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1 Concepts and Understanding (F2023.1)

Note that the answers given below are more detailed (for didactical purposes!) than what was
actually expected from the students during the examination.

a. A precise statement of the central-limit theorem is as follows. When N independent random
variables xn are drawn from an arbitrary distribution p(x) with average µ and variance σ2, in
the limit of large N , their mean X distributes according to a normal (Gaussian) distribution
with average µ and variance N−1σ2.

b. With systematic sampling, we have a homogeneous sampling of Ω (in the limit K → ∞).
To obtain the canonical ensemble average A of A, we must introduce a Boltzmann weighting
explicitly, i.e.

A = Z−1
K∑

k=1

Ak e
−βVk with Z =

K∑
k=1

e−βVk ,

where β = (kBT )
−1, kB being the Boltzmann constant and T the absolute temperature. With

stochastic campling, we also have a homogeneous sampling of Ω (in the limit K → ∞). So, we
can use the same equation relying on explicit Boltzmann weighting. With isothermal MD, i.e.
MD with a thermostat at temperature T , we already sample Ω following an implicit Boltzmann
weighting (i.e. the vectors r occur in proportion to their Boltzmann factor). Consequently,
the ensemble average is obtained here using plain (arithmetic) averaging, i.e.

A = K−1
K∑

k=1

Ak .

Finally, with umbrella ampling MD, i.e. isothermal MD with a biasing potential energy Vbias,
weights are also applied implicitly, but they are non-Boltzmannian (Boltzmann factor of V +
Vbias instead of V). Thus, we must do reweighting when calculating the ensemble average, i.e.

A = X−1
K∑

k=1

Ak e
+βVbias,k with X =

∑
k=1

e+βVbias,k .

c. A typical potential-energy expression for bond stretching is harmonic, i.e.

Vb =
1

2
kb(b− bo)

2 ,

where bo is the reference bond length and kb the force constant. A typical potential-energy
expression for bond-angle bending is harmonic, i.e.

Vθ =
1

2
kθ(θ − θo)

2 ,

where θo is the reference bond-angle value and kθ the force constant. A typical potential-energy
expression for torsional-dihedral rotation is a sum of cosine terms, i.e.

Vϕ =
∑
m

kϕ,m cos(mϕ− δm) ,

where m are multiplicities (positive integers, typically in the range 1-6), while δm and km are
the corresponding phase shifts and force constants, respectively. A typical potential-energy
expression for improper-dihedral distortion is harmonic, i.e.

Vξ =
1

2
kξ(ξ − ξo)

2 ,

where ξo is the reference improper-dihedral value and kξ the force constant.
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2 Fundamental Equations (F2023.2)

Note that the answers given below are more detailed (for didactical purposes!) than what was actu-
ally expected from the students during the examination. Watch out not to overlook the requirements
“explain the meaning of all the involved symbols” and “state the SI units of these quantities”.

a. For a given atom i in the system, the Langevin equation of motion reads

mir̈i = F∼
i −miγiṙi + σiηi ,

where mi is the mass (SI unit: kg), r̈i the acceleration (SI unit: m·s−2), F∼
i the mean (super-

script ∼) force (SI unit: N), γi the friction coefficient (SI unit: s−1), ṙi the velocity (SI unit:
m·s−1), σi the stochastic force amplitude (SI unit: N·s1/2), and ηi the white-noise vector (SI
unit: s−1/2). Commonly, γi and σi are taken to be identical for all atoms, and simply written
as γ and σ. The Langevin equation of motion is typically used in simulations of solutions where
the solvent molecules are not included explicitly, i.e. when using an implicit-solvent model.
It can also be used as a (very effective!) thermostat algorithm when simulating molecules in
vacuum, or even in solution with an explicit-solvent representation. The simulation method
relying on the integration of the Langevin equation of motion in time is called stochastic dy-
namics (SD). The left-hand side of the eqauation corresponds to the mass-acceleration product
of the particle, used to propagate its dynamics in time (e.g. using the SD leap-frog algorithm).
On the right-hand side, the first term corresponds to the mean force on the particle, which
encompasses the effect of other solute atoms as well as the mean effect of the solvent. The
second term accounts for the friction by the solvent (proportional and in opposite direction
to the atomic velocity). Finally, the last term accounts for the random kicks by the solvent
molecules, where ηi is a random vector sampled from a Wiener (white-noise) process. The
generated dynamics is not adiabatic because the friction term removes energy from the system
while the stochastic term introduces energy into the system. The balance between the two
effects will generate an equilibrium situation. The resulting temperature T depends on the
balance between γ (magnitude of the friction) and σ (magnitude of the stochastic kicks) via
the fluctuation-dissipation equation (assuming here particles with equal masses m)

T =
σ2

2mkBγ
,

where kB is the Boltzmann constant. In the limit of high friction, the inertial term (left-hand
side of the Langevin equation) can be neglected, and one obtains the Brownian equation of
motion

miγiṙi = F∼
i + σiηi .

