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Course Organization: Lecture

e Web page: www.csms.ethz.ch/education/CSBMS
— All basic information on the lecture / exercises
— Updated regularly over the semester
— Worth a good read this afternoon / evening !

e Updates

check this one out to see
what has changed recently

CSBMS (anciently CSCBP) (50 you don'thave to re-read

the full site every time...)

Classical Simulation of (Bio)Molecular Systems (CSBMS)
Prof. Philippe H. Hiinenberger / H319

=)  Recent updates
date update

22.08.2019 Update of the web pages in progress for HS19

- Content is not yet final for HS19 and may fluctuatell!

Recent updates (last few weeks) in the CSCBP web pages

Course Organization: Lecture

e Lecture

Lecture

Tuesdays, 9.45-11.30 hrs, HCl » D2 » , ETH Hoénggerberg (14x2 hours); lecture N° 529-0004-00; note
that the break is usually reduced to 5 minutes, so that the actual time is 9.45-11:20 instead

e Lecture material

Course material

= A booklet with the lecture slides is distributed at the start of the semester (the corresponding pdf file ;s
can also be found in the documents + page) marked

’ with
— The slides corresponding to the lecture as given (which may also slightly differ from those in the v
booklet) will also be posted on this site after each lecture (pdf files in the documents + page)

e Requirements

Requirements

- To take advantage of the lectures, a good general knowledge of mathematics, physics,
chemistry and biology is required

Talk to me if
you have doubts!
- To take advantage of the exercises, a basic knowledge of computer science and a good practical

knowledge of the UNIX operating system are required




e Lecture schedule

Course Organization: Lecture

A Lecture schedule

lecture week date theme exercise

1 38 17.09.2019 Introduction / Molecular models / GROMOS -

2 39 24.09.2019 Force-fields 1

3 40 01.10.2019 Force-fields / Sampling 1

4 41 08.10.2019 Sampling 2

] 42 15.10.2019 Boundary conditions 2

6 43 22.10.2019 Electrostatic interactions 3

T 44 29.10.2019 Analysis of simulations 3

8 45 05.11.2019 Free-energy calculations | 4

9 46 12.11.2019 Free-energy calculations Il 4

10 47 19.11.2019 Enhanced sampling ]

1 48 26.11.2019 Structure refinement 5

12 49 03.12.2019 Special topics (assistant presentations) 6

13 50 10.12.2019 Answer to thinking questions 6

14 o 17.12.2019 Concluding remarks -
Lecture number, calendar week, date, theme, and exercise number of the exercise in progress during
this week

e Assessment

(may be slightly readjusted in
the course of the semester)

Course Organization: Lecture

Assessment

= The assessment of the course consists of an oral examination of 30 minutes duration, probing the

entire content of the lecture

= Since the practical exercises do convey different skills as those being conveyed during the lectures,
the performance in the exercises are taken into account in the final exam mark

= Bachelor and Master students must do the practical exercises (and take the exam)

= Ph.D. students and postdocs need not do the practical exercises to get their ETH credit points or

Zulassungsprung (but are very welcome to join if they wish)

e Exam: January or August

— Oral exam, 30’, no preparation,

Phil + Beisitzer

— Atmosphere is friendly

— Basic principle of an oral exam

e Most important

Difficulty High mark

Easy

”

Corollary:
the number of good
answers is not
immediately related
to the mark...

Tricky

_ﬁ Low mark

— Understanding of the working principles

— Itis a good idea to know some of the key equations “by heart”

(there is no time to derive everything); but knowing “by heart”
won'’t help at all if you don’t know the working principles

3

»  Progression

PHIL'S TIPS FOR ORAL EXAMS:
(1) leave your emotions behind
on entrance (e.g. nervosity) and
take them back on exit (e.g.
happiness, disappointment)
(2) never self-assess in the course
of the exam (e.qg. little voice that
whispers you are doing badly):
stay focused and give all you can!




Course Organization: Exercises

Exercises

The practical part of the course consists of six hands-on exercises, each involving the set-up,
execution and analysis of molecular simulations using the GROMOS program and force field. The
optimal way of carrying out these exercises is to participate a two-hours weekly session supervised
by two assistants in our computer room Hcl & D267

Organisation

= There are six exercises to be carried out. The exercises are formally independent from each other,
but skills acquired at one exercise are assumed to be available for the next. The exercises start on
the second semester week_ In the first semester week, there will be a short introduction to
GROMOS at the lecture.

= Each exercise lasts two weeks (see table "Exercise Schedule” below) Typically, week 1 is planned
for the set-up and week 2 for the analysis and discussion. The actual computation (simulation) is
carried out in-between, using our group PC cluster "beaver"

HS18,HS19:

distributed

at start

(booklet)

lecture; pdf also deposited in the documents + page at this point). The document labelled exercise
"zero" (and the associated quickref sheet) describes the computational setup, and is associated with

= Each exercise is documented in a detailed script (distributed in principle at the preceding Tuesday ]-
the first real exercise

= The optimal way of carrying out these exercises Is to participate on both week 1 and week 2 in a
two-hours session supervised by two assistants in our computer room Hcl » D267 » _ \We offer
two options for this two-hours block on different days of the week (see paragraph "Exercise
Sessions” below) and you can chose the session that fits best your schedule. It is in principle
allowed to do the exercises on your own instead or to only come for part of the two-hours blocks, but
not recommended (you will spend more time and leam less). In any case, the assistant responsible
for a given exercise will be available for you over the two weeks, even outside the two-hours blocks if
needed (email, personal meeting)

— For each exercise, you are expected to hand in a short report (if possible, maximum 2-3 pages of
text, i e excluding the space taken by possible graphs/tables) summarizing briefly your findings and
answering some "thinking questions" asked in the script. The deadline for handing in the reportis
one week afier closing of the specific exercise (see table "Exercise Schedule” below)

= The exercises can be made individually or in groups of two students (recommendation: work
individually at the computer and, if you want to make a pair, discuss your findings during the course
of the session and make the report together)

— The enrolment for the exercises is at the first lecture

Course Organization: Exercises

e Principle

SIXPALK,

Hakmagin
Leg lﬂl'?t 2

— Six exercise series, starting from the second to the
Iasting two weeks each before-last semester week

e
Ab Crunch

— Progressive build up of skills — must be done in sequence
in setting up, executing and +don’t miss one (especially of ex 1-3)
analyzing simulations

— later run your own simulations
using GROMOS

— Hands-on, using GROMOS, workstations AT GRO M oS
in HCI D267.4, computations on beaver cluster . -
— or with other packages (GROMACS, CHARMM,
: - . . AMBER, NAMD, ...) as the basic principles
— Documented in a comPUter setuP + six exercise underlying all condensed-phase (bio)molecular

scripts (distributed as booklet at semester start) L simulation programs are the same

— Short (max. 2-3 page excl. graphs/tables) reports
to be handed in after each exercise
the 2-3 pages max is rather to the scripts end with a number of “thinking questions” —

protect you from “overwork” 1! try to answer them, but don’t worry too much if you cannot
answer them all (it is about thinking, not about completeness)

A — Assessment: the corrected reports will the main goal of the reports is
4 .p not assessment: it is about

=X be returned to you; I'll .also keep some rough considering / interpreting / questioning
%,\ record (for mark rounding at the exam) your raw computer outputs

4



Course Organization: Exercises

Workstation

A
SCp
ssh or
sshfs
Login Node
beaver cluster
HIT D13
qsub
v
- “ Beaver storage
(scratch)
Reserved in first
priority for you over
the teaching semester! Node:
16 processors

Execution Nodes

Course Organization: Exercises

e Principle (continued)

General principle

— Two-week rhythm (there may be variations)

Week 1 Run on beaver Week 2

- ANALYSIS -
ET UP
SETU + DISCUSSION

Two-hour block HCI D267.4 7 days Two-hour block HCI D267.4 max 7 days

Advice: make exercises individually at the computer,

- Ind“"dua"y or by groups of two even if you make a group of two for the report

e Note on the downloads before starting each exercise:

— You should copy the directory /usr/local/CSCBP/ex* (with *=1..6) only on the
first day of a given exercise

— Reason: the assistants may modify the content until the last minute and if you
are out of sync with the latest files, things may not work as expected

and 32 Gb memory

REPORT



Course Organization: Exercises

e Beaver
— You will receive an e-mail about your account
— Please change the password as soon as possible
— To login to beaver from the outside ssh user@realbeaver.ethz.ch

D267.4 computers

— Login from outside is only possible via first a “ssh”
to the ETHZ ID login machines

— Then try another “ssh” to one of the D267.4 machines
(but these machines are not always switched on!)

ssh user@slab[1-4].ethz.ch

ssh user@slabhcib[002-041].ethz.ch

— For testing purposes, it may be sufficient to work on
the login machines (which are always switched on)

— This does not seem to require “vpn”

— Use “ssh -X” or “ssh -Y” to enable X11 forwarding (e.g. “xmgrace”)

e Usage of GROMOS

— GROMOS is entirely free ! — you are just

. . . Wwww . gromos.net
asked to register (free license) on the web site

... how easy it is in practice depends

— In principle, GROMOS should even work on your a bit on your computer setup

own desktop/laptop if you have a C++ compiler (and the GROMOS team does not
provide support for that — so, try & see)

Course Organization: Exercises

e Assistants

* Assistant Schedule

first name last name room tel cde 1st 2nd ard
Stephanie Linker > HCI G239 34590 SL 1 2 4
Thomas Stadelmann 2> HCI G238/E314 34320/23144 TS 2 4 3
Sadra Gheta > HCI G243 26861 SG 3 6 1
Carmen Esposito > HCI G235 38898 CE 4 5 5
Alzbeta Kubincova = HCI G227 34593 AK 5 1 2
Shuzhe Wang > HSI G238 22347 sw 5] 3 5
Stephanie Thomas Sadra
Linker Stadelmann Gheta
Carmt_en Alzbeta Shuzhe
Esposito Kubincova Wang
Philippe
Hunenberger




e Exercise schedule

Course Organization: Exercises

A Exercise schedule

exe

week

38

29

40

41

42

43

44

45

46

47

48

49

50

a1

start

17.09

23.09

30.09

07.10

14.10

21.10

2810

04.11

11.11

19.11

251

0212

0912

16.12

end

22.09

29.09

0610

13.10

2010

27.10

03.11

10.11

17.11

251

01.12

08.12

1512

2212

1st 2nd 3rd
SL AK SG
id id. id
T3 SL AK
id id. id
SG Sw TS
id id. id
CE TS SL
id id. id
AK CE SwW
id id. id
sw 5G CE
id id. id

theme

MNo exercises on the first week

Topology building & first simulation

id.

Peptide simulation & properties

id.

Protein simulation & properties

id.

Liquid simulation & properties

id.

Free energy calculations

id.

Structure refinement

id.

MNo exercises on the last week

deadline

13.10

2710

10.11

241

08.12

17.12

e Group sessions
— two-hour block with two assistants, computer room HCI D267.4
— we offer two sessions per week
— but you can still do (part of) the work on your own at other times or/and from home

MORNING

EVENING ANFERNOON NOON

Course Organization: Exercises

... sessions need to
finish in time !

/ \
/ Wed\

Mon Tue Thu Fri
7
9 A 07:30-09:30 [/ \| B 07:30-09:30
:: : %%%%?fﬂ%&%ﬂﬁﬁ%ﬁ Cooastso £ WERAEHIESD
13 A 12:45-14:30 D 12:45-14:30
14
15
16
17 — B 16:00-17:45
18
19
20
21

Informatik |

APC++

CSCBP



Course Organization: Exercises

e In HS14, we have made all the exercise series from scratch !

... was alot
of work!

~200 pages of
«|IKEA manual»

T cawddy PerE

— Some things may still not go perfectly as expected and we’ll have to improvise a bit

— Your understanding (for what does not work) and constructive
feed-back (for improving things) will be highly appreciated !

e Please

— Be ready to start at the indicated time for the beginning of the session -

The assistants cannot lead their sessions
efficiently if everyone comes at a random
time-point within the first 20 minutes !!!

— Take a look at the exercise scripts before the session

Booklet distributed The time to read during the exercise sessions is relatively
at semester start short, an a quick browsing in advance will already give you
(+individual pdf's on an idea of the overall exercise principle
web page [same content]) (this is especially important for the first two series!)

Course Organization: Documents «locked» documents:
use your n-ethz

password

e Documents (old page for HS18 — the page is by now [almost] updated for HS19!)

Documents

Computer Simulation in Chemistry, Biclogy and Physics (CSCBP)

Prof. Philippe H. Hiinenberger / HS17
(documents with a "lock™ require a n-ethz password)

after each ‘ e — p——— —— oo
lecture (none available yet) Hs10 22 08 2010 dummy.pdf &

Lecture slides (lecture as given, added affer each lecture)

coming ‘ Exercise Scripts

soon document wersion uploaa Nk

(none available yet) Hs1a 22 08 2010 dummy.pdf &

HS18, HS19:

Fxercise scripfs (unless stated explicitly, these scripfs are rigorously idenfical to the material yors can

booklet fird irn the excorcise script bookicot distributed at the locture start)
from the . =
l accument version uploaa nnk
start! Leclure scripl (sludenl version for HS15) HS18 2008 2018 CSCBP_scr_ini_HS18_ pdf &
Cxercise script (student version for | I5318) 1310 29 00 2010 CSCBP_exe_ini_HS18.pdf &
INtro to UMIX (siides from Into 1) Hsas zo.os 2oas csceP unx sla HS1S.par s
Lo Lo URIX (exer cise from ro 1) Hs1s ze.08 2018 cscBP_unx_exe_Hs18.para
Simulation guide 1sao 50.00.2010 CSCBP_sim_gde HS13.pdf &
Simulation validation HS12 20 08 2012 CsScBP_sim_vid_HS12.pdf &
VT e var GSursleren @nd SROMOS Hs13 26002013 cscBP_wrg_edi_HS13.para
Frsikkator article May 2014 s01a 18 08 2o1a cscBP_exs_art_may_2014.para
Biblometry essay Lec 2016 PeETS csceP bIe ess dec zols.part s
(Full Infozine S1 Issue) zo016 CsScBP_bIb_InTozine_dec_zol16.pdr &
Computer vs brain essay Dec 2018 s01a 04 12 204a cscBP_cvb_ess_nov_2018.paf &
(Full infozine S2 issuc) 2018 0412 2018 CSCcBP_cvb_infozine_nowv_2018.pdf
GROMOS manual (complete) 317 20.09. 2017 CSsSCBP_gro_man_HS17.pdf &
CSHOMOS manual (vol 1 overview) Hsa . Zs.00 204, csceP agre man w1 HS17.par &
SROMOS manual (vol 2: algorithms) HS7 28092017 csceP_gro_man_vz_Hs17.para
SROMOS manual (vol 3: force field) Hs17 26.09.2017 CSCBP_gro_man_wd_HS17.pdf &
SROMOS manual (vol 4: filcs & formats) HS17 28092017 CcScBP_gro_man_wv4 _HS17.pdf &
SROMOS manual (vl S, progranm bimny) Hsa7 28002017 cscBP_gro_man_vs_HS17.par &
BROMOS manua | (ol 6: technical details) [ >a 09 2017 cscBP_gro_man_wve_HS17.par &
SROMOS manual ¢vol 7: tutorial) HS17 28092017 CSCBP_gro_man_w7_HS17.pdf &
SROMOS manual (vol &; Instanation guide) HS7 28092017 csceP_gre_man_ve_Hsi7.para




Course Organization

QUESTIONS?

Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019

Lecture 529-0004-00 Tuesday 9:45-11:30 a.m. LECTURE 1 (WEEK 1)
www.csms.ethz.ch/education/CSCBP HCI D2 Introduction

9



Why simulation ?

Every attempt to employ mathematical methods in the study of chemical
guestions must be considered profoundly irrational and contrary to the
spirit of chemistry. If mathematical analysis should ever hold a prominent
place in chemistry - an aberration which is happily almost impossible - it
would occasion a rapid and widespread degeneration of that science.

Auguste Comte, “Cours de philosophie positive”,1830, volume |

For those who want to leave the

room now, it is still time... for the

others, let’s prove him wrong...
(although... in the big-data era...

| am sometimes wondering if there is
not still a little bit of truth in there...)

Why simulation ?

The advantages of simulation are learned early in life...

EXPERIMENTAL be | look : cry : cry
ROUTE hungry unhappy a bit really loud

!

SIMULATION crying loud : don’t wait till : cry
ROUTE is the key you are hungry... really loud
(1) make a model (2) simulate

10



Why simulation ?

= lengthy and expensive,

but delivers a truth

EXPERIMENTAL thousands of
ROUTE experiments
(e.g. combinatorial
chemistry)
H A
os |2
p
@ e
10000 J
SIMULATION | essential physics : : thousands of
ROUTE + approximations MODEL simulations
and parameters
= fast and inexpensive,
but delivers a prediction
= key .
siides NV When is simulation useful ? Cher:;;;;ztagwith
The equations governing the model may be liquids, solutions
. . & (bio)polymers !
e very simple = analytical treatment (e.g. =
ideal gas, harmonic crystal)

e moderately complex but numerous = computer simulation (numerical solution)
¢ not known or too complex = small-scale simulation (e.g. avalanches)

Simulation is used instead of experiment when
¢ the process cannot be studied experimentally

e.g. interior of a star, weather forecast (experiment is too late !) Fumunge;z;mulamr
¢ the process is dangerous or unethical to study experimentally in Kriens

e.g. spread of an epidemy, flight simulators, explosion of
a nuclear bomb, fighting ability of the Swiss army

e the process is expensive to study experimentally
e.g. volcanism on Venus, aerodynamics in aircraft design

Simulation is used in complement to experiment when

e approximate simulations may reduce the number of experiments to be
performed or/and increase their likelihood of success
e.g. modeling in industry: drug design, protein engineering, stock market
predictions (banks), risk assessment (insurances)

¢ a simulation reproducing an experiment provides additional insight
e.g. modeling in academia: quantum chemistry, molecular simulations

11



* Why do molecular simulations provide insight ?

Experiment Classical simulations
Typical resolution i B
Length : 1023 molecules 1 atom
Time : 1 second 1015 second ~_ 'emt

second (fs)
*: single molecule / femtosecond is also possible (but not simultaneously in condensed phase)

Typical system sizes with current computers
Length : 10 meter 10° meter  perer (om)
Time : 103 seconds 10 second micro-

second (us)

low resolution / averaged high resolution / instantaneous

large scale small scale
complex physics elementary physics
true approximate

= simulation and experiment are complementary methods !

Advantages of molecular simulations

e Experimentalist:

Someone who knows how to operate the Natural computer...
e Theoretician (classical simulator):

... someone who did not show any skill at that during undergraduate study, and decided
to go instead for a silicon-based Ersatz (prosthesis ?), with a primitive chipset (classical
force field) and an outdated operating system (Newton™, release 1.0)

e But there are two key advantages of simulations over experiment:

total transparency absolute freedom
(of the output) (in the procedure)
— single-atom spatial resolution — unphysical equations of motion OK
— femtosecond time resolution — weird statistical mechanical ensembles OK
— direct access to the instantaneous — inclusion of artificial forces OK
atomic coordinates/velocities/energies — paths relying on alchemical processes OK
— no implicit averaging over — ..

molecules and time .
= permits to carry out

= permits (in favorable circumstances) "impossible” experiments
the detailed interpretation of = gives room to "improve*
experimental observations on Nature's way
at atomic and quasi-instantaneous (e.g. in terms of sampling speed)
resolution

12



What are (bio)chemists interested in ?

(*) important

molecules in the gas phase:

- thermodynamics (real gases)
- molecular structure
- fragments (ions, radicals)

- spectroscopic properties
- reactions”

crystals:

- thermodynamics, phases*
- molecular structure

- packing forces

- disorder

liquids/polymers:

- thermodynamics, phases™
- rheological properties™

- transport properties

- dielectric properties

- mixtures

molecules in solution:
- molecular structure and solvation

] for industry
proteins:

- structure (1°,2°,3°,4°) and solvation®
- folding, assembly and binding*
- dynamics and function*
- catalysis*
(thermodynamics & mechanism)
- effect of mutations™

nucleic acids:

- structure and solvation (ions)

- interaction with proteins/ligands*
- dynamics

- packaging

- expression”

lipids:

- structure and solvation

- dynamics and fluidity

- permeation and diffusion*
- interaction with proteins*

- spectroscopic properties
cgnformatignalpe Eilibria R j carbohydrates:
- it .
: quith e - structure and solvation
- complexation equilibria ARV P .
. . . pa e R - dynamics
- acido-basic and redox properties o ; ok
. - 2 - rheological properties
- chemical reactions [N

“OR (thermodynamics & mechanism) - interaction with proteins

Classical atomistic simulations

e As a result, since October 2013, our field has its Nobel prize

&

Michael Levitt
Stanford University School of
Medicine, CA, USA

Martin Karplus
Université de Strasbourg,
France and Harvard
University, Cambridge,
MA, USA

Question:
Who is the brains
of the gang ?

Arieh Warshel

University of Southern
California, Los Angeles, CA,
USA

"Fér utvecklandet av flerskalemodeller fér komplexa kemiska system.”
“For the development of multiscale models for complex chemical systems.”

13




increasing

What can simulation bring to the (bio)chemists ?

accuracy mulat weh
The simulation reproduces experiment
. - TRUST
available experimental data
vl Xper (at best ENTHUSIASM)
h hanism can be simula;ioq exgiains
The mec experimen
understood at the molecular INSIGHT
level
simulation guides
Knowledge of the mechanism __experiment
- o o NEW EXPERIMENTS
ermit alitative prediction . o
Permits quaiitative predictions (increased likelihood of success)
B : simulation predicts
B : The modelis so good that experiment
B : quantitative predictions can UNEMPLOYEMENT
B be made (almost)
N = . NEW MOLECULES _

Will this ever happen for molecular simulations ?

Possibly:

Possibly not:

" with interesting propertie§

Note: in the “big-data”
the power of computers steadily grows, leading to increased era, more emphasis

i i ' is often placed |
resolution, system sizes, and complexity (accuracy) of the IS often placed on purely
dels predicting relative

mo

to explaining/guiding
numerical solutions will remain approximate, and new ideas (not a healthy "Ie“d
nearly always come from experimental observations n my opinion?)

Definition and refinement of a molecular model

Generally a slow, iterative, and highly non-trivial task !

essential physics, REAL WORLD
approximatiory

parameters
MODEL
l EXPERIMENTS
model must
SIMULATIONS be refined !
l EXPERIMENTAL
RESULTS
PREDICTIONS
As computers get faster
no (larger systems, longer
simulations, more complex
MATCH ? —— problems), models are
yes continuously challenged:
/ \ refinement is a never-ending
INSIGHT AT FURTHER  brocess andgoesonover
MOLECULAR PREDICTIONS
LEVEL

14



* * Four basic choices defining a molecular model

degrees of freedom
@ elementary “particles”

6) of the model
@

® 9%

interaction l boundary conditions

MOLECULAR
?KE - opp |G
1}

Hamiltonian operator system size and shape,
or function K 3 & temperature and pressure,
(kinetic + potential energy) ﬁx o/cav experimentally-derived
® 0 @ ®Y information

©e ©q [Sp® 9 number of configurations,
A &G") properties of the configuration
LA ® sequence (searching, sampling,
or simulating)

generation of configurations

Scope of this course

1) INTRODUCTION
e what is simulation

e basic choices defining a model )
e choice of the degrees of freedom ("ﬁ?&
e computational limitations ®» 9@

e brief overview of quantum chemistry

e classical atomistic simulations -
(—rest of the course) / & — MOMLgCDIétAR

2+3) INTERACTION (FORCE FIELDS) T

e basis of the classical description

e molecular topology m—r
e covalent force-field terms
e non-bonded force-field terms

e calculating atomic forces

o force-field parameterization

3+4) GENERATING CONFIGURATIONS 5) BOUNDARY CONDITIONS ——

e searching (incl. energy minimization) e spatial boundary conditions

e sampling (incl. Monte-Carlo sampling) e thermodynamic boundary conditions

e simulating (incl. molecular and (incl. temperature, pressure)
stochastic dynamics) e [experimentally-derived boundary

conditions (incl. X-ray, NMR)]

15



Scope of this course

6) ELECTROSTATIC INTERACTIONS 8-9) FREE ENERGY CALCULATIONS

e the long-range problem e introduction to statistical mechanics

e methods to handle electrostatic e determining free energy and entropy:
interactions in simulations methodology

o finite-size effects in simulations e determining free energy and entropy:

practical issues

7) ANALYSIS OF SIMULATIONS 10-14) SPECIAL TOPICS

e liquid simulations e efficient methods for searching
e biomolecular simulations configuration space

e examples e structure refinement based on

X-ray or NMR data
e comparison between simulation
and experiment
e (treatment of quantum effects)
e (coarse-graining)
one of these e (calculation of kinetic properties)
(Possibly) e (inclusion of polarization)
e (time-saving techniques)

Four basic choices defining a molecular model

_degrees of freedom

o B

A
® 9®

interaction l boundary conditions

MOLECULAR
\\E ) opp |G

'elémént:ary: “parfiCIeS”
of the model

Hamiltonian operator system size and shape,
or function K 8 & temperature and pressure,
(kinetic + potential energy) ;,@\ OW experimentally-derived
® 3% @ @9 information

©e 04 9905 number of configurations,
A &? properties of the configuration
3¢ ® sequence (searching, sampling,
or simulating)

generation of configurations

16



* Choice of the degrees of freedom Time(mdependent

Schrédinger equation

¢ A hierarchy of models with progressively decreasing levels of resolution

QUANTUM MODELS CLASSICAL MODELS MESOSCOPIC/CONTINUUM
highest STODERD imMPLICIT IMPLICIT MODELS IMPLICIT
resolution nuclei (- atoms), _ atom groups
nucleons, all photons @ = f{ (> residues)
y-rays beyond IR \
RESIDUE-
W QUANTUM 8‘9 ® ¢ MOLECULAR \ BASED
\ MECHANICS @ MECHANICS \ MODELS
\\ \ S N
rel. TDSE (Dirac) core electrons, MD (Egg;gg?g) SD intramolecular
high energy (— united atoms) dof
X-ray photons (— molecules)
a) MOLECULAR ~
\ N\ QUANTUM @%‘.': ® MECHANICS MORLE(I:DULE
\\\ \ \\\ MECHANICS (UNITED ATOMS) MODELS
TDSE all electrons, medium MD atom groups MD. SD intramolecular
energy UV/Vis photons (— beads) ' dof
(Born-Oppenheimer) (= "particles")
COARSE- N\
QUANTUM . . GRAINED MESOSCOPIC
CHEMISTRY MODELS MODELS
(GROUND STATE) . it
TISE (elec MD granularity
TDSE (nucl.) solvent solvent BD, DPD of matter
(—>densities,
fluxes and fields)
N
QUANTUM \ MOLECULAR
\% CHEMISTRY MECHANICS \\ C?A%TD"ELLJSM
IMPLICIT SOLVENT IMPLICIT SOLVENT
27 X N ( )
TISE (elec.) SD v FE (conserv +transp.)
TDSE (nucl.) v
v lowest
resolution
* Computational limitations

The choice of degrees of freedom of the model largely determines:
e the resolution that can be achieved
e the types of phenomena that can(not) be described by the model
e the Hamiltonian (operator or function) describing the inter-particle
interactions and its intrinsic computational cost (cost increases with resolution)

The computational cost is then determined by:

e the intrinsic computational cost of evaluating the Hamiltonian (operator
or function) for a given system size and for one configuration

e the required system size to represent the property of interest

e the required number of configurations to evaluate the property of interest

increasing system size and
number of configurations

FASTER
. COMPUTERS
coarse-grained

mesoscopic or _@ ’
continuum models
classical atomistic __| <' )
simulations

quantum chemistry

currently
not feasible

increasing resolution
and Hamiltonian cost
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* Moore’s law Now reached:

petaflop
12 | teraflop
FUJITSU VPP
CRAY T3D
SX3
T o FUJITSU VP 2004 NEC SX 2 {1 gigaflop
= CRAY 2
& CYBER-205
IBM 360/195
CDC 7600
6| 1 megaflop
= |BM 7090
1960 1970 1980 1990 2000

year

1 flop = 1 floating-point operation (14 digit precision) per second
good human brain (~5 minutes) = 3 milliflop...

Moore’'s law

The computing power increases on average by a factor 10 every 6 years
[verified over the past four decades — future ?]

»

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016)
Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.

This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are
strongly linked to Moore's law.

20,000,000,000

IBM 213 Storage Controller,

10,000,000,000 18-core Xeon Haswell-£5_ @5 AFC M7
‘Wb One main Soc\\ '@ 22-core Xeon Broadwal-E5
5.000.000.000 B1-60re Xoon Phi 8»5. oo Xoon vy Bridge-£X
»UULLU0L, TR P e & 3 B
8-core Xeon Nehalem- EX\‘ Qp: nlreﬂcﬂ;( £15C£é%?§4ME4 mebile SoC’)
Six-core Xeon 7400,
Duor Iris Core i7 Broadwell-U
Dual-core ltanium 2@ @ - e ° Guad-core + GPU GT2 Core if Skylake K
Pentium D Presler, poweR uad-core + GPU Gore i7 Haswell
1,000,000,000 Hgnma witn e c v ®\opic AT (dual-core ARMEA “mabile SoG-)
HERTON ore i
500,000,000 Htanium 2 Macison 611G ‘Cure p“‘nﬂuq"vﬁ“u%"(e Wi
Bantum D Smitekdn,o Duo Can
Itanium 2 McKinleygy e\l $Cure 2 Duo Wolfdale 3M
Pentium 4 Prescott- 2M0 . @Coro 2 Duo Allendale
Pentium 4 Cadar Mill
100,000,000 AMD K8R B im 4 Prescott
Pentium 4 Northwoo
& 50,000,000 Portum A imatod 8,0, 25N @aom
S Pentium Il Mobile Dixon @ARM CortorAB
s} AMD Krs ?Penlmm Il Coppermine o
© AMD K6-lil
S AMD K,
£ 10,000,000 P orREe B
» 5,000,000 "0 g
E PEHl\umo AMD K5
- SAT110
Intel BO4BE, -1
1,000,000 b
T Explorer's 32-bit
500,000 Ustfacting chip® Ao

Intel BO386.g, m%v Quams

Motorola 68020 ¢

100,000 R e o
e 1ot
50,000 intel 30186
Intel 80864 €pintel 8088 ROARM 2 mﬁ 6
M 1
10,000 T™Sjooo  ZiegZeg Mg%rsh Wg = mch%ﬁa
&5
5,000 Intel 6008, RC%??E a0
Motbrola: HQS Technology
Inte 2954 &%8
1,000
S S s g S I R N T T S A N
AR AR A A 4 @@@‘b & & \@b‘\@ & q,@ f],QQ 'LQQ "L@ ’I,QQ '19’\ ‘LQ\ '19\ 'LQ\

Year of introduction
Data source: Wikipedia (https:/en.wikipedia.org/wiki/Transistor_count)
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A super-quick overview of quantum chemistry

e Broadly speaking , ) ,
molecular calculations/simulations

e ¥ &

quantum-chemical classical atomistic coarse-grained, mesoscopic
calculations simulations or continuum models

Not the goal of this course but
good to have minimal knowledge Goal of Mentioned at
) )

; o ; the course the end
_s refreshing overview — brief (qualitative) overview
if you already know, or From next lecture ... towards last

sketchy introduction For more onward... lecture
if you have no clue info
— not exam material ! Q C
uantum Chemistr .
— understand the flow, Q}W y Prof. Reiher
forget about the YL T Advanced Quantum Chemistry
equations...

e In principle, we should all do quantum calculations, because molecules
obey the laws of quantum (not classical') mechanics

e In practice, the quantum description involves many approximations

and computational limitations . .
Goal of this overview:
— The classical description is more appropriate for many problems WHICH ONES
but may also be clearly inappropriate for other problems AND WHY

To the best of our knowledge
e The standard model of physics: 30 elementary particles + a quantum-field theory (QFT)

Fermions  spin 1/2 Bosons ~1960-1975
\ spin 0 (g,y,Z°,H°), 1 (W W) or 2 (G) Glashow, Salam
f ! & Weinberg
(following work of
Leptons Bosons Dirac, Feynman,
Generation Higgs. ..
| (usual) strong
1]
electroweak
. Charrm
exotic
\ ° >
I A \
- 2 P -
Eeauty Tau Maeutring Tau
actually not
+ 6 anti-quarks + 6 anti-leptons mass-giver gravitation in the standard
(existence proved model
in 2012 in CERN/LHC)
. — Major problems of the model
o s — remarkable account
. | of experiments
— Good for

» 77~ — Not good for J ( — cannot be the end of the story:
. _, . ¢ incompatible with general relativity,
- which also gives remarkable
: account of other experiments
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Approximation 1: simplified particle model

the strongest but shortest-ranged (~fm)

e Under the action of the strong interaction (gluon) interaction in nature

mesons (q3) oo
baryons (qqq) — e.g. proton (uud) and neutron (udd)

— Quarks assemble into hadrons {

— Baryons assemble into nuclei

the weak interaction is short-ranged (~fm)

e The weak interaction (Z°,W- and W* bosons) can be omitted  as well, but much weaker; it plays arole in
radioactive decay processes

. . . . . its contribution is entirely
e The gravitational interaction (graviton [?]) can longest-ranged (~r 1) negligible between
i i but weakest interaction particles/atoms/molecules —
be omitted or treated macroscopically onty worth considlering befween

- macroscopic assemblies !
only sensitive to weak and

e The neutrinos can be omitted gravitational interactions

e The 2" and 3™ generation particles can be omitted  exotic and unstable

e We are left with nuclei and electrons subject to the electromagnetic interaction (photon)
and we can change to traditional (but still relativistic) quantum mechanics (QM)

electromagnetic interaction

=» @ W g°

nuclei photons electrons

Approximation 1: simplified particle model

e The coordinates to describe a system of particles are

M ‘ ‘ v={V,,V,,..,Vy} 4M-dimensional nuclear coordinate+spin vector
nuclei vV, = (Xa, YorZys Ga) Cartesian and spin (e Z or 2 Z ) coordinates of nucleus «

N T= {‘l?l 3 Tyseees Ty f 4N-dimensional electronic coordinate+spin vector
electrons T, = (X, Y, Z,0;) Cartesian and spin (e {-'4,%%}) coordinates of electron i

e The system wavefunction is %
P e, %\\\2\%\%

— it is defined by

.

| ‘i’(’t y t) |2 dz dv _ Probability of fiqding the nuplei and_ electrons in ‘Fhe
s Vs 4(M+N)-dimensional coordinate/spin volume at time t

e The system Hamiltonian is

A withterms _® Kinetic energy (nuclei and electrons) P’fltf,“C'eslif:,faStt
H(t) for « electric and magnetic interactions (charges and spins) the 'S%ZLZ if'\l'gh?
e interaction with (time-dependent) external fields (e.g. photons)  — relativistic

— main property
J-d’t dv ‘i’*(‘c, V,t)ﬁ(t)‘i’(‘c,v,t) = Total energy of the system at time t
e The system wavefunction should satisfy the time-dependent Schrodinger equation (TDSE)

A ¥(z,v.1) = in 2L &V
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Approximation 2: time-independent Hamiltonian

e If the Hamiltonian does not depend explicitly on time ﬁ(t) 0
— no interaction with a fluctuating external field, e.g. photons B

— the wavefunction becomes separable in the coordinate and time variables
P(t,v,t)=¥(1,v) T ()
e Inserting into the TDSE gives
- . dT(t)
HY (t, V)T (t) = in¥ (1, v)——=

dt
coordinate time
domain domain

HY(1,v) = E¥(t, V) aTo _ _ET(t) = —iwT ()
dt i
e This is the time-independent 1 solution
Schrodinger equation (TISE) T(t) = oot w=E/h
— where
\P(‘C V) Stationary wavefunction (comp!gx, normalized,
> defined within a phase factor € "- arbitrary time origin)
‘ \P(’C, V) |2 d T dV Probability of finding the nuclei and electrons in the

4(M+N)-dimensional coordinate volume (time independent)

Approximation 3: isolated system / pure electrostatic interactions

e As a good approximation, the Hamiltonian of an isolated molecular system can be
written in terms of purely electrostatic (no magnetic) interactions within the system

kinetic energ_y kinetic energy

of the nuclei of the electrons
. hz M h2 N
A= - Dy le - Ly

25°m, 2m, 5

N
_ e Z & Coulombic interaction

M
Z nuclei-electrons
dre, 51, uclei
1 M M QaQ/j’ e2 N N 1
+ 2 + 20—
472'80 a pa I’aﬁ 47[50 i i I’IJ
Coulombic interaction Coulombic interaction
of the nuclei of the electrons

e This neglects

— Relativistic effects (except spin [Fermi correlation only — see later])
— Interaction with (static) external fields (system is isolated)
— Magnetic interactions (spin-spin, spin-orbit and orbit-orbit)

, e : Iready f
— Non-electromagnetic forces (e.g. strong, weak and gravitational interactions) parési)uys v
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Approximation 3: pure electrostatic interactions

e The TISE + normalization read
A¥(r,v)=E¥(,v)  win  [dodv|[¥(5v)f =1

e This is a second-order differential A

. . A A A
eigenvalue equation
¥, b b
E, + 4,1 4,2 43
b
E, + 3,1
— solutions {En} o1 2 {‘Pn,m}
E, T - -
b
El 1 1,1
infinite set of associated (possibly
discrete eigenvalues degenerate) eigenvectors
; : P First solution:
e At this level, we can solve two-particle problems (e.g. H, He*, Li**, ...) exactly Pauli (1926)
0 &y A A
Sl 3 w3 e, 3,30 3027
3
25 2p,2p, 2p,
E, T — —/——
1s
E. T —

Approximation 4: Born-Oppenheimer approximation

e Electrons are >10* times lighter than nuclei so that they move >10* times faster

%%\\%&% ﬁT(T,V) =EY¥(1,V) Born & (C:)ng%nheimer
Electronic problem: , \ Nuclear problem (for a given k):

nuclei are quasi motionless electrons relax instantaneously
Y
i . — . for a A
He\Pe(T’V) =V (V)\Pe(‘C,V) given k Hn‘Pn(V) = E\Pn(v)
= set of solutions for the = set of solutions for the
electronic energy levels rotational/vibrational energy

{V(v)} corresponding to a levels {E,} corresponding to a

given nuclear configuration \ , given electronic energy level k

Y(t,v) =", (Y, (V) ¥ (Bv)

further noted

w(7)

(valid within the Born-Oppenheimer approximation)

e At this level, we can solve polynuclear/monoelectronic  @yvind Burrau
problems exactly (e.g. dihydrogen cation H,*) (1927)
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Approximation 5: Neglect of electron correlation

e If electron correlation is neglected, each electron sees the mean effect
of the charge density generated by the other electrons

@™ "

//
/////////// etc...
%

\\\\

— then the polyelectronic wavefunction, satisfying the parity constraint —— Pauli
(sign of the wavefunction is inverted upon interchange of two electrons) (1927)
can be written as a Slater determinant —— Hartree, Fock, Slater

(1930-1935)

Zl(Tl) ZZ(TI) ;(N(Tl)
W(T):(N!)il/z Zl(:cz) Zz(.'cz) AN Qz)
() ) o x(ty)

— the single-electron y functions are called spin-orbitals

Approximation 5: Neglect of electron correlation

e Using the variational principle, one finds that the

spin-orbitals obey the Hartree-Fock equation '|:Zi (t)= 8i)|5i (), Vi

Fock operator optimal spin-orbital

orbital energy
— Form of the Fock operator

i %,
Core operator: o '
h  Kinetic energy + interaction ()
with nuclei o
N Coulomb operator:
2 _ A 2 ¢ ] Coulombic interaction with electron i;:?
= —K. J.
F=h+ Z (J;=K)) . ' in occupied spin-orbitals .N.
j occupied Il pairs
Exchange operator: « '»
K Reduction of the Coulombic \‘
i repulsion with electron in occupied same
| spin-orbital y; (only if same spin as y)  spinonly

the Fock operator depends on z;:k‘

Must be solved self-consistentl
- y all occupied spin-orbitals {4}
— Relies on a definition of a specific e.g. closed-shell -

electronic configuration with doubly-occupied _
molecular orbitals

i.e. we have to say which

spin-orbitals are occupied ¢| (rl) +*_
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Approximation 6: Basis-set expansion

e Computers are of no direct help in solving problems of continuous vector calculus...
But: they are really good at solving discrete linear algebra problems !

e To transform the Hartree-Fock equation (for a given electronic configuration — rewritten
in terms of molecular orbitals) into a computationally-tractable problem, molecular orbitals
are expressed as a linear combination of atomic orbitals

JORXTIONEE = Gl = ¢

— | this basis set, the Hartree-Fock equation becomes the Roothaan-Hall equation

FC=SCE with F=TF(C) it

\\ — the birth of

Fock matrix coefficient matrix overlap matrix — energy matrix _ SOMPUTATIONAL
QUANTUM CHEMISTRY!
{F.} {c.} {S,.} {go}

Fﬂ" = .[d’cl ¢;(T1) F (DV(T]) Syv = J‘dT] (/7; (Tl) ¢V(Tl)
— Can be solved iteratively on a computer until self-consistency

— The atomic orbitals are usually sets of atom-centered Gaussians

Beyond approximation 5: Electron correlation

e Electrons do not simply move in the average field produced by the other electrons

\\\\\\\\\\/

%
"

o L

»

i

= electrons tend to avoid each other dynamically

e the corresponding electron-correlation energy is negative
e it is neglected in Hartree-Fock theory (except for Fermi correlation)
e it is important to correctly account for dispersion interactions

= electron correlation can be partly reintroduced as
a post-Hartree-Fock correction See also:

/ coupled cluster (CC)
e configuration interaction CI (a variational approach)
e many-body perturbation theory PT (a perturbational approach)

= computationally expensive, unfavorable scaling with system size,
but (unfortunately!) absolutely necessary for many problems !
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Two other routes

e Semi-empirical methods
— Start from Hartree-Fock
— Introduce approximations and parameters for the one- and two-electron integrals

— Calibrate the parameters against experimental or against accurate quantum-chemical data

— The method becomes computationally less expensive and the
parametrization against experiment reintroduces some effective
electron correlation for the systems considered

¢ Density-functional theory

— It can be shown that the electron density entirely determines Hohenberg & Kohn

the energy; this simplifies the problem considerably! (1964)
w(7) = p(r)
4N-dimensional 3-dimensional

— Introduce an (approximate) energy functional

Vipl =Tlpl+E,[p1+Elpl+E[p] ™) feknontsdse of oy over al space

Kohn & Scham

— Solve the problem using the variational principle and a basis-set expansion (1965)

— The method is in principle exact (including electron correlation) but the design
of good functionals (especially exchange-correlation) is difficult in practice
(— often poor description of dispersion)

* Overview of quantum chemistry

Nuclei+electrons wavefunction y(z, v ,t) « Standard Model

(2) Time-independent Hamiltonian (TDSE) (1) Simplified particle model
(3) Isolated system / pure-electrostatic

interaction
(4) Born-Oppenheimer approximation

Polyelectronic Ground-state
wavefunction y(7) <) electron density p(r)

(5) Neglect electron correlation (TISE) Hohenberg-Kohn
Parity constraint theorem
Variational principle
Specific electronic configuration

Kohn-Sham theorem (variational)
Approximate exchange-correlation
Slater-determinant approximation

Slater determinant  Ground-state electron density
(Hartree-Fock eq.) derived from Slater determinant

(6) Basis-set expansion (Kohn-Sham eq.)

i Y o Basis-set expansion
i Coefficient matrix P

Simplify i(Roothaan-HaII eq)
Parametrize ! :

Override (5):
reintroduce some

! . Coefficient matrix
. _electron correlation

(matrix eq.)

= also some effective
electron correlation

DENSITY-FUNCTIONAL
Simplified form ' Correlated methods | METHODS

(MNDO, AM1, PM3, OM2, ...) |  (CI, CC, PT)
SEMI-EMPIRICAL AB INITIO
METHODS METHODS
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* Computational scaling of quantum-chemical methods

e Computational scaling

MP4,CISDT MP2,CISD  Hartree-Fock  Semi-empirical, local DFT
O[N7] \ O[N?] O[N] O[N?]

200

Approximate
linear-scaling DFT
is also a “hot” area

nowadays —
but the prefactor to the
OI[N] is still very high!

180

Classical simulations

50 L
[—  O[N’] - O[N]
pairwise ...of limited
interactions... range

§ 6 7 8 9 10

sealing (multiplicative factor for the
number of atoms in the system)

all methods assumed as fast at this point

In short

e The field of quantum chemistry is about:

the art of mastering approximations to achieve
a good trade-off between accuracy and computer time
for a given molecular system (and its relevant properties)

e As you will see in this lecture, the field of classical simulations is completely different...

e The field of classical simulations is about:

the art of mastering approximations to achieve
a good trade-off between accuracy and computer time
for a given molecular system (and its relevant properties)

e Just the types of systems (and properties) we are interested in, and the nature of the
approximations involved are very different!

— Quantum mechanics is conceptually more complicated /abstract
(the classical representation is in many respects more intuitive !)

— But classical simulations also involves a lot of tricky methodological
issues... (the devil is in the details)
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* Quantum-chemical methods

%

e Major advantages

the chemical world is described by quantum mechanics

— Sound theoretical basis — hope to obtain exact solutions

ab initio methods — full specification needs only:

- number and types of nuclei (mass, charge, spin)
- nuclear coordinates

- number of electrons and electronic configuration
- physical constants

— Few (or no) empirical parameters

e Major limitations

— Numerous approximations
are invoked in practice

— Accurate calculations are computationally require including electron correlation
expensive and scale very unfavorably and using large basis sets

= small systems only (typically <<100 atoms)
= few configurations (no statistical mechanics)
= difficult to handle solvation (microsolvation or continuum)

* Classical atomistic simulations

® ® ®
@(: ® @(‘.:8

e Major advantages

i.e. most of

— Suited for the study of condensed-phase systems (bio)chemistry

— calculation of thermodynamic properties through statistical mechanics

— Sufficient timescales — bridge with experimentally-accessible timescales (now or near future)

— Sufficient system sizes — access to (bio-)macromolecules in solution

— Sufficient resolution — almost correct dynamics at the atomic level
. Complementary to experiment J — & diffraction (crystals)  (structure and dynamics
— NMR (solutions) at atomic resolution)

e Major limitations
— Empirical, numerous parameters, parameter-sensitive

— Unable to account (accurately) for quantum effects, mainly

= proton and electron transfers

= chemical reactions . need for hybrid
= high-frequency vibrations methods

= low-temperature properties
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History of classical atomistic simulations

1957 First molecular dynam
Monte Carlo
is older...
Adler
& Wainwright
1964 Atomic liquid (argon) 10 ps
1971 Molecular liquid (water) 5 ps
1975 Simple short polymer (no solvent) 10 ps
1977 Protein (no solvent) 20 ps
1982 Model membrane (no solvent) 200 ps
1983 Protein in water 20 ps
1986 Nucleic acid in water 100 ps
1989 Protein/nucleic acid complex in water 100 ps
1996 Protein/membrane system in water 100 ps
1997 Peptide folding in solution (ETHZ) 100 ns
1998 Protein(?) folding(?) in water (UCSF) I ps
2000 Spontaneous micelle/membrane formation in water 50 ns
2002 Membrane fusion in water 200 ns
2018 Standard : biomolecule in water (10000 atoms) ~1 ps
~ 10 CPU days— ~10%? times slower than nature...
Future of classical atomistic simulations
using Moore’s law, one may speculate about the future...
Standard classical simulations:

2018 Biomolecule in water (~10* atoms) 1 us

2029 Biomolecule in water 1 ms  protein folding (?)

2034 E-Coli (~10'! atoms) 1 ns «—— My retirement...

2056 Mammalian cell (~10'° atoms) I ns

2080 Biomolecule in water 106s  as fast as nature...

2180 Human body (~10?7 atoms) ls

But : * Scientists are impatient — they want answers now !

» There may be a limit to the speed of computers ...

» How to get the starting configurations ?

* Are the classical models sufficiently accurate at all ?
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The partners in the simulation business

Chip designers Experimentator

Finer resolution

— Starting structures
Data for model
refinement
New problems ...

Faster computers
— larger systems,
longer timescales

Simulator

Always better models !
New methods !
Faster algorithms !

Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019

www.csms.ethz.ch/education/CSCBP HCI D2 Simulating using GROMOS
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Eldgendssische Technische Hochschule Zirich
Swiss Federal Institute of Technology Zurich

How to simulate using GROMOS

An introduction to the
GROnNingen MOlecular Simulation package

A
wptd | . g
I | r =

Computer Simulation in Chemistry, Biology and Physics (CSCBP)

A one-slide crash course in Molecular Dynamics (MD) simulation

degrees of freedom

@ ® )
o ® ®
(UNITED-)ATOMS ® 0® .
(solute & solvent) 1 boundary conditions 2
q PERIODIC
\X I MOLECULAR BOUNDARY CONDITIONS
E’J MODEL +EVTL. BAROSTAT
x OR/AND THERMOSTAT
interaction LG
/ . f Classical equations
Classical potential energy ¢)_ ) genfe_ratlo? O _———"of motion (Newton)
= ¥4 |4 configurations
function or "force field" (r) et g H(r, p)=10(r)+K(p)

F=—vu(r) kx=(1/2p'M"'p

Covalent terms Non-bonded terms
L L . Av = a At
Ij bond ®° : { "M acva
stretching .® all atom pairs - - .
9 in the system . . coordinate
bond-angle & o o :
b’ bending o N o fimet velocity
,‘ o ® . . . force
@ electrostatic . .
torsional S‘e Q° interactions . [ time (t+At)
dihedral E E
improper x % van der Waals E 8 b~ fs
g . . [ ] [ ] -
dihedral interactions : :
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The GROMOS program

http://www.gromos.net

asimu I ation p rog ram About GROMOS About the GROMOS software for biomolecular simulation

How to get 1. What is GROMOS

Set-u p an d an aIyS|S tOOIS GROMOS GROMOS™ is an acronym of the GROningen MOlecular Simulation
computer program package, which has been deve\ueed since 1978 for

the dynamic modelling of (bio)molecules, until 1990 at the University of

Groningen, The Netherlands, and since then at the ETH, the Swiss

i L. . Federal Institute of Technology, in Zdrich, Switzerland. Its development
a fo rce fl el d GROMOS updates is driven by the research group of Wilfred van Gunsteren.

Downloads

Since the last official release of the GROMOS software and manual in
1996, called GROMOSS6, no comprehensive release occurred. Yet the
GROMOS software has seen a steady development since 1996, see e.g.

) ) ) BIOMOS
distributed with source

FAQ Christen et al. 1. Comput. Chem. 26 (2005) 1719. The programming
language has been changed from FORTRAN to C++, the documentation
Contact has been put into electronic form, and many new features have been

included in the software.

free software
(just register for
a no-cost license)

To the development of the new code and manuals many current and
former members of the research group for Informatikgestiitzte Chemie
(igc) have contributed : Jane Allison, Dirk Bakowies, UIf Borjesson,
Roland Birgi, Alexandra Choutko, Clara Christ, Markus Christen, Jozica
Dolenc, Andreas Eichenberger, Daan Geerke, Alice Glattli, Halvor Hansen,
Bruno Horta, Philippe Hunenberger, Mika Kastenholz, Anna-Pitschna
Kunz, Katharina Meier, Chris Oostenbrink, Christine Peter, Maria Reif,
Sereina Riniker, Heiko Schafer, Nathan Schmid, Denise Steiner, Dongqi
Wang, Haibe Yu, to mention a few.

The GROMOS software is to be distinguished from the GROMOS force

fields for biomolecular systems, of which the latest versions are coded

very reliable, but at
present, not the fastest
program around

as:
(e.g . GROMACS is faster, 45A3/4 1. Comput. Chem. 22 (2001) 1205-1218
. . Eur. Biophys. J. 32 (2003) 67-77
but also significatly 3. Comput. Chem. 26 (2005) 725-737
more “ b u g gyn . ) oonere ; Ez:put‘ Chem. 26 (2005) 1400:1412
. Comput. Chem. 25 (2004) 1656-1676
54A7 3. Comput. Chem. 31 (2010) 1117-1125

Eur. Biophys. 1. 40 (2011) 843-856

The GROMOS program

http://www.csms.ethz.ch/education/CSCBP

see «Wilfred van Gunsteren and GROMOS» under downloads

pubs.acs.org/JCTC

Wilfred van Gunsteren: 35 Years of Biomolecular Simulation

curt laude in 1976. In addition to studying physics, Wilfred also
prepared (without actually following the lectures!) a master's
degree in law (“meester in de rechten”), which he obtained in
1974. While he never formally worked as a lawyer, the unusual
combination of law and physics has been visible throughout his
later career, in the form of a keen interest in matters of cor-
rectness, integrity, and justice, and in the careful formulation of
arguments.

Despite having just completed a highly successful Ph. D.,
Wilfred was unsure whether he wanted to pursue a career in
nuclear physics. It was at this point that he met Prof. Herman J. C.
Berendsen, professor of physical chemistry at the University of
Groningen. Herman convinced Wilfred that his skills in physics
and computation might enable him to address fundamental
questions in biology, a new and radical idea for the time, Wilfred

Photoggaph of Wilfed van Guasteren: Giulia Mathaler/ETIH Ziich worked with Herman at the University of Groningen as a post-
doctoral fellow from 1976 to 1978, developing the basic algo-
his special issue of the Journal of Chemical Theory and rithms and programs needed to efficiently simulate (bio)-

Computation is dedicated to one of the founders of the molecular systems. This period was followed by a second
field of biomolecular simulation, Prof. Wilfred F. van Gunsteren, ostdoctoral stay from 1978 to 1980 in the group of Prof, Martin
5 % . SR P ¥ group 2
in honor of his 65th birthday and 35 years of research in this field. Karplus at Harvard University, another leading center in this

As a CSCBP tribute, the following

slides are still the Original Philippe H. Hiinenberger*’
Wy, » H . Alan E. Mark*
vintage” slides of Wilfred... Herman J.C. Berendsen’

(only with a few added comments)
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Usage of md — the molecular dynamics
engine of GROMOS

Progressively understood
throughout exercises 1-6
leia:~> md

# topology data

(@0topo filename Main focus

# coordinates of exercises 1 and 2

@conf filename

# 1Input parameter

@input filename Main focus
# output Ffinal coordinates of exercise 3
@fin filename

# output coordinates trajectory

@trc filename

# output energy trajectory

# Q@tre filename
# position restraints specification + Trajectory
# @posresspec Filename analysis

# input FTiles Progressively understood

Legend: # output Files throughout exercises 1-6

The GROMOS topology

» Contains the topological and the force field data
for the molecular system

+ Written with the help of programs (see tutorial)
» Contains information in blocks prominently: make_top

(not used in exercise 1
but afterwards)

TITLE - Program which generated topology
IMAKETOP [topology, using:

mtbo4da/.dat :
ifp54a7.dat «——| Forcefield used

Force-field code: 54A7
END
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The GROMOS topology

PHYSTCALCONSTANTS

| Physical constants used by program md

# FPEPSI: 1. 4.
138.9354

0*P1*EPS0O) (EPSO is the permittivity of vacuum)

Determine the units... standard:

# HBAR: Planck"s constant HBAR = H/(2* PI) #ienqg_thi ;2"
0.0635078 Mass: g/mol
# SPDL: Speed of

299792 .458

# BOLTZ: Boltzmann®s constant kB

0.00831441
END

[-

|AT(-)I\-A']FYPENAME|<~/ Different atom types used in this topology

Tight (hm/ps) Energy.  kaimol
Temperature: K

Pressure: kJ/(nm3 mol) = 16.6 bar
Angles: degrees (converted
internally to rad)

# NRATT: number of van der Waals atom types

54
# TYPE: atom type

[---1

names carbonyl oxygen (C=0)

[NUrea).
CH3p
END

nitrogen in urea

The GROMOS topology

RESNAME
# NRAA2: number
5

of residues in a solute molecule

# AANM: residue names
VAL Valine
TYR |« Tyrosine

ARG —
CYSH] Arginine

END charge +1)

HaN

GLN '\ (protonated:;

charge +1)

Lysine (protonated;

Glutamine
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SOLUTEATOM

# NRP: number of solute atoms : b2, 21
71 BHZEOZ ng .""\\1‘ ‘/" 0310

# ATNM: atom number yﬁw Q14 = Nosio
# MRES: residue number npp, B2 [ ® 1
# PANM: atom name of solute atom o 0-140 BCA Goaso

- / 0.000~27 1/

# IAC: integer (van der Waals) T 18- MH,// Ciaso
# atom type code //4ﬁl &ﬁm /mmf““*cam \

# MASS: mass of solute atom 2 O e
# CG: charge of solute atom 0408 0N TYR
#  CGC: charge group code (0 or 1) e Lt
#  INE: number of excluded atoms o.140 G140
# INE14: number of 1-4 interactions
# ATNM MRES PANM IAC MASS CG CGC INE
# INE14
[---1

11 2 N 6 14.00670 -0.31000 O 4 12 13 14 27
3 15 28 29

12 2 n 21 1.00s800 0.51000 1 1 15
2 14 27

[---1
EN

(comes directly from .ifp file,

BONDSTRETCHTYPE i.e. not system specific !)

# NBTY: number of covalent bond types

52

# CB: force constant !

# BO: bond length at minimum energy :

# CB BO A O
1.57000e+07 1.00000e-01 “wez  HDZ J\"h/{
1.87000e+07 1.00000e-01 :} wl’ in
1.23000e+07 1.09000e-01 /‘HFCDZM 5Ca_r /“’o
3.70000e+07 1.12000e-01 mo_w " \uCG 7
1.66000e+07 1.23000e-01 v \(o y -} \w

[---1 1 HOE =G0

I
EN /Q 3
BONDH "HE1 "HD1

# NBONH: number of bonds involving H atoms in solute
22

# 1BH, JBH: atom sequence numbers of atoms forming a bond
# 1CBH: bond type code
# 1BH JBH ICBH
[---1
11 12 2 Bonds involving
16 17 3 hydrogen atoms
[---1
EN
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BONDSTRETCHTYPE (same block as on last slide)
# NBTY: number of covalent bond types

52
# CB: force constant :
# BO: bond length at minimum energy A it
H CB BO nHE2} 19HDZ _g" \l:\l/’z’
1.57000e+07 1.00000e-01 ls/’ |u
ZCE2—CD2 3
1.87000e+07 1.00000e-01 CE2T 6 Boa b 0
1.23000e+07 1.09000e-01 s ul' \ . o
OH——CZ CcG z i
3.70000e+07 1.12000e-01 /ﬁ 13 \(6 g —YcB 1
1.66000e+07 1.23000e-01 %/ TR \
[_ ] _] /3 16 3
END "HEA "HD1
BOND

# NBON: number of bonds NOT involving H atoms in solute
49

# 1B, JB: atom sequence numbers of atoms forming a bond
# 1CB: bond type code

# IB JB ICB

[- 0T . .
27 28 5 Bonds not involving

[ hydrogen atoms

END

(comes directly from .ifp file,

BONDANGLEBENDTYPE i.e. not system specific !)
# NTTY: number of bond angle types

54 '

# CT: force constant,TO: bond angle at minimum energy in %egrees

'f;':ﬁ ] CT TO Y. 8o ,"“\lh/rH
== 3

# 10 N /> | 2

CE2.—CD2 “ »

4 ._.25000e+02 1.09500e+02 /46 \ga CA\% .
4.50000e+02 1.09500e+02 =oH—2c2 2, A7
5.20000e+02 1.09500e+02 /ﬂ ’ 16 // [~ CB \w
L---1 *His WeE = CDA

END /s \

BONDANGLE "HE1

# NTHE: number of bond angles NOT involving H atoms in solute

64

# 1T, JT, KT: atom sequence numbers of atoms forming a bond angle
# I1CT: bond angle type code

# 1T JT KT ICT
[---1
# 10 Angles not involving
hyd t
11 13 14 13 (BONDyAlil(z.‘?lnga: ?nrczlving
[- .- hydrogen atoms)
END
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(comes directly from .ifp file,

IMPDIHEDRALTYPE i.e. not system specific !)
NQTY: number of improper dihedrals

CQ: force constant of improper dihedral per degrees square
QO0: improper dihedral angle at minimum energy in degrees
CQ Q0 E
5.10000e-02 0.00000e+00 i
1.02000e-01 3.52644e+01
2.04000e-01 0.00000e+00
5.10000e-02 1.80000e+02

HTHHFOH

1.02000e-01 -3.52644e+01 B0
END /] E
IMPDIHEDRAL %0
# NQHI: number of improper dihedrals NOT
# involving H atoms in solute
21

# 10,JQ,KQ,LQ: atom seq. numbers of atoms forming an improper dihedral
# 1CQ: improper dihedral type code
# 1Q JQ KQ LQ ICQ

[- i -]1 > >4 55 T Improper dihedrals not involving
6 0 hydrogen atoms
13 11 27 14 (IMPDIHEDRALH: involving
[ ]| hydrogen atoms)
END

(comes directly from .ifp file,
i.e. not system specific !)

TORSDIHEDRALTYPE
# NPTY: number of dihedral types

45

# CP: force const.,PD: cosine of the phase shift, NP: multiplicity
# cP PD NP :

L---1

# 3
4.18000 1.00000 3 )
4.69000 1.00000 3 o
5.44000 1.00000 3 i
5.92000 1.00000 3 \m

["'] 26, 28 _1

D HH /€E1m o1,

DIHEDRAL nE LA

# NPHI: number of dihedrals NOT involving H atoms in solute
28
# 1P, JP, KP, LP: atom sequence numbers

# of atoms forming a dihedral
# 1CP: dihedral type code
# 1P JP KP LP ICP
[ ] Torsional dihedrals not involving
- hydrogen atoms
(11 13 14 15 34 | (DIHEDRALH: involving
END hydrogen atoms)
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(comes directly from .ifp file,
LJPARAMETERS i.e. not system specific !)
# NRATT2: number of LJ interaction types = NRATT*(NRATT+1)/2
1485
# 1AC,JAC: integer (van der Waals) atom type code
# Cl2: r**(-12) term in nonbonded interactions
# C6: r**(-6) term in nonbonded interactions
# CS12: r**(-12) term in 1-4 nonbonded interactions
# CS6: r**(-6) term in 1-4 nonbonded interactions
#

IAC JAC C12 C6 CS12 CS6
1 1 1.000000e-06 2.261954e-03 7.414932e-07 2.261954e-03
[-..]
END
SOLUTEMOLECULES

# NSPM: number of separate molecules in solute block
# NSP[1...NSPM]: atom sequence number of last atom

# of the successive submolecules
H# NSPM NSP[l NSPM] These are just used for
T classification (or not used
1 71 at all). For use in temperature
END or/and pressure control, see
blocks TEMPERATUREGROUPS
and PRESSUREGROUPS
SOLVENTATOM
# NRAM: number of atoms per solvent molecule
3
# I: solvent atom sequence number
# 1ACS: integer (van der Waals) atom type code
# ANMS: atom name of solvent atom
# MASS: mass of solvent atom 37
#  CGS: charge of solvent atom 2
# 1 ANMS 1ACS MASS CGS HW1
1 OW 5 15.99940 -0.82000 0410
2 HwW1 21 1.00800 0.41000
3 HwW2 21 1.00800 0.41000
END 0 —HWZ
SOLVENTCONSTR .[}r 0 0.410
# NCONS: number of constraints
3

# 1CONS, JCONS: atom sequence numbers forming constraint
#  CONS constraint length

#I1CONS JCONS CONS
1 2 0.1000000
1 3 0.1000000
2 3 0.1632990
END
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Usage of md — the molecular dynamics
engine of GROMOS

leia:~> md

# topology data

@topo filename
# coordinates

[@conf filenamg
# Input parameter
@input filename

# output final coordinates
@fin filename

# output coordinates trajectory
@trc filename

# output energy trajectory

# Qtre filename

# position restraints specification # input files
# @posresspec Tilename # output files

anfiguration

TITLE

Solvating ../coord/peptide.cnf in spc.cnf

Box dimensions (cubic) were calculated from maximum
solute atom-atom distance (nhot rotated):

1.41551 between atoms 1:42 and 1:65 mﬁﬁggfﬁ#ﬂigﬁ;?%e
Added 865 solvent molecules and will be ignored !
END
POSITION
1 VAL H1 1 -0.344305342 -0.135185949 0.124481007
1 VAL H2 2 -0.324119246  -0.007525893 0.024623263
L---1
1 sOLvV Oow 72  -1.375019730 -0.116880247 -1.118649662
1 SOLV Hw1 73  -1.349965361 -0.020069275  -1.119966747
1 SOLV Hw2 74  -1.331102156  -0.161598224  -1.040718404
L---1
865 SOLV Hw2 2666  -0.263513130 0.913675353  -1.521003964
END
GENBOX
1

3.015511503 3.015511503 3.015511503
90.000000000  90.000000000  90.000000000
0.000000000 0.000000000 0.000000000
0.000000000 0.000000000 0.000000000

END Initial velocities are also
needed for a continuation run !

38



Usage of md — the molecular dynamics
engine of GROMOS

leia:~> md

# topology data

@topo filename
# coordinates

@conf filename
7 1nput parameter
@input filenamg
# output final coordinates
@fin filename

# output coordinates trajectory
@trc filename

# output energy trajectory

# Qtre filename

# position restraints specification # input files
# @posresspec Tilename # output files

Overview over the GROMOS input file

SYSTEM Number of solute molecules
# [NPM|[NSM
111865 ————— 1 Number of solvent molecules
END
INITIALISE Read coordinates and velocities from configuration file
# Default values forNTI values: O
# NTIVEL SHK NTINHT NTINHB
E 0 0
# NTISHI NTIRTC NTTCOM
1 0 0 initial SHAKE for coordinates and velocities
# NTISTI
0 random number seed
# 1G TE
210185 |—29'8'|<—{ Temperature to generate initial velocities (if generated!) ‘
END
STEP - -
#W Number Of simulation Steps
e 30000 | O'qJ_ 0'002!‘\ Time at simulation start
(it e s ust o v Integration time step

for continuation runs)
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MULTIBATH

# ALGORITHM:

# 0: use weak-coupling scheme

# 1: use Nose Hoover scheme

# 2: use Nose Hoover chains scheme

# ALGOR:_)THM Temperature and coupling time

# NBATHS Solute internal, rotational, and com translational
motion coupled to one bath

# - NBATHS)

(Baths 1and 2) | Solvent coupled to a different bath

# DOFSET: number of distpnguishable sets Of)/d;V
2
# LAST(1 ... DOFSET), COMBATH(1 ... DOFSET), RBATH(1 ... DOFSET)

[71 1 1] [2666 2 2|

END (solute coupled to bath 1) (solvent coupled to bath 2)
BOUNDCOND
# NTB NDFMIN B

‘* 0 | Rectangular, periodic boundary condition ‘
END
COMTRANSROT
# NSCM

‘* ﬂ Remove com motion every NSCM steps ‘
END
WRITETRAJ Write position trajectory every NTWX steps
# NTWX NTWS NTWE NTWG NTWB
£ 0 0 ° . Write energy trajectory every NTWE steps
PRINTOUT

# NTPR: print out energies, etc. every NTPR steps
# NTPP: =1 perform dihedral angle transition monitoring
# NTPR NTPP

100 |« 0 Print energies etc. to output file every NTPR steps

END—
CONSTRAINT
# NTC

3 ||< Constrain all bonds
# NTCP NTCPO(1)

1 0.0001
# NTCS NTCSO(1)

1 0.0001
END
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Do not calculate bond forces (constraints).

FORCE
# NTF(1) NT NTF(3) NTF(4) NTF(5) NTF(6)
# |bonds angles improper dihedral electrostatic vdwW

1

0 1 1 1 1
# NEGR[NRE(I) NRE(Z) ... NRE(NEGR)

4 69 70 71 2668
END —

Definition of 4 energy groups:
Energies between these groups will

PRESSURESCALE be calculated and will appear in the
# COUPLE SCALE COMP TAUP  VIRIAL energy trajectory.
2 1 0.000917 0.5 2
# SEMIANISOTROPIC COUPLINGS(X, Y, Z ) -
1 1 1 ( ) Use fast grid pairlist
# PRESO(1...3,1...3) | algorithm to _search fo_r pairs
0.06102 0 0 (pressure in of atom that interact via
) GROMOS units!) nonbonded interactions
0 0.06102 0 :
0 0 0.06102 —
END update pairlist
every 5 step
PAIRLIST
# algorith RCUTP RCUTL SIZE TYPE
1 [0.8 1.4 | 0.4 0
END \
Do not include pairs that are further apart than these cutoff distances
NONBONDED

Beyond this cutoff replace electrostatic

# NLRELE
1 interactions by a static reaction field.
# APPAK RCRF F

0 | 1.4 | 66.6 |« Dielectric permittivity of reaction field.
# NSHAPE ASHAPE N TOLA2  EPSLS
3 1.4 2 1le-10 0
# NKX NKY NKZ  KCUT
10 10 10 100
# NGX NGY NGZ NASORD NFDORD NALIAS NSPORD
32 32 32 3 2 3 4
# NQEVAL FACCUR NRDGRD NWRGRD
100000 1.6 0 0
# NLRLJ SLVDNS
0 33.3

END

There are many more input blocks! E.

