
The GROMOS Software for (Bio)Molecular

Simulation

Volume 1: About the GROMOS package: Overview

January 9, 2021

Contents

Chapter 1. What is GROMOS 1-1

Chapter 2. The GROMOS force fields 1-3

Chapter 3. GROMOS functionalities and documentation 1-5

Chapter 4. Examples of application of GROMOS 1-7
4.1. Analysis: Calculation of dielectric permittivity and relaxation time 1-7
4.2. Simulation of polypeptide folding using a polarisable solvent 1-8
4.3. Properties of coarse-grained models for solvents: H2O and co-solvents 1-9
4.4. Enhancing the configurational sampling of ions 1-9
4.5. Calculation of protein-ligand binding free enthalpies 1-9
4.6. Structure refinement based on NMR data 1-11
4.7. Water configurations and mobility in the pore of a membrane protein 1-11
4.8. Computer time required for MD simulation 1-11

Chapter 5. Limitations of GROMOS 1-17

Bibliography 1-i

1-I

CHAPTER 1

What is GROMOS

GROMOS is an acronym of the GROningen MOlecular Simulation computer program package, which
has been developed since 1978 for the dynamic modelling of (bio)molecules, until 1990 at the University
of Groningen, The Netherlands, and since then at the ETH, the Swiss Federal Institute of Technology in
Zürich, Switzerland. Until 2013 its development was driven by the research group of Wilfred van Gunsteren.
Currently, the development is shared between him and the research groups of Philippe Hünenberger and
Sereina Riniker at the ETH and of Chris Oostenbrink at the Institute for Molecular Modeling and Simulation
of the University of Natural Resources and Life Sciences in Vienna, Austria.

Since the last official release of the GROMOS software and manual in 1996, called GROMOS96, no
comprehensive release occurred till 2011. Yet the GROMOS software has seen a steady development since
1996, see e.g. Christen et al. J. Comput. Chem. 26 (2005) 1719. The programming language has been
changed from FORTRAN to C++, the documentation has been put into electronic form, and many new
features have been included in the software. In spring 2011 an official version of the C++ software was
released and this volume summarizes the basic principles underlying the development of the GROMOS

software.

The GROMOS software has been developed as a research vehicle of the van Gunsteren research group,
which was characterized by a changing composition of members that are interested in both methodological
developments and a variety of applications of simulation methods. This dictated the following principles for
development:

- Transparency of code, so that modification is easy.
- Molecular architecture, so that parts of it can be used in changing combinations and functions may
be replaced by ones written by the user.

- Independence of the code of the force field that is used.
- Independence of the code of the units of physical quantities and constants.
- Independence of the code of the computer hardware that is available.

The criteria for inclusion of new features into GROMOS are, ordered according to decreasing importance:

1. Research and teaching interests of the research groups developing the code.
2. Scientific importance
3. Demonstrated usefulness or efficiency
4. Well-defined and correct formulae and algorithms
5. Extent of use by the scientific community
6. Ease of implementation
7. Computational efficiency

1-1

CHAPTER 2

The GROMOS force fields

The GROMOS software is to be distinguished from the GROMOS force fields for biomolecular systems.

The quality of the interaction function or force field that describes the forces between the atoms of a
biomolecular system is of decisive importance for the predictive power of MD simulations. Therefore, we
have over the past decades spent much effort to gradually improve the GROMOS force field whenever results
of simulation applications pointed at force field deficiencies. The first set of non-bonded GROMOS force
field parameters dates from 1984,1 while the bonded parameters were taken from ref.2. Since then, the force
field has continuously been improved and refined.3–15 The most widely used versions of the GROMOS

force field are the GROMOS 37C4 force field of 1985, the GROMOS 43A1 force field of 19964,16 and
the GROMOS 45A3 force field of 2001.6 The currently used versions are the 45A4 parameter set,7,9,10

the 53A5/6,8 the 54A7,12,14 and the 54A8 one.15 In parallel to the development of force field parame-
ters for biomolecules, solvent models that are consistent with the GROMOS biomolecular force field were
developed for much used (co-)solvents:17 water,18,19 methanol,20 DMSO,21 chloroform,22 carbontetrachlo-
ride,23 urea,24 acetonitrile.25 A polarisable force field is under development,26–37 as are supra-molecular
coarse-grained ones for water38–40, co-solvents41–43 and lipids.

1-3

CHAPTER 3

GROMOS functionalities and documentation

GROMOS has the following basic capabilities.

1. Simulation of biomolecules or arbitrary molecules using the molecular dynamics (MD) or stochastic
dynamics (SD) methods.

2. Analysis of molecular configurations and velocities or energies obtained by computer simulation or
model building based on experimental (X-ray, NMR) data.

The GROMOS software manuals that accompanied the major releases of 1987 and 1996 are

W.F. van Gunsteren and H.J.C. Berendsen
Groningen Molecular Simulation (GROMOS) Library Manual
Biomos, Groningen, The Netherlands, 1987, pp. 1-221

W.F. van Gunsteren , S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott
and I.G. Tironi
Biomolecular Simulation: The GROMOS96 Manual and User Guide
Vdf Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland, 1996, pp. 1-1042

The current GROMOS manual and user guide exists of 9 volumes:

The GROMOS Software for (Bio)Molecular Simulation

Volume 1: About the GROMOS Package: Overview
Volume 2: Algorithms and Formulae for Modelling of Molecular Systems
Volume 3: Force Field and Topology Data Set
Volume 4: Data Structures and Formats
Volume 5: Program Library Manual
Volume 6: Technical Details
Volume 7: Tutorial with Examples
Volume 8: Installation Guide
Volume 9: Index

The functionalities of GROMOS 87, GROMOS96 and GROMOS 05 have been summarized in

- W.R.P. Scott and W.F. van Gunsteren
The GROMOS Software Package for Biomolecular Simulations
In: Methods and Techniques in Computational Chemistry: METECC-95, E. Clementi and G. Coro-
ngiu editors, STEF, Cagliari, Italy, 1995, pp. 397-434.

- W.R.P. Scott, P.H. Hünenberger, I.G. Tironi, A.E. Mark, S.R. Billeter, J. Fennen, A.E. Torda, T.
Huber, P. Krüger and W.F. van Gunsteren
The GROMOS Biomolecular Simulation Package
J. Phys. Chem. A 103 (1999) 3596-3607

- M. Christen, P.H. Hünenberger, D. Bakowies, R. Baron, R. Bürgi, D.P. Geerke, T.N. Heinz, M.A.
Kastenholz, V. Kräutler, C. Oostenbrink, C. Peter, D. Trzesniak and W.F. van Gunsteren
The GROMOS Software for Biomolecular Simulation: GROMOS 05
J. Comput. Chem. 26 (2005) 1719-1751

The architecture and different functionalities of the current version of GROMOS, GROMOS 11, are de-
scribed in the following papers:

1-5

- N. Schmid, C.D. Christ, M. Christen, A.P. Eichenberger and W.F. van Gunsteren
Architecture, Implementation and Parallelisation of the GROMOS Software for Biomolecular Sim-
ulation
Comp. Phys. Commun. 183 (2012) 890-903

- A.P.E. Kunz, J.R. Allison, D.P. Geerke, B.A.C. Horta, P.H. Hünenberger, S. Riniker, N. Schmid
and W.F. van Gunsteren
New Functionalities in the GROMOS Biomolecular Simulation Software
J. Comput. Chem. 33 (2012) 340-353

- S. Riniker, C.D. Christ, H.S. Hansen, P.H. Hünenberger, C. Oostenbrink, D. Steiner and W.F. van
Gunsteren
Calculation of Relative Free Energies for Ligand-Protein Binding, Solvation and Conformational
Transitions using the GROMOS Biomolecular Simulation Software
J. Phys. Chem. B 115 (2011) 13570-13577

- N. Schmid, J.R. Allison, J. Dolenc, A.P. Eichenberger, A.P.E. Kunz, and W.F. van Gunsteren
Biomolecular Structure Refinement using the GROMOS Simulation Software
J. Biomol. NMR 51 (2011) 265-281

- A.P. Eichenberger, J.R. Allison, J. Dolenc, D.P. Geerke, B.A.C. Horta, K. Meier, C. Oostenbrink,
N. Schmid, D. Steiner, D. Wang and W.F. van Gunsteren
The GROMOS++ Software for the Analysis of Biomolecular Simulation Trajectories
J. Chem. Theory Comput. 7 (2011) 3379-3390

- S.J. Bachmann, W.F. van Gunsteren
On the compatibility of polarisable and non-polarisable models for liquid water
Mol. Phys. 112 (2014) 2761-2780

- N. Hansen, F. Heller, N Schmid, W.F. van Gunsteren
Time-averaged order parameter restraints in molecular dynamics simulations
J. Biomol. NMR 60 (2014) 169-187

The GROMOS C++ code is documented in the code in the form of a doxygen documentation. It is
accompanied by make files, etc. and by example files.

1-6

CHAPTER 4

Examples of application of GROMOS

During the past forty years the computer has taken an increasingly prominent position in science. This
is due to the rapid increase of computer power. Every five to six years the ratio of performance to price
has increased by a factor of ten. This development has paved the way for simulating in atomic detail a
variety of physical processes on a computer. Computer simulation is a powerful tool to predict molecular
properties that are inaccessible to experiments once the reliability of the molecular models, force fields
and computational procedures has been established by comparison of simulated properties with known
experimental ones. This may lead to the design of substances or molecules that possess specific properties
useful in practical applications. Here, one may think of applications in drug or vaccine design, in protein
engineering or in material science. The common approach to modelling a molecular system on a computer is
a static one. For example, quantum calculations yield a particular charge distribution; Molecular Mechanics
calculations yield one or a few minimum energy conformations of a molecule; on a graphics device molecules
are studied in terms of fixed conformations.

However, a molecular system at room temperature is by no means of static character. A system of
interacting atoms traverses multiple minima of the potential energy surface. One would like to know the
multidimensional distribution function of all atomic coordinates and its development in time. This knowledge
can never be complete. Only parts of configuration space can be searched for relevant low (free) energy
conformations. The computer simulation technique of Molecular Dynamics provides the possibility to scan
that part of configuration space that is accessible to the molecular system at the given temperature.

Static modelling techniques are completely inadequate to describe the properties of a system in a number
of applications. Examples are the behaviour of liquid water and its influence on the conformation of a solute,
and the calculation of quantities like entropy and free energy. The latter determine such properties as the
binding strength of small drug molecules to large acceptor molecules, which is crucial in the process of drug
design.

Dynamic modelling techniques are therefore a very promising tool in the field of (bio)molecular chemistry
and physics. Below we sketch a few applications of the GROMOS software and force fields.

4.1. Analysis: Calculation of dielectric permittivity and relaxation time

The static dielectric permittivity ǫ(0) and the Debye relaxation time τD of a molecular liquid can be
obtained from non-equilibrium MD simulations of the liquid in which a homogeneous static external electric
field Eext is switched on at t = t0.

44 Upon switching on Eext along the z-axis at t = t0, the z-component Pz

of the polarisation P will increase from its initial value Pz(t0), which values are Gaussian distributed around
Pz = 0, to a steady-state value Pz(t = ∞). For a Debye dielectric medium, this build-up will be exponential,

〈Pz(t)〉t0 = 〈Pz(t = ∞)〉t0

[

1− e−(t−t0)/τP
]

. (4.1)

The value of Pz(t = ∞) will be larger for larger Eext
z , but different field strengths Eext

z should yield the same
τP , as long as Eext

z is not too small and not too large. The static dielectric permittivity of the molecular
model is then

ǫ(0) = 1 + 4π
Pz(t = ∞)

Eext
z

(4.2)

and the Debye relaxation time is

τD =
ǫ(0) + 2 + Crf (ǫ(0)− 1)

3
τP (4.3)

in which Crf is a constant depending on the dielectric permittivity ǫcs of the medium inside the cut-off
sphere with radius Rrf and the dielectric continuum outside the cut-off sphere is characterised by a dielectric
permittivity ǫrf and an inverse Debye screening length κrf .

1-7

The results for three different system sizes of a cubic box of liquid simple-point-charge (SPC) water are
shown in Tab. 4.1 and Fig. 4.1. While the variation of Pz(t = ∞) decreases with increasing system size due
to better statistics, the average relaxation is independent of system size, and so are the values obtained for
τD and ǫ(0) .

Number of H2O ǫ(0) Eext
z τD Eext

z τD

1024 63 0.03 6.1 0.05 6.0

5384 67 0.03 6.6 0.05 6.0

12800 64 0.03 6.3 0.05 6.0

Table 4.1. Calculated values for the relative static dielectric permittivity ǫ(0) and the
Debye dielectric relaxation time τD (ps) at 298 K and 1 atm for water using three different
system sizes and two different electric field strengths.44 The electric field strengths (enm−2)
were chosen such that they are as large as possible while being in the linear-response regime.

Figure 4.1. Polarisation Pz(t) for 100 non-equilibrium MD simulations44 of liquid water
using three different system sizes, 1024, 5384 and 12800 SPC molecules, after switching on
an electric field Eext

z = 0.05 e nm−2 at t0 = 0. The averages over the 100 trajectories are
shown in red (1024 molecules), blue (5384 molecules) and green (12800 molecules) in the
lowest panel.

4.2. Simulation of polypeptide folding using a polarisable solvent

Folding and unfolding of β-peptides has been studied extensively by molecular dynamics simulation. In
these simulations, a non-polarisable model for the solvent, mostly methanol, was used. If a polarisable

1-8

solvent is used, the agreement with the experimental data from NMR is slightly improved, see Fig. 4.2. In
the polarisable solvent the helical structure of the 7-residue β-peptide, which has a large dipole moment,
is stabilised45. This means that the introduction of electronic polarisability into the solvent model appears
of importance to a proper description of folding equilibria if these are determined by competing solute
conformations that have different dipole moments.

Figure 4.2. Comparison of r−6 averaged NOE distances and average 3J-coupling constants
as obtained from simulations (at 340 K, 1 atm) and experimental data of a 7-residue β-
peptide.45 Panels (a,c): in polarisable methanol (b,d): in non-polarisable methanol.

4.3. Properties of coarse-grained models for solvents: H2O and co-solvents

The development of coarse-grained (CG) models that represent the important features of compounds is
essential to overcome limitations in time scale and system size currently encountered in atomistic molec-
ular dynamics simulations. Since the solvent interactions account for most of the computational effort in
a biomolecular simulation, coarse-graining of the solvent model significantly enhances the efficiency of a
simulation. In Fig. 4.3 and Fig. 4.4, some thermodynamic properties of mixtures of CG DMSO and CG
MeOH with CG H2O

38 are shown. Apart from the energy of mixing, the trends as function of mole fraction
are reproduced. A change of DMSO-H2O and MeOH-H2O Lennard-Jones interaction would be sufficient to
obtain negative values for ∆Umix.

4.4. Enhancing the configurational sampling of ions

While configurational sampling of a liquid is relatively easy, due to the fact that it consists of many
identical molecules that may exchange their position in space, the conformational sampling of a protein
is much more difficult due to the connectivity of its covalent topology which impedes a fast exchange of
atom positions. Sampling the configurational distribution of ions around a protein is a challenge that lies
somewhere between these two cases. The sampling of ionic degrees of freedom can be considerably enhanced
by using the technique of adiabatic decoupling the motion of the ionic degrees of freedom from that of the
water solvent and then raising the temperature of the ions. The ionic diffusion turned out to be 15 times
larger while keeping the distribution of the water molecules around the ions unaltered with respect to the
standard temperature simulation, see Tab. 4.2.46

4.5. Calculation of protein-ligand binding free enthalpies

The relative free enthalpy of binding of different inhibitors to a protein can be obtained using en-
veloping distribution sampling (EDS), which is a computationally efficient alternative to the method of
thermodynamic integration. In Fig. 4.5, the binding free enthalpies of three inhibitors of the protein

1-9

990

1020

1050

1080

1110

ρ
[k

g
.m

-3
]

40

60

80

ε(
0

)

0 0.2 0.4 0.6 0.8 1
X

DMSO

-1

-0.8

-0.6

-0.4

-0.2

0

∆V
O

L
m

ix
 [

c
m

3
.m

o
l-1

]

0 0.2 0.4 0.6 0.8 1
X

DMSO

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

∆U
m

ix
 [

k
J
.m

o
l-1

]

A)

C)

B)

D)

Figure 4.3. Thermodynamic properties of coarse-grained (CG) DMSO:H2O mixtures at
298 K and 1 atm, as a function of the mole fraction of DMSO,XDMSO, fromMD simulations:
(A) densities ρ, (B) dielectric permittivities ǫ(0), (C) excess volume of mixing ∆V OLmix

and (D) excess potential energy of mixing ∆Umix. Experimental data are shown in solid
lines and results of the CG simulations are in dashed lines.

700

800

900

1000

1100

ρ
[k

g
.m

3
-]

20

40

60

80

ε(
0
)

0 0.2 0.4 0.6 0.8 1
x

MeOH

-1

-0.8

-0.6

-0.4

-0.2

0

∆V
O

L
m

ix
 [
c
m

3
.m

o
l-1

]

0 0.2 0.4 0.6 0.8 1
x

MeOH

-1

-0.8

-0.6

-0.4

-0.2

0

∆U
m

ix
 [
k
J
.m

o
l-1

]
A) B)

D)C)

Figure 4.4. Thermodynamic properties of coarse-grained (CG) MeOH:H2O mixtures at
298 K and 1 atm, as a function of the mole fraction of MeOH,XMeOH , from MD simulations:
(A) densities ρ, (B) dielectric permittivities ǫ(0), (C) excess volume of mixing ∆V OLmix

and (D) excess potential energy of mixing ∆Umix. Experimental data are shown in solid
lines and results of the CG simulations are in dashed lines.

1-10

sm sT DCa2+ DSO2−

4

∆gCa2+OW ·100 ∆gSO2−

4
OW ·100

[10−9m2s−1] [10−9m2s−1]

1 1 1.06 1.23 0.00 0.00

2 2.01 2.71 4.20 2.93

3 4.11 6.03 8.59 6.71

5 24.39 66.98 10.10 8.23

100 1 1.44 1.80 1.21 1.23

2 13.22 16.89 1.25 1.20

3 25.87 35.25 1.55 1.60

5 51.64 74.56 1.60 2.11

200 1 1.23 1.46 1.34 1.11

2 7.84 9.66 1.07 1.24

3 15.27 18.87 1.45 1.40

5 28.95 38.25 1.41 2.06

500 1 1.13 1.14 1.09 1.14

2 4.22 4.48 1.18 1.18

3 7.00 8.26 1.58 1.24

5 13.19 15.83 1.47 1.97

1000 1 0.83 0.74 1.64 1.05

2 2.33 2.51 1.75 1.19

3 4.04 4.29 1.40 1.30

5 7.43 7.96 1.70 1.54

Table 4.2. Configurational and dynamic properties of Ca2+ and SO2−
4 ions in aqueous

solution from differently strong (sm) adiabatically decoupled simulations in which the tem-
perature of the ions is increased by different amounts (sT). sm: mass scaling factor, sT :
temperature scaling factor, D: diffusion coefficient, ∆g: radial distribution difference.46

phenylethanolamine N-methyltransferase (PNMT) obtained using EDS and a GROMOS force field are com-
pared to experimental data.47 Excellent agreement with experiment is found.

4.6. Structure refinement based on NMR data

In structure refinement of proteins based on NMR data it is tried to find a single structure or a set of
structures that reproduces the measured values of quantities such as NOE atom-atom distances bounds or
3J-couplings. However, this is not always possible due to the presence of different conformers in solution.
Such a case is illustrated in Fig. 4.6, where the set of NMR model structures deposited in the protein
data bank for the peptide GCN4-p1 does not agree with the experimental NOE and 3J-coupling data for
this molecule. Using time-averaging refinement and a GROMOS force field the data can much better be
reproduced48,49.

4.7. Water configurations and mobility in the pore of a membrane protein

In Fig. 4.7, structures of the membrane protein OmpX embedded in a DMPC bilayer take from a simulation
are shown50, and Fig. 4.8 shows the water molecules trapped inside the β-barrel: a very stable salt-bridge
and hydrogen-bond network exists in the barrel which inhibits a water flux.

4.8. Computer time required for MD simulation

Molecular dynamics computer simulations can be rather computer time demanding. In order to obtain an
impression of the computing effort needed to simulate various biomolecular systems some benchmark data
for GROMOS are given in Fig. 4.9.

1-11

Figure 4.5. Perturbation between inhibitors 1 and 5, and 1 and 7 of the protein PNMT
in water for the bound (complex) and unbound (free) ligands with the corresponding free
enthalpy differences and the resulting relative binding free enthalpies as obtained from EDS
simulations.47

1-12

Figure 4.6. Deviations from the experimentally derived NOE upper distance bounds as
a function of the NOE sequence number (left-hand panel, A) and comparison of the ex-
perimental and calculated 3J(HN-HCα)-coupling constants (right-hand panel, B) for the
20 NMR model structures. The corresponding deviations (left-hand panel, C) and com-
parisons (right-hand panel, D) for the simulations in which time-averaged NOE distances
(NOE TAR) were restrained and either the 3J-couplings were instantaneously restrained
(3J TAR) or a local-elevation biased sampling of torsional angles corresponding to 3J-
couplings were applied (3J LE): NOE TAR+3J IR (black) and NOE TAR+3J LE (red).
The corresponding deviations (left-hand panel, E) and comparisons (right-hand panel, F)
for the weighted averages of the central members of the first ten conformational clusters of
the NOE TAR+3J LE simulation. The 179 NOEs and 15 3J-couplings are defined in48 .

1-13

1

Figure 4.7. OmpX protein inserted in a lipid bilayer. A snapshot is shown at the begin-
ning (a) and at the end of the simulations OmpX-DMPC-1 (b) and OmpX-DMPC-2 (c).
The different colors indicate the secondary structure assignment. Lipid head groups are
represented in red and lipid side chains in grey space-filling models.50

Figure 4.8. Water molecules trapped by hydrogen bonds inside the β-barrel for the OmpX-
DHPC simulation50 are shown as red and grey space-filling models. Residues for which
intra-molecular hydrogen bonds are present for more than 90% or between 20 and 90% of
the simulation time are drawn in pink or blue stick diagrams, respectively.

