

Design and Navigation of Flying Robots

Roland Siegwart, ETH Zurich www.asl.ethz.ch

Drones: From Technology to Policy, Security to Ethics 30 January 2015, ETH Zurich

ETHzürich

UAV (Unmanned Aerial Vehicles) | flight concepts

- Helicopters:
 - < 20 minutes</p>
 - Highly dynamic and agility
- Fixed Wing Airplanes:
 - some hours; continuous flights possible
 - Non-holonomic constraints
- Blimp: lighter-than-air
 - some hours (dependent on wind conditions);
 - Sensitive to wind
 - Large size (dependent on payload)
- Flapping wings
 - < 20 minutes; gliding mode possible</p>
 - Non-holonomic constraints
 - Very complex mechanics

Festo BionicOpter

Roland Siegwart | 06.11.2014 | 91

ASL Autonomous Systems Lal

ETHzürich

UAV | potential applications

- Search and rescue, surveillance
- Industrial inspection
- Agriculture, mining and construction
- Next generation satellites

1 1

Roland Siegwart | 06.11.2014 | 92

• ...

Roland Siegwart | 06.11.2014 | 96

UAV | requirements

- Appropriate flight concept
 - Power autonomy
 - Agility
 - Robustness
- Navigation with on-board sensing and processing
 - Robustness against communication and GPS loss
 - "home" button
- Simple and intuitive operation
 - Stable on "hands-off"
 - Collision avoidance and localization / SLAM

ASL Autonomous Systems Lab **ETH** zürich **UAV** | requirements Appropriate flight concept

EU – Projects | Unmanned Aerial Systems

70 cm 650 g

30 cm 200 g

ETH zürich

Visual - Inertial SLAM | cheap and available

Roland Siegwart | 06.11.2014 | 100

ASL Autonomous Systems Lab

ETH zürich

UAV | Vision only navigation

- Swarm of small helicopters
 - Vision only navigation (one camera, GPS denied)
 - Fully autonomous with on-board computing
 - Feature-based visual SLAM
 - robust against lighting changes and large scale changes

1 1

A Synchronized Visual-Inertial Sensor System with FPGA Pre-Processing for Accurate Real-Time Slam

Roland Siegwart | 06.11.2014 | 102

ASL Autonomous Systems Lab

UAV | collision avoidance and path planning

- Real time 3D mapping (on-board)
- optimal path planning considering localization uncertainties

Roland Siegwart | 06.11.2014 | 104

ETHzürich

Systems Lab

UAV | facade scanning and 3D reconstruction

- Enhanced teleoperation or autonomous operation
- Visual-inertial localization for optimal 3D reconstruction

EHzürich

UAV | 3D mapping in mines

S.

- Vision-based localization and SLAM
- Laser-based 3D mapping

Solar Airplane | Optimization

- Design space at 38° N, June 21st
 - Fixed Aspect Ratio: 18.5

Flat optimum at wingspan 11.5 m

- Chosen AtlantikSolar configuration:
 - Wingspan 5.65 m
 - Battery mass 2.9 kg
 - Structural weight
 - Predicted: 1'317 g
 - Effective: 1'800 g
 - Prediction [Noth'08]: 4'638 g

Atlantik Colar | crossing the Atlantic in summer 2015

ETHzürich

ASL Autonomous Systems Lab

Solar Airplane | visual navigation

ASL Team