POSITIONRES
# NTPOR NTPO

Do position restraining

1 0 r§661+__

Force constant used in restraining

END
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Most basic usage of the program

leia:~> md @topo topo @conf cont @input input \
@Fin fin @trc trc @tre tre > out

The gromos++ program mkscript generates shell scripts for
running more complicated simulations. E.g. minimization
followed by thermalization and equilibration (see tutorial).

Documentation will be accessible to you as
pdf in the computer room D267.4
GROMOS manual (check in the «computer setup»
document)

The GROMOS Software for (Bio)Molecular
Simulation

I
A

Volume 1: About the GROMOS package: Overview

June 14, 2013

Contents

Chapter 1. What is GROMOS 1-1
Chapter 2. The GROMOS force fields 1-3
Chapter 3. GROMOS Functionalities and Documentation 1-5
Chapter 4. Examples of application ¢ 1-7
4.1. Analysis: Calculation of Dielect: 1-7

2. S tion of Polypeptide 1-8

3. Propert 1-0

N 1.0

1-9

1-11

1-11

1.8, Computer Time Required for MD Simulation 1-11
Chapter 5. Limitations of GROMOS 1-17
Bibliography &
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Documentation

GROMOS manual

The current GROMOS manual and user guide exists of 9 volumes:

The GROMOS Software for (Bio)Molecular Simulation

About the GROMOS Package: Overview

Algorithms and Formulae for Modelling of Molecular Systems
Force Field and Topology Data Set

Data Structures and Formats

Program Library Manual

Volume 1:
Volume 2:
Volume 3:
Volume 4:
Volume 5:

Volume 6:
Volume 7:
Volume 8:

Technical Details
Tutorial with Examples
Installation Guide

Volume 9: Index

will be accessible to you as
web-document in the computer room
D267.4 (check in the «computer setup»
document)

Documentation

doxygen html-based documentation

Mains Bage | Helated Bages | Mamesgaces | Classes | Files
GROMOSXX MD++

0.3.0

Groningen Molecular Simulation : GROMOSXX MD++

%

The MD-simulation
o md_mpl .
o repex engine

» Available contrb programs

6 fepana

o tabulate_spe

© rep_rewrite

o split_frame

o mg_gsl

= File formats:

& input file format 4—

© topological files
» porturbation topology format < == = =
® friction epecification format
= BAS-LEUS format

= restraint specifciation
» dihedral restraints format
= distonce restroints formel. < == = -
» J-value restraints specilication format
» position restraints format -
» XRAYRES block
® LE-US formal
= LE-US database format

Dacumentation

MD program

* Available programs
= md

Modules

* algorithm

» simulation

« topology

« configuration
« Interaction

» math

=io

= wtil

» check

Installation

= Installation instructions
SUN wabaccase

» SVN server

Bug reports
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Documentation

doxygen html-based documentation

| Main page | Related Pages | Modules | Namespaces | Classes | files | pirectories

Gromos++
0.3.1

Groningen Molecular Simulation Analysis : Gromos++

Documentation

Programs

® available  r—
# contrib programs

The setup and
analysis package

Modules

* gromos
* gcore

* gmath
* gio

* bound
* fit

* args

* utils

Installation

+ installation instructions

Generated on Mon Nov 19 18:55:21 2012 for gromos++ by doxvqe 1.63

Documentation

Example: analysis program “hbond”

hbond <—

Author:
mk

Date:
9-8-2006

Program hbond monitors the occurrence of hydrogen bonds over a molecular trajectory file, It can monitor conventional hydrogen bonds, as well as three-centered hydrogen bonds
through geometric criteria.

A hydrogen bond is considered to be present if the distance between a hydrogen atom, H, connected to a donor atom D, is within a user specified distance (typically 0.25 nm) from an
acceptor atom A and the D-H-A angle is larger than another user specified value (typically 135 degrees), Occurrences of three centered hydrogen bonds are defined for a donor atom 0,
hydrogen atom H and two acceptor atoms Al and A2 if (i) the distances H-A1 and H-A2 are within a user specified value (typically 0.27 nm); (i) the angles D-H-A1 and D-H-A2 are

> larger than a sacond user specified value (typically 90 degrees); (i) the sum of the angles D-H-A1, D-H-A2 and A1-H-AZ is larger than a third user specified value (typically 340

degrees); and (Iv) the dihedral angle defined by the planes through the atoms 0-A1-A2 and H-A1-AZ2 ts smaller than a fourth user specified value (typically 15 degrees).

The user can specify two groups of atoms (A and B) between which the hydrogen bonds are to be monitored, If hydrogen bond donors and acceptors are nnt explicmy specified, these
can be filtered based on their masses, as can be specified in a so-called "massfile®, If a reference structure is given, only hydrogen bonds that are ob in tha will
be monitored.

The program calculates average angles, distances and occurrences for all observed hydrogen bonds over the trajectories and prints out a time series of the observed hydrogen bands.

arguments: Q—

@topo <molecular topology file>
@pbe <boundary type>
[Btime <time and dt=>]
@DonorAtomsA  <atoms:
@AcceptorAtomsA <atoms:
@DonorAtomsB  <aloms>
@AccoptorAtomsE <atoms >
@Hbparas «distance [nm] and angle; default: 0.25, 135>
[@threecentar <distances [nm]> <angles> <sum> <dihedralBgt];
[@ref <referance coordinates for native H-bonds> |
[@massiile <massfile>]
itraj <trajectory files>
Example: — <—
hbond
Btspo wx. top
Spbc £
Wtime o1
BlonorAtomsh 1:a
BAcceptorAtomsh  lia
dpsnosAtcasn Bia
@AcceptorAtomsE  Bia
PHbpar, 0.25 135
threacentar 0.27 90 340 15
Imassfile ../data/hbond.sassfile
dref sxzef.coo
fcraj x.tT
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That’s all folks

— | wish you a happy GROMOS start next week!

The best way to learn swimming is...
...to swim !
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019

Lecture 529-0004-00 Tuesday 9:45 a.m. — 11:30 p.M. [ EcTURE 2 (WEEKS 2+3).
www.csms.ethz.ch/education/CSCBP HCI D2 Force fields
* Four basic choices defining a molecular model

degrees of freedom

@ = ATOMS

@%

® 9%

l boundary conditions
t . MOLECULAR
&' MODEL
Hamiltonian operator system size and shape,
potential energy function ) I temperature and pressure,
7 7 ﬁ .%N experimentally-derived
® 3% @ @9 information

©e 04 9905 number of configurations,
A &? properties of the configuration
3¢ ® sequence (searching, sampling,
or simulating)

generation of configurations
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* Force field

e Force fields are the machinery
of classical molecular simulations

e Given a set of elementary particles (atoms, atom groups, 6oarse-grained beads,...)
assumed to behave classically, a force field is the potential-energy function, i.e.
is the function returning the potential energy of the system in a given configuration

\
3N-dimensional 3D coordinates — confiquration roughly: minus V tells
coordinate vector of the N particles 9 how «happy» the system

is in this configuration

V(r) — V({r “ =1.2 N}) :>p_otentia|_energyo_fthe _system

in the given configuration

¢ E.g. united-atom pentane in water ( ® = CH, or CH;)
a® e, » 885 Qe ©g

@m@ &@‘%g;) ¢ %I?@

r-1 r2 r3
U \ configuration 1 U U
V(rl) V(r ) coordlnates momenta V(r3)
r V r)+ K Hamiltqnian )
« The classical Hamiltonian is a function H(r.p)= ( )p (p) funetion gamiioe
that gives the total energy of the system K(p)= z ' - Er']';s; later)

I
* Potential-energy function

e In all force fields, the potential energy function is represented as a sum of force-field terms

e Each force-field term has a given functional form and depends on

— one or more internal coordinates of the system - internal (generalized) coordinate:
. any function of the Cartesian
— parameters specific to the term coordinates of a all particles

(generally: of a small subset of atoms)

« A detailed (but tedious) way of writing this is &9 adistance, an angle, a dihedral angle...

number of terms
/ (there may easily be millions!)

due to pairwise atom-atom interactions
e.g. 10* atoms — ~0.5-108 pairs

Nterms ( (t )
n
V(r) - Z )\/ (q l’qa2’ a2’
a=1 \ |\
order of term a typeof term @ internal coordinates parameters
(number of particles involved)  (functional form) (derived from ) (belong to force-field definition)

— E.g. term a corresponding to a harmonic bond between atoms 4 and 5 in a molecule

actual distance 4-5
45 in given configuration r

. b
:‘\QQQ/—. (2)\/ (b)(b45’b4(1)5’kb ) (1/2)k (b45 ) bfs reference

distance (parameter)

2- body bono_led harmonlc spring k b harmonic force
(harmonlc form) constant (parameter)
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Categories of force-field terms

e Force-field terms belong to one of the three following categories

— physical terms / covalent : between atoms within the same molecule
that are close covalent neighbors, i.e. separated by 1, 2 or 3 bonds

here, the peculiarity of the covalent bonding must be taken into account

=the electron density between the nuclei
drives them to adopt specific bond
distances, angles, point geometries (e.g.
planar or tetrahedral) and torsional preferences

Example:
Glycerol triacetate

@® Reference atom

O Close covalent neighbors = quantum mechanics of covalent interactions

— physical terms / non-bonded: between atoms within different molecules
or atoms within the same molecule that are not close covalent neighbors,
i.e. separated by 3 or more bonds

here, we can consider a generic form of closed-shell interatomic interactions
(0
Example:

" = at these covalent distances, the interaction
Glycerol triacetate

between atoms within the same molecule is about
the same as if they were in different molecules

@ Reference atom
_ O 'S _(CH) . . _
O Non-bonded neighbors = quantum mechanics of closed-shell interactions

® O g

-~ . .
{_}Non-bonded third neighbors

=third neighbors are special: they are non-bonded
. o as well as covalent neighbors (discussed later)
— unphysical (artificial) terms

they do not correspond to interactions found in nature, and are used for various “engineering” purposes
in simulations — when including such terms, the dynamics will be biased (non-natural)

* Physical force-field terms

X, @
Covalent N v Non-bonded
terms ' ~ i~ 9 = terms

R O

D !
N ™y ~-
’

. system except
stretchlng close covalent neighbors

bond-angle K.

@ bending

_ C)
torsional ‘ electrostatic

oy
dihedral © ‘@ Interactions
L)
©

improper
dihedral
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*

TYPE
b bond
a stretching
2 bond-angle
) “ bending
@ torsional
< dihedral
out-of-plane
(or tetrahedron)
distortion

e.g. improper dihedral

covalent
cross-terms

TYPE

9.

electrostatic
® I, (all atom pairs)

12,a° ~6,a

van der Waals
(all atom pairs)

J) Qa H-bond
\®

Covalent force-field terms

GENERAL FORM

GNP (b ;)

EXAMPLE

OO h° kD)

adTad o

=(1/2)k2(b, —h2)?

ON@ @ ;0° k")

OVIGI. -
@,;..) =(1/2)k’(0, —6°Y’
(4)\/(¢)((/)a;{”k5,n5a})
=Y "k¢(1+cos "5, cosn p,)

N (g ;.

ALERERE

o

SAVAC .
(63--) =Ki(E, — &)

various terms

GV (D, 110, . 0,5

Non-bonded force-field terms

GENERAL FORM EXAMPLE

(2)\/ (el)(ra . qa , qa)
= (47rTO)“ q,9,r,"

V(1 5q,,q,..)

permittivity of vacuum
(physical constant)

(2)\/(VdW) .

(2 (VdW) . (ra’C a’C a)

VO () R
= lZ,ara - G,ara

e.g. here,
a Lennard-Jones
potential

Gorty ™ (r [0 ;..)

various forms
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Unphysical force-field terms

TYPE GENERAL FORM EXAMPLE
position OVICHY IR (D (PO (| -k Pr
Ia restraint v (Ia"") . ")2
=(1/2)k"1”
distance OVICO YRR GV (d ;d°, ke
%’da restraint v (da"")

®Q, - Ja 3J-va|ge
restraint

=(1/2)k;’(d, —d7)’ fll(da —d;)

e.g. half-harmonic

(attractive) restraints

(4)\/(jf)(J . )

ade

(Karplus equation)

Used e.g. to:

A protein was (roughly) solvated in a water box

— equilibrate using MD with position restraints

to the atom coordinates in the X-ray structure
(avoid structural distortions)

apply perturbation (e.g. external field)
restrain/confine system to prevent conformational drifts

bias/enhance sampling or/and force processes to occur
enforce (on average) agreement with experimental data

Heaviside
function

(4)\/(ir)(J -J° kjf)

a?’

=(1/2)k)(3,-32)

Remember from lecture 1:
one key advantage of simulation

absolute freedom
(in the procedure)

Use of unphysical force-field terms

AP PSS P

L 4 -
] e ¢
-~
v

A
OV VIYIVE A

[ ] ‘1’ *
E LR 0 X X
A
AR R R
AL AR
R A % )
| ¢ v wve
L

o
14
ad
*q
(24
ad

wd
ad
ad
ag
4¢
L
L

<
.‘4
¢'¢
< C‘
3
4 “F

of ¢ ¢

LA

¢
<
<«

od
s
e
é

8
ad

. «*
i ) “
¢ 28 Y

ag
ag
wd
L1
ag

Water is simulated in the presence of a strong
electric field (5 V nm-, along the z-axis);
this is essentially impossible to achieve

experimentally (electrical double-layer
at electrodes!) — it freezes to hexagonal ice!

A ligand is artificially «pulled» into
the active-site of a protein using
a potential decreasing a «topological»
distance (distancefield)

A protein is simulated with distance
restraints between close protons pairs
(based on NOE cross-peak intensities)

—the generated ensemble

The sampling of backbone conformations in
a protein loop is enhanced by applying a
potential that «flattens» the torsional
barriers in the loop

is compatible with the NOE data

A protein is artificially unfolded by
application of a potential that
forces its radius of gyration
to increase

—We will use (and abuse) of these from Lecture 6 onward; but for now, let us look at physical terms!
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Approximations behind the force-field description

e The microscopic world is only accurately described by quantum mechanics.
Why is the force-field description a reasonable approximation ?

Approximation 1 : simplified particle model (nuclei + electrons + electromagnetic interactions)

: N o 7
N elocirons i\\\}k\ - {105y, = in

time-dependent Schrédinger equation
Approximation 2 : time-independent Hamiltonian [time-independent Schrodinger equation]
= constant environment, no interaction with light
Approximation 3 : isolated system / pure-electrostatic interaction [form of the Hamiltonian]
= no external field, no magnetic interactions in system, no relativistic effects

Approximation 4 : decoupling of electronic and nuclear motion (Born-Oppenheimer)

Electronic problem: ’ N Nuclear problem:

nuclei are quasi motionless electrons relax instantaneously
\

\\\\\\\\\\\\\ e T

A — solutions for fora T — solutions for
H W (15v) =V, (V)W (1;V) electronicenergy (02 "H W, (v) = EW, (V) rotationaiivibrationai
levels {V,(V)} energies {E,}
Approximation 5’ : electronic ground state = set of solutions for the electronic/
= no electronic excitation rotational/vibrational energy levels E,,
= grpunpl-state mean elec'tronic energy Vg(v) (prime: approximations required
(kinetic e and Coulombic n-e and e-e) for classical simulations)

Approximation 6’: Classical nuclei approximation

e At this point, nuclei are particles moving quantum-mechanically under the influence of
a potential energy function V(v) including

— the mean effect of the electrons in the ground electronic state
— the internuclear repulsion

A A LU I
Y (v)=E¥ (v) H, =—§Zn—va +V(v)
time-independentSchrbdir_lger ’ M M 7 7
operator with equation for the nuclei V(V):Ve(V)+ZZ a™p

energy as eigenvalue

spin becomes
a pra  lgp /irrelevant

Assumption 6’ : nuclei behave as classical particles, named atoms (notation: v— r)
Cartesian coordinates

I
—aHg’ D__ —aHg’ P b win HELp)=V()+K(p)
r / ,
classical Hamiltonian equzft)ions Cartesialn momentai.e. P :—G[K(r) —V(r)]

Lagrangian
and

function W'thl of motion (here, Cartesian) or

energy as value —> can be generalized to
arbitrary coordinate
systems (see later)

= total energy of the system

Restrictions (thermodynamics and dynamics):
. e no electronic processes (#chemical reactions)
-F(r)=-p  and Mip=r . heavy-enough nuclei (#protons)
classical Newtonian « low-frequency oscillations (#bond stretching)
equations of motion « high-enough temperature (classical stat. mech.)

Equivalent to

51



Approximation 7’: Analytical function approximation

e The dynamics is fully determined if we know the potential-energy function V(r)

—

In general, this function would be a very complex (non-analytical) function of the atomic
coordinates, obtained by solving the electronic time-independent Schrédinger equation
(electronic ground state) for different nuclear configurations
Assumption 7’ : the classical potential energy function may be well approximated

by a simple analytical function, expressed as a sum of terms.

Nterms

V(r) = Z (na)\/(ta)(qa,lsqa.za---;sa,wSa,za'--)

a=1

Justification :
« chemical intuition (e.g. entities such as “bonds” exist)

e work on simple systems (e.g. vibrations in small molecules, real monoatomic gases)
o With good parameters, agreement with experiment may be reached

V(r) is then fully specified by:
e The functional form of the terms of type t,, (for all t,)
 The definition of the internal coordinate(s) involved in the terms of type t, (for all t,)

together with (for a given molecular system):
e The number of terms « of a given type t,, and for each term « of type t,,:

- The list of atoms involved in the definition of the corresponding internal coordinate(s)
- The parameters involved in the corresponding term

N belongs to the force-field definition belongs to the molecular topology
(hard-coded in the program) (stored in a file for a given system)
* Molecular topology file 2 5
1 3
E.g. united-atom isopentane .
type #terms atomi atomj atomk atom!| parameters (example)
bonds 4 1 2 bloz > klbz
2 3 by, ko,
3 4 b?,, k2,
3 5 be;, K3
bond angles 4 1 2 3 055, K
2 3 4 Oy Kz,
2 3 5 05,5, K,
4 3 5 Opss> 4035
torsional dihedral 2 1 2 3 4 {"k%s "6}
. . 1 2 3 5 {nklg%’:‘ 1235} N(N 1)/2
improper dlhedral 1 2 3 4 5 Eiaso Kaus T00 MANY
non-bonded pairs 10 1 2 0,9,,C1515,Co 1
1 3 qlq3ﬂclz,l3’C6Al3
atoms #atoms atom charge vdW-code
5 1 +0.1 1 [exclusions, not included,
2 -0.1 2 31 neighbours] generated on the
3 -0.2 3 flight from
4 +0.1 1 atomic parameters
5 +0.1 1
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Molecular topology file

E.g. the protein hen-egg-white lysozyme, within GROMOS96

129 residues

1321 atoms type #terms #parameters
bonds 1345 2690 [16 atom types,
bond angles 1970 3940 S parameters pertype
torsional dihedrals 698 2094 —3:(16:17)/2
improper dihedrals 687 1374 /
non-bonded pairs 871860 2615580 (or 408)
total: 876560 2625678 (or 10506)

e

Without further simplifications,
defining so many parameters is
a mission impossible ... 3

Approximation 8’: Transferability
One needs to reduce the number of parameters to be defined and calibrated...

Assumption 8’ : a force-field term describing the interaction of a given set of atoms
in a given chemical environment can be used for any set of the
same atoms in a similar chemical environment

E.g. carbonyl bond-stretching parameters:

O same parameters... o 0 0 0
g =
(o} o} o o
—_— é A& L -
Iimit': . . .
Tnion | —e L
- required
—_— A

accuracy l
]
¥ I I .

OH HO
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*

Atom type:

“particles” considered by the the force field,
corresponding to a specific (united-)atom
in a specific chemical environment.

+

Combination rule:

rule determining the value of a force-field
parameter given the atom types of the
atoms involved.

or...

Topology building block:

List of atom types with a defined connectivity
(+parameters for terms where no
combination rule is used), characterizing

Using transferability Example:
type code description
C 1 éiiphatic carbon
CR 2 aromatic carbon
(6]0) 3 carbonyl carbon
I OH 4 H&/droxyl oxygen
(0] 5 ether oxygen
ocC 6 carbonyl oxygen
typei typej bond parameters
o - A
‘a‘)\/ 3 6 fco.oc)> k(C0,0C)

=(Cg; XCs.j )", Clz,ij =(C,; XCIZ,j)l/z

( Cs,ij
\ typei atomic parameters
2
% 3 C12,(CO) > C6,(CO)
6
C12,(OC) > CG,(OC)
L
()0
- [3]H (#) : atom type
®) @ [#]: bond type
@@ @y M (if no combination rule)

a molecule or a monomer in a polymer.

Example: The GROMOS 54A7 atom types

integer atom code atom type deseription 35 CMet CH3-group in methanol (solvent)
TACIN] EI\ 36 OMet oxygen in methanol (solvent)
1 0 carbonyl oxygen (C=0) a7 NA+ sodium (charge 1+)
2 oM earboxyl oxygen (CO™) a8 CL- chloride {charge 1-)
4 OA | OXYGEN | hvdroxyl or sugar oxygen 30 CChl carbon in chloroform (solvent )
4 OE types other or ester oxygen 10 CLChi chloride in chloroform (solvent)
5 ow waler oxygen 11 HChl hydrogen in chloroform (solvent)
6 N peptide nitrogen (NH) 42 SDmso sulphur in DMSO (solvent)
T NT terminal nitrogen (NH2) 13 CDmso CH3-group in DMSO (solvent)
8 NL INITROGEN | terminal nitrogen (NH3) T ODmso oxygen in DMSO (solvent)
9 NR types | aromatic nitrogen 15 CCH carbon in carbontetrachloride (solvent)
10 NZ Arg NH (NH2) 16 CLCH eliloride in earbonteteachloride (solvent)
11 NE Arg NE (NH) 47 FTre fuor in triffuorethanol
12 C hare earbon 18 CTie carbon in trifluerethanol
13 CHO bare spd carbon, 4 bound heavy atoms 19 CHTfe CH2-group in trifluorethanol
14 CH1| (UNITED) | aliphatic or sugar CH-group 50 ”1_.[" axygen _i“ triffuorethanol
5 CH2| CARBON | aliphatic or sugar CH2-group ol uren tihod i iron
16 Cii3|_types [ aliphatic Chid-group - oo YRR 2
59 NUrea nitrogen in irea
17 CH4A methane 4 CHip positively charged methyl
18 CH2 aliphatic or sugar CH2 group in ring
19 C aromatic CH-group
20 HC |HYDROGEN hydrogen bound to carbon | GROMOS manual Vol 3 (table 3.21) / file 54A7.ifp |
pi | H types hydrogen not bound to carbon
2 DUM dummy atom
:: i‘.”‘ n“:::‘:lhlm — Uses united atoms CH,, CH,, CH;, CH,
5 o S (a2 « treated as single particles
% L'\) '-"1-'1“-'-‘ . o reduces the number of solute atoms by
w N24 zine (charge 24 . . .
28 MG2+ magnesinm (charge 2+) ~50% (prOteInS) or ~30% (nUCIeIC aCIdS)
2 CA2 calcium (charge 2+) [but: most expensive is generally the solvent!]
an P, 51 phosphor or silicon . . .
= iR pr o removes high-frequency C-H bond vibration
32 P fiuor (non-ionic) ° NOT applled to al’omatIC CH
33 CL chlorine (non-ionic)
M BR hromine (non-ionic) and pOIa‘r XH (X=N’O’S"")
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>6 atoms refer to
the next residue

Example: The GROMOS 54A7 building block for alanine

(or end-cap) in a protein

2
H
2
32 18
N.2t
/ 31 ;
13
4=

Ficure 4.2, ALA bonded parameters.

GROMOS manual Vol 4/

file 54A7.mtb
2 21 Gzl
I 0.310 0450
11 shl

N o
/o.uh.‘{_ fﬂ%.—tiN

= 0.000

I

~

16
0.000

FicURrE 4.1. ALA non-honded parameters.

Combination rule for van der Waals interaction

IAC; , IAC; — table (in ifp file) — interaction parameters
for ij (a geometric-mean formula is implicitly used to
construct the table, but not explicitly enforced)

*

I 1 K |Tvpe I J K L|Tvpe

11 2 |2 20101 3]

-1 1 3 |31 11 3 5|43 Table 4.4:

2 1 3|18 11 3 5|4 Dihedral angles

1 3 4 113 13 5 742

1 3 5 113 1 3 5 T7]45

1 3 5 |13

3 5 6 |30 L J .|\' L | Type Table 4.5:

3 5 7|10 -1 3 211 Improper
Table 4.2: 6 5 7 |33 31 5 42 dihedral-angles

Bonds s a1 7 6
Table 4.3:

negative atoms refer to
the previous residue
(or end-cap) in a protein

Bond-angles

Types — table (in ifp file).
No explicit combination rules

Seq. Name JIAC| Mass | Charge | Exclusions  for covalent terms (they are
=1 0123 still used implicitly, but not
0 I explicitly enforced)
1 N (] 14 1-0.31000) 2345
2 H 21 1| o3t000] 3 Only a subset of the possible
3 CA 11 3l ool 1567 torsional and improper dihedrals
| cB 16 51 o.00000] 5 is considered (difficult without a
5 I ) 12 | 0.45000 building block approach...)
G (8] 1 16 | -0.45000 one out of
TABLE 4.1. toms of building, block ALA. ”'Ziehzzf;f'e 74 N

Combination rule for
electrostatic interaction
g;, q; — q,q; (i.e. aformula)

Overview of a potential-enerqy calculation

. =in GROMOS

biomos | Software company System of interest | BLA
- atoms or )
» Parameter files monomers: experiment
I identities or model building
54A7.mtb and covalent
connectivity
\ 4 \ 4
Simulation Molecular System
MD++ i BLA.top g . BLA.cnf
program topology file configuration
Functional form and List of force-field terms, Coordinates
definition of internal atoms involved in the of all atoms
coordinates associated internal coordinates,
and corresponding parameters
N p gp v

—~

Vi(r)
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Main force-fields for condensed-phase biomolecular simulations

¢ CHARMM: Chemistry at HARvard Molecular Mechanics (www.charmm.org)

— developed since the early 80's under the leadership of Martin Karplus, Harvard

e AMBER: Assisted Model Building with Energy Refinement (amber.scripps.edu)
— Developed since the early 80's under the leadership of Peter Kollman, UCSF

e OPLS: Optimized Potentials for Liquid Simulation (zarbi.chem.yale.edu)

— Developed since mid 80's under the leadership of William Jorgensen, Yale

¢ GROMOS: GROningen MOlecular Simulation (www.gromos.net)

— Developed since the early 80's under the leadership of Wilfred van Gunsteren, ETHZ

— Do not confuse with GROMACS (simulation program only, no own force-field)

e TraPPE: Transferable Potentials for Phase Equilibria
(http://chem-siepmann.oit.umn.edu/siepmann/trappe)

— Developed since 1998 under the leadership of J. llja Siepmann, Uni Minnesota

BUT: don’t ask which one is the best — it is very difficult to compare
force-fields in a fair manner (what system, what conditions?)

Overview of the GROMOS development

\ |

PROGRAM FORCE FIELD REFERENCES
1984 26C1 HE84.1 (VA82.1)
1987 PROMDS7 (Fortran77) VA87.3
1987 37C4 VA87.3
1996 PROMDS6 (Fortran 77) VA96.1, SC99.1 (SC95.4, BO00.8)
1996 43A1 VA96.1, DA98.3, VA98.3
2000 43A2 $C00.1
2001 45A3 SC01.4 (SO04.1)
2005 45A4 LI05.1 (CH03.1, BO04.2, SO05.1)
2004 53A5 0004.1
2004 53A6 0004.1 (0005.1)
2005 GROMOSO05 (C++) CHo05.1
2011 56A6@CARBO HA11.1
2011 53A6@O0XY HO11.1
2012 53A6@OXY+N HO12.1
2012 53A6@O0XY+D FU12.1
2011 GROMOS11/MD++ (C++) SC12.1, RI11.2, SC11.3, EI1.1,
KU12.1 (SC10.1)
2011 54A7 SC11.1 (P010.7, HU11.2)
2012 54A8 RE12.2 (RE13.1)
2016 2016H66 HO16.1
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HE84.1
VA82.1
VA87.3
VA96.1
$C99.1
SC95.4
B000.8
VA96.1
DA98.3
VA98.3
$C00.1
SCo1.4
S004.1

L105.1
CHO03.1

BO04.2

$005.1
0004.1

0005.1
CHO05.1
HA11.1

HO11.1
HO12.1

FU12.1
SC12.1
RI11.2

SC11.3
EN11.1

KU12.1
§C10.1

SC11.1
P0O10.7
HU11.2
RE12.2
RE13.1

HO16.1

Overview of the GROMOS development

: [Hermans/Postma] A consistent empirical potential for water-protein interactions.
: [van Gunsteren/Karplus] Effect of constraints on the dynamics of macromolecules.
: [van Gunsteren/Berendsen] (book) Groningen molecular simulation (GROMOS) library manual.
: [van Gunsteren/Tironi] (book) Biomolecular simulation: The GROMOS96 manual and user guide.
: [Scott/vanGunsteren] The GROMOS biomolecular simulation program package.
: [Scott/vanGunsteren] NO TITLE IN RECORD
: [Bonvin/vanGunsteren] The GROMOS96 benchmarks for molecular simulation.
: [van Gunsteren/Tironi] (book) Biomolecular simulation: The GROMOS96 manual and user guide.
: [Daural/vanGunsteren] Parametrization of aliphatic CHn united atoms of GROMOS96 force field.
: [van Gunsteren/Mark] NO TITLE IN RECORD
: [Schuler/vanGunsteren] On the choice of dihedral angle potential energy functions for n-alkanes.
: [Schuler/vanGunsteren] An improved GROMOS96 force field for aliphatic hydrocarbons in the condensed phase.
: [Soares/vanGunsteren] Validation of the GROMOS force-field par ter set 45A3 against nuclear magnetic resonance data
of hen egg lysozyme.
: [Lins/Hunenberger] A new GROMOS force field for hexopyranose-based carbohydrates.
: [Chandrasekhar/vanGunsteren] A consistent potential energy parameter set for lipids: dipalmitoylphosphatidylcholine as
a benchmark of the GROMOS96 45A3 force field.
: [Borjesson/Hunenberger] pH-dependent stability of a decalysine alpha-helix studied by
simulations at constant pH.
: [Soares/vanGunsteren] An improved nucleic-acid parameter set for the GROMOS force field.
: [Oostenbrink/vanGi en] A bi lecular force field based on the free enthalpy of hydration and solvation: The GROMOS
force-field parameter sets 53A5 and 53A6.
: [Oostenbrink/vanGunsteren] Validation of the 53A6 GROMOS force field.
: [Christen/vanGunsteren] The GROMOS software for biomolecular simulation: GROMOS05.
: [Hansen/Hunenberger] A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for the relative free
energies of ring conformers, anomers, epimers, hydroxymethyl rotamers and glycosidic linkage conformers.
: [Horta/Hunenberger] New interaction parameters for oxygen compounds in the GROMOS force field: Improved pure-liquid and
solvation properties for alcohols, ethers, aldehydes, ketones, carboxylic acids and esters.
: [Horta/Hunenberger] Reoptimized interaction parameters for the peptide-backbone model compound N-methylacetamide in
the GROMOS force field: Influence on the folding properties of two beta-peptides in methanol.
: [Fuchs/Horta] A GROMOS parameter set for vicinal diether functions: propertiespolyethyleneoxide and polyethyleneglycol.
: [Schmid/vanGunsteren] Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation.
: [Riniker/lvanGunsteren] Calculation of relative free energies for ligand-protein binding, solvation and conformational transitions
using the GROMOS biomolecular simulation software.
: [Schmid/vanGunsteren] Biomolecular structure refinement using the GROMOS simulation software.
: [Eichenberger/vanGunsteren] The GROMOS++ software for the analysis of biomolecular simulation trajectories.
: [Kunz/vanGunsteren] New functionalities in the GROMOS bi lecular simulation sof e.
: [Schmid/{vanGunsteren}] A GPU solvent-solvent interaction calculation lerator for bi
the GROMOS software.
: [Schmid/vanGunsteren] Definition and testing of the GROMOS force-field versions 54A7 and 54B7.
: [Poger/Mark] A new force field for simulating phosphatidylcholine bilayers.
: [Huang/vanGunsteren] Validation of the GROMOS 54A7 force field with respect to beta-peptide folding.
: [Reif/Oostenbrink] New interaction parameters for charged amino acid side chains in the GROMOS force field.
: [Reif/Oostenbrink] Testing of the GROMOS force-field parameter set 54A8: Structural
properties of electrolyte solutions, lipid bilayers, and proteins.
: [Horta/Hunenberger] A GROMOS-compatible force field for small organic molecules in the condensed phase:
The 2016H66 parameter set.

licit-solvent mol dynamics

simulations using

Covalent force-field terms

Two elephants kindly accepted to illustrate the
concept of "hard" degrees of freedom...
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Most

Covalent terms: Bond stretching
bond (2n 7 (b) .
Ifba stretching v (ba"”)
common form: harmonic (GROMOS87,AMBER,CHARMM,...)

GV b k)= (1/2)k> (b, —h?)?

a’a?d

reference bond length  harmonic force constant

e No first-order term (ensure a zero force when ba = bs )

e The reference bond length bg is not necessarily the
equilibrium bond length in any molecule (strain), e.g.

H
153 A 1.61A C(CHa);
“C(CHy);

C(CHy);

¢ No terms of higher order than two (reasonable for moderately
strained molecules and at low enough temperature)

e Does not allow for bond dissociation

e Bond lengths are "hard" degrees of freedom, i.e.
small deviations away from the reference length induce a large
energy increase compared to kT (average thermal energy per d.o.f.)

Covalent terms: Bond stretching

Example: harmonic reference lengths and force constants

from the MM2 force field

Bond h° [nm] kP [kJ-mol'-nm2]
C(sp?)-C(sp?) 0.1523 1.326-10°
C(sp®)-C(sp?) 0.1497 1.326-10°
C(sp2)=C(sp?) 0.1337 2.887-105
C(sp?)=0 0.1208 3.251-105
C(sp®)-N(sp?) 0.1438 1.536-10°
C(sp?)-N(sp2) [amide] 0.1345 3.008-105

¢ Follow chemical intuition

e A C(sp?®)-C(sp?) bond stretched by 0.01 nm already corresponds
to an energy increase by 13.3 kJ-mol! (~5 kT at 300K)
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Covalent terms: Bond stretching

Computationally cheaper form: quadratic in b2 (GROMOS96)

OO () h° kD)= (1/4)K°[b? = (b°)* T

« Avoids a square-root calculation ( b, not required )

e Saves very little in practice (covalent terms are cheap to compute)

Covalent terms: Bond stretching

More complex forms: Taylor expansion (MM2,MM3,CFF93,...)

(2N 7 (b) kO 2,b 31,b _ 21,b 042 31, b 013
Vb b2, %k, k. )=1/2)°k> (b, —=b%)? +(1/6)°k’ (b, —h%)’ +...
/ \
reference bond length force constants
* Still no first-order term (ensure a zero force when b, =)
e Terms up to order 3 (MM2; bad choice !) or 4 (MM3,CFF93)

e Better structural description of strained molecule, of vibrational
frequencies (includes anharmonicities) and of molecules at
elevated temperatures

o Useful if accurate structures, vibrational frequencies or heats

of formation in the gas phase are wanted
e Does not allow for bond dissociation (at least not on purpose, see MM2 !)
e Typically an unnecessary complication for condensed-phase

simulations of macromolecules, where bond description is not critical

- high frequency bond-stretching vibrations have little influence on the dynamics
- their statistical mechanics at the classical level is incorrect anyway
- low frequency motions (solvent relaxation, conformational changes)

have the largest impact on the thermodynamic properties

e More parameters to calibrate (compared to simple harmonic) !
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Covalent terms: Bond stretching

Dissociative forms: e.g. Morse function

v ® @ :b°, D ..)=D - —b°)—17°
(ba’ba’/ a’aﬁﬂ ) a[exp( aa(ba ba)) ]

well depth inverse well width

e Zero force when b, =b?

e Better structural description of strained molecule, of vibrational
frequencies (includes anharmonicities) and of molecules at
elevated temperatures

¢ Allows for bond dissociation, but seldom useful beyond diatomic
molecules, because of changes involved in other terms
H H

Cl- Cl ) C| Cl-
H- “H
H how to describe the changes H
in bond-angle terms ?

e Twice more parameters to calibrate (compared to simple harmonic) !
e Computationally expensive (exponential function)

e There are many other choice for three-parameter dissociative functions
(generally developed for diatomic molecules)

Covalent terms: Bond stretching

C-H bond, Morse function (D, =437.8kJ -mol~',a, =17.87nm™",b’=0.117 nm )
and alternatives with identical second (and higher) derivatives at the minimum

450 - T ; - :
400 (| | | —— Quadratic
| i ] Quadratic in b’
[ beh ' Cubic
=0 | 1 ( Quartic
{9 i Morse
300 | | |
5 || |
| ! | 100 v 7
£ | | i Iy
— 250 | 1 [ \ 1/
...;.. I' ! |I \‘\ f’i’
> 'il 1 .I BO '. 7
2200 | [
= & | - ST
w oL 0 { I i a0 \‘\
150 - h strained i
\ | E o molecules
100 \t
» high
, temperaturgs
50 - IgT TeG00K
it f E Yoe 010 012 [T (]
0 _\,\/I_ ) cubic_ —)disso_ciative (bad !5 : mm !
0.05 0.15 0.25 0.35 0.45

Interatomic distance [nm]
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* Covalent terms: Bond stretching

Use of bond-length constraints

¢ Bond distance is rigorously fixed to the reference vaue (ba = bS)
e.g. using SHAKE (equilibrium distance would be better - so-called soft constraints)

¢ No potential energy term / no kinetic energy contribution

e Justifications:
- bond-stretching vibrations are often uninteresting

- frequencies (>1000 cm-') are above kT (200 cm') and these vibrations
(which should be treated quantum-mechanically) are not excited at room
temperature (zero-point energy, no heat capacity/entropy contribution)
— a constraint may be a better approximation than a classical oscillator

in terms of statistical mechanics

V=i

classical limit QM ground state

QM

(energy levels,
probability)

- allows for longer timesteps in MD (typically: 0.5 fs — 2.0 fs)

- narrower frequency spectrum — better exchange of kinetic energy

* Covalent terms: Bond stretching

Combination rules (if applied):

e Generally in the form of tables:

atom type of i

atom type of j mm) parameters for bond i-j

Exclusions:

e Bonded atoms (first neighbors) are excluded from any
non-bonded interactions

- this interaction would be huge
- it should be encompassed in the bond-stretching term
- non-bonded (van der Waals) interactions are only appropriate
to account for non-bonding interactions (between closed-shell atoms)
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Covalent terms: Bond-angle bending

bond-angle N (0
)90‘ bending A )(‘9&;---)

Most common form: harmonic (GROMOS87,AMBER,CHARMM,...)

N O 00 K"y = (1/2)K (0, —6°)

reference bond angle  harmonic force constant

¢ Most considerations made for bond stretching also apply here...

¢ Bond angles are also "hard" degrees of freedom, i.e.
small deviations away from the reference angle induce a large
energy increase compared to kT (but they are less hard than bonds)

Covalent terms: Bond-angle bending

Example: harmonic reference angles and force constants
from the MM2 force field

Angle 0° [deg] k? [kJ-mol'-deg?]
C(sp3)-C(sp?)-C(sp3) 109.47 4.142:102
C(sp®)-C(sp3)-H 109.47 3.305:102
H-C(sp®)-H 109.47 2.929:102
C(sp?)-C(sp?)-C(sp?) 117.20 4.142-102
C(sp?)-C(sp?)=C(sp?) 121.40 5.063-102
C(sp®)-C(sp?)=0 122.50 4.226-102

¢ Follow chemical intuition

e A C(sp?®)-C(sp?)-C(sp?) bond-angle bent by 10 degrees already corresponds
to an energy increase by 4.1 kd-mol' (~1.5 kg T at 300K)
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Covalent terms: Bond-angle bending

Computationally cheaper form: harmonic in cos(d) (GROMOS96,DREIDING)

N D(0,:0,K!) = (12K, (cos 0, —cos 07

« Avoids an "arccos" calculation ( &, not required )
e Saves very little in practice (covalent terms are cheap to compute)

¢ A poor choice for molecules involving linear groups
(because the potential is "flat" at 0 and = - zero derivative) !!!

Cos X

Covalent terms: Bond-angle bending
More complex forms: Taylor expansion (MM2,MM3,CFF93,...)

VIO .00 21,60 31,0 _ 21,0 042 31,0 043
NG ;0°,°k?, k%) =1/2)°kI (0, -0°) +(1/6)°kI (0, —0°) +...
reference bond angle force constants
e Most considerations made for bond stretching also apply here...

e Terms up to order 4 (CFF93) or 6 (MM2,MM3)

e Better structural description of strained molecule, of vibrational
frequencies (includes anharmonicities) and of molecules at
elevated temperatures

e Useful if accurate structures, vibrational frequencies or heats
of formation in the gas phase are wanted

e Typically an unnecessary complication for condensed-phase
simulations of macromolecules, where bond-angle description is not critical
(+their statistical mechanics at the classical level is incorrect anyway)

e More parameters to calibrate (compared to simple harmonic) !
More complex forms: Urey-Bradley (e.g. CHARMM/DNA)
3N/ (6 21,6 1p,d 2p,d
()\/( )(goﬁda;e(g’dzg’ ka’ ka’ ka): 9 da
21,60 0\2 Iy, d 0 21,d 042
1/2)k (6, -6)) + 'k, (d, —d’)+ "k, (d, —d)
¢ Includes some anharmonicity and bond to bond-angle coupling

o lf Vis defilnedd within a constant and d is replaced by an effective
distance, K, can be omitted

63



* Covalent terms: Bond-angle bending

Use of bond-angle constraints
e The use of bond-angle constraints (in addition to bond-length constraints)
would seem reasonable

- frequencies (>700 cm™") are above kgT (200 cm-') and these vibrations
(which should be treated quantum-mechanically) are not excited at room
temperature (zero-point energy, no heat capacity / entropy contribution)
— a constraint may be a better approximation than a classical oscillator
i . . . . for fully-rigid
But: it is strongly disadvised in practice ! ex"e‘r’;o‘.’gcﬁ.ey;'g'
= dynamic (hindered dihedral-angle rotations around bonds) and thermodynamic
(incorrect dihedral-angle distributions related to metric tensor effects in MD) artifacts

Combination rules (if applied):
e Generally in the form of tables:

atom type of i
atom type of j Emp parameters for bond-angle i-j-k
atom type of k

Exclusions:

e Atoms separated by two covalent bonds (second neighbors) are excluded from any
non-bonded interactions (for similar reasons as first neighbors)

* Covalent terms: Torsional-dihedral rotation
torsional (4n 7 (9) .
P: dihedral V()

Geometrical definition
i, |

L/ g =ang(m,n) ¢, <0 0 >0

)

Note: dihedral(i,j,k,l)=dihedral(l,k,j,i)

Most common form: cosine series

(4n/ (@) NPy — N e
)\/ (¢a7{ kla})_z ka(l_cosn¢a)
force constants N —multiplicity
_ e 219 3o
= k’(l-cos@, )+ k’(1-cos2¢, )+ kI’(1-cos3 ¢, )+...
e Term is 2n-periodic and symmetric (minimum or maximum) at 0 and 2«

e In contrast to bonds and bond-angles, torsional dihedrals are "soft"
degrees of freedom, i.e. the whole range [0;2x[ is generally sampled
(for this reason, Taylor series expansion does not make sense here —
except if the dihedral angle is oscillating around some equilibrium value,
e.g. at very low temperature)
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Covalent terms: Torsional-dihedral rotation

C-C-C-C dihedral, CFF93 force field

0 56 & E a o

T 0 :
£ | |
2, Torsional energy
5 (=energy profile for butane, due to covalent
E F cross-terms and non-bonded interactions)
[1]
ﬁ _10 L 1 I 1 I
-180 =120 50 0 60 120 180
e 2-0 T T T T
8 12 I (I-cosp,) dominant ]
O Lo _ -1 ominant
05 ki =-4.05kJ -mol contribution |
0.0 1 1 1 1
-180 =120 50 0 60 120 180
o 20 T . .
SRR ,, meos2e,) ]
§ 10+ k(Z =0.042 kJ -mol i
L 05 .
0.0 1 1 | 1 |
-180 -120 60 120 180
20 T T .
".9-_. 15 .
810+ .
205 ¢ .
o.o 1 1 I
-180 -120 80 120 180
C-C-C-C dihedral angle @ [°]
* Covalent terms: Torsional-dihedral rotation

Definition variants for terms of multiplicity n:

n n n " " \
k?(1—cosng,) | 'k ="k cosng,  "k’[1+cos(5,)cos(Ngp,)] "k’[l+cos(ngp, —3,)]

"k’ >0,5,=0,7
e.g. with n=2

2
1
0
1
2

2
1
0
1
2

e These definitions are equivalent for most purposes (note that the
first form and three last forms have different energy offsets !)

cos(a—b)=cosacosb+sinasinb

"k >0,5, €[0,27]

.
1 _/ \ . : 0, €[0,27]
0 H

—>
e The last (two-parameter) form offers more flexibility (.. GROMOS11) 1™ ° ' ~

Different choices for the torsional-dihedral terms

e Terms retained A
— all terms up to n=3 (CFF93,MM3)
— generally one (evtl. 2) term with n<6 (GROMOS,CHARMM)

maximum at %
n

e Dihedral angles retained _ Torsional parameters are
— all possible (. 9possible > generally not transferable
: - dihedrals .
— only one from one force field to another !

e Third-neighbor non-bonded interactions

~G—
— excluded
— reduced (GROMOS) or scaled (OPLS) - )

— included
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Covalent terms: Torsional-dihedral rotation

Example: multiplicities, phase shifts and force constants
from the GROMOS96 force field

e.g. with n=2

”Izc‘f[l +cos(0,)cos(N,)]
"k’ >0,5,=0,7

2
1
0
1
2

Dihedral angle n "S5 [rad] "k [kJ-mol]

X-CH,-CH,-Y 3 0 5.86 R H
X-CH,-N(sp®)-Y 3 0 3.77 0 ;o
X-CH_-O(sp?)-Y 3 0 1.26 C ®C¥ N
X-C(sp?)-N(sp?)-Y [amide] 2 . 33.50 TN (ﬁ/\ ™
X- CH-N(sp?)-Y [peptide 9] 6 n 1.00 H g Amie
X- CH-C(sp?)-Y [peptide w] 6 0 1.00

¢ Barrier height is 2"k (generally small - except planar amide group)
— multiple rotamers are generally populated

* Covalent terms: Torsional-dihedral rotation

Combination rules (if applied):

e Generally in the form of tables:
(atom type of i)

in some i
force fields: atom type of mm) parameters for torsional-dihedral rotation i-j-k-|
"any" (wildcard) atom type of k

(atom type of I)

Exclusions:

e Atoms separated by three covalent bonds (third neighbors) are either
- excluded from any non-bonded interactions

- interacting with scaled interactions (OPLS; different scaling factors for
electrostatic and van der Waals interactions)

- interacting with a special set or parameters (GROMOS96; normal electrostatics,
special set of van der Waals parameters)

- interacting through normal non-bonded interactions (usually a bad idea !)
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* Covalent terms: Geometrical distortion

50{

out-of-plane
tetrahed (4N () .
(or tetrahedron) N (G&a’)

distortion
e.g. improper dihedral

Usage

e The previous covalent terms are in principle sufficient to define the entire
covalent contribution in a force field (e.g. CFF93 for alkanes)

¢ Need for out-of-plane (or out-of-tetrahedron) distortion terms:

R H H R
— For enforcing absolute chirality \ 7/ L-amino acid \ 7/ D-amino acid
i ient ! C C
(unphysical but... convenient !) H,N ~“~cooH H,N ~~~cooH

Internal coordinates defined in terms of scalar products cannot distinguish
(- requires correct initial coordinates and high barriers)

— For enforcing geometry around //
planar or tetrahedral centers /Q? { +5 others
(e.g. carbonyl, aromatic rings, —
amine or sulfoxide groups) Enforcing planarity (and, to a lesser extent, tetrahedral geometry)
via bond angles requires excessively stiff bond-angle potentials
: . (H)
— For enforcing geometry and chirality ~ -

(H) this H is “included”
into the C bearing it

around CHR; united atoms Ty united atom:

e The term describes how difficult it is to distort from the specified
(planar or tetrahedral) geometry

* Covalent terms: Geometrical distortion

Functional form: harmonic

VLKD) =k(E, =&)Y

reference value harmonic force constant

Geometrical definition

é:a

¢ Improper dihedral angle (six possible choices),
the most common one (e.g. GROMOS) !

Recall: dihedral(i,j,k,l)=dihedral(l,k,j,i)

¢ Bond/plane angle (three possible choices)

¢ Pyramid height (one possible choice)
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Covalent terms: Geometrical distortion

Example: harmonic reference angles and force constants
from the GROMOS96 force field

5&

improper dihedral angle definition

0.0
ﬁ’ planar
Improper dihedral angle £° [deg] ke [kJ-mol-'-deg?] group
planar groups 0.0 0.051 35.26
tetrahedral centers 35.26 0.102 _ etrahedral
heme iron 0.0 0.204 S o
Combination rules (if applied): I

watch out: order of the atoms
. i-]-k-1 (vs e.qg. i-k-j-I) defines chirality !
e Generally in the form of tables:

atom type of i

in some (atom type of j) : . . L
force fields: ‘ arameters for improper-dihedral distortion i-j-k-I
"any" (wildcard)<: (atom type of k) P brop J
atom type of |

Covalent terms: Cross terms

3 covalent Gordy (i 1 40}, ¢.5...)

cross-terms

Usage

¢ Improve the description of gas-phase properties (structures, heats of formation,
vibrational frequencies) - compared to ab initio calculations and experiment

e Urey-Bradley term and third-neighbor non-bonded interactions implicitly encompass
valence-coordinate cross terms (not very accurate)

Urey-Bradley: Third neighbor non-bonded:
bond/bond-angle bond/bond-angle/torsional-dihedral
coupling coupling

¢ No such terms (GROMOS,CHARMM,AMBER), some terms (MM2,CVFF),
or many terms (MM3,CFF93)

e Typically an unnecessary complication for condensed-phase
simulations of macromolecules

- increases the force-field complexity and number of parameters
- prevents the use of bond-length constraints

- not very relevant: other types of motion (solvent relaxation, conformational changes)
have the largest impact on the thermodynamic and dynamic properties
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Covalent terms: Cross terms
Example: cross-terms included in the CFF93 force field

¢ Bond/bond coupling
Oy O b sh°, b k™) K 50 N
.//\ =k?" (b, —b9)(b, —b?) //\'
e Bond/angle coupling

/ (3)\/ o (ea’ba;g;)’bao’kgb) k‘i}h >0
f >\. =k®@, -60°)b, —b°%)
a a a a (] l ‘

¢ Angle/angle coupling (4)\/(39.)(9 9 -0° 6° kw')

a*YarYaYa N not easily
_ L9 0 ' o' interpreted
- ka (9(1 - Ha )(9(1 - 60: )
¢ Dihedral/bond coupling for the central bond:

O, (¢b)(¢ b :h°, 1k¢b, 2k¢b,...) k<0 eclipsed
w w = (b, —b)('k? cos g, + ’k? cos2¢, +...) H
¢ Dihedral/angle coupling

(4)\/(¢9)(¢m9 - 9° 1k39,2k(‘f9,'__): not easily

a’ a’

w (ba - bs )(lkzé’ cos ¢a + 2kze cos 2¢a +..) interpreted

¢ Dihedral/angle/angle coupling

OV (¢99')(¢ 0.0 :6°.6° kaﬁHH') k" <0 eclipsed
w =k (0, -0°)0, -0 )cos ¢, »—4&

Biomolecular vs spectrocopic force fields

Class | (biomolecular): e.g. AMBER _
similar for GROMOS, CHARMM, OPLS, ... + Simple energy expression

+ Few parameters to calibrate

X i ; i (+torsions
Eun= S KalR —RP + 3 Ki0 - 0 + Focus on intermolecular interactions " *2 "

o snpies (critical to reproduce condensed-phase properties

T
+ 3 *[1 + cosind = )]

avairis 2 + Parameters are more intuitive and transferable

T ).: ‘__ i B_Iv L
--:[Ru Ry *’va ) - Moderately accurate (if not just bad) gas-phase
* HEJ— - R—] properties and molecular geometries (incorrect

vibrational frequencies and heats of formation !)

- Many atom types

Class Il (spectroscopic): e.g. CFF93
+ Accurate gas-phase properties (geometries,

SR - Bl + Kb - b)Y #+ Kb - by)
R Ao :=.,:1| vibrational frequencies, heats of formation)
Z SRR T - — cheap alternative to quantum chemistry
E ip, [(_)(_)] + Use of quantum-mechanical data in the calibration
+ }: E« - bk : + ZIZA'_,WIT- Bg) % + Few atom typeS
@-) . + Elegant
T Y Kulb b0,
B Ky om0+ 204 K o 30 - Complicated energy expression
+ R AR Raiath > - Many parameters to calibrate — often needs full
Koy oos24] recalibration for adding new atom types

+ 3 Y (0 0)['K 008 ¢ + K g 008 26 4K, cos 3¢]
: - Focus on intramolecular interactions
(of little help to reproduce condensed-phase properties)

O
+ \S_E Kopow (0 = 0)( - #5) cos
G
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Example of spectrocopic force field: MM3 for alkanes

h, A 1441
h, A 150
h, A 3H
1 5
: 4
Geometries A B m =
L‘\T::fln- H-H A 191198 2100
Heats of
formation
(kcal/mol)
Heats of
sublimation T
(only data on PR
intermolecular LooEdom oY n
interactions - TR e
less accurate)
iy Gl hal  ssigeeel m pmeary bl sted T
o e Gl T o st
“reem = ) -:: ik ml]:n,l
Vibrati in o 38 T g
ibration i n mee Lo
T b u oAy A8 4
. ¥ Ag W3 1033 Oy apm ote B e e
frequencies BN B s e ccun— B B G
§E e §oAT mm Stesad
"o 1A 18R] Uy ek & (O, i} ] ~ e - by COC band + COC boad
ig CRE R A ey b M R M SteSlaeiny
noaonm .,.;ju.,,..c..,m MW RSk
- - Torsional
el ST R S S BT .
Broon o omRoqn o4 gk o barriers
e e i 11 s (11—

Interesting student question (HS16)

e When doing Ex1, HS16 students noticed that for the organic molecule they
considered, the energy in vacuum (isolated molecule) is positive; the same
is true for the intramolecular energy in the liquid, actually

— Now, in QM, the (intramolecular) energy of a molecule is always negative
— And this makes sense, otherwise the molecule would fall apart !
— So: what (the hell) is wrong with GROMOS ?

e Someone has an answer to that ?7?

e Explanation:

— The energy of a molecule within GROMOS is not equal to the QM energy ‘ _
of the molecule relative to the isolated atoms ! becauce Pproximately: phase

we don’t care too much about

— It only accounts for the variations of the QM energy upon — intramolecular interactions — the

changing the geometry of the molecule (at least approximately) ‘merm?r']icri'fnzggf;:{,e much

— It is generally positive because the force field terms add positive contributions
for deviations from ideal covalent geometries and steric repulsions

— This also implies that the GROMOS energy differences for chemical changes
are generally entirely wrong; only physical changes can be handled !
not OK with GROMOS OK with GROMOS

simple example: Hz,g +%Oz,g ‘ H20g ‘ H20|

water

We would find zero !!!
(first and second covalent neighbors excluded)
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Non-bonded force-field terms

Two elephants kindly accepted to illustrate how non-bonded forces
can be measured accurately in a simple experiment

Non-bonded terms: Electrostatic interactions

A
usually not simply

o .
electrostatic 2 I , :
f ( )\/(e)(ra;qa’qa,.“) Coulomb’s law
Q"

» (all atom pairs) (e.g. cutoff+correction,
periodicity)

Most common approximation: monopole (point partial charge) model

electron density

/

/ O -0.38e atomic partial charges

: are attributed to all

— higher close_to more - (! +0.38 e (solute and solvent) atoms

electronegative atoms " % . o \N o

— dipoles along ' | -0.28 e
bonds values for

GROMOS H +0.28 e

e Some force fields use off-atom partial charges (e.g. middle of bonds, lone pairs, c-hole)
e Some force fields include higher-order point multiploles (e.g. point dipoles, quadrupoles)
e Some force fields account for electronic nduction / polarizability / charge transfer

(e.g. movable charge sites)

Functional form: Coulomb's law (in a perfect world !) permittivity of vacuum
(a physical constant)

(2 (el) . D\ -1 | &g
)\/ (ra > 9(1 > qla ) - (472-80) qa qa ra not to be cor?fused with

the relative permittivity €

partial charges of a medium (e.g. 80 for water)

e For a number of reasons (discussed later) this simple form is seldom applied
in practice (— cutoff, cutoff + long-range correction, lattice-sum, ...)
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Non-bonded terms: Electrostatic interactions

Combination rules:

e Often (not always e g GROMOS) In GROMOS, we use building blocks, and specific charges are
. v ’ assigned to all atoms individually (still, in practice, similar charges
the charge is determined by the atom type are used for similar functional groups — see next slide)

e Coulomb's law implicitly involves a (physically-based) combination rule
0.-4, =0, xd,

e Bond increment method (used in some force fields; preserves electroneutrality)

Note: for a neutral non-cyclic

< r "
=4 Inozznddeflrn:srt?]zn;ts;(lfefslilgrs’ molecule, there is a unique mapping
= . asetor atlom charges_
qa 2 5\(type aa type ﬂ) different bond types rather than bet;\:]ede; :este;fogoart]zrgicf;?éses
first neighbors £ “pond increment charges for different atom types (otherwise, the mapping is not unique)

Exclusions:

e First and second covalent neighbors are excluded from electrostatic interactions

e Third covalent neighbors may interact with full (e.g. GROMOS) or scaled (e.g. OPLS)
electrostatic interactions

Will be discussed in more details in a separate lecture: treatment
of long-range interactions & accounting for polarization (be patient !...)

Non-bonded terms: Electrostatic interactions

Table 3. Atom-Type Assignments and Atomic Partial Charges of the Different Organic Chemical Functions in 2016H66"

group IAC type ¢ wroup tnbwling e AT type 0
i) (vompornd) sehere labwel )
. . B 3 H 0410 benzene (BEX) ¥ HCL6 0 HC 01298
A GROMOS-Compatible Force Field for Small Organic Molecules oot 3 OA  -07W piaplls T 14 10 0,128
in the Condensed Phase: The 2016H66 Parameter Set 1418 CHn 020 P
Rruna A. C. Horea,® ™! Dascal T. Mers,” Parrick B | Puchs, Jozica Dalenc,™ Sereina Rindker,” otlicr L4 OB -0580 I
and Philippe H. Hilnenherger™ 13-18 CHa 0200 e s
12 C 0a7 |
J. Chem. Theory Comput. 2016, 12, 3825-3850 aldehyde '-TJ :lll ': 1o L
—L4Ts
1 0 L5400 . (_.] I"_’ ‘: =i
kotone 12 0440 bobuenn (TOL) s ,l'% - :_ilu ::: :.“'3 4': :_"‘
12 (& 0550 Tr 1 ]|E"_'.|i '_’|‘| HC i |:h|31
: arboscylic 1 0 =550 o, .
Charges of functional groups pariade ¥ o T N e
in the GROMOS-compatible L I .. wox
i 13-18 CH 0200
2016H66 force fIEId 14 !]]:" 0370 o (&) 12 { 4] 020
o 1 O 0360 e ol 1 0 a7
’ ’ 12 € 060 phenol (PHL) s M 00l
Calibrated along with the vdwW T '»'-;-a\ e Wt e i B
parameters against pure-liquid primaryamie T N 0980 /l', 91’\.:. HORG 20 HC 0028
and solvation properties T ) i
i 13-18 CHn 0250 ..
for 57 organic compounds pocomlary amipe T N ~0,865
nOH 036 rm T
Vitisty winloe, < 19718 CHe 0350 o A
y 7 b =0.750 Wea, By ez i1 n i [IE1]
Piig  liquid density FE em FOWIOEn OWYERME B g e
prituary amide I‘_ ‘: ':: T'Iﬂ: » 2356 12 € -01m8
AHva enthalpy of vaporization W s HCIIAL 20 HC 0.1
p 12 C LRTi]
1 O -050 : - = e
AG hydration free energy socondary amide 6 N ~0.500 e r\1| ,!.? ‘“ _::;:;
wat ”“h ‘”,” ::*I“:: aniline (ANLN) m\'(l. v M2 n H (0465
i 1 . A o T C26 2 C -
AG solyatlon free energy 12 € 050 Lol HCRE 20 HC o ouges
che in cyclohexane ety ae 1 Q030 o xry s
5N 0380
1 1% "ol
1 0150
thicl =370 2 ", wy N1 ] NR A
i a2m N s 12 ¢ 01202
. ——  yridine (PYRI ! : 2
Charge signs and R, B3 e
magnitudes follow (roughly) T TR L
chemical intuition dellice 2 S 01w

*For each functional group (group)) and for exch atom within the group (or set of equivalent atoms for the aromatic compounds), the integer atom code
{IAC), atom-type name (type], and atomic partial charge () are reported. This table inchudes only the chemical functions relevant for the 37 onganic
compounds of Table | and & repeated in SI A (Table AS). The comesponding information for the nudeicackd bases can be found i Tabie 4.
A complete topology specification (including charge-group definitions) for the 57 organic melecules in 2016H66 can be found in the mitb fles."™
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Non-bonded terms: van der Waals interactions

Physical nature:

¢ Rare gas atoms have zero net charge — no "classical" electrostatic interactions
Still, they do interact - due to so-called van der Waals interactions:

Energy [kJ/mol]

-
“a\

—_

~

I
\ L
-~
=
\fra
]

van der Waals 2N/ (VdW)(r )
(all atom pairs)

ad*

- deviations from ideal-gas behavior (e.g. van der Waals or virial real-gas equations of state)
- existence of liquid and solid phases (which would not be there without such interactions !)

2

\ S

o

\ — — - exchange (repulsion)
dispersion (London)
van der Waals
harmonic approximation

0.2 0.3 0.4 0.5 0.6

Interatomic distance [nm]

r

0.7 0.8 0.9 1

.é.a
++
=

e

.‘—’—*

QM tréatment (with elec. correl.), 3D
(2 fixed nuclei with oscillating electrons)

Very-short-range repulsion (exchange or Pauli term)
— consequence of the Pauli exclusion principle
for closed-shell atoms

. O . .
s very-short distance ~ I repulsion between nuclei (e_Iectron_s
are pushed away due to Pauli exclusion)

— short-distance ~ €7"'® (a,=Bohr radius[=0.053nm for H])

Short-range attraction (dispersion or London term)
— consequence of electron correlation (instantaneous
dipole - induced-dipole interactions)

instantaneous //% % induced
fluctuation — dipole /% /// fluctuation — dipole
— Drude model E =/Cﬁr’6 +Cr*+C, r'+... (C,<0)

related to the atomic polarizability,
accounts for ~75% of total dispersion for liquid Ar

Dispersion interactions (London forces)

Noble molar Boiling | Halogen | molar Boiling
gas mass (g) | point(K) mass (g) | Point(K)
st
He 4.0 46 Fs 38.0 85.1 o
gas
Ne 20.2 27.3 Cl, 71.0 238.6
gas
Ar 39.9 87.5 Br, 159.8 332.0 liquid
Kr 83.8 120.9 I, 253.8 457.6
solid
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[ Non-bonded terms: van der Waals interactions

- i e ™

AFPENDIX I e S R e e e L L T T e B e, B, ¥, W 14 Tt & 1 D o £ TR
N [ i, . 8. i P LT . .
INTERMOLECULAR PALR POTS o £ Gl 1 M ey B L A A e B
qLAE Al HTIAL m~uuﬂ’n_m4 = g | bt fumtion
D G 2t o s e e e "R il s
Al e el Py B Y- TR S B T e, ML ey, B & B 4 ke, P i 42D (1S
1 i e i ! L - ran - _
27 ways (among others) e ; et el s
¢ Mo om T e —— D
of representin | s¢ ebemo b ot s sbearnr D e
p g L St el et (g, A1) e . i
. . L= . e et Bt sl § s of P R = Bmrae
van der Waals interactions e | S R el i i
L e o f : AT A R
L P, i Skl prawtel |wrer Sphes ' 3. Herwwr fack hir
e T S LELETY N ————
' | Rl T Al T ] RSP U gt i S LY,
1 P AT e
» Do oo st bt b ey i 1y sl [Po]} ree
: T At i s “
: o - - B o e I e P B i . O Pt
R i ro-{E5h-t5r) -
; ol . P ] T A s L B i v e by
e ————L—— - 2 e SR
= e e e R T i T e A R B T A B s
B T L T — ek B, 43 PR 2 ek
A e v Rl ] T —

wiee” e

s = X1 -4 ot b o e e
T A S B W Ran s

T s ot e st o s e 0 b
—-..-—.__..‘.. ——
pRep ey =

- L—‘:)LJ—IH =< B

o) o

1 il ot b e P e, T
=i Phen 38, 01 (1T

V. B = Prmiad
wweimler|
s e e e i s
ot o 0 i L Tl i e . i S 8
==
£ 8yt ped ringin e s

v‘w ey ™

D e e

B (o I ) B P,

A b d

s hnn_l—-—\,nlw-—lnql.

