
UNIX
(START)

PROCESSOR MEMORYHARD DISK
or/and SSD

DEVICES
operating
system

APPLICATIONS USER

program

hardware
software

(brainware)

NETWORK

● Simplified representation of a computer

● The operating system (OS)

→ controls the hardware / is accessed by applications

→ common variants: Windows (PC), OS X (Mac), UNIX, linux

→ linux: non-commercial variant of UNIX, since 1991

● UNIX (developed in Berkeley in 1974)

→ text-based (no clicking!)
→ most used by IT professionals and scientists (servers, [super]computers)

Operating systems

are actually variants
of UNIX

The UNIX Operating system

● Want to have UNIX on your Windows PC ?
→ Install it with linux

→ Install it dual-boot (Windows + linux)

→ Install a UNIX emulator, e.g. cygwin (non-commercial): www.cygwin.com

In this lecture, you will have a bit “the pain without the gain”...
But if you explore further and start scripting, you will rapidly see
how much efficiency you can gain over Windows or OS X front-ends
when you have to do repetitive tasks !

● Drawback of UNIX
→ A bit harder to learn

● Advantages of UNIX
→ More transparent
→ Easier to automatize (scripts)

● Want to have UNIX on your Mac PC ?
→ OS X is already UNIX based (you just need to find out how to access it directly)

HS14→22

But Mac OS X is actually a form of UNIX

Operating systems

Windows is a specific operating system
(anciently MS-DOS)

● To be precise

Direct OS
level

MS-DOS-like

Windows PC

most people use this level, and
then all is more or less similar

● To summarize, you can use modern PCs at two levels

Mac PC Linux PC*

Front-end
level (GUI***)

command prompt**
UNIX

terminal (shell)
UNIX

terminal (shell)

*: there exist many linux variants
nowadays (our PC’s run “Fedora”)

window-based
(click & drag & drop & copy & paste)

**: or install cygwin
(UNIX shell emulator)

Note: modern operating systems
are (largely) programmed in C++ !

***: GUI = Graphical User Interface

MS-DOS + Win9X
CE family
Mobile / Phone
NT (server)
NT (client)

EXERCISE SERIES 1
Working with UNIX

(mini-project: file manipulation/processing/visualization using UNIX)

+read first: Ex0
Starting document for

students

starting
next week:

... duration 2 weeks

Getting started
● Logging in

→ Open a terminal window / type
→ Type your nethz username and password (case sensitive!)

→ Prompt (computer ready to recieve input) [user@comp dir]$

@001

the form of the prompt varies
from system to system (you can
even customize it if you like...)

→ Logout of system (computer) <CTRL-d> or logout or exit

● Logging out

csh

→ Delete one character before cursor

→ Delete all after cursor

<BACKSPACE>

<CTRL-k>

→ Quit unfinished line / terminate execution
of current command (type once or twice)

<CTRL-c>

● Typing/changing a command line

→ Move cursor along text <>

→ Delete one character after cursor or <CTRL-d>
Note: <CTRL-d> on an
empty line will log you

out instead!

→ Delete entire line <CTRL-u>

→ Jump to line start <CTRL-a>

→ Jump to line end <CTRL-e>

→ Browse through command history <> <>

<>and

and

You don’t need to learn all this from the start...
But at some point, this is what will give you SPEED !

Try it: it will save you
A LOT OF TYPING !!!

This is what you have to do to
interrupt a command that never

stops (silently or verbosely)

For real die-hards,
try <CTRL-z>

→ Execute command line <ENTER>

→ Type text… Well, just type it…

starts the “c-shell”
unix variant

(twice: once to exit csh, once
more to kill terminal window)

Commands

● The UNIX commands are of the form

command [-options] [object1] [object2] ...

→ The square brackets mean “optional” (need, number and types depend on the command)

command
name

options arguments

→ The options are preceded by a minus sign and further specify/modulate the action
of the command

→ The arguments define objects (e.g. numbers, text strings, file names) relevant to the
command (need, number and types depend and the command and its options); most
commands use defaults when no arguments are specified

● Examples of commands: later...

● Multiple UNIX commands on one line

→ Normally, each command is a single line
→ But multiple commands can also be given on the same line with a semicolon separator

command1 ... ; command2 ... ; command 3 ...

@002

Directory structure

● The UNIX directory structure is an upside-down tree

/ highest (root) directory

UP

DOWN
dd ff

gg

ee

ff

nodes aa bb cc

branches

plain (data) files
(always leaves)

leaves

directories
(nodes or leaves [if empty])

[list of pointers
to objects one

level below]

[contains
everything!]

