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1 Concepts and Understanding (S2021.1)

Note that the answers given below are more detailed (for didactical purposes!) than what was
actually expected from the students during the examination.

a. To assess the quality of a pseudo-random number generator producing real values over the
interval [0, 1[, one should calculate two type of functions. First, the probability distribution
(histogram) function p(x) of the generated numbers x, which should ideally be homogeneous
over the interval [0, 1[.

► Uniformity test (X2 test):

o Idea: If M random numbers are generated, are these spread out reasonably
of the interval?

o Divide the interval in B bins of equal length

2 1 f (n. - E. )2 n i : number of random numbers in bin i M

X = B i=l 

I 

Ei 
I 

Ei : expectation value of n in bin i ➔ E; = 
B 

o If X2 = 0 ➔ agreement between expected and generated distribution

2 2 
o Rule of thumb (for M > 1 OB): 1- X < ✓B 
o Repeat X2 test a few ti mes

Second, the autocorrelation (sequence correlation) function c(∆k), where ∆k indicates the
interval between two generated numbers along the sequence, which should ideally be zero for
any ∆k 6= 0.

Briefly stated, the pseudo-random numbers should be homogeneously distributed over the
interval [0, 1[ as well as uncorrelated along the sequence.

b. The correspondence principle associates classical-mechanical variables to quantum-mechanical
operators. For a single particle in three dimensions, the operators associated with the classical
position vector (r), momentum vector (p), and total energy (E) are

r→ r , p→ −i~∇r and E → i~
∂

∂t
,

where ~ = (2π)−1h, h being the Planck constant, and∇r is the gradient operator. The classical
energy conservation reads

H(r,p) = K(p) + V(r) = E ,

where H is the Hamiltonian function, K the kinetic-energy function, V the potential-energy
function, and E the total energy. The corresponding quantum-mechanical equation via the
correspondence principle is the time-dependent Schrödinger equation, which reads

ĤΨ = (K̂ + V) Ψ = i~
∂

∂t
Ψ ,
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where Ĥ is the Hamiltonian operator, K̂ the kinetic-energy operator, and Ψ the wavefunction.
Using the expression for the classical kinetic-energy function

K =
∑
i

p2
i

2mi
,

one may write the corresponding quantum-mechanical operator using the correspondence prin-
ciple as

K̂ = −
∑
i

~2

2mi
∇2 ,

where ∇2 is the Laplacian operator.

c. The schematic drawing of the thermodynamic cycle, along with the equation for the relative
binding free energy ∆GBbind −∆GAbind, are shown below

The horizontal arrows correspond to the two conformational changes and the vertical ones
to the two alchemical changes. The alchemical changes typically require much less simulation
time to reach convergence up to a given accuracy compared to the conformational ones. This is
because bringing a ligand from a far distance into the active site of a protein (including possible
protein and ligand rearrangements) is generally much more difficult to sample than performing
limited topology changes in an already bound ligand (smaller protein and ligand rearrange-
ments). The alchemical free-energy differences can be calculated using e.g. thermodynamic
integration (TI), free-energy perturbation (FEP), or enveloping distribution sampling (EDS).
If the ligand state A is chosen to involve the ligand with its normal intramolecular interactions
but no non-bonded interactions with the environment (i.e. a so-called dummy skeleton), then
∆GAbind = 0 and the calculated relative binding free energy is equal to the absolute binding
free energy ∆GBbind of ligand B.
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2 Fundamental Equations (S2021.2)

Note that the answers given below are more detailed (for didactical purposes!) than what was actu-
ally expected from the students during the examination. However (unfortunately!), many students
completely overlooked the requirements “explain the meaning of all the involved symbols” and
“state the SI units of these quantities”.

a. The equation for the normalized probability density p(x) corresponding to a normal (Gaussian)
distribution of mean µ and standard deviation σ in a variable x reads

p(x) =
1

(2π)1/2σ
e−(x−µ)

2/(2σ2) .

The word “normalized” refers to the condition∫ ∞
−∞

dx p(x) = 1

imposed to p(x). It is a common mistake to think that a probability distribution is “unitless”
or with “arbitrary units”. If the distribution is normalized, the above normalization condition
imposes that the product of the units of dx and p(x) is unitless (like the resulting value of
“one”). So, the units of p(x) are inverse to the units of x.

b. The Newtonian equation of motion reads

F =
dp

dt
= m

d2r

dt2
.

Here, F is the force acting on the particle (SI unit: N = J·m−1), t is time (SI unit: s), r is the
position vector of he particle (SI unit: m) and p is the corresponding momentum vector (SI
unit: kg·m·s−1 = J·s·m−1). When considering a conservative force field, the force is given by
the gradient of a potential-energy function V(r), i.e.

F = −∇rV(r) .