L3 o e b .
= o
La e B -
seboeirdeewidew smeemane
T e

o o e+
e i A ot M, 2 £ R o B B

4, T et sl
T e et v e e o o e i b

e e e T ]
ﬁ'u,'_-.I-Hf-FWK
—— « .
L0 ol T o
=

e, . 8 ot P, W, G & . Pl B, P CTOEL

]
VA -0 -

-
e s,
e wtr
FM=CP eI s llr™  quian
e T
ot

Y —

Wml’-" it
T A M B bt . P, B

L]

-
E o Ot o
e ey
L Ny o oy P
n_-l—““ i a2

from Maitland et al.
"Intermoletular forces"

Non-bonded terms: van der Waals interactions

Reduced form:

e Rare gases are the simplest training ground for van der Waals interactions
(molecular beam experiments, deviations from ideality, transport properties)

e For all rare gases, van der Waals interactions follow a single reduced form
(to a good approximation)

vdw .. r
(2)\/ij( )(rij) =e(, Pn(p;)  with oy =

ij

r (i J)

experimental
curves:

log[n(o;)] *

a1

U(pij)

a4

a8

T

"o y\J Moo 13 ke 1S
Pij

reference point
(minimum)

r* [nm]
0.2963
0.3036
0.3087

e.g. ¢ [kd/mol]
He-He 0.0910
He-Ne 0.1737
Ne-Ne  0.3513
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Non-bonded terms: van der Waals interactions

Characteristics of the reduced form:

\ — — - exchange (repulsion)

\ — — - dispersion (London)
van der Waals

\ - harmonic approximation

(non-reduced form)

Energy [kJ/mol]

. . . . . . .
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Interatomic distance [nm]

dn(p)
P lya
value at the minimum derivative at the minimum interaction is short-ranged atom overlap is forbidden

(no interaction at infinite distance)
e Collision diameter o (i, J)

_ . o(i, j)
n&)=0 with éc— Ca)

e Equivalent harmonic force constant at the minimum K(i, J)

so that
1, .. .
:Ek(la J)[ru -r (Is J)]2

around the minimum

(ﬂﬁﬁm with =0, PG, DIF G, )P

p=1

Non-bonded terms: van der Waals interactions

Form of the van der Waals term:

r
W (e )= n(-,.)

ad a’

Commonly-employed reduced form:

e n-m van der Waals function

1/(n-m
n(p)= l(mp—np”“) £ =/
K=nm
Commonly used with
-m=6, n=9 : 9-6 van der Waals function (CVFF,CFF93)
- m=6, n=12 : Lennard-Jones function (GROMOS,AMBER,CHARMM,;
computationally advantageous [r'2=(r%)2], ad hoc, may be too steep)
— m=6 is correct for the leading term of dispersion

e exp-m van der Waals function
1 - m
n(p;g) =——(me ™ —gp™)
c—m

Commonly used with m=6, {=pairwise adjustable parameter (Buckingham)
— deviations from the common reduced form but

— exp repul§|on is more re_allst|c than power law at short distances m, n(p)=—o
— computationally expensive (exp function) I

. . may lead to "fusion
— three parameters per pair to calibrate of atoms
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Non-bonded terms: van der Waals interactions

Commonly-employed reduced form (continued):
e Double-Morse van der Waals function

77(,0' a) — EZa(l—p) _ 2ea(1—p)

— improper description of dispersion
— computationally expensive (exp function)
— three parameters per pair to calibrate

e n-m buffered van der Waals function

n-m( 1+6 1+ m
n(p;7,6) = ( j( -7 —1)
m (p+o )\ p"+y n—m

— calibrated for rare gases (and quite accurate for these !) with
n=15 and m=7 (latter formally incorrect for dispersion !), leading to y=0.12, 6=0.07

Choice of a specific function:
e A priori important because
- the steepness of the repulsion term (below r*) determines (in balance with electrostatic
interactions) the density and compressibility of condensed-phase systems
- the dispersion term (above r*) makes a significant contribution to the total
potential energy (e.g. comparison with experimental heats of vaporization)

and pressure (e.g. comparison with experimental densities) ;¢ (nited-jatoms in molecules are not

; : h | -shell

« Finally not so important because the same as closed-shell rare gases !!
calibration against experimental

- what is accurate for rare gases may no Ionger be for €.0.  condensed-phase properties compensates
water-water, water-aliphatic and aliphatic-aliphatic interactions  for errors in the functional form
- interaction parameters are empirical (adjustable) parameters—

Non-bonded terms: van der Waals interactions

Graphical representation of the common reduced forms:

1-0 I T T T T T
| —— 128
| — 88
| —— exp-8

05 —— double Morse .
I buf-14-7
I
|
I
|

s 00 -
|
|
exp-6 "catastrophy” —:

I
|

'0.5 'I
1
I
1
I
4 )

-1.0

0.8 1.0 1.2 14 16 1.8 2.0
p

(three-parameter functions: curvature at the minimum chosen identical to the 12-6 function)
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* Non-bonded terms: van der Waals interactions

Most common choice: Lennard-Jones function

§ — (1/2)1/6
—12 —6
np)=p "-2p .
e Leading to
-12 -6
r r
2 vdw )
()\/( )(a’ a’ga):ga r_(i _2 r(:
a a
e Also sometimes written
-12 -6
(20 (VW) (- _4 I, I,
(I’a,Ga,Ea)— ga G— — G—
“ “ 1/6
e Or - :[ZCDJ
C c?
(20 (vdW) -6 6 oo S0
)V ( os lZa’ ) C12 oo C6,ara (QZJW’ 4C,,
o=|—
Exclusions: Cq

e First and second covalent neighbors are excluded from van der Waals interactions

e Third covalent neighbors may interact with full, reduced (special set; e.g. GROMOS)
or scaled (e.g. OPLS) van der Waals interactions

Non-bonded terms: van der Waals interactions

e We can also play with crystals

— Rare gases crystallize in the face-centered cubic lattice NOTE:
I had fun playing with this

when preparing Infol Ex3;
but all this was already done
in the 1940's !

e Assuming a Lennard-Jones potential V(r;o,¢)=4¢ K— —[—j }

— The lattice energy is
given a lattice spacing E (a) 2¢e A1 -

a: contact distance

evaluated numerically by
lattice-summation for a FCC lattice

le

j } ,~1213 A ~1445

TMimioi . 1/6 ,
— Minimizing th-ls a= 2A, o~1.09¢ wp E=- A e~—-86l¢
energy, one finds A, oA
\ 3/ 12 M: molar mass
7 H related to the density . . 1
— One-to-one relationships 4 atoms per unit cell p= u (M) Mo <1.00M o
p>oc Eeoce — unit-cell volume (a/212)3 3’ A

crystal:

— E.g. Argon 0=0.340 [nm] from gas-phase - p =1842 [kg/m?3] oo, p =1764 [kgim?¥ (20K)
E =-8.6 [kJ/mol] E =-7.7 [ki/mol]

M=39.948 [g/mol] £ =1.003 [kI/mol] virial coefficients
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* Non-bonded terms: van der Waals interactions

Combination rules:

e Necessary to reduce the number of interaction parameters

N atom types mm) 2 x [4x N(N+1)] pair parameters
|

er

e For term o involving atoms of type i and |
&, =¢(,)) = fle(i,),&(], )]
r,=r(, j)=fr'@.i,rd, ]
¢ Testing: rare gases (mixed systems)

e Combination rules belong to the definition of a force field !

Non-bonded terms: van der Waals interactions

Common combination rules:

. « For the Lennard-Jones potential: easily shown that
* Geometric mean for r* and ¢ (GROMOS’OPLS) this is equivalent to a geometric mean for C4 and C,,

(i, j)=[r@,hr g, - e(i, j) =[(i,De(j, DI
¢ Arithmetic mean for r* and geometric mean for ¢ (Lorentz-Berthelot; CHARMM,AMBER)
r(i, ) =[r@,n+r(j, /2 e(i, ) =[(i,)e(j, D]
e Arithmetic mean for (r*)¢ and geometric mean for ¢ (r*)®
. o . . 1/6
e, ) = {[0r 6L + (1 (). §))°1/2}
£(i, ) = {[e(,)(r (D) e, (. (N1 A G, )"
e Cubic mean for r* and HHG mean (harmonic mean of harmonic and geometric means) for ¢
(i, ) =10 (0) +(r (s DY T @) +(r (s, )]
e(i, ) =4¢(,D)e(j, D/, +((j, N'"T
Choice of a specific rule:

e A priori important (differences in accuracy for rare-gas mixtures)

e Finally not so important because
- what is accurate for rare gases may no longer be for (united-)atoms in molecules
- interaction parameters are adjustable (empirical) parameters

e But: choice must be done consistently within a force field!

78



Non-bonded terms: van der Waals interactions
Combination rules tested against rare-gas experimental data:

0.40
0.35
‘= 030
025 I He Ne Ar Kr Xe arithmetic mean
Kr Xe
25 He Ne Ar
20
¢ experimental
= HHG mean
2 15 £(r")° geometric mean
2 —— geometric mean
» 10 )
05 | . /4'
00 =% <

o Large differences for largely different atom sizes / polarizabilities

e What is more accurate for rare gases need not be more accurate for everything
(atoms in molecules are not spherical, there are other [e.g. electrostatic] non-bonded
interactions, and we use of effective [calibrated] parameters anyway) !

* Non-bonded terms: Hydrogen-bonding interactions

C?)Ha H-bond NN (05
L\®

Needed because:

¢ Normal van der Waals interaction parameters ‘ too short H-bond distances,
+ strong electrostatic interaction too strong H-bonds

One possibility: special H-bonding force-field term, e.g. CHARMM

or zero if &<al2 or <2 orr >r

cut

(4)/ (hb) » NS
donor J ............ )V (ra79a76a’cl2,a’c6,a’ma’na) -
r
I N -12 -6 m,, n, /'
ryarogen () C, 1, —C, 1> )cos 0, cos 0,
acceptor ( """"""
P ea e With m_=0,2,4 (depending on donor), n,=0,2 (depending on acceptor)
acceptor-
antecedent ¢ Requires some bookkeeping (list of H-bonded atoms) during

the simulation
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*

Non-bonded terms: Hydrogen-bonding interactions

Another possibility: special van der Waals parameters, e.g. GROMOS

(2) 7 (vdW) . _ -12 -6
)V (ra’CIZ,a’C6,a)_C12,ara G T

6,00 o

e Geometric mean rules (for € and r* or, equivalently, for C5z and C,,)

Cp,(i, ) =[Cp,(1L,DC, (1, DI"*  C(i, ) =[Cy(1,DC, (], DI

3 &

Three choices:

- non H-bonding pair (small, e.g. aliphatic-aliphatic)
- neutral H-bonding pair (larger, e.g. amine-water)
- charged H-bonding pair (even larger, e.g. ammonium-water)

e H-bonding determined by a balance between electrostatic and van der Waals interactions
¢ No bookkeeping of H-bonds

e Atom in non H-bonding orientations or distances still interact with modified parameters

oo o0

Non-bonded terms: Many-body interactions

LES ELEPHANTS SONT DE GROSSES BETES SYMPATHIQUES QUi SE DEPLACENT EN BANDES COMMAN-
DEES PAR UN VIELK SAGE QUY CONNAIT CHAQUE RECOIN DE LA JUNALE,

N TN N
e

ST e

T (e

g
‘‘‘‘‘‘

EN RRISON DE SR GRANDE EXPERIENCE .
DEMI-TOUR!

Many elephants kindly accepted to illustrate the concept
of many-elephant interactions (involving more than two elephants)
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* Non-bonded terms: Many-body interactions

Physical origin:

¢ All above-listed non-bonded terms are pairwise additive. In reality, the presence
of a third (fourth,...) atom affects the interaction...

g g

o—0  mmm)

2 2 2
(2)\/( , ) ()\/(”3 )+()\/(er3 )+()\/(rk|5 )
IJ ( ij> jk ’ kl ) )
three-body term~ (the presence of a third atom changes the

way two atoms interact with each other — via

.. . electronic polarization [dispersion & electrostatics])
In electrostatic interactions:

e Many-body effects in electrostatic interactions arise from electronic polarizability,
e.g. water

_’
permanent
@ dipole
(point charges)
»
gas phase non-polar solution  liquid phase solid state near anion 'g?uglid
(1.85D) +0% +25% +30% up to +50% (?) P
* Non-bonded terms: Many-body interactions
In van der Waals interactions: homoatomic case:
related to the atomic polarizability «
 May be included through the Axilrod-Teller three-body term =3aC, /(167¢,) >0
P

]

Kisi (1 +3cos b, cos b, cosb,; )

(rij rjk r-ki )3

3 _
)V(U’ jko k|7 jk’gjkl’gklj’kljk)

e Most negative for aligned particles, most positive for equilateral-triangle configuration
e Derived from quantum-mechanics (perturbation analysis of dispersion interactions)
e About 10% of the lattice energy of crystalline argon

Many-body terms are seldom explicitly included:

e Computationally expensive:

scaling e.g. N=1000
-@Vv  (1/2)N(N-1) terms ~O[N?] 499’500
-@V  (1/6)N(N-1)(N-2) terms ~O[N3] 166’167°000
-GV (1/24)N(N-1)(N-2)(N-3) terms ~O[N4] 41°417°125750

e The computational scaling of classical simulations is in principle O[N2] without
many-body terms (i.e. only pairwise terms) — down to O[N] with special tricks
(patience again) — the covalent terms are list-based and thus cheap

. Challenge: avoid calculating many-body
e Yet... many-body effects are not negligible... what to do ? terms, but without neglecting them !
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Non-bonded terms: Many-body interactions

Effective pairwise interactions:

e Incorporate the mean effect of many-body terms into "effective" pairwise terms
e The resulting effective interaction parameters are valid only for a specific environment

e E.g. van der Waals interactions: Barker-Fischer-Watts potential for liquid argon N
loss of transferability,

5 5 e
B B problems for "mixed
77(,0)2(‘361(1 p)z'%(p_l)n +ZCn(pn +0) ! environments
n=0 n=3 — will no longer give a good
— 11 parameters description of gas-phase

argon! (real-gas properties)

— calibrated by averaging the Axilrod-Teller

term over liquid argon configurations — better, but still may not be good
enough for solid argon...

¢ E.g. electrostatic interactions: use of enhanced atomic charges for liquids/solution

gas phase: liquid phase: gas phase:
/O\-0.704e @ e /O\-O.848e
H H +0.352 gHQ CD H H +0.424e
STR1 model u4=195D 00 u=235D SPC/E model
e® (too large ') (implicit polarization)

(explicit polarization)  (exp: 1.85 D)
Experimental:

dixﬂ::ed AH [kJ/mol] -41.6 -41.5 -41.4 effecive (painmise)
ater  25°C  pl[g/cm’] 0.995 0.995 0.998 force fields usually have
s ) "enhanced" (solute+solvent)
D[IO cm /S] 3.1 2.7 25 charges...

Calculating the forces

e The force field V(r) represents the (classical) potential energy of the system in configuration r
e The corresponding force F;(r) on each on each atom i is required for performing EM, MD or SD

e The force is the negative derivative of V(r) with respect to r,
oV (r) . : :
F(r)=- — force on atom i — i — — 3N-dimensional
(1) or, in configuration r F(=1{F|i=12..N} force vector
e Simulation programs typically evaluate the forces analytically, simultaneously
with the potential energy evaluation

0 ®edg » 888 8o ®g
8 (B e e 0
st YL YLl

®»
= V(r),F(r) L= V() k() L= V() k()
¢ \V/(r) is a sum over force-field terms
Nterrns
_ (ng N/ (t,) .
V(r) = > "“N(q, ,0,,...55,,.5,,.)
a=1
e F(r) is also a sum over force-field terms...
Nierms a (N, )\/ (ty) 8q
— (nd) (ta) T (na) (tll) 1 — a"n
I:i (r) - Z Fi,a with Fi,a ({rj |J € a}) - Z -
a=l,iea nea,ieq, , aqgn al'-|
atom i is involved internal coordinate n atom i is involved in
interm « is involved in term o internal coordinate n
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Calculating the forces

e Example: forces arising from a bond-angle term with harmonic potential

Basic geometrical o o L .
considerations: ar, or, ~ i 0 )
1/2 . .
%:_d(rizi) %:(1/2)L2r”1 _6r“ ___ﬁrji _i i=r-r T=h-n
ari drii ari il " ar| arj r]l cosf = i ik
r-r
Ocosf 1 r ocos@ 1|Tr r o
or :ﬁ[(rjirjk)rjkl_(rji TN r_Jj = ——=—| % —cosf+
i i ik i or, Fi \ Mk F
_ ocos@ 1 [T r;
angle is invariant upon ik = ———=—|——-cosfd—
overall translation ark er rji rjk
ocoséd 1 r.r. Tr.r.
6cos€+6cosﬁ+écosl9:0 N — I’jk+l’ji—cosl9 L I
or, ar, ar, or; Fili r; M
e —6° r. r.
Forces: (o - OV _d9 0cosO _100-0" 11Tk \iplu
‘ d@ dcosd o, sin@ 1| r
(3)V6’ 6:0 k _pn° r. r.
LAY - < Fk“fa:...zkg—g_ 0 L(i—cosé?iJ
=(1/2)k,(6-06, )? sind 1\ T; ik
6-6° 1 r.r. r.r
[ 4 o [ k" ji it jk
similar procedure for all term types q Filo=m==(F+F,)=-kK — 0 rr [rjk +j —cosﬂ( ]r S+ Jr : JJ
(most tricky for dihedrals) forces sumuptozero S il i ik

for all physical terms (Newton 3rd law)

Force-field engineering

A highly non-trivial, time-consuming (and poorly funded) task !
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Sources of data

e Sources of data

— Theoretical: quantum-mechanical (QM: ab initio, semi-empirical, DFT) calculations
on small molecules (or molecule pairs/clusters)

- Must include low as well as higher energy ("distorted") conformations
- Fit to energies, forces, Hessian (vibrational properties), torsional profiles (barriers)
- Lots of information and applicable to any molecule, but
(1) accuracy limited by that of the QM method employed,
(2) little information on intermolecular interactions (e.g. limited to molecule pairs
in gas phase) and bulk solvation (e.g. limited to solute-solvent microclusters in gas)

. i \ nowadays: lots of efforts to try to get more accurate
—> Exgerlmental. atomic charges and dispersion coefficients from QM !

- Spectroscopic (e.g. IR, p-wave, UV, visible, NMR, X-ray/neutron scattering, ...) properties
- Equilibrium (e.g. densitiy, heat capacity, compressibility, expansivity, dielectric permittivity)
and thermodynamic (free energy, enthalpy, entropy of various physical processes;
e.g. phase transition, mixing, binding, reaction) properties
- Transport (e.g. diffusion, thermal/ionic conductivity, dielectric relaxation)
and kinetic (rates of various physical and chemical processes) properties
- Information more sparse and restricted to small molecules. In addition:
(1) data is also affected by experimental errors (!)
(2) data may already result from the application of a model
(advisable: fit to raw measurement data rather than to processed data
[e.g. NMR NOE intensities > NOE-derived distances >> NMR-derived structure]).

\ nowadays: also lots of efforts to automate the parameter
calibration based on experimental thermodynamic data !

Sources of data

e Tentative classification of the data

— Primary: data which can (in principle) be mapped to one (or a few) force-field
parameters (can be used to estimate parameters directly)

— Secondary: data which can be reliably compared to the result of a
(reasonably short) simulation

— Tertiary: data which can be compared to the simulation results, but not reliably
enough to be used for parametrization (can be used [with care] for "validation" only).

"Not reliably" means here e.g. :

- Too large experimental uncertainty
- Underdetermination of the experimental data (data can be reproduced by different models)
- Full convergence not possible within simulation timescale
- Ambiguity in the correspondance experimental <> simulated observable (interpretation)
- Data processing already results from application of a model (and you don’t want to
fit a model against another model!)
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Sources of data

Table 3 Possible source of data for force-field parametrization or validation
Technique == ¥

Phase

Type Technique Phase Type Property Parameters
!:;p':fllm‘o[.l? " Gas I Thermodynamic/  Liguid r
(IR, p-wave) kinetic solution
measurements
k)
(LY, visible, Solution 3 Time-resolved fluorescence
pewave) mtensities, depolarization,
circular d
(NMR) Selution ]
membrane 2 Ab initio and Gas 1
. semiempirical
d calculations
vid W
E, dE. ¢’E
Solution 1"
. and/or re 1 field
Diffraction Crystal 1 approach Idem
(Xeray, . T e See. 7. it
Type: 17 - primary, 2° - se - tertiary data, see Sec 7.2; Parameters: parameters that

can be calibrated usi ding dats; CT: cova rdinate cross-terms
CR:van der Waals com| {Sec. 6.6.2).q es for Eq. 6.7.1.1; vdW: van d
parameters (Sec. 6.6), vdW(1.4) third-neighbour van der Waals parameters; k: foree co

4 s
. for Egs. 6.1.1.1, 62.1.1, 6.3.1.1 and 6.4.1.1; H-bond: hydrogen-bonding interaciion para 13
4 (Sec. 6.9).
B-factors, occupancy
factors i
ictor primary
{neutron) L] Radial distribution
functions secondary
Static and dynamic 1
structure factors tel’tlal’y
(polymers) kg VAW
Thermodynamic/ Gas | Heats of formation E
kinetic Thermodynamic prop- H
measurements € or rare gas From my theSIS'
mitures vdW, CR

Highlighted: most important sources

Source of data: spectroscopic

absorbtion, emission,

e Spectroscopy: interaction between matter and electromagnetic wave .\ oo ditraction. ...

interacts with use for special
wavelength/wavenumber/frequency calibrating feature
core electrons 7 b,,0,,¢& crvstal
X-ray ~0.1 nm OOO PRIMARY (phas(?;roblem
(UEUIT%HZ - “U‘?')Ei ~ Vdw ,q, HB hydrogens not visible
incl. hydrogens ith X-
ydrog SECONDARY with X-ray only)
IR (Vlrk])l:;{ﬁ;n) w symmetric stretching i - kb 5 k6’ 5 k§ solution or
R ‘ crystal/powder
+ Raman — o PN .
~1000 cM™  persing 09 o =22 By PRIMARY (normal mode
asymmetric stretching Lo d analysis)
nuclei h
wave (rotation) S — ./i,/ 7 &y gas phase
M %/ @ 9 g ~ l (easy only for
~10 GHz = | : “ H | JL] hJ\J PRIMARY small molecules)
2 0 2 237
Fermi Hund Fermi
é b k¢,VdW solution
scalar ]
nuclear g o i (Karplus equation
. Y Y J-coupling SECONDARY/  + population model)
NMR spins TERTIARY
~100 MHz .
/@Jﬂi solution
(for magnetic NOE bli del
field of ~10 T) enhancement TERTIARY (tum ing mode
+ population model)
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Source of data: liquids and mixtures

e Pure liquids are favorable systems for the use of secondary data

Structural X-ray (SAXS) or Radial distribution pair
neutron scattering functions (RDF) correlations
. AHvap CP AH spectroscopic
Thermodynamic P enthalpy of vaporization heat capacity f force-fields only
densit:
Y K5 Vp
compressibility thermal expansion
coefficient
Transport D n
self-diffusion viscosity
constant
Dielectric € Tp
permittivity Debye relaxation
time
Kinetic Tl
Molecular reorientation
time

e So are liquid mixtures (mixed liquids, finite-concentration or infinitely dilute solutions)

AH mix (X) AVmix (X) ysol (X) 7slv (X) AGsIv

Thermodynamic properties (Limiting) activity coefficients Solvation free energy
of mixing (composition x)

Source of data: guantum mechanics

e Quantum mechanics is a tempting source for primary data

- Lots of information, but (1) accuracy limited by that of the QM method employed,
(2) little information on intermolecular interactions and "bulk" solvation (e.g. limited
to solute-solvent clusters)
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Parametrization strategies

e Two main approaches
— Self-consistent parameter optimization: typical for class-Il ("spectroscopic") force fields
— Parameter optimization by trial & error: typical for class-I ("biomolecular") force fields

¢ Self-consistent parameter optimization
What you want the force

field to reproduce, typically:

TRIAL SET LIST OF OBSERVABLES .
OF PARAMETERS AND TARGET VALUES - set of small molecules (representative
for a class of compounds of interest)
t t - equilibrium and distorted conformations
S= {S#} vary "s" until X = {Xi } - QM data (energies, forces, Hessians, ...)

"Q" reaches - Exp data (heats of formation, optimized

EM or minimum geometries, vibrational frequencies,
short MD lattice energies of crystals...)
+ analysis

"BEST" FORCE FIELD

X®={X{(s)} - Q(s) = Z\Ni [Xis(s) -X; T - (for the molecules and

observables considered)
LIST OF OBSERVABLES OBJECTIVE FUNCTION REPRESENTING
WITH SIMULATED VALUES THE FORCE FIELD "QUALITY"

: use of QM data (lots of data !) - many parameters can be optimized (e.g. anharmonic and cross terms)

: elegant, automatic (less guesswork and human time)

: high accuracy for the molecules and observables of interest (still limited by accuracy of QM method !)

: QM data is approximate (e.g. dispersion requires 2" order perturbation)
and contains little information on intermolecular interactions and solvation

-: Observables must be primary, or secondary and cheap to compute

- Parameters are less intuitive and transferable, and inclusion of new

functional groups often requires a full reparametrization

+ + +

Often: poor charges
and vdW parameters !

Parametrization strateqgies

mi H 7 Parameter refinement in successive stages —new changes
e Parameter Optlmlzatlon by trial & error may sometimes require an update of previously refined parameters
Primary data: QM (gas-phase — PARAMETERS FOR THE "HARD" . _ _ \
- |

geometries & vibrations) or exp. DEGREES OF FREEDOM
(gas-phase — IR and p-wave;

crystals — scattering)

Secondary data on small molecules:

exp. (liquids — scattering, equilibrium, - -
thermodynamic, transport and kinetic SOL[IJDI\ERESE'?;E g/ bW
properties; crystals — packing)

|

|

1

|

1

A

|

g ! |
(sometimes also QM elec. pot. analysis for the charges) |
1

1

i

|

|

|

1

CHARGES, H-BONDS,

>_

Primary + secondary data on small
molecules: QM (gas-phase — rotational TORSIONAL AND 1,4-VDW
—) PARAMETERS “

profiles), exp. (liquid, solution - NMR
for conformer populations)

Secondary data on small molecules: SOLUTE-SOLVENT SOLVENT
—

exp. (liquid mixtures, solution — mixing - VDW PARAMETERS « = = FORCE FIELD
and solvation thermodynamics)

Tertiary data on small molecules:

simulation of complex systems and - VALIDATION = === === I

comparison with experiment FURTHER REFINEMENT REQUIRED:
ONLY GO AS FAR BACK AS REALLY NECESSARY

+: more appropriate for the use of experimental data (incl. intermolecular interactions and solvation)

+: parameters are more intuitive and transferable (sometimes, one abuses even a bit of transferability !)
: relies on a lot on guesswork and human time

: (arguably) lower accuracy (works well for properties that are not too force-field sensitive)
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Parametrization strategies

e Parameter optimization by trial & error

— Validation & further refinement may extend over very long times (decades), triggered
by the consideration of longer timescales or new compounds, or the availability of
new experimental data (revealing force field deficiencies)

e Example: GROMOS87 — GROMOS96: the problem

hen-egg-white
lysozyme
(129 residues)

‘:‘ — @ “m
=&%
<A

Simulation timescale
in 1987-1995 ~1-100 ps
— all looked fine

urtace area

solvent access

devratron from X- ray structure

Simulation timescale in 1996 ~1ns
— now it looks bad !

vacuum

2 L

rmsd (A)

= large deviations
from experimental
structure (just as
vacuum)

400 600 800
radius of gyration

0 200

16 =

1000

GROMOSB?

radius of gyration (A)

=too expanded shape

200 400 600 800
solvent-accessible surface area

=

1000

=too large solvent-exposed
surface area

600

time (ps)

— Longer timescale simulations evidence that lysozyme is too "hydrophilic" in water !!!

Parametrization strateqgies

e Example: GROMOS87 - GROMOS96: the remedy

— Simulations of pure alkanes {

— Simulations alkanes in water

Target:

Refine: C.*(CH_;CH_) and C/*(CH_;CH)
£ and AHVap

n=0.4

for alkanes

Refine: Cé/z(OW;OW) and Cllz/z(OW;OW)

for non H-bonding interactions (value for water-water: unaffected)

Target: AGhyd for alkanes

[e)

40 7AHvaP [k /mol] n-pentane o . ]
30 + isopentane 0 \g cyclohexane 4
g ~= 2 " cyclopentane
20 1 ol |sobutan%l'| ane ]
10 F propane ]
o % methane
0 ethang | . .
1 0 10 20 30 40
- 08 L plg/cm’] ) cyclohexane,
& ___isopentane = cyclopentane
s 06 isobutane -b ? pentane ]
= n-butane
g 04 meihane & = propane Gs7: 1
3 02F too low |
0 . = ethane . )
12 0 0.2 0.4 0.6 0.8 1
10 [AG,, [kJ /mol] n-pentane, ]
ethane = m Propane
81 meéhan%ﬁ ;n-butane G87: ]
6 - too low -
[e]
4 L L L L L L L
4 5 6 7 8 9 10 11 12
experiment

88

Note: pure liquid simulations at
T=300K (except: methane at 111.7K)
and P=P,, (ethane 41 bar, propane
9 bar, butane 2 bar, isobutane 3 bar;
others: 0.1-1 bar)

B GROMOS96
O GROMOS87
O GROMOS87-mod



Parametrization strategies

e Example: GROMOS87 — GROMOS96: validation

deviationframX-fay strugture — now it looks much better !

vacuum

T ] = acceptable deviations
from experimental
structure (note: ideal
value is not zero; there
200 40 500 300 1000 are always fluctuations !)
radius of gyration

GROMOS96 |

z
5 GROMOS87 ~  _.—-=-="="" 1 = compactness stable and
E w similar to crystal structure
2 - vacuu‘l' """ S e
"o 200 400 600 800 1000
g solvent-accessible surface area
GROMOS87 _.—om.o” ™
[ S 1 = solvent-exposed surface area
B GROMOS96 pose
e (S s = stable and similar to crystal structure
T VaACUU- == === --===="="""T s
g 5000 -

Olve
W
(=]
8
&
=]
o
73
2z
@
=]
o
a
2
3

Things to keep in mind

w o THERE IS NO SUCH THING AS A UNIVERSAL FORCE FIELD.
But force fields best suited for:

- a given system

- a given phase

- a given set of properties studied

- a given computer budget

... ®* FORCE FIELD PARAMETERS ARE NOT PHYSICAL CONSTANTS
But but mere parameters which are:
- correlated among each other
- correlated with choices made in functional form & combination rules
- correlated with the choice of the considered degrees of freedom
- correlated with the force-field training set

— they are generally not transferable from a force-field to another

w~ o THE QUALITY OF AFORCE FIELD IS LIMITED BY THE
CRUDEST (NOT THE BEST !) APPROXIMATION MADE
IN ITS DEFINITION
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019

Lecture 529-0004-00 Tuesday 9:45 a.m. — 11:30 p.m. LECTURE 3 (WEEKS 3+4).
HCI D2 Generating configurations

www.csms.ethz.ch/education/CSCBP

* Four basic choices defining a molecular model

degrees of freedom

@ = ATOMS
®
= CLASSICAL @
FORCE FIELD @ 0@
interaction l boundary conditions
\\E MOLECULAR
- =) "\ opEL

system size and shape,

' A © temperature and pressure,
P _Qa,l s i deri
m (7 experimentally-derived
® /8D EQ&, QI, ) information
2 % o 777
{@o}?* _

~number of configurations, | [¥a @
propetties of the configuration

_sequence (searching, sampling, | 188
" ~ orsimulating)

]

generating configurations
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GENERATING CONFIGURATIONS

Potential energy surfaces

Potential energy surface (PES)

force field potential energy (hyper)surface
or defined by V(r)=V({r;}) with
quantum-chemical method 3N (Cartesian) or 3N-6 (internal)
(within Born-Oppenheimer) dimensions
Example: pentane
gauche —
eclipsed —
".f' AT trans —»
¢ l\ &Q/&L eclipsed —
k'{ \_{ gauche —» ;
cis — F O R TR T

rigid bonds and bond-angles
optimized methyl orientation
(or united atom)

= 2 degrees of freedom

=9 minima and 9 maxima
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* Potential enerqgy surfaces
Large systems

e many dimensions 1 e.g. 100 residue protein,
. . ~15 atoms per residue
= no hope to visualize the PES [_>4500 degprees of fre]edom

= no hope to enumerate all configurations o
5000 rigid water molecules

J — 30'000 degrees of freedom
e many energy minima and barriers ) _
(the PES is “frustrated”) e.g. alkanewith ncarbons
> [~ 3 minima & barriers per torsion]
= no hope to enumerate all minimas — about 3" minima
7 (n=10: 59’049, n=20: 3'486’784°401)

Generating configurations
¢ needs a method that generates preferentially relevant
configurations (e.g. low energy, Boltzmann-weighted)

e needs a good initial configuration whenever available
(e.g. from X-ray or NMR experiments)

Properties of the method

e may generate a Boltzmann-weighted ensemble of configurations
= thermodynamic properties can be calculated

e may generate a sequence of configurations through a physically-based
classical equation of motion
= dynamic properties can be calculated

* Generating configurations
SEARCHING SAMPLING SIMULATING
Boltzmann
NO YES YES
distribution
Dynamical
sequence NO NO YES
Methods
. / \ , e Monte Carlo e Molecular dynamics
Single Multiple « Molecular dynamics (with thermostat)
conflg.;u.ra.non. configurations with altered masses « Stochastic dynamics
* Energy minimization e Parallel tempering e Brownian dynamics
(Normal-mode analysis, o ...
transition-state location) Enhanced-search
i Conformational molecular dynamics
seareh * Simulated annealing Search the PES as wide
* Systematic search * PEACS as possible for low-energy
* Random search © Softcore atoms regions, and report all local
* Stepwise build-up * 4D molecular dynamics > energy minima found by EM
« Genetic algorithms * Local elevation
o Homology modeling e Conformational flooding
° ... e ...
l | followed by
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Energy minimization

Problem of energy minimization (EM)

= Given V(r) with r = {r, | a=1...3N}, find a point r* for which
stationary oV (r)| and oV (r)
point o |. =0 Va o,

r

>0 Vea,f minimum

r

()

Properties of energy minimization methods 1
e numerical iterative methods (due to the high complexity of the problem)
e perform successions of downhill moves

e find the local minimum closest to an initial configuration r,

e for frustrated PES, are poor search methods unless
— applied to a large set of low-energy initial configurations r
— or combined with uphill moves
... even in this case, the global minimum can seldom be located ...

Various methods

= Non-derivative (e.g. simplex), first order (e.g. steepest descent) or
second-order (e.g. Newton-Raphson)
= Not so important — read them in the script...

* Energy minima and frustrated systems

e.g. hen-egg-white lysozyme in vacuum

X-ray structure after EM after MD and EM
50000 ¢ \ ‘ \ ‘ \ \ -7000
V(1) 30000 I steepest descent | 1 ~8000
[kJ/mol] I conjugate gradient | molecular dynamics (2ps/300K)| 1
10000 - - then conjugate gradient | ~9000
I - ] . -10000
10000 L, 9150 | | -10200 %
50 100 0 500 1000
steps steps
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* Energy minima and frustrated systems

Explanation
50000 r \ \ \ \ \ — —7000
ol [
V(1) 30000 steepest descent | 1 ~8000
[kd/mol] molecular dynamics (2ps/300K) | 1
10000 4 conjugate gradient | ~9000
10000 | 3 ‘ 3 ~1000
0 0 500 1000
_ thermal energy
available to
overcome (some)
barriers

' I
Vipn Vin

r r

= energy minimization is a poor search method for frustrated PES (lacks uphill moves)
= it is mainly used in simulations to relax strain

e in configurations generated by another search method

e in initial configurations to be used for molecular dynamics simulations

Energy minima and populations

Population of the states of a molecular system
= In the canonical (NVT) ensemble the population of states

is controlled by the corresponding Helmholtz free energy, i.e.
-—
P ~exp(=FA) with A=U TS Al -s00——
/II ) Il
we we
N -
(keT) depth  width
lllustration: two-harmonic-well system (1D)
=F 1 [ 1 I ] f,=0.50
—= La,=1 az—>2\ 3 q f,=0.50
=1 - ° 5 - cf unfolded and
e [ N E folded states
=g \/ > of a protein

(=)

= a broad/shallow minimum may be more populated as a narrow/deep
minimum (i.e. the energy is by no means the only relevant criterion) !

Consequences

= for systems with many degrees of freedom, entropic effects are very important
= even very deep minima can correspond to small populations
= proper generation of configurations to get relevant statistical
information should be performed according to free energy
(including entropic effects) rather than energy
— sampling or simulating
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Energy minimization

Problem of energy minimization (EM)
= Given V(r) with r = {r, | a=1...3N}, find a point r* for which

2
=0 Va and 6V2(r)

r
rt af
Local quadratic approximation to the PES

stationary oV (r)
point or

>0 Vea,f minimum

r

Only locally valid... all eigenvalues >0
PES for molecglar ™ = minimum
systems are typically \g:»
far from quadratic !

one eigenvalue <0 A
= 1st order saddle point ¢

V(r+Ar)=V(r)+ " 'VV(r)Ar +%tAr H(r)Ar
|

Gradient vector ~ small Hessian matrix,
(minus force), displacement  cyryature information m eigenvalues < 0
zero at stationary point , — mth order saddle point
- ov() (m=3N — maximum)
“aror,
* Energy minimization

Properties of energy minimization methods

e numerical iterative methods (due to the high complexity of the problem)
e perform successions of downhill moves

« find the local minimum closest to an initial configuration r

o for frustrated PES, are poor search methods unless
— applied to a large set of low-energy initial configurations r,
— or combined with uphill moves
... even in this case, the global minimum can seldom be located ...

Classes energy minimization methods . “;tl)rﬁztl?celf;
V(r+Ar) = V(r) + '"VV(r)Ari + —'Ar H(r)Ar
: L2 - |
non-derivative I I
methods | first-order | !
---- methods ! second-order |
T methods 1
e non-derivative methods maybe used -
for complex problems where derivatives are unavailable
« first order typical for classical systems and convergence rate,
quantum-mechanical calculations where computer time per step,
second derivatives are unavailable memory

e second order typical for quantum-mechanical calculations,
as a final refinement step
e derivatives may be computed analytically or numerically (finite-difference, expensive !)
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a non-derivative
method

The simplex method

Simplex
= Geometrical figure with M+1 vertices in M (=3N) Moves like

dimensions (e.g. triangle, tetrahedron, ...) an amoeba. ..
Algorithm .a pk%

= Start at configurationr, ——
Define simplex around point

Define scaling factors a>1 and <1 % 2>’y

= lterate for k

o find the vertex p, with maximal V(p,) -
o reflect(p,) » p' M otes

. ) =2 Dy
« if V(p)< V(P P N\
then reflect-expand(p,,a) = Pys1 -
else highest-contract(p,,a") — p”
if V(p" )<V(py) ~
then p., = p”
else find the vertex g, with minimal V(q,),
lowest-contract(q,,B) > simplexkﬂ\
= Terminate when move or energy change is small
Properties
= Simplex shape varies with local topology of the PES (e.g. elongated along valleys)
= Very robust (always converges to a minimum, normally the closest)
= Very slow convergence (many evaluations of the potential energy)
= Useful for initial refinement or when derivatives are unavailable or expensive
= Alternative: sequential univariate minimization
The steepest-descent method "%
Move
= in the direction of the negative gradient, i.e. downhill along S, = & with g, = -VV (rk)
k
Algorithm (with arbitrary step) Algorithm (with line search)
= Start at configuration r, = Start at configuration r,

Define intial step size Ar,
Define scaling factors a>1 and p<1

= lterate for k

= lterate for k
e line-minimize(r,,Sy) = I

= Terminate when |V(r,,,)- V(r,)] small

® Iy = I+ ANSy

o if V(rep)< V(T
then Ar,; = a Ary
else Ar,; = B Ar,

= Terminate when Ar,or |V(r.,)-V(r,)| small

Properties

= Robust (always converges to a minimum)
= Rather slow convergence (especially in long,
narrow valleys). For the line search, because:

1
14

locating the minimum
requires more than one
Ska "S5k = 0 potential evaluation !
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another first-order
method

The conjugate-gradient method

For a quadratic surface
conjugate gradient

’ successive line
minimizations along
mutually-conjugate

steepest descent
successive line
minimizations along

the negative gradient g directions h, (i.e. h, H h,=0)
= gk+l'gk=0 = gk'hl y Vk,l
and minimization k+1 spoils on a quadratic surface, gradient is
the effect of minimization k orthogonal to all previous search
Algorithm (and all previous ones) Q|rectlgqs,_|.e._the _effect of _
] ) line-minimizations is cumulative !
= Start at configuration r
Set h,=g,=-VV(r,) firststep along gradient ) = Oks1Oke1 (Frs1 -91) Dt
. = ktl Ik Tkl
= lterate for k new search direction 9k Gk 9k
o line-minimize(r, ,hy) — 1,y #along gradient Fletcher- Polak-
® Jis1 = -VV(Iiiq) Reeves Ribiere
® N1 = Gien + 7 Ny ~ —
= Terminate when [V(r,.)-V(r,)| small equivalent for a quadratic surface
Properties
= Implicit use of second-derivative information — reset search direction
; — ; from time to time
= Converges in M+1 steps (M=3N) on a quadratic surface
= Converges generally faster than steepest descent on non-quadratic surface /

= Less robust than steepest descent (may be trapped in a subspace of lower dimension)
= Sometimes also used as arbitrary-step method

a second-order
method

The Newton-Raphson method

Move
= towards the closest stationary point of the local quadratic approximation to the PES

V(r +Ar)=V(r)+ 'VV(r,)Ar +%tArk H (r,)Ar,

tati
DYV AR =YV () HH)AG = 0 ————— T
solve .
for AT, = Ark - _ |:| —l(rk )VV(rk) (min., max., saddle)
Algorithm L

= Start at configuration r,
= lterate for k

® My = - HH(r) V() «—
= Terminate when |V(r,,,)-V(r,)| small

Properties

= Converges in 1 step on a quadratic surface
= Converges faster than steepest descent or conjugate gradient on non-quadratic surface
= Not robust (converges to the closest stationary point — not necessary a minimum)
= Expensive in terms of time-per-step and memory (Hessian calculation, storage and inversion)
= Used for final refinement in small systems (often quantum chemistry calculations)
= Alternative, quasi-Newton methods: gradually construct an approximation A, to H*
so that lim ,_,, A, = H! (converges in M steps on quadratic surface, first order again;
memory cost remains, but no need for the expensive matrix inversion)
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* Energy minima and frustrated systems

e.g. hen-egg-white lysozyme in vacuum

X-ray structure after EM after MD and EM
50000 s \ ‘ \ ‘ \ \ -7000
V(t) 30000 I steepest descent | 1 ~8000
[kJ/mol] I conjugate gradient | molecular dynamics (2ps/300K) | 1
10000 - - then conjugate gradient | ~9000
_10000 L | -9150 | | | _-10200 ‘s ~10000
50 100 0 500 1000
steps steps
* Energy minima and frustrated systems
Explanation
50000 r \ ‘ \ ‘ \ \ — —7000
V [ ] o) 1 r i
® 30000 | steepest descent | 1 -8000
[kd/mol] | ] molecular dynamics (2ps/300K) | 1
10000 - - conjugate gradient | ~9000
I r , —10000
-10000 : ‘ : LT
0 0 500 1000
. thermal energy
available to
overcome (some)
barriers
'urn 'urn

= energy minimization is a poor search method for frustrated PES (lacks uphill moves)
= it is mainly used in simulations to relax strain

e in configurations generated by another search method

e in initial configurations to be used for molecular dynamics simulations
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Energy minima and populations

Population of the states of a molecular system
= In the canonical (NVT) ensemble the population of states

is controlled by the corresponding Helmholtz free energy, i.e.
. oo
pi ~exp(=FA) with A =U, TS Al -soo—0
\ = ——
) well well
(kT depth  width sooooes

lllustration: two-harmonic-well system (1D)
e potential energy (one well) !

V(X):{ﬂla)(xz/az—l) for |x|<a

© otherwise
e partition function (one well)

7'*aexp(w) erf (")

Z = [ dxexp[~V (x)] = pE x

e probability distribution (two wells)

— BV(x)
B,(X)=(Z, +2,)" exp[— AV, (X)] . 8,71 pml P

pz(x) = (Zl + 22)7I exp[—ﬂ\/2(x)]

. \ -1+ o=1 4
e relative populations
-1 1 -2 ‘ ROSAN
fi=(Z,+2,) Z, f,=(Z,+2,)" Z, -4 -2 0 2 4
X
* Energy minima and populations
populations
2 r i
I | f,=0.50
0 L] 1
a,=1 a,=1 q f2:0.50
-2 tw=1 w,=1 .
-4 -2 0 2 4
2 r i
| | f,=0.17
0 1
L a,=1 a,=1 ] q f,=0.83
-2 ’(1)1:1 602—3 -
-4 -2 0 2 4

2 | /\ ]
N D ’ ﬂ f,=0.50

0
ra=1 a,=0.2 1 f,=0.50
-2 tw=1 ,=3 \/ ] cf unfolded and
| | folded states
-4 -2 0 2 4 of a protein

= a broad/shallow minimum may be more populated as a narrow/deep
minimum (i.e. the energy is by no means the only relevant criterion) !
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* Energy minima and populations

In many dimensions

o =w,=1,a,=1,a,=1.01 (second minimum is 1% broader in all M dimensions)

M f]_ f2

1 0.50 0.50

10 0.48 0.52

100 0.27 0.73 balancing the populations

1000 0.00 1.00 would require », ~500'000
Consequences

= for systems with many degrees of freedom, entropic effects are very important
= even very deep minima can correspond to small populations

= proper generation of configurations to get relevant statistical
information should be performed according to free energy
(including entropic effects) rather than energy

— sampling or simulating

The Monte Carlo method
more properly named Metropolis Monte Carlo or importance sampling

Markov model for a collection of systems
¢ the system can be in a finite number N of states T p
23 3

« transition probabilities depend only on C P, (—————¥3—%—

the initial and final states (no history) 2-000- Ta Ta
e consider a large (infinite) collection of systems () To & Tis Tas
T

. . 22 1—eo—
e relative populations of the states p = {p,, | n=1...N} @
e transition probabilities T = {T,, | m,n=1...N},
where T, is the probability of n—»m transition Ty

e normalization

ZN:pn:I andZN:Tmn:I,Vn

Evolutic;n of the relatin\}e populations

step 0 p(0) [arbitrary]

step 1 p(1) =1 p(0)

step 2 p(2) =T p(1) =TI?p(0)
step k p(k) = T p(0)

It can be shown that (in most cases)
¢ p(k) converges towards a value independent of p(0)
e this equilibrium value p=p(w) satisfies T p = p (convergence)
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The Monte Carlo method
Microscopic reversibility (detailed balance)

e at equilibrium, transitions between any two states /1»3—.—

occur at the same rate, i.e. T,,, P, = Trm P 0—0—
e this excludes processes of the type \ /
1——

Generating a Markov chain of states for a single system

e from current state n select a possible new state m at random, according
to a probability given by a stochastic (or underlying) matrix a = {¢,, | m,n=1...N},
where «,,, (m=n) is the probability of selecting state m for a n—m transition
attempt from n (and ¢, = 0)

e accept the transition attempt according to a probability

given by an acceptance matrix a = {a,,, | m,n=1...N} T, =8, if m=n
e a rejected transition is considered a n—n transition T —1- iT
« this generates a Markov chain with " v

Markov chain of states with Boltzmann weighting (Metropolis)

e use a symmetric stochastic matrix o.,,, = o), 1 if V. <V
e Use an acceptance matrix with o = { moon

exp{-pV,—-V,)}  otherwise

e proof using microscopic reversibility

-
for nem: L o _ %m Am _ Zm _ exp{—-B\V,, -V,)}
pn Tnm anm anm anm

e this result is assumed to remain valid for systems with an infinite number N of states

* The Monte Carlo method
Application to atomic liquids o® 00
— Start at configuration r(0) _ rand(0,1): random o )

number in range [0;1] 0
= lterate for k — probability of selecting
reverse move is identical
e select an atom i at random ® o0
e.g.i=int [N rand(0,1)+1] ® o ®
or do all atoms in sequence (X )
e attempt a move for this atom r(k)—-r; (k) l

e.g. X/ =x+[2rand(0,1)-1] Ar
y' =y, + [ 2 rand(0,1)-1 ] Ar o2 00
z/=z,+[2rand(0,1)-1] Ar ) ‘\.
o if V'=V[r'(k)] < V=VI[r(k)]

®
accept reject
then r(k+1) = r'(k) — accept /7\
else if rand(0,1) < exp{-A(V'-V)}
then r(k+1) = r'(k) — accept @ ® o0 or o .. o0
else r(k+1) = r(k) —>reject @ @@ o o
o0 o0
l ]

= Terminate when k=N steps

Step size Ar

e too large — small acceptance ratio } tune for an acceptance ratio of

e too small — slow sampling ~50% (can be done on the flight)
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* The Monte Carlo method

Moves for rigid molecules (e.g. molecular liquids)
= Random translation of the center of mass

= Random rotations about the center of mass (random changes in the Euler angles)

= Rotation of the coordinate system by the angles «, 3, and y

roll-pitch-yaw convention
2

y

_ _ " X
= Rotation matrix
X cosycos /Jcosa—sinysine  cosycos fJsina +sinycosa  —cosysin [ X
Y |=| —sinycos ffcos —cosysinez  —sinycos fsina+cosycosa  sinysin /||y
Z sin /7 cos & sin /Jsin & cos [/ z
coordinates in new system coordinates in old system

= Random step
o = [2 rand(0,1)-1] Ax
cos [ = [2 rand(0,1)-1] A(cos f3)
Y = [2 rand(0,1)-1] Ay

= 4 maximal displacement parameters Ar, Aa, A(cos [3), and Ay to be optimized
= Alternative: quaternions (q,9,,93,9,) with £g>=1

* The Monte Carlo method

Moves for flexible molecules

= Random translation of the center of mass

= Random rotations about the center of mass

= Other moves (may be difficult for macromolecules)

random atomic displacement
= hard degrees of freedom (bond, angles)
lead to high energies
very small
steps
or more clever
moves!

torsional move (frozen bonds/angles)
= high probability of steric clash

better idea: concerted
torsions by the same
angle
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The Monte Carlo method

Advantages

e Generates a Boltzmann-weighted ensemble of configurations
(canonical or NVT ensemble)
= thermodynamic observables can be computed as

Nsteps .
X : macroscopic observable
> x(r(k)) b

X =<x(r)>= . . .
(r) X : corresponding microscopic observable

steps k=1
¢ Easily extended to other isothermal ensembles (NPT, uVT, ...)

¢ No need for derivatives of the potential energy function (forces)

= may be computationally less expensive
= applicable to discontinuous potential energy functions

¢ Efficient unphysical (but reversible) moves can be designed for improved sampling
=e.g. reptation in a dense polymer  exchange of particles in a liquid mixture

oot Teve -

Limitations

S . + biased MC:
¢ Non-deterministic (no constant of motion) c:)ﬁieguration-biased
¢ No dynamic information (not if you are rigorous...) or force-biased

¢ The design of random moves with a reasonable acceptance ratio
may be difficult for some systems (e.g. macromolecules)

* Classical mechanics (Newton)
Newtonian formulation

¢ Valid in Cartesian coordinates systems only
e Newton’s second law for a particle (point mass) i

.. - equation of motion,
I’I(t) =m, Fi (t) 2nd order, no 1st order term

e Conservation of linear (angular) momentum in the absence of external force (torque)
d . d . (with respect to
F=0 = a(miri):() rxk=0 = a(mirixri)zo any origin)

¢ Potential energy in conservative force fields (e.g. isolated molecular system)
FO=F(r®) and $dr-F(N=0 = F()=-VV()

e Energy conservation in conservative systems
d N Gi(D

0= | dn-[ViV<r>+mi'r;]=%wua»—vuao»itjdrr}(r)mi‘r;(r)]

(S

potential energy

_d LR
-a[\/(r(t))+§i:5min O]= VO +KO)]

= classical dynamics for isolated systems generates a microcanonical (NVE) ensemble !

kinetic energy

e Deterministic, i.e. r(t,),r(t,), and V(r) fully determine the future of the system

e Time reversible, i.e. the change r(t) —-r(t) implies r(t+z)=r(t—7) foranyrt
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Classical mechanics (determinism)

__qz The inventor of classical mechanics
demonstrates the deterministic
nature of his theory
NE
coordinate ¥ 7
velocity

[ Classical mechanics (N-body problem and determinism)

We ought to regard the present state of the universe as the effect of its
antecedent state and as the cause of the state that is to follow. An intelligence
knowing all the forces acting in nature at a given instant, as well as the
momentary positions [and velocities] of all things in the universe, would be
able to comprehend in one single formula the motions of the largest bodies as
well as the lightest atoms in the world, provided that its intellect were
sufficiently powerful to subject all data to analysis; to it nothing would
be uncertain, the future as well as the past would be present to its eyes.

Pierre Laplace (1749-1827), “Philosophical essay on probabilities”

m) sounds like an early definition of classical MD ...

‘ just that the powerful intelligence turned out to
be a dumb computer !
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Classical mechanics (Lagrange)
Lagrangian formulation
¢ A generalization of Newton’s formulation for generalized coordinates systems

e Generalized coordinates:
Any set of 3N scalars (e.g. distances, angles, dihedrals, ...) sufficient to specify
the coordinates of all particles in the system

— 3N-dimensional generalized coordinate vector q so that r = r(q)
— 3N-dimensional generalized velocity vector ¢ so that ¢ = dg/dt

e Lagrangian function of a system (no explicit time-dependence for an isolated system)
— potential energy
L(9,q9) =K(a,9)-V(q)
I kinetic energy

e Lagrange equation of motion for the generalized coordinates and velocities

i aL(q’q) — aL(qaq) 2nd order,
dt aq oq no 1st order term
e Special case of a Cartesian coordinate system mass matrix

——  (diagonal, atomic
. . 1 T | . masses as elements)
Lir,v)=K@)—-V() = 57 Mr —V(r)

d(oL(r,r)) ... —  OV(r) oL(r,r) Newton
E( or J_M__ or B or ’»equationofmotion

e Useful for (i) enforcing constraints or (ii) including artificial dynamical degrees of freedom

Classical mechanics (Hamilton)
Hamiltonian formulation
¢ An alternative to the Lagrange formulation for generalized coordinates systems

oL(9,9)
aq
e Hamiltonian function of a system (time independent for an isolated system)
H(a, p[.dD) = p-4—-L(a,d) = p-4—K(q,d)+V(a)

e Hamiltonian variation

e Generalized coordinates q
e Generalized momenta p defined as p=

. oL(q,q oL(q.9) .. . .

dH = p-dg -0~ 2P aq - 2B g = 4.dp- p-0o
—— —
= p(Lagrange) = p (definition)

= H=H(q, p)

e Hamilton equation of motion for the generalized coordinates and momenta
oH(g,p) . and oH(g,p) o two 1st order
op =0 oq =-P equations

e The Hamiltonian function for a system with kinetic energy depending quadratically
on the generalized velocities (most cases) represents the total energy of the system

if K@.d)=2.c(@¢ then p=2c()g and p-q=2K(,4)

— potential energy
= H(Q, p)=p-q-K(q,0)+V(q) = ||<(q, p)+V(q) } total energy

kinetic energy
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Classical mechanics (Hamilton)

Hamiltonian formulation (continued)

e Special case of a Cartesian coordinate system

1
H(r,py) =K@, +V() = Epf M~ 'p, +V(r)

OH(r :
('P) _ppp = ¢ ang P VO o
op, \ ) or or \ )
definition of Newton
the momentum equation of motion

e Powerful formalism for

(i) connecting quantum mechanics and classical mechanics
(Hamiltonian operator versus Hamiltonian function)

(i) derivations in statistical mechanics (total energy is a central quantity)

* Molecular dynamics (principle)

= Making a ,,movie* of a molecular system
by integrating the classical equations of motion
(usually Cartesian coordinate system
— Newton formulation)

time t L
velocities

coordinates

——— forces ——

time (t+A4t) new velocities

A

A
new coordinates

N oala |la
o o | o] &
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Molecular dynamics (integrator)

Integrator

= algorithm to integrate the classical equations of motion based on a finite timestep At
e.g. Euler, Verlet, leap-frog, velocity-Verlet, Beeman, Gearr,...

= Properties: For molecular dynamics:
Computational costs, memory requirement unimportant
Number of force evaluations per step no more than one
Accuracy for long timesteps should be good
Momentum and energy conservation should be satisfied
Time reversibility should be satisfied
Compatible with thermostatting should be satisfied + uniform in time
(constant
A primitive integrator timestep)

= Alder & Wainwright 1957 — first MD study of hard spheres in the condensed phase
pairwise 4 ©
energy

solid liquid

distance

= Integrator

(sampling is L@ Caliicad J

retuntom = SasR T @ & oS — o285} AN

notwork for e

soft potentials) locate next colliding pair compute coordinates update velocities of colliding
and determine collision time at collision time particles (elastic choc)
* Molecular dynamics (leap-frog)

The leap-frog integrator
= Taylor expansion of coordinates and velocities at t+A (timestep A)

— rt+A)=r()+ (t)A+%a(t)A2+O[A3]

— Vt+a)=vH)+ab)A +%b(t)A2 +0[A%] b(t) acceleration

= Velocity propagation derivative (no
official name)

1 1 1 2 3
(t+§A)= (t)+§a(t)A+§b(t)A +0[A°] | +

1 1 1 s ot |
(t_EA)_ (t)—Ea(t)A+§b(t)A O[A’]

(t+%A) = (t—%A)+a(t)A+O[A3]
= Coordinate propagation

1 1 1 2 3
r(t+§A):r(t)+§ (t)A+§a(t)A +0[A°] | +

leap-frog
) 1 1 , X equations
r(t_EA) = r(t)—a (t)A+§a(t)A -O[AT] | . (third-order

accurate)

r(t+%A):r(t—%A)+ (H)A+O[A’]

time shift |:
by ¥4 F(t+A) = r(t)+ (t+%A)A+O[A3]
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* * Molecular dynamics (leap-froq)

The leap-frog integrator in practice
v(t +%At) =v(t —%At) +a(t)At

rt+At)=r(t)+v(t +%At)At

force calculation

t-At/2 t t+A4t/2 t+4t t+34t/2 t+24t

Coordinates and velocities are not available simultaneously
= to get the kinetic energy at time t, the corresponding velocities must be back-calculated
1 } At in practice:

v(t) = l{v(t _lAt) +u(t+=At) [+ —[a(t—At)—a(t+At)|+O[(At)*]  average the
2 2 2 16 kinetic energy

* Molecular dynamics (energy conservation)

Energy conservation

= liquid argon (256 atoms), p=1.396 g/cm?3, T,;=100K, Velocity-Verlet, At=10 fs

50 Kinetic energy okl 25280
e . assassl total energy
-— — 5 -1 -
8K—2.SI ] T 2 o |
" =
g ol Z 25505 ]
g @ o b ;@_ﬁsm I | 3E=0.006
sv=25] § T 3 e .
g 5 ; -0 £ a
potential energy 255,310
B — - 28315 56 i % F—
Time (ps) Time (ps)

= the kinetic and potential energies fluctuate significantly

= the total energy is essentially conserved

e in the absence of non-conservative forces (not always true in practice e.g. cutoff noise,
constraints applied with finite tolerance !), it should be exactly conserved in the limit At—>0

e at finite At, energy conservation (fluctuations, drift) is limited by the integration accuracy
— intrinsic accuracy of the integrator (neglect of terms of O[(At)"])
— timestep size e.g. 6E = 0.006 (At=10fs), 6E = 0.002 (At=5fs), and 6E = 0.040 (At=25fs)
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Molecular dynamics (initial conditions)

Initial configuration

= The choice of an initial configuration r(0) is unimportant if the equilibration time preceding
the simulation is longer than the configurational relaxation time for the system
(i.e. the time required to loose its configurational “memory”)

System type Relaxation time (indicative)

as ~1ps
pure liquid ~10- 100 ps acceptable
small organic molecule in solution ~10 ps—1ns equilibration times
short peptide in solution ~10-100 ns
lipid aggregation in solution ~10-100 ns
protein in solvent ~Tms—-1s

= When this is not the case, the initial (solute) configuration must be chosen carefully
(e.g. experimentally available from X-ray crystallography or NMR structure determination)
Initial velocities

= The exact choice of initial velocities v(0) is generally unimportant (except for determining the
initial system energy) — because the velocity relaxation time for most systems is short (~ps).

= Initial velocities are generally assigned randomly from a Maxwell-Boltzmann distribution
at a given temperature (statistical mechanics of NVT ensemble, system without constraints)

1/2 P
m; m;Viy
p(vy) = exp| — -
27k, T 2k, T initial temperature

* Molecular dynamics (bond constraints)
I
H H
He ¢
ANIPZN
/C\ H Note:
“N c United-atom models
| | also eliminate the
aliphatic CH bonds!
flexible bonds rigid bonds
— Maximal frequency imposes At = 0.5-1 fs — Maximal frequency now only imposes At = 2 fs
— Bond vibrations are weakly coupled to — Narrower spectrum of frequencies
the system (poor exchange of kinetic energy)
— Bond stretching frequencies (~1000- — Constraints are associated with no
3000 cm') are above kgT / h (200 cm") kinetic energy / heat capacity / entropy
and are thus in the quantum-mechanical (better representation
ground state (but: classical oscillators get of the quantum-mechanical state!)

kgT equipartition energy!)
Angle constraints? — not recommended (except in fully rigid molecules)

dynamic artifacts thermodynamic artifacts
(too few dihedral transitions) (wrong dihedral angle distribution

E(p) U - metric tensor effects)
- Y 7 P®)
[N\

| k a /ﬂ‘ (no interactions) 1/ \\

T 4 But: K:K(., ) 0 i g
0 ¢ v -T 0 1!C(P

14
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Molecular dynamics (constraints in generalized coordinates)

Application of constraints by Lagrangian dynamics
= elegant but impractical for all but the smallest systems
= principle
free (3N-N,)-dimensional L(q,¢:0)

generalized coordinate vector q
3N generalized / =K(0,6;Q)-V(q;Q)

coordinates
\ N.-dimensional \ /

constrained  generalized coordinate vector Q parametric
dependence
= very simple example: united-atom butane with one torsional degree of freedom

D : | PN
K(p;b,0)= Em((/) bsin 9)

d (6L(<0, «p;b,e)j _ 0L(p,g:b,0)

dt oLl op
.. . L dV(p)
- points A,B, and C are fixed = = —(mb? sin” 0) 1 V

- bond lengths and angles _ o
are constrained can be integrated in time

given V(¢), ¢(0),and ¢(0)

= Lagrangian and derivatives become quickly very complex for large systems !
= Lagrangian dynamics is difficult to apply for all but the smallest molecular systems...

Molecular dynamics (constraints in Cartesian coordinates)
Leap-frog + effect of constraints

= constraint equations

o (i) =1, —dg, =0 . k=1.N, o\.k/-k\.
K

= Lagrange’s method of undetermined multipliers 1

d Zri t a & e add a “zero-term”
m ( ) = V({n})+zlk (t)o-k({r]})i| t\t/)Vthed;gotentiaI etnergy
k=1

" ar
= Constraint forces

N, oo ({r (t)}) N, For eachfconstraint k, A
c K i traint t t
FrO=-2_k O—an - =22 1L (D85, =61 )i, () Somnacied atome k1 an k5.
k=1 rl (t) k=1 and is along their connecting vector
= Unconstrained step (leap frog)

r'(t+At) = r (t) +Vv, (t— At/ 2)At + (At)> m'F"(t)
= Effect of the constraints
re(t+At) = r(t+ At) + (At)> m ' F (1)

. .. . . C traint ti |
— Coordinates after constraining should satisfy constraints b s liavd

fulfilled at full timesteps!

(R (e A +(A0 M FA O - (A mIFS )] —di =0, k=1.N,

= That is...

N, 2
{rkfﬁz (t+AD)-2(A0 Y L1, () [mk’]‘ (G =S )+MI (S, =6, )}} ~d;,, =0,
k'=1 .
k=1..N,
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Molecular dynamics (SHAKE)

Solving the system of equations: the SHAKE procedure

= set of N, coupled non-linear equations must be solved (tricky !)

N, 2
{r;]‘ﬁz (t+ At —2(At)* D 1,.(1) ” (t)[m?(@lk; ~0,)+ m, G )}} —dg, =0,
k'=1 - -
k=1..N

c

— Approximation 1 : assume that the constraints are uncoupled (only retain k=k’)
uc 2 -1 -1 2 2 _
e (- AD=2(A0 | (O 1, O m +m |1 =d?, =0, k=1..N,
= Approximation 2: linearize the equation (neglect terms in I2)

[re +At)]2 —d2,

Py - — , k=1..N
4(At) [mk] +m, Jrklkz (t)-rklkz (t+Al)

C

Ik t=

= Coordinate resetting
rkc] (t + At) = rkL:C (t + At) - 2(At)2 m;;1|k (t)rklk2 (t) The atoms are moved in

the direction of the

e (t+At) = R (t+ A +2(At)* m 1, (Dr,, (1) original bonds
%* % Molecular dynamics (SHAKE)
The SHAKE procedure in practice The lightest atom moves

. most; satisfy Newton’s third law
= for a single bond

. K ) )
._. . ............. \ EICTITTITIr ,
free-flight step coordinate resetting
(unconstrained) (SHAKE)

= for multiple bonds: iterate until all constraints are fulfilled within some relative tolerance

SHAKE w
C A A m A e AT A R

after free-flight step relative geometric

" . tolerance e.g. 104
= velocities must be corrected to remove the component along the constraints

1 _ (conserves total linear
v(t+ EM) =[r(t+At-r()]/ At and angular momenta)
= forces must be corrected to include the constraint forces

uc ue (closely related to the
F(t)=F"“ )+ M[r(t+At)—r*(t+At)] /(At)’ Lagrangian multipliers )
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Molecular dynamics (SHAKE)

SHAKE failures

= If (one of) the atoms move too much in a single timestep, then SHAKE does not converge!

/‘\_1
/
4
//
/ )
/7
) // free-flight step
S , (unconstrained)
\ /
\ /
._‘d .............. .

= This is usually an (early) indication of a bad simulation setup (rather than a
problem with SHAKE)
= Shake failures frequently occur after starting a simulation from a high-energy
configuration, e.g. by skipping energy minimization of after changing the force
field

* Molecular dynamics (constraints)

Constraint versus restraint
= two very different concepts !

restraint: constraint:

¢ potential+kinetic energy e no energy contribution

e kT equipartition energy (neither potential nor kinetic)

e frequency included in e metric tensor effects
dynamics (—timestep!) e no vibration

Other type of constraints
= angle constraints should be avoided in flexible molecules with bond constraints

= in fully rigid molecules (N atoms) the geometry is generally enforced by
3N-6 distance constraints

= SHAKE can be generalized to other type of internal coordinates (e.g. angle,
dihedral angle, radius of gyration, box dipole moment, RMSD, ...)

Alternative to SHAKE
= M-SHAKE (matrix inversion)
= SETTLE (analytical non-iterative version for triatomic molecules)

= RATTLE (SHAKE analog for the velocity-Verlet integrator)
= LINCS (variation of SHAKE)
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*

Molecular dynamics (timestep)

Choice of a timestep

reasonable

= Rule of thumb: At=7/10

“N ¢ T

too short
— poor sampling

too large
— poor energy conservation
— program overflow or failure

where 7 is the period of the fastest motion in the system

System Motions Timescale Timestep
Atomic liquid translation, <1000 fs
(e.g. argon) vibration at contact (from LJ curve) 10 fs
Molecular liquid idem
(rigid molecules) + rotation (libration) <500 cm™ (u-wave) 5fs
Flexible molecules idem
(rigid bonds) + torsion

+ bond-angle vibration <2000 cm™ (IR) 2fs
Flexible molecules idem

+ bond-stretching vibration <3000 cm™ (IR; for C-H) | 0.5-1fs

*

SOLUTE

Initial configuration
(X-ray, NMR, model)

[EM (vacuum)]

immersion l

® @
EM (fixed soute)

series of MD
(restrained solute),
4

e
1 1

-_ initial velocities

i

Molecular dynamics (setup)
Starting a simulation

SOLVENT

e

N

Initial configuration
(e.g. lattice)
Correct density

CEEEEEE]
LA AR AR
LA AR AR
LA A K AR
L]
LR ]
CRCRCRCRCRCKC]

§ EM

P 8 long MD (~ns)
remove overlapping ’ 4

solvent molecules Va88% 20
® ®
$30%%3
2200 95 %
99 22 @ @o
XL Ad

Standard
equilibrated
configuration

progressive
krestri,and TorEt
4

MD (equilibration)

—-

,  system properties
899 should reach stable values

Final
configuration
and velocities

MD (production)
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*

Application

Stochastic dynamics

= MD simulations with an implicit representation of the solvent (computationally cheaper)

Explicit solvent (MD)

®> 000 e ®®
Wate 9% e

- ® 989 © 98
10 water 2ad »9,
molecules per @@ CPS
solute atom ©8 88
) ® D

% ae He%a

©909% e 9

Solvent effect on the solute

mean effect

%

(electrostatict+hydrophobic)

stochastic collisions

SOLVENT —p

(often assumed uncorrelated

Implicit solvent (SD)

solvent is only
interesting for

its mean effect on
the solute

7% 23% (gas phase)
44% 56% (liquid)
stochastic (random)
/ coII|S|on

in space and time)

frictional drag
(velocity- and possibly
coordinate-dependent)

*

Stochastic dynamics

Langevin equation of motion

anean (T (t))

mean force

mii*l- =

e incorporates the mean
effect of the omitted solvent
¢ defines a potential of mean
force (PMF)

6V mean (r)
or,

ymean: is actually
a free energy

Fimean(r) - _

e accurate solvent-averaged
PMFs are very difficult to
determine (models are
always more or less
empirical...)

+ R;(t)

stochastic force

/\Jfrictional

e Gaussian probability distribution

p(R,) =270, )'”zeXp( “)

e common approximations (for

components R, and R of the 3N-

dimensional vector R)
- zero average <R, (t)>=0

- no correlation in space and
time

<R, (0R,(t)>=0,0,,5(t)

aap’

- no correlation with
previous atomic velocities

<t (O)R,(t)>=0 for t>0
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/
v

velocity

(drag) force

equation of motion,
2" order
with 1st order term

m;yti(t)
frictional force

e the collision frequencies y;
(unit: inverse time) may be
assumed constant (y) or
depend onr (e.g.
proportional to solvent
accessibility of atom i)

e the value of y may be
estimated from Einstein’s
or Stokes’ (~spherical
solvent) laws for the pure
solvent

mslv7 = kBT ) = 67Z77s|vaslv
slv
D, : diffusion constant
Ngy - Viscosity
ag, :radius
My, : Mass

slv -



Stochastic dynamics

fluctuation-dissipation
Steady-state balance theorem

= The stochastic forces introduce energy

o } balanced when o, =2m_k,T, 7,
= The frictional forces remove energy

= although plain MD (no thermostat) samples a microcanonical (NVE) ensemble,
SD samples a canonical (NVT) ensemble at a temperature T, determined by the
choice of the y,and o,

= stochastic and frictional forces influence the dynamics of the system, but not
its thermodynamics (compared e.g. to thermostatized MD; as long as the
stochastic and frictional forces are non-zero and finite...)