1-14

 0

 5

 10

 15

 20

 25

 30

 35

RBD4 PNMT OMPX SPC CG POL

n
s
 /
 d

a
y

system name

AMD Athlon(tm) 64 X2 Dual Core Processor 6400+
Intel(R) Core(TM) i7 CPU 920 2.67 GHz

Intel(R) Core(TM) i7 CPU X 980 3.33GHz
Intel(R) Core(TM) i7 CPU 920 + NVIDIA Quadro FX 5800

Figure 4.9. Benchmark results in nanoseconds per day for various biomolecular systems
obtained on for different workstation class computers. Simulation settings: 2 fs integration
time-step, twin-range cutoff scheme with cutoff values of 0.8 nm (short range) and 1.4 nm
(long range). The pair list and long-range interactions were calculated every 5 steps. Sys-
tems: RBD4 : polypyrimidine tract binding protein - RNA binding domain 4 bound to RNA
CUCUCU, 1028 solute atoms, 5411 SPC solvent molecules. PNMT : phenylethanolamine
N-methyltransferase (PNMT) protein with bound inhibitor, 2677 solute atoms, 9909 SPC
solvent molecules. OMPX : Outer membrane protein X in a DPPC bilayer, 6322 solute
atoms, 6559 SPC solvent molecules. SPC : 12800 SPC molecules treated as solute, 38400
atoms. CG: 2560 Coarse-grained water molecules, corresponding to 12800 fine-grained wa-
ter molecules, 5120 solute atoms. POL: A beta heptapeptide in polarisable methanol, 63
solute atoms, 1095 polarisable MeOH molecules.

1-15

CHAPTER 5

Limitations of GROMOS

When applying MD to simulate a particular system, a number of preliminary questions have to be answered
and choices related to the level of accuracy must be made. The assumptions and approximations that are
made with respect to the molecular model and the computational procedures will determine the accuracy of
the results obtained. Clearly there are limitations to the usefulness of application of simulation techniques.
These will be briefly discussed below.

1. Since Newton’s equations of motion are solved in an MD simulation, a classical description must be
appropriate for the phenomena to be studied. Generally, when considering a molecular system at
room temperature, quantum effects will not play a significant role as long as no covalent bonds are
broken, etc.

2. With the use of modern computers the length of a MD simulation extends from a few tens of
picoseconds up till hundreds of nanoseconds, depending on the size of the system. This means that
the time scale of a process that can be simulated at the atomic level, is limited. For the simulation
of activated processes special techniques are available, which require the pathway of the process to
be known.

3. Only a limited number of atoms can be simulated, typically up till 105 atoms. The question is how
many atoms are essentially involved in the phenomena to be studied. Atomic degrees of freedom
that are not essential for an adequate description of the phenomenon being studied, may be removed
by applying constraints, or stochastic techniques in combination with potentials of mean force, or
the extended wall region boundary condition.

4. Last but not least, the interaction function or force field that is used will determine the accuracy of
the obtained simulation results. A great variety of molecular models and force fields for molecular
systems under various conditions is available. The choice of a particular force field should depend on
the system properties one is interested in. Some applications require more refined force fields than
others. Moreover, there should be a balance between the level of accuracy or refinement of different
parts of a molecular model. Otherwise the computer effort put into a very detailed and accurate
part of the calculation may easily be wasted due to the distorting effects of the crude parts of the
model.

Although computer simulation is a very powerful technique to study the properties of molecular systems
at the atomic level, one should bear in mind the various assumptions and approximations that are made and
be aware of the limitations of the method.

1-17

Bibliography

[1] J. Hermans, H.J.C. Berendsen, W.F. van Gunsteren, and J.P.M. Postma. A Consistent Empirical Potential for Water-
Protein Interactions. Biopolymers, 23:1513–1518, 1984.

[2] W.F. van Gunsteren and M. Karplus. Effect of Constraints on the Dynamics of Macromolecules. Macromolecules, 15:1528–
1544, 1982.

[3] L.J. Smith, A.E. Mark, C.M. Dobson, and W.F. van Gunsteren. Comparison of MD simulations and NMR experiments
for hen lysozyme: Analysis of local fluctuations, cooperative motions and global changes. Biochemistry, 34:10918–10931,
1995.

[4] X. Daura, A.E. Mark, and W.F. van Gunsteren. Parametrization of Aliphatic CHn United Atoms of GROMOS96 Force
Field. J. Comput. Chem., 19:535–547, 1998.

[5] L.D. Schuler and W.F. van Gunsteren. On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes. Mol.

Simul., 25:301–319, 2000.
[6] L.D. Schuler, X. Daura, and W.F. van Gunsteren. An Improved GROMOS96 Force Field for Aliphatic Hydrocarbons in

the Condensed Phase. J. Comput. Chem., 22:1205–1218, 2001.
[7] I. Chandrasekhar, M. Kastenholz, R.D. Lins, C. Oostenbrink, L.D. Schuler, D.P. Tieleman, and W.F. van Gunsteren. A

consistent potential energy parameter set for lipids: Dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96
45A3 force field. Eur. Biophys. J., 32:67–77, 2003.

[8] C. Oostenbrink, A. Villa, A.E. Mark, and W.F. van Gunsteren. A biomolecular force field based on the free enthalpy of
hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 25:1656, 2004.

[9] T.A. Soares, P.H. Hünenberger, M.A. Kastenholz, V. Kräutler, T. Lenz, R.D. Lins, C. Oostenbrink, and W.F. van Gun-
steren. An Improved Nucleic-Acid Parameter Set for the GROMOS Force Field. J. Comput. Chem., 26:725–737, 2005.

[10] R.D. Lins and P.H. Hünenberger. A new GROMOS force field for hexopyranose-based cardohydrates. J. Comput. Chem.,
26:1400–1412, 2005.

[11] M.Winger, A.H. de Vries, andW.F. van Gunsteren. Force-field dependence of the conformational properties of alpha,omega-
dimethoxypolyethylene glycol. Mol. Phys., 107:1313–1321, 2009.

[12] D. Poger, W.F. van Gunsteren, and A.E. Mark. A new force field for simulating phosphatidylcholine bilayers. J. Comput.

Chem., 31:1117–1125, 2010.
[13] H. Hansen and P.H. Hünenberger. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for

the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers and glycosidic linkage conformers.
J. Comput. Chem., 32:998–1032, 2011.

[14] N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A.E.. Mark, and W.F. van Gunsteren. Definition and
testing of the GROMOS force-field versions: 54A7 and 54B7. Eur. Biophys. J., 40:843–856, 2011.

[15] M.M. Reif, P.H. Hünenberger, and C. Oostenbrink. New interaction parameters for charged amino acid side chains in the
GROMOS force field. J. Chem. Theory Comput., 8:3705–3723, 2012.

[16] W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott, and I.G. Tironi.
Biomolecular Simulation: The GROMOS96 Manual and User Guide. Vdf Hochschulverlag AG an der ETH Zürich, Zürich,
Switzerland, 1996.

[17] D.P. Geerke and W.F. van Gunsteren. Force Field Evaluation for Biomolecular Simulation: Free Enthalpies of Solvation
of Polar and Apolar Compounds in Various Solvents. ChemPhysChem, 7:671–678, 2006.

[18] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, and J. Hermans. Interaction models for water in relation to protein
hydration. In B. Pullman, editor, Intermolecular Forces, pages 331–342. Reidel, Dordrecht, 1981.

[19] A. Glättli, X. Daura, and W.F. van Gunsteren. Derivation of an improved SPC model for liquid water: SPC/A and SPC/L.
J. Chem. Phys., 116:9811–9828, 2002.

[20] R. Walser, A.E. Mark, W.F. van Gunsteren, M. Lauterbach, and G. Wipff. The effect of force-field parameters on properties
of liquids: Parametrization of a simple three-site model for methanol. J. Chem. Phys., 112:10450–10459, 2000.

[21] D.P. Geerke, C. Oostenbrink, N.F.A. van der Vegt, and W.F. van Gunsteren. An Effective Force Field for Molecular
Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide-Water Mixtures. J. Phys. Chem. B, 108:1436, 2004.

[22] I.G. Tironi and W.F. van Gunsteren. A molecular dynamics simulation study of chloroform. Mol. Phys., 83:381–403, 1994.
[23] I.G. Tironi, P. Fontana, and W.F. van Gunsteren. A molecular dynamics simulation study of liquid carbon tetrachloride.

Mol. Simul., 18:1–11, 1996.
[24] L.J. Smith, H.J.C. Berendsen, and W.F. van Gunsteren. Computer Simulation of Urea-Water Mixtures: A Test of Force

Field Parameters for Use in Biomolecular Simulations. J. Phys. Chem. B, 108:1065–1071, 2004.
[25] P.J. Gee and W.F. van Gunsteren. Acetonitrile revisited: a molecular dynamics study of the liquid phase. Mol. Phys.,

104:477–483, 2006.
[26] H. Yu, D.P. Geerke, H. Liu, and W.F. van Gunsteren. Molecular dynamics simulations of liquid methanol and methanol-

water mixtures with polarizable models. J. Comput. Chem., 27:1494–1504, 2006.

1-i

[27] D.P. Geerke and W.F. van Gunsteren. The performance of non-polarizable and polarizable force-field parameter sets for
ethylene glycol in molecular dynamics simulation of the pure liquid and its aqueous mixtures. Mol. Phys., 105:1861–1881,
2007.

[28] D.P. Geerke and W.F. van Gunsteren. On the calculation of atomic forces in classical simulation using the charge-on-spring
method to explicitly treat electronic polarisation. J. Chem. Theory Comput., 3:2128–2137, 2007.

[29] D.P. Geerke and W.F. van Gunsteren. Calculation of the free energy of polarization: quantifying the effect of explicitly
treating electronic polarization on the transferability of force-field parameters. J. Phys. Chem. B, 111:6425–6436, 2007.

[30] A.P. Kunz and W.F. van Gunsteren. Development of a non-linear classical polarisation model for liquid water and aqueous
solutions: COS/D. J. Phys. Chem. A, 113:11570–11579, 2009.

[31] Z. Lin, A.P. Kunz, and W.F. van Gunsteren. A one-site polarizable model for liquid chloroform: COS/C. Mol. Phys.,
108:1749–1757, 2010.

[32] A.P.E. Kunz, A.P. Eichenberger, and W.F. van Gunsteren. A simple, efficient polarisable molecular model for liquid carbon
tetrachloride. Mol. Phys., 109:365–372, 2011.

[33] O.M. Szklarczyk, S.J. Bachmann, and W.F. van Gunsteren. A polarisable empirical force field for molecular dynamics
simulation of liquid hydrocarbons. J. Comput. Chem., 35:789–801, 2014.

[34] S.J. Bachmann and W.F. van Gunsteren. Polarisable model for DMSO and DMSO-water mixtures. J. Phys. Chem. B,
118:10175–10186, 2014.

[35] S.J. Bachmann and W.F. van Gunsteren. On the compatibility of polarisable and non-polarisable models for liquid water.
Mol. Phys., 112:2761–2780, 2014.

[36] S.J. Bachmann and W.F. van Gunsteren. An improved polarisable water model for use in biomolecular simulation. J.

Chem. Phys., 141:22D515, 2014.
[37] Z. Lin, S.J. Bachmann, and W.F. van Gunsteren. GROMOS polarisable charge-on-spring models for liquid urea: COS/U

and COS/U2. J. Chem. Phys., 142:094117, 2015.
[38] S. Riniker and W.F. van Gunsteren. A simple, efficient polarisable coarse-grained water model for molecular dynamics

simulations. J. Chem. Phys., 134:084110, 2011.
[39] O. Szklarczyk, E. Arvaniti, and W.F. van Gunsteren. Polarisable coarse-grained models for molecular dynamics simulation

of liquid cyclohexane. J. Comput. Chem., 36:1311–1321, 2015.
[40] A.P. Eichenberger, W. Huang, S. Riniker, and W.F. van Gunsteren. A supra-atomic coarse-grained GROMOS force field

for aliphatic hydrocarbons in the liquid phase. J. Chem. Theory Comput., 11:2925–2937, 2015.

[41] J.R. Allison, S. Riniker, and W.F. van Gunsteren. Coarse-grained models for the solvents dimethyl sulfoxide, chloroform
and methanol. J. Chem. Phys., 136:054505, 2012.

[42] W. Huang, S. Riniker, and W.F. van Gunsteren. Rapid sampling of folding equilibria of β-peptides in methanol using a
supramolecular solvent model. J. Chem. Theory Comput., 10:2213–2223, 2014.

[43] W. Huang, N. Hansen, and W.F. van Gunsteren. On the use of a supramolecular coarse-grained model for the solvent in
simulations of the folding equilibrium of an octa-β-peptide in MeOH and H2O. Helv. Chim. Acta, 97:1591–1605, 2014.

[44] S. Riniker, A.P.E. Kunz, and W.F. van Gunsteren. On the calculation of the dielectric permittivity of molecular models
in the liquid phase. J. Chem. Theory Comput., 7:1469–1475, 2011.

[45] Z. Lin, N. Schmid, and W.F. van Gunsteren. The effect of using a polarizable solvent model upon the folding equilibrium
of different beta-peptides. Mol. Phys., 109:493–506, 2011.

[46] A.P.E. Kunz and W.F. van Gunsteren. Enhancing the configurational sampling of ions in aqueous solution using adiabatic
decoupling with translational temperature scaling. J. Phys. Chem. B, 115:2931–2936, 2011.

[47] S. Riniker, C.D. Christ, N. Hansen, A.E. Mark, P.C. Nair, and W.F. van Gunsteren. Comparison of enveloping distribution
sampling and thermodynamic integration to calculate binding free energies of phenylethanolamine N-methyltransferase
inhibitors. J. Chem. Phys., 135:024105, 2011.

[48] J. Dolenc, J.H. Missimer, M.O. Steinmetz, and W.F. van Gunsteren. Methods of NMR structure refinement: molecular
dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. J. Biomol.

NMR, 47:221–235, 2010.
[49] J.H. Missimer, J. Dolenc, M.O Steinmetz, and W.F. van Gunsteren. Exploring the trigger sequence of the GCN4 coiled-coil:

biased molecular dynamics resolves apparent inconsistencies in NMR measurements. Protein Sci., 19:2462–2474, 2010.
[50] A. Choutko, A. Glättli, C. Fernández, C. Hilty, K. Wüthrich, and W.F. van Gunsteren. Membrane protein dynamics in

different environments: simulation study of the outer membrane protein X in a lipid bilayer and in a micelle. Eur. Biophys.

J., 40:39–58, 2010.

1-ii

The GROMOS Software for (Bio)Molecular

Simulation

Volume 2: Algorithms and Formulae for Modelling of Molecular Systems

January 9, 2021

Contents

Chapter 1. Introduction 2-1

Chapter 2. Basic choices in the definition of a molecular model 2-3
2.1. Introduction 2-3
2.2. Choice of degrees of freedom 2-4
2.3. Choice of the description of the interaction 2-5
2.4. Choice of method for configuration generation 2-6
2.5. Choice of the boundary conditions 2-8

Chapter 3. Scope of the GROMOS package 2-9
3.1. Introduction 2-9
3.2. Choice of the degrees of freedom 2-9
3.3. Choice of the description of the interaction 2-9
3.3.1. Charge groups, searching neighbours 2-10
3.3.2. Twin-range method for long-range interactions 2-11
3.3.3. Pairlist construction 2-11
3.4. Choice of the method for the configuration generation 2-12
3.5. Choice of the boundary conditions 2-12

Chapter 4. Spatial boundary conditions 2-13
4.1. Introduction 2-13
4.2. Vacuum boundary conditions (VBC) 2-13
4.3. Fixed boundary conditions (FBC) 2-14
4.4. Periodic boundary conditions (PBC) 2-15
4.4.1. Triclinic computational box under PBC 2-16
4.4.2. Special periodic boundary conditions 2-21
4.4.3. Multiple unit-cell simulations under PBC 2-22
4.4.4. Rectangular-brickwall box 2-23

Chapter 5. Bonded interaction force-field terms 2-25
5.1. Bond stretching force-field term 2-25
5.2. Bond-angle bending force-field term 2-26
5.3. Improper dihedral-angle bending force-field term 2-26
5.4. Proper dihedral-angle torsion force-field term 2-27

Chapter 6. van der Waals interactions 2-31
6.1. Introduction 2-31
6.2. Excluded neighbours 2-31
6.3. Normal van der Waals interactions 2-31
6.4. Third-neighbour van der Waals interaction 2-32
6.5. Soft-core interactions 2-33

Chapter 7. Electrostatic interactions 2-35
7.1. Introduction 2-35
7.2. Common features 2-35
7.3. Reaction-field (RF) interactions 2-36
7.4. Lattice-sum (LS) interactions 2-36
7.4.1. Introduction 2-36
7.4.2. Real-space interactions in LS electrostatics 2-44

2-I

7.4.3. Ewald reciprocal-space interactions in LS electrostatics 2-44
7.4.4. PPPM reciprocal-space interactions in LS electrostatics 2-46
7.5. Polarization 2-55
7.5.1. Introduction 2-55
7.5.2. Theory 2-56
7.5.3. Off-atom sites 2-58
7.5.4. Non-linear polarizability 2-59

Chapter 8. Coarse-grained models and multi-resolution simulation 2-61
8.1. Introduction 2-61
8.2. Multi-resolution simulation 2-64

Chapter 9. Special force-field terms 2-65
9.1. Introduction 2-65
9.2. Atom-position restraining or fixed atoms 2-65
9.3. Distance restraining 2-66
9.4. Virtual and pseudo atoms 2-70
9.4.1. CH1-group (aliphatic) 2-72
9.4.2. CH1-group (aromatic) 2-72
9.4.3. CH2-group (two virtual protons) 2-73
9.4.4. CH2-groups (one pseudo site) 2-74
9.4.5. CH3-group (one pseudo site) 2-74
9.4.6. Two CH3-groups (one pseudo site) 2-74
9.4.7. Three CH3-groups (one pseudo site) 2-74
9.4.8. Center of geometry (one pseudo site) 2-75
9.4.9. Center of mass (one pseudo site) 2-75
9.5. Bond-angle restraining 2-75
9.6. Dihedral-angle restraining 2-75
9.7. 3J-coupling constant restraining 2-76
9.8. S2-order parameter restraining 2-82
9.9. X-ray structure factor amplitude restraining 2-84
9.10. X-ray electron density restraining 2-85
9.11. X-ray crystallographic symmetry restraining 2-85
9.12. Distance-field distance restraining 2-86
9.13. Biasing energy functions 2-88
9.13.1. Local elevation biasing 2-88
9.13.2. Umbrella sampling 2-89
9.13.3. Local elevation umbrella sampling (LEUS) 2-89
9.13.4. Ball and stick LEUS 2-90

Chapter 10. Constraints 2-95
10.1. Introduction 2-95
10.2. Position Constraints 2-96
10.3. Constraints using the SHAKE method and its derivatives 2-96
10.3.1. Constraints using the SHAKE method 2-96
10.3.2. Constraints using the SETTLE method 2-99
10.3.3. Constraints using the LINCS method 2-100
10.3.4. Constraints using the M-SHAKE method 2-101
10.3.5. Constraints using the FLEXSHAKE method 2-102
10.3.6. Constrained positions 2-102
10.3.7. Constrained velocities 2-102
10.3.8. Constrained forces 2-103
10.4. Bond-length constraints in the solute 2-103
10.5. Bond-length and bond-angle constraints in solvent 2-104
10.6. Dihedral-angle constraints 2-104
10.7. Translational and rotational constraints 2-107

Chapter 11. Energy Minimization 2-111

2-II

11.1. Introduction 2-111
11.2. Steepest-descent minimization 2-112
11.3. Conjugate-gradient minimization 2-112
11.4. Steepest-descent minimization with constraints (SHAKE) 2-114
11.5. Conjugate-gradients minimization with constraints (SHAKE) 2-115

Chapter 12. Molecular Dynamics 2-119
12.1. Introduction 2-119
12.2. Temperature scaling 2-120
12.2.1. Temperature calculation in MD++ 2-120
12.2.2. Thermostat algorithms in MD++ 2-121
12.2.3. Use of temperature groups, sets of degrees of freedom and thermostats 2-124
12.3. Number of degrees of freedom 2-125
12.4. Calculation of the virial 2-126
12.5. Pressure scaling 2-128
12.6. MD algorithms 2-130
12.7. Initialization, equilibration and sampling 2-131

Chapter 13. Stochastic Dynamics 2-137
13.1. Introduction 2-137
13.2. Leap-frog SD algorithm 2-137
13.3. Choice of atomic friction coefficient 2-141

Chapter 14. Free Energy Determination 2-143
14.1. Introduction 2-143
14.2. Parameterization of the Hamiltonian 2-144
14.2.1. Covalent bond forces 2-145
14.2.2. Covalent bond forces (soft potential energy function) 2-147
14.2.3. Covalent bond-angle forces 2-149
14.2.4. Covalent bond-angle forces (soft potential energy function) 2-151
14.2.5. Improper dihedral-angle forces 2-151
14.2.6. Improper dihedral-angle forces (soft potential energy function) 2-153
14.2.7. Dihedral-angle torsion forces 2-154
14.2.8. Non-bonded forces 2-156
14.2.9. Polarization 2-158
14.2.10. Perturbed atom-atom distance restraints 2-161
14.2.11. Perturbed dihedral angle restraints 2-164
14.2.12. Perturbed distance-field distance restraints 2-165
14.3. Constraints 2-166
14.4. Assigning different λ−dependences for specific groups of atoms 2-167
14.5. Choice of pathway and states A and B 2-170
14.6. Thermodynamic integration 2-172
14.7. Thermodynamic perturbation and extrapolation 2-173
14.8. Umbrella sampling 2-174
14.9. Enveloping Distribution Sampling 2-176
14.9.1. EDS with smoothness parameter s 2-176
14.9.2. Accelerated EDS 2-178
14.9.3. Twin-system EDS 2-180
14.9.4. Configurational EDS 2-180

Chapter 15. QM/MM simulation 2-185
15.1. Introduction 2-185
15.2. Hamiltonian 2-185
15.3. Initialization, simulation and analysis 2-187

Chapter 16. Replica Exchange (RE) Molecular Dynamics 2-189
16.1. Introduction 2-189
16.2. Temperature replica exchange MD 2-190

2-III

16.2.1. Simulation checks 2-191
16.2.2. Factors determining the efficiency 2-192
16.3. Hamiltonian replica exchange MD 2-192
16.4. Initialization, simulation and analysis 2-192
16.4.1. Set up of a RE simulation 2-192
16.4.2. Analysis of a RE trajectory 2-193

Chapter 17. Derivatives of the force-field terms 2-195
17.1. Bond stretching force-field term 2-195
17.2. Bond-angle bending force-field term 2-195
17.3. Improper dihedral-angle bending force-field term 2-196
17.4. Proper dihedral-angle torsion force-field term 2-196
17.5. LJ interaction terms 2-197
17.6. Electrostatic interaction terms: Coulomb plus reactive field 2-197
17.7. Electrostatic interaction terms: lattice sum 2-197

Chapter 18. Appendices 2-199
18.1. Conversion of force constants: bond-stretching and bond-angle bending interactions 2-199

Bibliography 2-i

2-IV

CHAPTER 1

Introduction

In this volume, the molecular model, the molecular interactions, and the computational procedures used
in GROMOS are described. Chap. 2 discusses the basic choices in the definition of a molecular model in a
general way. The application of these choices within GROMOS are outlined in Chap. 3. Chap. 4 discusses
various aspects of the spatial boundary conditions implemented in GROMOS. Chaps. 5, 6 and 7 deal with
the description of molecular interactions divided into covalent interactions (Chap. 5), nonbonded van der
Waals interactions (Chap. 6) and nonbonded electrostatic interactions (Chap. 7). Chap. 8 describes coarse-
grained interactions between supra-molecular particles representing sets of identical molecules. Chaps. 9
and 10 deal with geometrical boundary conditions, which may be either imposed on the system in a soft
way, using restraints (Chap. 9) or enforced in a hard way, defined as constraints (Chap. 10). The next three
chapters involve searching and sampling of conformational space using energy minimization (Chap. 11),
molecular dynamics (Chap. 12), or stochastic dynamics (Chap. 13). Chap. 14 deals with the calculation of
free-energy differences and QM/MM simulations are described in Chap. 15. In Chap. 16 the implementation
of replica exchange methods in GROMOS is discussed. In Chap. 17 all contributions to the molecular forces
and the virial due to the interactions described in Chaps. 5 - 8 are collected and Chap. 18 forms an appendix
with mathematical details on the conversion between different types of force constants.

