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1 Concepts and Understanding (S2024.1)

Note that the answers given below are more detailed (for didactical purposes!) than what was
actually expected from the students during the examination.

a. For a four-state quantum-mechanical system with equidistant non-degenerate energy levels
En = n∆E for n = 0, 1, 2, 3, the equation giving the populations in the canonical ensemble
(Boltzmann distribution) reads

Pn =
e−En/(kBT )

e−E0/(kBT ) + e−E1/(kBT ) + e−E2/(kBT ) + e−E3/(kBT )
.

Inserting En = n∆E and T = k−1
B T̃∆E, one gets

Pn =
e−n/T̃

1 + e−1/T̃ + e−2/T̃ + e−2/T̃
.

When T̃ → 0, i.e. at the absolute zero, the terms e−n/T̃ become negligible unless n = 0
(in which case we get one), so that only the ground state is populated, corresponding to
the populations {1, 0, 0, 0} (i.e. the answer here is B→1). When T̃ → ∞, i.e. when the

temperature gets extremely high, the terms e−n/T̃ become equal to one (irrespective of n),
so that all the states get equally populated (i.e. the answer here is A→4). For T̃ = 1 and
T̃ = 2, the populations decreases exponentially with n, and the decrease is steeper in the
former compared to the latter case (i.e. the answers here are D→2 and C→3).

b. Classical force fields typically include two types of pairwise non-bonded interaction terms that
depend on the distance rij between two atoms i and j. The electrostatic term describes the
charge-charge interaction between atomic partial charges (usually) located on the atoms. This
interaction is typically described using Coulomb’s law

VCb(rij) =
qiqj

4πϵorij
,

where qi and qj are the partial charges and ϵo is the permittivity of vacuum. The van der Waals
interaction describes the strong short-range repulsion upon atom overlap (due to Pauli exclu-
sion) and the longer-range attraction caused by electron correlation (instantaneous-dipole–
induced-dipole interactions, termed London dispersion). This interaction is commonly de-
scribed using the Lennard-Jones function

VLJ(rij) = −C6

r6ij
+

C12

r12ij
,

where C6 and C12 are the dispersion and repulsion coefficient, respectively. A sketch of the
corresponding two functions is shown below.
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2 Fundamental Equations (S2024.2)

Note that the answers given below are more detailed (for didactical purposes!) than what was actu-
ally expected from the students during the examination. Watch out not to overlook the requirements
“explain the meaning of all the involved symbols” and “state the SI units of these quantities”.

a. The ideal-gas equation of state reads

PV = nRT ,

P is the pressure (units: kJ·mol−1·m−3), V is the volume (units: m3), n is the number
of moles (units: mol), T is the absolute temperature (units: K) and R is the gas constant
(units: kJ·mol−1·K−1). In terms of microscopic properties, the ideal-gas approximation is
valid under the assumption that the interaction between the molecules (or atoms) in the gas
is negligible. This amounts to the neglect of through-space interactions (e.g. medium-range
dispersive attraction) as well as excluded-volume effects (i.e. short-range overlap repulsion).
The only way the particles affect each other is through elastic collisions at contact between
point-like objects. The latter effectively randomize the velocities (at constant total momentum
and kinetic energy for each collision). In terms of macroscopic conditions, this is satisfied when
the molar density n/V of the gas is low, which implies that the ratio P/T is low as well (i.e.
ideality holds in the limit of low pressure and high temperature). The van der Waals real-gas
equation of state reads

P =
nRT

V − nb
− a

( n

V

)2

.

The SI units are: a (kJ·m3·mol−3) and b (m3·mol−1). The correction term involving a accounts
for the effect of the intermolecular (or interatomic) interactions (typically slightly attractive).
The correction term involving b accounts for the effect of the excluded volume of the molecules
(or atoms).

b. The typical potential-energy term for a bond-stretching term is the harmonic function

Vbnd(b) =
1

2
kb (b− bo)

2 .

