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Problem statements in English

• Write your name and identification (Legi) number on each sheet of paper you hand in.

• The use of laptops, cell phones, calculators, books, course material, etc. is not allowed
(exception: language dictionaries).

• You may use the question sheets to report your answers (or part of them).

• Please, clearly highlight (e.g. underline or frame) your final answers to the problems.

• Keep your answers short, but clear.

• The five problems of the examination have equal weights in the final mark.

• You do not need to answer all questions correctly to obtain a top mark. First try to efficiently
solve the easier questions, and then move to the more difficult ones.



.

2



1 Concepts and Understanding (F2021.1)

For each of the following items, answer the question(s) in a clear and concise way.

a. In thermodynamics and statistical mechanics, one distinguishes between extensive and inten-
sive properties.

• Explain the difference between the two types of quantities.

• Give two examples of quantities belonging to each of the two types.

• State whether the ratio of two extensive quantities represents an extensive or an intensive
quantity (your answer must be accompanied by a brief justification).

• State whether the product of an extensive with an intensive quantity represents an exten-
sive or an intensive quantity (your answer must be accompanied by a brief justification).

b. Molecular simulations of condensed-phase systems are commonly carried out under periodic
boundary conditions rather than considering finite systems (e.g. solute in a droplet of liquid
surrounded by vacuum).

• Explain the concept of periodic boundary conditions.

• Explain why the use of periodic boundary conditions is to be preferred for condensed-
phase systems.

• Explain when and why it may be advantageous to apply periodic boundary conditions
based on a truncated-octahedral rather than a cubic computational box.

• Explain what type of preprocessing has to be performed before analyzing a trajectory
generated using periodic boundary conditions in terms of a structural property, e.g. for
calculating the radius of gyration of a protein as a function of time.

c. Coarse-grained models are sometimes employed to reduce the computational costs of molecu-
lar dynamics simulations. Answer the following questions concerning the calibration of such
models.

• Explain the basic principle of the approach termed “iterative Boltzmann inversion”.

• Explain the basic principle of the approach termed “force matching”.

• Comment on the relative advantages and disadvantages of the two approaches.
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2 Fundamental Equations (F2021.2)

For each of the following items, write down the relevant equation(s), explain the meaning of all
the involved symbols, state the SI units of these quantities, and answer the additional questions.

a. Write down the classical Lagrangian equations of motion formulated in a generalized-coordinate
system involving a generalized-coordinate vector q = {qm,m = 1, 2, ...,M}. Additional ques-
tions:

• Explain what is meant by a generalized coordinate and by a generalized-coordinate sys-
tem.

• Give the connection between the Lagrangian function L, the kinetic energy K, and the
potential energy V.

• Show that the Lagrangian equations of motion are equivalent to the Newtonian ones in
a Cartesian coordinate system.

• Given the definition of the conjugate momenta as

pm =
∂L
∂q̇m

for m = 1, 2, ...,M ,

where the dot over a symbol denotes its time derivative, and of the Hamiltonian H as

H = −L+

M∑
m=1

pm q̇m ,

derive the corresponding classical Hamiltonian equations of motion.

b. Write the equation for calculating the excess chemical potential µexc of an extra particle
added to a N -particles system according to the Widom particle-insertion method. Additional
questions:

• State the condition that must be fulfilled in order for this equation to provide an accurate
estimate of µexc based on finite (and relatively short) simulations.

• Provide an alternative strategy that one can use to calculate µexc when the above condi-
tion is not met.
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3 Derivations (F2021.3)

For each of the following items, derive the required expression analytically (i.e. it is not sufficient
to only give the final result!), and answer the additional questions.

a. The Lennard-Jones potential-energy function can be written

ULJ = C12r
−12 − C6r

−6 ,

where r is the distance between two particles, and C12 and C6 are positive coefficients. It is
also common to use different parameter pairs in place of {C6,C12}, typically {ε,σ} or {ε,rm}.
Here, σ is the zero-point of the curve (also called collision diameter), rm is the minimum-point
of the curve (also called equilibrium distance), and ε is the value of the energy at this minimum
(also called well depth).