2-1

CHAPTER 2

Basic choices in the definition of a molecular model

2.1. Introduction

The four basic choices1–3 involved in the definition of a molecular model are (Fig. 2.1) :

A. Choice of the degrees of freedom3,4 (Sec. 2.2) :
What are the variables of the model, i.e. those uniquely defining a system configuration in this
model. Most commonly, this choice is equivalent to that of the elementary particles, i.e. smallest
entities, considered by the model, i.e. the model resolution. The selected degrees of freedom are
treated explicitly by the model. In contrast, degrees of freedom internal to the selected elementary
particles are handled implicitly.

B. Choice of the description of the interaction4 (Sec. 2.3) :
What is the Hamiltonian operator for quantum-mechanical degrees of freedom or the Hamiltonian
function for classical degrees of freedom describing the interaction and kinetic energy associated with
the selected degrees of freedom. This interaction must incorporate the mean effect of the implicit
degrees of freedom on the explicit ones.

C. Choice of method for the configuration generation5,6 (Sec. 2.4) :
What method will be used to generate configurations of the system i.e. values for the variables
defining the degrees of freedom of the model, generally based on information from the corresponding
interaction. The selection of a method, e.g., MC, MD or SD, affects the properties of the resulting
set of configurations in terms of structural, thermodynamic and dynamic properties.

D. Choice of the boundary conditions7 (Sec. 2.5) :
What are the global restrictions imposed on the system during the configuration generation. These
restrictions may represent the interface of the internal degrees of freedom of the system to the outside
world and are typically of a spatial/geometric, thermodynamic or alchemical nature.

Figure 2.1. Four basic choices involved in the definition of a molecular model

Two important considerations typically precede the definition of a molecular model. First, most molecular
models result in equations that are too complex or too numerous for an analytical solution. They must thus
be solved numerically on a computer. Because the computing power is limited, one is always compelled
to strike a balance between the required accuracy of the process or property of interest, the quality of the

2-3

models and the size of the relevant, accessible configurational space of the system that is to be probed in a
tractable amount of computer time.

2.2. Choice of degrees of freedom

The possible physical choices of degrees of freedom in the context of the modelling of molecular systems,
from the highest to the lowest resolution, can be broadly classified as4 (Fig. 2.2) :

A. Nuclei and electrons of atoms
B. Nuclei and valence electrons of atoms
C. Nuclei and (valence) electrons of solute atoms
D. Atoms
E. United-atoms
F. Solute atoms
G. Beads representing atom groups
H. Rigid bodies representing molecules
I. Local properties of finite volume elements

Figure 2.2. Broad classification of the possible levels of resolution or choice of the degrees
of freedom in the modelling of molecular systems.

Each lower level of resolution turns a set of degrees of freedom that were handled explicitly at the previous
level into implicit degrees of freedom at the next level. Models at the levels of resolution of Pts. A-C are
commonly referred to as Quantum Mechanical (QM) models. Models at the levels of resolution of Pts. D-F
are commonly referred to as Atomistic (AA for All Atoms) models. Models at the level of resolution of Pt. G
are commonly referred to as Coarse Grained (CG) models. A number of hybrid methods attempt to merge
different levels of resolution for different parts of a molecular system.

The selected level of resolution determines what should be referred to as the configuration or microstate of a
corresponding system ofNd degrees of freedom. At the levels of resolution of Pts. A-C, a quantum-mechanical
description is the most appropriate. In this case, a configuration of a system of particles is defined in the
position representation by a wavefunction Ψ

.
= Ψ(rr), where rr is the Nd-dimensional vector characterizing the

Nd = 3Na positional degrees of freedom associated with the Na quantum-mechanical particles considered. At
the levels of resolution of Pts. D-G, a classical description is the most appropriate. In this case, a configuration
of a system of particles is defined by two Nd-dimensional vectors qq and ppqq , containing Nd = 3Na generalized
coordinates and momenta associated with the Na classical particles considered, respectively. In the special
case where a Cartesian coordinate system is adopted, qq is written as rr and contains the components of the
Cartesian particle coordinates as triplets, while ppqq is written pp and contains the components of the Cartesian
particle momenta as triplets. This situation may be noted

rrN
.
= {ri | i = 1..Na} and ppN

.
= {pi | i = 1..Na} , (2.1)

where ri and pi are the three-dimensional Cartesian coordinate and momentum vectors of a particle i.
For simplicity and unless otherwise specified, a Cartesian coordinate description will be used systematically
throughout this manual. At the level of resolution of Pt. H, there are twelve degrees of freedom per rigid

2-4

molecule (position, orientation, translational velocity, rotational velocity). Finally, at the level of resolution
of Pt. I, a continuous-material description is adopted and the number of degrees of freedom per volume
element depends on the (scalar or vector) properties that are considered.

In many cases, the choice of the degrees of freedom included in a model is not physical, i.e. matching
exactly the real degrees of freedom of a molecular system. Important examples include :

J. The Car Parrinello (CP) approach8 :
Here the electronic degrees of freedom in the form of the coefficients of the electronic wavefunction
are treated as classical degrees of freedom and evolved in time simultaneously with the classically
treated nuclei.

K. The Charge On Spring (COS) approach9 :
Here, the instantaneous dipoles associated with electronic polarization effects are accounted for by
means of artificial point charges connected to the atoms by means of harmonic springs.

L. The Path Integral (PI) approach10 :
Here, a system of particles treated at the classical level is used to emulate the statistical-mechanical
properties of a corresponding quantum-mechanical system a single quantum-mechanical particle
being assigned to a given number of the classical particles, connected by harmonic springs in a ring
topology.

M. Various extended-system methods :
Here, one or a few additional degrees of freedom are added to those of the physical system and evolved
simultaneously, e.g. thermostat or barostat variables,7,11 force-field parameters to be refined,12

atomic charges to account for polarization effects9 as in the fluctuating charge model, Hamiltonian
coupling parameters.

N. Ensemble propagation approaches5,13 :
Here the degrees of freedom do not correspond to those of a single molecular system, but to the
coefficients of an ensemble probability distribution of such systems (as projected in a given basis
set).13

The choice of the degrees of freedom or particles that are handled explicitly in the model automatically
implies a definition of the implicit degrees of freedom, the internal degrees of freedom of the selected particles
that are not considered explicitly in the model.

The possibilities in the domain of application of the GROMOS package in terms of degrees of freedom
are discussed in Sec. 3.2.

2.3. Choice of the description of the interaction

When the degrees of freedom of the model are to be treated according to the laws of quantum mechanics,
the interaction associated with the selected degrees of freedom is described by a Hamiltonian operator Ĥ.
Assuming that this operator is constant i.e. not explicitly dependent on any external parameter or on time,
and that all elementary, subatomic, particles are explicitly included in the model, the expectation value 〈Ĥ〉
of the Hamiltonian operator in terms of the wavefunction Ψ

.
= Ψ(rr) representing a system configuration

represents the total, kinetic plus potential, energy of the system in this configuration, i.e.

〈Ĥ〉[Ψ]
.
= 〈Ψ | Ĥ | Ψ〉 , (2.2)

where the square brackets indicate a functional dependence and it is assumed that Ψ is normalized. The
Hamiltonian operator is itself the sum of a kinetic energy operator K̂ and a potential energy operator V̂ , i.e.

Ĥ .
= K̂ + V̂ (2.3)

with

K̂ .
= −

Na∑

i=1

~2

2mi
∇2

i , (2.4)

where mi is the mass of particle i and ~
.
= (2π)−1h, h being Planck’s constant. The potential energy

operator accounts for the proper interaction between the different quantum-mechanical particles. When the
quantum-mechanical degrees of freedom included in the model do not encompass all particles in the system,
the interaction may still tentatively be formulated using an effective Hamiltonian operator that encompasses
the mean effect of the implicit degrees of freedom on the explicit ones, e.g. as in the use of pseudo-potentials

2-5

accounting for the implicit core electrons or of effective solvation terms for the implicit solvent in the potential
energy operator.

When the degrees of freedom of the model are to be treated according to the laws of classical mechanics,
the interaction associated with the selected degrees of freedom is described by a Hamiltonian function H.
Assuming that this function is constant, i.e. not explicitly dependent on any external parameter or on time,
that all elementary particles or atoms are explicitly included in the model, and using a Cartesian coordinate
system, the Hamiltonian function can be written H(rrN , ppN), and its value is equal to the total, kinetic plus
potential, energy of the system in the configuration (rrN , ppN). The Hamiltonian function is the sum of a
kinetic energy function K that solely depends on the Cartesian momenta of the particles and a potential
energy function V that solely depends on the Cartesian coordinates of the particles, i.e.

H(rrN , ppN)
.
= K(ppN) + V(rrN) (2.5)

with

K(ppN)
.
=

Na∑

i=1

1

2mi
p2
i . (2.6)

When a generalized coordinate system is employed, the kinetic energy is in the general case a function of both
coordinates and momenta. The potential energy function accounts for the proper interaction between the
different classical particles. When the classical degrees of freedom included in the model do not encompass
all particles in the system, the interaction may still tentatively be formulated using an effective Hamiltonian
function that encompasses the mean effect of the implicit degrees of freedom on the explicit ones. According
to classical statistical mechanics, the ensemble properties of the reduced system will be identical to those of
a corresponding all-particle system if the potential energy function involved in the effective Hamiltonian is
defined as a potential of mean force, i.e. a potential energy term or function, the derivative of which is equal
to the force on the explicit degrees of freedom ensemble-averaged over the compatible values of the implicit
degrees of freedom. In this situation, the notation V (potential of mean force) instead of V (all-particle
potential energy term or function) will sometimes be used when the distinction is important.

Finally, when the degrees of freedom of the model are to be treated according to a continuous-material
description, the interaction is typically described in terms of gradients of specific intensive properties and
conservation equations for specific extensive properties.

When modelling aims at emulating the physical behaviour of a molecular system as closely as possible, the
approximations employed to define the interaction should be as representative as possible for the real physical
situation. In some cases, however, alterations are performed, typically in the form of extra unphysical and
possibly time-dependent terms included into the potential energy function to serve specific purposes, e.g.
enhanced probing of the configurational space, inclusion of experimental data as a boundary condition. The
possibilities in the domain of application of the GROMOS package in terms of interactions are discussed in
Sec. 3.3.

2.4. Choice of method for configuration generation

The possible choices of methods to generate configurations of a molecular system can be broadly classified
as:6

A. Search methods:
Generation of a set of relevant configurations within the configurational space of the system, typically
configurations representing local energy minima, without any further requirement on the distribution
or time sequence of these configurations.

B. Sampling methods:
Generation of a set of system configurations obeying a well-defined probability distribution in terms
of energy, a configurational ensemble.

C. Simulation methods:
Generation of a time sequence of system configurations obeying a particular probability distribution
both governed by the chosen equation of motion.

Both sampling and simulation methods permit the evaluation of thermodynamic properties from the generated
configurational ensemble. Only simulation methods permit the evaluation of dynamical properties from the
generated trajectory.

2-6

At the quantum-mechanical level assuming that the Hamiltonian operator is constant, the simulation of
a molecular system involves the integration of the time-dependent Schrödinger equation

ĤΨ(rr, t) = i~
∂

∂t
Ψ(rr, t) , (2.7)

where Ψ(rr, t) represents the instantaneous state of the system at time t. Integrating this equation numerically
forward in time on a computer to simulate quantum-dynamical behaviour of a molecular system is called
quantum molecular dynamics (QMD) simulation. Two simplifying approximations are often made in QMD :
(i) A molecule is built up from just two types of particles, nuclei with negligible size and irrelevant internal
structure and electrons, the motion of which can be separated using the Born-Oppenheimer approximation.
Thus, a complex molecular system can be described as a system of point masses moving in an effective
potential field; (ii) Some particles, e.g. the nuclei, obey the laws of classical mechanics. This is a reasonable
assumption at room temperature and for all but the lightest atoms. For the latter the path-integral formalism
can be used to obtain the quantum equilibrium distribution using classical equations of motion.

At the classical level, using a Cartesian coordinate system, the simulation of a molecular system involves
the integration of the Newtonian equations of motion

ṗpN (t) = −∇V(rrN(t)) and ṙrN(t) = m−1ppN(t) (2.8)

where m is a Nd-dimentional (diagonal) mass matrix of a system of Na particles containing the mass of
the atoms by triplets along its diagonal and (rrN (t), ppN (t)) represents the instantaneous configuration of the
system at time t. These equations represent a particular case of the more general Hamiltonian equations of
motion in the special case of a Cartesian coordinate system. Two relevant quantities entering in Eq. 2.8 are
the Nd-dimensional force and velocity vectors, i.e.

vvN (t)
.
= m−1ppN (t) = ṙrN (t) (2.9)

and

ffN (t)
.
= −∇V(rrN (t)) = ṗpN (t) , (2.10)

with the notation

vvN
.
= {vi | i = 1..Na} and ffN .

= {f i | i = 1..Na} . (2.11)

where vi and f i are the three-dimensional Cartesian velocity and force vectors of a particle i. In terms of
these quantities, the first equation in Eq. 2.8 may equivalently be written

mv̇vN (t) = ffN (t) . (2.12)

Integrating Eq. 2.8 numerically forward in time on a computer to simulate classical-dynamical behaviour of
a molecular system is called classical molecular dynamics (MD) simulation.

An alternative to Newtonian equations of motion are the Langevin equations of motion

mv̇vN (t) = ffN (t) + ffst,N(t)−mγvvN (t) , (2.13)

where

ff(t)
.
= −∇V(rr(t)) . (2.14)

The mean force ff is the negative gradient of the potential of mean force V , i.e. it includes the forces between
the explicit particles but also accounts in an effective fashion for the average forces exerted by the implicit
particles.

The stochastic force is denoted by ffst(t) and the frictional force is proportional to the velocities vi with
the proportionality factor mγ, in which γ is a diagonal matrix containing the atomic friction coefficients
γi. A stochastic force introduces energy into the system, and a frictional force removes energy from it.
The condition of zero energy loss on average will relate the two forces. If the stochastic force fsti obeys a
Gaussian probability distribution with zero mean, if it is not correlated with prior velocities or forces, and
if the friction coefficient γi is independent of time, this condition reads

< (fsti)2 > = 6miγi kB T ref (2.15)

where a time average is denoted by <...>, kB is Boltzmann’s constant, and T ref is the reference temperature
of the system. Numerical integration of the stochastic equations of motion is called stochastic dynamics (SD)
simulation. Different approximations to this purpose are Stochastic Dynamics (SD), high viscosity SD or
Brownian Dynamics (BD) or Diffusive Particle Dynamics (DPD).

2-7

Finally, when the degrees of freedom of the model are to be treated according to a continuous-material
description, the equations of motion are typically formulated in terms of transport equations that relate the
flow of specific extensive properties to the gradients of specific intensive properties.

A molecular system can be coupled to external quantities in different ways (see also Sec. 2.5):

1. Inclusion of an extra term V(res)(rr), a penalty function, in the interaction function of the system
that restrains the motion of the particles such that the simulated value approaches the prescribed
value of the given external quantity.

2. The prescribed value of the external quantity can be imposed as a constraint on to the system, such
that it is satisfied by every configuration.

3. A first-order equation can be added to the particle equations of motion that drives the simulated
value of the external quantity towards the prescribed value: the so-called weak-coupling method.

The latter two methods imply modification of the classical equations of motion of the molecular system.

We note that the total energy of the system will only be conserved in an MD simulation if the potential
energy V is only a function of the current configuration. When applying weak coupling or a penalty function
with time-averaged parameter values, this condition is not fulfilled.

The possibilities in the domain of application of the GROMOS package in terms of configuration gener-
ation are discussed in Sec. 3.4.

When performing energy minimization, the potential energy V molecular system is minimized using the
negative gradient of this function.

2.5. Choice of the boundary conditions

The term boundary condition refers to global restrictions imposed on the system during the configuration
generation. A restriction may be hard, a constraint affecting all individual configurations, or soft, a constraint
on the average value of an observable over the generated configurations or a restraint biasing this average
value towards a specified target value. One may distinguish the following types of boundary conditions:

A. Spatial boundary conditions
These concern the nature of the confinement or periodicity applied to the molecular system. Typical
examples are: Vacuum Boundary Conditions (VBC), a set of molecules in vacuum, Fixed Boundary
Conditions (FBC), a system confined to a fixed region of space by means of a wall, and Periodic
Boundary Conditions (PBC), a periodic system defined by the replication of a computational box
of space-filling shape.

B. Geometric boundary conditions
These concern the possible presence of constraints or restraints on specific internal coordinates within
the system. Typical examples are the use of rigid bond lengths, the use of experiment-based restraints
affecting specific internal coordinates or averages thereof, the use of artificial constraints or restraints
on a specific internal coordinate, e.g. to avoid structural distortions during the equilibration phase of
a simulation, or to bias the generation of configurations towards specific regions of the configurational
space.

C. Thermodynamic boundary conditions
These concern the thermodynamic state point associated with the generated configurational ensem-
ble. Typical examples are a constant number of particles vs a constant chemical potential, a constant
volume vs a constant pressure, a constant energy or enthalpy vs a constant temperature. In specific
cases, other variables may be required for the definition of the thermodynamic state point.

The possibilities in the domain of application of the GROMOS package in terms of boundary conditions
are discussed in Sec. 3.5.

2-8

CHAPTER 3

Scope of the GROMOS package

3.1. Introduction

The GROMOS package for molecular simulation currently consists of two subpackages that are tightly
linked together but can largely be compiled and used as separate entities.

a. GROMOS++ is a library of supporting programs for pre- and post-MD tasks. It mainly consists
of programs to facilitate the setup of simulations and of programs to analyze trajectories that are
the results of such simulations.

b. MD++ is an energy minimizer and simulator, written in C++ in an object oriented manner.

This chapter discusses the options offered by the two subpackages regarding the four basic aspects of
molecular simulation.

3.2. Choice of the degrees of freedom

GROMOS can only consider degrees of freedom behaving according to the laws of classical mechanics.
These are usually atoms or united atoms with two exceptions : (i) beads assumed to behave classically in a
coarse-grained representation of molecular systems; (ii) beads connected by harmonic springs in a ring topol-
ogy as a path-integral representation of a quantum-mechanical system. GROMOS is primarily intended for
simulations of condensed-phase systems, solutions, pure liquids and crystals, with an explicit representation
of the solvent molecules in the case of solutions. However, the simulation of systems in the gas phase and of
solutions with an implicit-solvent representation are also possible. Since GROMOS was originally developed
for atomic degrees of freedom, particles are generally named atoms, although they actually may be groups
of atoms or path-integral beads.

3.3. Choice of the description of the interaction

In classical simulations, the Hamiltonian of a molecular system has the form

H(ppN , rrN) = K(ppN) + V(rrN) (3.1)

The first term is the kinetic energy term

K(ppN) =

N∑

i=1

p 2
i

2mi
=

N∑

i=1

1
2mi

v 2
i , (3.2)

which is independent of the particle coordinates rrN in the absence of geometric positional constraints.
If constraints are imposed, the components of the momenta pi or the velocities vi along the constrained
degrees of freedom must be zero. The second term is the potential energy term or interaction function, which
describes the interaction energy in terms of particle coordinates r

V(rr ; s) ≡ V(r1, r2, . . . , rN ; s1, s2, . . . , sM). (3.3)

Here rrN denotes the 3Na-dimensional Cartesian coordinate vector of the system (periodic copies of the atoms
within the reference box if PBC is applied). Generally, such a potential energy function V(rrN ; s) depends
on a number (M) of parameters, also called force-field parameters, here indicated by s ≡ (s1, s2, . . . , sM).
In practice, the interaction function V(rrN) consists of a sum of terms which represent different types of
interactions. We distinguish two types of interactions or forces:

1. The standard physical atomic interaction function V(phys)(rrN , s), e.g. the GROMOS force field.

2-9

2. The non-physical atomic interaction function terms V(spec)(rrN), which are included to serve a special
purpose, e.g. atomic position restraining, distance restraining, dihedral-angle restraining, etc.

So, we have

V(rr ; s) = V(phys)(rrN ; s) + V(spec)(rrN) (3.4)

The physical potential energy term V(phys) is further divided into a term V(cov) corresponding to covalent

interactions and a term V(nbd) corresponding to non-bonded interactions. This results in

V(phys)(rrN ; s)
.
= V(cov)(rrN ; s) + V(nbd)(rrN ; s) . (3.5)

The covalent term is further partitioned as a sum of contributions from bond stretching, bond-angle bending,
improper dihedral-angle bending and proper dihedral-angle torsion interactions, namely

V(cov)(rrN ; s)
.
= V(b)(rrN ; s) + V(θ)(rrN ; s) + V(ξ)(rrN ; s) + V(ϕ)(rrN ; s) . (3.6)

The non-bonded term is further partitioned as a sum of contributions from van der Waals and electrostatic
interactions, namely

V(nbd)(rrN ; s)
.
= V(vdw)(rrN ; s) + V(ele)(rrN ; s) . (3.7)

The different terms involved in Eqs. 3.5-3.7 are described in Chaps. 5, 6 and 7. The force f i on particle i
due to a particular interaction term is given by the relation

f i = − ∂

∂ri
V(r1, r2, ..., rN), (3.8)

which can also be used to obtain the interaction energy difference that corresponds to a given force f i. We
note that a MD trajectory only depends on the forces on the atoms, not on the energies.

