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1 Concepts and Understanding (F2022.1)

Note that the answers given below are more detailed (for didactical purposes!) than what was
actually expected from the students during the examination.

a. The ergodic theorem states the equivalence between the ensemble averages of statistical me-
chanics and the time (trajectory) averages of molecular dynamics. See the following summary
(in the context of classical mechanics).

Ergodic theorem

The theorem holds for K → ∞ (which is OK, because the statistical mechanical ensembles
are only mathematical constructs) and t → ∞ (which is more problematic, since molecular
dynamics simulations are always of finite durations). In practice, the theorem will be satisfied
for finite simulations provided that all thermodynamically relevant states have been visited
during the simulation time, and that each of them has been visited many times.

b. The three main reasons why the use of constrained bonds is to be preferred over that of
flexible bonds are that: (i) bond vibrations are typically uninteresting in condensed-phase
(bio)molecular systems, where the relevant motions are related to conformation and solvation,
and occur on comparatively slow timescales (with little coupling to the very fast bond oscil-
lations); (ii) in contrast to a classical harmonic oscillation, a constraint is associated with no
kinetic energy, heat capacity and entropy, which is a better representation of the quantum-
mechanical state for vibrations that are not excited (i.e. in the quantum-mechanical ground
state) at room temperature (as typical for high-frequency bond vibrations, unless they involve
heavy atoms and weak bonds); (iii) the constraining of bonds removes the fastest-frequency
motions in the system, which allows for an increase in the molecular dynamics timestep from
0.5 fs to 2 fs. The two simplifications that are made in SHAKE for solving the system of
equations involved in constraining all the bonds in a molecule are that: (i) the constraints
are uncoupled, i.e. they can be reset independently from each other; (ii) it is sufficient to
consider the linear term when solving for the Lagrange multipliers, i.e. the quadratic term can
be neglected. These approximations allow to solve the problem analytically and considering
the bonds independently. The price to pay is that the procedure must be iterated to reach the
exact solution. The answer to the other questions refers to the illustrations below.
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SHAKE algorithm

The top drawing shows, considering a diatomic molecule (two atoms, one bond), how the
SHAKE coordinate resetting operates. The free-flight step is corrected into a constrained step
by adding small displacements of the atoms along the bond vector as it was before the step.
The displacement is inversely proportional to the mass of each atom (so that the center of
mass is not affected by the resetting), with a magnitude calibrated so that the constraint
is satisfied after the resetting. The middle drawing explains why the SHAKE procedure is
an iterative (rather than one-step) procedure. This comes from the approximations made in
SHAKE (neglect of coupling, linearization). Because of coupling between bonds, the resetting
of a bond alters the bond distances of all the bonds sharing an atom with this bond, so
that bonds that were previously reset may again slightly violate the constraint. Thus, one
has to reset all the bonds in sequence, and reiterate the sequence multiple time, until all the
constraints are satisfied within a given tolerance. Note that the linearization implies that even
for a single bond in a diatomic molecule, SHAKE must be iterated to achieve a high-precision
constraining. The bottom drawing explains under which circumstances the algorithm may
fail to converge. If the atoms move too much in a single free-flight step (which is generally
a sign of something unhealthy going on in the simulation, e.g. too large timestep, atom
overlap, inconsistent forces), even the largest possible displacement along the bond vector in
the previous step cannot result in the satisfaction of the constraint.