Brownian dynamics

= Limiting case for high viscosity
= Neglect the inertial term in the Langevin equation

mE = F™(r() +R O~ myfit) = 0

= mi o=y [F™rm) +R@O] et

Stochastic dynamics

Example:

e Simulations of cyclosporin A (CPA) - cyclic undecapeptide with immunosuppressive propeties
e MD: CPAin vacuum / CPA + 632 H,0O / CPA + 591 CCl,

e SD: CPA in vacuum / CPA + y=91 ps™' (H,0) /y=24 ps-' (CCl,) [about 10 times less expensive]
¢ At 300K, 1atm, GROMOSS87 force field, 40 ps

=

A
Ob Me )\0 Me OdMeCHOH
N OV Yy pa

4<_/c —N—CH—C-—N—-CH—C—N—CH—C—TH B

I i
Me—T c=0 € H-bond donors
0=C¢C L_Me H-bond acceptors
b L,
E I!IH é:of
C—CH—NH—C—CH—N—C—CH—NH—C—CH
ARV PSS hg

MeBmt-Abu-Sar-MeLeu-Cal-MeLeu-Ala-D-Ala-MeLeu-MelLeu-MeVal
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Stochastic dynamics

H-bonds: [% occurrence along the simulations]

Donor-acceptor
A a
A b
B C
B d
C e
C f
C c
D c
D d
E g
E h
Mean
Explanation:

MD MD SD SD MD
vacuum CCl, CCl, H,O H,O
84 87 73 1 0
0 0 0 8 0
61 30 31 68 23
31 58 56 40 28
88 65 72 96 72
0 0 6 1 0
0 0 5 3 0
36 49 54 20 0
89 49 44 67 54
69 60 67 78 1
2 0 0 0 0
42 36 37 36 17
X 7 X 7
GOOD BAD

Stochastic dynamics

The simulations use the same force field, calibrated for use with explicit-solvent

simulations

= In the SD simulations, the mean effect of the solvent is not included

CCl4: mean effect of solvent on H-bonds is negligible
= MD and SD give comparable results

H20: solvent competes efficiently with intramolecular H-bonds
= SD and MD/vacuum give too strong intramolecular H-bonds

Dynamical properties:

Cit) 9-MeLeu -Cy
10, !

v+« MDn vocus
—— MDin CCI,
== SDepy,

— = SDug
=== MO inH0

&
TIME [ps)
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position autocorrelation function

MD/vacuum: oscillatory
(harmonic vibrations)

All others: damped random
fluctuations



Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Lecture 529-0004-00

Herbstsemester 2019

www.csms.ethz.ch/education/CSCBP HCI D2

Tuesday 9:45-11:30 a.m.

LECTURE 4 (WEEK 5):
Boundary conditions

Four basic choices defining a molecular model

interaction

N
W,

= CLASSICAL
FORCE FIELD

= SEARCHING ©e oq |© 9
= SAMPLING ((0

= SIMULATING | [® € & [®

degrees of freedom
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b ®
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d
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* Types of boundary conditions

The term boundary condition applies to any global constraint
(i.e. concerning the whole system) enforced during a simulation

A hard boundary condition is a constraint imposed on an instantaneous
observable (i.e. enforced at all times during the simulation)

A soft boundary condition is a constraint imposed on an average
observable (i.e. enforced on its average value over a given timescale 7).

BOUNDARY CONDITIONS
SPATIAL THERMODYNAMIC GEOMETRIC
(— simulated sample) (— simulated ensemble) (— internal coordinates)

e size (volume) e constant E (H,L,R) or constant T « bond-length constraints

e shape e constant V or constant P « structure factors (X-ray)

e surroundings o constant N or constant p « inter-proton distances (NMR)

e boundary e constant linear momentum » J-coupling constants (NMR)

e buffer region e constant angular momentum °...
W if applied, should be hard
W if applied, should be soft

* Spatial boundary conditions

= size, shape, surroundings, boundary and buffer region of the simulated sample

The sample size is often prescribed by the system of interest (e.g. size of a
biomolecule, need for adequate solvation, size of a crystallographic unit cell),
in balance with the available computational resources (limit at ~104-10° atoms)

= when simulating condensed-phase systems, one generally wants to model
macroscopic (bulk) properties by simulation of a truly microscopic system

Problem:
MICROSCOPIC SAMPLE one of the major plagues in
[ \ molecular simulations...
FINITE-SIZE EFFECTS SURFACE EFFECTS

— Simulated properties may heavily depend on specific choices
made in spatial boundary conditions
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* Finite-size effects in microscopic samples

Macroscopic sample Microscopic (simulated) sample
/solute
L —effective solute
interaction range
1| water _ 8x8x8 nm?3 water
— interaction range is bulk properties do — interaction range goes mm finite-size
not depend on effects...

entirely within sample  sympie size and shape... beyond sample
finite-size effects are dominated by electrostatics (longest range)

e.g. to get the hydration free energy of a Na* ion within
kT (2.5 kJ-molt) requires a droplet of ~28 nm radius (~3'000'000 molecules) !!!

= Surroundings as vacuum — lack of dielectric screening
vacuum

no solvent... @ @ i \% for water. £.=80 !

some solvent ((}} \ K \ full solvation

— electrostatic interactions (ion pairing, hydrogen bonds, ...)
are overweighted in the sample

* Surface effects in microscopic samples

Macroscopic sample Microscopic (simulated) sample

perturbed layer at the surface:
~10 molecular diameters

L bulk Bl
1 | water, ~3.3-102°> molecules 8x8x8 nm?3 water, ~17°000 molecules
— ~2.8-10"8 perturbed molecules — ~12’400 perturbed molecules,
i.e. ~1 out of 10°000°000 (negligible) i.e. ~75% (majority !)

= Interface to vacuum — surface tension effects

vacuum

— tendency to minimize the surface area (sphere)
— increased pressure in the sample (compactness)
— effects become very large for microscopic samples

= Interface explicit-solvent to vacuum

— solvent evaporation
— inhomogeneous solvent distribution at surface (= bulk)
— preferential orientation of solvent dipoles (= bulk)
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*

Spatial boundary conditions in the absence of explicit solvation

Container with

Vacuum boundary

Implicit-solvent model

hard (reflecting) walls conditions (polar & non-polar)
vacuum vacuum N
° N e
°*® 00 c
o ® oo
A\
finite-size
effects: large large no (in principle)
surface
effects: large large reduced
sampling: MD SD [collisions, drag, SD [collisions, drag
Nno mean solvation] mean solvation]
comment: OK for gases — spherical shape difficult to design

*

close to ideality

— compactness
— too strong electrostatics

NOT RECOMMENDED !

and parameterize,
parameter-sensitive,
cheap
BETTER...

Spatial boundary conditions in the presence of explicit solvation

Solvent droplet (or layers)
in vacuum

Droplet with
implicit-solvent model

NN
e

Periodic boundary
conditions (PBC)

finite-size

effects: reduced no (in principle) reduced

surface

effects: yes (solvent-vacuum) reduced eliminated !

sampling: MD (evtl. stochastic MD (evtl. stochastic MD
boundary) boundary)

comment: — solvent evaporation difficult to design — anisotropy

— inhomogeneous svt
distribution at surface

— preferential svt dipole
orientation at surface

— finite-size effects
RATHER CRUDE !

and parameterize,
parameter-sensitive

— artificial periodicity
— lots of solvent
— finite-size effects

I

MOST POPULAR BOUNDARY CONDITIONS
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Distortive effects of vacuum boundary conditions

e.g. hen-egg-white lysozyme (protein, 129 residues)

X-ray structure

deviation from
X-ray structure

radius of
gyration

solvent-accessible
surface area

e.g. Lennard-Jones soft-wall

>

VSW( r)

wlace area

sible su

after 1ns, e\x“bllicit svt (PBC)

after 1ns, vacuum

vacuum

= larger deviations

explicit svt from experiment

. n . \ s
0 200 400 600 80D 1000

time (ps)
—_ ‘6
=
U1 explicit swt =too compact shape
i e el vacuum
. o 253 460 600 860 l"JIOD
tme (ps)
2000 | i '
8000 o =>more spherical shape,
explicit svt
reduced surface area
___vacuum_

= +too stable salt bridges
+ too stable H-bonds
+ slower dynamics

Soft-wall potential

Q

.:;. %c.:.‘yacuum \ S
00 .
-.o.'o ‘.'.' or o’o
?:0:.0.0 " So%
“reenl’ "'
lo A
» I

sz(r; ro) = C12(ro

-1 =Gy, -1
/'

reff

e.g. Lac headpiece-DNA complex

LJ parameters for
water-water interaction
= Confines sample and prevents solvent evaporation
= Mimics dispersion interactions with omitted solvent

= Does not prevent inhomogeneous solvent distribution at surface
= Does not prevent preferential solvent dipole orientation at surface
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Surface dipole orientational potential

::&?‘} :‘/acuum \\\\\\E\\

e.g. water droplet = undesired
+ soft-wall effects
+ implicit svt outside

= correction potential
" (applied to molecules

\ in surface shell)

0 1
cos ¢ cos ¢

= Prevents preferential solvent dipole orientation at surface

= Partially prevents inhomogeneous solvent distribution at surface

o V(cos 6)

[N
o
=

g

= Rather ad hoc

= Poorly transferable (takes time to calibrate; specific to one continuum model;
has to be redone for different droplet sizes or solutes in the droplet
[especially if charged])

Extended wall and stochastic boundary conditions

,.;:-5.-.'.-.:,%\/aCuum \\\\.\.‘\\}}\}\ \§

.....

= Extended-wall (buffer) region
.......... — atoms/molecules are positionally restrained

in the extended-wall region
— apply Langevin equation (SD)
rather than Newton equation (MD)

e.g. simulation of an

= Possibly apply surface dipole-orientational enzyme active site

potential in the extended-wall region (surrounded by vacuum
) ) or fixed protein atoms
= Confines sample and prevents solvent evaporation and possibly solvent)

= Partly remedies inhomogeneous solvent distribution at surface

= Partly remedies preferential solvent-dipole orientation at surface (with
dipole-orientational potential)

= Introduces thermostating through the surface (with stochastic boundary
conditions; microcanonical—->canonical)

= Difficult to calibrate
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o Implicit-solvent models
N

For solutes of arbitrary shapes:

A\
= Electrostatic component
— distance-dependent dielectric “constant”
— numerical solution of the Poisson(-Boltzmann) equation, generalized Born (GB)
model, mean-spherical approximation (MSA), or integral equations (RISM)
— Langevin dipoles

= Non-polar component (van der Waals + hydrophobic)
— often related to the total solvent-exposed surface area (SASA) of the solute
— sometimes empirically related to the solvent-exposed surface area
sorted by the type of contributing atoms

= To be used together with SD

— stochastic collision sometimes made proportional to the
— drag force solvent-exposed surface area of each atom

— same equilibrium properties, improved dynamic properties

KEY ISSUES: validity of macroscopic continuum electrostatics at the microscopic
level, exact location of solute-solvent boundary, atomic parameters (charges, radii,
surface-area parameters), solute dielectric constant, surface-area coefficient ...

o Implicit-solvent models

§\§§»‘ & [hide the boundary problem
For a spherical droplet: \:::&:.\ from the solute — but: problem

= Electrostatic component
— Kirkwood reaction field (spherical droplet)
— Friedman image-charge method

= Non-polar component

— soft-wall potential

— extended-wall region

— boundary dipole-orientation potential

= To be used together with MD
— possibly: stochastic boundary conditions

KEY ISSUES: same as before (+singularity at boundary)
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Periodic boundary conditions

¢ The simulated system (solute + solvent)
consists of particles within a reference
computational box of space-filling
shape (e.g. cube)

¢ At each simulation step, particles exiting
the box through one face are translated
so that they reenter the box through the
opposing face

e This procedure mimics a system
consisting of an infinite lattice of
periodic copies of the reference box
(—no interface to vacuum!)

¢ Only the coordinates of particles in the central
box are actually stored in the computer

Achille kindly illustrates
the concept of periodic
boundary conditions

*

refirs)r:\ce

o+ |
Bl oo oo ]
. I g
| &) i i
S IS RS
I R
Yo o ot
Q dle Jl9

Periodic boundary conditions

In principle, each particle in the reference box
has non-bonded interactions with all other

particles in the reference box and all their replicas

in the periodic system

— interaction may be evaluated using
lattice-sum methods (Fourier series)

In practice, the non-bonded interaction is often
truncated at a certain cutoff distance R

— interaction are evaluated using a double sum
over particles with a distance smaller than R
(in general smaller than the half box edge;
selects a subset of the minimum-image pairs)

Covalent interactions are short-ranged and only
act between minimum images
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* Periodic boundary conditions

Common box shapes (space-filling):

¢ Rectangle: for elongated macromolecules,
but watch out if the molecule rotates

Fix: roto-

translational
constraints

Rectangular

e Hexagonal prism: idem (may be used for DNA)

A

.

Triclinic

e Cube: isotropic, but requires a lot of solvent

¢ Truncated octahedron: almost isotropic, and
requires less solvent for spherical molecules

Cube

T v=L3 V=L3/2 needs 20%
u! Ri=|—/2 Ri=\/3|_/4 less solvent
=V/Vs19  =>V/IVx1S

e Triclinic: for crystal simulations and, more
recently, for implementing any (optimal) box Pcgnil gl
shape into a single simulation code

[ as shown by Bekker, JCC 18 1930 (1997), a simulation in any
box shape can equivalently be carried our in a triclinic box ]

Periodic boundary conditions

Examples:

Truncated octahedron

Rhombic dodecahedron

collagen peptide prion protein in a

in a rectangular box truncated octahedron

[possibly not so clever]
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* Periodic boundary conditions: practical considerations

Solvating a macromolecule  \jinimum distance solute-to-wall should be chosen

large enough
= when applying a cutoff R:

— at least R/2 — better at least R
= = %
- )
b2 | £ @Mﬁ %
2| 28 | & 2 L | &
no solute atom no solvent molecule
. L. interacts with solute atom interacts with solute atom
Restoring the covalent connectivity in periodic copy in two solute periodic copies
Macromolecules may drift in the periodic
3 zii'g z;a system
= need to restore the covalent connectivity
n : before applying analyses
g % % take successive
minimum-images
2 IR ) following covalent bond: %
* Periodic boundary conditions: practical considerations

¢ Periodic boundary conditions is probably the best remedy for surface effects
= There is in effect no system surface (pushed to infinity)

Note that in some cases, surface effects may be physical.
E.g. ionic solvation free energies are affected by the water-vacuum interface
potential, which is not accounted for under periodic boundary conditions

e But it is only a partial remedy for finite-size effects in simulations of solutions
(these effects are dominated by long-range electrostatic interactions)

— : solvent polarization
simulated sample
under PBC

-:\\‘ l ‘//’:‘ ideal macroscopic
r— C - system at infinite
vj,/ I ‘\\\‘:‘ dilution

’ l' A L3

simulated droplet
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* Periodic boundary conditions: a word of warning

= Periodic system implies finite concentration e.g. 1 solute + 1000 water
— 0.05 molal solution (charge 10 e — 5 molal ionic strength !)

= Yet, this is an approximate model for a real solution at this concentration

e L ]
o® [o® lo® .. ® : e
o® o® |6® | Anisotropy = '. . @
‘P. o® |s* | No interaction at L/2 Ce o

= This is an approximate model for the counter-ion distribution
around a macromolecule o
7 £ non-neutral solute
) a + counter-ions

5

- ol
non-neutral solute S %+ S
+ background I R

= Artificial anisotropy and periodic long-range correlations
(range of interaction longer than box size)

= Not possible to reproduce correct (non-periodic) correlations on
lengthscales larger than the box size (e.g. undulations in a membrane)

¢ Almost OK for the simulation of crystals
= only neglects static & dynamic disorder

e Sometimes needs too much solvent (very large systems)

e Probably still the best nowadays
but: — keep restrictions in mind, use large enough boxes

Thermodynamic boundary conditions

e Thermodynamic systems may be classified according to what they are allowed
or not to exchange with their surroundings

e If the properties of the surroundings are homogeneous and time-independent,
the system will ultimately reach a state equilibrium, i.e. characterized by
system properties that are also homogeneous and time-independent
— it makes sense to characterize this equilibrium state using a specific choice of
independent variables, selected either because they are strictly conserved (constant)
or because they match (on average) the corresponding (given) value in the surroundings

— for a one-component one-phase system with work exchange exclusively
involving isotropic volume variations, we need three independent variables

exchange PARTICLES PV-WORK HEAT
of /7727222222223 7/////////////////////4
/ é X = specific
g “form” of energy
NO closed isochoric adiabatic g (energy, enthalpy, ~ Note that open
N = Nip; 7 Hill ener implies isothermal
7 gy . f
é or Ray enthalpy) and isobaric
z Z o
- Py
partices | work @ MW heat =
OISy AR
Y
4 = molar value " .
open isobaric ~ isothermal of a specific " form” (e'XIC eau CI)'
YES ] of free energy particles equalizes
H = Hext P= Pext % T= Text Pand T)
5 (e.g. Helmholtz free energy
- - or Gibbs free enthalpy)
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Thermodynamic boundary conditions

e Things get more complex when one considers the following generalizations

— the system is not confined Note: | am not sure this

Then P=0 and E.g. the solar makes sense in thermodynamics,

V is undefined system! as non-confined systems should
always “evaporate”

— the volume variations are anisotropic

Scalar V and P related quantities
become tensors

— the system exchanges work other than PV-work with its surroundings

E.g. electrical work (electrochemistry)
or light (photochemistry)

— the system has multiple components (or phases)
Note: semi-open

The composition N The system may be_s_emi-open systems are still automatically
becomes a vector (i.e. open to a specific type of isothermal, but not necessarily
particles only) isobaric (osmotic pressure)

— other boundary conditions (or constraints) are introduced

E.g. wall within the system, external (electrical or gravitational) field value,
stoechiometry constraint along a reaction, fixed value of the extent of reaction, ...

— non-equilibrium situations are considered

If the long-time behavior of the system is not yet reached
(relaxation after a perturbation) or if the
boundary conditions are inhomogeneous or/and time-dependent

e But let's forget about all this for the moment...

. * = unofficial
Thermodynamic systems names
« This leads to eight types of equilibrium thermodynamic systems ‘31" 22°
boundary name of the natural choice of  “generalized”
conditions system independent variables energy
microcanonical NVE 'g;irrg?,' E
canonical NVT
isoenthalpic-isobaric NPH enthalpy H =E+ PV
isothermal-isobaric (Gibbs) NPT
\
. . Hill _
grand-microcanonical* pVL energy == E—#N —
7
grand-canonical uvT
R
. . . Ray*
grand-isoenthalpic-isobaric* nLPR enthaipy R=E+PV —uN [
e ]
. Size unadefrineaq, 1.e.
generallzed MPT not really a valid choice J
— In green are intensive variables (local observables): value
matches the corresponding (constant) value in the surroundings as T=T... better

extr

— In red are extensive variables (subsystem-additive observables): use grand-canonical
value is strictly conserved (constant)
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Sampling/simulation

methods and generated ensembles

e Ensembles generated

boundary
conditions

O

ﬂ
;

1O L
:

name of the
system

microcanonical

canonical

natural choice of

independent variables

isoenthalpic-isobaric

isothermal-isobaric (Gibbs)

grand-canonical

NVE  plain MD

sampling/simulation

method

NVT MD + thermostat, MC, SD

NPH  MD + barostat

NPT MD + thermostat + barostat

uVT  grand-canonical MD

Thermodynamics

¢ In thermodynamics, we consider

— macroscopic systems, i.e. the so-called thermodynamic limit

— processes resulting from a change in the boundary conditions (i.e. in their type or/and
in the value of the independent variables) and connecting two equilibrium situations

The goals are
to quantify

The associated
change of the
dependent variables

The direction
of spontaneity

The exchanges
(heat, work, particles)
with the surroundings

Note: the latter usually
depend on the path of
the process (boundary
conditions, reversibility);
the two former do not

— for the equilibrium situation itself, the boundary conditions are largely irrelevant
in the thermodynamic limit

E.g. whether you specify a state by N,V,E or N,P,H or N,V,T or N,P,T is up to you

— this is no longer the case in statistical mechanics...
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Statistical mechanics

e |n statistical mechanics, we consider
— all system sizes, i.e. not necessarily the thermodynamic limit of macroscopic systems
— the “composition” of equilibrium situations in terms of microscopic configurations

coordinates and momenta of
all particles in the system X= (r, p)

e The key quantities are
— the probability distribution of the microscopic configurations in the ensemble

@ ®
@4?& ./.\Qf - @ Thermodynamic (equilibrium)

@ % 8 8) state with boundary conditions XYZ
® % @ & ® ¢

Hamiltonian
(total energy)

probability of each configuration [normally written H]
pXYZ (X) in the ensemble (normalized!) /
E(X)
e.g. microcanonical  O\ve (X) ~ 5(£(X) — E) e.g. canonical Oyt (X) ~&Xp| —
NVE NVT KT
— microscopic observables describing a given property in each microscopic configuration
e.g. microscopic e.g. microscopic
(instantaneous) T(X) (instantaneous) Q)(X)
temperature pressure Exceptions:

free energy, entropy,

e Most macroscopic observables are then obtained by ensemble averaging chemical potential
(discussed in later lectures)

A= AXY,Z) = [dX py, (X) AX) = (A(X),, inthe canonical P = P(NLV,T)=(@(X)) -

NVT ensemble

Statistical mechanics

e We can also look at the corresponding fluctuations and even distributions

s=(laco-af) <[(£ o)~ [pr=fplac-2]),

1/2

— independent extensive quantities are rigorously conserved (no fluctuations)

e.g. microcanonical NVE e.g. isoenthalpic-isobaric NPH  e.g. canonical NVT
N=N, AN=0 N=N, AN=0 N=N, AN=0
Y=V, AV =0 ® AP =0 Y=V, AV =0
(total) energy _ . enthalpy _ _
=Hami|tonian_'E_E’ AE=0 }[:E+PFV_>7{_H’AH_O T AT #0

— dependent extensive quantities fluctuate around their averages,
and these fluctuations do not vanish in the thermodynamic limit

E = <£> The fluctuations
e.g. canonical » AE ~ N 12 are related to thermodynamic
NVT AE = (kBCV )1/2'[' derivative quantities

independent: imposed values
— intensive quantities fluctuate around their averages,~  dependent: dependent values

and these fluctuations vanish in the thermodynamic limit +—__ s0: not for the microscopic
o simulated systems!
(total) kinetic

energy T=(7) AT =0

for

e._g.canoqical, _ -1 r'd
if we define T (3kBN /2) K » AT :[(3/2) N]—I/ZT » N N
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e Example of instantaneous observables

Number of particles

Volume

Energy (Hamiltonian) E=U+%K

Temperature

Pressure

Enthalpy
Hill energy

Ray enthalpy

*

e From the equipartition theorem, we know that the average kinetic energy

Statistical mechanics

Note: the definitions are not unique, i.e. a given
thermodynamic quantity may be obtained by
averaging different instantaneous observables

(the fluctuations may then not be the same

W for finite systems !)

(V

Hamiltonian
= total potential energy
+ total kinetic energy

_ 2K
3k N
Z(K_f(/[/) see next slides
P=———"’
3V
H =E+PV
L=F—unN

R =E+PV—unN

Instantaneous temperature

(for a system
at equilibrium

per degree of freedom (dof) is related to the macroscopic temperature as  at temperature T)

for one dof a k fora set
of dof’s
(eg.x,yorz <K >: lm V2 — BT <K> — WDkBT number of degrees
Cartesian dof a 2 a’«a 2 2 D of freedom (dof)
of one atom)
— an acceptable definition for the instantaneous temperature is then
this ensures
2 at equilibrium
= _{]\f—kK <T> =T discussed later
DB

— in three dimensions, in the absence of constraints and uncoupled dof’s,
and considering the entire system separate temperatures of
b ; icl subsystems or/and dof types
_ number of particles
WD - 3N N in the system

may also be of interest
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Instantaneous pressure

(for a system
e From the virial theorem, we know that each dof contributes to the isotropic a: eq“”ib”ug‘)
. . at pressure
macroscopic pressure of the entire system as P

5 for the entire anisotropic

Z(Ka _ Wa) _ mava + ra Fa syst; P— M dislcatizrsed
31 3V 31 -
assumed again:

— the instantaneous isotropic virial of the system is defined as Ny =3N

1 N Watch out: three—dimen§i0ns,
" =—— r. -F this is the GROMOS definitions (various no constraints,
: ‘, i i
2 i=1

books use +/- or/and 2x this definition) no uncoupled dof's
(discussed later)

— an acceptable definition for the instantaneous pressure is then

this ensures

2 _W Nk T W at equilibrium
p= 28 W) _NGT W "™ (p)=P
37 v o3
Instantaneous pressure
e Reminder: the virial theorem 2
. - T wall exerts an
— consider a finite system at equilibrium external isotropic
that is bounded by a confinement wall pressure P
— dynamical virial definition o
time derivative 1q - between particles
N / Kzgzllmiri + from the wall
o . i=
szmlrlrl » sz(K—WtOt) because L& L&
i=1 {Wmt:_zzri'lzimt/:_zzmiri’ﬁ
i=1 i=1
— virial theorem Newton
. . 1 ! . . Q(t) —Q(O) because Q is always finite
<Q> n hmt—>°0 E_[ dt Q(t) - hmt—)OO t = O—) coordinates are bounded to system volume
/ 0 — velocities are bounded by temperature
use long-time
average to calculate - <Wmt> = <K>
ensemble average
(ergodicity) betvyeen from
particles the wall

— virial of the wall forces

/
<Wwall>:_lir_ .Flwall :lPJ.dZO'(r)-r WtOt :W+W all
X =R N
Fvvall dZO' 1 _ 3
/zEPE[d%o(r)V-r—EP(fV)

d3w: volume element
d2o: surface element

3
divergence » <W> = <‘]( — 5 Pr{/>
(Gauss) theorem
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Instantaneous pressure

e S0, we have indeed at equilibrium

_[HK=W) __1y
_< 3({/ > where W = 22!’, Fi

— interpretation
P / contribution from intermolecular forces
Ideal-gas contribution —T— — (cf real-gas equations of state)
(due to the kinetic energy, P Nk T < W >

i.e. the particles hitting the walls) V
— virial calculation: simultaneously with the potential energy and forces

attractive — “pull inwards” - W>0—-P |
repulsive — “pull outwards” - W<0—P 1

e The same equation can be used under periodic boundary conditions, but one I
has to pay a bit attention to select the right periodic images for the coordinates ambiguous

1
— covalent terms: gather the atoms  e.g. bond-angle k./:\.’ W, :75(ri-Fi +1,-F 41 -F)
i

by applying periodic shifts bending term

K .. but this one will be zero (see later)

o . L —r — _ _— Newton’s 3 law
— non-bonded minimum-image pairwise Fij G =r—n Fji = _Fij o .
terms: rewrite as double sum = ------- *Q—P B o for this ono¢
I
N N /
--=-—ZZF ZZ[W'FU'”J"FJJ ZZ i Fy = ZZ R
i =i i =i i =i i

e.g. repulswe (as drawn) > W<0—P 1

calculated from the SHAKE

— note that constraint forces also have a virial contribution ™ 720 o Htipliers

Instantaneous pressure

¢ Another way of looking at the virial
— imagine we scale a system isotropically by a factor 1+a along each Cartesian direction

o © o © > (+a)r
o o 3
o ® . o V>(l+a)v
— close to a = 0, the changes in potential energy and volume are
dU Z av dr N ZWda in line with previous equations:
- W _ 37/ 8’U attractive — “pull inwards” - W>0—-P |
i = .
2 ar(/ repulsive — “pull outwards” - W<0—P 1
dv =37da
— the isotropic virial of all angle-dependent covalent terms is zero
a_v — n:te;?::geagpa;r?lizi?g;ic this is true for bond-angle and
87/ coordinate scaling! proper/improper dihedral-angle terms

— the isotropic virial of a pairwise homogeneous term is related to its potential energy

U,=>Cr) mp d0,=d> C[1+a); [ =nv,da wp w, =10,

i j>i i, j>i 2
—_1
— things get more complicated when you then the virial becomes a tensor eg. W=-12Us
. . . .. and the two above simplifications 30U 6V
consider anisotropic volume variations = 1o jonger hold (see later) —3Uqq 12
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Thermostating / barostating: need

e The reasons why we need temperature / pressure control are

. . . t tch i tall
— simulations in NVT and NPT (evtl. NPH, pVT) ensembles oo "1 SXP=imen & ™

e.g. phase or conformational

— study T- or/and P-dependent processes transitions

e Other reasons why we need temperature control are

(microcanonical:
we could also use
an “ergostat”)

prevent energy increase in simulations caused by

— stabilize the energy numerical errors, e.g. cutoff truncation, finite timestep, ...

e.g. where heat

— study non-equilibrium (steady-state) processes st be evacuated from the system

e.g. MD at high T, simulated annealing,

— to enhance conformational searches parallel/serial tempering

e Boundary condition should in principle be soft (P and T, as intensive
quantities, have non-negligible fluctuations in microscopic systems)

e Common approaches
— constraining (fix to target value, no fluctuations)
— weak coupling (first-order relaxation) As sean earlier, the Langevin equation of motion

leads to a constant temperature (balance between

— extended-system coupling (second-order relaxation) ;rt]‘:f:‘hiss“fm‘:;l'l'C'Ist'l‘;,T;Va(;]s;;';‘;ﬁgf‘r'n‘y;%)t

. . e.g. SD, stochastic (sometimes also used in explicit-solvent MD) !
— stochastic COUpImg volume variations

Thermostating / barostating: working principle

¢ We have instantaneous definitions for the temperature and the pressure

T:LK and @22(7(—_{(/!/)
W oKg 3V

e Working principle of thermostating by velocity scaling (most common)

current time step

next time step ) ) next time step
if T(t) if
T(t)>T 71 - TO<T .,):\ S
A \
Al N NN
Sy tctora<t o ast ¥

e Working principle of barostating by isotropic coordinate/box scaling

current time step

;xttime step " Q)(t) i next time step
o ° P(t)> P P(t)< P
L)
w X \\ {3 * X\ = o »O
( ® o
I o/ ® o
scale all coordinates scale all coordinates .
and box edges and box edges
by factor u>1 by factor y<1
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. . _ Woodcock WO71.1
Thermostating via temperature constraining Hoover HO82.1

Evans EV83.3

e Equations of motion — isokinetic, closed, isochoric

N =0 r=V,x p=-V.U-C p V=0
_ V.U-VK=F-f
with - VrU V DK — effective ' P
éVT — L ,, _ “friction coefficient” — “tendency” of the forces
2 K to increase the kinetic energy

— brake particles if F would increase X, accelerate them if F would decrease K

— kinetic energy stays constant at K if we start with € (0) =K

proof K =i(l p-M™ pj= p-M'p=-V, UV K-¢ p-VpK=—VrU-VpK(1—£j=0
dt\ 2 - K
e Conserved quantities 2K
Np =0 v=0  K=0(T=0)
e Phase-space probability distribution {izk,:f;z;?; thcea 23213?:1;&
N, -1
p=C8(Ny—N,)SW-V)S(K -K)exp[-BU]  win B=-—2L
closed isochoric 2 K
— the kinetic-energy constraint removes one dof
. 1 d to adj 2 2K
[FOTIY E S ol UL SRV LA -
kBT definitions to (WD — 1) kB (ND - 1) kB

Thermostating via temperature constraining

¢ Practical implementation (leap-frog, velocity scaling)

. : unwise: numerical
Hoover-Evans, imposes K = 0 no

ise may lead to drifts
say that K(t —A/ 2) is K ) _ wise: the target value

leap VE+A/2)=Vv({t-A/2)+ M'F(t) Woodcock, imposes K= K g explicitly maintained
calculate K (t+A/2)

scale  V(t+A/2) by A=[K(t-A/2)/K(t+A/2)] or A=[K /K (t+A/2)]" , feferedtoas

“velocity scaling”
after scaling, the kinetic energy is again K

e Properties
provided that we

— +: we sample the canonical (NVT) ensemble in terms of coordinates remove one dof in the
temperature definition!
— -2 but we sample an isokinetic (#canonical) ensemble in terms of momenta

(zero temperature fluctuations — incorrect for a microscopic system!)  still, if we only care
L . about configuration-
— +: the total energy and the pressure fluctuate in time; the fluctuations dependent properties,

are correct itis not a bad choice!

1 fluctuations depend on
E(t) | ! \_“ j! p(ﬁ) A and scale as ;fgz CV

1 fluctuations depend on CV and KT
(P(t) | ! \_/”! p((P) f : and scale as W51/2

— +: with the Woodcock variant, the energy may no longer drift (even when there is noise)
because a target temperature is specified explicitly
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i i : Berendsen BE84.1
Thermostating via weak coupling erendsen

e Equations of motion — Berendsen, closed, isochoric

N =0 F=V,X  p=-V,U-{p  ¥=0
1 -K .
with é’T - _K— ) l—»effectl\'/e' TT thermostat coupling time
“friction coefficient”
2, K

— brake patrticles if Kx>K, accelerate them if ¥ <K, in proportion to the relative difference

— in an ideal-gas situation, the temperature relaxes exponentially towards its target

.odfl _ . _ 1
proof K=—[—p-l\_fl 1|0j=|0-l\_/l P=-¢ PV K=2K =-—(K-K) since U=0

dt\ 2 T
— in a realistic situation and for long coupling times, relaxation time between
the relaxation may be slower as the energy added 2C,z
. ; 7 and T =7)
also redistributes to potential energy T N ok, T
D B
. 1 oE . Noke e oo
T=~- K —K) with == K~-—L-B(x-K
G ( ) N (aT jv » 2C, 7y ( ) >
e Conserved quantities
Y _ . third one unknown (to my averages are
WD =0 V=0 knowledge), will depend on C, and T; correct, e.g.
e Phase-space probability distribution <T> =T

not canonical, not analytical (to my but fluctuations

p = C 5(WD - N D) 5(r{/ _V ) ?(KD U) knowledge), will depend on C, and T; are not

Thermostating via weak coupling

e Practical implementation (leap-frog, velocity scaling) T typically set to 0.1 ps in GROMOS

scale V(I+A/2) by after scaling, the kinetic energy is increased by

1/2
A K(t+A/2)-K
r. K(t+A/2) =

A=|1 —A[K(I+A/2)—K]
4

— limiting cases

;= A e we recover temperature-constraining
T >0 —> we recover a microcanonical situation
e Properties
— +: the energy may no longer drift (even when there is noise) =microcanonical,
because a target temperature is specified explicitly Hoover-Evans
i . . . fluctuations -1/2  #temperature-
— +: the temperature fluctuates, which is physical scaleas  Np constraining

— +: the temperature relaxation behavior is exponential, which is physical =Nosé-Hoover

— - we sample a somewhat ill-defined ensemble (Berendsen ensemble);
the averages of the total energy, temperature and pressure are correct, but the
fluctuations/distributions depend on C,, and 7; and are not rigorously canonical

Possible exceptions:
For most purposes, - when coupling very small (sub)systems (i.e. with few dof’s)
it does not matter - - when calculating properties using fluctuation formulae
-when using serial/parallel tempering schemes (maybe)
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Thermostating via extended-system coupling ~ '°°°M>%2

e Equations of motion — canonical

. : 1 (K :
N=0 r=V,K p=-VU-Gp ==~ V=0
- \ K
§T thermostat variable (units of time?) now, the “friction coefficient” has become

an extra variable in the dynamics,

T; thermostat coupling time with its own equation of motion

— increase friction if ¥ >K, decrease it if ¥ <K, in proportion of the relative difference

— in an ideal-gas situation, the temperature relaxes with damped-oscillations

towards its target I
oscillation time between

2C, 7,

DkB

7r and

217r)

integrate extra 77 — 2 K é,T

equation

e Conserved quantities

e Phase-space probability distribution

-~ A=H+n+Kz ]

1 N
p=C 8Ny~ Np)S(V -V exp[-fit]expl-fKri(7]  f=rm =D

D
closed isochoric canonical! gaussian kBT 2 K

Thermostating via extended-system coupling

e Practical implementation (leap-frog, velocity scaling) T typically set to 0.1 ps in GROMOS

propagate & C7(t+A) =5 (1) +L2(—K(t +|—<A/2) —lj scale V(t+A/2) by
Ty
interpolate ¢; é’T(t+A/2):[é’T(t)+§T(t+A)]/2 A=1-Ad;(t+A/2)
e Properties
— +: the energy may no longer drift (even when there is noise) #microcanonical,
because a target temperature is specified explicitly Hoover-Evans
— +: the temperature fluctuates, which is physical flacatons g oA

— +: we sample rigorously the canonical ensemble, i.e. the averages of the

total energy, temperature and pressure are correct, as well as their
fluctuations/distributions

— -: the temperature relaxation behavior is damped-oscillatory, #weak-coupling

and remains oscillatory at equilibrium which is unphysical Possible remedy:

Nosé-Hoover chain!
— -: for systems with few dof’s, there may be ergodicity violations, i.e.

the system gets trapped in periodic oscillations with the thermostat
and does not sample its entire accessible phase space

Possible exceptions:

F@yggs;g;’mgggf' - -when coupling very small (sub)systems (i.e. with few dof’s)
- when the detailed dynamics of the system is of importance
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Barostating algorithms

e Similar to thermostating, there also exists
— barostating via pressure constraining Evans 1982
— barostating via weak coupling Berendsen 1984

— barostating via extended-system coupling Andersen 1981

— many features are similar to the thermostating case (not described in details)

e working principle of the weak-coupling approach (leap-frog, GROMOS)
after thermostating
/ (if applied) Tp typically set to 0.5 ps in GROMOS
interpolate KO =[K({t-A/2)+K(t+A/2)]/2

kinetic energy

calculate virial w(t) experimental

_ 2[7(('[)—‘(/1/('[)] compressibility

calculate pressure P(t) rovided on input
39(t) P put)
A " 1(ov
scale coordinates _ K . _
and box edges by H= {1 + T [(P(t) - P]} with K7 = _\7( oP j
P T approximate because
A we use the experimental
K average compressibilit
after scaling, the volume is increased by AV =9 ; [T(t) - P] / iastead zf the y
P instantaneous one
oP A
and the pressure increased by AP~ — | AV = ——[G’(t) - P]
oV J; Tp

Additional issues / extensions

[only briefly mentioned]

e Extension to open systems (grand-canonical simulations)

— idea: simulate two systems 1 system 1. J\" real system, open N
and 2 with total N, , particles - _ e.g. ideal gas 's made to
ot P system 2: Ntot N at given pressure J vary dynamically

o Artificial ensembles (non-physical phase-space probability distributions)
— e.g. Tsallis ensemble, stretched probability extended-ensemble dynamics (SPEED)
e Uncoupled degrees of freedom flying ice cube
discussed below
e Constrained degrees of freedom

e Anisotropic volume variations Parrinello & Rahman 1980
— the virial and pressure become 3x3 tensors; the reference pressure may also
— (semi-)anisotropic coupling (e.g. lipid membranes), unit-cell deformations (crystals)

¢ Alternative temperature and pressure definitions
— configurational temperatures and pressures
— molecule-based kinetic energy, virial and pressure definitions

— separate temperature of subsystems (e.g. solute vs solvent) or/and dof types
(e.g. molecule translation, rotation and vibration)

. - . . lized Liouvill
e Proofs of constants of motion / phase-space probability distributions 9" o>
hot solvent / cold solute
ergodicity violations in NH for small systems

e Ergodicity problems
discussed below
separate baths

e Choice of coupling scheme and constants °_ “" "
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* Uncoupled degrees of freedom

e Ensembles generated by simulation may possess additional independent
quantities such as the system total linear or/and angular momentum

— These are constants of the motion, i.e. uncoupled degrees of freedom
(do not exchange kinetic energy with the others)

MD system in vacuum MD system under PBC SD system
. translation translation
{ t lat

;:Sioi;?ign uncoupled, '4 and rotation

led rotation Coup|ed
uncoup coupled

drag
collision

e The conserved value of the linear momentum (MD simulation) does not
affect the physical properties of the system (it is thus normally set to zero)

— e.g. a glass of water that is moved around is not warmer than one sitting on the table...

e The conserved value of the angular momentum (MD simulation in vacuum)
affects the physics of the system (through centrifugal forces)

— value should be specified along with the other independent thermodynamic
variables characterizing the ensemble (not given generally means set to zero)

e Uncoupled degrees of freedom can take arbitrary values and should not
enter into the calculation of the instantaneous temperatures and pressures!

Uncoupled/constrained degrees of freedom

e When calculating/stabilizing the temperature and pressure

— the velocities along uncoupled degrees of freedom should be omitted

- 1 N - peculiar velocities i.e. after subtraction of possible
K [ m. '5_2 / contributions along uncoupled degrees of freedom
z ‘, i

note: the velocities along constraints are zero,

i=l and so is the corresponding kinetic energy contribution

po 2EX-W)

note: the forces along constraints and uncoupled dof’s are
3FV zero, and so is the corresponding virial contribution

— the number of degrees of freedom should be adjusted to account for

uncoupled and constrained degrees of freedom
see NDFMIN in GROMOS

L ———
= K With N =3V -N, -N, -,
p"B
ber of 6 (MD in vacuum)
Ne = cnounrgtrgirn?s N, =< 3(MD under PBC)
0 (SD)

constrained dof from
N, = thermostat or barostat
e.g. use “1” here for the

(zero unless Specified) temperature-constraining thermostat
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The flying ice-cube effect

o If thermostating is incorrectly applied to overall velocities,
the kinetic energy of uncoupled dof will fluctuate, which is unphysical

— in principle not a problem if this kinetic energy is zero...

— in practice (for complicated reasons) kinetic energy will
accumulate into the uncoupled dof

‘ = spinning
and unfolding !

e Even worse if the temperature is incorrectly calculated from
overall velocities

— accumulation of kinetic energy in the uncoupled dof implies a loss of
kinetic energy for the internal motions, called the flying-ice cube effect

— slowly during nanoseconds and then all of a sudden...

g -

=frozen!

The hot-solvent/cold-solute effect

e The solvent is typically subject to more heating (cutoff noise)
than the solute, but the exchange of kinetic energy is slow

— if these are coupled to a common thermostat, the average
system temperature may be correct, but the solute is
actually colder than the solvent

— fix: couple solute and solvent degrees of freedom
to separate thermostats

Thermostating/barostating coupling times

e Simultaneous barostatting and thermostatting

— barostatting through the scaling of atomic coordinates and
box volume provokes large changes in the potential energy

... X ':.‘ 00 %o e.g. large increase in
o® ® 00 ——— 00, % %" van der Waals energy
° ..o ° .‘ ° ® 4 0°%%0 (condensed phase)
— partial conversion of this potential energy to kinetic energy Note:

. Pressure fluctuations
occurs on a very short timescale are typically very large !!!
— the temperature control (thermostatting) should occur on woical val
a shorter timescale than the barostatting to prevent foran ;’guupﬁisng
anomalously-high temperature fluctuations

7. ~0.1ps
7, =0.5ps

— Thus, e.g. for the Berendsen thermostat, one must have TT < TP
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019

Lecture 529-0004-00 Tuesday 9:45-11:30 a.m. LECTURE 5 (WEEK ).
www.csms.ethz.ch/education/CSCBP HCI D2 Electrostatic interactions
* Four basic choices defining a molecular model

degrees of freedom

@ = ATOMS

@%

® 9%

l boundary conditions

. : MOLECULAR
k}‘ MODEL | ¢

_interaction

_ =CLASSICAL
EEIELD = SPATIAL
o 2 o2 = THERMODYNAMICAL
Fas g s € = GEOMETRICAL
®© LY SEARCHING
- L) =
;’sETiET?cT;E‘O £ M = SAMPLING
(subtopic) = SIMULATING

generation of configurations
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Electrostatic interactions

(the fate of those who underestimate
the problem of electrostatic interactions)

Electrostatic interactions

At the quantum-mechanical level:

Chemistry is the science of electrostatic interactions !

At the classical (force-field) level:

Electrostatic interactions are the long-range (r1) residual of
quantum-mechanical electrostatic interactions, after removal of all
short-range contributions (covalent, exchange/repulsion and dispersion).

Usual description:

The monopole (partial charge) approximation + Coulomb’s law

® positive partial charge 6+

.\/’ < e negative partial charge &-

q.4, £
1)
Vij - permittivity
47[8 r of vacuum
01 (a physical
. o (+ evtl. implicit solvation term) constant)
explicit implicit
) SOlUte ¢mmp
solvent solvent
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* Explicit- versus implicit-solvent simulations

Typically ~10 solvent molecules per solute atom, thus
computationally very expensive (biomolecules — 0.1-10 ps) !

B or8 e o o Polar and “non-polar” solvation simultaneously (incl. solute-
. ::@” ":89 solvent van der Waals interactions, dielectric solvation/screening,
Explicit <o o H-bonding, solvation entropy and hydrophobic effect)
solvent %4 R¥

. 2@ ) Discrete solvent molecules
(with MD) ARSI A .
— good short-range solvation !

e Microscopic system size (+ evtl. artificial periodicity)

interesting for
its mean effect

in general, the
solvent is only ' — poor long-range solvation !
on the solute...

Computationally much cheaper, but accuracy
limited by that of the chosen implicit-solvent model

. e Polar solvation (e.g. CE, GB, PDLD) + “non-polar”
%/ /////// solvation (e.g. SASA), contributions assumed separable

Implicit e Typically neglected (to some degree): structure of solvation

solvent / // shells, correlations among solvent molecules, specific solute-
(with SD) / 7 /// solvent interactions (H-bonding), saturation, electrostriction, ...

A\

\\
NI

— poor short-range solvation !

e Coulombic potential and accurate boundary conditions
— good long-range solvation (in favorable cases) !

ELECTROSTATIC INTERACTIONS
IN IMPLICIT-SOLVENT SIMULATIONS
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* Vacuum boundary conditions

— A (bio)molecule is simulated in the total absence of solvent molecules

vacuum * Surface effects (surface tension)
mmmd> . No solvent dielectric screening

= IN GENERAL A BAD IDEA !!!
Dielectric screening:

Reduction of the magnitude of electrostatic interactions due to the
polarization of the surrounding solvent

For small cavities (e.g. ions), screening

c°|“'°'“b force reduces the force magnitude by ¢ (solvent
( P « ) permittivity) — for water, £ #80. For large
vacuum cavities (e.g. charged residues in proteins),
the screening is more limited (but still large).
N <
solution 1‘;/@—» 4—@:\,: ) (O ()=

solvent dipoles solvation force

= Charge-charge (e.g. ion-pairs), charge-dipole, and dipole-dipole (e.g. H-bonds)
interactions in vacuum simulations are largely overweighted compared to what
they would be in solution !

* Implicit-solvent simulations
— Mimic the forces exerted by water molecules without including these explicitly

mean effect

(electrostatic+hydrophobic)
stochastic collisions stochastic (random)

SOLVENT ——, (often assumed uncorrelated /forj) . @

in space and time)
, -
y collision

frictional drag

. . locit
(velocity- and possibly veloctty
coordinate-dependent)

frictional (drag) force

—Langevin equation myi = E™(r(t + R (t _ mvr (i
of motion i ! ( ( )) '_( ) o i7i |( )

mean force stochastic force frictional force

¢ The random and frictional forces are included by application of stochastic dynamics (SD;

Langevin equation) rather than molecular dynamics (MD; Newton equation, appropriate
for explicit-solvent simulations).

e SD generates a canonical (NVT) ensemble, while MD (without thermostat) generates a
microcanonical (NVE) ensemble

e The mean force typically includes
— a polar (electrostatic screening) component — described in subsequent slides

— a non-polar (van der Waals + hydrophobic) component - typically proportional to the
solvent-accessible surface area (SASA) of the solute (or to fractions of the SASA
contributed by different types of atoms - e.g. "polar" vs "non-polar" SASA)
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Electrostatic interactions in implicit-solvent simulations:
Ad hoc fixes
« Reduction of the atomic charges (e.g. GROMOS96 type-B force field)

™ 038 0.30 ™\ 030 0.30

N “‘N—H
e.g. protonated o.oo\\/ 0.00\\/
£0.05 0.00

H,N COOH H,N COOH
charge set for explicit-solvent (+1) charge set for vacuum (0)

= better than nothing - but very (very) crude !!!
« Distance-dependent dielectric constant
Typically used with

1 ' /i _
V,(r) = 9 win s (=nr "o
47Z'50 gdd (r) r forget the units ?)

= better than nothing - but absolutely no physical basis
(turns Coulomb’s law into ar -2 law) !!!

« Screening functions

1 - = better than nothing - but absolutely no
qq €
Vel (r) = physical basis (merely inspired from the
472'80 r Eett Debye-Hiickel model of ionic solutions) !!!

Electrostatic interactions in implicit-solvent simulations:
Continuum electrostatics (CE)

e Solve Poisson's equation (or Poisson-Boltzmann's)

V-[g(r;gp,g')v¢(r;8p,8')] = —8512%5(" —I)

for the medium of heterogeneous perrlnittivity

« Resolution possible analytically (sphere, ellipsoid) or

numerically (e.g. by finite difference on a grid)

¢ Calculate solvation free energy as
AG, =(1/2)).0,[#(K;5,.8) —d(Ts6,.6,) ]

¢ Calculate Coulorlnbic energy as

R

47z5 N
¢ The corresponding forces can also be computed (for MD or - better - SD)

= Problems:
— application of a macroscopic theory to microscopic systems
—value of ¢, (1, 2, 4, 20 ?) and surface definition (van der Waals or
solvent-accessible; choice of atomic radii; choice of atomic charges ?)
are crucial but ambiguous

145



Surface definitions in continuum-electrostatics calculations

o Different dielectric boundary definitions for a protein

Solute-solvent domains
net 9, xy-cut through protein center

4 T | T ‘ T ‘
- bnd
B I - out
- sas (center)
> L B - sas (contact)
+ vdw
0 [ —
2 _
A I \ ! \
-4 2 0 2 4

Continuum electrostatics:
Two important solutions for the spherical case

eThe case of a charge in a spherical cavity is treated by the Born model (1920)

2

q & -11 reaction potential
o — = from solvent at
472'80 Eq R cavity center
2
AG. =— Q& -1 l solvation
B free energy
8re, & R
_ (&,=1

e The case of a dipole in a spherical cavity is treated by the Onsager model (1936)

7

1 2(&-1) reaction field
= fi Ivent at
° 47[80 288 +1 R3 c':\:?t;::,enet:ra
2
AG. =— 1 2(85 _1) H solvation
*" 87z, 26,+1 R®  freeeneray
(e, =D
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Electrostatic interactions in implicit-solvent simulations:
Generalized Born (GB)

e Long-distance approximation for spherical ions

screened Coulomb

99, :
AG, = —-—1| > > 2 +
' GS - (5 ]j I r _Born solvation
‘;

s Coulomb
Born radius of the ion

. Improved approximation (short distances + non-spherical case)

172

2N (2a))

B qu (r.a,)=|r’ +ake
| L) ST s | e R e
v

i i 9aij) aJ' z(a‘iaj)

effective Born radius

« The effective Born radii a, are those reproducing the solvation free energy
of each individual charge within the solute cavity through the Born equation

2
AG, = ! i—1 S Born equation
dre, \ € 24q,

S

obtained from continuum electrostatics (expensive)

obtained from a shell-based estimate (approximate but fast)

= Problems:
— effective Born radii must be recalculated periodically
—value of g, and surface definition (including atomic radii) are crucial but ambiguous
— inherent approximations of the model...

Electrostatic interactions in implicit-solvent simulations:
Langevin dipoles (LD)

sometimes also called:
protein-dipole
Langevin-dipole (PDLD)

e Grid matching the solvent density

 Rotatable point dipoles at grid points

» Maximal dipole magnitude p, is that of
a solvent dipole

« Dipoles obey a Langevin-type equation field (solute + solvent)
— at grid point
E le“+e ™ 1 _ U E.
H = H, E|:eai e _;} with =C kOT [iterative solution]
i i

C: ,willingness" of solvent dipoles to reorient according to the local field
(related to ¢, and parameterized e.g. against explicit-solvent simulations)

E.
Coow=ag >0 = U :,uOE' (fully oriented)

= Problems:
— finite-grid effects (especially at the solute-solvent boundary)
— dependency on the grid parameters and molecular orientation
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*

Short-range problem in implicit-solvent simulations

Implicit-solvent simulations:

e are computationally much less expensive than explicit-solvent simulations
(— permit to tackle larger systems or/and longer timescales)

e imply instantaneous averaging over solvent configurations

e often handle appropriately the long-range component of electrostatic
interactions (# explicit-solvent simulations)

But...
e often involve many ad hoc approximations

¢ have difficulties accounting for the balance of solute-solute, solute-solvent
and solvent-solvent interactions involved in biomolecular conformational
equilibria (e.g. peptide or protein folding)

e do not handle accurately short-range solute-solvent interactions (e.g.
solvation structure, saturation, electrostriction, hydrogen bonding,
water molecules in protein cavities, ...)

= Great qualitative tool - but quantitative results are often questionable...

ELECTROSTATIC INTERACTIONS
IN EXPLICIT-SOLVENT SIMULATIONS
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* Long-range problem in explicit-solvent simulations

Example: ionic solvation

= According to the Born model, the bulk solvation of an ion is reached
within kgT (2.5 kJ-mol-! at 298K) for a droplet of radius

2 L
q, &g -1 For a monovalent ion in water (&=78),
this evaluates to ~28 nm

T 8me kT &g

= Typical system size (Y2K+18): ~10°000 water molecules

=~37000000 =~6"0007000
molecules molecules

(maybe in ~15 years) 28 n
8 nm < I om

28 nm

droplet periodic box
Importance: « Many simulated observables are very sensitive to boundary conditions
(system shape, size and surroundings) and treatment of electrostatics
(examples follow...)
e The most expensive part of current simulations
e Quality of a model = crudest approximation,
probably nowadays: (i) force-field, (ii) sampling, and (iii) electrostatics

* Electrostatic interactions in explicit-solvent simulations

non-periodic boundary
conditions (NPBC),
macroscopic system
[intractable]

approximations
(microscopic systems)

vacuum

fixed boundary periodic boundary periodic boundary
conditions (FBC) conditions (PBC) with conditions (PBC) with
[+ evtl. soft wall, surface term, cutoff truncation (CT) lattice sum (LS)
reaction-field term, ...] [+ evtl. SH, SW, RF] [incl. Ewald, P?M, PME]
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*

Explicit-solvent simulations with PBC/CT

= Periodic boundary conditions with cutoff truncation (electrostatic

interactions neglected beyond a specified cutoff range) —
for reducing computational costs and artificial periodicity

minimum-image convention spherical cutoff
° ° ° ° ° °
N o o o . o
oL ° o °
LI Ll %
~. ............ . . . RC . .
° ° ° ° ° °
° ° ° ° ° °
Each charge in the reference box Each charge in the reference box
only interacts with the closest periodic only interacts with the minimum-image
image (minimum-image) of each of another charge if the corresponding
other charge minimum-image distance is smaller

— Calculation is O[N?], often too expensive
— Enhances anisotropy in the system
— Nowadays seldom used

than a cutoff distance R,

— Calculation is O[N-R_?], with R, a free parameter

— Typically R, <L/2 (no interactions with multiple
copies, no self-interactions, simpler code)

— Partially suppresses anisotropy

— More commonly used

The problem with cutoff simulations

Computationally-affordable cutoff distances R, (e.g. 0.8-1.4 nm)
are much shorter than the range of electrostatic interactions in

typical molecular systems !

¢ Cutoff noise and heating

Consequences:

¢ Distortion of pair properties at the cutoff distance

e Error in simulated observables (liquids, ionic solvation,
ionic solutions, biomolecular systems...) — which depend
on the cutoff distance as well as system shape, size
and boundary conditions
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* PBC/CT: Atom- vs molecule-based cutoff
= Cutoff truncation leads to noise (heating) and distortions in pair properties

atom-based cutoff truncation molecule-based cutoff truncation
A ~25 kJ/mol e.g. water dimer A |’ \\'

> 3 R

7] [ L .

: il SN A

L r [17)
|Rc - |RC >
T > T >
r r

— Cutoff noise of the order of — Cutoff noise of the order of

(47£,)"qq' R’ (4rne) 'R

— Continuous but energy drift (heating), due
to the inaccurate integration of the equations  — Discontinuous, thus energy drift (heating)

of motion (sharp energy variations) at due to non-conservative processes
finite timestep
— Strong artifacts in pair properties N . @ ) @
; 0-O rdf, SPC water, R;=0.9 nm ON ©,
25 b ‘ ‘atom—based E [ ) ': - @ ", - @ ‘: - @ !
Py —— molecule-based ; / i
Sis5: E
1E
05 E ] nth "
0c o : s Net increase in the system energy !!!
r [nm]
* PBCI/CT: Group-based cutoff

— Generalization of the molecule-based cutoff

— Relies on the definition of charge groups

water (SPC)

— Charge groups interact fully or not at all
depending on the minimum-image distance
between their centers

R <R.: full interaction
R > R.: no interaction

— Charge groups should be neutral as
much as possible, to reduce cutoff noise

charge-charge ~ (47£,)"qq'R;’

™% - charge-group charge-dipole ~ (475,)"'quR?
" center dipole-dipole ~ (47&,) ' uu'R’
\»';g — Charge-groups should be reasonably small,
PN N to preserve accurate short-range interactions
L f :
‘\%_!Za'-?,:' ‘\.%%-i:' — May require modification of the “best” atomic
v e charge set
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PBC/CT+SH: Shifting functions

= Avoid abrupt truncation of the electrostatic energy/forces through

multiplication by a function SH(r;R,)

A

—

Elec. energy

~SH(r,R.)r

function =0
"/ derivative =0
i >

>

T
R, distancer

— Shifting function is generally a polynomial
— Applied with either atom-based or group-based cutoff
— In both cases, entirely removes cutoff noise (heating)

But:
— Interaction is unphysical (i.e. no longer Coulombic), and
altered over the whole distance range

— Charges must be parametrized consistently (to
compensate for this change)

RC

examples:

CHARMmM shifted dielectric:

orr !
SH(r,R)=1-—+—
¢ R? Ré‘

C

generalized force shift:

oy r
ﬁ___f_
ﬂRC RC ﬂRC
with p=1,2 or 3

SH(r,R) =1+

PBC/CT+SW: Switching functions

= Avoid abrupt truncation of the electrostatic energy/forces through
multiplication by a function SW(r;R¢,R.) which is one below Ry

A A

~r -1

—

Elec. energy

~SW(r,R.,R.)T L

function =0
"1,/ derivative =0
{ >

>
>

T
R. distancer

>

Rs R

— Similar to shifting function, but the short-range
component of the interaction remains Coulombic

(more physical)

— Applied with either atom-based or group-based cutoff
— In both cases, entirely removes cutoff noise (heating)

But:

— If R, is too close to R, there may be very large forces
on atom pairs close to the cutoff distance !

— Charges must be parametrized consistently
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PBC/CT: Cutoff artifacts

Group-based cutoff, shifting and switching functions are ways to
remove the cutoff noise (heating) and — to some extent — the
distortions of pair properties near the cutoff

But:

They are generally not sufficient to prevent numerous other
artifacts arising from cutoff truncation !

PBC/CT: Cutoff artifacts in simulations of liquids

= The dielectric permittivity (related to the dipole-moment fluctuations)
is largely underestimated when cutoff truncation is applied

The dielectric permittivity ¢ of a substance describes its ability to screen
electrostatic interactions between charges:

q._r.q' V(r):q_q'l —;V(r):
e ¥

0

qq' 1

dre,c v

in medium

in vacuum

It can be evaluated from a pure-liquid simulation from the fluctuations of the box
dipole moment. For straight cutoff truncation:

M
A ) M: box dipole moment
o A 9,VksT +2[(M?)=(M)’] V: box volume
A LAt &= > kg: Boltzmann’s cst
N P 9 VKT — [< M 2 > — < M > ] T:.absolute temperature
TP &, vacuum permittivity
Rl P

— for cutoff simulations of SPC water with R.=0.9 nm, one finds ¢ ~5

(to be compared to the experimental value of 78 1)
— dipole-moment fluctuations are not stabilized because the medium

outside the cutoff sphere is vacuum !
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PBC/CT: Cutoff artifacts in simulations of ionic solvation

— Radial polarization around a solvated sodium ion

0.8 : L5 L L A ]
0.7 Born ] _ e-1 ¢
— 06 1 —— group-based cutoff 1 Poorn = 4rr?
g 05 F group : & ar
03! T Ak
= 0:2 L R=1.2nm ] " Azridr icshenr.ary 1
0.1 | ]
0.0 = i ‘
0 0.5 1 1.5 2 25
r [nm]
Overpolarization
below Ry :
N
N \
A\
| |
K.‘ .-’l
.-'/‘I. i
® ion () — incorrect solvat|0|_1 free energy
_ — because the medium outside
- —= *+ waterdipole the cutoff sphere is vacuum !
* PBCI/CT: Cutoff artifacts in biomolecular simulations

= Simulations of a 17-residue peptide in explicit water
Ac — Tyr — [Lys - (Ala),]; — Lys — NH,
Schreiber & Steinhauser, Biochemistry 31 5856 (1992)

RC

1.4 nm — unfolds
1.0 nm — stable
0.6 nm — unfolds

30 ps 60 ps 90 ps

— System properties strongly depend on cutoff
(cutoff vs Lys-Lys distance)
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* PBC/CT+RF: Reaction-field correction

= Assume that the medium outside the cutoff sphere of each particle is
a dielectric continuum of permittivity e, equal to that of the solvent
[Barker & Watts, 1973]

straight cutoff cutoff with RF correction
([ [ [
® e °
° I@\ °
." ...... R e °
([ ] [ [
[ J [ @

PBC/CT+RF: Reaction-field correction

cutoff sphere of g cutoff sphere of g

//// 7

Onsager reaction field:

q 2e-D 1

' 4me, 26,+1 R

0; 2(83 _1) i

IT 4ze, 26,41 R

2
= The corresponding forces F; = q; Ejand F; = q; E; V. (r)= 49 &-1 1
“appear” to derive from an effective interaction energy = 4me, 26, +1 R

= Reaction-field corrected Vi () = 1 Z 6.4, {_i+ & —1 E_ 3¢, 1

interaction energy (R <L/2) 47E, i jimer, Lo 26, +1R) 2¢ +1R_c

— formally correct for homogeneous dipolar Q

systems only (ions ? biomolecules ?)
— usually implemented with a group-based cutoff (why ?) e
— for large €, a physically-based shifting function Ve R
— cutoff damps periodicity effects compared to lattice-sums . Vre
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PBC/CT+RF: Improvement of the simulated properties

= Dielectric permittivity of liquids:

M - 5 M: box dipole moment
7 A 3(2¢, + e VKT + 2gs[< M?> > - < M > ] V:boxvolume
&= kg: Boltzmann’s cst
a8 %\ Su 3(2¢, + e VK. T — [< M 2 > _ < M 2 T: absolute temperature
. - 2 s o" B & vacuum permittivity
, [, ¥ &,: reaction-field permittivity (BW)

— for reaction-field simulations of SPC water with R.=0.9 nm, one finds ¢ ~ 65
(to be compared to the experimental value of 78)

— dipole-moment fluctuations are stabilized because the medium
outside the cutoff sphere is solvent !

= Radial polarization around a solvated sodium ion

0.8 F ! ]
8; s Born ]
S 05 L CT (group—based)
E_ 04 [ RF (group-based) ]
=03 [ RF (atom-based) ]
2 0.2 5
01 [ 1
0.0 = \ —
0 1.5 2 2.5

PBCI/LS: Lattice-sum methods

= The full periodicity of the system is taken into account

straight cutoff Lattice sum
[ J [ [ [} [ ) (]
® . e ° ® ® ®
B N CEE
Jk o . o o ®
[ J [ [ [} [ ) ([
° ° ° ® ® C)
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PBCI/LS: Ewald interactions
Considering Coulomb interactions in a strictly periodic system
= In the limit S— o

1
P(r)= %r(”"‘EZ qu(r—r)

= Extrinsic potential [neglected—"tinfoil"]

I I i
P (1) ={—+1)\/Zqiﬂ]r —@Zqir.

&,(2¢

ext

g . . .
minus extrinsic field extrinsic potential
(still discussed)

- e . compensating
Charges {q;} at {r;} within Vzl//(l’) -y [5p(r) _V‘l] (background)
reference box charge density

(w(r))=0 and (Vy(r))=0

= Potential energy (reversible charging, intrinsic)

= Intrinsic potential

w(r) for r=0

1 . -
V(r):—zqiqjl/;(rij) with l//(r):{ o _1; -1 _
v’ =lim,_ Jw(r)-r] for r=0
\

87[80 ij
removes Coulomb
— formally correct for exactly periodic systems only singularity

— cutoff bias removed at the expense of enforcing artificial periodicity

PBCI/LS: splitting method for Ewald interactions

= To solve
Vi (N ==4z[5,(N-V "] with (pe,(N)=0and (Vyy,(r))=0
= Splitting of t_Ille charge density ' charge-shaping
5p(r)_v 7/p(r)_v function ®ar) 5p(r)_7p(r)

----- Ll

= Splitting of the potential wg, (r) =y, (r)+y, (N +A
i i l//y(r) i l//n(r) i

smooth & long-ranged — k-space  singular & short-ranged — r-space

v =2 5 7 (kak)cos(k-r) v,="> [ +Ln| @[5 +Ln)
neZ’,n#0

v 17 120 ’
= Derived (analytical) quantities

() 4nk“a‘3jdr rsin(kr)y(a’'r) for k=0 n@’'r) = 4ﬂa_3jdp (p—r)y@'r)
v = 0

4r ¢ '
= =———|drrn@'r
1 for k=0 A v _([ n@r)
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PBCI/LS: splitting method for Ewald interactions

= Potential energy (intrinsic)

Vew (1) :V;/(r) +V, (1) +V, +V;

y(ak k-space (Ewald or FFT)
V r) = COS k .................................................
1= Z 44, |Ez32|¢o (k1) contains self term A,
r-space
S contains average term A,
v, (r) = Z;. G4:4; Z H +I—‘nH n(@ Hrii +|—‘nH) """"""" R <L/2 — one n-term w1th i
: watch out exclusions
V. = V(A + 2 removes inappropriate
A 8re, LA (Z q') (A AZ)Z ol terms in pairwise component
1 2 .
V, =—— (A +A + As)(z qi) self term (Wigner, )
8re,
= Derived quantities
4z y(ak . - i - _
A=y B0 A i, @ -0+ Y L] na” L)
\Y 173 10 k neZ? ,n=0
numerical first term is analytical
(quasi-analytical for cubic box) R <L — second term is often zero

PBC/LS: improvement of the simulated properties

= Dielectric permittivity of liquids:

M < , 5 M: box dipole moment

G A 32a eV + 2[(M?)=(M)’] V:boxvolume

il At B _ 2\ 2 T?.absolute temperature

X - 2 3(285 + I)EOVkBT [< M > < M > ] £: vacuum permittivity
\4/' \ p ¥ &: external permittivity (LS)

— for lattice-sum (tinfoil) simulations of SPC water, one finds ¢ ~ 65,
similarly to RF (to be compared to the experimental value of 78)

= Radial polarization around a solvated sodium ion

0.8 ]
8; i —— Born ]
e 05 [ —— CT (group-based)
E. 0:4 B —— RF (group-based) b
= 03 F —— RF (atom-based) 1
02} b LS ]
01 b M ]
0.0 L R B \’C"/“"— TSRS
0 0.5 1 1.5 2 25
r [nm]



) ¢ PBC/LS: periodicity-induced artifacts

LS (Ewald/P3M/PME) methods :
e Now routinely used for the simulation of proteins/nucleic acids = stable trajectories
e Often assumed exact = OK if we assume periodicity to be an intrinsic
property of the system (for solutions, this is an approximation !)
e Periodic system = finite concentration

e.g. 1 solute + 1000 water — 0.05 molal solution
solute charge 10e  — 5 molal ionic strength !