Here, Vbnd is the potential energy (units: kJ·mol−1), b the bond length in a given configura-
tion (units: nm), bo the reference bond length (units: m), and kb the harmonic force constant
(units: kJ·mol−1·m−2). Appropriate values of bo for a given bond type can be inferred from
quantum-mechanical calculations (theoretical) or from crystallographic structure determina-
tions (experimental), as the bond distance in the relaxed geometry of simple model molecules.
Appropriate values of kb for a given bond type can be inferred from quantum-mechanical
calculations (theoretical) or from infrared/Raman spectroscopy measurements (experimental),
considering the frequency of the corresponding vibration in simple model molecules. The equa-
tion allowing to calculate the bond length i-j from the Cartesian position vectors ri and rj in
a computer-simulation program reads

b = (rij · rij)1/2 ,

where rij = rj −ri. So, in practice, we must calculate the scalar product of the vector rij with
itself, and then take the square-root.

c. The leap-frog equations read

v(t+∆t/2) = v(t−∆t/2) + a(t)∆t

and

r(t+∆t) = r(t) + v(t+∆t/2)∆t ,
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where r is the position, v the velovity, and a the acceleration (force divided by mass). Here,
the SI units are: ∆t (s), r (m), v (m·s−1) and a (m·s−2). The order of magnitude of the
error (largest neglected term) is (∆t)3. This is the advantage of interleaving, i.e. of having
asynchronous coordinates and velocities, namely that it cancels out the term in (∆t)2 that
would otherwise be the leading error. The trade-off involved in the choice of a reasonable ∆t
is the following. A too small ∆t will lead to unnecessarily limited total sampling time for a
given number of steps (i.e. for a given computational cost). A too large ∆t will lead to an
inaccurate integration of the equations of motion (i.e. numerical noise and, in the worst case,
program failure). The order of magnitude of ∆t typically selected in atomistic simulations
is about a femtosecond (10−15 s). The application of bond-length constraints (rather than
harmonic bonds) eliminates the fastest oscillations from the system, allowing to increase the
timestep (typically from 0.5 to 2 fs).
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3 Derivations (S2024.3)

a. The normalization condition reads

1 =

∫ ∞

−∞
dx p(x) = c

∫ ∞

−∞
dx e−(x−a)2/b = 2c

∫ ∞

0

dy e−y2/b = 2c
1

2
(πb)

1/2
= c(πb)1/2 ,

where the third equality follows from the change of variable y = x−a (with dy = dx) and from
noting that the integrand is even around y = 0 after this change. This equation is satisfied
with c = (πb)−1/2, so that the normalized probability distribution reads

p(x) = (πb)−1/2 e−(x−a)2/b .

The mean µ of p(x) is given by

µ =

∫ ∞

−∞
dxx p(x) = (πb)−1/2

∫ ∞

−∞
dy (y + a) e−y2/b = (πb)−1/22a

∫ ∞

0

dy e−y2/b

= (πb)−1/22a
1

2
(πb)

1/2
= a ,

where the second equality follows from the change of variable y = x− a (with dy = dx), while
the third equality follows from noting that the part of the integrand involving y is odd around
y = 0 (leading to a vanishing integral) and that the part of the integrand involving a is even.
Thus, the mean µ is equal to the parameter a. The variance σ2 of p(x) is given by

σ2 =

∫ ∞

−∞
dx (x− a)2 p(x) = (πb)−1/2

∫ ∞

−∞
dy y2 ey

2/b = (πb)−1/22

∫ ∞

0

dy y2 ey
2/b

= (πb)−1/22
1
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(
πb3

)1/2
= (1/2)b ,

where the second equality follows from the change of variable y = x − a (with dy = dx). So,
the variance σ2 is equal to half the parameter b. If the unit of x is nm, the units of p(x) and c
are nm−1, the units of a, µ and σ are nm, and the unit of b is nm2. It is a common mistake to
think that a probability distribution is “unitless” or with “arbitrary units”. If the distribution
is normalized, the normalization condition (see above) imposes that the product of the units
of dx and p(x) is unitless (like the resulting “one”). So, the units of p(x) are inverse to the
units of x.

b. The expression for the classical canonical ensemble average ⟨A⟩ of an instantaneous observable
A in the unbiased ensemble (Hamiltonian H) is

A = ⟨A⟩ = ξ Z−1

∫
dr dpA e−βH ,

where the classical partition function Z reads

Z = ξ

∫
dr dp e−βH ,

with ξ = (h3NN !)−1 for N indistinguishable particles, h being the Planck constant. The
corresponding equations for the biased ensemble considering an observable X are

X = ⟨X ⟩B = ξ Z−1
B

∫
dr dpX e−β(H+VB) ,
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with

ZB = ξ

∫
dr dp e−β(H+VB) .