● Referencing a file or directory
→ By absolute path from root, e.g. /aa/dd/ff start with a slash → absolute

/aa dd/ff
→ By relative path from the current (working) directory,

e.g. if my current directory is , I may just write
start without slash → relative

? twice “ff” ?
is OK – different

places, different files

In this tree, relative
names are given

in the boxes

in fact very similar to
windows, just windows
“hides” the tree using

clickable icons

@003

I am
root !

Current

● Reading or setting the current directory
→ Get its absolute path (i.e. print it to screen) with the command: pwd

→ Set it with the command: cd dir_name e.g. cd /aa

/aa
writes to

terminal window

● The following shortcuts to specify directories are very handy

Root directory The top directory of the system /

Current directory The one you are currently in .

Home directory The highest directory for you as a user ~

A child directory One down from your current directory dir_name

The parent directory The one up from your current directory ..

→ Can be combined, e.g. : ../../xx ~/xx ~/./../batman

~batman

for the home directory
of user “batman”

a silly way
to say the same

Directory structure

● It is custom to append extensions to filenames using a dot
Text file .txt

C++ code source file .cc

Compiled object file .o

Data file .dat

Executable files (commands, i.e. scripts or programs)
usually have no filename extension (on windows, typically «.exe»)

Note: windows also has these extensions but they
are not shown in the filename (by default – you can actually

change this if you find the proper settings menu) – they are used to
select the type of icon you see on screen

● When interpreting commands pertaining to files, certain wildcards can also be used;
they are expanded to lists in the following way

Any string of character *

Any single character ?

Example

.datresults.txt

results?.dat

*

Any character from list
Any character in range

[ABC]

[A-Z]

results[1234].dat

results[a-zA-Z][0-9]?.*

here, no character is also
a match, e.g. «rm a*»

will also erase a file «a»

no character is not
a match, e.g. «rm a?»

will not erase a file «a»

@004

Directory structure

/

aa bb x.txt

dd z.dat

u.cc

y.dat

v.o

directories

plain (data) files

ff

● Questions:
→ Give absolute filenames for files in the above tree
→ Assume /aa to be your current directory, give filenames relative to it

→ Assume /bb to be your home directory, give filenames using “~”
→ What will /aa/* be expanded to?
→ What will /aa/?.dat be expanded to?
→ What will /aa/?? be expanded to?

In this tree, relative
names are given

in the boxes

→ What will /aa/[b-es-y]* be expanded to?

@005

Handling directories and files
● Printing or changing the current directory

Display name of current directory pwd

Make specified directory the new current directory cd dir_name

● Questions:
→ What does the command rm */* do ? And the command rm –rf * ?

● Creating or deleting directories and files
Delete specified file rm file_name

Create specified new (empty) directory mkdir dir_name

Delete specified (empty) directory rmdir dir_name

Delete specified directory and all its content rm –rf dir_name

cd with no
argument brings you
home (i.e. like cd ~)

cd ..
brings you one up

● Displaying content of directory or data file
Lists files in current directory ls

Lists files in specified directory ls dir_name

Lists all files (including “hidden” files) ls -a

Lists files with extra information ls -l

Displays content of specified data file cat file_name

Displays content page by page more file_name

Displays type of object (file or dir) and type of contents file file_name

hidden files are those having
a name starting with a dot

alternative
(I prefer)
less

@006

HS14→22 Directory structure

● For people who like it super precise
→ Only a ‘/’ at the start means “absolute path” – other ‘/’ are just ignored

e.g. aa//bb is interpreted as aa/bb

→ Only a ‘~’ at the start is allowed

e.g. aa/~/bb will give an error No such file or directory

→ The use of ‘.’ as meaning “current directory” is normally unnecessary in a path

e.g. ./aa is interpreted as aa

aa/./bb is interpreted as aa/bb

if the command, e.g. my_command, is in your current
directory but this directory is not in the standard set, then

./my_command will work and execute the command
my_command will give an error my_command: Command not found

echo $path

to see which, just type

(UNIX searches along this
list and stops at first match)

interesting exception: when you run a command,
UNIX will look for it in a standard set of directory

?

To see where a UNIX command,
e.g. cat, is actually located, type:

which cat

Gives usually:

/bin/cat

In practice, most users set up
their $path to have ‘.’ at the

start of the list

@007

(but can be useful
to copy or move
files; see later)

Permissions
● Unix distinguishes file-access permissions
→ for the user (i.e. the owner of the file)
→ for the group (i.e. the user-group including the owner of the file)
→ for the others (i.e. anyone who has an account on the computer)

● Example

chmod 700 file_name

→ gives rwx permissions to the user, and no permission for anyone else

● Questions:
→ What does the command chmod 754 *.* do ?