. Periodic system Realistic solution at the same concentration
s W
®
o |o° |o° " ° ¢ °* .
®
s * B
Anisotropy @ ° o
No interaction at L/2 ®

e Non-neutral solute + background Non-neutral solute + counter-ions

=> the nature and magnitude of possible artifacts should be assessed

) ¢ PBCI/LS: periodicity-induced artifacts in simulations of a
zwitterionic polyalanine octapeptide

snapshots: _
10x100ps _ \ isk

LS (P3M)
electrostatics

03

=—sL=2nm
s=——alL=3nm
——s L=4dnm

| “--\‘-\- = e 3 ‘/_.’.(

o
X}

C_rm.s.f [nm]

=

—

p s . ’ : ; : !
1 2 3 4 5 L] 7
rasidue numbar

o -
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Combining the LS and RF methods: LSERF

(Heinz & Hunenberger, JCP, 2005)

reaction field reaction field Ewald
small cutoff large cutoff (P3M,PME)

’ 0%l 0® ¢°(00® 0°[0 o® o°0 o

RFE —— —} untractable R
EW X
covers the whole continuum at the costs of a LS calculation
LSERF
Combining the LS and RF methods: LSERF
= Applications: use a cutoff value in (bio-)molecular simulations
reducing the inconveniences of both methods
reaction field reaction field Ewald
small cutoff (RF) large cutoff (LSERF) (P*M,PME)
a y y . F i

g e.6 6 6.8
¢ ¢ ¢
e e ¢ ¢

medium beyond cutoff compromise artificial periodicity
is not homogeneous solvent solution (R~L/2 in the solution
or slightly larger)
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TIME-SAVING TECHNIQUES

Non-bonded interactions

= Non-bonded interactions (energy, forces, virial) are the
CPU-intensive component of classical simulations.

— a number of time-saving techniques can speed up the evaluation of
the short-range interaction (within a cutoff distance)

/ \

cutoff-based methods lattice-sum methods
real-space reciprocal-space

— minimum image only — all periodic images

— interaction neglected beyond R
— cutoff R is a physical parameter — cutoff R is a numerical parameter
— also typical for van der Waals interactions — also possible for van der Waals interactions
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* Verlet pairlist algorithm

In both cases, pairs with a minimum-image distance smaller than R must be found

Loop over unique atom pairs

— Standard algorithm Calculate minimum-image vector T ] AN
g Evaluate interactionif T <R = O[N(N-1)/2]~O[N]

End Loop

= Verlet pairlist algorithm

pairlist generation paitlist interaction evaluation

. - array —
Loop over unique atom pairs Loop over pairlist

Calculate minimum-image vector T ‘ PL » Evaluate pair interaction

Pair — pairlist array if T <R End Loop
End Loop
— every N simulation steps (5-10) — every simulation step
— use same PL between updates = O[NR?]~O[N]
= O[nIN?]
= Verlet extended-pairlist algorithm reduces the error

of approximate pairlist

—> pairlist generation: use extended cutoff R'> R
between updates

—> interaction evaluation: test for T <R

* Time-saving techniques
= Twin-range method pairlist
array
Loop over unique atom pairs Loop over pairlist
Calculate minimum-image vector T PL Evaluate pair interaction
Pair — pairlist array if T <R ‘ » End Loop
Evaluate pair IR interactionif R<T<R' IR Add IR interaction
End Loop ) -
intermediate

— use same PL and IR between updates ~ range interactions — every simulation step

cutoff effectively extended to R’
(neglect of high-frequency
fluctuations in IR interaction)

= Use of atom groups -
Eroup-pairtlist 11 oop over group pairlist

Loop over unique group pairs - Ay Loop over atoms in groups

Calculate minimum-image vector T ‘ PL » Calculate minimum-image

Pair — group pairlist array if T, <R’ interatomic vector T
End Loop Evaluate pair interactionif T <R

] End Loop

— groups of e.g. covalently-linked atoms End Loop

— R’-R = twice the radius of the largest group

= O[mM2N2], m = average number of atoms per group — every simulation step
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Fast pairlist generation

The standard double-loop algorithm for pairlist generation scales as O[N?]
= Other algorithms may speed up the process and bring the scaling to O[N]
= They rely on the discretization of the computational box by smaller grid cells

/ \

linked-list methods grid-cell methods

cell-pair array: mask array:

list of interacting list of relative offsets
cell pairs between interacting cells
(periodicity) (no periodicity)
— cell size slightly larger than R — cell size comparable to atom size
— many extra pairs included — fewer extra pairs included
— fast and linear only if R<<L — fast and linear with carefully-optimized cell size

= Methods with arbitrary or mixed cell sizes also exist
= Many attempts to combine these with parallelization and vectorization

Linked-list and grid-cell algorithms

Drawbacks (both methods):

= Initial pairlist contains extra pairs at distances larger than R
— May induce anisotropy (“‘cube-corner” effect; especially for large cells)
— Can be removed by filtering the initial pairlist

= Pairlist is unsorted (pairs are listed in arbitrary order)

— More difficult to handle exclusions and grouping (e.g. solute Vs solvent)
— Non-sequential array access may slow down subsequent interaction evaluation

Grid-cell methods:

= Potentially more efficient than linked-list methods
— No restriction on grid-cell size
— Fewer extra pairs in initial pairlist (better approximation of cutoff sphere)

= Efficiency loss for small cells (requires careful tuning of cell size)

{—> High memory requirements (mask array) may be alleviated by

— Handhng of numerous empty cells . / Bekker algorithm
— Handling of periodicity for all cell pairs Mol. Simul. 14 137 (1995)
. [27 pairlists with primary cell
Can be alleviated in specific neighbour box and
Heinz & Hiinenberger, JCC 25 1474 (2004) secondary cell in reference box]
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The real motivation...

“An efficient solution of the near neighbors problem would
advance many important applications [including] futuristic
battle area management. A one-pass engagement against
many thousands of high-speed opponents requires the fast
redetermination of near neighbors to ensure effective
targeting in real time”

J.Boris, J. Comput. Phys. 66, 1 (1986)

Laboratory for computational physics
US Naval Research Laboratory
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Lecture 529-0004-00

www.csms.ethz.ch/education/CSCBP

HCI D2

Herbstsemester 2019
Tuesday 9:45-11:30 a.m. LECTURE 6 (WEEK 7).

Simulation analysis

Four basic choices defining a molecular model

= CLASSICAL
FORCE FIELD

interaction

degrees of freedom

o
@%
® 9%

. ]

=ATOMS

boundary conditions

MOLECULAR

MODEL

&
-

| |

system size and shape,

~_number of configurations,
properties of the configuration
_sequence (searching, sampling,

temperature and pressure,

=
o

%ég

T
Q]
NAANROR

experimentally-derived
information

| = TRAJECTORY
ANALYSIS
(extension)

~_orsimulating)

nerating configurations
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Analysis of trajectories: Overview

_ Microscopic Statistical analysis
(instantaneous) (operator)

observable Q(t) i A
Q(r,p) 0, Q=0Q(t)

=) = O

>
Time series of the Macroscopic observable
instantaneous observable
) (value associated to each (can be compared with
Trajectory trajectory configuration) experimental data)

r(t iti
(t) Positions Microscopic observable

p(t) Momenta - can be a scalar, a vector or Statistical "
. . a matrix atistical operator
3N-dimensional - acts on the time series
- can be bounded, unbounded or

within reference box periodic - can act on one observable or
if PBC multiple observables
- can be continuous (real/integer
value) or discrete (on-off)

- can also involve time series from
distinct simulations (with different
- can also be a probability distribution system parameters,e.g.V, P, T, ...)
function (histogram) along multiple
occurrences of some scalar observable
(e.g. all O-O distances in water)

Calculating the time series
of a
microscopic observable

QM)
Q(r, p)

r®) p
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Periodic gathering

e When simulating under periodic boundary conditions (PBC), we monitor the coordinates
of one periodic copy of each particle, but we actually simulate an infinite periodic system

— This makes no difference for the momenta (velocities)

— For the coordinates, the restriction to a single copy (in the output trajectory) may
be performed in different ways, e.g. by atoms, by groups or by molecules

GROMOS: by charge groups
(i.e. intact charge groups based on the
position of the charge-group center
[for water: the oxygen atom])

e.g. water

by molecule by atom
(water oxygen atoms (all atoms always
always within reference box) within the reference box)

e For many analyses, we need apply periodic gathering, so as to follow the trajectory of
a molecule that is initially «gathered» but may fail to remain so along time

coordinates actually

; w m written to file
16 ¢ = ﬁ - [ 5
S| 22 | 2

Periodic gathering

e The periodic gathering can be performed in different ways

— Record lattice shifts along with the coordinates r(t)+Ln(t)
At r® -

o| ‘ [@ —© ‘
simulation an=-l 2 analysis —

— Infer lattice shifts from the atom displacements between stored trajectory frames

Atframes )
this works as long as no atom
o| ‘ |@ —© r(t) + Ln(t) travels by more than L/2
An —— between two stored trajectory frames !
analysis

— Gather by following the covalent connectivity of the molecules (i.e. along bonds)

you have to pick a first (reference)
/%0:\.[../. atom that will always remain
in the reference box

. pick periodic copy of atom closest
— Gather using a reference structure to atom position in the reference structure

¢ All these methods have trouble when you want to gather different molecules

like this E or like that E ?2??
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Periodic gathering

e For this reason, there are many possible gathering methods in GROMOS
— @pbc flag in the GROMOS++ analysis programs

@pbc argl [arg2| [arg3]
Periodic boundary type and gathering parameters are read from @pbe. The first argument is the
boundary type which may take the following values:

v vacuum, non-periodic boundary conditions
‘ r rectangular periodic boundary conditions

¢ triclinic periodie boundary conditions

t truncated octahedral periodic boundary conditions

The second and third arcuments determine the gathering method. The available gathering methods

(arg2) are:
nog or 0 do not gather
glist or 1 (default) gathering. based on a list of atoms
gtime or 2 gathering based on previous frame
: gref or 3 pathering based on a reference structure GROMOS manual
Volume 5

gltime or 4 pather first frame based on a list, next frames based on
previous frame
grtime or 5 gather first frame based on a reference structure, next
t‘]'il]lll'.‘\ Ih'l."l'fi (]} ]J]'l‘\'i(lll.\ I.I'r'llllf'
‘ gbond or 6 gathering based on bond connectivity
cog or 7 gathering with respect to the centre of geometry of
the all atoms of the first molecule in the system
The third argument is used for specific gathering methods. If glist or gltime is used, then
arg3 should have the form:
list <Atomslist>
If gref or grtime is used, then argd should have the form:
refg <ReferenceStructure>

(surprisingly, GROMOS records
lattice shifts in the trajectory,
but does not yet offer a method
to gather based on them ;-)

Rototranslational superimposition

e For some observables related to molecular structure, gathering is not sufficient;
we want to be able to compare Cartesian coordinates, but in such a way that
the effect of the translational and rotational diffusion is removed

— This can be done using rototranslational least-squares fitting onto
a reference structure

superimposition

R LE

“gathered” molecule diffuses, tumbles only the wiggling is kept
and wiggles along the simulation (translation and rotation are [largely] removed)
reference
structure

— ldea of the algorithm

for each N 2 C translation vector boils d
with (boils down
new structure, X = (C +TrI ) - r| ref res to a 6x6 matrix
R N pect to T . . . S
minimize i rotation matrix diagonalization)

— Watch out that the result may depend on the choice of the reference structure
and of a subset of fitting atoms - and that the translational and rotational motions
cannot be decoupled in an entirely strict fashion from the wiggling !
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Rototranslational superimposition

e For this reason, a rototranslational superimposition method must often be
specified in GROMOS

— @ref and @atomsfit flags in the GROMOS++ analysis programs

Qref (reference coordinates (if absent, the first frame of @traj is reference))

@atomsfit (atom specifier: atoms to consider for fit)

Types of instantaneous observables

e (1) System quantities derived directly from the configuration Q (I, p)

— Depending on the case, we may have to apply periodic gathering of distinct molecules
and sometimes also to follow atoms (or molecules) across periodic boundaries

— Many such properties are already calculated during the MD run and stored along with
the configuration trajectory (e.g. energy components and other thermodynamic parameters)

— Examples of observables of this type

~

atom positions, bond or dipole-moment box dipole box volume vV
velocities, forces vector moment vector (density) P
o---9 pressure P
r kinetic energy K T
o _ . (temperature) 4 total or
minimum-image distance potential components
between two non-bonded atoms energy U
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Types of instantaneous observables

. . . i.e. so called internal
¢ (2) Molecular observables that are rototranslationally invariant ., qinates of the molecule

— We must apply periodic gathering, but rototranslational superimposition is unnecessary
— Examples of observables of this type

- - ./.\. .\ ( distance, angle, dihedral Note:

between covalently linked dihedral is a periodic
d 9 ¢ atoms or not coordinate !
distance angle dihedral
H .
D d e.g. GROMOS b<0.25nm Note:
./0~~ A H-bond exists if: o H-bond existence
6 » ’ 9 > 135 is an on-off coordinate
H-bond existence 1 &
center-of-mass
N 12 Rcm VZ mr; position Note:
R - 1 R\ i=l definition without
ayr — MZ mi(ri - cm) N masses also possible
i=1 M = Z m, total mass

Radius of gyration i=l1

Types of instantaneous observables
— Usual nomenclature of dihedral angles relevant for different biomolecules

Polypeptides Nucleic Polysaccharides
(proteins) acids

left-handed Ho \
/ a-helix o b e
- 0
/ (1—6)-linked
Ramachandran map
(correlates with the
secondary structure) eet—— also

60 0 6:] 1;o +180  (¢h=90° ¢ =-90°)
& " Disfavored

(default: right-handed)
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Types of instantaneous observables

— Characterization of the (local) secondary structure of a protein

30-helix

a-helix

(i—i+3)

m-helix
(i—i+5)

B-sheet

(1l Antipaeaiiel

(i-i+4)

F10helix

|

Program Internet
DSSP http:/fwww.embikun.nl/pv/dssp
STRIDE hittp:/ \\«eht.lu bio.wzw. [luu de st 1:|e
DSSPeont

Assignment of local secondary structure VoTAP i1

for aresidue, typically based on Beta-spider http: wa—lblt iro.umontreal.cabSpider/

- . . XTLsstr .//loregonstate.edu/dept/biochem/faculty/johnson. html
- Empirically estimated H-bond energies KAKSI ‘migale. jouy.inra. frimig/mig_fi/serviog/kaksi/
(from H-bond distance and angle) gale jouy. p & ,g— &

PALSSE prodata.swmed.edu/palsse/palsse.php

- Ramachandran map location SEGNO www.bioinf man.ac.uk/~lovell/segno.shtm!
SecStr Swww.nbfys luse/Services/SecStr/

Types of instantaneous observables

— Example: thermal unfolding of lysozyme

FPROTEINS: Structure, Function, and Genatics 21:196-213 (1995)

Computational Approaches to Study Protein
Unfolding: Hen Egg White Lysozyme as a Case Study
P.H. Himenberger, A.E. Mark, and W.F. van Gunsteren
Laboratorium fiir Physikalische Chomiv, ETH-Zentrum, CH-8092 Zirich, Switzerland

(my first paper

1 1 I L 1 1 1

in MD...)
GROMOS87
500 K 120
180 ps 110

100
90 3
80
70
60
50
40
30
10 Sk

Residue number

I 'lil'i'[? ti{ah"ii i
80 100
Time ps)

Fig. 2. Secondary structure as a function of time, for the T -run,

as given by the "SUMMARY" entry of %ﬁ program output,*® { )
halix,

(#) @ helix, (x)

symbol indicates location of helices A, B, C, and D, the two 3'°
helices and the B-sheet. On this side, (D7) indicates observed but
rapidly exchanging protans upon folding® and (m) slowly ex-

o-helix, {0) B-bridge or B-sheet, (01

hvdrogen-bond m, an . On the right hand side, a

changing ones.
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Types of instantaneous observables

— Characterization of the (local) base pair arrangement of a nucleotide

Base Pair Parameters Base Step Parameters
A 4 A
Stretch Shear Stagger Propeller Twist Rise Slide Shift
Buckle Inclination x-Displacement y-Displacement Helical Twist  Roll Tilt

C. Z-DNA

Twist = 33°

Twist = 36° <Twist> = -30°

Rise = 2.56 A Rise =3.38 A fr <Rise>=37A
Roll = 6° Roll = 0° <Roll>=0"
Inclin. = 21° Inclin. = -6.0° <Inclin > = -6.2°
x-Dis. =-45 A xDis. =023 A <x-Dis>=304A
P-Tw=-75° P-Tw = -4.4° <P-Tw> = -4.4°

Types of instantaneous observables

i.e. providing overall

¢ (3) Molecular observables derived from the Cartesian coordinates structural information

— We must apply periodic gathering and rototranslational superimposition
— Examples of observables of this type

. e.g. movie of your
{r, | = IN} favorite protein !!!

fitted atom positions — rototranslation removed
(sometimes also used: velocities, forces)
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Types of instantaneous observables

e (4) Distribution functions over multiple occurrences of any of
the previous types (1-3) of coordinates

— If a system involves multiple occurrences of a given coordinate, we can

calculate the corresponding distribution for a given trajectory frame, called
a distribution function

example:
o—-—=9
r ‘
. . di R Dirac delta function
minimum-image distance > r —» approximated in practice
between two types of atoms

in two different molecules p(r,t) = 5(|‘(t) — r) by afinite-width bin function

upon averaging
over all N equivalent pairs -
of the same atoms in any pair bability distributi
of molecules r probability distribution

— approximated in practice
by a histogram

1 N
example: the distribution of O-O distances Q(r,t) = Wzl p(rn :t) = < p(r;t)>crd

between molecules in a water sample

(scaled by the Jacobian factor) is called ) . average over equivalent
the radial distribution function (RDF) the instantaneous observable is here coordinates (#<...>
afunction, called a distribution function **/crd Which would be over time

[default of the notation]!)

— Observables that correspond to averages over multiple molecules (or, even better,
molecule pairs) in a sample are typically much easier to calculate accurately (needs
less sampling) compared to observables that have a single value in each trajectory frame !

Egquilibration vs sampling

e The ergodic hypothesis postulates that in the limit of infinite time, any trajectory will end up
visiting all possible phase-space points compatible with the hard macroscopic constraints

ensemble frajectory nowhere zero ! ’
x={r, p} initial conditions
exp(—pfH (X
X(0) B(X) ~ p( BH( ))
o N . [ dx exp(=p(x))
— S0, the choice of initial conditions should be irrelevant
possible initial
X(0)  conditions
— But: this is not true for finite trajectory segments ! e"dtofdpfelviO_l:_S’
reverted velocities
x(0) X(t) x(0) x(0)
not very .
representative representative neither

> »
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Equilibration vs sampling

e For this reason, we normally discard the initial period of a simulation, called equilibration

— try to lose memory of non-representative initial conditions

— better than nothing — but still no guarantee !
Seldom done in practice:

— the proper way would be to perform multiple simulations Expensive simulations
from different initial conditions e.g. different initial — people are already happy
random velocities with one !

e Equilibration is monitored by following a set of relevant observable and waiting
for stabilization

QM)

equilibration : sampling
(discarded) (used for analysis)

e For complex systems, equilibration is only possible within the available computer
time if we start from an already very reasonable initial configuration
(e.g. protein structure: from X-ray or NMR [evtl. modeling])

Statistical analysis
of
time series

QM )

= O

—
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Probability distribution

e The basic result of monitoring an instantaneous observable Q is a time series

e If you want to discard the time information, but preserve everything else, the most
relevant quantity is the probability distribution of Q over the simulation

4

a(t) a
area=1 a
\\
| - or
t p(a) — p(a)
time series histogram (computer) function (math)
(i) aveage  ________, p@)=<hat)-a,ra)> p@)=<s@t)-a’)>
< f(t) - lime tflj.dt f(t) with (binning/windowing function) with (Dirac delta function)
A if —A/2<x<A/2 o if x=0
hx.4) { 0 otherwise ) {0 otherwise
[ dxhoa)=1 [ dxs00=1
i A e
H Ail T
0 0

Probability distribution

e A probability distribution function T da n(a) =1
should always be normalized J p@@)=

— often forgotten in the simulation literature and this is very bad practice !

e The units of the probability distribution are the inverse of the units of the quantity

a(t) a

[nm] ﬂ ? ,, n [nm]
p(a) [nm™]

>t [ns] o

— often labelled “arbitrary units” in the simulation literature and this is very bad practice !
e If you have p(a) you can easily calculate the distribution of any function f(a) of a
p(f=<d(f(at)-f" >:1iml%t’lj'dt o(fai)—f"
0

0

= limet’l.Tdt [da’ sa)-ans(f(@)- 1)

da's(f(@’)— 1| lim,_,, t’ITdt S@(t)-a'

a convolution

=|da’ 5( f (a’)_ f ') p(a’) of the two functions

|
I
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Moments of the probability distribution

e Often, the probability distribution itself contains too much information, and the most
relevant are its first two moments

e The first moment is the average (mean value)

a
a(t) p( ) follows from the previously
derived convolution principle

| . /.
§=<a>:jdaa p(a)

> T

1
3 a
e The second moment is the variance
a(t) p(a) follows from the previously
derived convolution principle
o, /
¢U 2 =\2 T =\2
a o; =((a-ay’)= [ da(a-a) p(a)
:t i 1 A

— the square-root of the variance is called the standard deviation
(loosely: the [root-mean-square or rms] fluctuations)

— it is easily shown that often computationally

2 _ _3)2\ = 2\ _ 72 more convenient (single-sweep
Oa <(a a)> <a> a over the data [instead of

two successive sweeps])

Moments of the probability distribution

e One should be a bit careful when calculating the moments of the probability
distribution associated with a periodic coordinate (e.g. dihedral angle)

— ... more details next year

e Higher-order moments can also be calculated, but it is seldom done

— typically the first two moment have the highest physical significance
(e.g. related to macroscopic observables / properties or their
temperature/pressure/composition derivatives)

— based on a finite simulation, the higher the moment, the lower the accuracy
of the calculated value (average converges quickly, fluctuations less,
higher-order even less)
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Correlations between observables

e Still discarding the time information, one may wish to establish the extent correlation in the

probability distributions of two observables Q and R over the simulation
e This can be done by means of a two-dimensional probability distributions

Pa (a) I

|

a(t) |

b(t) 1 o
NN Y

[ db pa,b)=p,(a)

[ da p(a,b) = p,(b)

NG

% b
\’J~t p@@.b): p(a,b)= p,(a)p,(b)
i B Py (D) B
C,=<(a-a)b-b)> cab=jjdadb(a-a)(b—ﬁ)p(a,b)

=<ab>-ab o

Covariance = _[ jda dbab p(a,b) — ab

— the cross-correlation is a _ C, +1 perfect correlation
normalized covariance ab 0 no correlation .
0,0y, -1 perfect anticorrelation

Time correlations

e When the time information (relaxation) is important, one may look at
time-correlation functions

— Time-autocorrelation function " (Q) ~0
Questions:
C t t t CQ ® what is Co(0) when <Q>=0 ? C,(0) ol
T)= T+ C = - Q =V =
o(?) <Q( )Q( )> o(®) C,(0) -what is ¢,(0) when <Q>=0? N Q
N o (0)=1
autocorrelation function normalized autocorrelation function Q
Co ) exponential Cq ® 711 oscillatory
Extreme decay ; Note:
behaviors The quantity Q
can be a scalar
> > or avector
— Spectral density :
2 illations: k
Fourier transform J (a)) _ J'dt e—imtc(t) complex) Oscillations: w peaks
of atime-correlation function Q p Decay: Lorenzian broadening
0

— Time-crosscorrelation function between two observables

Cor(t
CQR ()= <Q(t)R(T +t)> Cor(t) = Wéll(())
Q R
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Statistical characteristics

e The time series can be used to derive specific statistical characteristics;
the following apply to on-off coordinates defining events

120°< ¢ <240°  trans
H-bond existence dihedral 240° < ¢ <360° gauche-

well

H g ] .
E.g. D.<0.~\. A o ¢ (‘ 0°< ¢ <120 gauche+

— Occurrence

fraction of the trajectory configurations where the event condition is satisfied

— Visiting time Q(t) 4
average time separating periods during which the event condition is satisfied l—>
— Residence time Q1) 4
- -«
average time during which the event condition is satisfied

Statistical characteristics

e The time series can be used to derive specific statistical characteristics;
the following apply to changes resulting from variations of systems parameters

— Finite-difference change in average observable upon varying a system property

oo (4] (20) (2@

o (8] () [

— The choice of the finite-difference interval is cruciall!

too small interval reasonable interval too large interval
E L V=cst E . V=cst E . V=cst
4 AE > > >
=N"-—= T, T T
t t MWA«NMWMW .
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Statistical error

e When you perform N independent experiments with results following (at least approximately)
a normal distribution (Gaussian), you can estimate the error on the mean as

e.g.
N  number of experiments c=1— 68%
. c=2 — 95%
= varian
e=C N2 anance =3 — 99.7%
C confidence factor

0.1% 05% % 0.1%

— e
-3 25 -2 -5 -1 05 0 05 1 15 2 25 3

— Interpretation: if | perform many N-experiments sets, the mean | find has e.g. a 95%
chance to be within +¢ with c=2 of the true mean (the one | would get with N—)

¢ When you analyze a time series, the data is correlated in time; so, only averages

over “long enough” blocks can be considered independent o
C (t) autocorrelation time e=C N /2

Q 2
=time to loose memory eff

Q)

“effective” number
of independent samples

Tq

’ Correlation analysis

O ., «— standard deviation
- c '\14/2 of the M block averages 100 few

too small is true error

l t s M R Al blocks (noise)
Block averaging YV plateau value
'\

Independent repeats divide time series of N points )
do independent (long enough) in M blocks of length n blocks (correlation) &
repeats of the simulation N=M - n » N

Statistical error

e Block averaging: example with butane dihedral time series

. v +
Q(t) Small blocks-strong correlation

- trans

cos?(C-C-C-C)

cos’ Pecec

| gauche-,
¥ gauche+

Large blocks-weak correlation
L

0 500 1000 1500 2000 D
Timea (ps)
001G
. 5 o014t TP SV.VAT P plateau value
here with 2 LATATAARES BLged o .
& AN Al is true error
c=1 E oozt ; .
3 e &
&
@ 001 F
B
2 oot
g o
W /
% 0006 ff
o
0.004 block length,
- — — - mapped here to
100 200 300 400 s00 blOCk dUratiOnS

Black length (psec)

Figure 6 The black-averaging procedure considers a full range of block sizes. The upper
panel shows the time series for the squared cosine of the central dihedral of butane, with
two different block sizes annotated. The lower panel shows the block-averaged standard error
for that times series, as a function of block size.
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Examples
of
property calculations

» 1. Structural properties

- Atomic positions/fluctuations — B-factors
- Radius of gyration

- Solvent accessible surface area

- Radial distribution function

- Orientational correlation function

Structural properties

e Average atomic positions (of a solute molecule)

t N After periodicity gathering
s T . 1 - and rototranslational
<ri > =t j r-i (t )dt =N Z ri (tn) least-squares fitting
0 Nt =1 (based on areference structure)
N, = number of trajectory configurations These have often little meaning

per se (distorted structure!)

— Example: imagine what the average structure in the presence of the following equilibria

- -
<
T

Left-handed Right-handed
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Structural properties

e Atomic positional root-mean-square fluctuations (RMSF; of an atom in a solute molecule)

1/2
5\1/2 1 N,
<[I’i - <ri >:| > = W Z I’ (t ) >] After periodicity gathering
t n=1 and roto-translational
least-squares fitting
r N, 1/2 (based on areference structure)
1
= =R )T -
B Nt n=1
- B-factors are used in crystallography
3Bi to account for the spread in the electron density
= 82 [but: may have many different causes than
LOT atomic fluctuations + there is crystal packing !]

B. = isotropic crystallographic B-factor of atom i

— Example: residue-averaged RMSF as a function of residue number

RMSF of Ca atoms of p53 proteins from MD simulations

6l
54 p53_human (black line) p63 (red line)
z 4_' and p73 (green line), p53_mouse (blue line),
—= p53_chicken (cyan line), p53_fly (purple line)
"9'5 34 and p53_worm (yellow line). The residue number
E 1 refers to p53_human. Secondary structure
24 of p53_human is displayed along the sequence
1 ] (bottom panel): a-helices and B-strands are shown
4 by red rectangles and green arrows, respectively.
04

0 20 40 60 80 100 120 140 160 180 200 [doi:10.1371/journal.pone.0076014.g006]

Residue number

Structural properties

¢ Radius of gyration (of a solute molecule)

1/2
1. = 12
Royr =| o 2oL~ Rem ]
a i=1 After periodicity gathering
N_ = number of atoms in the molecule (does not depend on translation
a or rotation; internal coordinate)

R.,, = centre of mass of molecule
N
1< -
VPIK
M i=1
Na

M = mass of molecule = Z m,
i=1
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RADIUS OF GYRATION

1 N 1/2 %mln(t)
Ry D =1—[n(O -1, (OF with  r,0)=2—
Nat i=1 Zmi

i=1

Example (ulfolding lysozyme in water):

18 | j

€
=
S 17t .
Thermal unfolding £ Il
(o]
500K 5 161 ]
e
£ 15 ol 1
hd
1.4 : - -
0 50 100 150
2.2

Mean-radius-driven
unfolding (300K) with

kLI
N

n
=}

" Sty -1 )

at i=l

Vunf ==

= constant radial
outwards-directed
force on all atoms

-
D

Radius of gyration [nm]
[ee]

N
~

0 50 100 150 200
Time [ps]

Structural properties

¢ Root-mean-square atomic positional deviation (RMSD; of a solute molecule
relative to a reference structure, often from experiment, like X-ray or NMR)

for two configurations m and n of N, atoms
After periodicity gathering

N 1 and roto-translational
1 . = > 2 least-squares fitting
RMSD(m,n) = | — Z:[I’i (m)-r (n)] (based on a reference structure)
N

a i=1

Depends on which set of atoms is used for the translational and
rotational superposition of structures m and n and on which atoms are

included in the sum 1..N, e.g. all-atom RMSD based on backbone C, fitting

— Example: RMSD matrix arguments: GROMOS++ program rmsd
time [IJS] @topo <molecular topology file>
0.0 0.1 0.2 03 0.4 @pbc <boundary type> [<gathermethod>]
B ~ _,__L, e e 0.4 @time <time and dt>
b6 L : - @atomsrmsd <atoms to consider for rmsd>
H b [@atomsfit <atoms to consider for fit>]
[@ref <reference coordinates (if absent, the first frame of @traj is reference)>]
i I w 0.3 @traj <trajectory files>
. 0.8 nm i
- —_
. | i .:'J_(, é
| \ - 02 o
= g
" Al e =
0.0 nm | - =
il 0.1 Comparison of a trajectory
e —— ] . R ; ROMOS++ program
i 1A e e e, of a 14-residue peptide in water GRO r(r)nssd Em()g ams
i = - Enir ] o with itself (you can also compare or rms_dmgt
= 0.0 different trajectories !)
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Structural properties

e Covariance or cross-correlations of atomic positions

e Solvent-accessible surface area

e Occurrence of intramolecular and solute-solvent H-bonds
e Occurrence of secondary structure patterns

¢ Radial distribution functions

¢ Orientational correlation functions

Example: simulations of a-lactalbumin in water

. ) (example is a bit
MD of a-lactalbumin in H,0 «pedestrian» - I'll change
it next year...)
Charge
-8e at normal pH = 6.5 with Ca?* in ~ 5600 H,0, periodic

+16e at low pH = 2.0 = ASP
GLU | protonated, no Ca?*

HIS

L. Smith et al., Proteins, 36 (1999) 77-86
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Example: simulations of a-lactalbumin in water

Differences between the systems
Human a -lactalbumin at high and low pH

Both systems: High pH Low pH
Force field: (pH 8) (pH 2)
Protein GROMOS96 43Al Aspartate side chains? not protonated protonated
Solvent SPC water Glutamate side chains® not protonated protonated
Starting Structure: Histidine side chains® not protonated protonated
X-Ray at pH = 6.5 with Ca2+ C-terminus not protonated protonated
Simulation length: Overall protein charge (in e) -8 +16
700 ps
Calcium ion present absent
Crystallographic waters used not used
truncated ., Box dimensions (initial) 7.1832 nm 7.1832 nm
octahedron
Total number of:
protein atoms 1243 + Ca?* 1267
water molecules 5574 5582

a Aspartate residues are 14, 16, 37, 45, 74, 78, 82, 83, 84, 87, 88, 97, 102.
b Glutamate residues are 7, 25, 43, 46, 49, 113, 116, 121.
¢ Histidine residues are 32, 107.

Example: simulations of a-lactalbumin in water

a -Lactalbumin: Structural properties

A 146
3
E 142 ﬂ%‘ ‘Mﬁ.-'
E @ :a Jxﬂq . ) )
: .., "-' ’:;w ﬁ pH = 8 filled circles e
il.]sl Wyl PY H@' Py pH = 2 open circles o no Ca2+
b 50 100 200 300 400 _s00 60 700
s o
- AT a Radius of gyration
8% th i Wﬁ‘t'f"‘ i
z ® | ¥ 3 ﬁ% .
g ) «* WW m b Solvent accessible surface
R P T S E—— area
c 0 100 200 4“ 500 600 700
030 -
g C_-positional RMSD
g ) a el e, c ¢
- Rl (PPN %,ﬁ”‘ww from X-ray at pH=6.5
%r: 10 é‘;“. " '
“ d All-atom positional RMSD
a o w0 w0 s from X-ray at pH=6.5
Eo'm L JIPITTa jﬁwaﬁﬂmﬁg;&m
go.:n S | e At low pH and no Ca2*:
B o0 : ; — Protein is (?) more compact
g ‘ — Structure deviates more from
ol e X-ray (at pH 6.5 with Ca?*)
Time (ps)



Example: simulations of a-lactalbumin in water

Occurrences of main-chain hydrogen bonds
Hydrogen bonds present in the X-ray structure

(indicated by residue
numbers) in regions of
secondary structure in the
human a-Lactalbumin
simulations

The populations listed are
percentages over the
simulation time 300-700

Number of H-bonds with
occurrence = 10% :

81
56

e At low pH and no Ca?*:
— Helices D and (second)

34, disrupted

Backbone:

similar
fluctuations

Side chains:

larger
fluctuations
at low pH

e At low pH and no Ca?*:

— More sidechain
conformational

NH-CO High pH Low pH NH-CO High pH Low pH
Helix A 3, helix 1
8-4 83 99 79-76 38 61
9-5 93 97 80-77 97 13
10-6 63 57 81-78 68 14
1-7 95 92 ol C
12-8 91 9 X near
13-10 2 5 89-85 98 49 calcium
15-12 7 63 90-86 95 91
16-13 44 62 91-87 93 98
Mol B 92-88 99 99
93-89 98 9
27-23 929 99 94-90 86 57
28-24 82 926 95-91 92 98 ps.
29-25 99 88 96-92 68 98
30-26 78 86 97-93 94 91
31-27 98 98 98-94 94 74
32-28 90 75 99-95 60 87
33-29 92 35 . .
34-30 72 0 Helix D High pH
107-104 13 40 Low pH
p-sheet 109-105 95 0
42-49 72 56 110-106 43 1
44-47 53 86 111-107 40 7
49-42 98 97 -
51-40 59 54 340 helix 2
50-55 98 98 118-115 72 0
54-51 54 77 119-116 65 0
55-50 98 99
57-48 56 86
Example: simulations of a-lactalbumin in water
Root-mean-square fluctuations about torsion angles
(in degrees)?2 in the human a-Lactalbumin simulations®
Time period (ps)

100- 200- 300- 400- 500- 600- 300-

200 300 400 500 600 700 700
®
High pH 14.5 13.8 14.3 13.2 13.8 13.2 15.6
Low pH 15.3 15.3 14.0 14.8 13.7 14.6 15.7
\j
High pH 13.6 13.4 14.0 12.6 13.3 12.6 15.7
Low pH 15.0 15.3 13.7 14.7 13.5 14.4 15.9
X1
High pH 20.1 17.0 16.7 13.7 15.7 15.6 21.3
Low pH 19.9 21.8 18.3 20.5 21.3 20.3 30.0
X2
High pH 38.1 29.4 31.4 32.2 25.9 27.4 52.8
LowpH | 44.3 35.3 32.8 39.0 38.3 35.0 59.0
x3
High pH 57.1 47.1 44.1 40.9 38.5 46.2 67.3
LowpH | 837 57.9 61.7 48.9 66.6 56.9 122.9

Remark: calculating the average and moments of periodic
coordinates (e.g. dihedral angles) is dangerous !

—ldon’t know how it was done here !!!

fluctuations

aThe fluctuations for y, are not listed due to the small number of residues with this torsion angle
b The side chains of proline and cysteine residues are excluded from the analysis.
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Example: simulations of a-lactalbumin in water

The total number of torsion angle transitions

in the human a-lactalbumin simulationse¢

Time period (ps)
100-200 200-300 300-400 400-500 500-600 600-700 300-700

All main chain

High pH 616 670 589 639 627 587 2416
Low pH 808 839 749 727 730 631 2806
All side chain

High pH 843 848 677 663 684 680 2710
Low pH 1330 1095 1063 970 965 1013 4011
>120° side chaind

High pH 149 129 100 70 109 98 380
Low pH 193 160 161 137 153 103 563

e At low pH and no Ca?*:

Increased { motion 4t |ower pH
disorder — More sidechain
in agreement with experiment torS|o.r}aI angle
transitions

¢ The total number of torsional angle transitions of 60° or greater (All) and of 120° or greater
(=120°) are listed.

dThere are no main chain torsion angle transitions of 120° or greater in either of the
simulations.

Example: simulations of a-lactalbumin in water

Conclusions

- Structural properties of a-lactalbumin are well reproduced at
pH=8 (nhative)

- Upon lowering pH to 2.0 and removing Ca2*-ion
- Protein becomes more compact
- Deviations from X-ray structure increase

- D-helix
3,,-helix (2nd) } disrupted in agreement with X-ray at pH = 4.2

- Greater side chain mobility in agreement with NMR at pH = 2.0
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Example: simulations of BPTI in water

Bovine pancreatic trypsin inhibitor (BPTI)

58 ino acid residues
3§bridges 5 internal water molecules

.J a-Helix 3,0-Helix
: a-Helix

C. Schiffer et al., Proteins, 26 (1996) 66-71

Example: simulations of BPTI in water
Atomic B-factors: protein BPTI

40 L—)
I
l' 2 2
< ' =B (- )]
: :; B, ( 3)< r—(r
; -
— mean square fluctuation
of position of atom i
a C, atoms in a-helix (50-55)
i<
E b C, atoms in 3,,-helix (3-7)
@
¢ Cross correlation

Mean-square atomic
fluctuations converge
only after at least a ns of
simulation

Cross-comelation

P. Hinenberger et al., J. Mol. Biol., 252 (1995) 492
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Correlation coeff cient

Corralation cosfficient

ns o

Example: simulations of BPTI in water

BPTI: atom-positional cross-correlations

as a function of the distance between atoms
1.0 T T T T T T

. ] Is it just an artefact?
a Fit on all

4 3. backbone atoms

o5 - Fitting to remove translational

and/or rotational motion can
induce spurious fluctuations

0.0 .
and correlations.

2 AL Important long
e | ' range correlations?
00 05 10 15 20 25 30 35
1.0 T T T LI T T
j b Fit on
gE 5 stable part
05 S ]

S of structure

0.0

- No long range
. ) correlations

i
0.0 0.5 1.0 1.5 2.0 25 3.0 35
Interatomic distance [nm]

P. Hunenberger et al., J. Mol. Phys., 252 (1995) 492

Structural properties

¢ Radial distribution function g(r)

r: minimum-image distance !
Yields radial structure of liquid, solid 9(r) : unitless function
p g(r) 4mr2dr is the probability or frequency of observing an atom in

a spherical shell between r and r+dr around an atom of rather:
the local density
p = number density relative to the bulk !

=\ dr

Normalization: .
or N if solvent

around a solute

2
pg(r)4nr<dr =N-1
_— e.g.: water oxygen N=128,
0 innug;gﬁrbogt\?vtgéﬂsr around Na* L=1.57 nm corrected
and r+dr around
a central atom h |

volume

L] T 5

4

Limits: . box |,

. g | H face lg ||

Irlrr(-)]g(r):o 2 | \L box 12

—

. | diagonal |.
Ilm g( r) = 1 ‘ | || lm | ‘ .I I'-/"'f\fq__ -
r—o . |
o — T ‘ it %% L 55 . 5
R[nm] R[nm]
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G(cavity-oxygen)

RADIAL DISTRIBUTION
3

Example: simulations of water
Radial distribution function g (Ro.0)

for the SPC model at four

different temperatures and
constant volume compared with
experimental results

Solid lines: g (R) for SPC model

Dashed lines: X-ray data

—

First neighbour peak becomes
lower at higher temperature
and the second one disappears
in agreement with the (not very
precise) experimental results

i
| |
| f
1 1
WA 5 8
Roo/nm

7J._Po§trﬁafA ‘molecular dynamics study of water, PhD-thesis (1985), Univ. Groningen

Example: simulations of a cavity in water

Cavity-oxygen radial distribution function g(r)
for five values of the thermal radius of the cavity

Cavity-H,O g(r)

Curves are obtained by spline
smoothing with deviation from
the data not exceeding 0.05. No
smoothing was applied for
distance below the first
maximum

Radius of cavity:

A: 0.100 nm
B: 0.178 nm
C: 0.238 nm
D: 0.299 nm
E: 0.317 nm

Solvation structure
varies with cavity radius

J. Postma et al., Faraday Symp. Chem. Soc., 17 (1982) 55-67
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Structural properties

¢ Orientational correlation function c(r)

— lon-dipole — Dipole-dipole
roi. i -0
LI (cosB(r)). <u.2u,> = (cos6(r)),
e . u v
u.
Ky | Ky
S o { ..................... o
rij r”
[i, = vector at position . (size=p) [i, = vector at position t, (size=p)
. .. L 2\V2 ) o a2
r, = distance i-j = ([ri -7 ] ) r, = distance i-j = ([ri =il )
Foi. i -0
cosf =i i cosf =1 2“’
[T I
Example: simulations of a cavity in water
Orientation of H,O molecules around a cavity
! Simulation of cavity formation
08 Probability density of orientation of OH, dipole
and HH direction with respect to radius from
0.6 OH cavity center to oxygen, expressed as
distribution over cos6.
0.4 Data applied to molecules in first shell (r <
0.475 nm) from simulation with ry, = 0.299
0.2~ nm.
4 DIP
0.6+ TN Angle between vector
- 4 \ 9 .
S \ /.-/ “ from cavity center to water oxygen
g 04 N\ __-~- ‘ and the vectors
& = OH:
0.2~ DIP:
T HH:
0.6 o)
. 5
H €—> H
0.4
0.2L1 1 1 ]
| -0.5 0 0.5 1
T S Y NN TN I U [ B N | 0]
1801 120 90 60 300

inner scale: cos @

o $ : 0
uter scale: 6) J. Postma et al., Faraday Symp. Chem. Soc., 17 (1982) 55-67
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Example: simulations of a cavity in water

Orientation of H,O Molecules around a cavity

Two possible orientations of water molecules consistent with the
orientational distributions shown before

FiG. 5.—Two possible orientations of water consistent with the orientational distributions of fig. 4.

J. Postma et al., Faraday Symp. Chem. Soc., 17 (1982) 55-67

Example: simulations of NaCl in water

System equilibration
Compare different parts of the same simulation.
Na - Na

Ci-Ci
95— -

0.6 {
Is Na* - Na* equilibrated? Is Cl- - Cl-equilibrated?

10 15 20 %%
1 [ren]

as

15 T
t [mm)

Radial distribution functions g(r) obtained from an MD simulation of a 1 molar
sodium chloride solution (40 Na*, 40 CI-, 2127 H20)

averaged over different 50 ps of the simulation.

(A) Na* - Na*

(B) Cl--CI-
W. F. van Gunsteren et al., Comput. Phys. Commun., 91 (1995) 305-319
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Examples
of
property calculations

» 2. Thermodynamic properties

— Thermodynamic properties
- Energy, pressure, heat capacity
- Compressibility, thermal expansion coefficient
- Free energy, entropy — discussed in lectures about free energy !

Example: simulations of lysozyme in water

System equilibration
Van der Waals non-bonded energy of lysozyme in 5000 water molecules
as a function of time.

000 - The data points
represent 25 ps
E' =800 r 1 averages.
3 00 1u )
=4 pper panel:
B X \ at total energy
g _— Lﬂwf—w ) (solid line)

Lower panel:
intra-protein energy

T e -

i (dotted line),
— ZBOOL J protein-water energy
¥ Y - (dot-dashed line)
E M T, T
" e e Considering global
om0 T e { properties is not
S A e T sufficient:
B T 1 Total energy is

e . : . . constant, but

250 450 el 630 750 £50 850 components still
bme Ips: drift.

W. F. van Gunsteren et al., Comput. Phys. Commun., 91 (1995) 305-319
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Example: simulations of liquid chloroform

Chloroform models

Model c—-C ¢ C—H dd—-C <Cl--H H—H
Ce x 1073/kJ mol ! nm®
Dietz and Heinzinger [27] 2:6309 46754 03622 83067 06493 00377
Kovacs et al. [25] 1-8212 44421 06027 10699 14997 01927
Jorgensen et al. [29] 40340 59482  0-0000 87708  0-0000  0-0000
Cy, x 107 %/kJ mol~* nm*?
Dietz and Heinzinger 4-0642 74813 01745 13-765 03266 00043
Kovacs et al. 1-9555 62786 04178 19667  1:3967  (0-0834
Jorgensen et al. 12-146 13637 00000 15312 00000 0-0000
Oc/e Qci/e Qule wD
Dietz and Heinzinger 0-179 —0-087 0-082 1-10
Kovacs et al. 0320 —0-140 0-100 1-60
Jorgensen et al. 0420 —0-140 0-000 1-07
dcoy/nm dcy/nm Ocicar Bucar
0-1758 0-1100 11130 107-57

Geometry: rigid

Interaction:

12
12 6

— bonds d (gHAKE: tolerance=10-4)

—— angles 0

C, QiQJ{1
_+— R

i 4ne, i

2
(SRF T
2, +1R?

-1)r

O——I

CI/ : \CI

Ol

Cut-off radius
R. = 1.4 nm
Dielectric
constant

Err = 5

Simulation:

216 molecules

in cubic box

(10 ps equilibrium,

50 ps sampling,
every 50 fs)

At = 2 fs

= 0.1 ps
T=293K
1 = 0.2 ps
P=1 atm

Br = 10-9 m2N-1

I. Tironi et al., Mol. Phys., 83 (1994) 381-403

Example: simulations of liquid chloroform

Chloroform models

Energy, density, pressure, temperature

Dietz and Heinzinger

model Kovacs et al. model Jorgensen et al. model Exp.
Ref. Ref. Ref.
This work [28] This work [25] This work [29]
T/K 29345 295 293+5 288 29345 298 293
pressure pjbar 03+ 84 18 +90 11 485 10
density pkgm™? 1520+ 12 1484 1466 + 10 1400 1456 + 10 1480 1489¢ .
E,o/kTmol ™! -286+03 -286 -341+03 -295 -277+03 -313 -314
E/k) mol ™! 053 £ 007 -16+01 118 -{:58 + 0:08
E, /KT mol™! -281403 -325+03 =218 =211+03

“ From reference [42].
b _AH, interpolated for 293 K from [41].
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Example: simulations of liquid chloroform

Chloroform model: thermodynamic properties

- 1(av aln In(p, / p
Isothermal compressibility: K = ——[—] =( pj ~ (pz 1)
V ap T ap T p2 - p]_ T
. . In /
Thermal expansion coefficient: ¢ = A M
v ot ), T,-T,
. U, -u i
Heat capacity: C, = B %Y +3R+CY  whysr?
oT ), T, -T, 9
20-40 ps 40-60 ps MD exp
T/K p/kgm 3 P/10% Pa K4/1071° Pg !
298 1489 7 —10 89 9-7¢
298 1560 542 51
P/10° Pa T/K V/nm3 2/1073 K ™!
1 293 285 284 _ P
! 320 297 29-4 123 1-27
p/kgm™3 T/K —U/kJ mol ! C/IK 'mol !
1489 293 61156 61189 67 74:7%
1489 320 60669 60621 73
1489 340 6020-7 6007-6

* Reference [40].
» Reference [42].

Examples
of
property calculations

» 3. Transport properties

— Transport properties
- Diffusion (translational/rotational), viscosity
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Transport coefficient: the example of diffusion

= Self-diffusion (of particles within identical particles)

— Fick's law

. j(r,t) particle flux
] = -DVc c(r,t)  particle concentration
D self-diffusion coefficient
— Conservation law
oc .
ot

— Diffusion equation (combining the two forme

oc

DVic=0

= One particular solution

C(r.0)=5(r) b c(r,t)=

T A

r equations)

(47Z Dt)—s/z e—rz/(4Dt)

HA

Diffusion coefficient from simulation: The Einstein relation

= The Einstein relation

d 2 d 3 2 3 2v72
—(r (t))=—|d’rrec(r,t)=D|d’r r’'Voc(r,t
m<”>m£ (r,t) i (r,t)

= d3 (2 ) _ d3 2 ,
=0 because DL[ I’V(r ve(r t)) £ rvr--ve(r t)}

gradient ———~—
;fgf)’:s = DDdzo" rve(r,-2[d*r ~VC(r,t)}
S )

Q: sphere of radius p— around r(0)
X: surface of Q

Convention:

jd3r c(r,t)=1
Q

—2DUd3r V(r c(r,t))—J'd3r (V-r)c(r,t)

|

=0 because

Einstein relation

D =(1/6)lim‘_m%<r2(t)>

conc. v ¢
‘;f';ﬁ';es = —2DDd3a- r c(r,t)—3_[d3r c(r,t)} =6D
z Q

= Computing D from simulations (via the Einstein relation)

time O time t

(Tar7 )1

600 9oy

noise
at very
long times

A

slope: 6D

<+— linear long-time regime

<«—short-time cage effect

qﬁmﬂ=ﬁimmw

Best statistics: average over

(follow particles across periodic boundaries!) particles and time origins!

195



Diffusion coefficient from simulation: The Green-Kubo relation

= The Green-Kubo relation

Green-Kubo relation

L R S
isotropic _ 2%@@' j £ (v, (tW, (")

:diJ: t! 7 (v, (t)V, (t'+7))

zziid I £C,y ()

=2jdr C,., (r):(z/s)jdr C,, (1)

D=(1/3)lim_, [dzC,(7)
0

= Computing D from simulations (via the Green-Kubo relation)

time 0 time t CW(T)
O
v, (t)
R
1 N im—7
C,(7)= NG Z { dt v, (t+7)- v, (t)

A

area: 3D

Other transport coefficients

= can be calculated via appropriate Einstein-like or Green-Kubo-like equations

(the latter ones being more commonly used)

Examples:

e Diffusion coefficient (see above)

e Viscosity

e Thermal conductivity

e Electrical conductivity

e |lonic conductivity

¢ Frequency-dependent dielectric permittivity
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Autocorrelation function:

particle velocity
stress tensor

heat current
electrical current
ionic current

box dipole moment



Example: simulations of a model bilayer

Snapshot of a simple bilayer of decanoate/decanol molecules,
water and ions

Projection on the xz-plane of a snapshot of the system after 30 ps simulation:

90 Gg v g0 G m
D ] "l ] A
IR ¢ Decanoate ions
and decanol
molecules

(—)
Sodium ions (A)
Water oxygens (O)

Oxygens in the
lipids (0)

E. Egberts et al., J. Chem. Phys., 89 (1988) 3718

Example: simulations of a model bilayer

Diffusion constants from mean square displacements

Lateral diffusion constants were calculated for Na* ions, and for the
centers of mass of decanoate ions, decanol molecules and water
molecules from mean square displacements using the relation:

!im<r2(t)> = 4Dt, where r?(t) = (x(t) - x(0))* + (y(t) - y(0))?

D.{ T T 1
Calculated diffusion
. 0.3 / " constants:
= Py Sodium
A oa2f i D = (2.7+0.3) x 106 cm2s°!
23 = Decanoate
< 0. . D = (2.7%+0.3) x 106 cm?s!
v Decanol
0.0 = A D =(5.2+0.4) x 106 cm?s1
Water
TIME (PS) D=(1.240.05) x 105 cm?2s-!
FIG. 12. Averagesq 1 lateral displ: asafi 10m of time for the
centers of mass of water molecules ( - - -- ), decanol molecules ( -- ),
decanoate ions (—), and sodium ions (++-).

Fig 12: Average squared lateral displacements as a function of time for the centers of
mass of decanoate ions ( ), decanol molecules € — =), water molecules (= - = -)
and sodium ions (-eeeeeeees ).
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Calculating diffusion constants

Translational and rotational diffusion

Dynamic properties Chloroform
C-H: z-direction

Dietz and Kovacs et al. Jorgensen et al.
Heinzinger model model model
This Ref. This Ref. This Ref.
work [28] work [25] work [29] Exp.
D,/107° m?s ™! 25 26 1-7 338 25 2:32¢
7,(2)/ps 36 31 49 31
7,(xy)/ps 38 36 53 36
1,(2)/ps 12 12 1-7 0-96 1-1 1-3%
75(xy)/ps 13 14 21 14 1-5°

“ From reference [60].
b Rotational correlation times from [24].

Translation: D, = llm <[E(t'+ t) - r(t ')T> ../th]

Rotation: <;Li(t DR ;Li (t'+ t)>t',i _ ef%l . .
<%{3(l}| (DX l/:li (t'+ t))z _ 1}>t"i _ e-%z Lw=u,,u,

I. Tironi et al., Mol. Phys., 83 (1994) 381-403

Examples
of
property calculations

» 4. Electromagnetic properties

— Electromagnetic properties
- Dielectric permittivity, relaxation
- NMR parameters, relaxation — discussed in lectures about refinement !
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Example: simulations of liquid chloroform

Liquid chloroform

Dielectric properties: (8 _1)(28RF +1J ) <(,\7| _<,\7|>)2> <|\7I2> —<|\7|>2

Dielectric permittivity &:

3e VK, T 3¢, VK, T

2e, +¢€

_ N
M = ZFH = total dipole moment
i=1

0.40 T
. . _t/
<M(t) : |v|(0)> e/t
0.30
e T=3.4ps
2 020l €e=24
/ M
& x
3 ai il g
0.10 B Akt
X, - 2
N Y
BEA
0.00 L .
0.0 500.0 1000.0 1500.0

time /ps
Figure 4. Cumulative average of the total dipole moment fluctuation of the system (Dietz

model) as a function of time. I. Tironi et al., Mol. Phys., 83 (1994) 381-403

Example: simulations of liquid chloroform

Liquid chloroform

Dielectric properties: - -
M(t") - M(t'+t
Debye relaxation time T, < (t M(C )>t' e L e t1

<I\7I(t')-l\7|(t')> 26 +€ °
"
1.0 80

§

g
05 + g -

X

a0 4o

<M(OM(1)> / <M*(0)>

|

- ‘5 | - o L 1 — —
0 0.0 2.0 4.0 6.0 8.0 10.0

time /ps

Figure 5. Normalized autocorrelation function of the total dipole moment of the sy
(Dietz model). The inset shows a semilogarithmic plot of the correlation function

the first 5 ps. N
I. Tironi et al., Mol. Phys., 83 (1994) 381-403
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Example: simulations of liquid chloroform

Chloroform: various properties

MD Exp.
‘ Dielectric properties \
€ 24 4-81 [40]
Tp/ps” ! 38 5-4¢
‘ Helmholtz energy/kJ mol ™' \
over 50 ps: forward 156
backward —143 153
over 80 ps: forward 15-4
backward — 145
‘ Viscosity/cP ‘
n via Einstein 0-6 0-568°
via Green—Kubo 0-53

¢ Reference [37].
? Reference [40].

I. Tironi et al., Mol. Phys., 83 (1994) 381-403

The art of analysis

e My recommended sequence for simulation analysis

. . This won't tell you anything “sharp” but may
— (A) Make a movie and watch it carefully give you an idea of (1) what is possibly going wrong

and (2) what might be particularly interesting looking at

E.g. energy components, temperatures, pressure, RMSD, specific internal coordinates...

— (B) Do standard analyses These are easy (programs available) and may give you information on
(1) what is possibly going wrong; (2) whether you are well equilibrated;
(3) what might be particularly interesting looking at

. Define the observable(s) that are most likely to characterize
— (C) Do tailored analyses simply and precisely the process you observe; here, don't be lazy:
if the program does not exist, write it!

- H Plot things in a way that the main message
- (D) Make well deSIQned graphs is easy/immediate to grasp from the figures/tables

H H Not always easy/possible --- can be cumbersome;
- (E) If pOSSIble’ report error estimates also: what is in the error --- usually only statistical error

e Good simulation studies start with a good hypothesis/question; keep this question
in mind when analyzing the results; find the observables and make the graphs that
will answer your initial question in the most clear-cut way

e Most studies that stop at (B) end up being totally dull; and if you stop at (C), you may
fail to convey clearly your conclusions to other people
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The art of analysis

e Some usual problems may cost you time for nothing; so check for them early:

. They are usually an «alarm bell»
— SHAKE failures for something else !

— System was not equilibrated long/carefully enough
In particular:
— Temperature is not what it should be (or is inhomogeneous in the system)  check Tsolute

vs Tsolvent !
— Center-of-mass motion builds up unexpectedly
— Periodic gathering is not done appropriately
e Also remember that the apparent stability of standard observables in time is a necessary,
not a sufficient condition for equilibrium
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hunenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019
Lecture 529-0004-00 Tuesday 9:45-11:30 a.m. LECTURE 7 (WEEK 8).
www.csms.ethz.ch/education/CSCBP HCI D2 Free energy calculations |

= CLASSICAL @

Four basic choices defining a molecular model

degrees of freedom

o
®

=ATOMS

FORCE FIELD @ @ @

:;f ifnterac ,

. ]

MOLECULAR

_ system size and shape,

temperature and pressure,

experimentally-derived
~__informati 7

| = FREE-ENERGY

s
v % CALCULATIONS

| (extension)

)
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Free energy in thermodynamics

e In phenomenological thermodynamics, the free energy is a thermodynamic potential
(state function with an energetic component), with the definition

internal (=total) energy

— Helmholtz free energy F =E -TS

(also sometimes noted A; appropriately called the free energy) pressure

— Gibbs free enthalpy G=F +PV =E+PV -TS

(often also called Gibbs free energy or simply free energy )

(absolute) temperature

E
P
- V  volume
T
S

(absolute) entropy

e These quantities are state functions (solely depending on the present state of the system, not

on its history), extensive and defined for any system (irrespective of its boundary conditions)
microcanonical

— For a system under closed isochoric adiabatic boundary conditions (NVE),
any spontaneous change in the system is accompanied by an increase in S

ds >0 for any spontaneous change in the system 2nd Jaw of
|NVE = (zero: system at equilibrium) ) thermodynamics
canonical
— For a system under closed isochoric isothermal boundary conditions (NVT),
any spontaneous change in the system is accompanied by a decrease in F
for any spontaneous change in the system derived
dF|NVT <0 (zero: system at equilibrium) formulation

isothermal-isobaric (Gibbs)
— For a system under closed isobaric isothermal boundary conditions (NPT),

any spontaneous change in the system is accompanied by a decrease in G

v

for any spontaneous change in the system derived
dG|NPT <0 (zero: system at equilibrium) formulation

Free energy in statistical mechanics

e In statistical mechanics, the free energy is related to the partition function

boundary conditions (NVE), the entropy S is related Isosurface at &

. R Ly . in 6N-dimensional
to the microcanonical partition function phase space

— For a system under closed isochoric adiabatic area of an energy
Qoo

N number particles h Planck constant

-1
O Dirac delta function é: = (hSN N !)

kB Boltzmann constant [indistinguishable
particles]

wrion cauprovanity) S =k, In[ &[] dr dp (E'3(r. p)-1) |

+ normalization .
given
2

Y
NV Density of Q(E N p:
S(N,V, E) ensity of states ( ) }[(r, p) — ZL.M/(” Hamiltonian
i=1

— For a system under closed isochoric isothermal boundary conditions (NVT),
the free energy F is related to the canonical partition function

T (absolute) temperature

p= (kBT )7l

— For a system under closed isobaric isothermal boundary conditions (NPT),
the free enthalpy G is related to the Gibbs partition function

F =g = el o0 )

canonical partition function

4 volume

G=—p" 1H%NPT =~ In[ £[dv [[dr dp exp (Lo (r, p, )+ PV]) { b (eference)

pressure

Gibbs partition function

e For simplicity, we will only further consider the free energy and the canonical ensemble
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Free energy and molecular dynamics

e In the canonical (NVT) ensemble, a given Hamiltonian defines a unique
canonical probability distribution

FH(r, p) - P(r, p) = exp(—ﬂ?f(r, p)) normalized
”dr dpexp(—B7(r, p))
— Many observables can be written as canonical ensemble averages
Y ensemble-average
Y =(v(r, p))=[[dr dp P(r, pyv(r, p) { observabl
(Y(I’, p) instanig;rssgggblggrvable

— The free energy can also formally be written based on an ensemble average

reason:

F=p3" [111 <exp(+ﬂ7{(r, p))>+C] (exp(+B7(r, p))>:” [[dr dp e

dr dpexp(-S#((r, p))

e Molecular dynamics at constant volume (periodic boundary conditions) and with
an appropriate thermostat samples the canonical (NVT) ensemble

— This method automatically generates configuration according to the canonical
probability distribution

Y = <(Y(r p)> i.e. a straight average over the sampled configurations
’ MD is already a Boltzmann-weighted ensemble average

— This method does not allow to calculate absolute free energies
the averaged quantity

the average <exp(+ﬁj—[(r’ p))> will never converge... is highest where the sampling
MD probability is lowest !

— But: we can calculate free-energy differences !

Three types of free-energy differences

e Restricting the discussion to state pairs, one may distinguish three basic types
of free-energy changes

Thermodynamic Conformational Alchemical
e.g. temperature

State A
AF 1 N,V
State B
or similarly
for NV, ...
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Three types of free-enerqy differences

e Free-energy change associated with a thermodynamic state change

— The change is physical and real (obvious experimental counterpart), and involves one
of the parameters defining the thermodynamic boundary conditions of the system

Fe =B ' In| & [[dr dpexp (=B #(r, piV LQcD) | r.p: 3Ny dmensiona

vectors

Q: Additional external variable

3 defining the strength of a possible coupling
State A NA,VA,TA[,QA]Z of the system with its surroundings (e.g. applied

gravitational, electric or magnetic field)

State B

’ NA,VA,TA,QB

Number of particle Volume Temperature External
change change change field change

Three types of free-energy differences

e Free-energy change associated with a conformational state change

— The change is physical but virtual (indirect experimental counterpart), and involves a

partitioning of the conformational space of the system into distinct conformational states
conformational-state

Fo==p [ ¢[fdrdp fymexp(-po(r.p) | fu():  ndesorbocten
momenta [conformational])

AR =F; —F,

I

Conformational
f(r)=1 change f,(r)=0
fa(r)=0 N,V,T =cst fa(r)=1

State A State B

Related to equilibrium constant

AF,=-B"InK,,

— The definition of states can be

Would one of the most
fundamental concepts of

Thermodynamic Kinetic chemistry be... undefined ?
A state gathers the conformations A state is a collection of configurations vin thitz;zsoafrf’hf“bge%Ider"
within a common free-energy basin with rapid interconversion rates

—adevice to bring a complex

(but in which reduced space ?) (compared to conversion to others) configurational ensemble
St t | E . tal dynamics into a simplified form,
- ructura . . xper!men a . . amenable to human reasoning
A state is a collection of A state is a collection of configurations .
. . . . e . Watch out for possible
configurations with low mutual with specific spectroscopic discrepancies between definitions
coordinate deviations or functional properties

(e.g. unfolded state =
high rmsd or dark in NMR ?)
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Three types of free-enerqy differences

e Free-energy change associated with a conformational state change

— One may also be interested in the free-energy change along a reaction coordinate,
which is called a potential of mean force (PMF)

F(s)= _ﬁ—l 1n|:§.”dr dp f (r;5) eXp(—ﬂ}[(r, p)):| f (r,s): reaction coordinate

indicator function

— Example: lysozyme thermal denaturation in water (500K)

Ty
1 1 =18 W/
R .(N=—>» m(r-R._) =
gyr() |:M; |(| cm):| :§1-7_
ot 1 & 510l '
cen’t)eors?tfio?ass Rcm :_Zmirl .g 1.6
i=1
. 3 1.5
totalmass M = )» m . . .
; 4 50 100 150
Time [ps]
— Try to establish a PMF as a function of the radius of gyration at 300K (difficult task !)
F(S) 'y
unfolded
folded

f(:9)=0R,,(N-5) WP

Three types of free-enerqy differences

e Free-energy change associated with an alchemical state change

— The change is unphysical (no experimental counterpart), and involves a change in the
form of the potential energy function via the associated molecular topology

Fy = _ﬂ% ln|:§_”.dr dp eXp(—ﬂﬂx (r, p))} H, (r,p): state Hamiltonian

AF,, =F,-F, S
State A i é : — é State B
NA Aehomical N
H (1, P) change Hg (T, P)
N ’V ,T = Ccst Otherwise, the two Hamiltonians
are not functions of vectors of the
. . . . same dimensionality! Also: deleting a
— The number of particles must be identical in the two point mass does notmgkesensec|asﬁca.|y,
states, i.e. only atom mutations are possible and non-interacting point-mass statistical

mechanics (ideal gas) is analytical

— The creation or deletion of an atom corresponds to its mutation Examp'ﬁ;i‘;‘j:é::‘nizaa::é:”ized'amm)
from or to a dummy atom (point mass without any interactions often unwise: particle is a gas

to its environment, or only intramolecular ones) of e eyt oo ey

— The calculated free-energy change cannot be directly compared to any experimental
number; only the difference between two closely-related alchemical calculations, differing
in the environment of the molecule, are compared in a thermodynamic cycle
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Thermodynamic cycle

e The interest of alchemical transformations is that they offer an interesting (often
computationally more efficient [easier sampling]) alternative to the monitoring of
conformational changes; this is achieved by using a thermodynamic cycle

— Example of conformational process of interest

State A
(free)

g o

protein and ligand very far
— no interaction

Conformational

change

— Corresponding thermodynamic cycle

Alchemical ligand insertion
— install intermolecular
interactions

often easier to
sample !

1 AI:free

AF,

decoupled

State B
(bound)

sampling the process

protein and ligand very close directly (e.g. PMF

— binding

distance) is difficult

=0
-

Decoupled state
of the ligand — no
intermolecular interactions

= Many choices; generally,
the intramolecular interactions
will be either kept unaltered

(or only the intramolecular
non-bonded will be removed)

along the protein-ligand

AR,

bound

!
@

AR,

Thermodynamic cycle

e Another example (cf exercise 5)

phenol
in gas phase

N,V,T

phenol
in water

— Physical quantity

= AF

slv

A Fwat -A Fgas

(tol) - AF, (phe)

toluene + dummy
in gas phase
® =CH3
® =dummy

(mass site with e.g.
phenol-like covalent
attachment)

dummy:
same covalent
attachment, no
interaction with
surrounding solvent

AF

wat

toluene + dummy
in water

The meaningful
(physically measurable)
quantity !
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AF,, = AF,

AF,,

calculated via cycle:

AF

ound free

A number that has
no meaning per se
(and that we could arbitrarily
change by altering the
covalent parameters
involving the dummy) !!!

S

Again, anumber that has
no meaning per se

[the effect of a specific covalent
attachment of the dummy
becomes irrelevant (cancels out)]



Three types of free-enerqy differences

e The three types of processes mainly differ by the number of degrees of
freedom (dof) they consider

Thermodynamic Conformational Alchemical

State A

State B

— number of dof — one degree of — one degree of
is invariant freedom projected out freedom added in
(conformational coordinate) (alchemical coordinate)

— The free-energy methods applied to the three types of problems are historically

quite different; but if one looks more closely, any type of method can be applied
to any of the three types of problems

— It is possible to transform thermodynamic and alchemical problems into
pseudo-conformational problems using an extended-system approach

— It is possible to transform conformational problems into pseudo-alchemical
problems using a reduced-system (constraint) approach

Extended-system pseudo-conformational free-enerqgy changes

¢ A thermodynamic problem can be converted to a pseudo-conformational problem
by adding the varied parameter as a dynamic variable in the MD simulation

— Examples
1 a}[(ra p:fV)
ov

fictitious = Andersen
mV (piston) mass barostat

Box volume V —)(V(t) ’V(t) =—m\;

Thermostat reference ; = multicanonical
temperature T- T(t) [more complicated] sampling or SPEED

y L OH(r, p,N)
e NoNO FO=m =

fictitious =grand-canonical
N mass MD

t

¢ An alchemical problem can be converted to a pseudo-conformational problem

by introducing a Hamiltonian coupling parameter, and treating it as a dynamic variable
in the MD simulation

— We first need to define a coupling scheme
A: Hamiltonian coupling parameter

if A=0
7‘[(" p; /1) — j{A(r’ p) ! this condition is actually compatible
> M }[B (r’ p) if A=1 with many alternative coupling schemes !