The derivatives of the potential energy terms with respect to atomic coordinates, box or coupling param-
eters are provided in Chap. 17, while the parameters involved in these terms are included as part of the
GROMOS force-field description in Vol. 3.

3.3.1. Charge groups, searching neighbours. The bulk of the computer time required by a simu-
lation time step is used for calculating the non-bonded interactions, that is, for finding the nearest neighbour
atoms and subsequently evaluating the van der Waals and electrostatic interaction terms for the obtained
atom pairs. Therefore, various schemes for performing this task as efficiently as possible are available.14

Since the non-bonded interaction between atoms decreases with the distance between them, only interac-
tions between atoms closer to each other than a certain cut-off distance Rc are generally taken into account
in simulations.

When the (partial) atomic charges of a group of atoms add up to exactly zero, the leading term of the
electrostatic interaction between two such groups of atoms is of dipolar (1/r3) character. The sum of the
1/r monopole contributions of the various atom pairs to the group-group interaction will be zero. Therefore,
the range of the electrostatic interaction can be considerably reduced when atoms are assembled in so-called
charge groups, which have a zero net charge, and for which the electrostatic interaction with other (groups
of) atoms is either calculated for all atoms of the charge group or for none.

The GROMOS force fields make use of this concept of charge groups. The atoms that belong to a charge
group are chosen such that their partial atomic charges add up to zero. For groups of atoms with a total
charge of +e or −e, like the sidechain atoms of Arg or Asp, the partial atomic charges of the charge group
may add up to +e or −e. When a cut-off radius is used, one can choose to base this cutoff on the atomic
positions (AT) or to use a charge group based cutoff. The position of a charge group is defined differently
for a charge group belonging to the ”solute” part of the molecular topology and one in the ”solvent” part of
the molecular topology.

- The position of a ”solute” charge group is taken to be its centre of geometry:

Rcg =

Ncg∑

i=1

ri/Ncg (3.9)

where the number of atoms belonging to the charge group is denoted by Ncg.
- The position of a ”solvent” charge group is taken to be the position of the first atom of a solvent
molecule. A ”solvent” molecule may only contain one charge group.

2-10

Therefore, in the GROMOS non-bonded interaction subroutines the cut-off radius Rc , denoted by
RCUTP, is used to select nearest-neighbour charge groups.

The simplest way to find the neighbouring charge groups of a charge group, that is, the charge groups
that lie within Rc , is to scan all possible charge group pairs in the system. For a system consisting of
NCG charge groups, the number of pairs amounts to 1/2NCG

2, which makes the computer time required
for finding the neighbours in this way proportional to NCG

2. Faster neighbour-search algorithms do exist,
see Sec. 3.3.3. Once the neighbours have been found, the time required for calculating the non-bonded
interaction is proportional to NCG . We note that non-bonded interactions within a charge group may need
to be calculated, when the charge group contains many atoms.

3.3.2. Twin-range method for long-range interactions. In order to evaluate the non-bonded
interaction (Eq. 3.7) with sufficient accuracy, a long cut-off radius Rcl has to be used; for molecular systems
a value of at least 1.4 nm seems necessary. But such a range is very expensive if pair interactions are
evaluated; the number of neighbour atoms within 1.4 nm will exceed 300. Therefore, in GROMOS the non-
bonded interaction can be evaluated using a twin-range method.15 Secondly, the electrostatic interactions
beyond the long-range cutoff Rcl can be approximated by a Poisson-Boltzmann generalized reaction field
term.

The non-bonded interactions in Eq. 3.7 are evaluated at every simulation step using the charge group
pair list that is generated with a short range cut-off radius Rcp (=RCUTP). The longer range non-bonded
interactions, that is, those between charge groups at a distance longer than Rcp and smaller than Rcl

(=RCUTL), are evaluated less frequently, viz. only at every n-th (=NSNB) simulation step when also the
pair list is updated. They are kept unchanged between these updates. In this way the long-range non-bonded
forces can be approximately taken into account, without increasing the computing effort significantly, at the
expense of neglecting the fluctuation of the forces beyond Rcp during n simulation steps.

The long-range interaction, which is calculated for charge group pairs at distances between Rcp and Rcl,
is evaluated by using the electrostatic term in Eq. 3.7 and the normal van der Waals parameters in the
Lennard-Jones term. It is assumed that no excluded neighbours, no third-neighbour or 1,4-interactions and
no intra-charge-group interactions exist at these distances. So Rcp must not be chosen too small.

The evaluation of the nonbonded interactions in GROMOS relies on the application of the twin-range
method.1,16–18 The GROMOS implementation of this approach relies on the definition of: (1) a short-
range pairlist and cutoff distance Rcp; (2) an intermediate-range pairlist and cutoff distance Rcl; (3) anupdate
frequency Ns for the short-range pairlist and for the intermediate range interactions; Short-range interactions
are computed every time step based on a short-range pairlist containing pairs in the distance range [0; Rcp

].

The short-range pairlist is reevaluated every Ns time steps. It can be generated either on the basis of
distances between charge groups (groups of covalently linked atoms defined in the system topology) or of
distances between individual atoms. Intermediate range interactions are computed every Ns time steps
based on all pairs in the distance range [Rcp; Rcl] at the time of the evaluation of these interactions. The
energy, forces, and virial contributions associated with intermediate-range interactions are assumed constant
between two updates (i.e., during Ns steps).

The evaluated interaction includes Lennard-Jones and electrostatic components. The latter component
may include a reaction-field contribution or the real-space contribution to a lattice-sum method. Note
that the real-space contribution to a lattice-sum method may only be computed within the short-range
contribution to the interaction.

3.3.3. Pairlist construction. Pairlist construction may be performed in three different ways:

1. using the standard double-loop algorithm;
2. using a grid-based pairlist algorithm19;
3. using a slight variation of the grid-based algorithm, which permits easier parallelization and avoids

periodicity corrections during the interaction evaluation.

The standard double-loop algorithm is selected by setting the algorithm flag in the PAIRLIST block to 0.
A grid-based pairlist algorithm is implemented to allow for a fast construction of cutoff-based nonbonded
pairlists in molecular simulations under periodic boundary conditions based on an arbitrary box shape
(rectangular, truncated-octahedral, or triclinic).19 The key features of this algorithm are: (1) the use of a
one-dimensional mask array (to determine which grid cells contain interacting atoms) that incorporates the
effect of periodicity, and (2) the grouping of adjacent interacting cells of the mask array into stripes, which

2-11

permits the handling of empty cells with a very low computational overhead. Testing of the algorithm on
water systems of different sizes (containing about 2000 to 11,000 molecules) has shown that the method: (1)
is about an order of magnitude more efficient compared to a standard (double-loop) algorithm, (2) achieves
quasi-linear scaling in the number of atoms, (3) is weakly sensitive in terms of efficiency to the chosen number
of grid cells. This grid-based algorithm is set by setting the algorithm parameter in the PAIRLIST block to
2.

Furthermore, MD++ includes a slightly modified version of this grid-based pairlist algorithm following
ideas similar to those of a published pairlist algorithm.20 In an effort to reduce the number of nearest image
determinations during the pairlist generation and the nonbonded force calculation, the system gets extended
on all sides before the pairlist construction. The additional atom or charge-group positions are obtained by
simple shifts of the original positions by the box vectors. To allow for more efficient (distributed- memory)
parallelization and to save time, the central computational box is divided into N layers. Each of the P
parallel processes only has to extend over N/P layers. After every extension, the atom pairs consisting of
one atom within the layer and a second atom from one of the above (not extended) layers are added to the
respective pairlist (using a one-dimensional mask array). Filtering or energy and force evaluation can then
be carried out right away (without nearest image determinations owing to the preshifted atomic positions),
or at a later stage with the information on the shift vectors encoded into the pairlist, thus enabling a fast
reconstruction of the shifted positions. This version of the grid-based algorithm is selected by setting the
algorithm flag of the PAIRLIST block to 1.

3.4. Choice of the method for the configuration generation

The GROMOS program MD++ may be used to perform energy minimizations, molecular dynamics
simulations or stochastic dynamics simulations. Details of the algorithms that are implemented and consid-
erations to be kept in mind when setting up the calculations are given in Chaps. 11, 12 and 13 respectively.

3.5. Choice of the boundary conditions

GROMOS offers a wide range of algorithms to apply boundary conditions to an energy minimization,
molecular or stochastic dynamics simulation. Spatial boundary conditions are limited to vacuum boundary
conditions, fixed boundary conditions or periodic boundary conditions in various shapes. Details for spatial
boundary conditions are described in Chap. 4. Geometric boundary conditions may be applied in the form of
restraints through the use of special force-field terms (Chap. 9) or as constraints through a direct adaptation
of the equations of motion (Chap. 10). GROMOS currently cannot perform simulations in a grand-canonical
ensemble, i.e. with constant chemical potential rather than constant number of particles.

2-12

CHAPTER 4

Spatial boundary conditions

4.1. Introduction

When simulating a system of finite size, some thoughts must be given to the way how the boundary of the
system will be treated. Spatial boundary conditions define the shape, size and confinement of the simulated
system. GROMOS can handle the following types of spatial boundary conditions:

A. Vacuum boundary conditions (VBC) describe a system of particles surrounded by vacuum.
B. Fixed boundary conditions (FBC) describe a system of particles confined within a finite volume.
C. Periodic boundary conditions (PBC) describe a system of particles within a reference computational

box of space-filling shape surrounded by an infinite lattice of periodic replicas of itself.

The simplest choice is the vacuum boundary condition, which is discussed in Sec. 4.2. The fixed boundary
conditions (Sec. 4.3) are not implemented separately in GROMOS and are treated like a special case
of a vacuum simulation. Periodic boundary conditions are useful in simulations of solutions, to remove
surface effects when dealing with microscopic samples, and in simulations of crystals based on the periodicity
determined by the crystallographic unit cell. When periodic boundary conditions are applied, the shape, size
and orientation of the computational box must be defined. Sec. 4.4 discusses the use of periodic boundary
conditions in GROMOS.

4.2. Vacuum boundary conditions (VBC)

Simulating a molecular system in vacuo, that is, without any wall or boundary, corresponds to the gas
phase at pressure zero. When the vacuum boundary is used for a molecule in solution, properties of atoms
near or at the surface of the system will be distorted21,22. The vacuum boundary condition may also distort
the shape of a non-spherical molecule, since it generally tends to minimize the surface area. Moreover,
the shielding effect of a solvent with high dielectric permittivity, such as water, on the electric interaction
between charges or dipoles in a molecule is missed in vacuo. Therefore, simulation of a charged extended
molecule e.g. DNA in vacuo is a precareous undertaking. The best results in vacuo are obtained for relatively
large globular macromolecules.

The vacuum boundary condition is selected using the switch NTB = 0 in the input block BOUNDCOND.
When the molecular system contains groups of atoms with a total net charge not equal to zero, it is advised
to use the GROMOS 45B4 or 54B7 force field in which charged charge groups are neutralized and some van
der Waals parameters are modified in order to maintain the hydrogen binding capacity of the charge group
that is neutralized.

When simulating a system in vacuo, the translational momentum and the angular momentum are con-
served quantities. Therefore, it is common practice to stop the translational motion of the centre of mass
and the rotational motion around the centre of mass at the start of such a simulation. This is done by using
NTICOM=2 in the input block INITIALISE at the start of a simulation. In vacuo these motions will remain
absent (zero), except in the case of long simulations, when the numerical noise may build up a sizeable
centre of mass translation or rotational motion, especially when the system is coupled to a temperature
bath. Therefore, it is advisable to stop the centre of mass motion regularly, e.g. by setting the number of
steps after which centre of mass motion is stopped, NSCM = 10000 in the input block COMTRANSROT in
MD++. By specifying a negative number for NSCM, the centre of mass rotation is stopped additionally.

2-13

The temperature T of a system is calculated using the relation

Na∑

i=1

1/2miv
2
i = 1

2NdkBT (4.1)

where kB is Boltzmann’s constant and the number of degrees of freedom in the system is denoted by

Nd = 3Na −Nc −NDFMIN (4.2)

Here the number of atoms is Na and the number of geometric constraints is Nc. The choice of the value for
NDFMIN in input block BOUNDCOND should depend on the boundary condition chosen and on whether
the centre of mass motion is regularly stopped.

When the overall translational and rotational motion has been stopped and the system is in vacuo, six
degrees of freedom have to be subtracted from the total in Eq. 4.2, so NDFMIN = 6, in order to obtain the
correct kinetic energy per degree of freedom.

4.3. Fixed boundary conditions (FBC)

When simulating crystals or solutions of large molecules, the application of periodic boundary conditions
may require many atoms to be included in the computational box and so may become very expensive. In
that case the number of atoms in the simulation can be limited by simulating only part of the molecular
system. For example, only the atoms within a spherical region around a specific atom or point in the system
are retained, while all atoms lying beyond a radius R2 are removed from the system. Edge effects, due to
the presence of vacuum beyond R2, can be minimized by restraining the motion of the atoms in the outer
shell, viz. between radii R1 and R2. This shell is called the extended wall region (see Fig. 4.1). The atoms
in this wall region can be kept fixed or near given stationary reference positions by the technique of position
restraining, which is discussed in Sec. 9.2. Atoms in the inner region, within R1, are simulated without any
restraints.

vacuum

restrained MD

full MD

R1
R2

Figure 4.1. Spherical wall region with restrained atomic motion

When applying the extended wall region boundary condition, the molecular topology (Vol. 4) can be
reduced to one containing only atoms, i.e. charge groups, that lie within a distance R2 from a given point.
The subset of atoms within the simulation sphere and in the extended wall region may be obtained from
a complete system using the GROMOS++ program pairlist (Sec. 5-5.5), the molecular topology may
subsequently be reduced using the program red top (Sec. 5-2.27). The coordinate file can be modified using
the GROMOS++ program filter (Sec. 5-4.29). The reduced system is not restricted to be of spherical
shape. During a simulation the vacuum boundary condition should be selected (NTB = 0) and position

2-14

restraining applied to the atoms forming the wall region. Again, the restrained region is not restricted to
being a spherical shell.

In order to avoid distorting effects of the vacuum beyond R2 on the atomic motion within R1 , one should
choose these radii such that

Rc < R2 −R1 (4.3)

that is, the thickness of the shell of restrained atoms should be larger than the nonbonded cut-off radius Rc

.

4.4. Periodic boundary conditions (PBC)

The classical way to minimize edge effects in a finite system is to use periodic boundary conditions. The
atoms of the system that is to be simulated are put into a periodic, space filling box, cubic, rectangular,
triclinic, truncated octahedral, which is surrounded by identical translated images of itself (Fig. 4.2).

Rc

Figure 4.2. Periodic boundary conditions.

When an atom leaves the central box at one side, it enters it with identical velocity at the opposite side
at the translated image position. Application of periodic boundary conditions means that in fact a crystal
is simulated. For a molecule in solution the periodicity is an artifact of the computation, so the effects of
periodicity on the forces on the atoms should not be significant. Possible distorting effects of the periodic
boundary condition may be traced by simulating systems of different sizes.

When simulating a system using periodic boundary conditions, the translational momentum is a conserved
quantity, but the angular momentum of the system is not conserved. As in vacuo, it is common practice to
stop the translational motion of the centre of mass of the system and also the rotational motion around the
centre of mass at the start of a simulation. However, the rotational degrees of freedom will pick up energy
when the system evolves, and the translational energy should remain zero. Therefore, when the temperature
of the system is calculated using Eqs. 4.1-4.2 three degrees of freedom have to be subtracted from the total
in Eq. 4.2, so NDFMIN = 3, in order to obtain the correct kinetic energy per degree of freedom. As in the
case of vacuum boundary condition, the centre of mass motion should be stopped now and then to avoid
build-up of translational motion due to numerical noise in long simulations.

2-15

As all space filling boxes, i.e. cube, rectangular box, triclinic box, truncated octahedron, used inGROMOS

can be expressed as triclinic boxes, this case is discussed in more detail in the following section. Periodic
boundary conditions are switched on when NTB 6= 0. If NTB=1 rectangular periodic boundary condi-
tions will be applyied, triclinic periodic boundary conditions for NTB=2, and truncated-octahedral periodic
boundary condition for NTB=-1.

4.4.1. Triclinic computational box under PBC. The spatial properties, including position, shape,
size and orientation, of an arbitrary triclinic box relative to a reference coordinate system {O, êx, êy, êz},
assumed Cartesian and right-handed, can be specified by 12 real numbers.

In the matrix representation, the spatial properties are specified by the position vector T of one reference
corner of the box (relative to the origin O), along with the three edge vectors a, b and c of the box, chosen
so as to define a right-handed set, i.e. a · (b × c) > 0. The elements of these vectors will be assumed to
represent the corresponding components in the reference coordinate system {êx, êy, êz}.
In the angular representation, the spatial properties are specified by the position vector T, along with the

box edge lengths a, b and c, the edge angles α between b and c, β between a and c and γ between a and
b, and the Euler angles φ, θ and ψ defining the orientation of the box relative to the reference coordinate
system. In the definition of the Euler angles, the three edge vectors are used to define a box-linked right-
handed Cartesian coordinate system (êx′ , êy′ , êz′) in the following way : (i) the x′-axis is chosen along and
in the direction of a ; (ii) the y′-axis is chosen orthogonal to a in the plane defined by a and b, and oriented
in the direction of b ; (iii) the z′-axis is chosen orthogonal to both a and b, and oriented in the direction of
c. The reference coordinate system can be rotated onto the box-linked coordinate system by the following
series of rotations : (i) a rotation by an angle φ around the z-axis ; (ii) a rotation by an angle θ around
the new y-axis ; (iii) a rotation by an angle ψ around the new x-axis. The angles φ, θ and ψ thus represent
the three Euler rotation angles in the zyx or yaw-pitch-roll convention. At any time during a simulation,
the box angles α, β and γ are restricted to the range]0;π[, the Euler angles φ and ψ to the range]− π;π],
and the Euler angle θ to the range [−π/2;π/2]. The condition on θ follows from the observation that the
changes θ → π−θ, φ→ π+φ and ψ → π+ψ always lead to an equivalent description of the box orientation.
When θ = ±π/2, the angles φ and ψ are individually undefined only φ − ψ or φ + ψ are defined when
θ = π/2 and −π/2, respectively. In this situation, φ is arbitrarily set to zero. For both rectangular and
truncated-octahedral boxes, the conditions α = β = γ = π/2 and φ = θ = ψ = 0 are also enforced at any
time during the simulation. For a truncated-octahedral box, the condition a = b = c is enforced in addition.

4.4.1.1. Coordinate transformations: triclinic box. Based on a general triclinic box in an arbitrary ori-
entation, as introduced in Sec. 4.4.1 the coordinates of an atom can be specified in four distinct ways :
(i) through oblique fractional coordinates ř = (q, s, t) with reference to the box-edge vectors ; (ii) through
oblique coordinates r̆ = (u, v, w) with reference to the box-edge vectors ; (iii) through coordinates r′ =
(x′, y′, z′) within the box-linked Cartesian coordinate system ; (iv) through coordinates r = (x, y, z) within
the reference Cartesian coordinate system. The different sets of coordinates are related through

u = qa , v = sb , w = tc , (4.4)

r′ = ua−1a′ + vb−1b′ + wc−1c′ , (4.5)

r = x′êx′ + y′êy′ + z′êz′ (4.6)

and

r = ua−1a+ vb−1b+ wc−1c , (4.7)

where a, b and c are the components of the edge vectors in the reference Cartesian coordinate system, and
a′, b′ and c′ the corresponding components in the box-linked Cartesian coordinate system.

Defining the matrix B as the diagonal matrix containing the box-edge lengths a, b and c as its elements,
i.e.

B =

a 0 0

0 b 0

0 0 c

 , (4.8)

Eq. 4.4 may be rewritten

r̆ = Bř . (4.9)

2-16

Defining the transformation matrix S as the matrix containing a−1a′, b−1b′ and c−1c′ in its columns, i.e.

S =

a−1ax
′ b−1bx

′ c−1cx
′

a−1ay
′ b−1by

′ c−1cy
′

a−1az
′ b−1bz

′ c−1cz
′

 =

1 cos γ cosβ

0 sin γ sinβ cos δ

0 0 sinβ sin δ

 , (4.10)

where

cos δ =
cosα− cosβ cos γ

sinβ sin γ
with δ ∈]0;π[, (4.11)

Eq. 4.5 may be rewritten as

r′ = Sr̆ . (4.12)

The inverse transformation is performed through the matrix

S−1 =

1 − cotγ cot γ cot δ − cotβ sin−1 δ

0 sin−1 γ − cot δ sin−1 γ

0 0 sin−1 β sin−1 δ

 . (4.13)

In MD++ the matrix S is defined as math::Matrixl math::smat.

Defining the transformation matrix R as the matrix containing êx′ , êy′ and êz′ in its columns, i.e.

R =

cos θ cosφ sinψ sin θ cosφ− cosψ sinφ cosψ sin θ cosφ+ sinψ sinφ

cos θ sinφ sinψ sin θ sinφ+ cosψ cosφ cosψ sin θ sinφ− sinψ cosφ

− sin θ sinψ cos θ cosψ cos θ

 , (4.14)

Eq. 4.6 may be rewritten as

r = Rr′ . (4.15)

The inverse transformation is performed through the matrix R−1 = tR. In MD++ the matrix R is defined
by math::Matrixl math::rmat which can be inverted by transposition.

Finally, Eq. 4.7 corresponds to the combined transformation

r = Tr̆ (4.16)

with

T = RS . (4.17)

The inverse transformation is obtained through T−1 = S−1R−1 = S−1 tR. In MD++ the matrices
math::Matrixl math::mmat and math::Matrixl math::minvmat can be used.

It is also convenient to define the matrix L′ as the matrix containing a′, b′ and c′ in its columns, i.e.

L′ =

ax
′ bx

′ cx
′

ay
′ by

′ cy
′

az
′ bz

′ cz
′

 = SB , (4.18)

and the matrix L as the matrix containing containing a, b and c in its columns, i.e.

L =

ax bx cx

ay by cy

az bz cz

 = RL′ = RSB = TB . (4.19)

Obviously,

r′ = L′ř and r = Lř . (4.20)

In some cases, it may be necessary to calculate the Euler angles φ, θ and ψ from the components of the a,
b and c vectors. This may be done by constructing the unit vectors of the box-linked Cartesian coordinate
system as

êx′ = a−1 a , (4.21)

êy′ = ‖ b− (a b)−1(a · b)a ‖−1 [b− (a b)−1(a · b)a] ,
êz′ = êx′ × êy′ .