● The permissions can always be changed by the owner of the file
(irrespective of the current permissions)
→ to change permissions use the command chmod UGO file_name

where UGO is the three-digit octal string determining the permissions
(U: user; G: group; O: other), each digit in the range 0-7

→ octal digit

0 = none
1 = execute (x)
2 = write (w)
3 = write+execute (wx)

4 = read (r)
5 = read+execute (rx)
6 = read+write (rw)
7 = read+write+execute (rwx)

TRICK:
Start from 0
Add 4 for «read»
Add 2 for «write»
Add 1 for «execute»

@008

Permissions

→ you can also use the command chmod ugoarwx file_name
where u, g, o or/and a determine who is concerned by the change (a=all),
+ or – grants or retracts a permission, and r, w or/and x is the specific right

Note: the first command removes
rwx permission from the user, but not his

right to further change the file permissions
(since she/he remains owner of the file)

● Example

chmod a-rwx file_name

→ gives the same result as

chmod u+rwx file_namethen

chmod 700 file_name

→ gives rwx permissions to the user, and no permission to anyone else
● Questions:
→ How would would one translate chmod 754 *.*

into this second formalism ?

● Another way to change the file-access permissions

● The directory-access permissions are defined in a slightly different way
→ read : right to read the names of files in the directory (but if alone, no additional information)
→ write : right to modify entries in the directory (creating files, deleting files, renaming files)
→ execute : right to access file contents and metainfo (but alone, not to list the directory)

This is a bit paradoxical. With x-only permission
on a directory “dir” containing a file “file”,

you can do “ls dir/file” but not “ls dir” !

@009

HS13→22 Student questions
● UNIX filesystem permissions: owner vs. user ?
→ Example

% ls –l ~phil
drwxr-xr-x 21 phil igc 4096 2013-08-28 07:46 adm
drwxr-xr-x 5 phil igc 4096 2013-02-26 07:45 arc
drwxr-xr-x 3 phil igc 4096 2013-08-28 09:22 bin
drwxr-xr-x 13 phil igc 4096 2013-07-29 16:11 crt
-rw-r--r-- 1 phil igc 143074 2013-09-26 21:41 paper.pdf
-rw-r--r-- 1 phil igc 134144 2013-09-25 12:09 questionaire.doc
...

type (-: file;
d: directory)

permissions
UGO size of object

in bytes
last modification

date & time
name

[for directories including
all content, use: du -s]

groupowner
= user

prompt

@010

number of directories
inside directory

→ The owner can always change the permissions with chmod

Including changing her/his
own permissions as user...

(the ability to use chmod as owner does
not depend on the permissions you set

for yourself as user)

→ If she/he belongs to more than one group, the owner can
change the group concerned by the permissions with chgrp

→ Only a superuser (system administrator; usually
a “Gandalf-The-White”) with user name root can
change the owner of a file with chown

→ By default, when you create a file/directory at a place where
you have permissions to do so, you are automatically the owner

(the superuser also bypasses all permissions)

● Two ways to create a file
→ Standard output of a UNIX command

Creating, copying, renaming and deleting data files

cat > file_name
...
...
<CTRL-d>

Places characters from keyboard into the
file with specified name until <CTRL-d> (EOF)

● To delete or remove a file (plain files)

rm file_name Deletes the file with the specified name

● Questions:
→ How can you delete all the files in your working directory ? And in your home directory ?

Will overwrite if the target
file already exists (and you

have write permission)

cp file_name_1 file_name_2 Copies the first file to the second file;
first file is unaffected

● To copy a file (plain files)

Painful! (once a line
is written, you

cannot go back to it)

@011

→ Using an editor, e.g. gedit , vi , emacs , ...

Much more powerful
(but for later...)Recommended!