— Then we use so-called A-dynamics Abecomes a dynamic variable !

Coupling N )\(t) )L(t) — _m—l a}[(ra P, )\) m, fictitious

= A-dynamics
parameter A oA mass
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Reduced-system pseudo-alchemical free-enerqgy changes

e A conformational problem can be converted to a pseudo-alchemical problem
by removing one (collective) dynamical variable in the MD simulation

— Collective coordinate constraint

( ) collective Lagrange multiplier (determined
d i coordinate t at each timestep so that the
ynames }[(r) p) + ]/(t)é‘(S(l') - S) }/( ) constraint is satisfied; e.g. SHAKE)

using
S reference value

. Dirac delta function
— pseudo-alchemical
variable

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature ‘ Direct Thermodynamic
integration counting (DC) integration (TI)
Pressure Umbrella Free-energy
integration sampling (US) perturbation (FEP)
Grand-canonical . .
intearation A-dynamics local elevation
9 umbrella sampling (A-LEUS)
Enveloping distribution
sampling (EDS)
Fast
o < fy (r)> growth (FG)
AF,, == 'In32L
(fa(0)
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Direct counting (DC)

e The a priori simplest method to calculate a free-energy difference is direct counting (DC);
it applies to conformational problems, as well as to thermodynamic and alchemical
problems reformulated as pseudo-conformational problems

¢ Consider a (pseudo-)conformational Hamiltonian and the associated canonical probability

distribution possible
eXp _ﬂ}[(r’ p, ) xtended- m
AH(r.p.Q) WP P(r.p.Q)= ( Q) Q T Varanie

J'J'dr dp dQexp(—ﬁJ{(r, p,Q)) (only present

if «pseudo»)

e The free energy of a (pseudo-)conformational state X is
Fe == In| [[drdpdQ P(r, p.Q), (r,Q) [+C == In(f, (r,Q))+C

e Thus, in MD, the free-energy difference between two (pseudo-)conformational states
A and B can in principle be obtained by monitoring the occurrences of the two states

-1 < fB (r,Q)> We just to count the number of trajectory
AFAB = _,B InJ———— frames in the MD where f,=1 and where fg=1!
(fa(r.Q)
Example with a purely )
conformational change
f,.(r)=1
/ —
P(r. p) -
M = high value fB(r)=1
conformational p
b

space

Direct counting (DC)

o . : A ! !
« Example of application to enantioselective complexation A" {inusua) example

Experimental values:

cyclopentanediol in Benzene in CCl,
Ky [1/m] 40 97
AG, [ki/mol] -9.3 -11.5
AH, [kJ/mol] -20.2 -17.6
ASp  [W(Kmol)] -36.4 -20.3
TAS, [kJ/mol] -10.9 -6.1
K, ['/M] 15 53
AG, [kJ/mol] -6.8 -10.0
AH, [kJ/mol) -41.7 -34.3
1.2-RIR- ASp  [W/(K-mol)] -116.3 -81.2
cyclohexanediamine TAS, k] /mol] -34.9 —24.3
HO I, Ky [1M] 19 53
AG, [kJ/mol] 7.4 -10.0
e AH,  [kd/imol] -21.8 -15.9
HO ASp  [W(K-mol)] -47.9 -19.8
HO K, [1/m] 14 38
AG, [kd/mol] -6.6 -9.1
. AHp  [kd/mol] -40.6 -36.0
HO " ASp  [J(K-mol)] -113.2 -89.6

1,2-R/R- or S/S-

AG, =AH, -TAS
b b b cyclohexanediol

=-RT InK,

Hinenberger et al.,
JACS 119 (1997) 7533-7544
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Direct counting (DC)

e Example of application to enantioselective complexation (continued)

— System considered in the MD simulations

Cyclohexane-
diamine

NH,

oty NH,
in CCl, or benzene

— MD simulations

Simplified solvent representation

cheap — us simulations

HO

Ho o

Cyclopentane-
diol

7

N

o+

Periodic solution

Concentration 0.04 M ~Exp.

Diol + Diamine + 252 CCl, Molecules
21-22ns

(Camera follows the diamine)

2 solutes + 252 CCl, “atoms”
— total 273 atoms
box-size: (4.33)% nm3

formation of the complex » complex formed

21




Diol + Diamine + 252 CCl, Molecules
3.2-4.0ns

(Camera follows the diamine)

Hydrogen bonds

O—>N

N->O

... and a nanosecond » the molecules
afterwards ... are free again...

Direct counting (DC)

e Example of application to enantioselective complexation (continued)

Reaction coordinate §(t):
O‘ NH2 Minimum O(diol)
HO to N(diamine) distance

— Reaction coordinate

NH, HO
— Time series of the reaction coordinate and energy during the simulation
Animat|0n
3.0 iy
2.0 | |
Reaction =5 an* lM l '
coordinate £ 1.0 ] M \lﬁ.l .hL
¥ 0o Al
LA L IJH'LI HILJJILLu_I II “_LlllLllL Jlllllllili 1] l II JllJllLllJIJl
0
o 75 il | L " e . | | )
L
energy 2 o5 | T} ! LA I
r} | " | i Y | | e
> i W |
20 0 60 80 Q0

Total potential
energy

V [kJd/mol]

time [ns]
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Direct counting (DC)

e Example of application to enantioselective complexation (continued)

100 " T T
) a Binding constant
80 - A
" RS |
— A S ""ﬁ'm AY gues
§ f’ L) !\'4 - u\vf
¥ 40 -

| ._éi_nding enérgy

r =20

AA, [kd/mol]

Direct counting (DC)

e Example of application to enantioselective complexation

1,2-R/R- or S/S-

T =298.15K cyclopentanediol

Ky
AH,
ASh

TAS,

Ky
AG,
AHy
AShw

TAS,

Kb
AG,
AH,
ASp

[1m]
[kJd/mol]
[kJ/mol]
[W/(K=mol)]

[1/m]
[kJd/mol]
[kJ/mol]
[J/(K-mol)]

1,2-R/R-

cyclohexanediamine
(1m]

[kJ/mol]
[kJ/mol]
[JAK-mol)]

Kb
AG,
AH,
ASp

[
[kJ/mol]
[kJd/mol]
[J/(K-mol)]

1,2-R/R- or S/S-

AG, =AH, -TAS
b b b cyclohexanediol

=-RT InK,

213

[kJ /mol]

[kJ /mol]

An (unusual) example
where it works...

--40
A11'S

[{low )/

Experimental values:

in Benzene

40
-9.3
-20.2
-36.4
-10.9
15
-6.8
-41.7
-116.3
-34.9
19
=7.4
-21.8
-47.9

14
-6.6
-40.6
-113.2

in CCly Simul.
97 51
-11.5 -9.7
-17.6 -21.5
-20.3 -39.7
61 -1.8
53 65
-10.0 -104
343 226
-81.2 411
-243 122
53
-10.0
-15.9
-19.8
38
-9.1
-36.0
-89.6

Hinenberger et al.,

JACS 119 (1997) 7533-7544



Direct counting (DC)

e In practice, direct counting almost never works based on finite trajectories,
for two reasons (often present simultaneously)

— One state may have a much lower free energy than the other
= insufficient statistics on high free-energy states in finite simulations

finite-length trajectory started from A finite-length trajectory started from B

B m m
A >> kBTI
— too short: we never visited B — too short: visiting time of B is random

— The two states are of comparable free energies but separated by a high barrier
= insufficient number of transitions between the states in finite simulations

finite-length trajectory started from A finite-length trajectory started from B
Y m m
A B
— too short: we never crossed the barrier, — too short: we never crossed the barrier,
visiting time of A is full simulation visiting time of B is full simulation
> length (arbitrary) length (arbitrary)

¢ In other words, the challenge in free-energy calculations is to design schemes that
— Enforce good statistics on all relevant states irrespective of their relative free energies
— Enforce a sufficient number of transitions between these states irrespective of the barriers

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature |:> Direct Thermodynamic
integration counting (DC) integration (TI)
Pressure ‘ Umbrella Free-energy
integration sampling (US) perturbation (FEP)
Grand-canonical . .
intearation A-dynamics local elevation
9 umbrella sampling (A-LEUS)

Enveloping distribution
sampling (EDS)

Fast
| {fa(Dexp(+8U,(1), growth (FG)

(fa(r)exp(+BU, (1)),

AR =—p"
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Umbrella sampling (US)

e The idea of umbrella sampling (US) is to perform the MD simulation with a biased
Hamiltonian
Ho(r, p)=H(r, p)+T,(r) U, (r) biasing potential

— The biasing potential should be designed in such a way that the biased trajectories
sample all the relevant states with a sufficient number of interconversion transitions

— In the physical ensemble (not simulated !), direct counting would give
() (fx(n)=[[drdpP(r, p)f, ()

AFg =—p"" ln<fA—(l’)> P(r. p) = exp(—ﬂ}[(r, p))
_Udr dpexp (-7 (r, p))

— In the biased ensemble, this translates to

(e (1), = [[drdp Ry(r, p) (1)

fB(r) + Ub(r)
{ exp (+4U()), exp(—B (7 (r, p)+U,(r, p)))

AF, =—f"'In

fa(r) +PU, (1) R(r.p)=
UL | ey T TRy

¢ Main difficulty: how to design a biasing potential with the desired properties !

Umbrella sampling (US)

e Interpretation of the reweighting

Boltzmann sampling:
e.g. MD+thermostat

....................... in the ensemble average

1 n N,

— Trajectory in the original ensemble (physical, unbiased)

w, =N

_ - Sampling has been biased,
----------------------- ensemble averages are incorrect

1 I 1 1 | for the physical ensemble
Up(1) L T >
+AU (1)
Uy (1) <0 Uy (1) >0 W=

n Nf

this configuration this configuration +BUy (1) I
has been oversampled has been undersampled Z:le Reweighting
m=
=w, < N =w, > N Ny

| l ="



Umbrella sampling (US)

¢ \ith reaction coordinate

Unbiased ensemble Biasing (umbrella) potential Biased ensemble
F(s)4 Up(8) 4 F(s)+U,(s) 4
biased PMF
> S >'S >'S
difference or/and barrier too high difference and barrier reduced
— not amenable to DC method — amenable to DC method
e Sampling and unbiasing sampling
(MC or MD)
P(S) Il unbiased distribution Pb (S) i biased distribution

just reweight all configurations of
the biased ensemble by

e+ﬂ’UE (r)

before calculating ensemble averages...

Umbrella sampling (US)

¢ The choice of a biasing potential in US is not obvious. One solution is to use a series
of simulations with a local biasing potential (e.g. harmonic) that is placed at different
successive locations along A (multiple windows)

Series of
Unbiased ensemble biasing (umbrella) potential
F(s) 4 Upx (S) 4

» 5 > S

matching sampling
of the constants ' 1 (MC or MD)

Series of Series of
biased distributions biased distributions

F.(s)4 R (S)4
/\ biased PMF
unbiasing

Jw T

> S S
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Umbrella sampling (US)

¢ Beyond the multiple-window scheme: generalized umbrellas

A (Torrie&Valleau) umbrella

A (generalized) umbrella

Robert Doisneau
"Un Musicien Sous La Pluie"
Paris - 1957

Umbrella sampling (US)

e The multiple windows approach is tedious in terms of analysis. It has now been
superseded by other (iterative, thus more automatable) methods; these lead to

optimal biasing potentials
— Window-based methods

. Ubias (Q) mmgef Iboi(;non series of (parallel)
Multiple- equilibrium simulations
windows G(Q) + + - + + matching of windows

\/\/ \/\/ \/\/ and reweighting
Q (e.g. using WHAM or MBAR)

— In adaptive methods, successive biasing potential are produced globally

remove under- ) .
N sampled areas \/\ series of (successive)
- equilibrium simulations
Adaptive ‘ ‘ ‘ ‘ +matching of ensembles
and reweighting
non-local ! /\/ /\/ /\/ (variant: self-healing)

— In memory-based methods, successive biasing potential are produced locally

single non-equilibrium
simulation
+
"negative-image"
approximation
or
additional "frozen-bias"
simulation

build-up
memory in

Memory- visited areas

based ——
local ! t
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Local elevation umbrella sampling (LEUS)

e The basic idea underlying memory-based US is known under many names

deflation (1969) conformational flooding (1995) metadynamics (2002) gaussian-mixture Us (2009)
tunneling (1985) Engkvist-Karlstrém (1996) filling potential (2003) basin paving (2010)
tabu search (1989) Wang-Landau (2001) adaptive reaction LEUS (2010)

local elevation (1994) adaptive biasing force (2001) coordinate force (2009)

— but: implementation choices may affect a lot the applicability and accuracy in practice !

(our favorite flavor of this principle)

e Local elevation umbrella sampling (LEUS) Hansen & Hiinenberger
J. Comput. Chem., 31, 1 (2010).
Two-steps implementation Truncated polynomial

basis functions

then
—_—
duration f ¢ duration tg TRUNCATED A COMPARABLE
POLYNOMIAL GAUSSIAN
LE BUILD-UP PHASE US SAMPLING PHASE
non-equilibrium frozen biasing potential f xX)=01- 3x% + 2|x3|)h(|x| -1 f(x)= exp(—3X2)
—rough biasing potential
N computation cheap expensive
G(Q) ~—U (Q) i reweighting
bias —"irons out” the roughness range finite (next grid point) formally infinite
—snot very accurate or of the biasing potential
requires slow build-up continuity yes (+derivative) formally no (if cutoff)
Lwiggling"” no yes
— results less sensitive to build-up protocol il }
t ti ducti . . t _— AN increases
— systematic error redauction upon increasing (g with build-up
even better: . magnitude !
spline of order 2
LEUS: Glucose-based disaccharides in water
50 ns Plain MD
(initiated from X-ray structure) :
.05

o \ / \\g' '—‘C' h. ’

2D Subspace (rotation timescales i

~10ns —1 us)
Isotrehaloss Ty
Gleaf1-1)pGk
Trahalose Tou 4O Neatrehalose Toe

crati-siiatle

Mo (.IN‘—‘HGI:

u(uil Zlﬂlell
1P HrOHl F; $
lv2

u(p-l! :ua:u

wideg]

CEEsHUNNASRER

Mo Gloa{1-+3)Glef
o
Ha oM o
h
o Mo Laminarabiose L
ey Yo on Gac{1--34Blcn
Glea{1 -8Bl 1 1
Maltose M
. Glra{1—4)Gie)
Gl ) Gic]
Perié-Hassler, Hansen, Baron 50+50 ns LEUS

& Hunenberger
Carbohydr. Res. 345, 1781 (2010)
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Hansen & Hiinenberger

LEUS: Glucose in water 3. Comput. Chem. 31, 1 (2010)
Hg I [use for desing of new
C carbohydrate force field
Ho Do 5 GROMOS 56A o
Pickett & Strauss J. Comput. Chem. 32, 998 (2011)]
He 74 Co a, ring puckering coordinates
\0_,"(;""‘\*05"05 bis
/03"“'0 —C e Ny 7 3D sub
N, 1 e i
Hi x3 12 /ﬂz o 5 C subspace
3_ 2
Ha
up .
5 o (pseudorotation
‘ 1 m w R ww timescales
2 ~50ns —1us)
nc . g B“" g, ag
InP Br L1

»SE

‘;i||lil'lll |II|I | Iul

I
I
a
b

%

100 ns Plain MD
(initiated from “C,)
50+100 ns LEUS

analysis of
pathways and barriers

biased after unbiasing

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
- Temperature |:> Direct Thermodynamic
integration counting (DC) integration (TI)
Pressure |:> Umbrella Free-energy
integration sampling (US) perturbation (FEP)
Gr?:i -c::ar;:':onr:cal A-dynamics local elevation
9 umbrella sampling (A-LEUS)

Enveloping distribution
sampling (EDS)

Fast
growth (FG)

dd'F(M) _

219



Temperature integration

o Temperature integration aims at calculating the free energy change
upon changing the temperature (a thermodynamic change)

— Principle
FM)=-p"'InZ=-4" 1n[§”dr dp exp(—BH(r, p))} f=ksT)"
= d('Ic;_lrF_l(T)) _ d(ﬂdF(T)) :_d;nZ 2_21:_2
( ) ﬂ ﬂ ’B — This is called the Gibbs-Helmholtz

=7 -1 drd 8exp(—ﬁ_‘7{(r, p)) equation and you can also derive it
= (| drdp _ ,
aﬂ easily based on the laws of thermodynamics

=2 "¢[[dr dp #£(r, pexp(~Ba(r. p))
[[dr dp 3t(r, pyexp(=pat(r, p)

= =(H(r,p)), =E
J.J.dr dp exp(—BH(r, p)) (. p) )

— Procedure

E(T) NVT simulati !
* different temporat i
at different temperatures 1 -1 _1
_ average ot energy, W T,F(T) =T 'F(T)+ [ dT'E()
numerical !
integration o ) o .
eg. 1/T (quadrature) Note: E is deflngd_Wlthln an arbitrary
T >T T -1 T -1 constant; but it is easily checked
2 1 2 1 that E-E+C leads to F—F+C

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature :> Direct Thermodynamic
integration counting (DC) integration (TI)

‘ Pressure :> Umbrella Free-energy
integration sampling (US) perturbation (FEP)
Gra;:t(l -crar::'sonr:cal A-dynamics local elevation
9 umbrella sampling (A-LEUS)

Enveloping distribution
sampling (EDS)

Fast
growth (FG)
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Pressure integration

¢ Pressure integration aims at calculating the free energy change  _ actually, we should probably
upon changing the pressure (a thermodynamic change) rather call it volume integration

— Principle
— Thi i ily derived
- % =—PV)= —<(P(r’ p)>v based o-:-w tlr?eolr:\jv!ssc?fisl:e{mirc;\;/iamics dF = —-PdV - SdT

(stat mech derivation is possible,
but more tricky !)

— Procedure

P(V) o NVT simulations V)
» diff I (
%/ e W FV)=FV)-[dV PV)
numerical Vi
eq. V integration
v >V1 Vl v (quadrature)

2

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature Direct _ Thermodynamic
integration :> counting (DC) integration (TI)
Pressure :> Umbrella Free-energy
integration sampling (US) perturbation (FEP)
Gra;:t(l -crar::'sonr:cal A-dynamics local elevation
9 umbrella sampling (A-LEUS)

Enveloping distribution
sampling (EDS)

Fast

OH (I, p; 1) growth (FG)
oA o

AR =["dx
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Thermodynamic integration (TIl)

e Thermodynamic integration aims at calculating the free energy change
upon changing the topology of a molecule (an alchemical change)

e It requires the introduction of a Hamiltonian coupling parameter A
this condition is actually compatible

}[(r p /1) _ 7'[A(r’ p) if A=0 with many alternative coupling schemes !
> H,(r p) if A=1 specific A-dependence determines
BA pathway from A to B
— Example: simple linear coupling scheme (not necessarily the best choice!)
_ where “s” is any mass, charge, pairwise LJ coefficient,
S(ﬂ“) - (1 - Z)SA + //LSB force-field parameter covalent reference value and force constant, ...

mass m (1) =[1-1]m”" +2im®

bond stretching V(b;L) = %{[1 - K]KbA + XKbB} {b2 — ([1 - X]bOA + }LbOB)z}z
bond-angle bending  \/(0; 1) = %{[1 - X:IKBA + KKGB} {COS 06— ([l - K]COS GOA + A COS OOB )}2

i -dihedral 1 2

T Satortion V(E:30) = E{[1 K K {é —([1-2Jek + 0 )}

distortion

proper-dihedral v/ (:2) =[1-2.]K,*[1+cosd" cosm”e |+ 1K "[1+ cos 8° cos m°g ]

torsion
n ch cl 1 q'q’
V(rij;}\«):[l_}u:l { “212 P !26 =t «2I 12 2} + RF terms
non-bonded [au/ i ] [a“h i ] Aoty [O‘c"“ +h T/
interactions Note: n#l,
ce ce 1 a’q’ a parameters
oo 12 - 6 . + ! 7z — non-l_mear
{[% [T ere] [oul-2T 4] 40 o 10T +r2] } coupling
Thermodynamic integration (TI)
¢ The thermodynamic integration formula is as follows
F(A)=="InZ ==p"In| [[dr dpexp(-Bot(r, p; 1)) |
- Fv(g)zmz_ﬂ—ldlﬁ:_z—l 24z
dA dA da
L dexp(=pH(r, p; )
=-Z"'p"'&||drd
B ][ dr dp =
- OH (1, p; A)
=z dr dp ————=——"exp(=-BH(r, p; A
§[f dr dp === exp (=B (1, p; 1)
OH (1, p; A) ,
_ J]dl’ dp 78}, exp(—ﬂ}[(l’, P,l)) :<8}[(I’, p;/1)>
”dr dp exp(~B(r, p; 1)) oL/,
— Procedure
F (l) N\_/T simulations 1
_ (9%, P A) iversgeramitonan Wy F()=F(0)+[dAF(2)
81 h derivative numerical 0
) integration
(quadrature)
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Thermodynamic integration (TIl)

e Example: solvation free energy of small organic molecules

200 — : . 150

T 400 '

<AVIA >,

I I 1 ] T T
\ 0 - E r 7
10| (@) M4 wf) o] avofal©) Jpe 1 A (091 /04), (vac)
100 - r o 50 - & w200k & T _
50 U A ol o " 4 w00f & "y P
. A - L ~ ~] W (0 /04), (wat)
L RS I o] ook ar s ] 4
- " ‘ . e ) = - I ESE O = “
—50fu- -8 - = . 4 100 - g i B L S )
' LI -3 =, S —200[Mesisan =4 @ vacminuswat
—100} « 2 ~150 | ‘o i W | -300f # 1 .
=150} W 200+, T 4 -a00f ¥ | integral —AFg,
—200 L I L s -5 By ) I L —500 W 1 I I
00 02 04 06 08 1.0 00 02 04 06 08 10 00 02 04 06 08 1.0
A A A

@ 20

T T
alcohols -~

— * -
(9 =] @ aldehydes -
|:> E 10 @ alkanes 5 1
@ ;—“‘. B alkenes s
AF = ol B alkynes - |
slv € & E A alkyl benzenes o - o~
= @ amides b o -
-
o -10}F amines L . 4
AF AF " thiols and sulfides -
= <] carboxylic acids
vac wat E.‘ =20 . cycloalkanes - il ‘. 1
i ®  esters e . ¥
@ @ _30 v ketonei ” - |
m e
=0 ® ® 2 s
@ @ M _apof 07 4
m # ”
(9]

d -

SD -50 7 L L L L L
dummy skeleton %) (,) % -50 -40 -30 -20 -10 0 10 20
(no intermolecular Experimental hydration FE (kJ/mol)

interactions
) J. Comput.-Aided Mol. Des. 28, 221 (2014).

Thermodynamic integration (TI)

e Example: relative binding free energies of p-substituted phenols to cyclodextrin
— Small host-guest system: a-cyclodextrin consists of 6 sugar (glucose) units (cyclic)

(1]

o
@ 1gand
CI . - E
o e
CN e binds into cavity

p-methoxyphenol showing the orientation
of the guest when inserted.

a-cyclodextrin

— Simulations of one a-cyclodextrin + 500 H,O, NPT ensemble
— 3x2 mutations (from OCHj, to the 3 others, in free and bound forms)

— Tl with ~20 lambda points per mutation
Mark et al., JACS 116 (1994) 6293-6302
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Thermodynamic integration (TIl)

e Example: relative binding free energies of p-substituted phenols to cyclodextrin

— Results
H11

o
£
. [ Note: CH; and Cl compounds
have an attached dummy !
s <a
| o
X Binding parameters:
Guest MD MD Experiment
X= Enthalpy Free energy kJmol-!
AH(~AE) AG=AH-TAS AG
-O-CH,4 0 0 0
-C=N -9.9 0.8 -2.8
-Cl 2.5 -2.6 -3.8
-CH, 13.7 4.2 0.1

— The relative binding free energies cannot be interpreted in terms of enthalpy only:
entropic effects (solute and solvent) plays a significant role here!

Mark et al., JACS 116 (1994) 6293-6302

Thermodynamic integration (TI)

e Example: relative binding free energies of multiple ligands to a protein
— We use a thermodynamic cycle

AAF,

binding

— AF, - AF,
— AF, - AF,

If the ligand tends to escape,
— Bound state must be meta-stable you can add restraints — but then

unbound bound
you have to correct for them later !

E_;_|1 — (E||)
— We need many N inhibitors

< /oH ! !
simulations... M A-points F,-F = ;<8_/1>AJ A4, E“i'z D (EIIZ)

2M N simulations

T i :

10 10 200 E+ly, +<— (El)
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Thermodynamic integration (TIl)

e The thermodynamic integration formula

— is accurate if sufficient sampling <...>
and sufficient number of A-points 4,

g .
Important: _ _ oH(p,r; 1)
accuracy can be systematically improved AF = FB - FA - _[ < Py} da
by sampling longer / adding more A-point An 1
— is time consuming in the sense that many oH
(10-100) simulations are required for each leg 1 a
and there are as many legs as there are 4
pairs of states A and B considered
~
and in particular: are unphysical, so ?
irrelevant for anything P " — P
/1 * ﬂ, or ﬂ, else but the free-energy o T /
i A B . H H I
calculation ? ?/é//
AR
— is robust — the “workhorse” of free-energy -~ = o ? ?
calculations ? ? ? ? - - B
A A A
« Note that A ' B
_ S _ state A state B
- every point needs some equilibration time (discarded)
- orthogonal barriers may be difficult to
overcome at fixed lambda
Thermodynamic integration (TI) 1O B ARDED D

¢ Slow growth (SG) is an “old-fashioned” way to do Tl

— Standard Tl — set of independent equilibrium simulations at different A-points
<6}[(r, p;ﬂ)>

oA 1
“ [ OH (T, p; A)
NVT simulations - AI:AB = J.dﬂ’ <T
at different A values numerical 0 A
— average Hgmiltonian y) integration
derivative 0 1 (quadrature)
— SG — slowly “sweep” the A-variable in a single simulation
A O (r, p;A) N timesteps
oA R n=1..N
13 r,p;A
» AFg ~— or{r, B 4)
i N&S o |,
t 0 Alt)=—
0 A(t) N

e Advantage of SG: single simulation!

e Shortcomings of SG — which is no longer so much used...
— Time-dependent Hamiltonian, system is formally never at equilibrium

— Sampling can only be improved by redoing the full simulation in a longer time tg,
(# TI, where you just add more time for [all or specific] A-points)
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Overview of free-enerqy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature :> Direct Thermodynamic
integration counting (DC) integration (TI)
Pressure Umbrella Free-energy
integration I:> sampling (US) -perturbation (FEP)
Grand-canonical . .
intearation A-dynamics local elevation
9 umbrella sampling (A-LEUS)
Enveloping distribution
sampling (EDS)
Fast
F (ﬂ’ T Aﬂ’) F (ﬂ’) growth (FG)

=~ In{exp(=BLAH (1, p; A+ A1) =3 (1, p; D)),

Free energy perturbation (FEP)

¢ The free energy perturbation formula is as follows

F)=—f"'InZ=-p" 1n[§jjdr dp exp (- A7(r, p;/”t))}

£[[ dr dp exp(—po(r, p;/1+M))]

F(A+A)-F(A)=-p"1
) n! §”dr dp exp(-A# (r, p; A))

g [[dr dp exp(=BL7(r, p; A+ AL) = 3(r, p; A)])exp(~BH(r, p; 4)
”dr dp exp (=B (r, p; 1))

== In{exp (=LA (1, p: A+ AL = 3(r, P 2)])), recavered by evaluating
F(1+A4)-F(2)
AL

So, Tlis the linearization of FEP
(omitting higher-order derivatived of F)

— Procedure F'(1)=1lim,, ,

NVT simulation at A

- calculfagfr#\j;rom FEP /-y. F(1+AA4)
» F(1+AA)
=F(A) =B " n{exp(=BLAH (1, p; A+ A1) - H(r, p; D)])),

> 1

F(2) ¢

0 2 1+a2 1
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Free energy perturbation (FEP)

¢ The daring implementation of the FEP is called one-step perturbation (OSP)

— Procedure

F(4)

I Set AAto one'!

> 1
0 1

— Huge advantages over Tl: (1) we can calculate the free energy of multiple end
states from a simulation at a single reference state; (2) the calculation is performed
in one go, i.e. without any intermediate step

— But: we may have a serious problem in terms or reliability and accuracy !

—B" In{exp (=Bl (1, p; A+ AA) = 3£(r, p; A)]))

State A State B State A State B State A contains very

few configurations with low
energy in state B

— at finite sampling time,
«— —_— —> <+— theleast bad will dominate
the ensemble average and

the result will be crap !

Example )

— Tentative remedy: choose the reference state very carefully !

Free energy perturbation (FEP)

e The conservative implementation of the FEP is called multi-configuration
free energy perturbation (MCFEP)

F(4)
Do many intermediate steps
with a small spacing 4A
(K intervals, K+1 points)

— Forward, backward or double-wide

O @Qm @ - > Q) @ == @ forward perturbations
(K simulations) hysteresis
is a measure of
OEmQ@Pem@ (- 'X_ ¥ XX | backward perturbations the error
(K simulations [same +1 new])
: » @ : : double-wide sampling no hysteresis can
® ® o < > ©® ® ® (K/2 simulations) be determined

— We gain a lot of accuracy and reliability !

— But: we loose the advantage compared to Tl because we cannot
freely extrapolate to any end state based on a single simulation
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Free energy perturbation (FEP)

e How to use OSP efficiently? OSP(initial state) — won’t work
Ao
MCFEP — works but needs many simulations A B

M A A Ag Ay As Ag A Ag

B

x = conformational coordinate

OSP(smart reference state) — may work

— In addition, if the reference state “covering enough ground”, you can
extrapolate to many states from a single reference simulation

Free energy perturbation

e Use of OFP to predict multiple relative binding free energies from a single (pair of) simulation

F-F;, =k, T ln<exp{—%}>
B R

4 ::1 /EE:;; 2 simulations of

an unphysical state which
\ is chosen to optimise

(EI ) sampling for entire set of N
N inhibitors

¢ Design of the reference state

Idea: use soft-core atoms for each site where the inhibitors possess
different (or no) atoms

The reference state simulation (R) should produce an ensemble that
contains low-energy configurations for all of the Hamiltonians (inhibitors)

Hy, Hy, . Hy

228



Free energy perturbation

e Soft-core non-bonded interactions
— Functional form

van der Waals electrostatics
1 1 . 0.5C.r* 1-0.5C
V(r)=4e _ ry = _idi 1 B W i
/oY a+(r/o) dree . R
[a+(r/0)] e+ [a+RE]
— Effect
interaction ener Distribution of water molecules around
9y and in the soft-core cavity of 0.6 nm diameter
” - 16 A § i F i . i
SkT » __io_ﬂ__c:i:re 1ar=00
=0.3025
10 r i |

| +—— normal van der Waals

2 kT

energy (kJ/mol)

r {m) 0 0.1 02 03 04 05 06 07 08

“ _ r[nm]
'

soft-core region

T first-neighbour peak
solvation shell

Free energy perturbation

e Soft-core atoms in OSP

F (final) — F (initial) = —k,T In {<exp {—[ H (final) — H (initial) / k T ]}>imﬁal}
B A B A A

— Normal non-bonded interactions

initial state A final state B
~ ~ =
LN L\ H
V (final) very large
YOSV D

X< o
>\/ O >\/ O no contribution to AF

> > no cavity
o\H o

H modified initial (reference) state

. . ensemble contains configurations with
— Soft-core non-bonded interactions low energy (= H) for various final state Hamiltonians

reference state R N { < L A 3

soft AR N I\\/ > , -\/_
interaction \ ~5', /! - O , '(, s
sites . K \es! , 3 N
! — ]
@ 328 ely
modified initial Q O .
o state no cavity
w ; cavity
unphysical 0 o
H H



Free energy perturbation

e Example: relative binding free energy of ligands to the oestrogen receptor

— Relative binding free energy for 16 ligands from two simulations only

Unphysical reference Physical ligands:
ligand (soft-core atoms): 16 polychlorinated biphenyls

Two simulations:
» Reference ligand in water
* Reference ligand bound to protein in water

Proteins 54, 237 (2004).

Free energy perturbation

e Example: relative binding free energy of ligands to the oestrogen receptor

— Relative binding free energy for 16 ligands from two simulations only

25 T '| l T [ T
o
o} o
20~ —a © -
3 r —" .
E @0 e
E T
E\—; 15— o -
:5(53
o .7
ﬂ - 0’/’ O (@] E
10l Average deviation: 2.5 kJ mol-!
Variation exp. values: 4.2 kJ mol-
5 "’/ 4 Ca | 1 | L | 1
5 10 b'nu15 20 25
MGe',,p (kJ/mol)
. . . N sites that can be water-covered or not — 2N combination
— Warning: combinatorial problem! (for one ligand with a specific substitution,

only one of these 2N combinations will be relevant)
Proteins 54, 237 (2004).
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Overview of free-enerqy methods

¢ The available methods to calculate free-energy changes can be classified as

historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational

Temperature Direct
integration :> counting (DC)
Pressure Umbrella
integration |:> sampling (US)

Grand-canonical
integration

Alchemical

Thermodynamic
integration (TI)

Free-energy

\ I:>perturbation (FEP)

—

A-dynamics local elevation
umbrella sampling (A-LEUS)

Enveloping distribution
sampling (EDS)

Fast
growth (FG)

A-dynamics local elevation umbrella sampling (A-LEUS)

— For an alchemical change, we use so-called A-dynamics

. L OH(r, p,A)
At)y=-m;' —227
® * oA |,

Coupling
parameter

A= A(b)

— We apply a smart coordinate transformation A(B)

e.g. dihydroquinone
—benzene in water

Ay

Bias

+C

A becomes a dynamic variable!

fictitious

m, mass = A-dynamics

= Basis Functions
-— )
— B

‘s‘!‘!‘m&h!o!ofm

— We apply a bias on 6 using LEUS

Bieler, N.S., Hauselmann, R. & Hunenberger, P.H.
J. Chem. Theory. Comput. 10 (2014) 3006

—
200 -0.8 -0.4 0.0 0.4

100

G [kd mal ] Cyp—Cry k3 mol™'|



Conveyor Belt Thermodynamic Integration

— An alternative with multiple replicas & no biasing potential!

A=E
2
K L o
A=0= =A=n
@ o ' || @
G(A)
0 1;’2 1/\

(B)

— See: talk of David Hahn on in three weeks (4.12)

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature :> Direct Thermodynamic
integration counting (DC) integration (TI)
Pressure Umbrella Free-energy
integration I:> sampling (US) |:>perturbation (FEP)
Gr?:ti -crar;:'sonr:cal A-dynamics local elevation
9 umbrella sampling (A-LEUS)

eloping distribution

‘ Env
sampling (EDS)

Fast
growth (FG)
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Enveloping distribution sampling (EDS)

e |[dea: we know the Hamiltonians H, and Hg corresponding to two alchemical states,
and we want to sample using a constructed a Hamiltonian Hy so that

i.e. some where H, is low

— we get configurations relevant to both Aand B .14 gthers where H, is low

i.e. the relative weighting

— we get many transitions between these two types of configurations ., getermined accurately

¢ A smart choice for Hy is an enveloping Hamiltonian generated by exponential averaging

HR = _(,85)7l ln(e_'gSHA +e—ﬂS(HB+AE))

Minima Minima
at same heights H A H B at different heights H A

Too high B
s-value

— barrier!

No energy offset AE
— only one state sampled
H R

Good
s-value

Good energy offset AE

\/\/ — both states sampled
Too small
s-value )
— bad overlap! conformational

> space

v

Enveloping distribution sampling (EDS)

T

State & |8




Enveloping distribution sampling (EDS)

e Procedure:
.. This is not absolutely guaranteed
— preoptimize the s and AE parameters to work, as there may be no solution

using an empirical automated procedure atall (but normally works for
“simple enough” problems)

— sample using Hg
And difference in

— use reweighting to H, or Hg to get the free-energy difference othfer prc:_p:(erties
if you like...

¢ |dea can be expanded to more than two states
¢ No interconversion pathway (coupling scheme) is defined between A and B
— is often good because the system finds its “own good pathway”

— may be bad because there may be no “good pathway” or
because the unphysical space opened may be big

° Compared to OSP - predict end-state energy distributions
and compare with end-state simulations

(— sufficient sampling of the end states?)

— generally more accurate & accuracy can be evaluated - monitor end-state energy time series
) (— sufficient number of transitions
— but needs to know the end states in advance! between the end states?)

Overview of free-energy methods

¢ The available methods to calculate free-energy changes can be classified as
historically applied to the different types of changes

— But remember that extended- or reduced-system approaches allow to interconvert
the problem types, so that all methods are in principle applicable to all problem types !

— Still, some combinations are more practical or/and efficient than others...

Thermodynamic Conformational Alchemical
Temperature :> Direct Thermodynamic
integration counting (DC) integration (TI)
Pressure Umbrella Free-energy
integration I:> sampling (US) |:>perturbation (FEP)
Gra;:t(l -Cfar:ioonr:cal Conf. A-dynamics local elevation
9 EDS umbrella sampling (A-LEUS)
\ Enveloping distribution
sampling (EDS)
Fast

growth (FG)
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EDS for conformational changes

¢ Use a biasing potential constructed using the EDS principle !

e Example:

bias, A

bias

= _(IBS)—I ln(e—ﬂsubias,A n e—ﬂs(UbiaS,B +AE))

— with good choices of s and AE (may be difficult!), we should see frequent
interconversions between the two equipopulated states — from which
we can calculate the relative free energy
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Lecture 529-0004-00

www.csms.ethz.ch/education/CSCBP

Herbstsemester 2019
Tuesday 9:45-11:30 a.m.
HCI D2

LECTURE 8 (WEEK 9):
Free energy calculations Il

Four basic choices defining a molecular model

= CLASSICAL
FORCE FIELD

__nteractio

degrees of freedom
®

b ®
® 9®

. ]

MOLECULAR

=ATOMS

_ system size and shape,

temperature and pressure,

experimentally-derived
~__informati 7

| > FREE-ENERGY

| 52} Efﬁff],;

CALCULATIONS o'\ o
(extension ‘,..,""' < a0ys \\
partl) et 0z

)
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Calculating free energies and entropies

(overview)

e The free-energy differences calculated based on molecular simulations are

affected by the following sources of errors
— Force field errors (functional form, parameters)

— Finite-size errors (finite size of the simulated system,
approximate electrostatics)

mmm) — Sampling errors (finite timescale of the simulation)
=) — Quadrature errors (TI)
— Methodological issues

——> - Jacobian factor

——> - Metric tensor effects

mmm) - Contribution of constraints

——> - Contribution of restraints

mm) - Singularities upon atom creation or deletion

=) - Free-energy components

) - Standard-state corrections

mp ¢ Calculation of entropies based on molecular simulations

See other lectures
(not re-discussed
specifically here)

— Depend on
- Choice of pathway/cycle

— Can be assed (in part) by
- Hysteresis
- Cycle closure

- Error estimation
(e.g. block averaging)

Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the

following practical issues
m) — Equilibrium, finite sampling
— Numerical quadrature (Tl)
— Cycle closure
— Atom creation or deletion
— Contribution of constraints
— Free energy components ?
— Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations
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Error estimation in free-enerqy calculations

e There are many different ways to assess the reliability or/and estimate errors
in free-energy calculations; a number of common ways are

— Estimate statistical error

via independent repeats
(alternative: time-correlation analysis or
block-averaging on one simulation
[or bootstrapping])

— Estimate statistical error
via error propagation
(for TI)

— Check hysteresis
(for “directional” methods)

e.g. FEP, SG
or Tl (with specific setup protocol)

— Check cycle closure
(when you have =3 states)

— Check extrapolation accuracy

(for “extrapolative” methods)
e.g. FEP, OSP, EDS

N independent
repeats n=1..N

m) AF =ﬁiAFn g:c%

S R

y) W, quadrature e.g. from
k weights k block-averaging
AF,g
—) = hysteresis
. C— . AFAB + AFBA (should ideally
AF be zero!)
BA
AF,g

=closure error
AF,z + AR + AR,  (should ideally
be zero!)

AR, N /AFBC

e.g. predict end-state
A ’ -~ B (A or B) potential-energy
2/ R N distribution and compare
7 Q with real one from a separate
plain simulation of this state

Error estimation in free-energy calculations

¢ These “indicators” generally give “optimistic/lower bound” information; additional
error sources may easily be overlooked!

— Estimate statistical error

via independent repeats
(alternative: time-correlation analysis or
block-averaging on one simulation)

— Estimate statistical error
via error propagation
(for TI)

— Check hysteresis
(for “directional” methods)

e.g. FEP, SG
or Tl (with specific setup protocol)

— Check cycle closure
(when you have 23 states)

— Check extrapolation accuracy

(for “extrapolative” methods)
e.g. FEP, OSP, EDS

Did we generate truly independent repeats
(e.g. is changing the initial velocities enough?)

Can there be systematic errors in the methodology?

Did we equilibrate and simulate
long enough at each lambda points?
(were there states we completely missed?)

Was the numerical quadrature good enough?

Can there be systematic errors in the methodology?

Low hysteresis may be due to too short sampling

Errors on each leg may be larger than cycle-closure error

when they coincidentally compensate each other

Difficult to convert an extent of overlap
with a free-energy error estimate
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s . . MA96.12: Mark et al.,
Equilibration and sampling JACS 116 (1a9r94§6393

e Example: relative binding free energies of p-substituted phenols to cyclodextrin

— Small host-guest system: a-cyclodextrin consists of 6 sugar (glucose) units (cyclic)

(3]
o

X = CH,4 @ _
cl o @, - ligand
L=
CN = binds into cavity

p-methoxyphenol showing the orientation
of the guest when inserted.

a-cyclodextrin

— Simulations of one a-cyclodextrin + 500 H,O, NPT ensemble
— 6x2 mutations (any of the 4 to any of the 4, in free and bound forms)

— Slow growth (SG) vs. thermodynamic integration (TI) with 12 lambda points per mutation

Equilibration and sampling

e The hysteresis of a free-energy calculation is the sum of the results obtained when
performing the calculation forward and then backward

— for a “perfect” calculation, it should . . J
. . ol torward A =0 —
be zero (free energy is a state function) e MI\I{;«vrcsis
P, T forward - reverse

— but a value close to zero does not / e ’

prove that the result is correct! j—’/’/ P

) . . Nl
e Example: hysteresis of a SG calculation
for p-chloro- to p-methyl-phenol 0.0 o Aftime)
in water in cyclodextrin
0.0 o, 6.0
) 25ps s

— - - S0ps ,--f'."'ﬂ' B largest

T 20 f L —mememem 100 ps 0]

=} 4.0 300 ps (comverged)- » . I for 100 ps

E 8

.

g . . P

O 40 f N '\“ oo L e

< T zoﬁi N largest P

--------- 100 ps (converged) ) for 50 ps
‘60 4 - - A 00 = ‘ A i A . I " n
00 02 04 06 08 1.0 00 02 04 06 08 1.0
A A

— Hysteresis first increases then decreases with longer sampling!
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Equilibration and sampling

e Explanation (for the bound case): the ligand evidences slow motions in the host

Side view of a-CD with p-Cl-phenol a.CD with p-Cl-phenol showing van der
showing motion of the guest inside the Waals contacts.
cavity

(water not shown).

Equilibration and sampling

e Timescales of the motions of p-Cl-phenol in a-cyclodextrin

1.0 Distortion of o-cyclodextrin ring (rotation of guest)

diagopal dist n«:fs
0.9

0.8

diag. dist. (nm)

0.7

04 Relaxation times (guest)

a) Rotational averaging 20-40ps
b) In/out motion 60-80ps
c) Tilt averaging >80ps

0.2

dist. (nm)

0.0
160

120

it (°)

0 20 40 60 80 100
— time (ps)
90" perpendicular to plane of ring

4
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Equilibration and sampling

e Observations with SG

— if you go very fast, the system has no time » Low hysteresis FROZEN

i BUT
to sample motions of the system incorrect free energy SYSTEM

— if you go moderately fast, the system only » High hysteresis PARTIAL

. ] AND
partially samples motions of the system incorrect free energy  SAMPLING

. . Low hysteresis
— if you go very slowly, the system has enough time » AND ADEQUATE

to relax (equilibrate) and sample at each A correct free energy ~ SAMPLING
e There can also be hysteresis in standard Tl
— via the way you typically setup your systems at the different A-points, e.g.

1 state B “forward ™ rransformation backward ™ transformation
AT T T T The same considerations apply
- == poduction (min. 1 ns) e
] === possible prolonged 4 = H - -
2 o (60 i 2054) i Requirements: (for each A):
E =:  equilibrated structure as '
5 input for next simulation i R I . >
; - System in equilibrium: Tequil. ~ Tsystem
=] ] i .
-} g - Sufficient sampling : Tsample >> Tsystem
g - N ——
(v} o —it o i —— = i i
: Tsystem = relaxation time of the system
crysial 'y -
0 | storeA SITUCTLTE = & e e - e ’

time

Equilibration and sampling

e Example: sampling at each A-point for p-chloro- to p-methyl-phenol in a-cyclodextrin

oH
— Ensemble average <§> must converge at each value of A
A

20

i
1
1
H
H
H
’
1
.
.

)

g E

S o [ ] ‘ig
H o

S Hig i

= Big’ f

© i i

-10 . :
0 20 40 60

time (ps)

Figure 5. aV/a\ (kJ mol™') at A = 0.5 as a function of simulation time
for the mutation of p-chlorophenol to p-methylphenol complexed to
a-cyclodextrin. The dashed line corresponds to the instantaneous
derivative, and the solid line, to the accumulative average.
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. . . J. Chem. Phys.
Equilibration and sampling 102 (1995) 3787

e Example: Relative accuracy of the excess Gibbs free energy of cavity formation in water
— Cavities of different size (radius) in H,O

Error (102%0)

0.2 0.25 nm , . _0.35 nm
10 % — () slowy at —100ps
o | convefgence 5 04
0.0 LN W\\u\ s
0.2 r : , :
—_ 0.30 Nm 0.37% nm
WE (b) (e)
S
% 01 1 1
& at —100ps
\%00 MM AW, e — 1%
g 0
0.2 ————— : — .
0.325 nmi) 0.80{nm
0.4 slow ]
0.0 ' ‘ e
0 200 400 600 0 200 400 600
t[ps] t[ps]

Bieler & Hiinenberger

Equilibration and sampling J. Comput. Chem., 36 (2015) 1686.

¢ In Tl, the convergence at each A-point may be affected by slow
orthogonal-relaxation processes

— Example: mutations in the central residue of a KXK tripeptide

KEK to KG.K

*HaN “HN Tl
360
. NS o ¢ 270 )
HyN v H [deg] 1x10~2 P\¥
0 i [deg™"]
2

_ (H)ﬁ' 5 0 x10"
- H;N

¥ 270 -3
(deg] 1 g9 Ly p()
I [deg "]
OH a0
0 2
0.5 1
A

0 x10™ 40 A-points
0.1 ns equilibration
0.9 ns sampling

— The results will depend a lot how you started the simulations at each A-point

and how long you equilibrated/simulated (the statistical error may also be
a clear underestimate of the true error)
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Equilibration and sampling

¢ To improve the orthogonal sampling

(next

— Apply orthogonal sampling enhancement (e.g. parallel tempering) lecture)

— Make system “hop” between A-values (e.g. Hamiltonian replica-exchange, A-LEUS)

e E.g. with A-LEUS

KEK to KGgK
A-LEUS

360

Avaries over the course of the simulation

v 270 — system finds A-values where barriers

de 2 P are easier to cross (in this case: in the
[deg] 180 1 x10 ({{)1 glycine state where ¢, yerotation is easy!)

[deg™"]
90 -
2 D

0

0 x10™

360
Y 270 -2
[deg] iy p(¥)
180 dog]
90 2 =
0 -2 :

05 10 05 1 010
P A

Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the
following practical issues

— Equilibrium, finite sampling
m) - Numerical quadrature (Tl)
— Cycle closure
— Atom creation or deletion
— Contribution of constraints
— Free energy components ?
— Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations
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Quadrature integration

e Choice of a quadrature method

N
— Standard quadrature scheme I, = hz w, f(x,)
n=0

— You can also fit a polynomial or spline and integrate it ‘ eeeeeeeeeee

— The choice of the number of points may be crucial!

RRRRRRR

Quadrature inteqgration

e Number/choice of A-points AF = integral
— Look at the curves! = area under the curve

— If needed, add new points in areas of high curvature

1
ind boi (0] OH(r, P34)
(20t i) ﬁ::’;:saz"h'zr; AF,q =[ 02 <T )
alot

i/,

Choice: how many A-values

i ?
distribution of A-values } integrate a smooth curve?
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Sources of error in Tl

e Say you do a Tl calculation and compare the result to experiment and...
it does not agree!

— The five questions to ask are:

(3) Is the force-field (2) Did I leave enough time for equilibration?
good enough? Was the sampling time afterwards sufficient?

(4) Is the comparison valid?
(process, state point,

6}[([‘ ’ p, 1) ‘ standard states)

1
!
AF, =[dA = £ AF,g .
i | .
(1) Is the quadrature good enough? (5) Is the experimental
(enough A-points for a smooth curve, value correct at all?
good quadrature approximation) (i.e. what is its uncertainty?)

Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the
following practical issues

— Equilibrium, finite sampling
— Numerical quadrature (Tl)
» — Cycle closure
— Atom creation or deletion
— Contribution of constraints
— Free energy components ?
— Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations
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Cycle closure

e Free energy is a state function

— Difference in free energy between two states
is independent of the path used to go from the -
one to the other state

“oB

AGpa

oy )

AGg,(path X) = AGga(path Y)

e Thermodynamic cycle — a closed path for which
AG should be zero

e The cycle closure error of a free-energy calculation is the sum of the results obtained when
summing free-energy differences over the three (or more) legs of a closed path

G
— for a “perfect” calculation, it should
be zero (free energy is a state function)

— but a value close to zero does not
prove that the result is correct!

AG) + AGy+AG3 =0

Cycle closure

Residual free energy for a closed thermodynamic cycle

P
Binding of p-substituted phenols H

to a-cyclodextrin

H"\-\

~X
Four possible 3-membered in water inoa-CD X = ClI, CH5, CN, OCH,
closed cycles: 1 1
mutation AGwa\ter AG(X-CD AAGWater-cz-CD
Cl—™CH; —™CN — CI -1.0 5.2 6.2
Cl—™CN — OCH5; — CI 17.2 12.8 -4.4 gives
wrong
Cl—CH; — OCH; — ClI 2.7 6.0 3.3 error
CH;— OCH; —CN — CHj4 -13.5 -12.0 1.5 estimate
— v 1
K== Xy = X3-= X Y
Cl Ideally, all values should be zero Actual
T T error
CN much
use single cycle values bigger

CH, OCH

3

to estimate lower bound of error,
not AA G values
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Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the
following practical issues

— Equilibrium, finite sampling
— A integration
— Cycle closure
» — Atom creation or deletion
— Contribution of constraints
— Free energy components ?
— Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations

Sinqularity upon atom creation or deletion

e The problem arises when we create or delete an atom in a mutation, i.e. when we
mutate between a dummy site and a site that has non-bonded interactions

— Example: we create an atom between states A and B, and consider the
LJ interactions with the solvent

VLJ (r;A4) 104100 A V(D) =(A-ANV,  a+ AV 5
04} - \
02} —E}
0.0

-0.2¢

State A State B

— When A is very small, V,(r;A) becomes very narrow and steep

— Simulation crash (SHAKE failure), because r = 0 will be
accessed at finite timestep, and the force (slope of V| ,(r;A))
is then very large

Very small
A

— Even if they don’t crash, the B-state energy will be super-noisy
and the ensemble-averaged Hamiltonian derivative will not converge

— Atom deletion: same problem close to A = 1
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Sinqularity upon atom creation or deletion

e Can we do something using soft-core non-bonded interactions?
— Functional form

van der Waals electrostatics
1 1 0d; 1 0.5C.r* 1-0.5C
= _ J rf rf
Vn=4s 6 2_05+(I’/c7)6 V(r)_47zgg o TR
[0(+(r/0') ] 0“1 [ac+(r)2:|2 |:0!C+Rr2f:|2 f
— Effect
interaction ener Distribution of water molecules around
9y and in the soft-core cavity of 0.6 nm diameter
” - 16 i 5 ; ; i R i
SkT v rs_o_f‘t__c_.&:re | 00 14 1
=0.3025 !;
L} .‘, l-o— normal van der Waals | 1.2 4
:‘E‘ 8 1 9
] =]
2 0.8 4
26T § &
g 4 0.6
2t 0.4 4
o 0.2 4
2 0 04 o'a 1.2 0 ! ! y ’ v y ’
 {om) 0 01 02 03 04 05 06 07 08
“ -~ _ r[nm]

soft-core region T i i
first-neighbour peak

solvation shell

Sinqularity upon atom creation or deletion

e The solution to this problem is to define a better coupling scheme
— The only requirement on a coupling scheme is

this condition is actually compatible
with many alternative coupling schemes !

H(rp) iAo

H(r if A=1 specific A-dependence determines
B( ? p) pathway from A to B

HA(r, p;ﬂ)={

— This leaves a lot of freedom!

e A good solution is to use a soft-core coupling scheme
— For LJ interactions

Vi, (ri';/i)z[l_/i]n = - ’
o2 o° : [au/lz + riiéT [O’LJ}L2 + Irijﬂ
Vo =4¢| =5 ——
G T a0 cg ce

— And similarly for Coulomb interactions

n 1 q d;
Vo (r;A)=[1-x —
CB( ij ) |: :I 4758081 [OCCKZ + rijz:'l/Z
l B B
ol 9 9

1/2
For GROMOS: also add RF terms 47[8081 [ac I:]_ — }\,:|2 + rijZJ
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e Watch out: soft-core may create rather unphysical intermediate state!

ionin
water

ionin

15C5 host

Sinqularity upon atom creation or deletion

Na™

S5y nvins
\/v\/i\/\ \f\j\j\j\ j

=-400-200 O
p8) G(8) [k mol ']

12C4

15C5

18C6

AGIIIIT{"S

[kJ mol™']

Li+

&
@
S

¢oée

Bieler, Tschopp
& Hiunenberger, P.H.

J. Chem. Theory. Comput.

11 (2015) 2575

Rb+ Cs+

& ® &
® & &
@ @ @

correction for the positional restraints

- 12C4

-10

0

Calculating free energies and entropies

of theion in the host

== 15C5 == 1BC6

(overview)

K Rb Cs D
0

—in the intermediate soft-core state,
the ion would love to exit the host and
be freely hydrated!

e The calculation of free energies based on molecular simulations are affected by the

following practical issues

»

— Equilibrium, finite sampling
— Numerical quadrature (Tl)
— Cycle closure

— Atom creation or deletion
— Contribution of constraints
— Free energy components ?

— Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations
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Contribution of constraints

e Consider a diatomic molecule where we change the bond length over a simulation

— We supply work to / receive work from the system

Vacuum Water
o® o
Molecule is tumbling ® P We have to «push against»
(~3/2 kg T kinetic energy) ™) the solvent
o [
; @
- N — we «receive» work .. [ ) — we «supply» work
| when extending the bond g .. when extending the bond
[

(spinning ice-skater effect @ @
Thermostat + velocity rescaling)

N S

-~ \
1‘9’\ / " \
Pt
\

Analogy:
stone on sling

Pl
\h_—

U
S’ N /
~ R4

Smme=

— Exchanging work reversibly means that there is a change in free energy

— For flexible bonds (e.g. harmonic potential), Myond (’1)
this contribution arises automatically N

— Problem: we use SHAKE in the simulation, so there is by
default no contribution of this effect to the free energy; e.g. in Tl

N (ﬂ“ )
V A)=77? — SHAKE V77 — 999
SHAKE ( ) A

Contribution of constraints

Free energy as a function of a changing constraint

1. Assume R is a constraint (“reaction coordinate”) defined by

R(F.F,....T,) e.g. distance r; or torsional angle @
2. Free energy change with respect to R:

F(R) =B InZ(R)

Z(R) = {(momentum part)J' ARk« (e [ e [}

N WG i R E AE (T
Fo I(—B)G—Re dr.dr,...dr,
oR [ePVewe-iiDdrdr, .. dr,
(F-VR)VR
R~ 2
(VR)
B = free force
= —f constraint
= force to be subtracted from f to satisfy R(ﬁ,FZ,...,FN ) =R,
= known in a constraint simulation
) \ e.g. Lagrange multipliers
3. Free energy difference of SHAKE!
R R
f OF d ‘ e.g. if solvent “compresses” bond
F (Rz) B F(Rl) - .[ oR R = ,[ <fC >dR f, >0 — Fincreases if we extend the bond
Ry Ry (we give work to push against the solvent)
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40.0
T 300
[e]
£
2 20.0
<
A
B 100
2
Ll
v o0

-10.0

Contribution of constraints

Contribution of bond-stretching term in V(r) to AG
Process: change 512 H,0O into 512 CH;OH

AGbonds AGtotal (kJ/mOI)
~ ~ vacuum
gas phase =0 ~ contribution is small
liquid phase 1. flexible model -6.1 8.4
2. rigid model I -4.8 9.1
rigid model 11 -4.7 11.3
T " T i ! ' ! H—O—H
| <>—— flexible Bindungen i
n £5—2\ flexible Bindungen ohne Bindungsterme H—O—— CH;
GO—Ofixierte Bindungen i negative — here,
B the surroundings want
3—-FEI] fixierte Bindungen ohne Bindungsterme to “stretch” the bond
B (probably because of H-bonds)
[ Bond
B 7 contribution
- Effect of bonded term cannot be
L neglected
M. Ruedi,
0.0 0 2 0.4 0 6 0 8 1-0 master thesis
A ETH (1992)

Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the
following practical issues

— Equilibrium, finite sampling

— Numerical quadrature (Tl)

— Cycle closure

— Atom creation or deletion

— Contribution of constraints

» — Free energy components ?

— Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations
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Free energy components

Decomposition of a free energy change AF into components ?

Question:
Is a decomposition of a free energy difference AF = AF; + AF,
possible, if the potential energy is decomposable, soifV =V, +V, ?

Free energy: only configurational integral

F(L) =—ptIn {I e MM g

+constant

Free energy difference, perturbation formula:
AF(L) =F()) - F(0)
=pt |n{<e“m(*)> } where AV (F*;2) =V (F*;2) -V (F;0)
r=0

Decompose potential energy:
V(FY50) =V, (FY5 )+, (FY5 )
So:

AF () = —B 1 n <ef|mvl(>,)eflmv2(x)>

r=0

= expand in powers of B up till p? use: e* :1+% +%+_._
= ?277? 2 3
AF, (1) + AF, (L) ?7?" In(1+x):x—X§+X§—___

Free energy components
Can one write AF(A) = AF;(A) + AF,(A) ?

AF(L) =F(A) -F(0)

_ 7[3,1 In <ef|3/\v1(x)efg/\v2(x)>

2

% 2=0
e ~1+X+—
2

pa In{<[1 BAV, + B2 % 0(53)H1[3AV2 + 32% -0(p*)

.

——pIn {1 —Bl(av), o +(av,) ]+ 52—2[<(AV1 F) +(av)) +2 <AV1AV2>H)} +0 ([33)}

»=0
2

X
INn(1+Xx)~»x——
(1+x) 5

- B {_B [<Avl>x=o + <AV2>~A=0] + [32—2[<(AV1 y >k:0 + <(AV2 y >H) +2 <AV1AV2>x=o] +0(p)

= AF, (1) + AF, (1) - B[<AV1 (M)A, (1), - (av, (1) (av, (7‘)>;,:0J +0(p?)

# AF, (M) + AF, (1) unless AV, (1) and AV, (1) are uncorrelated
Smith and van Gunsteren, J. Phys. Chem. 98 (1994) 13735-13740
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Free energy components
Use of thermodynamic cycle

Not for components of the Hamiltonian @
I,+o0-CD = (I, + a-CD)

mD (3) l @ l (4) MD
ly + 0-CD ——— (I + 0-CD)

@

exp.

exp.

Free enthalpy G is state function —
— AG is independent of path chosen —
— AG (around cycle) = 0 — AAG,, = AG, - AG, = AG, - AG, = AAG,,
exp. T MD
only correct for state function, not for components!!

' [oH
J <67>dk = independent of A path
For components H, and H, of H this is not the case:
't [o(H, +H "t [o(H 't /o(H
J’ (1+ 2)dk:J‘ (1)d7u+J‘ (z)dk
; N AN

A \}LA J

Aa

Y Y
path dependent path dependent
N— —

sum is path independent — De&composition
is meaningless !

Free energy components
Decomposition of AAG in free enthalpy components ?

Example:

Grow atom X on a benzene ring in solvent

Path I: -
1. grow van der Waals interaction: AG ,, =0
=
< >
2. grow bond-length interaction: AG, . = finite
=
Path I1I:
1. grow bond-length interaction: AG, , =0 <:>7
< == -
2. grow van der Waals interaction: AG,,, = finite
=
Path I: bond forces determine AG
Path Il: van der Waals forces determine AG

A.E. Mark et al., J. Mol. Biol. 240 (1994) 167-176

253



Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the
following practical issues

— Equilibrium, finite sampling
— Numerical quadrature (Tl)
— Cycle closure
— Atom creation or deletion
— Contribution of constraints
— Free energy components ?
» — Choice of thermodynamic cycle and pathway

e Calculation of entropies based on molecular simulations

Choice of pathways and cycles
Choice of pathway: which is the most efficient ?

] o £
w2 /""l Hea Hsy
Hin; £ i Hn; (S8 /
o Hha NE S el Ne
(‘*.11% 'L't'z'/ \I\ ('\]:J/ t'r_-/ !
| g o - S
| (|| //f_ §;— HS, - | I /Ln, H,
Cla Ba o6 Cia
=i it = e
uy” cel” "i Ho ey L{
| Cph I SC
Hey 0 TG Hig : it
\ ;0 \ H
AT N —~— 4 aC—_ &
c-Trp / :C Trp-NMe = \\
M \ 0
(\CH; \CH;
Hi, H;
=2 He, | e He,
In C2 H1y Cla /
Y T =Ny T
CT]:/ Cey (‘(;1/ Cey
| [ /{‘o‘,—lh‘&. . | IL //,c‘a',—us!
Cr Cé, e €5z
) SRS P~y /(‘ R T
Hs (& \ HI, Ce; i
] JCHa- | SCH -
Hey i ~aCx Hey " &
L 30 H
3 ’,
Trp' /*'\‘ C Trp 4C N
H . eg ;
REIE \CH3

X. Daura et al., JACS 118 (1996) 6285-6294
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Choice of pathways and cycles

Small “dummy

interconversion”

< =>,,
Table 6. Results from Set 3 Caleulations aV/a}\' A component !
water chloroform vacuum
Tep-NMe—Trp Ac-Trp—Trp’ Ac-Trp— Trp-NMe Trp-NMe—Trp Ac-Trp—Trp’ Ac-Tp— Trp-NMe Tp'— Ty
simulation  (AVA2Y  simulation (VY simulaion (7@ simulaion (V@Y simulation  (07dF  simulation  (WV7ALY  simulation  (B1TAEY
A time(ps)  (KVmel)  tme(ps)  (mol)  tme(ps)  (KNmol)  timefps)  (kMmol)  tme(ps)  (KMmel)  time(ps)  (Kimol)  time(ps)  (kJmol)

.00 30 128519 30 [KINEAN| 50 Hexll 30 15911 30 5810 30 46209 100 =0.14 £ 0.03
0.05 100 1953123 100 100 1382122 100 14610 100 136012 b} 38920 100 0.05 007
0.10 100 1944 £26 100 125 1489 £25 100 45014 100 30 699+ 16 100 =007 £ 0.06
0.20 100 1472+ 18 100 100 1007 1.7 100 121217 100 30 67831 100 =0.05 £0.04
030 30 1068 £ 1.3 30 30 63135 30 M3izld 30 30 slsx22 100 0.02 £0.05
.40 30 LEE AR i0 30 Hlzll 30 855124 hl1] 30 H09+19 100 =013 £0.03
0.50 i i+ 14 30 30 RLE R 30 MNitl4 30 50 15218 100 =011 £0.04
0,60 50 453£20 50 50 -40+12 50 ST1I£16 50 50 ~IS8£18 100 016004
0.70 100 09424 100 30 -586+24 100 41.7+21 100 0 -462+18 100 =0.17£0.04
.80 200 ~15+34 200 100 066413 150 175432 150 30 -0 £20 100 =049+ 0.11
0.90 100 =103 427 100 125 ~1421 413 150 =943l 150 50 686+ 1.8 100 =055 £0.15
095 100 H4£16 100 125 -M52417 15 135423 1B 30 -H0£13 100 043404
1.00 30 Hitl12 30 30 =TI7412 30 3B1+20 30 0 456 £ 08 100 =1024021

= AG (kl/mol)’ HO+22 23418 N6+21 T36+20 25420 =021 +0.09

“The first 10 ps of simulation at each 4 point is not considered for the calculation of the average.  AG is calculated by trapezoidal integration
calculation of the integral.

. © This column shows 13 of the 21 4" points used for the

More
1. Ac-Trp —> Trp-NMe (direct): 2.3+ 1.8 kJ/mol 1025 ps «— efficient
pathway
2. Ac-Trp =— Trp’: 759+ 2.1 1100 ps
Trp’ —  Trp: -0.21 + 0.09 1.7 = 3.0 ki/mol - 2200 ps
Trp —> Trp-NMe: -74.0 = 2.2 1100 ps

X. Daura et al., JACS 118 (1996) 6285-6294

Calculating free energies and entropies

(overview)

e The calculation of free energies based on molecular simulations are affected by the
following practical issues

— Equilibrium, finite sampling
— Numerical quadrature (Tl)
— Cycle closure

— Atom creation or deletion
— Contribution of constraints
— Free energy components ?

— Choice of thermodynamic cycle and pathway

». Calculation of entropies based on molecular simulations
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Entropy calculations

Four Ways to Compute Entropy Differences

Coupling parameter A approach

Hamiltonian is made function of A: Ha(B,F) =H (B,F; A,) — state a
H,(p.1)=H(p.r:,) — state b

Free energy depends on A: Ay (A)=-KT ln([h3N N !]_1 H exp(—H (B,F;ﬂ)/ka )df)df)

Four methods to calculate entropy differences

e METHOD 1:
— Calculate AF using thermodynamic integration

— Calculate AU as a difference between the end-state energies

— Apply the Gibbs equation

Ay

N dA % /oH
A = A=A = [—=da=[({ZZ) da
N )

a a

Can be calculated
accurately (TI)

Difficult to calculate
accurately (end)

AU =U()-U(4)=(H), =(H),

TI

end
Ti+end AU ba - AAba Will also not be
S e — very accurate !
ba T
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interaction «noise» !



