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Problem statements in English

� Write your name and identification (Legi) number on each sheet of paper you hand in.

� The use of laptops, cell phones, calculators, books, course material, etc. is not allowed
(exception: language dictionaries).

� You may use the question sheets to report your answers (or part of them).

� Please, clearly highlight (e.g. underline or frame) your final answers to the problems.

� Keep your answers short, but clear.

� The five problems of the examination have equal weights in the final mark.



1 Concepts and Understanding (F2023.1)

For each of the following items, answer the question(s) in a clear and concise way.

a. Give a precise statement of the central-limit theorem.

b. Consider a classical system with a coordinate vector r spanning a finite M -dimensional space
Ω. The potential energy is V(r) and we consider an instantaneous observable A(r). We want
to calculate numerically the canonical ensemble average A = ⟨A⟩T , where T is the absolute
temperature. To this purpose, we sample the coordinate space usingK points {rk | k = 1, ..,K}
and monitor the corresponding values Vk = V(rk) and Ak = A(rk).
Write down the equations connecting these quantities to A in the limit K → ∞, considering
four alternative ways of performing the sampling:

� Systematic sampling, i.e. the K points are located on a uniform grid covering Ω.

� Stochastic sampling, i.e. we sample the K points at random following a uniform proba-
bility distribution over Ω.

� Isothermal molecular dynamics (MD), i.e. MD with a thermostat at temperature T .

� Umbrella sampling MD, i.e. isothermal MD using a biasing potential energy Vbias, with
corresponding values Vbias,k = Vbias(rk) at the sampled points.

c. The drawing below depicts the four main types of covalent (bonded) interactions used in
classical force fields. For each of these, write down a typical expression for the associated
terms in the potential-energy function (as a function of the indicated quantities d, θ, ϕ and ξ).

Covalent (bonded) interactions

b 
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2 Fundamental Equations (F2023.2)

For each of the following items, write down the relevant equation(s), explain the meaning of all
the involved symbols, state the SI units of these quantities, and answer the additional questions.

a. Write down the Langevin equation of motion and answer the following questions:

� Explain in which context one uses the Langevin equation instead of the Newton one in
molecular simulations.

� Give the name of the simulation method relying on the integration of the Langevin equa-
tion in time.

� Provide a physical interpretation for the different terms of the equation.

� Explain why the generated dynamics is not adiabatic (i.e. why energy flows in and out
of the system).

� Explain why an isothermal situation is reached at equilibrium, and what balance deter-
mines the corresponding equilibrium temperature.

� Give the equation and the name of the simulation method corresponding to the limiting
case of the Langevin equation for high friction.

b. Write the expression for the partition function Z of a molecular system in the canonical
ensemble, both at the classical and at the quantum-mechanical level. Explain why Z is a central
quantity in statistical mechanics. State the relationships (equations with a short explanation)
connecting Z and its derivatives to the following important thermodynamic quantities in the
canonical ensemble:

� The Helmholtz free energy.

� The internal energy.

� The entropy.
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3 Derivations (F2023.3)

For each of the following items, derive the required expression analytically (i.e. it is not sufficient
to only give the final result!), and answer the additional questions.

a. Consider a quantum-mechanical system with M energy states m = 0, ..,M−1 and a statistical-
mechanical ensemble encompassing K copies k = 1, ..,K of this system. The ensemble can be
characterized by a population vector p = {pm | m = 0, ..,M − 1} specifying the fraction of
system copies that are in state m, with the normalization condition

M−1∑
m=0

pm = 1 .

The weight of a given population vector p, i.e. the number of ways it can be achieved when
distributing the K systems over the M states, is given by the multinomial coefficient

W (p) =

(
K

p0, .., pM−1

)
=

K!∏M−1
m=0 (Kpm)!

.

The associated Boltzmann entropy is defined as

S(p) = kBK
−1 lnW (p) ,

where kB is the Boltzmann constant. Using these equations along with the Stirling approxi-
mation, show that in the limit of large K, S can be reformulated as a Gibbs entropy, i.e.