2-17

Identifying the matrix containing êx′ , êy′ and êz′ in its columns with the matrix R of Eq. 4.14, one has

θ = −sign(R31)acos[(R
2
11 +R2

21)
1/2] (4.22)

ψ = sign(R32 cos
−1 θ)acos(R33 cos

−1 θ)

φ = sign(R21 cos
−1 θ)acos(R11 cos

−1 θ) (4.23)

if R2
11 +R2

21 6= 0, or

θ = −sign(R31)π/2 (4.24)

ψ = 0

φ = −sign(R12)acos(R22) , (4.25)

otherwise. The function sign(x) delivers the sign of x.

4.4.1.2. Nearest image and gathering. When calculating the forces on the black atom in the central box
in Fig. 4.2, all interactions with atoms in the central box or images in the surrounding boxes that lie within
the spherical cut-off radius Rc are taken into account. To avoid artificial periodicity effects, an atom should
not simultaneously interact with another atom and its image. Therefore, in GROMOS only the interaction
between nearest images is evaluated. Consequently, the smallest wall-to-wall distance Rbox must exceed twice
the cut-off radius Rc:

Rbox > 2Rc (4.26)

that is, the cut-off radius (RCUTP or RCUTL) must be smaller than half the smallest edge of the box.
Since the cut-off radii RCUTP and RCUTL are applied to charge groups one should choose

RCUTP 6 RCUTL 6 Rc −Rcg (4.27)

with Rc satisfying Eq. 4.26 and where Rcg is the charge group radius.

This condition can be met by choosing the system large enough, e.g. in a crystal the computational box
may contain more than one unit cell. The application of non-bonded neighbour search techniques in periodic
systems is discussed in14. Possible distorting effects of the periodic boundary condition may be traced by
simulating systems of different size.

Applying periodic boundary conditions implies that when an atom leaves the central box through one
of its walls, it enters at the opposite image position with the same velocity. However, in GROMOS this
periodic translation is not performed for single atoms, but for all atoms of a charge group. Solute charge
group atoms and solvent molecules are translated, applying periodic boundary conditions such that the first
atom of a solute charge group or of a solvent molecule lies within the central periodic box.

For an arbitrary molecular configuration the atoms of a charge group may lie far apart in the central box,
close to opposite walls, while their nearest images are close to each other. In that case the atoms of a charge
group must first be gathered by applying periodic boundary conditions, such that the atoms of a charge
group lie within Rbox/2 of each other. It is always assumed that the atoms of a solvent molecule lie within
Rbox/2 of each other, viz. that the solvent atom coordinates are generated without mixing different periodic
images in one solvent molecule.

When a solute molecule consists of a chain of covalently bound atoms, this chain may be cut into different
segments by the periodic boundaries. Following the chain one may leave the central box through one wall
and enter it at the opposite wall at the image position. This means that when the various contributions
to the potential energy in Eq. 3.5 are computed, nearest images of atoms involved in bonds, bond angles,
dihedral angles, etc. have to be used.

In a triclinic box, the direction of the edges are denoted by a, b and c and lengths a, b, and c. The atom
or charge group i with position ri can be kept in the computational box that lies in the positive quadrant
with respect to an origin at r0 , by applying the translation

r′i = ri −NINT ((zi − z0 − c/2)/c)c

2-18

r′′i = r′i −NINT ((y′i − y0 − b/2)/b)b

r′′′i = r′′i −NINT ((x′′i − x0 − a/2)/a)a

ri = r′′′i . (4.28)

where the function NINT(x) delivers the integer number that is nearest to x. When calculating in oblique
coordinates, Eq. 4.53 can be used. For two atoms or charge groups i and j the vector

rij = ri − rj (4.29)

can be transformed to the vector rNI
ij connecting nearest images by the transformation

r′ij = ri −NINT ((zij/c)c

r′′ij = r′i −NINT ((y′ij/b)b

r′′′ij = r′′i −NINT ((x′′ija)a

rNI
ij = r′′′i . (4.30)

4.4.1.3. Geometric properties. In a general triclinic box, the square length of a vector is given in terms
of the corresponding oblique coordinates by

r2 = x2 + y2 + z2 = (x′)2 + (y′)2 + (z′)2 (4.31)

= u2 + v2 + w2 + 2uv cosγ + 2uw cosβ + 2vw cosα .

The volume of a triclinic box is given by

V = abc[1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ]1/2 . (4.32)

The acceptable cutoff value within a triclinic box is restricted to half the minimum distance between any
two opposite walls of the cell, i.e. the restriction Eq. 4.26 becomes

Rc ≤
1

2
MIN((ab sin γ)−1V ; (ac sinβ)−1V ; (bc sinα)−1V), (4.33)

The function MIN(x,y,z) delivers the smallest of its arguments x, y, z. In principle, the condition

Rc ≤
1

2
MIN{‖ n1a+ n2b+ n3c ‖ | n1, n2, n3 = 0 or 1 , n 6= 0} (4.34)

would be sufficient to ensure that at most one periodic copy of each particle is within the cutoff distance
of any other. However, this closest periodic copy is not necessarily the minimum image as determined by
Eq. 4.52. To avoid this complication, the more restrictive condition of Eq. 4.33 is required.

The checking whether the box parameters are in allowed ranges (Sec. 4.4.1) and that the cutoff values are
compatible with these is performed by math::boundary check cutoff in MD++.

4.4.1.4. Reciprocal-lattice. In the triclinic case, the reciprocal-lattice vectors ã, b̃ and c̃ associated with
the edge vectors a, b and c are defined by

ã = V−1b× c , b̃ = V−1c× a and c̃ = V−1a× b . (4.35)

The matrix containing in its columns the components of ã′, b̃
′
and c̃′ in the box-linked Cartesian coordinate

system is easily shown to be

ãx′ b̃x′ c̃x′

ãy′ b̃y′ c̃y′

ãz′ b̃z′ c̃z′

 = (tL′)−1 = tS−1 B−1 . (4.36)

Similarly, the matrix containing in its columns the components of ã, b̃ and c̃ in the reference Cartesian
coordinate system is given by

ãx b̃x c̃x

ãy b̃y c̃y

ãz b̃z c̃z

 = tL−1 = R (tL′)−1 = R tS−1 B−1 = tT−1 B−1 . (4.37)

A reciprocal-space vector k is defined by

k = 2π(laã+ lbb̃+ lcc̃) , (4.38)

where l = (la, lb, lc) is a vector with integer, positive or negative, components. A reciprocal-space vector
can be specified in five distinct ways : (i) through the integer vector l ; (ii) through oblique fractional

2-19

reciprocal space vectors ǩ = (χq, χs, χt) with reference to the reciprocal-lattice vectors ; (iii) through

oblique reciprocal space vectors k̆ = (κu, κv, κw) with reference to the reciprocal-lattice vectors ; (iv) through
reciprocal space vectors k′ = (rlkx′

′, rlky′
′, rlkz′

′) within the box-linked Cartesian coordinate system ; (v)
through reciprocal space vectors k = (rlkx, rlky, rlkz) within the reference Cartesian coordinate system. The
different coordinates are related through

ǩ = 2πl , (4.39)

k̆ = B−1ǩ = 2πB−1l , (4.40)

k′ = tS−1k̆ = (tL′)−1ǩ = 2π(tL′)−1l , (4.41)

and

k = Rk′ = tT−1k̆ = tL−1ǩ = 2πtL−1l . (4.42)

At this point, it is also useful to state a number of important relationships. First, scalar products between
real- and reciprocal-space vectors can be formulated similarly in the different coordinate representations, i.e.

k · r = k′ · r′ = k̆ · r̆ = ǩ · ř , (4.43)

which follow immediately from the coordinate transformations given above. Second, a few useful differential
relationships can be stated. For differentiating a reciprocal-space vector with respect to the box parameters,
given in the form of the matrix L, one has

∂k

∂Lµν
= −kµ

tL−1êν . (4.44)

Following from this result, the differentiation of a scalar product of two reciprocal-space vectors with respect
to the box parameters leads to

∂(k1 · k2)

∂Lµν
= −k1,µ [L

−1k2]ν − k2,µ [L
−1k1]ν . (4.45)

Introducing the differentiation with respect to a matrix as a differentiation on a component-by-component
basis, this may be rewritten as

∂(k1 · k2)

∂L
= −(k1 ⊗ k2 + k2 ⊗ k1)

tL−1 . (4.46)

For differentiating the box volume V =| L | with respect to the box parameters, one has

∂V
∂L

= V tL−1 . (4.47)

4.4.1.5. Tensor transformations. It may be necessary to transform rank-two tensors, 3×3 matrices,
among the various coordinate representations. If a tensor is written as ΩΩ in terms of real-space oblique
coordinates, W′ in the box-linked Cartesian coordinate system and W in the reference Cartesian coordinate
system, the conversion between the different representations is given by

W′ = SΩΩ tS (4.48)

and

W = RW′ tR = TΩΩ tT . (4.49)

These three types of transformations can be easily checked by considering the simple tensors W = r ⊗ r,
W′ = r′ ⊗ r′ and ΩΩ = r̆⊗ r̆ with r′ = Sr̆ and r = Rr′.

If the tensor is written Ω̃Ω in terms of reciprocal-space oblique coordinates, the conversion between the
different representations becomes

W′ = tS−1 Ω̃ΩS−1 (4.50)

and

W = RW′ tR = tT−1 Ω̃ΩT−1 (4.51)

The transformation corresponding to the last equality can be checked by considering the simple tensors

W = k⊗ k, W′ = k′ ⊗ k′ and Ω̃Ω = k̆⊗ k̆ with k′ = tS−1k̆ and k = Rk′.

In practice, these transformations are used to interconvert the various representations of the virial tensor.

2-20

4.4.1.6. Application of periodicity. In the triclinic case, the periodicity requirements apply to the oblique
coordinates r̆. The Cartesian components of the minimum-image vector r = (x, y, z) associated with a vector
r = (x, y, z) are obtained by

u = u− aNINT

(
x− a

a

)
(4.52)

v = v − bNINT

(
y − b

b

)

w = w − cNINT

(
z − c

c

)
,

where (u, v, w) are obtained from (x, y, z) through the inverse of Eq. 4.16 and (x, y, z) from (u, v, w) through
Eq. 4.16. For the calculation of r2, the second operation may be replaced by Eq. 4.31.

4.4.2. Special periodic boundary conditions.

4.4.2.1. Periodic rectangular box. The simplest case of a periodic box is a rectangular box (NTB = 1).
The lengths of the edges in the x−, y− and z−directions are denoted by a, b and c and α = β = γ = π/2.
The atom or charge group i can be kept in the computational box that lies in the positive quadrant with
respect to an origin at r0 , by applying the translation

xi = xi −NINT ((xi − x0 − a/2)/a)a

yi = yi −NINT ((yi − y0 − b/2)/b)b (4.53)

zi = zi −NINT ((zi − z0 − c/2)/c)c

For two atoms or charge groups i and j the vector

rij = ri − rj (4.54)

can be transformed to the vector rNI
ij connecting nearest images by the transformation

xNI
ij = xij −NINT (xij/a)a

yNI
ij = yij −NINT (yij/b)b

zNI
ij = zij −NINT (zij/c)c

For a reactangular computational box the requirement Eq. 4.26 becomes

Rc < 1/2MIN(a, b, c) (4.55)

4.4.2.2. Truncated-octahedral computational box under PBC. When simulating a spherical solute, use
of a more spherically shaped computational box instead of a rectangular one may considerably reduce the
number of solvent molecules that is needed to fill the remaining empty space in the box. A more spherically
shaped space filling periodic box is a truncated octahedron, shown in Fig. 4.3. For a truncated-octahedral
box, the vectors a, b, c correspond to the edges of the cube based on which the truncated octahedron is
constructed with a = b = c and α = β = γ = π/2. The distance between the square planes is a, and

between the six-sided planes it is
√
3
2 a. The volume of the truncated octahedron is 1

2a
3.

Figure 4.3. Truncated octahedron

2-21

The atom or charge group i can be kept in the computational box that lies in the positive quadrant with
respect to an origin at r0, by applying the rectangular periodicity check Eq. 4.53 with a = b = c followed
by the translation

if |xi − x0 − a/2|+ |yi − y0 − a/2|+ |zi − z0 − a/2| > 3a/4

then

xi = xi − sign(xi − x0 − a/2)a/2

yi = yi − sign(yi − y0 − a/2)a/2

zi = zi − sign(zi − z0 − a/2)a/2

(4.56)

The vector rNIto
ij connecting nearest images of atoms or charge groups i and j is obtained by applying the

rectangular periodicity check Eq. 4.55 with a = b = c followed by the transformation

if |xNI
ij |+ |yNI

ij |+ |zNI
ij | > 3a/4

then

xNIto
ij = xNI

ij − sign(xNI
ij)a/2

yNIto
ij = yNI

ij − sign(yNI
ij)a/2

zNIto
ij = zNI

ij − sign(zNI
ij)a/2

(4.57)

If only (rNIto
ij)2 is required, the last step, after applying Eq. 4.53 is replaced by calculating

(rNIto
ij)2 = (xNI

ij)2 + (yNI
ij)2 + (zNI

ij)2 + a MIN(0, 3a/4− |xNI
ij | − |yNI

ij | − |zNI
ij |) (4.58)

For a truncated octahedron the requirement Eq. 4.26 becomes

RC ≤
√
3

4
a ≈ 0.433a . (4.59)

that is, the cut-off radius must be smaller than half the distance between opposite planes that are defining
the truncated octahedron. However, if the truncated-octahedron is mapped to an equivalent triclinic box
(Sec. 4.4.2.3), Eq. 4.33 leads to the more restrictive condition

Rc ≤
1

2
√
2
a ≈ 0.354a . (4.60)

4.4.2.3. Coordinate transformations: truncated-octahedral to triclinic box. A simulation performed in a
truncated-octahedral box can equivalently be performed in a special type of triclinic box, by applying an
appropriate coordinate transformation.23 If the edge vectors of the cube based on which the truncated-
octahedron is constructed are a, b and c (recall that a = b = c, α = β = γ = π/2 and φ = θ = ψ = 0 in this
case), a possible choice for the edges at, bt and ct of the transformed triclinic box is

at = a , bt = (1/2)(a+ b+ c) and ct = (1/2)(−a− b+ c) . (4.61)

The corresponding box-edge lengths, box angles and Euler angles are at = a, bt = ct = (
√
3/2)a, αt =

acos(−1/3) ≈ 109.5o, βt = acos(−1/
√
3) ≈ 125.3o, γt = acos(1/

√
3) ≈ 54.8o, φt = θt = 0, and ψt = 45◦.

The mapping of atomic coordinates within a truncated-octahedral box to atomic coordinates within the
transformed triclinic box is performed by applying shifts along the at, bt and ct vectors. This transformation
is performed by math::truncoct triclinic in MD++. This formalism is applied for the generalization of
grid-based pairlist algorithms (Sec. 3.3.3) and lattice-sum electrostatics (Sec. 7.4) to truncated-octahedral
boxes.

4.4.3. Multiple unit-cell simulations under PBC. It is possible to simulate a periodic computa-
tional box consisting of multiple identical periodic copies, Ma, M b and M c along the three edge vectors,
of a smaller unit cell. This option may be useful when trying to simulate a single unit cell of a crystal
that is too small to allow for the application of a reasonably large cutoff value. The application of such
multiple-unit-cell simulations is restricted to rectangular or triclinic periodic boundary conditions.

In MD++ the topology is constructed using multicell topo where the normal topology is multiplied by
M . Every timestep, before interactions are calculated, the configuration, that is coordinates and velocities,
is prepared using expand configuration where copies j of the original configuration rri are added to the

2-22

original coordinate rri using rrj = rri + (MaM bmca +Mambb +mcc) with ma ranging from 1 to Ma, mb

from 1 to M b, and mc from 1 to M c. The simulation time step is then performed. After that only the
configuration of the original box is kept.

Note that the removal of the center of mass motion whenever required, is applied to charge groups and
solvent molecules gathered in the individual subcells. Note also that the application of particle-mesh methods
to evaluate electrostatic interactions (Sec. 7.4.4) will only give rise to exactly periodic forces if the number
of P3M grid subdivisions along each axis is an integer multiple of the corresponding number of subcell
boundaries.

Figure 4.4. Rectangular-brickwall

4.4.4. Rectangular-brickwall box. A simulation performed in a triclinic box under triclinic peri-
odic boundary conditions can equivalently be performed in a rectangular box using brickwall boundary
conditions.23 Under brickwall boundary conditions, the periodic copies of the reference box no longer sys-
tematically share common faces, but are staggered as depicted in Fig. 4.4. This transformation is applied
to the triclinic box in the box-linked coordinate system, i.e. after rotation of the box and coordinates. The
box edges of the rectangular-brickwall box will be noted Lx′ , Ly′ , Lz′ , and the three corresponding offsets
as ∆Lx′y′ , ∆Lx′z′ and ∆Ly′z′ , primed because they refer to the Cartesian axes of the box-linked coordinate
system. Out of three possible definitions, it will be further specified here that the periodic boxes only share,
in the general case, common y′ z′ -faces and common x′ -directed edges of their x′ z′ -faces. The edges Lx′ ,
Ly′ , and Lz′ of the rectangular box, together with the offsets ∆Lx′y′ , ∆Lx′z′ and ∆Ly′z′ determining the
relative positions of neighboring boxes, are dictated by the lattice parameters, i.e. three edges and three
angles, of the original triclinic box, so that the center of each rectangular box is located at a point of this
triclinic lattice. To define these offsets in a unique fashion, it is further imposed that

−Lx′

2
< ∆Lx′y′ ,

Lx′

2
≥ ∆Lx′z′ and − Ly′

2
< ∆Ly′z′ ≤ Ly′

2
(4.62)

Under brick-wall boundary conditions, the minimum-image function is not separable into Cartesian compo-
nents, and must operate directly on a vector, that is, one has

z′′ij = z̃′ij −NINT ((z̃′ij/Lz′)Lz′ with z̃′ij = z′ij (4.63)

y′′ij = ỹ′ij −NINT ((ỹ′ij/Ly′)Ly′ with ỹ′ij = y′ij + (z′′ij − z′′ij)/Lz′

x′′ij = x̃′ij −NINT ((x̃′ij/Lx′)Lx′

with x̃′ij = x′ij + (z′′ij − z′′ij)/Lz′ + (y′′ij − y′′ij)/Ly′

This formalism is applied for the generalization of grid-based pairlist algorithms (Sec. 3.3.3) to triclinic boxes
and truncated-octahedral boxes, after transformation to the equivalent triclinic box, see Sec. 4.4.2.2. In the
special case of a simulation performed in a regular rectangular box, the rectangular-brickwall box is identical
to the original computational box and one has Lx′ = a, Ly′ = b, Ly′ = c, ∆Lx′y′ = 0, ∆Lx′z′ = 0 and
∆Ly′z′ = 0.

The volume of the rectangular-brickwall box is equal to that of the triclinic box (Sec. 4.4.2.2) and is also
identical to that of the original box.

2-23

Finally, if a triclinic box is mapped to an equivalent rectangular-brickwall box, the condition for the cut-off
radius (Eq. 4.26) becomes

Rc ≤
1

2
min(Lx′ , Ly′ , Lz′) . (4.64)

When using a grid-based pairlist algorithm (Sec. 3.3.3), the condition is slightly more restrictive, namely

Rc ≤
1

2
min(Lx′(1 −Gx′

−1), Ly′(1 −Gy′
−1), Lz′(1−Gz′)−1) , (4.65)

where Gx′ , Gy′ and Gz′ represent the number of grid-cell subdivisions along the three axes of the box-linked
coordinate system. These restrictions only apply to the specific, short- or long-range, cutoff values involved
in the grid-based algorithm.

2-24

CHAPTER 5

Bonded interaction force-field terms

The potential energy or force-field term associated with covalent interactions is the term V(cov)(rrN ; s) in
Eq. 3.5. The four contributions to this term as defined by Eq. 3.6 are described in the following sections.

5.1. Bond stretching force-field term

The potential energy term associated with bond-stretching interactions is the term V(b)(rrN ; s) in Eq. 3.6.
It is given by

V(b)(rrN ; s) =

N(b)∑

n=1

V (b)(bn; k
(b)
n , b0n) , (5.1)

where N (b) is generally equal to the total number of all covalent bonds present in the system i.e. each
covalent bond is associated with one and only one stretching term in the GROMOS force field, and V (b) is
the function describing the potential energy associated with the stretching of a single bond. The quantity
bn

.
= bn(rr

N) represents the length of bond n in the given system configuration, i.e. the distance rij between
the two atoms i

.
= i(n) and j

.
= j(n) connected by the covalent bond n, i.e. the minimum-image distance if

PBC is applied, namely

bn
.
= r ij (5.2)

with

rij
.
= ri − rj (5.3)

and

r ij
.
= (rij · rij)1/2 . (5.4)

The quantities k
(b)
n and b0n represent force-field parameters, force constant and reference length, respectively,

characteristic for the specific bond n, as encoded by a corresponding bond type codeM
(b)
n , i.e. one may write

k
(b)
n

.
= k(b)(M

(b)
n) and b0n

.
= b0(M

(b)
n).

Two different expressions can be used for the function V (b) in GROMOS. The quartic bond stretching
interaction form V (b) = V (b,q), the default, as used in GROMOS96, is defined as24

V (b,q)(b; k(b,q), b0)
.
= 1/4k(b,q)(b2 − (b0)2)2 . (5.5)

The harmonic bond stretching interaction form V (b) = V (b,h) is defined as

V (b,h)(b; k(b,h), b0)
.
= 1/2k(b,h)(b− b0)2 . (5.6)

The quartic form is computationally less expensive, since it avoids the square-root operation in the calculation
of b from b2. However, the efficiency gain is moderate for most systems, where computational costs are
dominated by the calculation of the non-bonded interactions, and the harmonic form is more common
and conceptually simpler. The procedure for interconverting the quartic and harmonic force constants is
described in Sec. 18.1. We note that this procedure is not of immediate relevance to the users of GROMOS,
since both force constants are explicitly included in the force-field files. The selection of one or the other
form for bond stretching interactions can be made using the COVALENTFORM block of the MD++ input
(Vol. 4).

The derivatives of the bond stretching term are described in Sec. 17.1 and the GROMOS parameters
involved in this term are provided in Sec. 3-2.2.