The simulation method relying on integrating this equation in time is called Brownian Dy-
namics (BD).

b. For a quantum-mechanical system with M energy levels, the canonical partition function is
defined by

Z =

M−1∑
m=0

e−βEm ,

where Em is the energy of level m (SI unit: J) with the zero point set as E0 = 0, and
β = (kBT )

−1 (SI unit: J−1), kB being the Boltzmann constant (SI unit: J·K−1) and T the
absolute temperature (SI unit: K). For a classical system of 3N particles (M = 3N degrees of
freedom), the canonical partition function is defined as

Z = ξ

∫
dx e−βH(x) ,
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where x is the 2M -dimensional phase-space vector (coordinate and momenta) of the system
(SI unit of the volume element: JM ·sM ), H the Hamiltonian (SI unit: J), and ξ = (hM N !)−1

for indistinguishable particles (SI unit: J−M ·s−M ), h being the Planck constant (SI unit: J·s).
The quantity Z is a central quantity in statistical mechanics because its knowledge (along with
that of its derivatives with respect to temperature, volume, and number of particles) provides
all the thermodynamic information on the system. For example, it determines the Helmholtz
free energy as

F = −β−1 lnZ + Uo ,

where Uo is the zero-point energy, the enthalpy as

U = −∂ lnZ

∂β
+ Uo ,

and the entropy as

S = kB lnZ +
U − Uo

T
.
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3 Derivations (F2023.3)

a. Combining the expression for W (p) with the equation for the Boltzmann entropy, one gets

S(p) = kBK
−1

[
lnK!−

M−1∑
m=0

ln(Kpm)!

]
.

Inserting the Stirling approximation lnN ! ≈ N lnN −N gives

S(p) = kBK
−1

[
K lnK −K −K

M−1∑
m=0

pm (ln pm + lnK − 1)

]
.

Using the normalization condition (i.e. the fact that the sum of the pm probabilities evaluates
to one), this simplifies to

S(p) = −kB

M−1∑
m=0

pm ln pm ,

which is the Gibbs expression for the entropy.

b. Omitting the zero-point energy (irrelevant here), the equation connecting the Helmholtz free
energy F to the canonical partition function Z reads

F = −β−1 lnZ ,

where β = (kBT )
−1, kB being the Boltzmann constant and T the absolute temperature. The

free-energy difference ∆FAB can thus be written

∆FAB = −β−1 ln
ZB

ZA
.

The equation for the classical partition function Z (as determined by the Hamiltonian H)
reads

Z = ξ

∫
dr dp e−βH ,

with ξ = (h3NN !)−1 for N indistinguishable particles, h being the Planck constant. Inserting
this into the equation for ∆FAB gives

∆FAB = −β−1 ln

∫
dr dp e−βHB∫
dr dp e−βHA

.

This can be re written

∆FAB = −β−1 ln

∫
dr dp e−β(HB−HA) e−βHA∫

dr dp e−βHA
.

The expression for the canonical ensemble average ⟨A⟩ of an instantaneous observable A is

⟨A⟩ = ξ Z−1

∫
dr dpA e−βH .

So we get

∆FAB = −β−1 ln
〈
e−β(HB−HA)

〉
A

,

which is the FEP expression.
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4 Explicit Calculations (F2023.4)

a. First consider the case where the dice have different colors, and a throw is characterized by a
sequence. In this situation, the total number of distinguishable sequences for a throw is given
my MK (each of the K dice can have any of M outcomes, and all the resulting combinations
are distinguishable). With M = 6 and K = 4, this evaluates to 64 = 1296. The probabilities of
the sequences {1, 1, 1, 1}, {1, 2, 2, 1} and {1, 2, 4, 6} are all the same, namely 1/1296. The most
probable sequence(s) is either “any” or “none”, since all are equiprobable. Now considering
the case where the dice have the same color, and a throw is characterized by a distribution. In
this situation, the total number of distributions for a throw is given by the binomial coefficient

Ndis =

(
K +M − 1

K

)
=

(K +M − 1)!

(M − 1)!K!
.

With M = 6 and K = 4, this evaluates to 126. The probability of a distribution n = {nm |
m = 1, ..,M} with n ∈ 1, ..,K is given by the multinomial coefficient

P (n) =

(
K

n1, .., nM

)
=

K!∏M
m=1 nM

.

With K = 4, one has K! = 24. So, the probability of the distribution {1, 1, 1, 1, 0, 0} is 24/126,
i.e. 4/21, the probability of the distribution {2, 2, 0, 0, 0, 0} is 6/126, i.e. 1/21, and the prob-
ability of the distribution {4, 0, 0, 0, 0, 0} is 1/126. The most probable distributions are those
where all the dice show different numbers. There are M !/((M − K)!K!) such combinations,
i.e. 15, and they all have a probability of 4/21. You can easily list them.

b. Using the ideal-gas law, the number n of moles is found to be

n =
PV

RT
=

74.7 · 105 J ·m−3 · 10−3 m3

8.3 J ·mol−1 ·K−1 · 300K
=

74.7 · 102 J
24.9 · 102 J ·mol−1 = 3mol .

There are thus 3 · 6 · 1023 = 1.8 · 1024 molecules in the container. Since the molecules are
diatomic, this corresponds to 3.6 · 1024 atoms.
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5 Algorithms and Implementation (F2023.5)

a. A possible code for the function RmsdCalc is given below

void RmsdCalc ( int N, int K, double ref[], double trj[][3*N], rmsd[] ) {
double sum;

for ( int k = 0; k < K; k++ ) { // loop over trajectory frames

RotoTransFit(ref,trj[k]); // apply roto-trans fitting (in place)

sum = 0.0;

for ( int j = 0; j < 3*N; j++ ) { // loop over atoms and components

tmp = trj[k][j] - ref[j];

sum += tmp * tmp;

}
rmsd[k] = sqrt(sum/N);

}
return;

}

The roto-translational superimpositon is necessary to eliminate the effect of the rigid-body
translation and rotation of the macromolecule, i.e. we only want to quantify the structural
distortion relative to the reference structure (and not its relative position and orientation).
For a simulation performed in solution under periodic boundary conditions (rather than in
vacuum), we would also have to restore the connectivity of the macromolecule by periodic
gathering (as the periodic copies of the atoms in the reference computational box may not
form a “connected” representation of the macromolecule). This must be done prior to the
roto-translational fitting.
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