c. The statement is ill-formulated. The two bit sequences are the analog of microstates in sta-
tistical mechanics, and one cannot ascribe an entropy to a microstate. Instead, one assumes
that all microstates are equiprobable, and infers the statistical weight of specified macrostates
by the number of microstates they encompas. The Boltzmann entropy is then a logarithmic
measure of this weight. For example, if you defined a macrostate A by “all the bits are per-
fectly separated” and a macrostate B by “t-perfectly-separated bit sequence”, then A would
have a much lower statistical weight (realizable by only one microstate), and thus a lower en-
tropy. But you could as well define a macrostate B by “the bits match the incredibly beautiful
sequence (0,0,1,1,0,1,1,0,0,1,0,1)” and a macrostate A by “any not-as-beautiful bit sequence”.
Now, B would have the lowest statistical weight (realizable by only one microstate), and thus a
lower entropy. This is a very common confusion. As a more practical example, comparing two
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desks, you cannot objectively ascribe a high entropy to the messy one and a low entropy to
the tidy one. What you look at are just two equiprobable desk configurations (and maybe the
apparently messy desk results from a very unique form of organization that you are not smart
enough to grasp). To ascribe entropies, you have to subjectively define macrostate concepts
for “messy” and “tidy” (e.g. only nice stacks of papers vs. at least one ugly-looking pile of
papers). And then you will notice that many more of the equiprobable desk configurations
generated at random (e.g. by throwing sheets of paper onto a desk) fall in the “messy” as op-
posed to the “tidy” macrostate. And now you can ascribe entropies to the macrostates “tidy”
and “messy”. Summary: entropy only arises when you classify equiprobable microstates into
coarser classes called macrostates. And this classification is very much “in the eyes of the
beholder”.
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2 Fundamental Equations (F2022.2)

Note that the answers given below are more detailed (for didactical purposes!) than what was actu-
ally expected from the students during the examination. Watch out not to overlook the requirements
“explain the meaning of all the involved symbols” and “state the SI units of these quantities”.

a. The equation for the Coulomb interaction between two atoms with partial charges q1 and q2
at a distance r12 reads

V (r12) =
1

4πεo

q1q2
r12

,

where V is the potential energy (SI unit: J or kg·m2·s−2), r12 the distance (SI unit: m), q1 and
q2 the charges (SI unit: C or A·s), and εo the permittivity of vacuum (SI unit: C2·m−1·J−1
or A2·s4·kg−1·m−3, a basic physical constant). A sketch of the function is shown below,
distinguishing the situations q1 · q2 > 0 (like-charges, repulsive) and q1 · q2 < 0 (opposite-
charges, attractive). Formally speaking, there would be a third (trivial) case with q1 · q2 = 0
(no interaction).

b. An expression for the instantaneous observable P can be derived from the virial theorem, and
reads

P(r,p,V) =
2 [K(p)−W(r)]

3V
,

where K is the kinetic energy (SI unit: J or kg·m2·s−2)

K(p) =
1

2

N∑
i

p2
i

mi
,

W is the virial (SI unit: J or kg·m2·s−2)

W(r) = −1

2

N∑
i

riḞi ,

and V is the volume (SI unit: m3). The SI units of P are thus the Pa, or J·m−3, often
reexpressed as bar, with 1 bar = 105 Pa. In the context of an ideal monoatomic gas, there is
no interaction (i.e. forces) between the atoms (this is precisely the idealization), so that the
virial is zero. In this case, one has PV = (2/3)K. Due to equipartition K = (3/2)nNAkBT =
(3/2)nRT , where n is the number of mols, T the absolute temperature, NA the Avogadro
constant, kB the Boltzmann constant and R the gas constant. Thus, one finds back the ideal-
gas law, PV = nRT . In a real gas, there are interactions. Attractive interactions provide
a positive contribution to the virial and thus, tend to decrease the pressure relative to the
ideal gas. Conversely, repulsive interactions provide a negative contribution to the virial and
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thus, tend to increase the pressure relative to the ideal gas. The instantaneous variable P is
connected to its canonical ensemble average P via

P = 〈P〉 =

∫
dr dpP(r,p, V ) e−βH(r,p,V )∫

dr dp e−βH(r,p,V )

where 〈. . . 〉 indicates a canonical ensemble average, V is the volume (fixed value in the canonical
ensemble), and H is the Hamiltonian.
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3 Derivations (F2022.3)

a. Omitting the zero-point energy (irrelevant here), the equation connecting the Helmholtz free
energy F to the canonical partition function Z reads