2-25

5.2. Bond-angle bending force-field term

The potential energy term associated with bond angle bending interactions is the term V(θ)(rrN ; s) in
Eq. 3.6. It is given by

V(θ)(rr ;B; s) =
N(θ)∑

n=1

V (θ)(θn; k
(θ)
n , θ0n) , (5.7)

where N (θ) is generally equal to the total number of all covalent bond angles present in the system i.e. each
definable covalent bond angle is associated with one and only one bending term in the GROMOS force field,
and V (θ) is the function describing the potential energy associated with the bending of a single bond angle.
The quantity θn

.
= θn(rr

N) represents the value of bond angle n in the given system configuration, i.e. the
angle formed by the three atoms i

.
= i(n), j

.
= j(n) and k

.
= k(n) defining the covalent bond angle n, i.e.

the minimum-image triplet if PBC is applied, namely

θn
.
= arccos

(
rij · rkj
rijrkj

)
with 0 ≤ θn ≤ π (5.8)

where

rij
.
= ri − rj and rkj

.
= rk − rj , (5.9)

and

rij
.
= (rij · rij)1/2 and rkj

.
= (rkj · rkj)1/2 . (5.10)

The quantities k
(θ)
n and θ0n represent force-field parameters, force constant and reference bond angle, respec-

tively, characteristic for the specific bond angle n, as encoded by a corresponding bond-angle type code M
(θ)
n ,

i.e. one may write k
(θ)
n

.
= k(θ)(M

(θ)
n) and θ0n

.
= θ0(M

(θ)
n).

Two different expression can be used for the function V (θ) in GROMOS. The cosine-harmonic bond
angle bending interaction form V (θ) = V (θ,c), the default, as used in GROMOS96, is defined as

V (θ,c)(θ; k(θ,c), θ0)
.
= 1/2k(θ,c)(cos θ − cos θ0)2 . (5.11)

The angle-harmonic bond-angle bending interaction form V (θ) = V (θ,h) is defined as

V (θ,h)(θ; k(θ,h), θ0)
.
= 1/2k(θ,h)(θ − θ0)2 . (5.12)

The cosine-harmonic form is computationally less expensive, since it avoids the arc-cosine operation in the
calculation of θ from cos θ. However, the efficiency gain is moderate for most systems, where computational
costs are dominated by the calculation of the non-bonded interactions, and the harmonic form is more
common and conceptually simpler. Furthermore, the cosine-harmonic form may pose problems in cases
where the reference bond angle is close to 0 or π, e.g. in linear molecules or functional groups, since the
curve described by V (θ,h) then becomes flat around θ ≈ θ0, i.e. very high force constants are required to
maintain the linear bond angle geometry.

The procedure for interconverting the cosine-harmonic and harmonic force constants is described in
Sec. 18.1. We note that this procedure is not of immediate relevance to the users of GROMOS, since
both force constants are explicitly included in the force-field files. The selection of one or the other form
for bond-angle bending interactions can be made using the COVALENTFORM block of the MD++ input
(Vol. 4).

The derivatives of the bond-angle bending term are described in Sec. 17.2 and the GROMOS parameters
involved in this term are provided in Sec. 3-2.3.

5.3. Improper dihedral-angle bending force-field term

The potential energy term associated with improper dihedral-angle bending interactions, typically con-

trolling out-of-plane or out-of-tetrahedron distortions, is the term V(ξ)(rrN ; s) in Eq. 3.6. It is given by

V(ξ)(rrN ; s) =
N(ξ)∑

n=1

V (ξ)(ξn; k
(ξ)
n , ξ0n) , (5.13)

where N (ξ) generally corresponds to a subset of all possibly definable improper dihedral angles in the system,
and V (ξ) is the function describing the potential energy associated with the bending of a single improper

2-26

dihedral angle. The quantity ξn
.
= ξn(rr

N) represents the value of improper dihedral angle n in the given
system configuration, i.e. the dihedral angle formed by the four atoms i

.
= i(n), j

.
= j(n), k

.
= k(n) and

l
.
= l(n) defining the covalent improper dihedral angle n, i.e. the minimum-image quadruplet if PBC is

applied, namely

ξn
.
= sign(rij · rnk) arccos

(
rmj · rnk
rmjrnk

)
with − π <| ξn |≤ π (5.14)

where

rmj
.
= rij × rkj and rnk

.
= rkj × rkl (5.15)

and

rmj
.
= (rmj · rmj)

1/2 and rnk
.
= (rnk · rnk)1/2 . (5.16)

Note that the sign of the dihedral angle as defined by Eq. 5.14 follows the IUPAC-IUB convention,25 and that

the improper dihedral angle is undefined if either rmj = 0 or rnk = 0. The quantities k
(ξ)
n and ξ0n represent

force-field parameters, force constant and reference improper dihedral angle, respectively, characteristic for
the specific improper dihedral angle n, as encoded by a corresponding improper dihedral angle type code

M
(ξ)
n , i.e. one may write k

(ξ)
n

.
= k(ξ)(M

(ξ)
n) and ξ0n

.
= ξ0(M

(ξ)
n).

The function V (ξ) is always a harmonic function in GROMOS, i.e.

V (ξ)(ξ; k(ξ), ξ0)
.
= 1/2k(ξ)(ξ − ξ0)2 with − π < ξ − ξ0 ≤ π . (5.17)

Note that since improper dihedral angles are periodic variables, of period 2π, the interval selected for
evaluating the difference ξ − ξ0 must be specified, i.e. the interval]− π;π] as indicated.

Unlike for bond-stretching and bond-angle bending terms, the summation in Eq. 5.13 only involves a
subset of N (ξ) terms selected by considering all possibly definable improper dihedral angles in the system,
i.e. only some among all definable improper dihedral angles are associated with a single improper dihedral-
angle term in GROMOS. These improper dihedral angles are selected to keep groups of atoms close to a
specified spatial configuration, typically planar or tetrahedral. For example, in an amino acid residue, the
atoms CA, C, O and N are kept near a planar configuration by defining an improper dihedral C-CA-N-O
with ξ0 = 0◦. As another example, if the CA atom of an amino acid residue carries no explicit hydrogen,
i.e. it is a united-atom of type CH1, the atoms CA, N, C and CB are kept near a tetrahedral configuration
by defining an improper dihedral angle CA-N-C-CB (L-amino acid) or CA-C-N-CB (D-amino acid) with
ξ0 = 35.26◦. A third example is that of an aromatic ring, like in the phenylalanine amino acid residue, which
is kept close to planarity by defining 6 improper dihedral angles (CG-CD1-CE1-CZ, CD1-CE1-CZ-CE2,
CE1-CZ-CE2-CD2, CZ-CE2-CD2-CG, CE2-CD2-CG-CD1 and CD2-CG-CD1-CE1), all with ξ0 = 0◦.

The derivatives of the improper dihedral-angle bending term are described in Sec. 17.3 and the GROMOS

parameters involved in this term are provided in Sec. 3-2.4.

5.4. Proper dihedral-angle torsion force-field term

The potential energy term associated with torsional dihedral-angle bending interactions, typically con-
trolling, together with non-bonded interactions, the rotational barriers around covalent bonds, is the term

V(ϕ)(rrN ; s) in Eq. 3.6. It is given by

V(ϕ)(rrN ; s) =

N(ϕ)∑

n=1

V (ϕ)(ϕn; k
(ϕ)
n , ϕ0

n,m
(ϕ)
n) , (5.18)

where N (ϕ) generally corresponds to a subset of all possibly definable proper, torsional dihedral angles in
the system. We note that multiple terms may be associated to the covalent proper dihedral angle in the
GROMOS force field. V (ϕ) is the function describing the potential energy contribution of the term to the
torsion of the corresponding proper dihedral angle. The quantity ϕn

.
= ϕn(rr

N) represents the value of proper
dihedral angle n in the given system configuration, i.e. the dihedral angle formed by the four atoms i

.
= i(n),

j
.
= j(n), k

.
= k(n) and l

.
= l(n) defining the covalent proper dihedral angle n, i.e. the minimum-image

quadruplet if PBC is applied, namely

ϕn
.
= sign(rij · (rkj × rkl)) arccos

(
rim′ · rln′

rim′rln′

)
with − π < ϕn ≤ π (5.19)

2-27

where

rim′
.
= rij −

rij · rkj
r2kj

· rkj and rin′
.
= −rkl +

rkl · rkj
r2kj

· rkj (5.20)

and

rim′
.
= (rim′ · rim′)

1/2 and rin′
.
= (rin′ · rin′)

1/2 . (5.21)

Note that Eq. 5.19 is readily shown to be equivalent to Eq. 5.14. The sign of the dihedral angle as defined by
Eq. 5.19 follows the IUPAC-IUB convention,25 and the proper dihedral angle is undefined if either rim′ = 0

or rin′ = 0. The quantities k
(ϕ)
n , ϕ0

n and m
(ϕ)
n represent force-field parameters, force constant, reference

dihedral angle, and multiplicity, respectively. The reference dihedral angle is also called the phase shift.
The multiplicity is a positive non-zero integer. These parameters are characteristic for the specific proper

dihedral angle term n, as encoded by a corresponding proper dihedral-angle type code M
(ϕ)
n , i.e. one may

write k
(ϕ)
n

.
= k(ϕ)(M

(ϕ)
n), ϕ0

n
.
= ϕ0(M

(ϕ)
n) and m

(ϕ)
n

.
= m(ϕ)(M

(ϕ)
n)

Two different expression can be used for the function V (ϕ) in GROMOS. These expressions do not
differ in the resulting value of the interaction, but only in their range of application. The symmetric proper
dihedral-angle torsion interaction form, the default, as used in GROMOS96, is defined as

V (ϕ)(ϕ; k(ϕ), ϕ0,m(ϕ))
.
= k(ϕ)(1 + cosϕ0 cosm(ϕ)ϕ) with ϕ0 = 0, π . (5.22)

In this form, the value of the phase shift is restricted to 0 or π, which leads to a potential that is symmetric
with respect to the eclipsed conformation, either corresponding to a minimum or a maximum, depending on
the sign of cosϕ0. In addition, considering practical usefulness and computational efficiency, the multiplicity
m(ϕ) may not exceed a value of six here. The generalized proper dihedral-angle torsion interaction form is
defined as

V (ϕ)(ϕ; k(ϕ), ϕ0,m(ϕ))
.
= k(ϕ)

[
1 + cos(m(ϕ)ϕ− ϕ0)

]
with ϕ0 ∈ [0, 2π[. (5.23)

Here, no restrictions are made on the values of the phase shift and multiplicity. It is easily verified that
Eqs. 5.22 and 5.23 are equivalent, within the domain of validity of the former expression. The symmetric
form is computationally less expensive, since it avoids the arc-cosine operation in the calculation of ϕ from
cosϕ, owing to the expansions

cos(1ϕ) = cosϕ

cos(2ϕ) = 2 cos2 ϕ− 1

cos(3ϕ) = 4 cos3 ϕ− 3 cosϕ

cos(4ϕ) = 8 cos4 ϕ− 8 cos2 ϕ+ 1 (5.24)

cos(5ϕ) = 16 cos5 ϕ− 20 cos3 ϕ+ 5 cosϕ

cos(6ϕ) = 32 cos6 ϕ− 48 cos4 ϕ+ 18 cos2 ϕ− 1 .

However, the efficiency gain is moderate for most systems, where computational costs are dominated by
the calculation of the non-bonded interactions, and the generalized form offers the advantage of being more
flexible. In particular, it may be useful in cases where a potential that is not symmetric with respect to
the eclipsed conformation may permit an improved fitting of rotational profiles against experimental or
theoretical data.

Note that since proper dihedral angles are periodic variables, of period 2π, the interval selected for evalu-
ating the ϕ should in principle be specified. However, this selection has no influence of the result of Eqs. 5.22
and 5.23.

Unlike for bond-stretching and bond-angle bending terms, the summation in Eq. 5.18 only involves a subset
of N (ϕ) terms selected by considering all possibly definable proper dihedral angles in the system, i.e. only
some among all definable proper dihedral angles are associated with a single, or few proper dihedral-angle
terms in GROMOS. These proper dihedral-angles are selected to control, in combination with non-bonded
interactions, the rotational barriers around covalent bonds for this selection. The following guidelines can
be given:

1. In general, for any bond between atoms j and k, only one set of atoms i, j, k and l is chosen to define
a proper dihedral angle.

2. For bonds between atoms j and k in rigid, planar rings (aromatics), no proper torsional dihedral
angle is defined, but rather improper dihedrals are used to maintain the planarity of the ring.

2-28

3. To obtain correct torsional-angle energy profiles, several torsional dihedral angles with different
parameters can be defined on the same set of atoms i, j, k and l. This is for instance done for the
protein backbone φ and ψ angles (in the GROMOS parameter set 54A7), in sugar rings or along
the backbone of a nucleotide sequence.

The selection of one or the other form for proper dihedral torsion interactions can be made using the
COVALENTFORM block of the MD++ input (Vol. 4).

The derivatives of the proper dihedral-angle torsion term are described in Sec. 17.4 and the GROMOS

parameters involved in this term are provided in Sec. 3-2.5.

2-29

CHAPTER 6

van der Waals interactions

6.1. Introduction

In GROMOS, the van der Waals (vdW) interaction term, V(vdw)(rrN ; s) in Eq. 3.7, is represented by a
Lennard-Jones function, and the term is partitioned as a sum of two contributions.

V(vdw)(rrN ; s) =

Na−1∑

i

Na∑

j=i+1

[
C12(i, j)

r6ij
− C6(i, j)

]
· 1

r6ij
(6.1)

where C12(i, j) is the van der Waals repulsion coefficient for the interaction between atoms or sites i and j,
C6(i, j) is the dispersion coefficient, and rij the distance between the two sites.

C12(i, j) = 4ǫσ12 (6.2)

and

C6(i, j) = 4ǫσ6 (6.3)

in which ǫ is the depth of the potential well, σ is the corresponding distance between the two sites where

V(vdw) = 0. The minimum-energy distance is 21/6σ.

The total van der Waals interaction of all particles is in principle obtained from a summation of all pairs of
atoms within the pairlist (Sec. 3.3). However, in practice a number of pairs are excluded from the summation.
These pairs are defined as excluded neighbour atom pairs. This is discussed in Sec. 6.2.

The derivatives of the van der Waals interaction term are described in Sec. 17.5.

6.2. Excluded neighbours

Atoms i and j that are covalently bound are called first neighbour atoms and if they are each covalently
bound to one common neighbour atom, they are called second neighbours. Due to the short distance rij
between first or second neighbours, the non-bonded interaction (Eq. 6.1) between such neighbour atoms
i and j will be very large. In addition, first and second neighbour interactions are represented by bond-
stretching and bond-angle bending interaction terms. Therefore, first and second neighbours are excluded
from the summation. Third neighbours are only in special cases excluded, e.g. between atoms in or attached
to aromatic rings, or between specific atoms in certain carbohydrate building blocks.

Lists of excluded atoms are kept in the molecular topology file, see Vol. 4. The atom sequence numbers j
of the excluded neighbours of a solute atom i are listed in ascending order and i<j. In the solvent part of
the molecular topology all atoms that form a solvent molecule are excluded neighbours of each other.

For the GROMOS force fields the excluded atom information can be found in the molecular topology
building block files *.mtb.

6.3. Normal van der Waals interactions

The non-bonded interaction van der Waals parameters C12(i,j) and C6(i,j) in formula (Eq. 6.1) depend on
the atom type or more specifically the integer atom codes I = IAC[i] and J = IAC[j] of the atoms with atom
sequence numbers i and j. The integer atom codes of the various types of atoms are listed in Chap. 3-3. Lists
of integer atom codes are kept in the molecular topology file Vol. 4. The molecular topology file contains the
full matrix of interaction parameters for all combinations of integer atom types. In this way it is possible
to change the van der Waals interaction between each pair of atom types independently. In practice, the

2-31

GROMOS van der Waals parameters for an atom pair with integer atom codes I and J are derived from
single atom van der Waals parameters using the relations

C6(I, J) = C6
1/2(I, I)C6

1/2(J, J) (6.4)

and

C12(I, J) = C12
1/2(I, I)C12

1/2(J, J) (6.5)

For the GROMOS force fields, the single atom van der Waals parameters C6(I, I)
1/2 and C12(I, I)

1/2 are
given in the third and fourth columns of Tabs. 3-3.7 (45A4 and 45B4) and 3-3.22 (54A7 and 54B7) as a
function of integer atom code or non-bonded atom type.

The GROMOS force fields do not contain a special term in the interaction function (Eq. 3.4) that mimics
hydrogen bonding. The hydrogen bonding capacity of molecules is the result of a balance between Coulomb
and van der Waals attraction and repulsion. In order to mimic correctly the hydrogen bonding properties of
polar atoms, their van der Waals repulsion has been increased over the value resulting from the use of C12

1/2

from the fourth column in Tabs. 3-3.7 and 3-3.22. The fifth column of these tables contains the C12
1/2(I,I)

values to be used between polar atoms. For correct modelling of hydrogen bonds between atoms that are
part of a charged moiety, like the OM atom in a COO− group and a NL atom in a NH+

3 group, the repulsive
part of the van der Waals interaction has been increased even more. The sixth column in Tabs. 3-3.7 and
3-3.22 contains the C12

1/2(I,I) values to be used between oppositely charged atoms. In Tabs. 3-3.10 and
3-3.24 it is denoted which values for C12

1/2(I,I) and C12
1/2(J,J) are to be used in formula (Eq. 6.5) for

obtaining C12(I,J).

If another combination rule than formulae Eqs. 6.4 and 6.5 is to be used to obtain C6(I,J) and C12(I,J) or
if these mixed atom type pair parameters are not related to the single atom type van der Waals parameters
C6

1/2(I,I) and C6
1/2(J,J) or C12

1/2(I,I) and C12
1/2(J,J), the interaction parameters for the pair of atom

types (I,J) must be explicitly given as C6(I,J) and C12(I,J). In the GROMOS force field this is the case for
the van der Waals parameters for the solvent chloroform. The non-standard mixed atom type pair van der
Waals parameters are listed in Tab. 3-3.9. Furthermore, exceptions for individual pairs of atoms i,j may be
defined at the building block level, using the LJEXCEPTION listings (see Vol. 4).

For the GROMOS force fields the non-bonded atom type information and the normal van der Waals
interaction parameters can be found in the interaction function parameter files *.ifp.

The van der Waals parameters of the 45B4 force field which is to be used for in vacuo calculations, are
identical to those of the 45A4 force field which is to be used for calculations including solvent, except for
the repulsive parameters of the OM and NL atoms of which the charge has been reduced when deriving the
45B4 force field from the 45A4 one.

For an atom pair with integer atom codes I and J, the C12
1/2(I,I) value in formula (Eq. 6.5) is taken from

the fourth column in Tabs. 3-3.7 and 3-3.22 if the matrix element (I,J) equals 1; it is taken from the fifth
column if the matrix element is equal to 2 and from the sixth element if it is equal to 3. Similarly, the
C12

1/2(J,J) value in formula (Eq. 6.5) is selected using the matrix element (J,I).

6.4. Third-neighbour van der Waals interaction

When the van der Waals parameters for the united atoms (CH1, CH2, CH3, CR1) are applied to atoms
that are separated by three covalent bonds, so-called third neighbours, they induce a too large repulsion in
gauche conformations.

In order to avoid this effect, the smaller van der Waals parameters that are given in Tab. 3-3.11 (45A4,
45B4) and Tab. 3-3.26 (53A5, 53B5, 54A7, 54B7) are used for united atoms when obtaining C6(I,J) and
C12(I,J) from (Eq. 6.4-Eq. 6.5) for third-neighbour atoms. The van der Waals parameters for third-neighbour
or 1-4 interactions are kept in the molecular topology file (Vol. 4).

Lists of third-neighbour atoms are kept in the molecular topology file (Vol. 4). The sequence numbers j
of an atom that is a third neighbour of the atom with sequence number i, are listed in ascending order and
i < j. In the solvent part of the molecular topology all atoms that form a solvent molecule are excluded
neighbour atoms of each other, so will have neither normal nor third-neighbour van der Waals interaction.

The list of third neighbours can be derived from the list of covalent bonds occurring in the “solute”. This
is done in program make top upon construction of a molecular topology file from the molecular building
blocks.

2-32

For the GROMOS force fields the third-neighbour van der Waals interaction parameters can be found in
the interaction function parameter files (*.ifp). GROMOS offers a possibility to specify the van der Waals
parameters for a specific atom pair, thereby overruling the interaction parameters as derived from the normal
(or third-neighbour) interaction parameters. This can be done by introducing a LJEXCEPTIONS block in
the molecular topology file (see Sec. 4-3.2).

6.5. Soft-core interactions

The van der Waals interaction in Eq. 6.1 and the electrostatic interaction between charges of equal sign
in Eq. 7.2 become infinitely large for rij approaching zero. Using interactions Eqs. 6.1 and 7.2 the atoms
have a so-called hard core, which restricts the sampling of configurational space. By smoothening the

potential energy surface V(vdw)(rrN ; s) the sampling can be considerably enhanced. Using a so-called soft-
core interaction function for the interactions between particles i and j of the form26

V(vdw),sc
ij (rrN ; s) =

[
C12(i, j)

αLJ(i, j)λ2C126(i, j) + (rij)6
− C6(i, j)

]
· 1

αLJ(i, j)λ2C126(i, j) + (rij)6
(6.6)

and

V(ele)(rr ;B; s) = qiqj
4πǫ0ǫ1

1

[αC(i, j)λ2 + (rij)2]
1/2

−
1
2Crf (ri,j)

2

[
αC(i, j)λ2 +R2

rf

]3/2 − (1− 1
2Crf)

Rrf

 (6.7)

The singularity at rij = 0 is removed and the interaction function is smoothened for λ 6= 0. αLJ (i,j) is a
softness parameter and C126 is defined in Eq. 14.79.

In GROMOS, the soft-core interaction Eq. 6.6 can only be selected in the framework of a so-called per-
turbation molecular topology required for free energy calculations using the λ-coupling parameter approach.
Therefore, the soft-core interaction is described further in Chap. 14.

2-33

CHAPTER 7

Electrostatic interactions

7.1. Introduction

In this chapter, we provide the possible forms employed in GROMOS for the term V(ele)(rrN ; s) in Eq. 3.7.
In all cases, this quantity can be further partitioned as a sum of contributions from a pairwise, a self and a
surface term, namely

V(ele)(rrN ; s)
.
= V(ele,pws)(rrN ; s) + V(ele,slf)(s) + V(ele,srf)(rrN ; s) . (7.1)

The expressions defining these three contributions differ whether one decides to employ a reaction-field (RF)
or a lattice-sum (LS) scheme to evaluate the long-distance electrostatic interactions. The RF scheme is
applicable under either FBC or PBC, while the LS scheme is only applicable under PBC. The features
common to the two schemes are summarized in Sec. 7.2. The specifics of the RF and LS schemes are then
provided in Secs. 7.3 and 7.4, respectively.

