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1 Concepts and Understanding (S2022.1)

Note that the answers given below are more detailed (for didactical purposes!) than what was
actually expected from the students during the examination.

a. In the grand-canonical ensemble, the system has the following boundary conditions: (i) it is
open (i.e. allowed to exchange molecules with its surroundings); (ii) it is isochor (of fixed
volume, i.e. not allowed to exchange volume work with its surroundings); (iii) it is diatherm
(i.e. allowed to exchange heat with its surroundings). The three independent variables nor-
mally used to specify the state of this ensemble (restricting the discussion to a one-component
one-phase system) are the chemical potential µ (intensive), the volume V (extensive), and
the temperature T (intensive). The corresponding dependent quantities are the number of
particles N (extensive), the pressure P (intensive), and the internal energy U (extensive).

b. Covalent (bonded) terms are: bond stretching, bond-angle bending, dihedral torsion and
improper-dihedral distortion (out-of-plane bending). Their roles and typical functional forms
are shown in the figure below (which also includes the two non-bonded types, electrostatic and
van der Waals interactions).

c. Finite-size effects: A typical simulation box (microscopic simulated sample) is smaller than the
interaction range of the particles. Surface effects: If a liquid droplet (or protein) is simulated
in vacuum, there are many more molecules (or atoms) perturbed by the surface compared to
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the number of unperturbed molecules in the bulk (or atoms in the middle) compared to a
macroscopic sample. Thus, the perturbed molecules/atoms will influence the properties of the
system. Periodic boundary conditions remove the surface to vacuum by mimicking an infinite
periodic system (infinite pseudo-crystal), thereby removing the surface effects.
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2 Fundamental Equations (S2022.2)

Note that the answers given below are more detailed (for didactical purposes!) than what was actu-
ally expected from the students during the examination. Watch out not to overlook the requirements
“explain the meaning of all the involved symbols” and “state the SI units of these quantities”.

a. The one-dimensional time-dependent Schrödinger equation in terms of a coordinate x (SI unit:
m) and time t (unit: s) reads

Ĥ(t) Ψ(x, t) = i~
∂Ψ(x, t)

∂t
,

where ~ = (2π)−1h, h being the Planck constant (SI unit: J·s), Ψ is the time-dependent
wavefunction (complex, SI unit of | Ψ(x, t) |2: m−1), and Ĥ the Hamiltonian operator (SI
unit: J). The latter operator is given by

Ĥ(t) = − ~2

2m
∇2 + V(x, t) ,

where m is the mass (SI unit: kg) and V(x, t) is the potential energy (SI unit: J). The
wavefunction is normalized as ∫

dx | Ψ(x, t) |2= 1 ∀t .

Its interpretation is that dx | Ψ(x, t) |2 is the probability at time t of finding the particle at po-
sition x (within an infinitesimal width dx). If the Hamiltonian operator Ĥ is time-independent,
the time-dependent Schrödinger equation can be simplified to the time-independent one

Ĥψ(x) = E ψ(x) ,

where ψ is the time-independent (stationary) wavefunction (complex, SI unit of | ψ(x) |2:
m−1) and E is the energy (SI unit: J). This is an eigenvalue equation which typically admits a
discrete set of real solutions for E. The Hamiltonian Ĥ is time-independent when the system is
isolated from fluctuating external influences (e.g. other molecules moving around, fluctuating
fields, electromagnetic waves, ...). Static influences (e.g. time-independent external field) are,
however, allowed (provided they are included into the Hamiltonian).

b. When using direct counting, the free-energy difference ∆GU→F is calculated based on averages
〈...〉 over the plain MD (unbiased) trajectory, as

∆GU→F = −β−1 ln
〈f(r)〉
〈1− f(r)〉

,

where β = (kBT )−1, with kB the Boltzmann constant (SI units: J·K−1), T is the absolute
temperature (SI units: K), and f is the indicator function for the folded state (unitless). In
practice, this amounts to counting the number of configurations where the peptide is folded
(numerator in the log) and unfolded (denominator in the log), and calculating ∆GU→F from
the resulting ratio (equilibrium constant). To improve the accuracy of the calculation, one may
rely on the use of a biasing potential Vb(r) during the MD sampling. This is called umbrella
sampling. The desired properties determining the choice of an appropriate biasing potential
are: (i) the two states should be sampled in approximately equal amounts in the biased
sampling (equalization of the relative free energies); (ii) the two states should interconvert
often during the simulation (reduction of the barrier between the states). When using umbrella
sampling, the free-energy difference ∆GU→F is calculated based on averages 〈...〉b over the
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biased MD trajectory, as

∆GU→F = −β−1 ln
〈f(r) exp[+βVb(r)]〉b

〈(1− f(r)) exp[+βVb(r)]〉b
.

The principle is the same, but the frames are ascribed a relative weight of exp[+βVb(r)] (rather
than one in direct counting), to correct for the effect of the biasing. The more a configuration
was favored (disfavored) during the biased sampling, the more it will be down-weighted (up-
weighted) in the averaging.
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3 Derivations (S2022.3)

a. The normalization condition reads∫ ∞
0

dx p(x) = c

∫ ∞
0

dx exp(−αx) = c
[
(−α−1) exp(−αx)

]∞
0

= c α−1 .