Four methods to calculate entropy differences

e METHOD 2:
— Calculate AS directly using thermodynamic integration

— From statistical mechanics (canonical ensemble)
) F(1)=—p"InZ=-p" 1n[§ Il exp(—ﬁ}[)] free eneray
= E)=2" ” H exp(—BI) = (9), energy
= S(A)=-kS[F(H)-E)] entropy
— Tl formula for the entropy

N

Difficult to calculate

— So
accurately (TI for S)
asl= _H ) a2 1nire 1ifavs
ba oA 200 % % 2%
A °o © [ °o ©
°® o ’mhe®
a ... [ ) ® L S
correlation between —— and H .ozo.o o 00 00
°® .o.o..o. ° : ..o.
T You drown again in solvent-solvent
interaction «noise» !

only A-dependent terms all terms

Four methods to calculate entropy differences

e METHOD 3:
— Calculate AS from AF at two temperatures using finite difference

— From thermodynamics

5- _(%j
ol Jyr
Difference between

A T; (T + AT) —A Ta|1 (T _AT) equally accurate values
— can work, but you need

ZAT very long simulations and
a careful choice of AT

— So

TI+FD _
Asba -_

— The choice of the finite-difference interval is crucial!

too small interval reasonable interval too large interval

AF AF AF
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Four methods to calculate entropy differences

e METHOD 4:
— Calculate AS ,, (solute-solvent «partial-»entropy change) using thermodynamic integration

— Calculate AU, (solvent-solvent energy change) from end-state simulations

1 ¢ /oH,, oH,, 1
ASba:kBTZJ. < o >A<Huv>1_<WHuv> d/1+?|:<va>gb_<va>,1aj|

ﬁ'a
end,w
_agne AU
- ba T
accurate not so accurate solvent: v
T T solute: u
only solute-solvent all solvent
terms terms

— You normally stop at AS,, and call it an «altervative form» of entropy
(I am skeptical! — see later)

Entropy calculations

Comparison of
1. Excess free energy, entropy of water
2. Hydration free energy, entropy of water
using four different methods

i . C. Peter et al. J. Chem. Phys. 120 (2004) 2652-2661
Three models or Hamiltonians:

1. SPC Model: Coulomb plus van der Waals interaction

2. SPC,. Model: no Coulomb interaction

3. SPC,,, Model: no (non-bonded) interaction
Thermodynamic cycle System

SPC (liquid) SPC,,, (ideal gas) 1000 H,0 molecules

periodic boundary conditions

T = 280K, 300K, 320K
AG, AS, AH=0 simulations = 100-600ps
NVT © NPT

SPC,. (liquid, no Coulomb) Change:
1 H,O = hydration
all H,O = excess more accurate
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Entropy calculations
Free Energy and Entropy of Water

4. via solute-solvent

Entropy difference via free energy (T1) and energy method method
Entropy difference directly via Tl 2 1 4 4
m transition the T i <V > AAY _'é'i’.m' ASTT  Agend ‘_l‘_l’.r‘;'J ASTTwwe ﬂ-
(AG™) (BHz) [A] (B (BHG™) (]
K] [ps] [nm?] [kJ mol~!] [J K" mol™'] [kJ mol™"] [J K~! mol™!]
all SPC —+ SPC,, N.VT 300 100 30.73 23.2 41.3 470 603
SPC — SPC,., 300 100 30.73 28.7 39.4 223 BT
SPC,. = SPC,, 300 100 30.73 -5.3 19 229 240
single SPC —SPC,, NVT 300 600 30.73 23.1 40.7 10.7 387  -414 1625 24.5
300 200 30.73 23.0 45.3 22.1 4.3 -37.0 157.8 34.5
280 200 30.73 25.0 20.6 29.7 16.4 -56.4 175.2 -26.2
320 200 30.73 21.8 48.7 40.3 B4.1 -32.1 149.2 48.9
NPT 300 600 3080 _234 _59.5 924 1203  -23.6 1617  83.0
300 200 3081 _233 _762 _629 1763 @ _-8.0_ 166.5 1398
280 200 30.36 24.7 39.7 8L.7  53.6 -45.9 171.5 7.6
320 200 31.34 224 59.6 63.7 1162 -21.3 144.8 78.2
single SPC —+ SPC,. NVT 300 600 30.73 31.3 62.1 278 693 -23.1 117.5 10.5
300 200 30.73 315 64.6 694 110.3 -10.7 119.0 83.3
NPT 300 600 3082 30.9 52 129 703 -24.2 1175 36.8
300 200 30.82 31.1 58.4 5.6 91.0 -18.8 115.4 802.7
280 200 30.39 318 75 249 1543 -3.3 125.6 113.8
320 200 31.35 30.6 61.7 197  97.2 -12.5 106.4 67.3
single SPC,. — SPC,, NVT 300 600 30.73 EF 9.7 272 580 2.7 46.0 55.0
300 200 30.73 -74 -1.7 65.5 19.0 -8.7 45.3 16.3
NPT 300 600 30.82 -7.8 17 339 82.7 10.0 45.9 79.2
300 200 30.82 -8.0 15.1 256 770 8.0 45.9 72.6
280 200 30.37 -6.4 238 370 1079 16.8 42.4 102.4
320 200 31.34 1.7 -14.4 247 -209 -21.1 41.0 -24.9
Table I:

Reference: J.Chem.Phys. 120 (2004) 2652-2661

Entropy calculations

Free Energy and Entropy of Water

3. Entropy difference via finite temperature difference

transition the  ASAT [J K7! mol™Y
SPC — SPC,, NVT 80
SPC — SPC,, NPT 58

close

SPC — SPC,. NPT 30

63

SPC,. — SPC,, NPT 33 ...and close to experimental
value of 51
Table II:
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Entropy calculations

All 1000 H,O Molecules Changed

Excess free energy Entropy
TI Method 2 TI
]50 [ T T I T l T T ] T ] T ‘ T ] T ‘ 02
_",__‘ & o—o SPC --> SPC
[} | nn N
R wis SPC=5 SPC,
—_ 9 ¢
= w-x SPC_ --> SPC
(< 50 nc nn
=
o]
OF= -
0 02 04 06 1
A
Entropy calculations
A Single H,O Molecule Changed
AA via TI AS via TI ASY via TI
200 0.8
A i c
- 150 o—o SPC--> SPC | o6
(=]
E ook | = SPC--> SPC_ r 7
NVT = | lexspc,->spC, - 7%
=< S0 i 1
= = —0.2
=0 + L s J
Lo 1 . 1 | o PR SR B P t"->|<_-‘>|<-— 1 I-.?"-ﬂ. o B I §0
0 02 04 06 038 1 0 02 04 06 08 1 70 02 04 06 08 1
200 0.8
B D L F
150 Jos
NPT E 1
< 100 s
= 50 1
= 02
= O -
B T 1 d e #0

0 02 04 06 08 |
A

same pattern
as for 1000 H,O
being changed

0 02 04 06 08
A

erratic
not converged
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Four methods to calculate entropy differences

e METHOD 4:

— Calculate AS ,, (solute-solvent «partial-»entropy change) using thermodynamic integration

— Calculate AU, (solvent-solvent energy change) using from end-state simulations

L f| oM _(Hy 1 _
ASba_kBT2£|:< oA >;L<HUV>/1 < oA Huv>i|d/1+.|_|:<va>;,D <HVV>/1aj|

d,w
AU end,
Tl,uv
AS "+ —22—
T
accurate not so accurate solvent: v
T T solute: u
only solute-solvent all solvent
terms terms

— You normally stop at AS,, and call it an «altervative form» of entropy
(I am skeptical! — see later)

Partial energies and entropies

e Consider a A-dependent Hamiltonian H = H (1, p; A)
— From statistical mechanics (canonical ensemble)

= F()=-f"'hz=-5" ln[f I exp(—m{)] free energy
=) E(1)=2" _U H exp(—BI)=(9), energy
) S()=-k,B[F(1)-E(1)] entropy

e The thermodynamic integration (T1) equations for the corresponding A-derivatives are

> Tz o] () L o) (L)

= aE(/I) { M[ )exp (-por)+[[(-5 (Z—Z{)exp(—ﬂ}[)}
[t [0 % oot |
{50, A a), ),

o S ) (50) ) e (2

oA oA oA oA oA oA
OH OH
=l R aﬂ> _<ﬂ>ﬂ<§>j
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Partial energies and entropies

e For a A-change from zero (A-state) to one (B-state), one has thus

wful2) s (2) {52 2] oo

AS = —kBﬂziM' R” %% ~1)s <%>A}

all A-dependent terms: }[d (ﬂ,)

all Aindependent terms:

 Now consider a Hamiltonian of the form  #(1) = # (1) + #,

— The above expressions become

AF:idl«é:§>[ AUd=—ﬁidl{—ﬁ'<%§%>l+<ﬂg?:;>I—K?Q>K<%§%> }=<ﬂg%—<ﬁh%

Iy
AU =AU, + AU, L
) AS, :—kBﬂZJ.d}L’ Hy Py _<7'[d>a' %
AS = AS, + AS; o oA [, oA [,

N

AU, =TAS, =—ﬁid/1[<}1[i 5;‘21 >l _<}[i>l<ag[d >J =(9t;), —(713),

— Observations
The energy and entropy contributions AUi :TASi = AF =AU -TAS = AUd _TASd

deriving from the A-independent terms

(in correlation with the A-dependent ones) This is nice in situations where we have few A-dependent terms

cancel out in the Gibbs equation (e.g. solute-solvent interactions) and many A-independent ones
(e.g. solvent-solvent interactions) }[i
— in these situations, the cancelling terms would be very difficult to calculate ! lvery
arge

Partial energies and entropies
e Based on these considerations
— We define
_ _ partial-energy
- AUd _<7{d >1 <7{d >o change of the process | add the word

«partial» although
= s, :_ksﬂzidle ) o), %M opabenopy
— We then write the Gibbs equation as
AF = AUd —TASd and try to interpret

itin this form...

— And we forget about the other terms, which are cancelling and hard to calculate
AU, =TAS, =?

e Typical example: solvation free energy

solute (u) with non-bonded

intramolecular but coupling O O
< el 0000 s [0O0| =i, o,
O solvent (v) OOO O O O O O

AF =AU, -TAS,,

“solute-solvent” partial “solute-solvent” partial
solvation energy solvation entropy
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Partial energies and entropies

e From Wilfred’s original slides
AF =AU, -TAS,

They yield insight into enthalpic and entropic driving forces, ¢
are computable, but not measurable

1. Measurable quantities: AG?assec, AgHassoc = gSassoc

AH3ssoc and AS3ssec contain exactly compensating terms

AH® = AHZ™ 4 AHZ
equal & AG™* = AH™* _TAS™™*
TAS™™ =TAS™™ +TASE™

These compensating terms may mask real driving forces of association

2. Real driving terms AH**and TAS*™ are not measurable, but are

computable and do explain driving forces

Entropy calculations

mole fraction B}

Seems like a paradox, right ?
A non-measurable quantity cannot
have an influence on a measurable
property ! So, either these quantites
are actually measurable, or they
cannot have any predictive power
whatsoever in the real world...
[my opinion: the latter is true !]

Nico van der Vegt

Ng Mo X Pe o ge T v P
T M (ns) (K) (nm?)  (glom?)
H H H,O(SPC) 0 739 00 00 210 54 3023 2273 0973
\D/ H:O(SPC/E) 0 739 00 00 1.0 54 3026 2222 0994
8 1000 0.008B 0.44 18 54 3029 3022 1.016
16 1000 0.016 0.87 16 54 3029 3043 1.034
Na* CF NaCl/H;0 32 1000 0031 172 1.6 54 3030 3094 1.067
(SPCIE) 64 1000 0.060 326 1.6 54 3027 3257 1.109
125 1000 0.111 580 16 54 3022 3580 1.174
168 1512 0.10 4.36 1.0 50 299.3 6393 0.961 «Solvents considered:
275 1100 020 7.14 10 39 2984 6396 0929 mixtures at various
ch\\ /Hsc 396 594 040 1036 1.0 25 2977 6349 0.881 compositions
C Acelone/H;O 432 432 050 1132 10 28 2975 6336 0.862
|| (SPC/E) * 462 30B 060 1207 1.0 23 2974 6354 0.846 «Solute» considered:
o) 500 125 080 1306 1.0 18 2974 6355 0.818 methane
513 57 090 1343 1.0 16 297.3 63.42 0.807
520 0 100 1371 1.0 15 2973 6297 0796
43 812 005 237 1.3 77.4 2997 30.14 0.991
91 812 010 422 13 757 2992 3578 1.009
188 812 019 663 12 724 2987 47.08 1.034
Hac\ /CHa ‘ 241 651 027 830 1.3 701 20985 4822 1.052
s DMSO/M:0 349 651 035 954 22 672 2983 60.75 1.066
|| (SPC) 478 522 048 11.05 22 630 2983 71.83 1.081
0 331 186 064 1237 23 57.9 2082 4443 1.002
814 186 081 1331 21 520 2983 10154 1.085
512 0 100 1400 22 460 2985 6073 Reference:
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Entropy calculations

Solvation of Methane in Na*Cl- Solutions

Na+Cl- +— free enthalpy

methane solvation in salt
AGs AAU7,,  triangles
TAAS™,, squares

relative to neat water

(kJ/mol)

(AG=AU-TAS) = R
Actually shown: T T

AG =AU, —TAS,

partial

\| «— energy (enthalpy)

\

AAU,

TAAS.,
(kJ/imol)

partial
¢ entropy
_4 1 |
0 2 4 6
partial concentration Cpacy (M)

Entropy disfavours solvation increasingly
with salt concentration (non-linear)

Entropy calculations

Solvation of Methane in Acetone Solution

10 T r T T
HaC H,C i i
3 \_\C/ 3 methane solvation in acetone
H 8 AAU™,,  triangles
L g TAAS™,, squares
AGs relative to neat water:
4 SPC water
(lcJfmol) . ® SPC/E water
o
2
P +— free enthalpy

(AG=AU-TAS) ,
Actually shown: 0

AG =AU, -TAS,,

partial

+«— ‘entropy
4
AAU., 2
TAAS,, o
(kJ/mol) -2 r partial
+— ‘energy (enthalpy)
_4 " 1 " Il " 1 . Y
0 02 04 06 038 1 )
partial
mole fraction Entropy favours solvation

Xacetone
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Entropy calculations
Solvation of Methane in Dimethylsulfoxide (DMSO) Solutions

N (AG =AU —TAS) Aty AG = AU —TAS parta),
ﬁ ( - ) shown: - uv - uv entropy
0 T T T T
ﬂui\{.-"’
AG;
TAAS.,
(kJ/mol)
(kJ/imol)
4 1 i 1 " L 1 _B 1 i 1 1
0 02 04 06 08 1 0 02 04 06 038 1
Xpmso Xpmso partial
mole fraction free enthalpy mole fraction energy
(enthalpy)
Figure 5. Methane solvation Gibbs energy (upper panel), and solute-solvent energy
AAU,, (triangles) and entropy TAAS], (squares) relative to neat water (lower panel)
versus the dimethyl sulfoxide mole fraction of the solution.
partial
Energy favours solvation (non-linearly)
Reference: J. Chem. Phys. B. 108 (2004) 1056
Entropy calculations
AGg AU, TAS, Relative to Solvation in Pure Water
mole fraction { ﬁdifferent models—;
NaCl (11%) Urea (15%) DMSO (10%)" Acetone(l) (10%) Acetone(l) (50%) Acetone(1T) (10%)
Solute
AAG, AAU,_ TAAS | AAG, AAU, TAAS,| AAG, AAU, TAAS_| AAG, AAU, TAAS_| AAG, AAU, TAAS_ | AAG, AAU, TAAS,
Helium 20 04 24 |0 01 -09 |00 02 02 [-04 —02 02 =17 =08 LI |01 <02 =00
Neon 28 02 -26 |06 06 -12 [-03 07 04 |-07 -04 03 24 -10 14 04 06 -02
Argon 3.7 =01 -38 (03 -8 -21 |-09 -18 -09 |[-13 -0 03 —44 =21 23 -11 =17 -06
Krypton 40 02 42 |02 26 24 |-12 -23 -1 |-l6 -12 04 52 -26 26 -1.5 -23 08
Xenon 44 12 56 |07 35 28 |[-15 27 -12 |22 -17 05 %8 -36 32 -2 -34 ~13
Methane 42 02 44 (00 23 24 Ll =21 =to |-ty 12 05 |4 26 28 -14 -22 08
Ethane 5.6 08 64 |07 42 -35 |28 —44 -16 |-29 -24 05 84 46 38 26 43 <17
Propane 54 03 -5.7 -22 =51 =29 48 -58 1.0 58 -39 1.9 -130 -85 65 48 62 -14
n-Butane 74 -1.2 -86 | -26 76 =50 |-58 -719 -21 64 -56 08 -157 93 64 -4.3 6.0 1.7
iso-Butane | 5.7 -12 69 |-22 43 21 |65 67 02 |-67 -5 18 |-52 17 15 -59 17 -18
nea-Pentane | 8.2 0.6 88 -24 -84 60 -60 -K3 =23 =6.7 —43 24 -15.8 7.1 B.7 53 97 —44
dominant | counteracts enthalpyj enthalpy and entropy I
changes sign co-act counteract

. . . (partial) enthal
relative and absolute contributions ) Py do vary
(partial) entropy

relative values of 44U, T44S,, change, 44G, not so much Reference: Chem. Phys. Chem. 5 (2004) 144
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Entropy calculations

Free energy, enthalpy and entropy of molecular association

Calculation of a free energy as function of a distance (r)

change
separation
Q _______ Q - Q ___________________________ Q
[ in solution
r r

Two neo-pentane molecules in water

Association can be considered as solvation at different distances,

because gas-phase AG, AH, AS are easily calculated.

Entropy calculations

Free energy of a neo-pentane pair as function of distance in
water and in 6.9 mol/Il urea solution

12
B — 298K —+ 2
ioV}Vy 273K T —
B -—= 323K T 7]
8 . = -
% 6 - —
_g B . 1
2 4T T B
L o2 = ER -
= 5 4+ -
& of - ;
— —— ‘.'.f -
2 \C T % .
- NZ7 (a) Water — ) (b) Urea(aq) -
4 - - -
1 | ] | ] | ] ] | ] | ] | 1
0.4 0.6 0.8 1 0.4 0.6 0.8 1
r (nm) r (nm)

The contact minimum becomes deeper with increasing temperature
== nNeo-pentane association is entropic in both systems

Now, we talk about the real entropy (negative derivative of the free energy with respect to temperature)
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Entropy calculations
Thermodynamics of a
neo-pentane pair as
function of distance in water Lt
. . no effect on 4G
and in 6.9 mol/I urea solution 2may mask true ™
i drivipé j orces?
g or
'E -
The free energies (4G) are similar 4 I
in water and in urea, whereas the B T 7
- Y NS T S Y N T S Y N '
partial 12 = ?true? =
enthalpy (4H,,) and e driviﬁg forces
partial _ ar -:: .\1., T
entropy (T4S,,) contributions are 0 - |7 barrier: enthalpic? A -
] E 4 b=1 3 min: : min: |
different. 2 ¥ gnthalpic?
The solvent reorganisation enthalpies a _j'
(4H,,=T4S,,) are quite different. -
-4 i
J. Phys. Chem. B 110 (2006) 12852-12855 o4 o0& 08 1 04 D& DB 1 12
water r(nm} rinm) urea
Partial energies and entropies
e From Wilfred’s original slides
g AF =AU, -TAS,,
They yield insight into enthalpic and entropic driving forces, &=

are computable, but not measurable

1. Measurable quantities: AG?3ssec, AgHassoc &= gSassoc

AH3ssoc gnd ASassec contain exactly compensating terms
AH assoc :AHUBVSSOC +AH\?VSSOC

iequal

TAS™ =TAS™ +TASS™

AGBSSOC — AH assoc 7TA assoc

These compensating terms may mask real driving forces of association

2. Real driving terms AH**and TAS*™ are not measurable, but are
computable and do explain driving forces

Examples:

1. Barrier to neo-pentane self association in water is:
- measurement: entropic  based on real quantities
- driving forces: enthalpic based on partial quantities

2. Solvent separated minimum free energy configuration of two neo-pentanes
in water or in 6.9 mol/l urea is:
- entropic in water
- enthalpic in urea

based on «<measured» quantities:
enthalpy in urea, balance between both
distance dependences in water

based on
partial quantities
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Again, what is meant here ? Is a driving force
a «dream in the mind of the chemist»,
or an experimentally measurable quantity ?
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But wait a minute...

e We said a moment ago that free-energy components are meaningless because
pathway-dependent; isn't it the same for the partial energies and entropies ?

_ 67{d > _<7{i >/1 <8}[d > 4mmm) Interactionin
A '

"'OoA oA 4=mm) nteraction in }[i
— Consider the following process for monoatomic species (e.g. argon)

pathway 1 (consecutive)

1
AU, =TAS; =—-B[dA’ <}[
0

H, =0 H,#0

AU, #0 O
g OO

CLLTN

i
A | =[O
~o ‘=] Y0
Outcome
et . - depends

on the path !

- O H, =0 l
O O AU; =0 “The same
will be true for
— Worst case scenario e 4 AUg and AS,
AU, =0 [nimdiiins I

Qutcome
depends

OOOO OOOOOOO ™ onthepath!

O ’ and very large !!!
i O O AUi # () (the situation considered

in the Wilfred’'s examples)

no interactions
pathway 2 1

(simultaneous)

%

Partial energies and entropies

e Phil’s objections to “partial” quantities
— Energy and entropy have well-defined meanings in thermodynamics

— _ are path-independent entropy tells us how
AF =AU -TAS AU (Uand S are % =-AS equilibria shift
Gibbs equation AS state functions) oT NV with temperature
in a closed, isochoric, adiabatic and in a closed, isochoric, isothermal and
AS 0 uncoupled (no non-volume work) AU | _ Q uncoupled (no non-volume work)
|N,V,Q=Wn=0 = system, the entropy increases NV.ITW,=0 system, the energy change is equal
along any spontaneous process to the heat supplied along a process
in a closed, isochoric and isothermal system, —(AU =T AS)| =-W
AE W the reversible non-volume (e.g. electric) work N.V.T,rev "
- |N VTrew  'n  -W, that can be exported along a process o ) o )
ot . . energetic driving force: entropic driving force:
is equal to minus the free energy change due to entropy change  due to entropy change in the
in the surroundings system (the only one left if we

(via heat exchange) replace isothermal by adiabatic)

= the real driving forces, and both are measurable
(reversible-work measurements — e.g. electrochemistry) !

— Partial energy and entropy do not satisfy most of these equations

AF = AUd —TASd but AUd } are path- (%j # —Asd Asd |N«Van:Q:0 20 } incorrect

AS dependent —
d ot NV unless AS=0 AU, NV.TW,=0 unless AS;=0

— In other words

b ‘ g ' . AU'=AU +CT
AF =AU -TAS mZerCfaSQTf AF =AU'-TAS" with { AS' = AS 4+ C

— But: these derived variables do not have much meaning...
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019

Lecture 529-0004-00 Tuesday 9:45-11:30 a.m. LECTURE 9 (WEEK 10):
www.csms.ethz.ch/education/CSCBP HCI D2 Enhanced sampling
* Four basic choices defining a molecular model

degrees of freedom

@ =ATOMS
®

= CLASSICAL @
FORCE FIELD @ 0@
Interaction l boundary conditions

MOLECULAR

% it
, "

system size and shape,

AL ® ® 0 temperature and pressure,
fffff m g\’. o experimentally-derived
8% ®% information
number of configurations, e 7 = ENHANCED SAMPLING
properties of the configuration | el &I
. . Z : 7 % ; : ) G) 7
sequence (searching, sampling,

or simulating)

nerating configurations
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Enhanced-sampling

¢ The problem of generating the configurations of molecular systems is plagued by
the combinatorial explosion (exponential increase) in the number of configurations
(volume elements, local basins/minima and barriers of the potential energy) with the
number of degrees of freedom

¢ For this reason, there is a huge effort in the field to devise schemes generating
preferentially relevant configurations (and skipping automatically the irrelevant ones)

— Massive literature, plethora of methods/combinations/acronyms !

e The goal maybe to efficiently

SEARCH SAMPLE SIMULATE
As diverse as possible As diverse as possible Boltzmann distributed
ngeratgd Relgvant o Rglevant o Dynamically connected
configurations No well-defined statistics Well-defined statistics
No dynamical connection No dynamical connection — MD (or SD)
(reweightable to Boltzmann) (no room to improve)

— Relevant usually means “low potential energy” but there may be other conditions, e.qg.

. . . even if some states
- if I want a AG or PMF (conformational or alchemical), | want all the curve sampled | /", nigh free energy

- if I have experimental information (refinement), | may want it satisfied

— Many (not all) enhanced-searching methods can also be implemented as
enhanced-sampling methods if one is smart; this is usually the historical path

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

‘ Systematic and heuristic MD-based schemes
search methods for enhanced searching

Systematic search

Altered parameters Altered potential energy
Random search Altered masses Use of soft-core atoms
Adiabatic decoupling Diffusion-equation search
Stepwise build-up Temperature annealing Local-elevation search
Genetic algorithm High-temperature sampling _ Biasing (US)
. incl. LEUS (+A,FB,B&S),
Parallel tempering metadyn or EDS

Multicopy “sampling” Hamiltonian replica exchange

Distance geometry Altered dimensionality Altered prescription of motion
(and potential energy)
Homology modelling Four-dimensional MD PEACS
SPEED

Coarse-grained MD

L Monte Carlo sampling
Multigraining

Markov-state modeling
SWARM MD

Essential dynamics
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Systematic search

e A priori, the simplest way to search the configurational space of a molecular
system would be to vary systematically all Cartesian coordinates by small
increments (grid search)

— If you have sufficiently small grid cells, this is even a form of sampling
grid configurations {r}
weights ~ exp(—AU(r))

— Problem: combinatorial explosion!

m) canonical ensemble

N  coordinates

_ _ _ m) n" grid points
n  grid spacings per coordinate

e S0, you can only do this for very small systems (small molecule in vacuum)

e Or you have to restrict the search to a small subset of conformational coordinates

. Searched (Q) Omitted (q)
— Exclude solvent coordinates from the search, Solvent
or use an implicit-solvent model (common!) Solute (unless implicit)
A + Bonds, angles
— Exclude hard (bonds, angles) degrees of freedom Dihedrals (standard values)

Backbone  + Sidechain dihedrals

— Exclude sidechain dihedrals in a pOIymer dihedrals (standard values (?))
. Soft Hard
— Use low-frequency (soft) normal-mode coordinates  _  inates coordinates

(constrained (?))

Systematic search

e Examples

— Pseudo-rotation angle for rings

P
=0 L north pole

Tescof 8= 6B.5° Creme_r-PopIe coordi_nates
Cancar for six-membered rings

—Q,6,9
0=90" b= 90¢ If bonds and angles are fixed
and all the same
/ Tropie of B=1135" — 69

Capricorn

south pole m 8= 180"
0

— Peptide backbone dihedral search

Nonapeptide
Planar peptide group

13 u 1D ”3—%

60° resolution

II Y II — 102 grid points
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Systematic search

e The problem is that now, each grid point Q matches a whole ensemble of values
of the omitted (“orthogonal”) degrees of freedom ¢

— You can energy minimize for the q coordinates, but

Y, t b . So, this makes sense only
- YOU cannot Cross barriers if g is very simple (one minimum)

. . . The weight of the grid point Q
- What is the meaning of the resulting energy? .4 actually depend on a free energy!

e There exist a wealth of heuristic schemes to sample as well as possible a high-dimensional Q
while dealing as well as possible with the orthogonal q, e.g.

Random search Stepwise build-up Genetic algorithm

Multicopy “sampling”  Distance geometry Homology modelling
— They are seldom statistical-mechanically rigorous (—searching and not sampling)

— They are usually cheap (especially with implicit solvent) and used to get a quick “feeling”

e The alternative is to use MD-based schemes, i.e. to let MD take care of the g variables

— Often, the best (especially with explicit solvent) Discussed a bit

Heuristic search methods

o lllustrative examples

Random search Stepwise build-up Genetic algorithm
x .
9 ..!\. \ \T

1 ll ll\fﬂ‘f e o .n.,,.m‘,r,mr
ra,"ml *TI 4 SR %

’ ’n'n

. . . We generate conformations by . .
Space Q is too big, so we search it We evolve a population of conformations,
) taking successive (g,g) pairs at random, : . o .
by making random moves : o . «breeding» (i.e. combining the coordinates
with a probability (Boltzmann) depending .
of distinct segments) the lowest-energy

rather than systematically on the dimer free-energy map; and we

f . g ones and letting the others «die»
«prune» configurations with bad overlaps

Multicopy “sampling” Distance geometry Homology modelling

.
: ; ; LA

PO PRI PG =
M P
Space q is modelled by including multiple We use NOE information to fix We use the 3D coordinates of proteins in the
conformations with fractional weights; inter-proton distances and try to find PDB as a template to explore the
as we search Q, we optimize the weights in q the best solution for these distances conformational space of of a new sequence

(along with a primitive force field) (threading)
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Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing
High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics

Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD

MD-based schemes for enhanced sampling

e MD (+thermostat) is a great simulation method, but a poor sampling/searching method

— MD explores configuration space at a "sluggish"
pace imposed by the "natural" system dynamics

energy barriers .
} trapping
narrow passes
limited diffusivity recrossing
— computers themselves work at a "sluggish" pace &
compared to nature (factor ~10-'3 for 104-atom system) :
also: nature actually uses QM in “real-time” b

u(@) M | ‘

and with a "scaling" of O[N]
¢ The scaling of Nature’s “computer” — some considerations for fun...

Elephas Maximus

(about 10%° atoms)

Mus Musculus

(about 10%* atoms)

W

— It does not take Nature more “CPU time” to propagate the elephant forward
in time than it takes for the mouse = Scaling of O[1] in the number of particles ?

— But to be fair, it takes an elephant-volume of Nature to propagate the elephant, and
only a mouse-volume of it for the mouse = Scaling of O[N] at fixed CPU volume !

— Nature is a linear scaling, amazingly fast and massively

parallel computer with perfect scalability
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(and its true equations
of motion must be local!)

Natural volume also tends to be
cheaper than computer-processor
volume (there are exceptions !)



MD-based schemes for enhanced sampling

e So, there are processes that can be simulated with MD, and some that cannot

System type Relaxation time (indicative)

gas ~1ps

pure liquid ~10-100 ps acceptable
small organic molecule in solution ~10ps—1ns

short peptide in solution ~10-100 ns

lipid aggregation in solution ~10-100ns :

protein folding ~1ms—-1000s

- 50 years intractable

e Treasures of ingenuity have been invested into the design of clever algorithms
(in particular many MD variants) that lead to more efficient searching or sampling

MD-based schemes for enhanced sampling

e Example: phase transitions in a GMP
bilayer patch are two-state (GL—LC),
fast (~ns) but infrequent (~10 pys at T,,)
events

Simulation . ) .
Reconstructed [hypothetical] time series;

Tym =1 S \ orders of magnitudes suggested by simulations
n_n

N N
035k o
T=T, 42K ] <, Ml bbby bl el —
T e W
Tc= 20 us 0.15,' # " D
0.2} TR | B . ! : : -
T N
035 (1] n —
T :Tm E M W iy " o A R itk bl | C >
e A W T VT W
To=10us J 0¥ \ GL =
Y woun ) | , | ) ] s
T=T,-2K } =
T =20 s &
T..=5us [ ——
025 30 ' 100 ' 150 ' 700
won time [js] p(axy)

— Single simulations are unikely to catch a transition close to T,
— Transitions observable only in one direction far away from T,
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MD-based schemes for enhanced sampling

e Average residence-times as a function of temperature

1000

900 —

800

700~

600 -

T |ns]

500

400 —

300

200

100

0
Fit (temperatures with
no transition at all
are excluded)

A
7(T)=C exp| —
r(1)=Cexp| o

1+ K,T,0c>0Ln
: ! + Kg T, (LC)
BLUE: I 1 + K, T (GL>LO)
average residence ] LC n
timein LC | ~ KT, (GL)
. . - (o] K('-[.Tn “("_>GI');|\'L'
— r 8 E 8! — i K, T (GL->LC)
TLC A R g ;2;% £ oA TGL - erlr‘tfir:"ange o
] = LC-=GL fit
] GL-=LC fit
q
+ _
+ -
+ -
L+ N
+ l —
* i
+ % R
L ! | | 4+ | ; L |
300 304 308 312 316 320 324 328 332 336 340
T [K]
— —45 _ 1
Co =4.2:10" ns A, =289.6kJ mol values per
mol “system”
=128 lipids]

= C=7.0-10"ns

A =-185.9kJ mol™

MD-based schemes for enhanced sampling

e A (tentative) classification of methods:

— Altered parameters

— Altered potential energy

— Altered dimensionality
(and potential energy)

— Altered prescription of motion

(sampling or searching)

— Time-saving techniques

altered masses
(sampling)

altered temperature
(isothermal dynamics;
sampling or searching)

memory-based bias
(searching)

l freezing

time-independ bias
(sampling)

increased dimensionality
(sampling or searching)

reduced dimensionality
(sampling or searching)

Uhias (051

Ubias (q)

S din(r]/
S dimr)

(e.g. multiple time-step methods, cutoffs,

pairlists, grid-based neighbor search, ...)
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— faster dynamics

— faster dynamics
— but higher entropy regions !

— possible variants: energy,
volume, pressure, number of
particles or chemical potential

—avoid continuous "revisiting"
of known configurations

— make minima less deep
— make barriers less high

—focus on relevant regions

— pathways around barriers

— faster dynamics
— fewer particles

— longer timestep

...and probably
many more...



MD-based schemes for enhanced sampling

o)
C N
B i
fee) M (sampling) MD with altered masses!
[S0] ((\J QO
(sampling As a searching method As a sampling method

or searching)

N
\W Ubias (qat) (searching)

(e.g. Simulated annealing? or J-walking?) (e.g. high-temperature MD or replica exchange?)

"local-elevational adaptative deflational metadynamical flooding" + stochastic tunneling®

deflation5, local elevation®, conformational flooding’, adaptive biasing force8, metadynamics®

Umbrella sampling™ Solute potential Diffusion equation

(arbitrary biasing potential) scaling? method?3
. samplin
Ub'as (@ (sampling) Soft-core Fluctuating "hyper" MD'S,
atoms4 potential'® "accelerated" MD",...
. (sampling Constraints Implicit Reduced space araini
~ & dlm[r] \‘ or searching) (e.g. bond lengths'8) solvation (e.g. essential dynamics?) Coarse-graining

e.g. resolution exchange/
multigraining?®

For sampling: f(]", A)=AE (I

red

IN+A=-D)EL)

Cartesian dimension
(e.g. 4D-MD?")

(sampling
or searching)

Multiple copies
(e.g. LES??)

Multiple systems
(e.g. SWARM-MD?)

é@ dim(7"]./

For sampling: f(rext,ﬂ,) =AE () +(1-ADEUL T

ot )) e.g.4D free energy?

Xt

: Jacucci & Rahman, 1974; Bennett, 1975
: Kirkpatrick, Gelatt & Vecchi, 1983
: Frantz, Freeman & Doll, 1990
: Sugita & Okamoto, 1999
: Crippen & Scheraga, 1969
Huber & van Gunsteren, 1994
: Grubmiuiller, 1995
: Darve & Pohorille, 2002
: Laio & Parrinello, 2003

10: Levy & Montalvo, 1985

11: Torrie & Valleau, 1977

12 Tsujishita et al., 1993

13 Piela, Kostrowicki & Scheraga, 1989

14: Huber et al., 1997

15: Liu & Berne, 1993

16: Voter, 1997

17: Steiner et al., 1998; Fichthorn, 1999; Gong & Wilkins, 1999;
Hamelberg et al., 2002; Mongan & McCammon, 2004

18:
19:
20:

Ryckaert et al., 1977

Amadei et al., 1993

Christen & van Gunsteren, 2006;
Lyman et al., 2006

van Schaik et al., 1993

Elber & Karplus, 1990

Huber & van Gunsteren, 1998

: Beutler & van Gunsteren, 1994

21:
22:
23:
24

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

MD-based schemes
for enhanced searching

Systematic and heuristic
search methods

Systematic search

Random search

Stepwise build-up

Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

» Altered parameters
I:> Altered masses
I:> Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS
Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD



Altered masses

. . . . . e Depends on the masses,
e The configurational distribution of a molecular system at equilibrium but is the same

is independent of the atomic masses for all configurations!
P(r)~ [dp exp(~p3£(r, p)) = [ dp exp(~BK(p))exp(~AU(r)) = C exp(-AU(T))

— but the kinetics (e.g. oscillations, diffusion, viscosity ') becomes faster for lower masses
e So, what about scaling all the masses by a factor a<1 to make everything faster?

— nice try, but there is no free lunch

d’r F Scale m by a But also requires
Newton W =— Scale t by al/? for the same accuracy
m
ics! 1/2
dr SNE » Same dynamics! At — oAt
GivenT —~| —
dt \m

e In practice, you can play with mass in two ways

Especially for the solvent, it will

— homogenize all the system masses (e.g. to mass of hydrogen) make it [6SS “ViSCous”

— make subset of atoms heavier (more inertia)

and other subset lighter (faster response) Ve 4
’ U ;
Situation of “adiabatic decoupling”, reminiscent r:\’
of the Born-Oppenheimer approximation y_:_‘,”-
[the configurational ensembles are the same, but you ' X-ray structure 5ns MD 5ns MD
get more motion (sampling) in the loop in 5ns time] » (mass x5 in green loop)

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic MD-based schemes
search methods for enhanced searching
T 4 1
Systematic search » Altered parameters Altered potential energy
Random search Altered masses Use of soft-core atoms
Adiabatic decoupling Diffusion-equation search
Stepwise build-u :
P P ﬁTemperature annealing Local-elevation search
Genetic algorithm High-temperature sampling _ Biasing (US)
incl. LEUS (+A,FB,B&S),

Parallel tempering metadyn or EDS

Multicopy “sampling” Hamiltonian replica exchange

Distance geometry Altered dimensionality Altered prescription of motion
(and potential energy)
Homology modelling Four-dimensional MD PEACS
SPEED

Coarse-grained MD ]
. Monte Carlo sampling
Multigraining .
Markov-state modeling

SWARM MD

Essential dynamics
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Also called
“simulated annealing”

Temperature annealing

e An “old” method (1983), for searching only
Progressively cool down o molten sUothance o doroun

Initially, a cool and efficient o &
solution to the “traveling salesman” losge monoeryshals ( rezenaigy w.mmum) e Pmd-'-' o0
& slicon crysiols for compubes dnips .

problem —and other “non-molecular”

optimization problems _
Ty beg T T '
. || ' nigh T ¢ heawdh
theoogh torge amounts
Snegy oF escbormanonal spata
' i

(ung}aurqa.;oﬁ
[
The barriers that can be | il
crossed are on the order of kT - | | _
’ bl | - T Sowly deceased

|I |
i

. : '| .
[
|
: |
. |
|
|

| low T+ Ext —¢ oghmas
[j Cont guralion
wicess fob guorantead

- ;-g?gd— e ‘P\'\Bud\.ﬂ'ﬁ .

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative

examples (out of many more!) are
MD-based schemes

Systematic and heuristic
search methods for enhanced searching
A

» Altered parameters

Altered masses
Adiabatic decoupling

Altered potential energy

Systematic search
Use of soft-core atoms

Random search
Diffusion-equation search

Stepwise build-up Temperature annealing Local-elevation search
I:> High-temperature sampling Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Genetic algorithm
Hamiltonian replica exchange

Parallel tempering

Multicopy “sampling”
Altered dimensionality Altered prescription of motion

Distance geometry
(and potential energy)
Homology modelling Four-dimensional MD PEACS
SPEED
Coarse-grained MD
Monte Carlo sampling
Multigraining
Markov-state modeling
Essential dynamics
SWARM MD
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High-temperature sampling

e If you simulate at a higher temperature than your normal temperature, you can reweight

_Jdramexp(-pun) _[dr Qmexp(=(8-F)V0)exp(-4'UM) _(QNexp(=(A-FIVMN)),

(), = [dr exp(-pu(r))

[dr exp(=(B=B)U(N)exp (= U(T))

— the kinetics will become faster (nice!)

— but you have to decrease the timestep

Given T

-
dt

172
j scale T by a »

{exp(~(8-B)0V(M)),

For similar integration

accuracy

At — a At

— and already for small temperature increases, the statistical efficiency of the
reweighting will become very bad (because you favor higher entropy regions)

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

» Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

|:> Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD



Parallel tempering Also called

“replica-exchange (in temperature)”

e Simulate N independent replicas of the system in parallel, each at a different temperature

¢ At regular intervals z,,., we attempt to swap configurations (coordinates and velocities)
between two adjacent systems

Probability of the initial

Probability of the swapped
two-system state ' two-system state X = (r’ p)
P, ~ exp(=BH (X) = B'3H (X)) pi ~exp(=pH (X))~ (X))

e To ensure that the system pair remains Boltzmann-distributed, we accept or reject
the swap according to a Monte Carlo criterion

1 if D, > P, o { 1 if A<LO0
P (1> 1) = {pf /'p, otherwise exp(—A) otherwise
with  Pg /P, =exp((B'= BUH (X") = H(X))) with A =—(B"=B)(H(X) = H (X))

— one may also swap the coordinates only and apply the test in terms of potential energy
only (in this case, one usually also swaps the velocities and rescales them after the swap)

e It is easily seen that this procedure results in a set of N canonical ensembles, each

at one of the selected temperatures This means in particular

. . that the dynamics is nonsense...
— if you look at one temperature, the trajectory is discontinuous (systems come and go)

— if you look at one system, the trajectory hops across temperatures (enabling enhanced
sampling at the highest temperatures!)

this is a bit like simulated annealing (searching) converted to a sampling method!

Parallel tempering

e Example: parallel tempering SD-simulation of 512 n-butane molecules N=11

\ ' | ' \ \ ' e =1PS
200

stk b

Mt ) 1ﬂﬁw“ﬂ\wﬁw

P A W W|
Iﬂm ”|\| I ] ‘ L

A T CART YD
priEEate

0.6 0.8
time [ns]

— Note that the choice of the time interval z,,. between exchange attempts and of the

T-ladder may have a large impact on the achieved sampling enhancement (and
is not trivial to optimize!)

—_
=)
[

temperature [K]

14

(=)

120

100 I R __l_.l..l. J._

1

— Note also that we are in principle not limited to pairwise exchanges (swaps) between
adjacent replicas (any permutation would work as well; but this is the most common choice)
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Parallel tempering

Thanks
Pavel !

e Example: parallel tempering MD-simulation a GMP bilayer patch

325

. LC

Ll GL

s D

320

I UN| 32

300 =

i LN |||||| .. ll]l.l'."l'|r| e '. !'
¢ l Uik atatis e el 8
! } "1:%‘,1' :le ‘ Jh'%ill l'!i'"li '| 1} _

*w}' il

III L
|IIH

ML Il lIIII LA ' i
il

_”uu "‘ li” I || lm .|“ ll Infll"I"”' "rin”hr i

o l.ID 20 BLO
time [ns]

40 50

ll] 20 n -l" 50

time[ns]

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative

examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling
Temperature annealing
High-temperature sampling

Parallel tempering

» Altered potential energy

I:> Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD



Use of soft-core atoms

Sath - core interoemon -

H::d.l?y tovloms and Vonder waools inksachons So Wk
Fhey o fimihe  when Qrome cre on Yop of cach othwr
—& oYrzms tnuﬁ ap \-'i’«éme}\ each otfer Wwite, finke bortiere

Marmeal Eaft - o
O—O—5 Y
- k-\,.j o L
inFinite Fuite barior
N

Use of soft-core atoms

Use of soft-core non-bonded interactions
Thomas Beutler et al. Chem. Phys. Letters 222 (1994) 529-539

Use of non-physical potential energy terms
Physical non-bonded term: van der Waals C,

Coulomb qg; "
r. st —

1] r—

Non-physical softer non-bonded term that allows atoms to pass

through each other:

\\;S)T Conditions:  y(@©)=V,, V'(0)=0
V(Ir,)=0 V'(,)=0

1. V(r) is a function of r: f(r) = a+br +cr? +dr?

iz el
@ - —vaé{l_[éﬂ
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2. V(r) is a function of r2:

Use of soft-core atoms

a+br? +cr?

2
IO

a(r)

I
I
<

g'(r) = -4V, = 1—[

3. V(r) is general van der Waals plus Coulomb form:

C12

C, 1 a9,

V() =

+
2 6 1/6
[a-+ﬁ?} [a'+an 4ﬂ€bﬁ'[a-+ﬁ?]

lim = standard form

a—0

a =0 V(0) = finite

V'(0) =0

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing
High-temperature sampling

Parallel tempering

» Altered potential energy

Use of soft-core atoms
I:> Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics

283

Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD




Diffusion equation search

Diffusion equation search
Piela et al. JPC 93 (1989) 3339

Diffusion equation: (1D PDE)
62

8 constant D:
a? f(x, t) = a f(x, t) o(mittetd hterDé)

Solutions depend on boundary conditions:

Initial values: f(x,0) = f,(X)

Boundary values: f(xo0,t) = 0

or f(x,t)="f(x+L,t) = periodic

i B[x—c]2
Solution (f(#£oc0,t)=0): -
V1 + 4Bt
A amplitude
B: width at t=0

Diffusion equation search

Example:

fo(X) = —o0(x-c)

Note:
- parameter t (time) controls modification of f(x,t)

— In the following, this equation is used to deform the potential-energy surface
and the parameter t has no relationship to a time; so, | will write it as q

- Change of f(x,q) as a function of q is proportional to the local

curvature (in x), so barriers melt, minima fill up as g increases
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Diffusion equation search

Piela et al. J. Phys. Chem. 93 (1989) 3339:
Use functions that are solutions of the diffusion equation as means to

find the global minimum

1. Choose for the potential energy

V(F, g) = Gaussian (or solution D.E.)

2. Deform V(r,q) by letting q=0— q,,.x

3. Minimize V(r,q) while reforming surface: q=q,,,.,— O

Kind of potential energy simulated annealing

Diffusion equation search

Modification (Huber et al.): J. Phys. Chem. 101 (1997) 5926-5930

1. Deform individual terms in the potential energy function:

— dihedral angle , _ _
(if each term is a solution of the

diffusion equation, then the sum
— van der Waals, use soft-core will b% t00 [linearity])

— Coulomb
2. Such that positions of minima of each term are not changed

3. Thereby possibly relaxing the condition that V(r,q) must be

(which means that the minima
of the overall potential energy
may still move a bit — but hopefully
not too much!)

a solution of the diffusion equation
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Diffusion equation search

Deformation of the dihedral angle term
GROMOS87:
V(p) =K, [1+cos(ng-5)]
Solution to diffusion equation (periodic):
f(x, 1) = e " cos(wx — &)
Deformable dihedral angle term:

V(p,q,) =K, [1 +e ™% cos(ng - 5)}

Note:
- For g,= 0 — standard GROMOS87

- For g,= o — constant K,

- Positions of minima are independent of g,

Diffusion equation search

Dihedral-angle term in the interaction function

potentiai energy

/I
W,
\/

120
dihedral angle [deg.]

For larger values of the parameter q the surface is smoother,
leaving maxima and minima where they are
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Diffusion equation search

Deformation of the van der Waals term

GROMOS87: V() = %2-%¢  minimum V° atr,
r r

Partial solutions diffusion equation (+ soft-core):

VSOﬁ(I') O<r<r AEROMOS 87
V(r) = s - -0 \/soft
VIEr)  r>
Mo

soft 0 bar r ’ r X vbar :
VM) =V + VI 1-2| — | +|— i .
ro ro : Vgauss
\/O|----

veus(ry = Voe Bt with B =

Sh| N

4\/°
2
0

Note: v(0) = finite V'(0)=0 V"(r)=- forrir,

V(r) and V'(r) continuous at r =r,

Deformable van der Waals term: v=®(,q )= v*"(r)[1+ 4Bq,, "

~ B[r—ru]2
VgaUSS(r’ qnb) _ Voe [l+4Bq”":|[l n 4Bqnb]»llz

' _ _ dw (but: this implies a
Note: V(r,q=0) = V() discontinuity in V at g=0)

Diffusion equation search

A tough test case for searching: Cyclosporin A

11 residues
49 torsional angles
57 NOE distance restraints

1. distance geometry
27 structures

|

9 classes
very difficult structures
high energy barriers between them

2. structure refinement
standard 3D-MD
1-2 correct

Challenge: how to get all 9 different starting structures
converged to the lowest-energy one
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Diffusion equation search

Simulated annealing technique

Ten trials per high-energy starting structure

£
a)
2000 +
-
*
S g 4 4 Start
; . ; .
2 <]
100.0 . . o - O Individual runs
] : ;
] 2 o
_g o ? e E
8 ] 8
2 c: [+ 5 8
0.0 + o o
Correct structure * 2]
(low potential energy [ E ________________________________________________ g‘ _______ - Three reach
and NOE violations)
-1000 ; . : . : : lowest energy
0 1 2 3 4 ] -] 7 8 9

Diffusion equation search

Diffusive soft-core technique

Ten trials per high-energy starting structure

200.0 {
f |
g 4 ' |
£ 5 . . f 4 Start
100.0 2
B . o c * O Individual runs
: ; 8 3 °
! A
0.0 -] B o a
o a i o 5
5]
f C 3
Correct structure > 8 = ] Y o
(low potential energy [ S G B____o_____ B ﬁ _____ a ! ______ R
and NOE violations) , , , , . . Seven reach
To 1 2 3 4 5 6 7 8 9
class of starting conformation lowest energy

288



Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic MD-based schemes
search methods for enhanced searching
T 4 1
Systematic search Altered parameters . Altered potential energy
Random search Altered masses Use of soft-core atoms
Adiabatic decoupling Diffusion-equation search
Stepwise build-u .
P P Temperature annealing I:> Local-elevation search

Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Genetic algorithm High-temperature sampling

Parallel tempering

Multicopy “sampling” Hamiltonian replica exchange
Distance geometry Altered dimensionality | Altered prescription of motion
(and potential energy)
Homology modelling Four-dimensional MD PEACS
SPEED

Coarse-grained MD .
. Monte Carlo sampling
Multigraining .
Markov-state modeling

SWARM MD

Essential dynamics

Local-elevation search

Local =levolreon -

Use of o memeory fundhon Yo penalite We Te-samphiog
of contigurainons Wk hove ohwady 'een anccunkereol
W N swwlaben
P'.'w.h
VEFD ™MD

I'P.;F 1 . ac &0

L

Ilﬁ}i:.-h.l -
clefanon
b T

P
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Local-elevation search

Methods to search conformational space
Idea: Include information obtained so far during the simulation into
the search scheme: memory function
A. Characterize molecular conformations using:
- cartesian coordinates too many

- torsional angles @, y, X /—/

- dihedral angles spanning residues:

R/Ri-l-‘l— Ri+2\ .

i i+3

Review searching: M. Christen & W.F. van Gunsteren J. Comput. Chem. 29 (2007) 157 - 166

Local-elevation search
B. Penalize the visited conformations by changing the
energy function V as function of time

V(o)) =V, ({f}) + V..., ({e})

- potential energy term that pushes molecule out of the current
conformation {¢’}

-X(o-07) /207

vV = ¢-Number (¢, at ¢)-e "
|

of conformations for which ¢’ —a¢, < ¢, < ¢’ +a¢,

memory

Local elevation search
(in 2002 called meta-dynamics)

Thomas Huber et al.
J. Comp. Aided Mol. Design 8 (1994) 695

memory
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Local-elevation search

Implementation
1. Use torsion angles, o;

2. Each conformation ¢, ¢,, ¢ ...,0, ="

3. Discretise to M parts — M" grid points ¢",
4. Gaussian function at grid points: Vmem ((I)n) - kmemN¢;e 2

5.V =V

total phys mem

A toy application
Pentane (two torsional angles)

N

Complete space can be mapped out

Local-elevation search

Thomas Huber et al.

TeSt case. pentane J. Comp. Aided Mol. Design 8 (1994) 695
2 dihedral angles (3 minima each) — 9 low V. conformers
free SD-simulation (united atoms)
simulation time 100 ps, T=300 K, GROMOS force field NN
trans - trans lowest
; Vongs
3
g
- [}
8
8
3 8
E ! trans gauche+ gauche- trans
g T T | I | |
5 -180 -120  -60 0 60 120 180

dihedral angle [°]

80 v )
dhecral angle C1-C2.C3-C4 [Gogress) U U U

. cis-cis  gauche+ gauche+ gauche+ gauche-
Higher-energy conformers are not (yet) sampled

in 100 ps normal MD(SD) simulation highest low higher
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dibadid angle C2-C3-CALS [degreos]

Local-elevation search

Local elevation search: pentane

Local-elevation simulation of pentane (united atoms) T=300 K,
Gaussian local-elevation function with k=5kJ/mol per MD step

simulation time 20ps simulation time 100ps

} '::a-:_z_' 5“;‘*& ‘; 3!
g e 17 Al s 1 AN

2 TR i e o e
PO A g © _...'"tg'l:.-'_".-‘:t' WMLy
4R L et ey oy A 5
’ 3 foutg b T XD
0 L o &' ez ’_." R
g nF-.-.-'.ﬁ. R 2R R
b R O SRS P
* Ve g f } X R AR e
- £ tew "y = | ey e % [ 2 -
el i TR TRt A el 3 VAR fe Y
. o4 .;':- et - .‘*‘ g I3 vt .:f“"*: oy S0
a0 ¥ . om ' "' ‘-'.' 420 :J’\t‘z'ﬂ ~an A '#‘é
RIS S Y - bol L e I
LA TR 2 3. We . ae® A T i e ad D
180 E_'x_)-..-. M J'-._....,~ PRI £ 3 N P97 Japrs, oy W/ ’ o aBaas Lo, .:.:tc_‘_-.nstk.l-..n-i..:_-a..—-ﬂ
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Higher-energy conformations are sampled Almost all conformations are sampled
in 20 ps local-elevation MD simulation in 100 ps LE-MD simulation

Local-elevation search

The local elevation simulation method
Normal simulation: relevant properties
- Many conformers
few visited
- Compact representation should be possible

Local-elevation simulation:
- run simulation
- store visited conformations (using compact representation)
- push system away when old conformation is seen

V(I') V(r) memory

visited

normal (MD) Local elevation (MD)
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MeBmt!

g

internal potential energy [xJ/imol]
g

Local-elevation search

Cyclosporin A

- Amide bond (fixed to trans)
w-dihedral

- central bond of @-dihedral

- central bond of y-dihedral

Melen®

Local-elevation search

Cyclosporin A: potential energy

300 K

l MD

o

,: i LI 1
600 K
local elevation 300K |
i'l |ﬂ||'| “ LE-MD
200 400 600 800 1000
simulation time [ps]
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Local-elevation search

Cyclosporin A: similarity of conformations

Criterion: Ag@; < 30° (upper)
< 45° (lower) for each of the 11 ¢-angles

164 = average number of
visits of same conformer

SD 5|mulat|on at 300 K

Local-elevation search

Cyclosporin A: similarity of conformations
Criterion: Ag@; < 30° (upper)
< 45° (lower) for each of the 11 @-angles

26 visits on average
SD simulation at 600 K

1000 7 - . . ———r

8 £ 8

simuladion Tma [pa]

¢
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Local-elevation search

Cyclosporin A: similarity of conformations

Criterion: A, < 45° (upper)
< 60° (lower)

for each of the 11 @-angles

1.6 visit on average

Local elevation simulation at 300 K

1000 (.
e
800 ) ,:‘/". ! |
_ A
; | A, .
s %
2 | P T N -
d"- - s s '. - -
zm-. /{
e T , .
0 200 400 600 800
smulasicn time fos]

Local-elevation search

1000

Ribonuclease A: RMS fluctuations in the loop region

= e e e v s
i ™
va |
LR

b2 |

i
E
£
2:\.13

L ME m e e et |-

6 IF 3} M e e & %W w W 1m0 ia

1 sepeemiv wnraber
Figure 2. Foot msan sguare fluctuasioms of atomic pesitioms m
mnbonuclsase A. Upper graph: simulations = vacuo with and withows
local slevation searck Ths simmlasion usizg lecal elevason search
produces larger positonal flucezaticns than withous, whichk 15 imdicative
of the lazrger conformational space seasched Lower graph: szmulation
in solvent with Jocal slevation seasch. Tke finctuations ars smaller than
those encousmtersd mn the vacuum simmlations.

Loop search

in vacuo
dashed: MD
solid: LE-MD
in solution

solid: LE-MD

Local-elevation MD searches a much larger conformational space
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Local-elevation search

Ribonuclease A: loop conformations
Standard MD

Local-elevation MD

Figure 3. Euparposiion of 200 conformations of riboruclozse A zken 2t J ps mtarvals tofal of 1 u5 simulation time) in vacue: {z) smulztion
withot Local alevation; () weth local alevation search in the loop consisiing of residess 33-43. Ths larger conformetiozal spaca sarched 1

pparsmt

Local-elevation MD searches a much larger conformational space

Scott et al., J. Phys. Chem. A103 (1999) 3596-3607

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

MD-based schemes
for enhanced searching

Systematic and heuristic
search methods

Systematic search

Random search

Stepwise build-up

Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

» Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
)  Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD



Umbrella sampling (US)

e The idea of umbrella sampling (US) is to perform the MD simulation with a biased
Hamiltonian
Ho(r, p)=H(r, p)+T,(r) U, (r) biasing potential

— The biasing potential should be designed in such a way that the biased trajectories
sample all the relevant states with a sufficient number of interconversion transitions

Umbrella sampling (US)

e Interpretation of the reweighting

Boltzmann sampling:
e.g. MD+thermostat

....................... in the ensemble average

1 n N,

— Trajectory in the original ensemble (physical, unbiased)

w, =N

_ - Sampling has been biased,
----------------------- ensemble averages are incorrect

1 I 1 1 | R for the physical ensemble
Up(1) L T >
+AU (1)
Uy (1) <0 Uy (1) >0 W=

n Nf

this configuration this configuration +BUy (1) I
has been oversampled has been undersampled Z:le Reweighting
m=
=w, < N =w, > N Ny

| | ="



Umbrella sampling (US)

¢ \ith reaction coordinate

Unbiased ensemble Biasing (umbrella) potential Biased ensemble
F(s)4 Uy (8) 4 F(s)+U,(s) 4
biased PMF
> S >'S >'S
difference or/and barrier too high difference and barrier reduced
— not amenable to DC method — amenable to DC method
e Sampling and unbiasing sampling
R (MC or MD)
P(S) Il unbiased distribution Pb(s) biased distribution

just reweight all configurations of
the biased ensemble by

e+/f’UB (r)

before calculating ensemble averages...

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic MD-based schemes
search methods for enhanced searching
T 4 1
Systematic search Altered parameters » Altered potential energy
Random search Altered masses Use of soft-core atoms
Adiabatic decoupling Diffusion-equation search
Stepwise build-up Temperature annealing Local-elevation search
Biasing (US)

Genetic algorithm High-temperature sampling

:> incl. LEUS (+A,FB,B&S),

Parallel tempering metadyn or EDS

Multicopy “sampling” Hamiltonian replica exchange
Distance geometry Altered dimensionality Altered prescription of motion
(and potential energy)
Homology modelling Four-dimensional MD PEACS
SPEED

Coarse-grained MD ]
. Monte Carlo sampling
Multigraining .
Markov-state modeling

SWARM MD

Essential dynamics
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Local elevation umbrella sampling (LEUS)

e The basic idea underlying memory-based US is known under many names

deflation (1969) conformational flooding (1995) metadynamics (2002) gaussian-mixture Us (2009)
tunneling (1985) Engkvist-Karlstrém (1996) filling potential (2003) basin paving (2010)
tabu search (1989) Wang-Landau (2001) adaptive reaction LEUS (2010)

local elevation (1994) adaptive biasing force (2001) coordinate force (2009)

— but: implementation choices may affect a lot the applicability and accuracy in practice !

(our favorite flavor of this principle)

e Local elevation umbrella sampling (LEUS) Hansen & Hiinenberger
J. Comput. Chem., 31, 1 (2010).
Two-steps implementation Truncated polynomial

basis functions

then
—_—
duration f ¢ duration g TRUNCATED A COMPARABLE
POLYNOMIAL GAUSSIAN
LE BUILD-UP PHASE US SAMPLING PHASE
non-equilibrium frozen biasing potential f xX)=01- 3x% + 2|x3|)h(|x| -1 f(x)= exp(—3X2)
—rough biasing potential
N computation cheap expensive
G(Q) ~—U (Q) i reweighting
bias —"irons out” the roughness range finite (next grid point) formally infinite
—snot very accurate or of the biasing potential
requires slow build-up continuity yes (+derivative) formally no (if cutoff)
"ringing" no yes
— results less sensitive to build-up protocol il }
t ti ducti . . t _— AN increases
— systematic error redauction upon increasing (g with build-up
even better: . magnitude !
spline of order 2
LEUS: Glucose-based disaccharides in water
50 ns Plain MD
(initiated from X-ray structure) :
.05

o \ / \\g' '—‘C' h. ’

2D Subspace (rotation timescales i

~10ns —1 us)
Isotrehaloss Ty
Gleaf1-1)pGk
Trahalose Tou 4O Neatrehalose Toe

crati-siiatle

Mo (.IN‘—‘HGI:

u(uil Zlﬂlell
1P HrOHl F; $
lv2

u(p-l! :ua:u

wideg]

CEEsHUNNASRER

Mo Gloa{1-+3)Glef
o
Ha oM o
h
o Mo Laminarabiose L
ey Yo on Gac{1--34Blcn
Glea{1 -8Bl 1 1
Maltose M
. Glra{1—4)Gie)
Gl ) Gic]
Perié-Hassler, Hansen, Baron 50+50 ns LEUS

& Hunenberger
Carbohydr. Res. 345, 1781 (2010)
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LEUS calculations in multi-dimensional spaces

e LEUS (and analogous methods) can also be applied for calculations involving
multi-dimensional relevant conformational or alchemical subspaces

Conformational Alchemical
coupling
Q3 - 23 scheme
O/ » }[cp|(x;/113/129/’i3)
( in-between:

(space in-between: Spicneplr?ys?cg;een Cp'(x 1,0,0) =7, (x)
possibly relevant) i H o (%;0,1,0) = H 5 (X)
cpI(X;O’Oal)zﬂc(X)

A

A Holy Graal of drug design !!!

Q

— but: the memory costs only allows for a limited number of dimensions

M number of grid points per dimension

number of local N
N functions (griddpointS) - N,=fxM N dimensionality of the subspace
require
f fraction of subspace to be mapped out

— and: the build-up time represents a further limitation on the number of dimensions dQ

generally maps

t required required (average) many orthogonal
LE Lo - t_=N,_xt t visiting time per dimensions, with
build-up time LE LF LF ¥ Jocal function (grid point) barriers and
local minima
— possible up to N=3 or so (if only solvent and "fast" dof are averaged out)
eg. M=30 N=3 f=05 t.=5ps HE N, =13500 t,=67.5ns
Fragment-based LEUS (FB-LEUS)
e LEUS (and analogous methods) can also be applied for calculations involving
multi-dimensional relevant conformational or alchemical subspaces
— but what to do above N=3 or so ???
eg. 26
decapeptide M =30 N =20 f=05 t,=5ps N N, =17-10" te=87-10"ns
gand y (27 billion years 1)
. Hansen, Daura, & Hiinenberger
¢ A possible approach: fragment-based LEUS (FB-LEUS) J. Chem. Theory Comput. 6, 25%9(2010)_
eg.
Ala tetrapeptide
in water
LEUS free-energy maps,
blocked "monopeptide"
fragments (LEUS 15+50 ns)
Assume:
GQ")~>.G,@Q%)
Use: l F30
. 45
U DI P 2) biased free-energy ’ R
bias (Q )_ z bias,n (Q ) maps for various 240 # 30 E
fragment-based %3 i
biasing potentials o=
(2D — acceptable N & t,¢) P} & 5 O
O 120 240 360 0 120 210 360 0 120 240 360 0 120 240 360
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FB-LEUS: Ala oligopeptides in water

e Results F,=U Fo Fy Fy
360 - - — — 45
an =
240 " j %S 2
# € # * 30 §
120 i =,
10
o % & s A5 i ;@
0 120 240 3600 120 240 360 0 120 240 860 0 120 240 360
— Searching efficiency (WOUAOUW !!I)
Ala, Alag Alag
KU1 A5l NN
) - 4000 — R
sampling phase b r 250 10000 — Fig
unique conformations 2 ET N R 0
visited (four % o0 % 2800 -_g"""' — Fx
conformations = =200 = 20000
per linkage) i 1500 max: 4096
) 1000 1000
i) b ‘-—-__’_‘_/__I_
g 3 ] [ ETRT| i 3 TR} CTRT % ™ TR i
time [ns] time [ns] time [ns]

— Statistical efficiency (HEM...)

e.g. for Fy,

the contribution of the sampled
frames to the statistics relevant

for the physical ensemble
are 0.4, 0.04 and 0.002 %
for Ala,, Aalg and Alag

Silimen efaney

Apln

Ne
F= NEI exp[—z P In p,]
k=1

P, = {iexp[ﬂvbias,.]} XP[ AUy

F = <eXp[_ﬁUbias ]>;:1ys

exp[— <ﬁ(Ubias >

¢ A complicated way of doing "random scanning" — much (much) less efficient then plain MD !!!

Basic requirements for a "good" memory-based biasing potential

(learning from the failure)

e Low internal dimensionality

— acceptable memory and
build-up duration costs

e Minimal irrelevant volume

— acceptable sampl
high statistical

ing duration,
efficiency

o Sufficient number of transitions

between relevant regions
— accurate relative free energies

internal: referring
to the memory grid,
not to the relevant
subspace itself

irrelevant: referring
regions we are
not interested in

= The biasing potential needs to have a problem-adapted geometry —»

— decide in advance what are the relevant and irrelevant regions

(to be avoided, except narrow paths for transitions)

301
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i
neither explorative nor extrapolative

e.g. 1D bias
in high-
dimensional space

states or transition
regions of interest

—no need to sample
the rest
(except for transitions !)

we want many
transitions here

— "narrow high-flow path"

rather than "broad boulevard"
(minimal irrelevant volume!)

e. the proposed method is

purely extrapolative schemes
(single ensemble for predicting

change to any state
[not specified in advance])
are seldom reliable...

phys
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Ball-and-stick LEUS (B&S-LEUS) Hansen & Hunenberger

J. Chem. Theory Comput.
6, 2622 (2010).

A plumber's
approach...

e Our attempt to fullfil all these
requirements simultaneously

Halvor Hansen
(Now doing railway planning in Norway
—only a pseudo-1D [actually 2D]
problem... a pity !)

e Seven steps of the procedure

(A) states (B) volumes (C) paths (D)unification
1.
2
0 .
relevant Q 3
conformational
variables
(E) LE build-up (F) US sampling (G) reweighting
-
- 100
™ high
() Prias(Q) GQ)
Simple 2D test system
¢ Blocked alanine monopeptide in explicit (1300) water, GROMOS 53A6
o Conformational subspace Q=0c"'(g, ) o =1°
e Various combinations of spheres and lines peptide:
CH,;-CO-NH-CH(CH;)-CO-NH-CO-CH,
¢ 10 grid points per sphere, 20 grid points per line é |
74
e 5-20 ns LE + 1-5 ns US (plain LEUS: 15+50)
i one sphere . one line
pIa(lfr:)Ir_rEel#Z;L:lltl:g;ap one sphere (r-biased sampling) one line (variable linewidth)
Bl o Ay As E) As 60 Ay 360 As
il 1 30 = 1 0 o
g ® | @ y
) Imlq 1 120 1 120 ;i
grid cells =
of 5° Edgev “|-. 120 240 3 [ 120 240 Wiy Y lin '.!‘I.IJ 360 % g
maps optimally ; A, i A; o Ay s Ay e A 3
superimposed ' ' ’ '~ @
240 240 240 0
E 3 w
: 120F 120 120 120
O 120 240 W0 "0 15u :‘va 0 0 ::-u :‘u‘ 0 0 |§n cTu W00 .|-,-|).. 31‘. n
3 & [deg| «degl  [deal + [deal
oneline two lines eight lines eight lines also four spheres and
(offset displacements) (..)) two lines

— Highly versatile in terms of active subspace (here surface) definition

— Maps are identical within the sampled region
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The "mother"” of all hexopyranoses

(7D)

o Artificial hexopyranose in explicit (1200) water, GROMOS 56Acprg0

(we called it the "mother" of all hexopyranoses)

o=1°

e Conformational subspace Q=o' (&.4,.¢6.8,,a,,a,,a5)

fixed
(D-series)

Epimery/anomery
at ring carbons
(improper dihedral)

e Double-well improper-
dihedral potential (EDS)

Barrier of about
50 kJ mol*

e 32 spheres and 80 lines

™~

mixed conformational
and alchemical

Pickett & Strauss
ring puckering coordinates

‘C, — -35°(1,1,1)
'C, »35°(LL,1)

— the effect of this additional bias is
also removed at the reweighting stage

spheres:  Q =35[2(,,.b,,.b5.b bbb )-1] win B =BIN(G) i=1.32
. . + Manhattan (Taxicab) tree of 80 lines We also tried a minimal-spanning tree \
Lines: [5 neighbors differing in 1 bit] of 31 lines (poorer convergence)
i by isomer i by
0 D000 *Cp-a-idose 16 10000
1 00001 ‘Cea-idose 17 10001
200010 Cya-alose 1810010
. . L 3 001 'Ceuealirosa 18 10011
e 15 grld points per } : ' 4 00100 “Cratsoss 20 10100
H - - e (Al ilucose (Gile annose (Man 5 00101 'Crudlal 21 10101
sphere, 21 grld Allons (AT Abeota (A} e e “ . 6 0010 ‘(;‘:-r;nor?:ueo 10110
. L 7 00111 'Cea-mannose 23 G111
po|nts per line B 01000 ‘Coaguiese 24 110600
8 01001 "Cou-gulose 25 11001
10 01010 ‘Cra-aliose 2% 11010
W ' 12 D100 “Craonmacas 35 1100
™ Gulose (Gl ™ ldose jalactose (Gal) Talose (Tal 12 0100 --galac
¢ 100 ns LE + 100 ns US ko (0 o (i) Uisssied e 13 o101 ‘c‘.l.«gut«wse 28 11101
14 010 G gisose 30 11110
4C epimers and anomers 15 01111 'Cpa-glecose 3 i
1
The "mother" of all hexopyranoses (7D)
fraction of 40ps fraction of time number of relative free
intervals spent in state  spentin state transitions to energy of
(decimal logarithmic) state state
[biased] [biased] [biased] [unbiased]
10, Ca-Al h
W O -A 1H
Yo 1 Ca-AR !
G, G [
"0y CraCls —
Gy 'CprGle [
1, \Cy-a-Man -~ US phase
1 C-3-Man 3 32 states grouped
I(II 'rl' Gul r by chair pairs
1 g0 ]
G Cofrns —
'y, W Cy-a-ldo | =
'y, 1Cy-3-Ido .
10y, Cy-a-Gal .‘-_
o\ oy-0-Gal - .‘_
'€y, Cra-Tal .
s B T ==
0 -_1;} L'u 50 80 100 |'|| 20 300 ||'n12m:{nu Iillil:’;lll 1'|| -_';r 30 40
t [ns] P [%] N G [kJ mol 1]

—_—
-2 -1 0

— all states are visited with almost equal probabilities

— only 30% of the configurations are unassigned (small irrelevant volume, mainly the lines)

— as many as 200-300 transitions to each state

303



The "mother" of all hexopyranoses (7D)

AGIC -3 C [kJ ITIOI_I ]

16 independent LEUS » actually: 31independent LEUS 1B&S-LEUS
simulations (16x{3+40] = 688 ns) simulations (31x{3+40] = 1333 ns) simulation (100+100 = 200 ns)
80|@ LEUS B B&S-LEUS
60} 1
q40- .
Orl AT LI T T
L L L d i 1 L L L L I.I L L L i d
2 & ﬁ ﬁ 2 82 5 8 33 8§88 & d d d
P Lk 1322999543 R
= S R & & L & g @ d Q g o g X

— agreement (rmsd 0.7 kJ mol-') is within statistical error

— for comparable statistical errors, and for the 31 calculated free-energy changes
(chair-chair, but also epimerization and anomerization), there is a reduction of a
factor 31 in the number of simulations and of a factor 6.7 in CPU time

— with window-based US (rather than LEUS or B&S-LEUS), this calculation would
represent a tremendous amount of human effort and CPU time !!!