7.2. Common features

The pairwise contribution V(ele,pws) in Eq. 7.1 can be written in the form

V(ele,pws)(rrN ; s)
.
= (4πǫ0ǫcs)

−1
Na−1∑

i=1

Na∑

j=i+1

qiqj [Ψ
(ele)
ij (rrN ; s)− δ

(exc)
ij (s)rij

−1] (7.2)

where ǫ0 is the permittivity of vacuum, and ǫcs the relative permittivity of the medium in which the simulation
is performed. In simulations with explicit solvent we generally set ǫcs = 1. qi and qj are the charges of
particles i and j, respectively, rij the (minimum-image, under PBC) vector connecting j to i (norm rij),

Ψ
(ele)
ij (rrN ; s) is the electrostatic influence function associated with the particle pair i − j, δ

(exc)
ij is the

non-bonded exclusion indicator for the particle pair i − j, 1 if the atoms are excluded, 0 otherwise. In
the GROMOS force field, first- and second covalent neighbours are normally excluded from electrostatic
interactions, as well as some specific pairs of atoms that are separated by three or more covalent bonds,
as described in Sec. 6.2. The definition of excluded pairs is assumed to be encompassed in the force-field

parameter vector s. Although Coulomb’s law would suggest that Ψ
(ele)
ij (rr) = r−1

ij , this choice is almost never

directly applicable in practice (except for systems under FBC and in the absence of exclusions; see below).

The self contribution V(ele,slf) in Eq. 7.1 can be written in the form

V(ele,slf)(rrN ; s)
.
= (8πǫ0ǫcs)

−1
Na∑

i=1

q2iΨ
(ele,slf) (7.3)

where Ψ(ele,slf) is the electrostatic self influence function, defined by

Ψ(ele,slf) .
= lim

ri→ro
Ψ

(ele)
oi (rr; s) . (7.4)

The fact that Ψ(ele,slf) solely depends on the boundary conditions and associated parameters will be ex-
plicited in the following sections.

Finally, the surface contribution V(ele,srf) in Eq. 7.1 arises from the definition of the medium surrounding
an infinite periodic system (under PBC). It can be written in the form

V(ele,srf)(rrN ; s)
.
= [2πǫ0(2ǫls + 1)V]−1M2 (7.5)

where ǫls is the relative permittivity of the medium surrounding the infinite periodic system, V is the volume
of the computational box, and M the box dipole moment.

The exact forms of taken by the functions Ψ
(ele)
ij and Ψ(ele,slf) in Eqs. 7.2 and 7.4, respectively, will be

detailed in Secs. 7.3 and 7.4, respectively.

2-35

7.3. Reaction-field (RF) interactions

The RF scheme is applicable under either FBC or PBC. The electrostatic influence function Ψ
(ele)
ij (Eq. 7.2)

in the RF case, which is a cutoff-based scheme, may take two different forms depending on whether a particle
(atom) (AT) or a charge-group (CHG) cutoff truncation is applied.

In the AT case, this function reads

Ψ
(ele)
ij (rr)

.
= H(RC − rij)ψ

(RF)(rij) , (7.6)

(independent of s here) while in the CHG case, it reads

Ψ
(ele)
ij (rr ; s)

.
= H(RC −Rij(rr))ψ

(RF)(rij) , (7.7)

where rij is the (minimum-image, under PBC) vector vector connecting particle j to particle i (norm rij),

Rij the (minimum-image, under PBC) vector connecting the centers of the CHG to which the two particles

belong (norm Rij), RC is the cutoff distance and H the Heaviside step function (1 if its argument is positive,

0 otherwise). In the two above equations, the function ψ(RF) is the same and reads

ψ(RF)(r)
.
=

1

r
− CRF

2RRF
3
r2 − 1− (1/2)CRF

RRF
(7.8)

with

CRF
.
=

(2ǫcs − 2ǫRF)(1 + κRFRRF)− ǫRF ∗ (κRFRRF)
2

(ǫcs + 2ǫRF)(1 + κRFRRF) + ǫRF ∗ (κRF ∗RRF)2
, (7.9)

where ǫRF is the RF permittivity, κRF the inverse Debye screening length and RRF the RF cutoff.

The three terms resulting from the insertion of Eqs. 7.6 or 7.7 into Eq. 7.2 are termed coulombic, distance-
dependent and distance-independent, namely

V(ele,pws,RF−CB) .= (4πǫ0)
−1
∑

i

∑

j

qiqj
rij

(7.10)

V(ele,pws,RF−RF) .
= (4πǫ0)

−1
∑

i

∑

j

−qiqjCRF rij
2

2RRF
3

(7.11)

and

V(ele,pws,RF−RC) .
= (4πǫ0)

−1
∑

i

∑

j

−qiqj(1− (1/2)CRF)

RRF
(7.12)

In GROMOS, Eq. 7.10 is not evaluated for excluded atoms (Sec. 6.2), while Eqs. 7.11 and 7.12 are
evaluated for these atoms as well, unless the simulation is performed in the GROMOS96 compatibility
mode, see Vol. 4.

Inserting Ψ
(ele)
ij from Eqs. 7.6 or 7.7 into Eq. 7.4, one finds that the self influence function is in both cases

given by

Ψ(ele,slf) = −1− (1/2)CRF

RRF
(7.13)

The fact that Ψ(ele,slf) solely depends on the boundary conditions and associated parameters will be ex-
plicited in the following sections.

The surface term is as in Eq. 7.5 - if we decide to add it.

7.4. Lattice-sum (LS) interactions

7.4.1. Introduction. Lattice-sum (LS) methods rely on two key principles : (i) the treatment of
electrostatic interactions as exactly periodic within the simulated system ; (ii) the splitting of the interaction
into a short-range component, evaluated by direct summation over the pairs of atoms, and a long-range
component, evaluated by Fourier series.

To ensure overall neutrality of the system, each “charge” is actually represented by a charge density
defined by a periodic point charge plus a homogeneous neutralizing background charge density filling the
infinite periodic system. This background charge has absolutely no influence for overall neutral systems.
For charged systems, it permits the calculation of a finite electrostatic energy, containing a self-interaction
(Wigner) term, but has no influence on the forces.

2-36

The box dipole moment comes into the definition of the surface term (Eq. 7.30). In the general case, this
quantity is not translationally invariant. Different definitions of the reference computational box (i.e. of rc)
may lead to different values of M.

Lattice sum methods rely on the use of a charge-shaping function with a width a to split the electrostatic
potential into a real-space contribution and a reciprocal-space contribution, plus a constant. The width
parameter a should be smaller than the short-range cutoff Rcp (input parameter RCUTP). Otherwise, an
error will be issued. When the shaping function is a TP function (Nγ=1...10 in Tab. 7.1), the real-space
interaction may be computed exactly provided that all atom pairs within a distance a or smaller are at any
time included in the pairlist. When all atom pairs within a distance Rcp or smaller are at any time included
in the pairlist, the optimal value of a is Rcp. When the shaping function is a Gaussian (Nγ=-1 in Tab. 7.1),
the real-space interaction is not computed exactly, because the Gaussian is infinite-ranged. In this case, the
real-space interaction is computed for all atom pairs within the pairlist, and will be accurate when a/Rcp is
small enough. In many cases, a ≈ Rcp/3 is a reasonable choice.

The two lattice-sum methods available differ in the way they evaluate the reciprocal-space contribution
to the electrostatic energy and forces (Secs. 7.4.2, 7.4.3 and 7.4.4) : the Ewald method is based on direct
summation over reciprocal-space lattice vectors while the particle-particle-particle-mesh (PPPM) method
makes use of a fast Fourier transform (FFT) algorithm.

It will be useful to make the following definitions.

We consider a periodic system of Nq charges qi at positions ri within a general triclinic computational
box with arbitrary orientation (Sec. 4.4.1). We further define the box dipole moment

M =

Nq∑

i=1

qi (ri − rc) , (7.14)

where rc is the center of the computational box, the box overall charge

S =

Nq∑

i=1

qi , (7.15)

and the box overall square charge

S̃2 =

Nq∑

i=1

q2i . (7.16)

The electrostatic influence function Ψ
(ele)
ij (Eq. 7.2) in the LS case, which is a periodic scheme (no cutoff),

may formally be written

Ψ
(ele)
ij (rr)

.
= ψ(LS)(rij) = 4π | L |−1

∑

l,l 6=0

k−2 exp[ik · rij] , (7.17)

where L is a matrix containing the Cartesian component of the box edge vectors in its columns (triclinic
computational box), l a lattice vector with (positive or negative) integer components, k = 2πL−1l the
associated reciprocal-lattice vector, and rij

.
= ri−rj the vector connecting sites i and j (in the computational

box). The influence function ψ(LS)(x) describes the (periodic) electrostatic influence at position x relative
to a point charge screened by a homogeneous neutralizing background charge density of opposite magnitude.
Here, the electrostatic influence is just the electrostatic potential divided by (4πǫ0)

−1q.

Because the summation over reciprocal-lattice vectors involved in this equation converges very slowly, in

practice, Ψ
(ele)
ij is partitioned into two contributions, termed the real-space and the reciprocal-space contri-

butions (Ewald splitting).

7.4.1.1. Charge-shaping function. Lattice-sum methods rely on the use of a charge-shaping function
a−3γ(a−1r) of width a to split the electrostatic potential into a real-space contribution and a reciprocal-
space contribution, plus a constant. In practice, it is assumed that the charge-shaping function satisfies the
condition

γ(a−1r) = 0 for r ≥ Rcp , with Rcp ≤ (1/2)min{Lx, Ly, Lz} , (7.18)

where Rcp is the real-space cutoff distance (input parameter RCUTP), which implies that the switch function
η(a−1r) also vanishes beyond Rcp. This condition can be enforced in a strict fashion for all truncated-
polynomial charge-shaping functions (Tab. 7.1; Nγ = 0...10) by setting a (input parameter ASHAPE) equal
to Rcp. It can be enforced in an approximate manner for the Gaussian charge-shaping function (Tab. 7.1;

2-37

Nγ = −1) by setting a≪ Rcp. In many cases, a ≈ Rcp/3 is a reasonable choice. If a > Rcp, an error will be
issued in the FORCE routine. If Rcp > (1/2)min{Lx, Ly, Lz}, an error will be issued.

The charge-shaping function is normalized to satisfy the condition

4π a−3

∫ ∞

0

dr r2 γ(a−1r) = 1 . (7.19)

The following definitions are related to the charge-shaping function. The Fourier coefficients of (a lattice
sum of) the charge-shaping function are given by

γ̂(ak) =

{
4πk−1 a−3

∫∞
0 dr r sin(kr) γ(a−1r) for k 6= 0

1 for k = 0
, (7.20)

where reciprocal-lattice vectors are defined as k = 2πL−1l with l ∈ Z3.

The switch function η(a−1r) associated with the charge-shaping function is defined by

η(a−1r) = 4π a−3

∫ ∞

r

dρ ρ (ρ− r) γ(a−1ρ) . (7.21)

Finally, the constants A1, A2 and A3 are defined as

A1 = −4π V−1

∫ ∞

0

dr r η(a−1r) , (7.22)

A2 = 4π V−1
∑

l∈Z3 , l 6=0

k−2 γ̂(ak) , (7.23)

and

A3 = lim
r→0

[
∑

n∈Z3

‖ r+ Ln ‖−1 η(a−1‖ r+ Ln ‖) − r−1] . (7.24)

This limit becomes independent of the direction of r when r → 0.

The shaping functions ccurrently implemented and indexed by Nγ , and the related Fourier coefficients,
switch functions and A-constants are listed in Tabs. 7.1 - 7.6. The charge-shaping function is selected through
the value of NSHAPE in the LONGRANGE block.

The complementary error function required for the Gaussian charge-shaping function is calculated via the
Chebyshev approximation (see ref.27). The evaluation of the exponential function for both η(ξ) and γ̂(κ)
might lead to computational underflows when their argument is negative and large. We did not encounter
such cases for now, but if underflows are flagged at run time, they are likely to come from there.

7.4.1.2. Electrostatic energy. Due to self-interactions (Wigner term) and interactions with the dielectric
continuum outside the infinite periodic system (surface term; this term vanishes only in the limit ǫLS → ∞,

referred to as conducting or tinfoil boundary conditions), V(ele) is actually a free energy. However, within
the force field, it plays the role of a normal energy term. Note also that both Eγ and EA also contain self
energies. However, these cancel out and Eγ +Eη +EA is truly a pairwise energy (i.e. this quantity vanishes

for a system consisting of a single charge). This is not the case of V(ele,slf) and V(ele,srf).

The electrostatic (reversible-charging) energy V(ele) of the periodic system of charges can now be written
as28

V(ele) = V(ele,pws,LS−KS) + V(ele,pws,LS−RS) + V(ele,srf)+ (7.25)

with

Eγ = (2ǫ0ǫls V)−1

Nq∑

i=1

Nq∑

j=1

qiqj
∑

l∈Z3 , l 6=0

k−2γ̂(ak) cos(k · rij) , (7.26)

Eη = (4πǫ0ǫls)
−1

Nq∑

i=1

Nq∑

j=1 , j>i

qi qj
∑

n∈Z3

‖ rij + Ln ‖−1
η(a−1‖ rij + Ln ‖) , (7.27)

EA = (8πǫ0ǫls)
−1 [A1 S

2 − (A1 +A2) S̃
2] , (7.28)

V(ele,slf) = (8πǫ0ǫls)
−1 (A1 +A2 +A3) S̃

2 , (7.29)

2-38

Nγ m πγ(ξ)

-1 ∞ π−1/2 e−ξ2

0 0 (3/4)H(1− ξ)

1 1 3(1− ξ)H(1 − ξ)

2 2 (15/2) (1− ξ)2H(1− ξ)

3 2 (15/4) (1− ξ)2(1 + 2ξ)H(1− ξ)

4 3 (105/16) (1− ξ)3(3ξ + 1)H(1− ξ)

5 4 (21/2) (1− ξ)4(4ξ + 1)H(1− ξ)

6 4 (63/8) (1− ξ)4(5ξ2 + 4ξ + 1)H(1− ξ)

7 5 (45/4) (1− ξ)5(8ξ2 + 5ξ + 1)H(1− ξ)

8 6 (165/32) (1− ξ)6(35ξ2 + 18ξ + 3)H(1− ξ)

9 6 (165/64) (1− ξ)6(64ξ3 + 69ξ2 + 30ξ + 5)H(1− ξ)

10 7 (2145/128) (1− ξ)7(21ξ3 + 19ξ2 + 7ξ + 1)H(1− ξ)

Table 7.1. Charge-shaping functions currently implemented. Related quantities are listed
in Tabs. 7.2-7.6. Nγ : code of the function (input switch NSHAPE ; Nγ = 0...10: optimal
TP-function of order Nγ ; Nγ = −1: Gaussian) ; m : convergence rate of γ̂(κ) towards zero

(convergence is as κ−(m+2) when κ → ∞) ; πγ(ξ) : charge-shaping function amplified by
π (the actual shaping function is a−3γ(a−1r)) ; H(ξ) : Heaviside function (H(ξ) = 1 when
ξ ≥ 0, zero otherwise). Note that the Gaussian function is infinite-ranged.

Nγ η(ξ)

-1 erfc(ξ)

0 (1/2) (1− ξ)2(ξ + 2)H(1− ξ)

1 (1− ξ)3(ξ + 1)H(1− ξ)

2 (1/2) (1− ξ)4(3ξ + 2)H(1− ξ)

3 (1/4) (1− ξ)4(4ξ2 + 7ξ + 4)H(1− ξ)

4 (1/8)(1− ξ)5(15ξ2 + 19ξ + 8)H(1− ξ)

5 (1− ξ)6(3ξ2 + 3ξ + 1)H(1− ξ)

6 (1/16) (1− ξ)6(35ξ3 + 66ξ2 + 51ξ + 16)H(1− ξ)

7 (1/8)(1− ξ)7(32ξ3 + 49ξ2 + 31ξ + 8)H(1− ξ)

8 (1/16) (1− ξ)8(105ξ3 + 136ξ2 + 73ξ + 16)H(1− ξ)

9 (1/32) (1− ξ)8(160ξ4 + 335ξ3 + 312ξ2 + 151ξ + 32)H(1− ξ)

10 (1/128)(1− ξ)9(1155ξ4 + 2075ξ3 + 1665ξ2 + 697ξ + 128)H(1− ξ)

Table 7.2. Switch functions corresponding to the charge-shaping functions currently im-
plemented (see Tab. 7.1). Nγ : code of the function ; η(ξ) : switch function (the real-space
interaction function is r−1η(a−1r)) ; erfc : complementary error function.

and

V(ele,srf) = [2ǫ0ǫls (2ǫLS + 1)V]−1M2 , (7.30)

where rij = ri−rj , ǫ0 is the dielectric permittivity of vacuum, and ǫLS (input parameter EPSLS) the relative
permittivity of the medium “surrounding” the infinite periodic system. If the switch EPSLS is set to 0.0,
conducting boundary conditions will be used, i.e. ǫLS → ∞. The expression for the surface term is obtained
by assuming that the infinite periodic system is built by assembling a (roughly) spherical assembly of N
periodic cells centered at rc, the center of the reference computational box, with N → ∞. In this case, if
the medium outside the assembly is a continuum of permittivity ǫLS , the Onsager self energy reads (for N

2-39

Nγ −η′(ξ)
-1 2π−1/2e−ξ2

0 (3/2) (1− ξ)(ξ + 1)H(1− ξ)

1 2(1− ξ)2(2ξ + 1)H(1− ξ)

2 (5/2) (1− ξ)3(3ξ + 1)H(1− ξ)

3 (3/4) (1− ξ)3(8ξ2 + 9ξ + 3)H(1− ξ)

4 (21/8)(1− ξ)4(5ξ2 + 4ξ + 1)H(1− ξ)

5 3(1− ξ)5(8ξ2 + 5ξ + 1)H(1− ξ)

6 (9/16) (1− ξ)5(35ξ3 + 47ξ2 + 25ξ + 5)H(1− ξ)

7 (5/8)(1− ξ)6(64ξ3 + 69ξ2 + 30ξ + 5)H(1− ξ)

8 (55/16) (1− ξ)7(21ξ3 + 19ξ2 + 7ξ + 1)H(1− ξ)

9 (15/32) (1− ξ)7(128ξ4 + 203ξ3 + 141ξ2 + 49ξ + 7)H(1− ξ)

10 (65/128)(1− ξ)8(231ξ4 + 312ξ3 + 186ξ2 + 56ξ + 7)H(1− ξ)

Table 7.3. Derivative of the switch functions corresponding to the charge-shaping functions
currently implemented (see Tabs. 7.1 and 7.2). Nγ : code of the function ; −η′(ξ) : derivative
switch function amplified by −1 (η′(ξ) = dη(ξ)/dξ).

Nγ κNγ+3γ̂(κ)

-1 κ2e−κ2/4

0 3[−κC + S]

1 12[2− 2C − κS]

2 60[2κ+ κC − 3S]

3 90[8 + (κ2 − 8)C − 5κS]

4 630[8κ+ 7κC + (κ2 − 15)S]

5 5040[4(κ2 − 6)− (κ2 − 24)C + 9κS]

6 7560[48κ− (κ2 − 57)κC + 3(4κ2 − 35)S]

7 75600[24(κ2 − 8)− 3(5κ2 − 64)C − (κ2 − 87)κS]

8 831600[8κ(κ2 − 24) + (κ2 − 123)κC − (18κ2 − 315)S]

9 1247400[192(κ2 − 10) + (κ4 − 207κ2 + 1920)C − (22κ2 − 975)κS]

10 16216200[64κ(κ2 − 30) + (26κ2 − 1545)κC + (κ4 − 285κ2 + 3465)S]

Table 7.4. Fourier coefficients corresponding to the shaping functions currently imple-
mented (see Tab. 7.1). Nγ : code of the function ; κNγ+3γ̂(κ) : Fourier coefficient amplified
by κNγ+3 (the actual Fourier coefficient is γ̂(ak)) ; C : short notation for cos(κ) ; S : short
notation for sin(κ).

large)

∆Go(ǫLS) = −(8πǫ0)
−1 2(ǫLS − 1)

2ǫLS + 1

NM2

[(3/4)π−1NV]1/3

The quantity V(ele,srf) being a correction from conducting (tinfoil) boundary conditions to finite-permittivity

is then given by V(ele,srf) = ∆Go(ǫLS)−∆Go(∞).

The interpretation of the different contributions to V(ele) in Eq. 7.25 is given below, with reference to the
following terminology for charge densities (which can be added to or subtracted from one another): point
charge (p), γ-shaped charge (γ), and homogeneous background charge (b). The term Eγ represents the
electrostatic energy (including self interaction) of a set of (p − b)-charges of magnitude {qi} at positions
{ri} in the potential generated by the corresponding periodic system of (γ − b)-charges. Since the potential
is a non-singular and generally smooth function of position, Eγ is conveniently evaluated in reciprocal

2-40

Nγ κNγ+4γ̂′(κ)

-1 −(1/2)κ4e−κ2/4

0 3[3κC + (κ2 − 3)S]

1 12[−8− (κ2 − 8)C + 5κS]

2 60[−8κ− 7κC − (κ2 − 15)S]

3 90[−48− (9κ2 − 48)C − (κ2 − 33)κS]

4 630[−48κ+ (κ2 − 57)κC − 3(4κ2 − 35)S]

5 5040[−24(κ2 − 8) + 3(5κ2 − 64)C + (κ2 − 87)κS]

6 7560[−384κ+ 3(6κ2 − 187)κC + (κ4 − 141κ2 + 945)S]

7 75600[−192(κ2 − 10)− (κ4 − 207κ2 + 1920)C + (22κ2 − 975)κS]

8 831600[−64κ(κ2 − 30)− (26κ2 − 1545)κC − (κ4 − 285κ2 + 3465)S]

9 1247400[−1920(κ2− 12)− 15(2κ4 − 203κ2 + 1536)C − (κ4 − 405κ2 + 12645)κS]

10 16216200[−640κ(κ2− 36) + (κ4 − 545κ2 + 22005)κC − 5(7κ4 − 936κ2 + 9009)S]

Table 7.5. derivative of the Fourier coefficients corresponding to the shaping functions
currently implemented (see Tabs. 7.1 and 7.4). Nγ : code of the function ; κNγ+4γ̂′(κ) : de-
rivative Fourier coefficient amplified by κNγ+4 (the actual derivative of the Fourier coefficient
is γ̂′(ak)).

