

1 25.367

2 12.655

30 9.829 8 3 10.475

4 10.044

In other words, SSFEM applied with lognormal random �elds appears to be more

reliable than in the case when it is applied with Gaussian �elds. This is an interesting

property, since lognormal �elds are more suited to modeling material properties. The

fact that the polynomial chaos expansion has to be used also for representing the input

�eld seems not deteriorate the accuracy of the results.
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4.4 Evaluation of the e�ciency

The computer processing time required by both approaches is reported in Table 5.11

for di�erent values of the orders of expansion M and p.

Table 5.11: Computer processing time required by direct coupling and SSFEM meth-

ods - Lognormal random �elds

M
CPT Direct

Coupling (")
p

CPT

SSFEM (")

1 3.5

2 5.5

1 22.4 3 8.8

4 16.6

5 36.3

1 6.6

2 23.1

2 31.2 3 324.2

4 2952.6

3 40.5 1 8.2

2 188.2

4 49.8 1 11.6

2 829.0

5 58.8 1 13.4

By comparing the results in Table 5.11 with those in Table 5.7, the following conclusions

can be drawn :

� As far as direct coupling is concerned, almost the same CPT is observed, whether

the random �eld is Gaussian or lognormal. This is explained by the fact that the

only di�erence between the two calculations is an exponentiation operation each

time the random �eld is evaluated.

� As far as SSFEM is concerned, the CPT reported in Table 5.11 are much greater

than those reported in Table 5.7. There are two main reasons explaining this

di�erence:

� if Ne is the number of �nite elements in the structural model, the Gaussian

SSFEM method requires computing (M +1)�Ne element sti�ness matrices

and assembling at �rst level (M +1) global sti�ness matrices. In the lognor-

mal case, these numbers are P �Ne and P respectively (P is the size of the

polynomial chaos basis, see Eq.(5.58) in Part I). As it has been mentioned
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already, P � M as soon as the order of the polynomial chaos expansion p

is large.

� The second level of assembling requires more computational e�ort since, for

a given pair (M ; p), there are much more non zero dijk-coe�cients (related

to the lognormal case) than cijk coe�cients (related to the Gaussian case)

in the summations (See Eq.(3.20)).

As a conclusion, for values of M and p for which �SSFEM is a fair estimate of the true

reliability index, the computer processing time is so large that the SSFEM method is

not e�cient at all (see numbers printed in bold characters in Table 5.11).

4.5 Conclusions

The parametric study carried out using lognormal input random �elds has shown that :

� the direct coupling gives accurate results, whatever the value of the reliability

index, at a cost similar to that obtained when using Gaussian �elds.

� the SSFEM method gives better results with lognormal �elds than with Gaussian

random �elds. Using a 4-th order polynomial chaos expansion allows to get 1-

2% accuracy on the reliability index. However, the computation time in this

case is huge compared to that of the direct coupling (about 100 times when

M = 2). Practically the method could be applied only when the correlation

length is large, so that the Karhunen-Loève expansion with M = 1 � 2 terms

would be su�ciently accurate. Otherwise, SSFEM is inappropriate due to the

huge computation required for obtaining a fair estimate of the reliability index.

5 Conclusions

In this chapter, reliability problems have been solved using two di�erent methods,

namely the direct coupling between the iHLRF algorithm and a deterministic �nite

element code, and the SSFEM method post-processed by the same algorithm. Both

methods have been applied to assess the serviceability of a foundation lying on an elastic

heterogeneous soil layer. The Young's modulus of the soil was successively modeled as

a Gaussian and lognormal random �eld.

The case of Gaussian random �elds with exponential autocorrelation function has been

investigated �rst, because this type of �elds has been extensively used in the literature,

however without convincing comparisons or appreciation of the results. It appears that

a fair discretization of the �eld may require more than a few terms, even when the

correlation length is not small. The accuracy in the discretization turns out to be a
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key issue. It is noted that this point is never discussed in the papers making use of this

kind of expansions together with SSFEM.

Whatever the parameters, the direct coupling appears robust and fast, the cost of the

analysis increasing linearly with the order of expansion of the input random �eld.

As far as SSFEM is concerned, fair results can sometimes be obtained, usually using a

high order polynomial chaos expansion (p = 3� 5). When more than 2 terms are used

in the random �eld discretization, the cost becomes rapidly prohibitive. Consequently,

only results obtained with a low order polynomial chaos expansion are available in

this case. They appear poor compared to those obtained by direct coupling. In some

cases, the computed reliability index may not even be correct (for instance when large

coe�cients of variation of the input are considered).

The case of lognormal random �elds has been investigated as well. The direct cou-

pling provides reliable results, approximately at the same cost as in the Gaussian case.

The SSFEM approach appears more stable than in the Gaussian case. However the

computation cost for a given choice of (M ; p) is even greater than in the Gaussian

case (practically, the size of the polynomial chaos basis was limited to P = 15 in our

calculations).

As a conclusion, the direct coupling appears far better than the SSFEM approach

for solving reliability problems, because it is robust and fast. The SSFEM approach

could however be applied together with the direct coupling in some cases (i.e. when it

has proven accurate for the selected parameters) to compute probability distribution

functions of response quantities in an e�cient way, or to determine reliability indices

for multiple response quantities.





Chapter 6

Conclusion

The goal of the second part of the present study was to compare di�erent methods

taking into account spatial variability of the material properties in the mechanical

analysis. In order to be able to compare a broad spectrum of methods, attention has

been focused on elastic two-dimensional problems. For this purpose, di�erent routines

have been developed in the Matlab environment, namely :

� a random �eld discretization toolbox,

� a deterministic �nite element code called Femrf, which takes into account the

spatial variability of the Young's modulus in elastic mechanical analysis,

� a software implementing the SSFEM method (including an original implementa-

tion of the polynomial chaos),

� the iHLRF algorithm for �nding the design point in FORM analysis,

� additional routines for perturbation analysis, Monte Carlo simulation and impor-

tance sampling.

The detailed implementation of the programs has been presented in Chapters 2-3. An

object-oriented programing was aimed at, in order to get easily extensible code.

The di�erent programs were applied to compute the moments of the response of a

foundation lying on an elastic soil layer (up to second order), as well as to assess its

serviceability with respect to a maximum settlement criterion.

As far as second moment analysis is concerned, both the second-order perturbation

and SSFEM methods provide good results, whatever the coe�cient of variation of the

input random �eld. However, the former turns out to be computationally more e�cient

because of the special form it takes for the considered application.
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As far as reliability analysis is concerned, the direct coupling turns out to be far better

than SSFEM, because it provides excellent accuracy whatever the type of random �eld

and the selected parameters. SSFEM can give fair results in some cases, but usually at

a cost much greater than that of the direct coupling. Unfortunately, in some cases, it

converges to a wrong solution, which makes it unreliable.

It is noted that the perturbation method and the direct coupling approach have a

far larger scope than SSFEM, since they have been applied to all kinds of non-linear

problems, whereas SSFEM is still more or less limited to linear problems.

As a conclusion, it is noted that the present study is the �rst attempt to compare a

broad spectrum of stochastic �nite element methods on a given application. Throughout

the description of the implementation, it has been seen that these methods have more in

common than what the di�erent research communities involved in their development

sometimes think, at least from a computational point of view. Of course, a single

example (i.e., the problem of the settlement of a foundation) cannot be used to draw

general conclusions of the superiority of some methods over others, but it gives at least

a new light on their respective advantages and shortcomings.
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