• Sketch the Lennard-Jones function and indicate where σ, rm and ε can be read on the
graph (also specify the location of the zero on both axes).

• Derive the expressions providing σ, rm and ε as a function of C6 and C12.

• Rewrite the equation for ULJ using the parameter pair {ε,σ} or the parameter pair {ε,rm}
instead of {C6,C12} (you need to write both equations).

b. Consider a quantum system that can exist in two states labelled 1 and 2, with energies 0
and ∆E, respectively. Consider a canonical ensemble of such systems at a given absolute
temperature T .

• Write the most probable distribution of systems over states in the form of the fractions
p1 and p2 of systems that are found in states 1 and 2, respectively.

• State the limits of p1 and p2 when T becomes very small (T → 0) or very large (T →∞).

• Write the corresponding canonical partition function Z, free energy F , and internal energy
U .
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4 Explicit Calculations (F2021.4)

For each of the following items, calculate the numerical result paying particular attention to the
units, and answer the additional questions.

a. A mass of 1 kg is placed on the lid of a piston (cylinder) of section 10 cm2 containing a gas. As
a result of the added mass, the gas is compressed, and the lid moves down by 1 cm. Calculate
the work performed by the environment (added mass + atmospheric pressure; the weight of the
lid itself can be neglected) on the system. For this, use a value of 10 m·s−2 for the gravitational
acceleration, and a value of 1 bar (105 J·m−3) for the atmospheric pressure.

b. According to the Maxwell-Boltzmann distribution of velocities p(v), the mean velocity v of an
atom in a monoatomic gas is given by

v =

(
8kBT

πm

)1/2

,

where m is the mass, T the absolute temperature, and kB the Boltzmann constant. Calculate
the mean velocity v in m·s−1 of an argon atom (molar mass 40 g·mol−1) at a temperature
of 25 ◦C. For this, use the following approximations: the gas constant (i.e. kB expressed
on a per-mole basis) is 8 J·mol−1K−1, the absolute zero is −275 ◦C, and π is 3. Additional
questions:

• State by how many percent v changes when T or when m is doubled. Provide a simple
explanation for these trends in terms of the equipartition principle.

• The functional form of the Maxwell-Boltzmann distribution of velocities p(v) is given by

p(v) = C v2 e−βmv
2/2 ,

where C is a normalization constant. Sketch the curve corresponding to this distribution.

• Considering this distribution, rank the following quantities in ascending order: the mean

velocity v, the root-mean-square velocity v2
1/2

, and the most probable velocity v∗.

• State how the value of v in liquid argon at a temperature T is related to the corresponding
value in the gas at the same temperature T (smaller, identical, or larger; your answer
must be accompanied by a brief explanation).
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5 Algorithms and Implementation (F2021.5)

For each of the following items, write the code of a C++ function performing the required task (or,
at least, the pseudo-code; the exactness of your C++ syntax will not be graded), and answer the
additional questions.

a. Write a C++ function MonteCarlo2DwithPBC that will perform a two-dimensional Monte Carlo
sampling of N iterations. The two variables x and y should be initialized to zero, and allowed to
evolve in the ranges [−π, π), thereby defining a square domain. Periodic boundary conditions
should be applied at the edges of this domain, i.e. if a move exits the domain, the position
should be reset within it by means of appropriate ±2π translations. The energy function to
be sampled is c · sin(x · y), where c is a force constant (units of energy). The temperature
multiplied by the Boltzmann constant is provided to the function as kbT (units of energy),
and the step size to be used for the trial moves is provided as dr (unitless). The function
declaration reads

void MonteCarlo2DwithPBC (int N, double c, double kbT, double dr);

Your function has access to the mathematical functions sin() and sqrt(), as well as to a
pseudo-random number generator function rand(). Each successive call to rand() will provide
a new pseudo-random real in the range [0; 1). It is also assumed that π is available through a
global variable pi.
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