Replacing the observable X by Ae+βVB in the two latter equations, one recovers the two former
equations. Thus, one may write

A = ⟨A⟩ = ⟨Ae+βVB ⟩B ,

which is the reweighting formula.
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4 Explicit Calculations (S2024.4)

a. Using the equation for the harmonic potential energy one has

V (θo ±∆θ; θo) =
1

2
kθ(∆θ)2.

Inserting the numerical values kθ = 0.10 kJ·mol·deg−2 and ∆θ = 5 deg, one gets V = 1.25
kJ·mol−1. In comparison, the thermal energy RT at T = 300 K is 2.49 kJ·mol−1. So, a
bond-angle change of 5 deg corresponds to an energy increase by about RT/2, i.e. the typical
H-O-H bond-angle fluctuations in molecular dynamics simulations using this water model are
expected to be slightly larger than 5 deg. (for RT , one would get would be 5 · 21/2 ≈ 7.1 deg).

b. Inserting the quantities with the appropriate units into the equation for v2
1/2

, one gets

v2
1/2

=

(
3× 8 J ·mol−1 ·K−1 × (25 + 275) K

0.02 kg ·mol−1

)1/2

= 600 m · s−1 . (3)

When T is doubled, v2
1/2

is amplified by a factor 21/2 ≈ 1.41, so, it is increased by 41%. When

m is doubled, v2
1/2

is amplified by a factor 2−1/2 ≈ 0.71, so, it is decreased by 29%. These
trends can be explained simply based on the equipartition principle. At a temperature T , each
degree of freedom (e.g. each of the three Cartesian velocity components of an atom) stores on
average a quantity kBT/2 of kinetic energy. For an atom of mass m, the instantaneous kinetic
energy is given by mv2/2. It follows that on average, v grows in proportion to T 1/2 and to
m−1/2. The functional form of the Maxwell-Boltzmann distribution given by

p(v) = C v2 e−βmv2/2 . (4)

This corresponds to the probability of realizing a vector norm v (given by the Boltzmann factor

of the associated kinetic energy, i.e. proportional to e−βmv2/2) multiplied by the number of
ways of realizing such a vector norm in terms of the three Cartesian components (given by the
surface of a sphere of radius v, i.e. proportional to v2). The constant C can be determined
from the normalization constraint (but this was not asked here). The distribution is sketched
below for different choices of m and T .
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It is skewed towards the right. As a result, one expects the the most probable velocity v∗ to
be slightly lower than the the mean velocity v, and the mean velocity to be slightly lower than

the root-mean-square velocity v2
1/2

. The corresponding equations are (but this was not asked
here)

v∗ =

(
2kBT

m

)1/2

, v =

(
8kBT

πm

)1/2

, and v2
1/2

=

(
3kBT

m

)1/2

, (5)
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where 21/2 = 1.41, (8/π)1/2 = 1.60, and 31/2 = 1.73. The Maxwell-Boltzmann distribution
(like the equipartition theorem) is generally valid, independently of the phase. So, the values

of v2
1/2

in liquid neon and in gas-phase neon at the same temperature T are identical.
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5 Algorithms and Implementation (S2024.5)

a. A possible code for the function MorseEnergy is given below

double MorseEnergy (int N, double x[], double y[], double z[],

double a, double b, double c) {
int i,j; // particle indexes

double r2; // for r^2

double ene = 0;

for ( i=0; i<N; i++ ) {
for ( j=i+1; j<N; j++ ) {

r2 = (x[j]-x[i])*(x[j]-x[i])

+ (y[j]-y[i])*(y[j]-y[i])

+ (z[j]-z[i])*(z[j]-z[i]);

double r = sqrt(r2);

double fac = 1.0 - exp( -a*(r-b) );

ene += fac*fac;

}
}
return c * ene;

}
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