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters » Altered potential energy
Altered masses Use of soft-core atoms
Adiabatic decoupling Diffusion-equation search
Temperature annealing Local-elevation search
High-temperature sampling Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS
:> Hamiltonian replica exchange

Parallel tempering

Altered dimensionality Altered prescription of motion
(and potential energy)
PEACS

SPEED

Monte Carlo sampling

Four-dimensional MD
Coarse-grained MD

Multigrainin
g g Markov-state modeling

Essential dynamics
SWARM MD
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Hamiltonian replica exchange

e Simulate N independent replicas of the system in parallel, each at a different Hamiltonian
¢ At regular intervals z,,., we attempt to swap configurations (coordinates and velocities)
between two adjacent systems

Probability of the initial Probability of the swapped

two-system state » two-system state X = (r’ p)
P, ~ exp(=B(H (X)+ 7' (X)) pr ~exp(=AH (X))~ H'(X)))

e To ensure that the system pair remains Boltzmann-distributed, we accept or reject
the swap according to a Monte Carlo criterion

if P, >p, _{ 1 if A<0
P,/ p; otherwise exp(—A) otherwise

P.(— f):{

with Py /Py =exp(=B(H(X) = H(X)+H'(X)=H'(X)))  with A= B(H(X') = H (X) + 3'(X) =3 (X"))

e It is easily seen that this procedure results in a set of N canonical ensembles, each

at one of the selected Hamiltonians This means in particular
that the dynamics is nonsense...
— if you look at one Hamiltonian, the trajectory is discontinuous (systems come and go)

— if you look at one system, the trajectory hops across Hamiltonians (enabling enhanced
sampling when there are orthogonal barriers!)

— this is analogous to parallel tempering

Hamiltonian replica exchange

e Two common applications
— Replica exchange in the coupling parameter A in an alchemical perturbation
— Replica exchange in the biasing strength in an US calculation (ground system = no bias)

e.g. FB-LEUS + H-REX is a powerful combo !
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Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

I:> Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics

Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD

Molecular dynamics in four dimensions

Four- & mensioral inked El.t."'ri'b n

Extend e Corlesian dirnq.ne..‘mnak‘-\-b fremn B W -
— here ore ?m':?wamds in LNy ok circumvent

2 borriers
&b - 3 avalegy -
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Y‘W;Lr
C5§> Y
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Molecular dynamics in four dimensions

Techniques to pass over barriers

MD in more than 3 dimensions
van Schaik et al., J. Mol. Biol. 234 (1993) 751

The 4D-space:

= 4 linearly independent basis vectors: e, e, e, e
orthonormal } 1st 2nd 3rd 4th

= arbitrary vector: r = xe, +ye, +ze, + oe,

e scalar or dot product of r and r': r - r'=xx'+yy'+zz'+ow’

= length or distance r; = X +y; + 7] + o]

e vector or cross product cannot be defined

Hamilton in 4D:

N N N
1 2 2 2 1 2 | v v 1 2
Hyp = > m [in + Vit Vzi:| + > myv,; + Vpsrfssar ({r.}) + V;;/r?;;m ({r.}) + ngw@i
i=1 i=1 i=1
V5e®" = bonds, angles, torsional angles, non-bonded interactions, NOE restraints
Vg’,fyi"r = improper torsions (chirality), X-ray restraints

Equations of motion in 4D:

< Newton for x, y, z and w

e start from {(Di} 0

= couple to separate temperature baths

Molecular dynamics in four dimensions

Backprojection from 4D to 3D:
1. - use penalty function k, — o

- reduce T, to zero

- perform rotation in 4D to minimize 3D projection
2. - decouple w; coordinates from x; y; z;

Extension of dimensionality:
1

Interaction function: V(F) == rP=x?+y?+2% +...
r
: : 1
One dimension: V(x) ==
X
T

pole at x=0 = V(0)=w
cannot pass x=0
—

line |

0]

1
X2 +y?
T

for y # 0 no pole at x=0

can pass x=0

line {
0

Two dimensions: V(x,y) =
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Molecular dynamics in four dimensions

Cyclosporin A

11 residues
49 torsional angles
57 NOE distance restraints

1. distance geometry
27 structures

|

9 classes
very difficult structures
high energy barriers between them

2. structure refinement
standard 3D-MD
1-2 correct

Challenge: how to get all 9 different starting structures
converged to the lowest-energy one

Molecular dynamics in four dimensions

Cyclosporin A

seven 4D-MD refined structures

are well converged
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Molecular dynamics in four dimensions

Results of the refinement of Cyclosporin A

using DG, 3D-MD, PEACS and 4D-MD

Distance geometry

3D-MD annealed

PEACS annealed

4D-MD annealed

(DG) from 1200 K from 1200 K from 1200 K
Struc- Epot Zviol | Arypst Epot 2ol Arypsy Epot Zviol Aryps: Epot 2ol Aryps:
ture kJ/ A kJ/ A A kd/ A A kJ/ A A
mol mol mol mol

xclass11l 195 3.1 2.3 57 3.2 3.1 0 1.4 2.0 _j3_9__ 0.5 0.4
xclass21 77 3.0 1.7 51 4.0 1.7 -65 0.9 0.3 -70 0.2 0.3
xclass31 | 214 2.9 3.0 35 3.9 2.9 -66 1.1 0.4 17 1.5 1.6
xclass41l 133 4.0 1.6 1 -—-1-1- 0.9 1.8 -26 1.2 1.9 -52 0.5 0.4
xclass51 235 5.7 1.3 --7?3- 3.6 2.8 -65 1.0 0.6 -25 1.8 0.4
xclass61 318 3.2 3.4 73 4.5 3.5 -8 2.0 1.9 -62 0.5 0.6
xclass71 142 3.9 1.4 -1 3.2 1.9 27 1.1 1.3 134 4.5 2.3
xclass81 160 2.7 2.0 31 25 2.5 150 1.2 2.1 _?4_7__ 0.8 0.4
xclass91 144 3.0 1.2 -82 -]-..:1- 1 0.3 -50 -Z.T;')- 1 0.5 -75 0.8 0.2
correct: (0] -1-—-2- -?:—-4- 6

e Possibly the reason | decided to do my Ph.D. with Wilfred (1992) !

T

T

deviation from correct structure

4D-MD ?

rl)?yD(r3D) - U4D(r4D)

e The three most scary scenes of nature...

The fight of the snake and the mongoose

The Australian "choking" tree

A Phe trying to behead a Met
(projected from 4D space)




Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

MD-based schemes
for enhanced searching

Systematic search

Random search

Stepwise build-up

Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing
High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD

I:> Coarse-grained MD
Multigraining

Essential dynamics

Multigraining

Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD

Coarse-grained versus fine-grained models

AL (A=0)
All-atom model
(non-hydrogen)

16 (CH, or CH;) atoms

Aq

Az

liquid alkanes: hexadecane

MAP
“mapped”
all-atom
configurations

Centre of mass
Al - A4

Centre of mass
B, — B,

Centre of mass
Cl - C4

Centre of mass
Dl - D4

Compare: - structural characteristics
- energetic / entropic characteristics
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CG (A=1)
Coarse-grained model
4 atoms
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Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up

Genetic algorithm

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

Multicopy “sampling”

Distance geometry

Homology modelling

Algorithm

incl. LEUS (+A,FB,B&S),
metadyn or EDS
Hamiltonian replica exchange

Parallel tempering

Altered dimensionality

Altered prescription of motion
(and potential energy)

PEACS
SPEED

Monte Carlo sampling

Four-dimensional MD
Coarse-grained MD

I:> Multigraining

Markov-state modeling
Essential dynamics

SWARM MD

Multigraining
for mixed FG/CG simulation

Multigraining MD

topology,
configuration:

fine-grained

coarse-grained
topology,

rfo configuration: re9

energies and forces
(according to coupling
parameter 1)

2a. calculate A-dependent

1. update coarse-grained
configuration (using virtual-
grain definition)

2b. calculate A\ -dependent
energies and forces
(according to coupling
parameter 1)

leap-frog scheme

4a. propagate velocities
and positions using the

3. distribute forces from coarse-
grained on fine-grained particles
using virtual-grain definition g(rf)
and add potential energy terms

4b. propagate velocities
and positions of non-
mapped solvent particles
using the leap-frog
scheme
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Replica exchange

Multi-grained simulation of liquid octane

grain level of the 24 replicas during 300 replica exchange steps

T T T T T T T T T T

0.8 U [

=
=

=
s

grain level (1)

I 17

) T |

I
1 il
| | 1
0 50 100 130 200 50 300
replica exchange trials
FG/CG replica-exchange simulation enhances sampling

FG o

I

Multigraining

Multi-grained simulation of 25 hexadecanes in water

M. Christen & W.F. van Gunsteren, J. Chem. Phys, 124 (2006) DOI1:10.1063/1.2187488

CG+FG CG CG CG+FG

Time: Ops 8ps 25ps 100ps

FG FG
8.5ps 25.5ps

CG level simulation with occasional switching to FG level
enhances exploration of FG conformational space
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Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining
I:> Essential dynamics

Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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.Altered prescription of motion
) PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
SWARM MD




PEACS

Modified molecular dynamics (PEACS):

Potential Energy Annealing Conformational Search

MD plus

v

dVoee ()~ 1 [
s

reference

Voot D]

slowly lowered

Enhances barrier crossing

R.C. van Schaik et al., J. Comp.-Aided Mol. Des. 6 (1992) 97-112

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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.Altered prescription of motion
PEACS

) SPEED

Monte Carlo sampling
Markov-state modeling
SWARM MD




Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics

.Altered prescription of motion
PEACS
SPEED
I:> Monte Carlo sampling
Markov-state modeling
SWARM MD

Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics
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.Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
I:> Markov-state modeling
SWARM MD




Overview of conformational search methods

¢ The (rough) categories of method to search conformational space, along with illustrative
examples (out of many more!) are

Systematic and heuristic
search methods

Systematic search

Random search
Stepwise build-up
Genetic algorithm

Multicopy “sampling”

Distance geometry

Homology modelling

MD-based schemes
for enhanced searching

Altered parameters
Altered masses
Adiabatic decoupling

Temperature annealing

High-temperature sampling

Parallel tempering

Altered potential energy

Use of soft-core atoms
Diffusion-equation search
Local-elevation search
Biasing (US)

incl. LEUS (+A,FB,B&S),
metadyn or EDS

Hamiltonian replica exchange

Altered dimensionality
(and potential energy)

Four-dimensional MD
Coarse-grained MD
Multigraining

Essential dynamics

SWARM MD

.Altered prescription of motion
PEACS
SPEED
Monte Carlo sampling
Markov-state modeling
> SWARM MD

Multi-copy search techniques: the SWARM method

ldea:

combine a swarm of molecules with molecular trajectories

into a cooperative system that searches conformational space

(like a swarm of insects)

Implementation:

each molecule is, in addition to the physical forces,

subject to (artificial) forces that drive the trajectory of each

molecule toward an average of the trajectories of the swarm

of molecules

Huber and van Gunsteren: J.Phys.Chem. A102 (1998) 5937-5943

SWARM-MD: Searching configurational space by cooperative molecular dynamics
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

Herbstsemester 2019
www.csms.ethz.ch/education/CSCBP HCI D2 Structure refinement

Four basic choices defining a molecular model

degrees of freedom

@ % =ATOMS
@
2SHEEA v e
vy

, l boundary conditions
A MOLECULAR fﬁ'

o~ =) yopp. |G
. x "

'sy’stem size and shape,
{7 ~_____ ‘temperature dHUpIUbbJr
5 v T & erimentally-derived
® B | @cﬁ GI, o . information
f number ofconﬁguratlons e o Re® ] = STRUCTURE
~___ properties of the configuration i {/ ~_| REFINEMENT
’ 'sequence (searching, sampling, | (B % 7 |® €& | (extension)
0 s1mulatmg)
. generating configurations
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Overview of structure refinement

e The problem of structure refinement

— A set of experimental observables provides average information
(over molecules and over time) on the sample present in a test tube

<{(Qexp} quantities measured
experimentally

— The proper way to account for this information relies on statistical mechanics

the ensemble {r} so, the experimental signal
of all conformations is obtained by ensemble averaging

e s o™ P(r) ~ exp[~AU(r)] Q=[drP(NQ(N=(Q)
and each conformation Q(r) - {Qexp}

leads to a signal

o Unfortunately, this alone does not help ~ evenifweknow Q ()

— ltis easy to go in the forward direction P(r) Q(r) ‘ {Q™"}
— But impossible to go in the backward direction P(r) - Q(r) {Q%*}

e The reason is that

A continuous function cannot
be obtained from discrete data

— Even if we postulate a single populated configuration I N third ssue s that Q(I‘)
. . Ira issue iIs thal
(i.e. P(r)~o(r)) there is also seldom enough data may be a non-invertible function
to specify it completely (e.g. 3N-3 atomic coordinates) (and may also be only approximate)

— There is never enough data to fully determine a P(T)

Overview of structure refinement

o It follows that structure refinement always involves a modeling component

— In practice, it is done according to the scheme bias the model to
enforce agreement

or

v refine the model until

parameters agreement is met
included the definition {C¢ }
of a
model for P(r) Q - .[dr P(r)Q’(r) :<Q‘>

. {Qsim} {Qexp}
and each conformation Q(r) ‘ “ -

] compare
leads to a signal p

e The function P(r) may be of varying complexity

— Single structure {a}—r e.9. alternative — Full conformational
— Single structure with alternative fragments sidechain positions ensemble
e.9. NMR in X-ray structures P(I’) e.g. from

— Bundle of structures {a} —{r} 3"\ MD trajectory

e In conventional structure refinement often: single
. . ) . . sim exp structure or bundle
— One will rather refine a model iteratively until we have {Q>"'} = {Q"™"} normally in a
“least-squares” sense

¢ In simulation-based structure refinement — minimize a residual

—. One will rather bias a simulation using the values {Q“"}
so that the generated trajectory directly satisfies {Q™" } = {Q™"}
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fewer model parameters

Conventional structure refinement

¢ In conventional structure refinement one typically
— Refines one model structure (or a small number)
— Does not care too much about probability distributions
— Commonly uses simple approximations to eliminate degrees of freedom
— Usually refines the structure(s) iteratively (minimization of a residual)
e Example: conventional X-ray or NMR structure refinement  e.g. DG/XxPLOR
e Typically

“conventional” single

— Single structure (Dirac delta function for the probability) ;. ciure refinement

- Entlrely free atom coordinates — Problem 1: observable to parameter
ratio is often << 1

2| - Standard covalent geometries — Problem 2: observable information is not
© + closest packing (excluded volume) 5 homoggneously distributed over the structure
) (regions over- versus underdetermined)

- Potential energy minimum of a — Prpblem 3: c_)bse_rvat?les may be mutually

. L. . incompatible in single structures
simplistic force field J (because needs an ensemble)

“conventional” multiple

— Bundle of structures structure refinement

— Problem: is this really a proper
. . Boltzmann-weighted ensemble? (i.e. what is the
- Set of alternative structures obtained as above weight of each structure in the bundle?
is the bundle “complete” or just a “sampler”?)

— Gaussian distribution around reference structure — Not much better (biomolecules
e.g. use of isotropic or anisotropic B-factors are not harmonic oscillators !)

Simulation-based structure refinement

¢ In simulation-based structure refinement one typically
— Refines an ensemble of structure in the form of an MD (+thermostat) trajectory
— Tries to enforce a (nearly) Boltzmann distribution of the structures ”ue;ft'oy:tﬁeogi;’;i”g”
— Commonly uses a physics-based force field / restraints!

— Usually refines the ensemble by biasing (inclusion of restraints in the dynamics)

e Example: MD-based X-ray or NMR ensemble refinement e.g. GROMOS
e Typically

P(r) ~ exp[-4U(r)]

. not exactly because of the restraint
force field U(r) term, but “almost” (at least in the

‘ {r} unrestrained degrees of freedom)

restraining sim ~ exp
potential energy Ures (r) {Q } {Q }
Choice of: . qlso | afllmost” (Fiehpgndingdon the .
- functional form unctiona orr?,r\:velg ting and averaging
- weighting time of the restraint term)

- instantaneous vs
{QEXp} time-averaged form

— The force field complements the missing information from the experiment
in a (hopefully) physically meaningful way
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Key issues in structure refinement

INSTANTANEOUS
OBSERVABLE

Q(r)

FORCE-FIELD
REPRESENTATION

u(r)

Common observables Single structure vs ensemble Accuracy

Approximations
Invertibility
Calculation cost

NOE intensities

EXPERIMENTAL
DATA

Q exp

Primary vs secondary
Quality and accuracy
Redundancy vs completeness

llustrative
example

BIASING FUNCTION
REPRESENTATION

l’l)I'(i‘S (r)

Weighting
Instantaneous vs time-averaged

Common errors, inefficiencies
and misinterpretations

Observables that can be used in refinement

e Example of instantaneous observables Q(I)

J-coupling constants

Residual dipolar couplings

Chemical shifts

Structure factors (ampl.)

electron density E‘D

Interpretation:
phase

CD spectra

Interpretation:
so-called model-free

distances BB approach
dihedral angles B‘D equation

Interpretation:
Karplus

(pixxj>
MOST COMMON

Du_> — DISCUSSED IN MORE

DETAILS IN THE NEXT
s > SLIDES
) -
p(r))
(L))

+ NMR relaxation times, NMR order parameters, SAXS/WAXS structure factors,
IR/Raman intensities, FRET efficiencies ...



NOE intensities

e The Nuclear Overhauser Enhancement (NOE) effect

— Transfer of nuclear spin polarization from one spin to another in space
represents a cross-relaxation mechanism via dipole-dipole interactions

— The effect can be measured, e.g. as cross-peak intensities in a NOESY spectrum

— The NOE intensities are directly related to time-correlation functions

‘ \ 2 The cross-relaxation efficiency depends
B LP r'J Q ~C 3cos e(t) -1 on how the connecting vector (length and
\ ‘ t 3 orientation relative to magnetic field)
e (1) tive to |
L_?) j varies in time

o If one assumes that the molecules in the sample are randomly oriented, the intensities
map to (inverse-nt"-powed) average distances, depending on the tumbling regime

[ @ -
Slow tumbling limit

F “\ Fast tumbling limit
(e.g. big protein) (e.g. small peptlde)
ﬂ =
:-1 _ﬂ_\l “ (@ 6>
) ’

()

— Going from intensities to average distances requires this silly name is commonly
a tumbling model, the so-called “model-free” approach twisted into «model-free model»

. . . . you can also calculate intensities
— Intermediate situations may be complicated! directly from MD via the time-correlation

functions (complicated but has been done)

NOE intensities

¢ In general, the experimental data is formulated in terms of distances between protons

_ experimentally inferred
ast tiyr?{blin | ~ <|’.. 6> » P < 176 - {r_.exp} inter-proton distances
9 1 1 I (sometimes: just distance

. . . classes like short/medium/long)
e Things to keep in mind

— There is already a tumbling model involved in this “experimental” data

— These values are truly averages, i.e. they may not be fulfilled simultaneously
in a single structure

— The averaging overweighs short distances (because negative exponent), i.e. intermittent
contacts between otherwise remote pairs give a shorter distance than the plain average

— The absence of a cross-peak does not automatically imply a large distance

— The distances may also sometimes be slightly underestimated  other cross-relaxation
mechanisms, e.g. via

. . an intermediate nucleus
¢ In conventional refinement

— Use the distance information along with a primitive force-field to
refine a single structure (or a bundle thereof) via distance geometry

¢ In simulation-based refinement
— Pseudo-atom sites / corrections — when equivalent or stereospecific protons not resolved
— Virtual-atom sites / corrections — when using united atoms

. . - - A I iti | I
— Monitor disagreement by violations < sim > _exp doef:/ é Egilst';ree deviatiggsy( fc;gli m are
ij ij considered a violation considered important
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Virtual and pseudo atoms

sttt i
code ICDH1
 ICDR2 *

CH1 (nliphatic) 1 virtual| 00 1

e Virtual atoms correspond to H atoms

that are not in the force-field united-atom 7 f&)
. H1 {aromntic) | k wirtnal] 10
representation = =
— distance is calculated based on L | 2 storvompeeti) R e ;
virtual atom !
. . CH 1 pevifie: lm" I of 15 '
— no distance correction C
e Pseudo atoms correspond to multiple H o = peoudo 10
atoms which could not be distinguishedin | | |~ . Lv
the experiment (common signal) CH3. (notstercaspecific pasuda| 22 s
— distance is calculated on %%5‘
pseudo site _ _
CH3  (non-stereospecific, i peonde (23
= -} 1)
— distance bound must be increased L
appropriately (pseudo atom correction) COG (center of geome- | IC o] 00 |
I’ Tk
n
COM (center of mass) 10 prendad 00

Tapie 8.1, Virtual and psendo hvdrogen atoms and distance restraint correction terms.

J-coupling constants

e The spin-spin scalar coupling constants (J-value)
— Coupling between two nuclear spins via the electrons in the bonds
— Most relevant are vicinal proton-proton coupling constants (3J7H)

1% I
- v PR Hy Ha S

.1 1

- s Cl—C—g—H, "

Cl ¢l
o ‘. Jap=6.1 11z
|

£.76 ppm 1.96 ppem

e The vicinal J-values strongly depend on the dihedral angle between the coupled protons
— Connecting equations are called a Karplus equations, and often take the form

3 - 2
J; ¥acos"p+bcosg+c

— The parametrization is empirical (compare X-ray structures to J-values for many
compounds, possibly complement with QM)

— As a result, there are many Karplus equations around, usually designed
for specific classes of dihedral angles in specific compounds based on a
specific training set of molecules
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J-coupling constants

Karplus curve for

peptide ¢ angle Karplus relation for 3J(H\-H, )
(three parametrizations; N — =
based on fit of as function of the backbone ¢ torsional angle

NMR J-value vs X-ray

truct land QM 3 — 2 - = - o
s 'U‘é;;isla‘;{oi”s) J (¢) = a cos? (¢+0d) + b cos (¢+3) + c; 6= -60

IZ T T T T T T T T T T T T T T T T T

11

M — Bystrov, 1976 7]
10— — Pardi, 1984 =

L — Wang, 1996 A

g =

8 — —

'?' — —
- 4
z 6 -
5 —

-180 -120 120 180
No clue what is O/degree _ _
the 4t curve... . And it sometimes occurs that
(two blue curves?) Accuracy of 3J (@) is about 1 Hz ameasured J is up to 1 Hz
below the min or above the max!
J-coupling constants
Karplus curve for
peptide sidechain ; angle Karplus relations 2J(H -H ) and 3J(N-H,)
(seven parametrizations; . ) a0 ; 2
based on fit of as function of the side-chain x,_torsional angle

NMR J-value vs X-ray 16

(rrrrrrrrr T T T T T T T T T T T T T T T
Y etatons) - 14F HoHB, Abraham, 1962
121 Deber, 1971
E 1gz DeMarco, 1978
: 6l Cung, 1978
© al Fischman, 1980
9 Perez(NMR), 2001
0 L B e T e B I
6
5
N 4
=3
«? 2
1
0 | | |
& 90 180 270 360
%4 [deg]

3J(X) = a cos?(x, +0) + b cos(x; + 0) + c;
5 = -120° (HgHg,) or & = +120° (NH,,)

Accuracy of 3J(x,) is definitely not better than 1 Hz
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J-coupling constants

Accuracy of some parametrisations of the Karplus relation
Karplus relation : 3J,, = A cos?6 + B cosb + C

Table 3. Comparison of simulated and experi 1] coupling [Hz] for the Val-Phe fdipeptides in
A: B and C from thanol. Different i (R.5) at Phe and different simulation temperatures are consdered.
3 i Simulated (29 K) (340 K) Expil (298 K)
(a) WUthrICh (1978’ 1984) Protons Isomer (a) (b) (c) (d) (a)
(b) Case ( 1994) ipves (Val) SR 54 54 5.5 49 57 6.1
5§ 6.5 69 6.7 6l 6.1 72
Yypaps (Val) SR 6.1 64 6.3 58 58 58
(C) Bax (1996) 58 54 55 55 50 537 48
. - Yy (Val) SR 82 HE 9.2
(d) RUterJanS (1999) e (8 58 1.0 9.8 9.9
Yypeye (Val) SR 45 42 45
5§ 38 43 4.2
Karplus curve for Vsere (Val) SR 72 68 8.5
Bpeptide w angle e sk | 70 7 7z e | 61 | as
(seven parametrizations; 58 71 75 23 a7 62 8.4
based on fit of "fowa (Phe) SR 40 4.1 58
NMR J-value vs X-ray 55 35 4.2 5.3
structures or/and QM i (Phe) SR 108 106 8.2
) 58 13 103 83
calculations) Uygurs (Phe) s§ 39 32 50
Yy (Phe) 58 1.0 106 92
- /)
?Hs g
H\N,‘“‘;c\ o Variation 0.5 — 0.8 Hz
241
il & ! Chem. Eur. J., 9 (2003), 5838-5849
L-c-alanine g-alanine

Simulations predict which of the isomers has the largest 3J,,,, value
Differences between SR and SS are small

W.F.van Gunsteren/Zuerich Dec 08/36

H Lonardi, Oborsky & Hiinenberger
J-coupling constants Helv. Chim. Acta 100 (2017) 1600158

¢ In conventional refinement — . : ——

hmls1

— Pick a Karplus equation

— Postulate a (simplistic!) ¢-population model -

plladb e d il

— Fit the populations to the J-values 2 |

T a9 gt tg
OH HO T
Ho o Ho f&k—/ 40%& E
HO o HO~ = S HO qH
OoH OH OH

s

=
=

L1

B-D-Glucopyranose (Glc)

OH
QH I
o 99 o gt I tg o E 120 180 240 00
OH HO o [deg]
o a‘“ %A,m 2 J-values (R and S), 3 populations,
e or o “oH o ~ one constraint (sum of populations)

i) [deg”' |

Fobbbibll bl

alalalalald o 1A L8,
=hat

Population estimates now depend on the

B-D-Galactopyranose (Gal) choice of a Karplus equation AND of a simple
population model!

o In simulation-based refinement

C . The peak widths and locations also play arole,
— Lompare dlreCtly to J-values mixed with the integrated populations

Gial

J

—H=7] = ' I W = no How

= 3 g — Dso H oo
= .J‘ -i' cH oM H am
43 3 ¥ 3

o [deg ']




Structure factors

e In X-ray crystallography * " b » 3 %
= . 1: o
Electron density in %,“55?!&;} - Reflection
unit cell é;,"?i‘?b.i.% intensities
~p(n) ¥ 3o ‘ I(h)
» Alatdne formu\uﬁon ok eudre glthi‘s .
CIPROCAL
3 e \ Zﬂq-g SPACE ¢
FRY = [ &2 pd e Sracrore faciv
e aE L elecon dv.ns‘\\'a
o) hoickes
. Vour‘\c,r Sefes phase “::": ‘.aﬁf:;f'?’ﬂ"“ h'?\M"m‘M. REAL SPACE :
-. d:dsi -
PR = X FM) & FEE D eledwon dentity
“' i
* Qbservalble : m\ene_;\\b P\».o,se. infocmalnon

T = \F@F ™ & nor ovollade !
"\ pracies, correchons "equirecl Aty
( Lorentz, polaritanon,Qlesorbion corredhons)

e |ssues in conventional refinement
— Reflection intensities to structure factors (phase?)

— Electron density map to atomic coordinates (density of data [resolution]?
static and dynamic averaging? site occupancies?)

Key issues in structure refinement

INSTANTANEOUS ENSEMBLE FORCE-FIELD
OBSERVABLE AVERAGING REPRESENTATION
Q(r) Q) U(r)
Common observables Single structure vs ensemble Accuracy
Approximations Convergence
Invertibility
Calculation cost

EXPERIMENTAL BIASING FUNCTION
DATA REPRESENTATION
Q™ Utes (1)

res
Primary vs secondary Weighting
Quality and accuracy Instantaneous vs time-averaged

Redundancy vs completeness

llustrative Common errors, inefficiencies
example and misinterpretations
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Effects of ensemble (motional) averaging

¢ Effect of averaging

VS (Fy kT g o
(), = Jamposi = 130T

_\/ Phys -
J‘e VP () kT dr

— — — in general, the ensemble cannot
Q r R = Q(I’) be summarized by a single structure
r
averaged Q single structure Q
— the signal of the average structure
-+ Q |7-' is not the average signal over all
F structures (average structure:

essentially meaningless!)
mean structure Q
e Consequences

— If a single structure reproduces the experimental data, this does not mean
that the conformational ensemble solely consists of this structure (nearly
always, it is not the case)

— The observable/averaging may be dominated by specific structures in the
ensemble, which do not need to have the highest populations, i.e. it may be that
a small fractions of the conformations actually determines the experimental signal

— Different experimental signals may be determined by different conformations,
no single conformation being able to reproduce the entire signal

— Experimental data is never sufficient to determine an entire conformational ensemble

Effects of ensemble (motional) averaging

The average structure <r=>,is highly strained Angew. Chemie 38 (1999) 236-240
6-3-peptide in methanol: 34 NOE'’s
Classical XPLOR refinement: Assumed by

the experimentalists
to be dominant

Assumed by > 'k
the experimentalists )_ —

to be dominant in MeOH in pyridine
o
L"
1 -
-
-4 ‘ "A
r= /:f
—
average structure in MeOH :
left-handed 3,,-helix distorted right-handed helix — right-handed helix
H-bonds: NH(i) — O(i+2) only one H-bond: NH(4) — O(1) H-bonds: NH(i) — O(i+1, i-3)
1.3 % of the conformations Average structure 35 % of the conformations

MD
in MeOH 3 NOE'’s can only be fulfilled
by these types conformations

— The MD simulation in MeOH satisfies all NOE bounds in terms of <Q(|’)>
— Neither the 3,,-helix, nor the right-handed helix, nor the average structure
can satisfy all the NOE bounds simultaneously Here, the structure claimed by

Conclusion: - average structure may be meaningless _the experimentalists in MeOH was
. , incorrect or, at least, not representative
- use primary exp. data (NOE’s), not secondary / (the MD ensemble is different

experimental data (structures) to compare with and equally acceptable)
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Key issues in structure refinement

INSTANTANEOUS ENSEMBLE FORCE-FIELD
OBSERVABLE AVERAGING REPRESENTATION
Common observables Single structure vs ensemble Accuracy

Approximations
Invertibility
Calculation cost

EXPERIMENTAL
DATA

Q exp

Primary vs secondary
Quality and accuracy
Redundancy vs completeness

llustrative
example

Convergence

BIASING FUNCTION
REPRESENTATION

l’l)I'(i‘S (r)

Weighting
Instantaneous vs time-averaged

Common errors, inefficiencies
and misinterpretations

Force-field representation

e Choices in the force-field definition

electrons

— degrees of freedom atoms

(elementary particles)

united atoms
implicit-solvent
residue beads

should be sufficient to
represent/calculate appropriately

Q(r)

— chemical shifts

— virtual H's

— crude!

«common» choice:
(united-)atom, no solvent

— interaction function
(force field)

database scan (e.g. PDB)
distance geometry

+ simplified force field
explicit-solvent

— configuration generation
(search, sample, simulate)

e.g. GROMOS

quality of the functional form?
quality of the parametrization?

m  U(r)
-

ideally generate
a Boltzmann ensemble

P(r) ~ exp[-4U(r)]

MD+thermostat

«common» choices:
do we really have Boltzmann statistics?

e Choices in the observable calculation

— definition of the relevant
instantaneous observable

the experimental signal
is obtained by ensemble
(simulation) averaging

= Q(r)

e Then, we just have to average and compare with experiment

Q=

Nearly always involves
assumptions and
approximations!!!

compare
with

JarPmm=(Q) Q™ 4mp Q™)
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Force-field representation

e The “dream” situation

‘U(I’) and Q(I’) correct

+

e Example: B-hexapeptide in methanol
>LO)LN z NUN < ONT Y NJ\:)LN =~ 0" Ph
Hoon B ou ™ o™ on™ on 't ow

— experiment delivers 41 NOE’s & 12 3J-couplings

— NMR bundle (conventional XPLOR ‘ structures (protection

infinite sampling

refinement) suggests 25-helix

Gademann et al.,
Angew. Chem. Int. Ed. Engl. 42 (2003) 1534

— Only happens in exceptional cases (then
problem it may also be coincidental: experimental data may
solved ! actually provide little relevant information and be

compatible with many models, even the crudest)

Bundle of 20 NMR model

groups not shown)

— 100 ns unbiased MD simulations in explicit
methanol with GROMOS 45A3 at 298 or 340 K~ EE 4 208k
(started from an extended fonformation) 2 violations of about 0.05 nm

J-value rms deviation of 0.44 Hz

Glaettli & van Gunsteren
Angew. Chem. Int. Ed. Engl. 43 (2004) 6312

Force-field representation

o NOE distance violations & backbone 3J-values

0.1
0
-0.1
-0.2
-0.3
-0.4

& o9
PRGN~ BN |

.
o
w

-0.4
-0.5

distance violation [nm]

o

-0.1
-0.2

0.3f

-0.4
-0.5

"0 5 10 15 20 25 30 35 40 0 2 4 6 8 101

0.2

? °

«at 298 K
2 violations (~0.05 nm)

oN

average deviation from
exp. J-values: 0.44 Hz

oN

«at 340K
1 violation ( ~ 0.03 nm)

J-value [Hz]

average deviation from
exp. J-values: 0.91 Hz

calc

~ NMR

oN

* NMR bundle
no violation

average deviation from
exp. J-values: 0.57 Hz

NOE number

No M RO O NROOaNAO M=
3

exp %J-value [Hz]

¢ GROMOS force field reproduces experimental data without any restraining

This is a case where the force-field information is sufficient
to generate an ensemble compatible with the experimental data
(nice — but maybe also a bit lucky ?)
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Force-field representation

e Example: B-hexapeptide in methanol

— Experiment delivers 41 NOE’s & 12 3J-couplings

— Two conformational ensembles reproduce about equally well the experimental data!

— NMR bundle (conventional
refinement) suggests 25-helix

Gademann et al.,
Angew. Chem. Int. Ed. Engl. 42 (2003) 1534

— ... more on this case later ...

— unbiased MD (GROMOS 45A3)
suggests dominant 2.5,,-helix
(34% population)

Glaettli & van Gunsteren, Angew. Chem.
Int. Ed. Engl. 43 (2004) 6312

Key issues in structure refinement

INSTANTANEOUS
OBSERVABLE

Q(r)

Common observables
Approximations
Invertibility
Calculation cost

ENSEMBLE
AVERAGING

Single structure vs ensemble
Convergence

EXPERIMENTAL
DATA

Q exp

Primary vs secondary
Quality and accuracy
Redundancy vs completeness

llustrative
example

U(r)

Accuracy

Q)

BIASING FUNCTION
REPRESENTATION

Ures (r)

Weighting
Instantaneous vs time-averaged

Common errors, inefficiencies
and misinterpretations
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Experimental data

Which type of experimental data or quantities Q

W.F. van Gunsteren, J. Dolenc, &
<(O)> PARN <(O)> ’ ’
Q Q exp A.E. Mark, Curr. Opin. Struct. Biol.,

18 (2008) 149-153

sim

Distinguish between:

1. primary experimental data Q°: observable quantities Q that are
directly measured

Examples: peak location and intensity from X-ray diffraction or NMR
spectroscopic measurements, 3J—values

2. secondary (derived) experimental data Q:
quantities Q for which (non-observed) values are derived from
(observed) values of primary experimental data Q° by applying a
given procedure f: QY = f (Q9)
which involves assumptions and approximations

Examples: textbook structures, refined molecular structures,
torsional angle values, NOE-derived proton- yoy gon't want to compare simulations

proton distances, NMR order parameters against another (pften crudler)
model, but really against experiment !

Comparison of may reflect the quality of:
a. <Q%>,,, with <Q%>,, — the molecular model
b. <Qi>g, with <Qi>, =T (<Q%>,,) — the modeland the procedure f

In reality <Qd>exp may carry little experimental information

Experimental data

Quality of the experimental data Qexr

Test of force field and NMR data
for Hen Egg White Lysozyme

Experimental data
(Smith et. al., 1991, 1993; Buck et. al., 1995; Schwalbe et. al., 2001)

1158 NOE’s derived inter-proton distances (setl 1993)
1525 NOE’s derived inter-proton distances (set2 2001)
95 3J,na-Coupling constants

100 3J,4-coupling constants

124 backbone and 28 side-chain order parameters
X-ray coordinates (PDB laki, 1.5 A)

NMR coordinates (PDB 1e8l, ensemble of 50 structures)
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Experimental data

NOE distance bound violations in HEWL

NOE bound violations computed from MD trajectories (43A1(1996)/45A3(2001))
against two sets of experimental NOE distance bounds from
Smith et. al. (setl, 1993) and from Schwalbe et. al. (set2, 2001)

Averaging period (ns)

Number of violations (set1)

Mean violation

out of 1158 NOE’s <Reg-Ro>
>0.1 nm >0.2 nm >0.3nm
0.0-0.5 25/44 | 9/15 | 2/6 0.017/0.024
0.5-1.5 31/44 | 11/15 i 3/3 0.020/0.024
i i 1993 set
1.5-3.5 41/56 : 11/27 : 517 0.023/0.034
0.0-3.5 23/43 917 3/6 0.019/0.026
Number of violations (set2)
out of 1525 NOE’s (3026 more)
=0.1 nm =0.2 nm >0.3nm
0.0-0.5 21/43 4/9 0/0 0.015/0.021
0.5-1.5 22/47 | 2114 | 0/2 0.017/0.021
i : 2001 set
1.5-3.5 27/60 i 6/12 . 0/6 0.017/0.026
0.0-3.5 20/40 2,1? ______ i 0/1 0.014/0.020

Over time (1993 »2001) the experimental
data converged towards simulated ones

But: this may be misleading if the extra
NOEs are short-ranged !

But: the force-field did not seem to improve ??7? ;-)

Key issues in structure refinement

INSTANTANEOUS
OBSERVABLE

Q(r)

Common observables
Approximations
Invertibility
Calculation cost

EXPERIMENTAL
DATA

Q exp

Primary vs secondary
Quality and accuracy
Redundancy vs completeness

llustrative
example

ENSEMBLE
AVERAGING

Q)

Convergence

Single structure vs ensemble

FORCE-FIELD
REPRESENTATION

U(r)

Accuracy

BIASING FUNCTION
REPRESENTATION

Ures (r)

Weighting

Instantaneous vs time-averaged
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Accounting for motional averaging

Choice of biasing function V™ ((Q(P)) ; Q)
to bias (Q(F)) towards Q%
— Form:
= Half or full harmonic at short range, i.e. for (Q) ~ Q*®
< Bounded gradient (slope = force) at long range, i.e. for<Q> = Q%P
= Continuous, continuous derivative
Example: \/@rest (7) = %KQr [(Q@)) - T
+ linear beyond Q®® + AQ

— Averaging: 1 t
. . —\\ _ {t-t [ e~refe o '
Time: ryy=—+————-=1\¢€ r(t"))dt
(M) T[l_e_t,ql QF(t"))
1 - non-Boltzmann
~ Ny ~ e V() /keT
Molecules: (Q(r)) = > p,Q(F) p,={ w+————— — Boltzmann
n=1

Ny, j
Z e V() /T
n=1

Examples: 15 Tyr in Tendamistat: averaging <...> essential
Cl-2: <distance> is o.k.
(NPNA);: <3J-value> is a major problem
— Parameters: calculate RMS-fluctuations and deviations

Accounting for motional averaging

Atom-atom distance restraining and multiple
conformations

Half harmonic (attractive only):
A too long distance is considered to be a

Distance restraint: disagreement with experiment — but a too short

distance is not, because other experimental
effects might have attenuated the NOE signal

do involving atoms i and j (e.g. three-center spin diffusion)
actual distance: Linearized:
> we want to avoid too strong forces
o = = on large violations
d(t) = [ F®) - 1@

With linearization:
Instantaneous restraint

(half harmonic): ﬂi attractive

Ve =0 it <d, &

Ve =K, [d®) - d,f ifd() > d, %

f =0 ifd(t) <d, ¢

fix = _Kdr [d(t) - do]);i_jT(:)) if d(t) - d0 P r distance
ij

zero harmonic linear

zero linear constant
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Virtual and pseudo atoms

o | | S
_ s
CHI (aliphatic) "('}:%' virtual| 00 I
e Virtual atoms correspond to H atoms '
that are not in the force-field united-atom 7 ,fé\b
representation ey e
— distance-restraint force calculated on | T F%e | ke :
virtual atom, and redistributed to [ :
neighbor atoms —— ™, - .
— no distance correction ' ' 2
@ I
e Pseudo atoms correspond to multiple H o = peoudo 10
atoms which could not be distinguished in 7 ij
the experiment (common signal) s (e serepeic - 1of 22 o
— distance-restraint force calculated on RN
pseudo site, and redistributed to Q‘%‘p
neighbor atoms [ [0 rometmcmpecac, i peendol .23
— distance bound must be increased .
appropriately (pseudo atom correction) COG (eonter of geome | 10 ende] 0 .
tx Tk
COM (center of mass) ks, peendo] 00 2
Tapre 8.1, Virtual and peenda hydrogen atoms and distanee restraint correction terms.

Accounting for motional averaging

Time average:

Exponentially

B rt -1/3
d®  =|tfdeycat }
(0]

— N, -1/3
discrete: = | N;* Y d(r, (tn))g}
n=1

Time-average restraint:

V& -0 if d(t) < d,
Ve = 1/K, [d) - d, | if d(t) > d,
f, =0 if d(t) < d,

%,(®)
rij(t)
Force becomes smaller with growing N, , so damp the memory
Time-average with damped memory:

fi, = Ky | d(O) - do]{—%a(t)“} N+ [-3d(t)* ] if d(t) > d,

%
‘T ) 1 f bes n\— [
Put factor € ' in time average: A4 =|—F——+ Je Yrd(t -t dt
7[1 -e J o

~_ Normalization
(d =cst — average = d)
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Accounting for motional averaging

Non-linear averaging: a simple 2-dimensional 3-atom example
A.E. Torda et al., Chem. Phys. Lett, 157 (1989) 289-294
3 particles, only distance restraint forces, t© = memory relaxation time

i 5
g a 1=0.0 ps 4™ 1=0.2 ps G 1=1.25 ps l “ 1=4.0 ps
1 . 1 1"
5 s b .('__‘\ t,-h‘\ !'- : -\| -
Inmi o} rox ' ox ) Irm) o} iox dﬁ’ x Inmi o} (
[N P ’ . P ’ \
\‘-_- ~ ‘_’/
=1 -1 1
]
-2 -7 -?’
44 6 i 2 R Y I 2

Inml (nm) nm) ) {nm]

3 particle system: 2 particles fixed 2 nm distance from each other
1 particle freely moving with 2 distance restraints
of 0.8 nm length to the fixed particles

Remark:
time-dependent Hamiltonian

e
. — 1 .
Refinement: d() =|—————|[ e*"|d(t-t)7dt"
z'[l -e™ ’] °
— 2 — no energy conservation !
Ve = % Kdr |:d(t) - d0:| — we pump energy into the system
— thermostatize well !

%
_ 1 t
- - . d — d _t —3d '
Average violations: d() {—z’[l—e”’]'[o (t-t9) t]

Accounting for motional averaging

Signal is a time average:
example Tendamistat
e small, 74 residue protein, 842 NOE distances from NMR
= conflicting NOE distances from the experiment
— no single structure found that had no violations

T13 NOE distance 1: H, 15 Tyr - H; 13 Thr

A

e

NOE distance 2: H. 15 Tyr - H; 17 Ser
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Accounting for motional averaging

NOE distance

Atoms do get close, but quite a
lot of strain is present in the system

Small distance fluctuations

Yet, small bound violations
remain present

rir)R)

r(rY (R

Simulations using instantaneous distance restraints
Applying instantaneous distance restraints

puts an extra force on the atoms
which pulls them to the experimental

15
(o)

NOE distance 1

violation 0.02 nm

1 1

(d)

NOE distance 2

violation 0.04 nm

10 15 20
Time (ps)

Accounting for motional averaging

Time-averaged distance
restraints

Extra forces on the atoms to
enforce that the NOE distance is
fulfilled on average

Tyrl3 is flipping back and forth

T13
A
B
Y1
C
S17

Large distance fluctuations

Yet, no bound violations are
present
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LY (R

Simulations using time-averaged distance restraints

(b)

NOE distance 1

no violation
[

NOE distance 2

no violation
1 1

{¢] 15 20



Accounting for motional averaging

Tendamistat 20 ps MD simulation

RMS fluctuation of C, atoms
J. Mol. Biol., 214 (1990) 223-235

Small, 74 residue protein, 842 experimental NOE’s
Root-mean-square atom-positional fluctuation(A) of C, atoms

20p --- conventional refinement
L — time-dependent restraints

'l

i A L L A A 'S 1 L L i

- 020 30 40 50 80
Residue number

70

Conclusion: conventional refinement restricts atomic
motion too much (instantaneous restraints)

Accounting for motional averaging

Conventional versus time-averaged refinement: Tendamistat

DG: one position (violations) in all 9 DG (distance geometry) structures
MD: many positions (no violations)
X-ray: no electron density

DG position (9x)
E RMSD small

J. Mol. Biol. 214 (1990) 223-235
Conclusion:

— Convergence to one structure does not indicate that only one
structure fits the experimental data!

— The experimental data are compatible with more mobility than is
suggested by static modelling
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Accounting for motional averaging

Artefacts due to time-averaged restraining: Chymotrypsin

MD in vacuo:
NOE distance restraining: Hy Trp 5

Kdr =

3000 kdJmol-tnm-2 6

Restraining with

short 14, may
restrict

1. fluctuations and :r

2. dynamics

Inhibitor 2

Alain Nanzer et al., J. Biomol. NMR, 6 (1995) 313-320

500ps

H, Arg 62

} vary averaging time ty,

(SIS
T

[SIENI-
T T
Ll

Distance restrained distance [A]

N & O &R QDN A

s oo

Accounting for motional averaging

NPNA-NPNA-NPNA peptide in water
A. Nanzer et al., J. Mol. Biol., 267 (1997) 1012

T T T T T T T 3
12 3
10 E \E‘and distance restraints _;
o MWM ;
6 b WMMWW*
12 ' s 10 15 2 25 3 3 Y
10 - distance restraints :
sE 3
6 wwwm»—wwmw
b L e L B B A B e e e I e B e e S T
= 10 15 20 2 30 s a
5 2 re&lramls
g10F
“? 8- W N“ \ MWM
E6r
=
g
12 - ]
10k unrestrained ]
8 F E
6 b WMMWW ]
ettt bt [ —t—t—+ ——t—+ F—t—t—+ et ————}
0.‘5 1!0 ]!5 210 2!5 3!0 3’.’5 i.rO'
12 e
0 unrestrained and unmethylated B
o I\WWWWMM% ]
6F : e
1 1 1 1 1 1 1 1
05 Lo 15 20 2.5 30 3s 4.0
time [ns]
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1A 50.;)
B 20.0
1C 10.0
5.0
2.0
0.0
w50
NPNA:

Asn-Pro-Asn-Ala

Too big
fluctuations
s if harmonic
% time-
g averaged
= 3J-value
restraints
are applied



Accounting for motional averaging

NPNA peptide in water

Too big fluctuations \
distance nnd distance restraints lmlnls

unrestrained unrestrained, unmethylated

Accounting for motional averaging

Problem of time-averaged restraining
when applied to 2J-coupling constant data

Ve QK QE) = 2K [Q, -0 H(Q, Q)

Heaviside step function

Vv Qrestr

1
]

1 Q | Q °

Q Q" +aQ" H(Q;Q°) Q°

Problem:

Restraining force keeps pushing Q, (t) to the left beyond Q? as long as

Q.(t) > Q°.

In distance restraining, this is a minor problem

- Van der Waals repulsion counteracts an attractive restraint
- r3 averaging favors short distances

- generally only half-harmonic restraints (attractive) are used

In J-value restraining, this is a major problem
Solution ? Use both instantaneous and time-averaged 3J-value for
restraining (Scott et al., J. Biomol. NMR 12 (1998) 501-508)
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Accounting for motional averaging

e Time-averaged J-value restraining: two issues

— Instantaneous vs average biasing

— Byswov, 1976
Pardi, 1984

| — Wang. 1956

Exp value

i

180 120 il

FIX: For J-value restraining, consider the value

— Mu

Iti-valued function

— Bystrov, 1976
Pardi, 1984
Wang. 1996

T

4
|nstantaneous

Average

1 1

180

of the instantaneous and of the average observable

120 i1 [ 120 150

o
ldegree

Do not restrain to a measured value of an
observable if the function connecting
structure to observable is multiple-valued

Accounting for motional averaging

e Time-averaged J-value restraining: a possible solution...

— 3J-coupling constant biasing of the sampling by using local-elevation
conformational sampling on torsional angles instead of restraints

e Basic idea

— If either the current of the average J-value is correct, do nothing

— If both the current and the average J-value are incorrect correct, push
system away from current dihedral value the local-elevation way

— Bystrov, 1976
| Pardi, 1984 -
Wang. 1996

poiemtal Vi (4, (r(1))) = K™, (t)exp(~(o () -04) /2(a0") |

(Gaussian)

(36, () =32 =A1) for I(9, (1))> 10+ A7

VIS0, AI) = (16, (1) =10+ A1) for T(g, (1)) <0 - AT

0 otherwise

Flat-bottom
harmonic restraint

JO
k
S

AJ°

Al

Moot w, (t)=(at)" |8 o VA (0, (r(0)))sI0, A7V T (0 (r(1)))s 33, A1)

.

339
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Accounting for motional averaging

e Time-averaged J-value restraining

— Application: Hen Egg White Lysozyme (37 3Jaa -values) | I m, evide
WVl 10 Pl 3.0
Cys [ 11 His 1 B 1.2
Asy 1 110 | Tyr 0 1.7
I'vr 109 | Asi w 10
Val 1.1 | Cys 30
Pl H | As 0 1.5
I'hr i L5 | Thr 13
Asn I L7 | Thr 47 X
Asp I 2.6 | Thr 5l 9.3
Asy TG | Tyr Tl 104
Asi 1 5.4 | Arg il i 1.8
Asp G 15| Th (1]
Len 2.1 | Asy 7 5.1
18 1.5 | Thr =0 0.5
Vil ¥ 10,1 | Cy 0y 1.0
3J,s-coupling constants Val 99 63 f Val 109 80
(stereospecifically assigned) I“' :'s ’” I:“' :': :
I & 0.6 | lle 2 0
1, torsional angles Cw 7 16

Accounting for motional averaging

e RMSD from experiment for 37 3J,-coupling constants

L

= unrestrained MD

L]

Local-elevation 3J-value biasing (restraining)

RMSD "J”u-cnupl ing constant [Hz|

time [ps]
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Accounting for motional averaging

— Local-elevation energies after 100ps torsional angle values each 0.2ps

A B
60 51 Thr 69 Thr

energy [kJ/mol]

>

: = residue 3 J-coupling constant
- 3 red.unrestraln"__'- ih&% name nr o exp unrestr restr
Z 0017 black: restraineds;:, S )}{’r
PR P 2
S0 E EE ¢ Thre 51 93 43 07
0|4 T
5 N J; | Thr 69 93 125 98
- 89 Thr
e Thr 80 9.5 2.5 9.9
=
Val 100 8.0 3.2 8.2

energy

S el

time [ps]
S

z B8
40 fite
A e
20 . ;} . T :
0 A e s b L
0 90 180 270 0 90 180 270 360
angle ¢ [degree] angle ¢ [degree]

Accounting for motional averaging

e Hen Egg-white Lysozyme MD

\ : | : : | \ |
1630 NOE bounds - no 3J-value restraining
300 — - local-elevation 3J-value biasing
(restraining)
-S. 200 —
B
3
3 L
3
100 —
0 [P
0.6 -0.4 0.2 0 0.2 04
NOE bound violation [nm]

Local-elevation 3J-value restraining of 37 side-chain 3Jaﬁ—coupling constants in MD improves
agreement of 1630 NOE atom-atom distances with experimental NOE-bounds
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Accounting for motional averaging

Conclusions and Outlook

< A new application of the local-elevation technique to achieve 3J-
coupling constant restraining to measured values is proposed

e Using this method it is possible to successfully restrain 3J-
coupling constants without destabilising the overall molecular
structure. In the example Lysozyme an improvement on
reproducing experimental NOE distance bounds is observed

e The method achieves selectively enhanced sampling by
disfavouring conformations of dihedral angles with 2J-coupling
constants deviating from experiment. A minimum interference by
the restraints compared to an unrestrained simulation is
guaranteed

e The method is not very sensitive with respect to force constant
and other parameters chosen, which makes it suitable for
inclusion of 3J-value restraining in standard biomolecular NMR
structure refinement

M. Christen, B. Keller, & W.F. van Gunsteren, J. Biomol. NMR 39 (2007) 265-273

Accounting for motional averaging

Crystallographic refinement by MD with time-averaged
structure factor restraints

Potential energy (target) function:

V() = VP () + V™ ()

Vx—ray(f’) — %krsf Z{KFcalc (hk', F(t))>t‘ -

hkl

F.,. (hki )\}2

(P (K1), =2, (i) e

r[l - e%} 0

7 = memory relaxation time

F(hkl) = F(k) = [ p(F)e*dr = structure factor

p(r) o IF(Iz)e‘"Z'FdIz = electron density
X-ray diffraction measurement yields structure factor

amplitudes: ‘F(hkl)‘ _ ‘F(IZ)‘
unknown

@' %obs

not the phases ¢..s:  F_, _(real) = ‘F

obs
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Key issues in structure refinement

INSTANTANEOUS ENSEMBLE FORCE-FIELD
OBSERVABLE AVERAGING REPRESENTATION
Common observables Single structure vs ensemble Accuracy
Approximations Convergence
Invertibility

Calculation cost

EXPERIMENTAL BIASING FUNCTION
DATA REPRESENTATION
Q™ Ures (1)

res
Primary vs secondary Weighting
Quality and accuracy Instantaneous vs time-averaged

Redundancy vs completeness

llustrative Common errors, inefficiencies
example and misinterpretations

lHlustrative examples

A B-hexapeptide
Alice Glattli

O)kN A - e - M 0" >Ph
Hoouw % on o " v M on OH

B-hexapeptide with hydroxyl groups
attached to the a-carbons

e NMR model structure suggests the
formation of a 25-P-helix

e MD simulation from totally extended
conformation at two different
temperatures (298 K & 340K) using
the GROMOS 45A3 force field

* No NOE-distance or J-value restraining in Bundle of 20 NMR model
MD simulation structures

(protection groups not shown)
Glaettli & van Gunsteren, Angew. Chem.

Int. Ed. Engl. 43 (2004) 6312 Gademann et al., Angew. Chem.
Int. Ed. Engl. 42 (2003) 1534
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lllustrative examples

NOE Distance Violations & Backbone 3J-values

IIIIIIIIIII 12
- <.—110
- -8
- -6
E
=
c
S
®
S 6
E 4
< 2
) 1
© 1
8
6
- 4
-0.4- NMR 2
_0.5VIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII IIIIIIIIIII 0
0 5 10 15 20 25 30 35 40 0 2 4 6 8 10 12

NOE number

exp >J-value [Hz]

J-value [Hz]

3

calc

lllustrative examples

e at 298 K
2 violations (—0.05 nm)

average deviation from
exp. J-values: 0.44 Hz

e at 340 K
1 violation ( —~ 0.03 nm)

average deviation from
exp. J-values: 0.91 Hz

e NMR bundle
no violation

average deviation from
exp. J-values: 0.57 Hz

Occurrence of Hydrogen Bonds [26]

MD simulation NMR bundle

MD simulation NMR bundle

Donor-Acceptor 298 K| 340 K | X-PLOR Donor-Acceptor 298 K| 340 K | X-PLOR
OH(i)-0(i-1) [HB7]
OH(6)-0(5) 0 14 0
OH(i)-0(i-2) [HB11]
. OH(4)-0(2) 8 10
NH(i)-0(i-3) [HB12] OH(5)-0(3) 22 0
NH(3)-0(0) 0 30 0 OH(6)-0(4) 10
NH(4)-0(1) 0 26 0 OH(i)-0O(i-3) [HB15]
NH(5)-0(2) 0 35 0 OH(4)-0(1) 1 26 0
NH(6)-0(3) 1 18 0 OH(5)-0(2) 10 0
NH(i)-O(i+1) [HB10] OH(i)-O(i+2) [HB13]
NH(2)-0(3) 11 0 OH(3)-0(5) 38 0 0
NH(5)-0(6) 11

None of the H-bond patterns supporting the formation of a 23-P-helix
were detected in the simulations.
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lHlustrative examples

Another possible Secondary Structure Element: 2.5,,-P-helix

Atom-positional root-mean-square deviation from 2.5,,-P-helix

0.4 T T T T T T T T T Initial config:
298 K k blue from extended,
0.3 green from 2.5,,-P-helix
T 7
£
< 0.2
7]
§ - -
04 o T . F "
1 1 1 I 1 I 1
0.4 B t i t i t i t i t
r 340 K 1
0.3
1S L
s
he] 0.2
(7] !
! 0 1" ry
WA S LY LR _\H'\ N a
Initial config:
0 L 1 L | L | N red from extended
0 20 40 60
time [ns]

24-P-helix is virtually absent, but
2.5,,-P-helix is 35%6 populated at 340 K and stable at 298 K

lHlustrative examples

Definition of a Conformer for a B-heptapeptide
20 structures forming one conformational cluster

Backbone atom-positional RMSD (residues 2-6) < 0.09 nm

Maximum RMSD between two members 0.16 nm
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lllustrative examples

Conformational Analysis of the combined
MD & NMR “Ensembles”

MD at 298 K + NMR bundle MD at 340 K + NMR bundle

15 T I T l] T I T T I T I T I T 15
L similarity criterion: 0.04 nm | similarity criterion: 0.04 nm-
12 —112
c 9H —H9 ¢
2 i)
5 1 =
2 6] i -6 2
z _ 1 8
40 |IIIIIIIIIIIII“"lIIIl‘-un---- | |IIIIIIIIIIIl"lllll----l--..l. 40
| similarity criterion: 0.08 nm | similarity criterion: 0.08 nm |
_ 30 - —30 _
c T c
2 L
20 i 20 %
2 {4 2
o o
-9 %
10 i —10
Illll‘... i 1 1 1 1 I'llllilluh.. | 1 1 1 0
0 10 20 30 40 10 20 30 40

cluster number cluster number

No overlap between MD trajectory and NMR bundle of structures

lllustrative examples

Conclusions

1. MD simulation using a “thermodynamic” force field (GROMOS)
(without NMR restraints) reproduces experimental NOE/J-value
data equally good or better than a set of 20 NMR model structures
derived by classical single structure refinement techniques
(XPLOR)

(aspect: force field problem)

2. Single structures may not be representative for the (Boltzmann)
ensemble of structures in solution
(aspect: ensemble problem)

3. Standard (NMR) structure refinement procedures should be
revised in order to avoid the deposition of non-representative
model structures in structure data banks
(aspect: search problem)

4. Don’t compare secondary (derived) data (structures, angles) but
primary (measured) data (NOE’s, 3J-values) when comparing
models with experimental data
(aspect: experimental problem)

Angew. Chem. Int. Ed. 43 (2004) 6312
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Key issues in structure refinement

INSTANTANEOUS ENSEMBLE FORCE-FIELD
OBSERVABLE AVERAGING REPRESENTATION
Common observables Single structure vs ensemble Accuracy
Approximations Convergence
Invertibility

Calculation cost

EXPERIMENTAL BIASING FUNCTION
DATA REPRESENTATION
Q™ Ures (1)

res
Primary vs secondary Weighting
Quality and accuracy Instantaneous vs time-averaged

Redundancy vs completeness

llustrative Common errors, inefficiencies
example and misinterpretations

Common errors, inefficiencies and misinterpretations

(arbitrary, non-Boltzmann sampled set)

. Conversion of a 3J-value (other than extremes) to a ¢-angle
value with subsequent ¢-angle restraining

(inverse Karplus relation is non-linear and multiple-valued)
. Instantaneous restraining
(neglect of averaging effects)

. Time-averaging restraining of 3J-values using a restraining
function only dependent on <3J> (too large fluctuations)

. Use of non-Boltzmann weighting of conformers
(violates statistical mechanics)

. Use of equations of motion in internal, non-cartesian
coordinates
Torsional dynamics is either inefficient or yields wrong dynamics

. Freezing of bond-angle degrees of freedom
(reduces motion and entropy, no gain in efficiency)
. Inadequate sampling
(many, but high-energy conformers)
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Common errors, inefficiencies and misinterpretations
Refinement of protein structures using simulation

Use a thermodynamically calibrated force field

Include essential degrees of freedom: solvent

Be certain that the solvent model is compatible with the protein one
Use the appropriate (experimental) thermodynamic state point:

a.
b.
C.
d.

Temperature

Pressure

pH

lonic strength (co-solvents)

Sample conformational space sufficiently and Boltzmann-
weighted

When using experimental data to bias the sampling:

a.

Use only primary (measured) not secondary (derived)
experimental data

Do account for motional averaging

Do not restrain to a measured value of an observable if the
function connecting structure to observable is multiple-valued
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Computer Simulation in Chemistry, Biology and Physics

P.H. Hinenberger

COMPUTER SIMULATION
OF MOLECULAR SYSTEMS

RN

Herbstsemester 2019
Tuesday 9:45-11:30 a.m.
HCI D2

Lecture 529-0004-00 LECTURE 13 (WEEK 14):

Concluding remarks

www.csms.ethz.ch/education/CSCBP

About the examination

e February or August 2020

— Oral exam, 30’°, no preparation, Phil + Beisitzer

— English or German (or even French) as you prefer

— Atmosphere is friendly
Trick
Y Corollary:
the number of good
answers is not
immediately related
to the mark...

— | normally “improvise” the questions on
the flight

Difficulty o High mark

So that | can “tune” the level of difficulty,
and we can “stop” a question where you don’t
know to move on to one where you know

Exam
time

E
asy Low mark

» Progression

— Basic principle of an oral exam mmp

— Your exercise grades are used for “rounding” (i.e. component of ~0.5 [i.e. £0.25])

But when it is obvious,
we usually say if “pass”
or “fail” right after the exam

— You don’t get the mark before the Notenkonferenz

e Most important If there is a question

you cannot answer,
just let it be —and focus
on the next...

— Be relaxed, don’t self-assess during the exam, just give your best !

— Try to understand the working principles of the different methods

— It is a good idea to know some of the key equations “by heart”

” K i R X Example: if | ask you about
(there is no time to derive everything); but knowing “by heart”

Tl and we spend 5’ to just to get to
the correct equation, these are 5’ less

won’t help at all if you don’t know the working principles:

you need both
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§§ About the examination

— Examples of “starting” questions (non-exhaustive; just to give you an idea...)

- what are the main resolution levels in simulations (QM,MM,CG)
and (broadly) their advantages/limitations/scalings

- what are the terms in a force-field (then we pick one to see what you know)

- how do we integrate the equations of motion in MD (then we might ask the leap-frog equations; no derivation)
- how do we sample something else than the microcanonical ensemble

- what are the main methods to calculate electrostatic interactions under PBC

- how would you calculate this or that property using MD (e.g. permittivity, diffusion constant, heat capacity, ...)

- name free energy methods (then we pick one, e.g. DC, US, TI, FEP, EDS ... to see what you know; no derivation)

- name enhanced-sampling methods (then we pick one, e.g. LE, DEM, 4DMD, to see what you know; no derivation)

i . . . . Advice: spend 2/3 of your
) § Basic principles: ~15-20 minutes preparation on these basics
. . and 1/3 on the rest
Lists are non-exhaustive; these @
are just the most important points! @Q)
1) INTRODUCTION ® (8 ®»
e choice of the degrees of freedom
- QM vs atomistic vs coarse-grained 1
- implicit vs explicit solvent f‘ MOLECULAR
- computational cost/scaling/limitations 'E:‘ - MODEL
o guantum-chemictn,
T
2) INTERACTION (FORCE FIELDS)
¢ basis of the classical description ©aea [58

e molecular topology :
e covalent/nonbonded/unphysical force-field terms

- know their forms (incl. eqs.) and usage 4) BOUNDARY CONDITIONS
e calculating atomic forces (principle) « main spatial boundary conditions
« force-field parameterization (main sources of data) « main stat. mech. ensembles

e instantaneous temperature/pressure (incl. egs.)

3) GENERATING CONFIGURATIONS o thermostatting/barostatting (qualitative, no egs.)
e EM, MC

- know the basic principles (incl. eq. for MC) 5) ELECTROSTATIC INTERACTIONS
e MD

o problems of finite-size and surface effects

e main approaches for implicit solvent

e main approaches for explicit solvent
- working principle of cutoff, RF, LS (no egs.)
- atomic vs group-based cutoff
- shortcomings and artifacts

e pairlisting algorithms (qualitative)

- know the basic equations of class. mech.
- explain leap-frog integrator (incl. egs. without derivation)
- explain the use of constraints (SHAKE picture, not egs.)
- timestep choice, initial conditions

e SD
- know the basic principles
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Advanvced topics: ~15 minutes

Lists are non-exhaustive; these
are just the most important points!

Time series, average, Calculation principle of main properties:
fluctuation, distribution internal coordinates, RMSD, RMSF, RDF,
thermodynamic properties, diffusion constant,

dielectric permittivity, ...

— Lectures 6: analysis
Periodic gathering,

rototranslational fitting

Understand issues related to
accuracy: hysteresis, cycle-closure,
finite sampling, approximate quadrature,
overcoming singularities (soft-core)
[you can forget free-energy components
and entropy calculations]

Three types of free energy changes,
use of thermodynamic cycles,
— Lectures 7&8: free energy use of dummy atoms,
understand DC, US, TI, FEP, EDS
(with equations)

Understand the principles (not the detailed
equations) of the temperature annealing,
— Lectures 9: enhanced sampling parallel tempering, soft-core, diffusion equation,
local elevation, 4DMD, parallel tempering
and Hamiltonian replica exchange methods

Understand the principles of structure

. . refinement based on NOE-derived Understand the main approaches
— Lectures 10: refinement distances and J-values and difficulties in NMR-based
[you can forget the Xray refinement] refinement

I may also ask questions related to that

— Exercises 1-6 plus Lecture 12-13 thinking questions (of course, | won't assume that you
remember all the details of these exercises!)
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