F (λ) = −β−1 lnZ(λ) ,

where β
.
= (kBT )−1, kB being the Boltzmann constant and T the absolute temperature. The

equation for the classical partition function Z (as determined by the Hamiltonian H) reads

Z(λ) = C

∫
dr dp e−βHλ

with C = (h3NN !)−1 for indistinguishable particles. Using the previous expressions to formu-
late dF/dλ, one has

dF (λ)

dλ
= −β−1Z−1 dZ(λ)

dλ
= −β−1Z−1C

∫
dr dp

d

dλ
e−βHλ = Z−1C

∫
dr dp

∂H
∂λ

e−βHλ

The expression for a canonical ensemble average 〈...〉 is

〈A〉 = Z−1C

∫
dr dpAe−βHλ .

So we get

dF (λ)

dλ
=

〈
∂H
∂λ

〉
,

which is the TI expression.

b. The number of permutations of an ensemble of N objects is N !. In the limit of large N ,
we can use the Stirling formula to approximate lnN ! as N lnN − N . In terms of N !, the
approximation becomes eN lnN−N = NNe−N = (N/e)N .
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4 Explicit Calculations (F2022.4)

a. A sketch of the Lennard-Jones function is shown below. The zero-distance and zero-energy
points are indicated, as well as the locations where you can measure σ, rm, and ε.

For the following tasks, it is useful to calculate the corresponding Lennard-Jones force FLJ ,
i.e. the negative derivative of VLJ with respect to r

FLJ(r) = 4ε

[
12
(σ
r

)12
− 6

(σ
r

)6] 1

r
.

The sign of FLJ matches the desired convention, namely it is negative if the force is attractive
and positive otherwise. This is easily checked by noting that FLJ is positive when r → 0 (the
r−12 term domimates) and negative when r →∞ (the r−6 term domimates). To calculate rm,
we note that the force should be zero at this point. This leads to the condition

12

(
σ

rm

)12

− 6

(
σ

rm

)6

= 0 ,

which is satisfied when rm = 21/6σ. Using the approximation 21/n ≈ 1 + (1/n) ln 2 with
ln 2 ≈ 0.69, one has 21/6 ≈ 1.115, so that rm = 1.115 · 0.3 nm which is 0.3345 nm. Considering
the point r = σ, the Lennard-Jones potential energy is zero. The corresponding force is

FLJ(σ) = 4ε [12− 6]
1

σ
.

This gives 4 · 1 kJ ·mol−1 · 6 · 1/0.3 nm−1, that is 80 kJ ·mol−1 · nm−1. As expected, the value
is positive, as we are in the repulsive range. Considering the point r = rm, the Lennard-Jones
force is zero, and the corresponding potential energy is −ε, that is −1 kJ ·mol−1.
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5 Algorithms and Implementation (F2022.5)

a. A possible code for the function VelAutoCorrel is given below

void VelAutoCorrel ( int N, int kmax, double v[][3*N], double c[] ) {
int k,kk,i;

double sum;

for ( k = 0; k < kmax; k++ ) { // loop over lag times k*dt

sum = 0;

for ( kk = 0; kk < kmax - k; kk++ ) { // loop over time origins kk*dt

for ( n = 0; n < 3*N; n++ ) { // loop over particles and components

sum += v[k][n] * v[k+kk][n];

}
}
c[k] = sum/(N*(kmax-k));

}
}

Because the number of time origins available to calculate c(k∆t) for a given k is kmax−k, when
τ approaches tsim, the statistics become poor and the curve becomes increasingly “noisy”.
According to the Green-Kubo equation, the integral of c(τ) is connected to the diffusion
constant D of the system as

D =
1

3
lim
τ→∞

∫ τ

0

dτ ′ c(τ ′) .

The Einstein equation is an alternative to the Green-Kubo equation for calculating D. It is
based on the mean-square-displacement s(τ) of the atoms, and reads

D =
1

6
lim
τ→∞

τ−1 s(τ) .
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