S(p) = −kB

M−1∑
m=0

pm ln pm .

b. Consider two Hamiltonians HA = HA(r,p) and HB = HA(r,p) that depend on the Carte-
sian coordinate vector r and momentum vector p of a molecular system, and correspond to
“alchemically” different states of the system (e.g. same molecule substituted with a chlorine
atom in A and a bromine atom in B). In the context of the canonical ensemble, derive the
free-energy perturbation (FEP) formula

∆FAB = FB − FA = −kBT ln
〈
e−β(HB−HA)

〉
A

,

where kB is the Boltzmann constant and T the absolute temperature, which relates the
Helmholtz free-energy difference ∆FAB to an ensemble average ⟨..⟩A calculated using the
Hamiltonian HA. For this, you will need to perform the following steps: (i) write the equation
connecting the Helmholtz free energy F to the canonical partition function Z; (ii) write the
equation for the classical partition function Z (as determined by the Hamiltonian H); (iii) use
these two expressions to formulate ∆FAB ; (iv) recast the resulting expression in the form of a
canonical ensemble average ⟨..⟩A.
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4 Explicit Calculations (F2023.4)

For each of the following items, calculate the numerical result paying particular attention to the
units, and answer the additional questions.

a. Consider the throw of K = 4 dice, whereby each dice has M = 6 faces. Assume first that
the dice all have different colors, so that a throw is characterized by a sequence of numbers
(e.g. {1, 3, 2, 6} would stand for the faces shown by the red, green, blue and yellow dice), and
answer the following questions:

� Give the total number of possible distinguishable sequences for a throw.

� Give the probabilities of the sequences {1, 1, 1, 1}, {1, 2, 2, 1} and {1, 2, 4, 6}.
� State what is (are) the most probable sequence(s).

Now assume that the dice have all the same color, so that a throw is characterized instead by
a distribution of face occurrences (e.g. {1, 0, 1, 0, 2, 0} would indicate that one dice has value
1, one dice has value 3, and two dice have value 5), and answer the following questions:

� Give the total number of possible distinguishable distributions for a throw.

� Give the probabilities of the distributions {1, 1, 1, 1, 0, 0}, {2, 2, 0, 0, 0, 0} and
{4, 0, 0, 0, 0, 0}.

� State what is (are) the most probable distribution(s).

b. A diatomic gas is stored in a container with a volume V of 1 liter at a temperature T̃ of 27
◦C. We measure a pressure P of 74.7 bar. Assuming that the gas behaves ideally, calculate the
number of atoms in the container. For this calculation, you can use the following approximate
numerical values: R = 8.3 J·mol−1·K−1 for the gas constant, NA = 6 · 1023 mol−1 for the
Avogadro number, and T̃o = −273 ◦C for the absolute-zero temperature.
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5 Algorithms and Implementation (F2023.5)

For each of the following items, write the code of a C++ function performing the required task (or,
at least, the pseudo-code; the exactness of your C++ syntax will not be graded), and answer the
additional questions.

a. Write a C++ function RmsdCalc that will consider the coordinate trajectory of a macromolecule
of N atoms in vacuum along a simulation of duration tsim, and calculate the time series of
the root-mean-square atomic positional deviation (RMSD) relative to a provided reference
structure. The RMSD is calculated as

s(t) =

{
N−1

N∑
n=1

[r̃n(t)− r∗n]
2

}1/2

,

where r∗n is the Cartesian coordinate vector of atom n in the reference structure, and r̃n(t) the
corresponding vector rn(t) in the trajectory frame at time t after roto-translational superim-
position of this frame onto the reference structure ( rn(t) → r̃n(t) ). In practice, the trajectory
is discretized using a timestep ∆t, so that time is specified by an integer index k = 0, ..,K − 1
as t = k∆t, where K is the the total number of trajectory frames (i.e. K∆t = tsim). The
function declaration reads

void RmsdCalc ( int N, int K, double ref[], double trj[][3*N], double rmsd[] );

Provided to the function are the number N of atoms, the number K of trajectory frames, the ref-
erence structure ref and the trajectory trj. The element ref[3*n+i] of ref contains the ith

component (0,1,2 for x,y,z) of r∗. Similarly, the element trj[k][3*n+i] of trj contains the ith

component (0,1,2 for x,y,z) of rn(k∆t). The function should fill the array rmsd with the values
of s(k∆t) for k = 0, ..,K−1. It is assumed that a library function RotoTransFit(ref,fit) is
available in your code for performing the roto-translational superimposition of a structure fit
onto a structure ref (i.e. you can call the function and do not need to write the corresponding
code).

Additional questions:

� Explain why the roto-translational superimpositon is necessary.

� When the simulation is performed in solution under periodic boundary conditions (rather
than in vacuum), state what additional step has to be performed in order to calculate
the RMSD, and whether it should be carried out before or after the roto-translational
superimpositon.
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