It is satisfied with c = α, so that the normalized probability distribution reads

p(x) = α exp(−αx) .

The expectation value (mean) is given by

µ =

∫ ∞
0

dxx p(x) = α

∫ ∞
0

dxx exp(−αx)

= α

{[
x (−α−1) exp(−αx)

]∞
0
−
∫ ∞
0

dx (−α−1) exp(−αx)

}
= α

{
0 + α−2)

}
= α−1 ,

where the third equality follows from integration by parts (integrand f · g′ with f = x and
g′ = exp(−αx)). So, the mean is equal to the inverse of the decay parameter. If the unit of
x is ns, the unit of p(x) is ns−1, the unit of c = α is ns−1 as well, and the unit of µ is ns. It
is a common mistake to think that a probability distribution is “unitless” or with “arbitrary
units”. If the distribution is normalized, the normalization condition (see above) imposes that
the product of the units of dx and p(x) is unitless (like the resulting “one”). So, the units of
p(x) are inverse to the units of x.

b. The classical canonical partition function is defined as

Z = h−1
∫

dx dp exp[−βH(x, p)] ,

where β = (kBT )−1, kB being the Boltzmann constant, and the Planck constant h is intro-
duced for compatibility with the corresponding quantum-mechanical expressions (resulting in
a unitless Z). This evaluates to

Z =h−1
{∫

dx exp[−(1/2)βkx2]

}
·
{∫

dp exp[−(1/2)βm−1p2]

}
=h−1

(
2π

βk

)1/2(
2π

βm−1

)1/2

= h−1β−12π

(
m

βk

)1/2

=
kBT

hν
,

where the second equality follows from the quoted Gaussian-integral result (with a factor
two included, as the given result was for the [0,∞] interval whereas here, we integrate over
[−∞,∞]). The probability distribution P (x, p) is defined as

P (x, p) = (hZ)−1 exp[−βH(x, p)] .

It has the units of an inverse action (inverse of energy × time) as appropriate for the probability
distribution of a two-dimensional quantity (x, p) that has the units of an action. Inserting the
expressions for the harmonic oscillator, this gives

P (x, p) =
ν

kBT
·
{

exp[−(1/2)βkx2]
}
·
{∫

dp exp[−(1/2)βm−1p2]

}
which is factorizable as Px(x) ·Pp(p). The two probability distributions are Gaussians, so that
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the 〈x2〉1/2 and 〈p2〉1/2 are simply given by the corresponding standard deviations, i.e.

〈x2〉1/2 = (βk)
−1/2

=

(
kBT

k

)1/2

and 〈p2〉1/2 =

(
β

m

)−1/2
= (mkBT )

1/2
.

The mean-square displacement 〈x2〉1/2 decreases upon increasing k (tighter oscillator→ smaller
amplitude of motion), increases upon increasing T (more kinetic energy → larger amplitude
of motion), and is independent of m. The mean-square momentum 〈p2〉1/2 increases upon
increasing m (higher mass → more momentum), increases upon increasing T (more kinetic
energy → more momentum), and is independent of k. The expression for 〈p2〉1/2 is also
compatible with the equipartition principle, which implies (for a system with one degree of
freedom) that

〈K〉 =
〈p2〉
2m

=
1

2
kBT .
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4 Explicit Calculations (S2022.4)

a. Using the equation for the harmonic potential energy one has

V (θo ±∆θ; θo) =
1

2
kθ(∆θ)

2.

Inserting the numerical values kθ = 0.15 kJ·mol·deg−2 and ∆θ = 10 deg, one gets V = 7.5
kJ·mol−1. In comparison, the thermal energy RT at T = 300 K is 2.49 kJ·mol−1. So, a
bond-angle change of 10 deg corresponds to an energy increase by about 3RT . As a result,
the typical bond-angle fluctuations in molecular dynamics simulations are on the order of 10
deg or less (RT would be 10/31/2 ≈ 5.8 deg).

b. We use the ideal-gas equation of state

PV = nRT

We know that Vend/Vbeg = 1.05 (volume expansion by 5 %) Because the number of mols and
the pressure are constant, it follows that Tend/Tbeg = 1.05, where T should be an absolute
temperature. Denoting To the absolute zero on the Celcius scale, one has to solve (To +
40)/(To + 25) = 1.05, which has the solution To = −275 ◦C.
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5 Algorithms and Implementation (S2022.5)

a. A possible code for the function LennardJonesEnergy is given below

double LennardJonesEnergy (int N, double x[], double y[], double z[],

double sig, double eps) {
int i,j; // particle indexes

double r2, ri6; // for r^2 and 1/r^6

double fac = pow(sig,6); // for sig^6

double ene = 0;

for ( i=0; i<N; i++ ) {
for ( j=i+1; j<N; j++ ) {

r2 = (x[j]-x[i])*(x[j]-x[i])

+ (y[j]-y[i])*(y[j]-y[i])

+ (z[j]-z[i])*(z[j]-z[i]);

ri6 = 1.0/(r2*r2*r2);

ene += ri6 * ( fac * ri6 - 1.0 );

}
}
return 4.0*eps*fac * ene;

}
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