See also “touch”:
create empty file

● To rename a file (plain files)

mv file_name_1 file_name_2
Renames the file from the first name
to the second name; first file no longer
exists

Copying, renaming and deleting files or directories
● More information on copying, renaming/moving and deleting

cp file_name dir_name Copies file into directory

cp file_name_1 file_name_2 file_name_3 → error message
cp file_name_1 file_name_2 dir_name Copies files into directory

cp dir_name_1 dir_name_2 → error message
cp –r dir_name_1 dir_name_2 Copies directory and content as or into

second directory

→ Copying
cp file_name_1 file_name_2 Copies file to second file

cp dir_name file_name → error message

if file 2 exists
→overwrite

dir must
already exist

“cp: omitting directory”

“cp: target is not a directory”

“cp: omitting directory”

if dir 2 already exists→ Renaming
mv file_name_1 file_name_2 Renames file to new name

mv file_name dir_name Moves file into directory

mv file_name_1 file_name_2 file_name_3 → error message
mv file_name_1 file_name_2 dir_name Moves files into directory

mv dir_name_1 dir_name_2 Renames directory to new name or move
it into second directory

mv dir_name file_name → error message

if file 2 exists
→overwrite

dir must
already exist

“mv: target is not a directory”
“mv: cannot overwrite

non-directory with directory”

if dir 2 already exists→ Deleting
rm file_name Deteles file

rm dir_name → error message

rmdir dir_name Deletes empty directory (not empty
→error message)

rm –rf file_or_dir_name Deletes file or directory (incl. content)

[already seen before]

“rm: cannot remove directory”

@012

● All UNIX commands have one input and two output standard channels (which
they may use or not) in addition to possibly reading or/and writing files

Redirection of input and output/error data streams

→ The standard input is where it reads data (default = keyboard)
→ The standard output is where it writes data (default = screen [i.e. terminal window])

→ The standard error is where it writes error messages (default = screen [i.e. terminal window])

● It is possible to change the above defaults and redirect the channels
either from/to a file or from/to another UNIX command

default
redirected
from/to file

redirected
from/to other

command

cmd(1)

cmd(2)

cmd

● Redirection commands

“ | ” is called a “pipe”

@013

Redirection of input and output/error data streams
● Concatenating command

cat Copy standard input to standard output
(default: input = keyboard till <CTRL-d>; output = screen)

Alone:
fairly silly !

cat file_name

cat < file_name

Copy file content to standard output (name as argument)
Copy file content to standard output (via input redirection)

cat > file_name Copy keyboard input (till <CTRL-d>) to file
cat file_name_1 file_name_2 Concatenate file contents to standard output

● Question: what do the following lines do ? Can we simplify them ?

cat | cmd

cmd | cat

cmd1 | cat | cmd2

cat < file1 > file2

cat file | cmd

cat < file1 > file2; rm file1

● Question: how to concatenate files a and b into file c ?

@014

● One-line help (manual)
→ For information on a given command cmd (about its function, available options...),

just type

On-line help, processes control, remote login

(use <SPACE> to go down
and <q> to quit the page)man cmd

● Remote login
→ To login on another computer with

(where hostname is the name
of the remote computer)ssh hostname

This should be a
UNIX-reflex when

you are not sure what
a command does or

want to modulate its behaviour

@015

● Process control
→ Whenever a command is being executed by the UNIX system, this corresponds to a UNIX process
→ Each UNIX process has a process identification number (PID)

→ Each UNIX process has a user identification number (UID)

→ For information on processes, just type

ps -efj
(generates a list of all running processes;

see “man ps” for the meaning of the options)

→ To interrupt the execution of a command-line process (i.e. running in your window), type <CTRL-c>

→ To interrupt the execution of any process (incl. running in the background)

kill PID

kill -9 PID

(kills the process with specified PID – gently !)

(kills the process with specified PID – mercilessly !)

→ Also nice to see processes
top (use <q> to quit)

A UNIX system typically
runs thousands of processes

in parallel!

Or to make it sleep:
<CTRL-z>

Minimal set of commands @016

● Ex1,
Table 1.1

This list is really the minimal
survival kit – read a good UNIX book
on your own, explore and learn more

commands, and you will see the
real power of this operating system !!!

Try them out
at the exercise

sessions
(I will assume you

know them at the exam)

Minimal set of commands
● Ex1,

Table 1.2

Try them out
at the exercise

sessions
(I will assume you

know them at the exam)

@017

Minimal set of commands
● Ex1,

Table 1.3

Try them out
at the exercise

sessions
(I will assume you

know them at the exam)

@018

● A script is a succession of UNIX commands in a file, that can be run as a single command

The power of UNIX scripting

→ Example: script to rename all the
.JPG files in a directory to .jpg

make the script file

pic1.JPG
...
pic999.JPG

pic1.jpg
...
pic999.jpg

% cat > my_command
#!/bin/csh
foreach i (`ls *.JPG`)

mv $i `echo $i | sed s/[.]JPG$/.jpg/g`
end
<CTRL-d>
% chmod u+x my_command
% ./my_command

→ Just type

→ And it is all...