The Newtonian equations of motion are only valid in a Cartesian coordinate system, i.e. r
must be the Cartesian coordinate vector and p must be the Cartesian momentum vector,
satisfying

p = m
dr

dt
.

The three types of quantities often conserved by the Newtonian dynamics (constants of the
motion) are the total energy (conserved in the case of a conservative force field, i.e. when the
force derives from a potential energy that solely depends of r), the linear momentum of the
center of mass (when the total force acting on the system is zero) and the angular momentum
about the center of mass (when the total torque of the forces acting on the system is zero).

c. An expression for the instantaneous observable T can be derived from the equipartition prin-
ciple, which states that the average kinetic energy associated with each degree of freedom of
a system at equilibrium is equal to (1/2)kBT , where kB is the Boltzmann constant and T the
absolute temperature. So, a possible definition reads

T (p) =
2

kBNdof
K(p) ,

where K is the kinetic energy and Ndof the total number of degrees of freedom of the system.
This definition is not unique. For instance, we could use a subset of the degrees of freedom
and the associated kinetic energy. The instantaneous variable T is connected to its canonical
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ensemble average T via

T = 〈T 〉 =

∫
drdp T e−βH(r,p)∫
drdp e−βH(r,p)

where 〈. . . 〉 indicates a canonical ensemble average and H is the Hamiltonian.
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3 Derivations (S2021.3)

a. Since the coupling is linear, one has

∂H
∂λ

= HB −HA .

Thus, the TI formula reads

∆GA→B =

∫ 1

0

dλ 〈∂H
∂λ
〉λ =

∫ 1

0

dλ [〈HB〉λ − 〈HA〉λ] .

Inserting the fitted equations leads to the result

∆GA→B =

∫ 1

0

dλ [c λ+ d− a λ− b] = d− b+ (c− a)/2.

b. The suggested expansion gives

∂

∂β

(
1

Z

∂Z

∂β

)
=

1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

.

Using the definition of Z, we easily derive

∂Z

∂β
= −

∫
dxH e−βH = −Z〈H〉

and

∂2Z

∂β2
=

∫
dxH2 e−βH = Z〈H2〉 .

Inserting these expressions into the definition of σ2
E , this gives

σ2
E =

1

Z

∂2Z

∂β2
− 1

Z2

(
∂Z

∂β

)2

.

Using the above expansion, we get

σ2
E =

∂

∂β

(
1

Z

∂Z

∂β

)
.

Finally, inserting the expression for 〈H〉, the definition of β, and the definition of CV , one
obtains

σ2
E = − ∂

∂β
〈H〉 = kBT

2 ∂

∂T
〈H〉 = kBT

2CV .

So, the energy fluctuations in the canonical ensemble are directly related to the isochoric heat
capacity of the system.
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4 Explicit Calculations (S2021.4)

a. Using the equation for the harmonic potential energy one has

V (bo ±∆b; bo) =
1

2
kb(∆b)

2.

Inserting the numerical values kb = 105 kJ·mol·nm−2 and ∆b = 0.01 nm, one gets V = 5
kJ·mol−1. In comparison, the thermal energy RT at T = 300 K is 2.49 kJ·mol−1. So, a
bond-length change of 0.01 nm already corresponds to an energy increase by about 2RT . As a
result, the typical bond-length fluctuation in molecular dynamics simulations are on the order
of 0.01 nm or less (RT would be 0.01/21/2 ≈ 0.007 nm). Compared to the reference C-C bond
length of 0.15 nm, this is only 6.7%.
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5 Algorithms and Implementation (S2021.5)

a. A possible code for the function MeanSquareDispl is given below

void MeanSquareDispl ( int N, int K, double x[3*N][], double s[] ) {
int k,kk,i;

double dif,sum;

for ( k = 0; k < K; k++ ) { // loop over lag times k*dt

sum = 0;

for ( kk = 0; kk < K-k; kk++ ) { // loop over time origins kk*dt

for ( n = 0; n < 3*N; n++ ) { // loop over particles and components

dif = r[n][k+kk] - r[n][k];

sum += dif*dif;

}
}
s[k] = sum/(N*(K-k));

}
}

According to the Einstein equation, s(τ) should become linear at long times, its slope being
connected to the diffusion constant D of the system as

lim
τ→∞

τ−1 s(τ) = 6D .

In the absence of specific “cage effects”, the curve should actually be linear already from zero
(or very small) lag times onward. However, the number of time origins available to calculate
s(k∆t) for a given k is given by K − k. As a result, when τ approaches T , the statistics
become poor and the curve becomes more and more “noisy”. When using periodic boundary
conditions, one should make sure that rn(t) follows the particle n across periodic boundaries,
i.e. that it is a continuous and unbounded trajectory within the infinite periodic system.
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