→ ... now try to do the same with a window-based (i.e. click & drag & drop & copy & paste) front-end...

this is a C-shell script (name of interpreter)

loop over .JPG files in directory

change name (ending .JPG to .jpg)
end loop
end of making script file

give execute permission

run script...

(note: don’t type the ‘%’, it represents the prompt !)

@019

Abegg Manon 16-917-080 CHAB-ceng A
Akman Erol 15-933-740 CHAB-chem A
Asgari Farahani 16-916-157 CHAB-inbp D
Azizbaig Mohajer 16-944-399 CHAB-chem A
Baeriswyl Viviane 16-921-058 CHAB-chem A
Balbi Petra 16-940-843 CHAB-inbp B
Bangerter Jana 16-933-970 CHAB-inbp A
[...]
Wolf Robin 16-950-008 CHAB-chem E
Zamboni Lara 16-923-708 CHAB-inbp A
Zech Patrick 16-916-900 CHAB-ceng E
Zenuni Fatjona 16-936-734 CHAB-chem E
Ziegler Lars 15-920-960 CHAB-ceng E
Zimmerli Can 16-922-510 CHAB-chem E
Zimmermann Sandra 16-935-603 CHAB-ceng E
Zuercher Jerome 16-937-823 CHAB-inbp C

cat infoI_HS16.txt | awk ‘{print $NF}’ | sort | uniq –c

→ Example: script to know how many students there are in each exercise group

→ My file infoI_HS16.txt (205 entries)

→ Script (or command line)

→ Output

50 A
39 B
50 C
33 D
33 E

And it is even correct !
(groups D,E are for introverts;
groups A,C are for extraverts;

group B is for normal people...)

Print last field
of each line

Sort the list
of A, B, C, D and E’s

Print the occurrence
of all repeating lines

The power of UNIX scriptingHS16→22 @020

● I am getting kind of confused about different ways to copy a file

HS14→22

cp file1 file2

cp file1 | file2

cat file1 file2

UNIX: arguments, input, output, ...

cp file1 > file2

cp < file1 > file2

cat file1 > file2

cat < file1 > file2

cat file1 | file2

→ What’s the difference between all this ???

cp file1 file2 > file3

cp file1 file2 >& file3

→ Other examples

cat file2 >> file1

cat file1 file2 > file3

@021

What is the difference between “~”, “~phil” and “~batman”HS17→22

/

home ...

phil supermanbatman directories

plain (data) files

...

In this tree, relative
names are given

in the boxes

~→ I am phil

...

~philis the same as /home/phil

~batman /home/batman

→ I am batman ~ ~batmanis the same as /home/batman

~phil /home/phil

... ...

sometimes:
/user instead of /home

What does the “-f” mean in “rm -rf”HS17→22

man rm

RM(1) User Commands RM(1)

NAME
rm - remove files or directories

SYNOPSIS
rm [OPTION]... FILE...

DESCRIPTION
This manual page documents the GNU version of rm. rm removes each specified file. By default, it does not remove directories.

If the -I or --interactive=once option is given, and there are more than three files or the -r, -R, or --recursive are given, then rm prompts the user for
whether to proceed with the entire operation. If the response is not affirmative, the entire command is aborted.

Otherwise, if a file is unwritable, standard input is a terminal, and the -f or --force option is not given, or the -i or --interactive=always option is
given, rm prompts the user for whether to remove the file. If the response is not affirmative, the file is skipped.

OPTIONS
Remove (unlink) the FILE(s).

-f, --force
ignore nonexistent files and arguments, never prompt

[...]

-r, -R, --recursive
remove directories and their contents recursively

[...]

● Doubts about action/options/arguments of a UNIX command? --- look up the manual entry!

Means: you don’t want to be bothered
by details & warnings – just go ahead and

DELETE EVERYTHING!

Line feed, newline and carriage returnHS17→22

● If you edit your text files for the InfoI exercises on a Windows/Mac PC
→ there is a risk that you encounter weird errors when you run a text script

or compile a text program on our UNIX computers

● This is because Windows/Mac vs UNIX encode end-of-lines differently

→ UNIX uses the special character
‘\n’ → line feed (LF; ASCII code 10)

→ Mac/Windows often use two special characters in sequence

‘\r’ → carriage return (CR; ASCII code 13)

‘\r’ then ‘\n’

● If it happens to you, just use (on our UNIX computers)

cat messed_up.txt | sed ‘s/\r//g’ > works_with_unix.txt

→ This will remove the spurious ‘\r’

Typical exam
questions

Typical exam questions
● S2017.1

... content ...

Current

Current

	CSCBP_unx_sld_HS22
	lecture2_to_print