-1 −(1/2)κ4e−κ2/4

0 3[3κC + (κ2 − 3)S]

Nγ −V π−1a−2A1 −aA3

-1 1 2π−1/2

0 2/5 3/2

1 4/15 2

2 4/21 5/2

3 3/14 9/4

4 1/6 21/8

5 2/15 3

6 8/55 45/16

7 4/33 25/8

8 4/39 55/16

9 10/91 105/32

10 2/21 455/128

Table 7.6. A-constants corresponding to the shaping functions currently implemented (see
Tab. 7.1). Nγ : code of the function ; −V π−1a−2A1 : constant A1 amplified by −V π−1a−2 ;
−aA3 : constant A3 amplified by −a. These results are derived using Eq. 7.31, and thus
valid exactly when a ≤ min{Lx, Ly, Lz} (TP functions) or as an approximation when a ≪
min{Lx, Ly, Lz} (Gaussian).

space, using the Ewald method29 or the PPPM method30 (see Sec. 7.4.3 and Sec. 7.4.4). The term Eη

represents the electrostatic energy (excluding self interaction) of a set of (p− b)-charges of magnitude {qi}
at positions {ri} in the potential generated by the corresponding periodic system of (p− γ)-charges. With
an appropriate choice of charge-shaping function, the function η(a−1r) can be made a quickly decreasing
function of distance, in which case Eη is conveniently evaluated by direct (real-space) summation over the

charge pairs (Sec. 7.4.1). The terms EA and V(ele,slf) (Sec. 7.4.1.3) are configuration-independent. The
term EA eliminates the self-energies present in Eγ and contains a small correction due to the constraint of

zero average potential within the periodic system. The term V(ele,slf) accounts for the self-energy of set

2-41

of (p − b)-charges of magnitude {qi} in the potential generated by the corresponding periodic system of

(p − b)-charges (Wigner term31–33). Finally, the term V(ele,srf) accounts for the interaction of the infinite
periodic system with a dielectric continuum of relative permittivity ǫLS surrounding it. In the absence of
the surface term, lattice-sum methods lead to conducting or tinfoil boundary conditions, which corresponds
to ǫLS → ∞. The surface term is thus a correction to account for a medium of finite permittivity instead.

Only three energy contributions are reported by GROMOS : the pairwise energy V(ele,pws) = Eγ +

Eη + EA, the self-energy term V(ele,slf) , and the surface term V(ele,srf). These quantities are stored in the
arrays normally for the Coulomb, distance-dependent reaction field and distance-independent reaction field

contributions. The splitting between V(ele,pws) and V(ele,slf) is only meaningful when the constant A2 is
calculated (switch NA2CLC 6=0). Otherwise, it is arbitrary and only the sum is correct.

7.4.1.3. Constant and self-energy terms. The constant term EA and the self-energy term V(ele,slf) are
given by Eqs. 7.28 and 7.29, respectively, where the A-constants are defined by Eqs. 7.22, 7.23 and 7.24.
When Eq. 7.18 is satisfied the n-sum in Eq. 7.24 can be restricted to the n = 0 term, leading to

A3 = lim
r→0

r−1 [η(a−1r) − 1] . (7.31)

Because the Gaussian charge-shaping function is infinite-ranged, Eq. 7.18 is never exactly satisfied, and
Eq. 7.31 only applies here as an approximation. In this case, A1 and A3 have analytical expressions for a
given charge-shaping function (Tab. 7.6). In the general case, the constant A2 must be computed numerically
by direct summation. In practice, this is done by evaluating

A2(lmax) = 4π V −1
∑

l∈Z3 , l 6=0 , lx,ly,lz≤lmax

k−2 γ̂(ak) (7.32)

for increasing values of lmax, until a user-specified relative tolerance (input parameter TOLA2) is reached.
In the specific case of a cubic unit cell (Lx = Ly = Lz = L), this evaluation is replaced by28,33 A2 ≈
ξEWL−1 − A1 − A3 with ξEW = −2.83792748 (macro WIGNER CUBE in define.inc). The quantity A2 is
calculated (input switch NA2CLC≥2) either (i) once at the beginning of the simulation (constant-volume
simulation), (ii) whenever an energy output (input switches NTPR and NTWE) is required (constant-
pressure simulation and NA2CLC=2) or (iii) every step (constant-pressure simulation and NA2CLC=3 or
4). When NA2CLC=0, the value of A2 is set to zero. When NA2CLC=2, only the energies are affected by
the calculation, not the virial. Thus, the estimation of A2 is not required unless an energy output is needed.
The value of A2 is assumed constant between updates. When NA2CLC≥ 3, both the energies and the virial
are affected by the calculation. Thus, the estimation of A2 is required at every step in a constant-pressure
simulation.

The quantity A2 calculated through Eq. 7.32 represents the exact (in the limit of large lmax) value of

A2 entering into V(ele,slf) (Eq. 7.29). However, because the reciprocal-space interaction energy is evaluated
with a finite precision (i.e. through the Ewald or PPPM method), this value of A2 will only approximately
remove the reciprocal-space self-energy when included in EA (Eqs. 7.28). In particular, using this A2 value
in the expression for EA will lead to a pairwise energy Eη+Eγ+EA that will not exactly vanish for a system
consisting of a single charge. Although for most practical purposes, this approximation (corresponding to

NA2CLC=2) is sufficient, it is possible to compute a more accurate method-dependent value Ã2 to be used
in the evaluation of EA, i.e.

EA = (8πǫ0)
−1 [A1 S

2 − (A1 + Ã2) S̃
2] , (7.33)

The calculation of this quantity is feasible for the the Ewald (input switch NA2CLC=1 or 3) or PPPM
(input switch NA2CLC=3 or 4).

The EA and V(ele,slf) terms give rise to no force contribution. The corresponding virial contributions are
given in Sec. 17.7. Although the A2 term in EA is configuration-dependent, the corresponding force on the
atoms is neglected

The calculation of the A2 term may be entirely skipped (input switch NA2CLC=0). In this case, A2 is set

to zero and the A2 contributions are omitted in the evaluation of both EA and V(ele,slf) (Eqs. 7.28 and 7.29).
As a consequence, the splitting between pairwise and self contributions becomes arbitrary, but the sum of the
two quantities (and thus the overall electrostatic energy) remains correct within the approximation A2 ≈ Ã2.

Skipping the calculation of A2 (and/or Ã2) may be advantageous in constant-pressure simulations, where
these quantities must be recalculated at every step.

2-42

The surface term V(ele,srf) is given by Eq. 7.30 where M is defined by Eq. 7.14 and ǫLS is the relative
permittivity of the medium surrounding the infinite periodic system (input parameter EPSLS; a value of 0.0
selects an infinite permittivity, i.e. conducting or tinfoil boundary conditions). The corresponding force on
atom i is given by

f srf ,i = −[ǫ0 (2ǫLS + 1)V]−1 qi M . (7.34)

The corresponding virial contribution is discussed in Sec. 17.7.

Energy partitioning. The partitioning of the Eγ (Eq. 7.26; for PPPM: Eq. 7.72) term into energy groups
requires multiple reciprocal-space evaluations. For Ne (Ne>1) energy groups, the Ne(Ne+1)/2−1 quantities

(Eγ)IJ (2ǫ0 V)−1
∑

l∈G , l 6=0

Ĝg(kl) | (ŝg(kl))IJ |2 (7.35)

with I = 1..Ne − 1 and J = I..Ne are evaluated. (E)NeNe is obtained by subtracting the sum of the other
terms from Eγ .

The splitting of the EA and V(ele,slf) into energy groups is based on the splitting of the quantities S2 and
S̃2 (Eqs. 7.15 and 7.16) as

S̃2
IJ = δIJ

∑

i∈I

q2i (7.36)

and

S2
IJ = (2− δIJ)(

∑

i∈I

qi)(
∑

j∈J

qj) (7.37)

where I and J denote two energy groups with I < J . These definitions ensure

∑

I

∑

J≥I

S̃2
IJ = S̃2 and

∑

I

∑

J≥I

S2
IJ = S2 .

In this case, the pairwise group contributions to EA and V(ele,slf) (Eqs. 7.28 and 7.29) read

(EA)IJ = (8πǫ0)
−1 [A1 S

2
IJ − (A1 +A2) S̃

2
IJ] , (7.38)

(V(ele,slf))IJ = (8πǫ0)
−1 (A1 +A2 +A3) S̃

2
IJ , (7.39)

If Eq. 7.33 is used instead for EA together with an exact evaluation of Ã2 (input switch NA2CLC=3), the

splitting must be done by evaluating separately (Ã2)II for each group based on Eq. 7.104 (with S̃2
II instead

of S̃2). In this case, one has

(EA)IJ = (8πǫ0)
−1 {A1 [(S

2)IJ − (S̃2)IJ − δIJ(Ã2)II(S̃
2)II} . (7.40)

The splitting of the V(ele,srf) term into energy groups is based on the splitting of the quantity M2

(Eqs. 7.14) as

(M2)IJ = (2− δIJ)[
∑

i∈I

qi (ri − rc)][
∑

j∈J

qj (rj − rc)] , (7.41)

In this case, the pairwise group contributions to V(ele,srf) (Eq. 7.30) reads

(V(ele,srf))IJ = [2ǫ0 (2ǫLS + 1)V]−1 (M2)IJ . (7.42)

When perturbation is applied, the soft core is only applied to the 1/r component of the real-space inter-
action, but not to the complement η − r−1.

2-43

7.4.2. Real-space interactions in LS electrostatics. In the most general form, the real-space con-
tribution to the electrostatic interactions is given by Eq. 7.27. The switch functions η corresponding to the
charge-shaping functions implemented are listed in Tab. 7.2. In practice, it is assumed that the charge-
shaping function satisfies the condition

γ(a−1r) = 0 for r ≥ Rcp , with Rcp ≤ (1/2)min{Lx, Ly, Lz} , (7.43)

where Rcp is the real-space cutoff distance (input parameter RCUTP), which implies that the switch function
η(a−1r) also vanishes beyond Rcp. This condition can be enforced in a strict fashion for all truncated-
polynomial charge-shaping functions (Tab. 7.1; Nγ = 0...10) by setting a (input parameter ASHAPE) equal
to Rcp. It can be enforced in an approximate manner for the Gaussian charge-shaping function (Tab. 7.1;
Nγ = −1) by setting a ≪ Rcp. In many cases, a ≈ Rcp/3 is a reasonable choice. If a > Rcp, an error will
be issued in the FORCE routine. If Rcp > (1/2)min{Lx, Ly, Lz}, an error will be issued. In this case, and
taking into account that Coulombic interaction between excluded covalent neighbours should be removed,
one may rewrite Eq. 7.27 as

Eη = (4πǫ0)
−1

Nq∑

i=1

Nq∑

j=1 , j>i , rij<Rcp , j /∈Exc(i)

qi qj r
−1
ij η(a−1rij) (7.44)

+(4πǫ0)
−1

Nq∑

i=1

Nq∑

j=1 , j>i , j∈Exc(i)

qi qj r
−1
ij [η(a−1rij)− 1] ,

where rij is the minimum-image vector corresponding to rij = ri − rj and the notation j ∈ Exc(i) indicates
that atom j belongs to the exclusion list of atom i. First and second covalent neighbours are excluded from
electrostatic interactions. Only the interaction between atom i and the nearest periodic copy of atom j must
be removed, not the interaction of i with the other periodic copies of j. Therefore, a contribution in r−1

ij

must be subtracted. It is also assumed that all pairs of excluded neighbours are within a minimum-image
distance smaller than Rcp.

When using truncated-polynomial charge-shaping functions, the evaluation of Eη will only be exact pro-
vided that all atom pairs within a distance smaller than a are included into the short-range (charge-group
or atomic) pairlist. This may not be the case because (i) charge-group pairs which are too far away to be in
a molecular pairlist may still contain atom pairs at a distance smaller than Rcp, and (ii) the charge-group
or molecular pairlist may not be updated every step. To alleviate the first source of inaccuracy if using a
molecular pairlist, it is recommended to define each solute atom as its own charge group in the topology
and to set a = Rcp − d where d is the maximal distance between the first atom and any other atom within
a solvent molecule. To alleviate the second source of inaccuracy, it is recommended either to update the
pairlist very frequently or to use a slightly extended pairlist with Rn (input parameter RCUTN) larger than
Rcp.

When using a Gaussian, the evaluation of Eη is always approximate. If care is taken that the pairlist
contains all atom pairs within a minimum-image distance smaller than Rcp (previous footnote), it is likely
that it will also contain pairs with distances slightly above Rcp. To avoid the inclusion of such arbitrariness
in the calculation, these additional pairs are ignored and the interaction is restricted solely to pairs within
Rcp. This restriction can be removed by setting the macro GAUSSIAN LOOSE CUTOFF in define.inc. The
same restriction to pairs within Rcp is applied to Lennard-Jones interactions and can be removed by setting
the macro VDW LOOSE CUTOFF in define.inc.

Note that no real-space interaction is calculated in intermediate range of charge-group or atom pairs with
distances between Rcp and Rcl (input parameter RCUTL).

The corresponding atomic forces (Eq. 17.32) and contributions to the virial are discussed in Sec. 17.7.

7.4.3. Ewald reciprocal-space interactions in LS electrostatics. In the Ewald method, the reciprocal-
space energy Eγ defined by Eq. 7.26, as well as the corresponding forces and virial, are evaluated by direct
summation over reciprocal-lattice vectors.

For improved computational speed the triple-sum (over l, i and j) in Eq. 7.26 is rewritten as a double-sum
(over l and i)

Eγ = (2ǫ0V)−1
∑

l∈W , l 6=0

k−2 γ̂(ak) [C2(k) + S2(k)] , (7.45)

2-44

with the definitions

C(k) =

Nq∑

i=1

qi cosk · ri and S(k) =

Nq∑

i=1

qi sink · ri . (7.46)

The equivalence between the two equations follows from writing

Nq∑

i=1

Nq∑

j=1

qiqj
∑

l∈W , l 6=0

k−2γ̂(ak) cos(k · rij) = Re {
∑

l∈W , l 6=0

k−2γ̂(ak) |
Nq∑

i=1

qie
ik·ri |2 } ,

and noting that the square norm of a real number is always real. Note that the use of Eq. 7.45 rather
than Eq. 7.26 is considerably more efficient, but does no longer allow for a pairwise decomposition of the
contributions to Eγ (and to the corresponding forces and virial).

The force on atom i corresponding to Eq. 7.45 can be found in Eq. 17.33, and the corresponding virial
contribution is given in Sec. 17.7.

The reciprocal-lattice vectors are defined as k = 2πtL−1l, where L is the matrix L containing as columns
the Cartesian components of the box vectors (Sec. 4.4.1) and l is a vector with integer components. In the
general case of a triclinic box, it is conveninent to introduce the oblique fractional coordinates ři = L−1ri,
and the oblique reciprocal-lattice vector ǩ = 2πl. In this case, it is easily seen that any occurrence of the
scalar product k · ri can be replaced by ǩ · ři.
The summation in Eq. 7.45 is restricted to the subset W of integer vectors l defined by components lx, ly,

and lz in the ranges [−lx,max ; lx,max], [−ly,max ; ly,max], and [−lz,max ; lz,max], and by a norm of k smaller or
equal to a cutoff value kc.

7.4.3.1. Implementation. The trigonometric functions involved in the two latter quantities in Eq. 7.46
can be written as

cosk · ri = cx,i,lxcy,i,lycz,i,lz − cx,i,lxsy,i,lysz,i,lz (7.47)

−sx,i,lxcy,i,lysz,i,lz − sx,i,lxsy,i,lycz,i,lz

and

sink · ri = −sx,i,lxsy,i,lysz,i,lz + sx,i,lxcy,i,lycz,i,lz (7.48)

+cx,i,lxsy,i,lycz,i,lz + cx,i,lxcy,i,lysz,i,lz ,

with

cµ,i,l = cos 2πL−1
µ lri,µ and sµ,i,l = sin 2πL−1

µ lri,µ . (7.49)

In practice, the quantities defined by Eq. 7.49 are precomputed by recursion and stored into an array for all
the allowed positive values of lx, ly, and lz. The corresponding recursion equations are

cµ,i,l =

1 if l = 0

cos 2πL−1
µ ri,µ if l = 1

cµ,i,l−1cµ,i,1 − sµ,i,l−1sµ,i,1 otherwise

(7.50)

and

sµ,i,l =

0 if l = 0

sin 2πL−1
µ ri,µ if l = 1

cµ,i,l−1sµ,i,1 + sµ,i,l−1cµ,i,1 otherwise

. (7.51)

The results for l > 1 follow from expansion into complex exponentials. The corresponding quantities for
negative l values are not stored into the array, since they are simply given by

cµ,i,−l = cµ,i,l and sµ,i,−l = −sµ,i,l . (7.52)

The maximal values for lx, ly, and lz corresponding to wavectors ofW are max{lx,max ; kdLx}, max{ly,max ; kdLy},
and max{lz,max ; kdLz}.
In a rectangular box, an increase in computational efficiency can be obtained by noting that the terms in

the l−sum involved in Eq. 7.45 are invariant upon changing k to −k. Thus, the summation can be restricted
to the half-space with lx ≥ 0, and the resulting energies and forces (and virial contribution) multiplied by
two. More precisely, to avoid double counting, the half-space should include the (i) vectors with lx > 0, (ii)
the vectors with lx = 0 and ly > 0, and (iii) the vectors with lx = 0, ly = 0 and lz > 0. The zero wavevector
is in any case excluded from the summations.

2-45

An alternative way is to observe that, due the symmetry properties of the trigonometric functions, the
quantities C2(k) and S2(k) in Eq. 7.46 do not contain any cross-terms when expanded through Eqs. 7.47 or
7.48, i.e.

C2(k) = C2
o (k) + C2

x(k) + C2
y (k) + C2

z (k) (7.53)

and

S2(k) = S2
o(k) + S2

x(k) + S2
y(k) + S2

z (k) , (7.54)

with

Co(k) =
∑Nq

i=1 qicx,i,lxcy,i,lycz,i,lz , Cx(k) =
∑Nq

i=1 qicx,i,lxsy,i,lysz,i,lz
Cy(k) =

∑Nq

i=1 qisx,i,lxcy,i,lysz,i,lz , Cz(k) =
∑Nq

i=1 qisx,i,lxsy,i,lycz,i,lz
(7.55)

and

So(k) =
∑Nq

i=1 qisx,i,lxsy,i,lysz,i,lz , Sx(k) =
∑Nq

i=1 qisx,i,lxcy,i,lycz,i,lz
Sy(k) =

∑Nq

i=1 qicx,i,lxsy,i,lycz,i,lz , Sz(k) =
∑Nq

i=1 qicx,i,lxcy,i,lysz,i,lz
. (7.56)

Due to symmetry Eq. 7.45 is then easily rewritten as a sum over the positive octant

Eγ = 4(ǫ0V)−1
∑

l∈W′ , l 6=0

k−2 γ̂(ak)σk[C
2
o (k) + C2

x(k) + C2
y (k) + C2

z (k) (7.57)

+S2
o(k) + S2

x(k) + S2
y(k) + S2

z (k)] ,

whereW′ denotes the restriction ofW to wavevectors with positive or zero components, and σk is a symmetry
factor equal to 2−n, where n is the number of vanishing wavevector components. The force is given in
Eq. 17.34.

The reciprocal-space Ewald contribution to the atomic virial Wµ (corresponding to the energy term Eγ

defined by Eq. 7.26 and evaluated as Eq. 7.45) is given in Eq. 17.38.

7.4.3.2. Calculation of the Ã2 self term. In the Ewald case, the quantity Ã2 is evaluated as

Ã2 = (ǫ0ǫlsV)−1
∑

l∈W , l 6=0

k−2 γ̂(ak) . (7.58)

As discussed above, an increase in computational efficiency can be obtained by restricting the summation to
a half-space and doubling the result, or even, summing over an octant and multiplying the result by eight.
Because the calculation of Ã2 in the Ewald case is inexpensive, while this quantity generally represents a
reasonably-accurate estimate for A2, it is possible to suppress the calculation of A2 by Eq. 7.32 and set
A2 = Ã2 in this case (input switch NA2CLC=1, only allowed for Ewald).

7.4.4. PPPM reciprocal-space interactions in LS electrostatics. The reciprocal-space contribu-
tion Eγ to the total electrostatic energy evaluated through the LS method (Eq. 7.26) may be calculated
via the particle-particle particle-mesh (PPPM) algorithm of Hockney and Eastwood.30 Alternatively, this
algorithm may be applied to the calculation of the reciprocal-space contribution Eω to the total electrostatic
energy evaluated through the LSERF method.

For a general triclinic computational box, the PPPM algorithm relies on the discretization of the box by
means of a grid (mesh). The number of grid subdivisions along each of the box axes must be even. The
algorithm consists of six steps : (i) assignment of the charge density associated with the atomic partial
charges to the grid points by means of an assignment function ; (ii) conversion of the charge density grid
to reciprocal space by means of a three-dimensional fast Fourier transform (3D-FFT) ; (iii) solution for the
reciprocal-space electrostatic potential via multiplication by an optimized influence function ; (iv) conversion
of the reciprocal-space potential grid to real space by means of a 3D-FFT ; (v) evaluation of the electrostatic
field on the grid by means of a finite-difference operator ; (vi) interpolation of the field at the location
of the atomic partial charges by means of the same assignment function used in the first step. In the ik-
differentiation variant, the fifth and sixth steps are replaced by : (v) evaluation of the reciprocal-space field
through multiplication by ik ; (iv) conversion of the reciprocal-space field grid to real space by means of
three 3D-FFTs, one for each field component.

The influence function describes the electrostatic potential generated at the different grid points by a unit
(γ − b)-charge at the origin (Sec. 7.4). It is stored in reciprocal-space as its corresponding value at each of
the reciprocal-space grid points. A key to the accuracy of the algorithm is to preoptimize this function so
that it compensates for errors inherent to the discretization process, the use of an approximate assignment
function and the use of an approximate finite-difference operator. When the virial is to be calculated or

2-46

when the box dimensions may vary in the course of a simulation, six grids are computed simultaneously,
containing the relevant derivatives of the optimal influence function with respect to the box parameters. The
optimization of the influence function (and the evaluation of its derivatives when required) is computationally
expensive. In simulations without variations of the box parameters, however, this function is constant (as
well as its derivatives) and the calculation needs to be performed only once at the beginning of a simulation.
In simulations involving a variation of the box parameters, the accuracy of the influence function may
progressively deteriorate with time as the box changes shape and size. Two mechanisms are then used
to improve the accuracy of the current influence function at reasonable computational costs. First, the
derivative information computed together with the optimized influence function is used to apply a first-order
correction to the current influence function upon variation of the box parameters. Second, the accuracy
of the algorithm may be reevaluated at periodic intervals, and a reoptimization of the influence function
(and recalculation of its derivatives) undertaken when this accuracy falls below a user-specified threshold. If
desired, the optimal influence function (and its derivatives, whenever required) may be read from file in the
first step of a simulation, and may be written to file in the last step of a simulation.

The 3D-FFTs are performed using the FFTW libraries.

The use of the PPPM method is restricted to systems under periodic boundary conditions and in three
dimensions only. The implementation for truncated-octahedral boxes results from the coordinate trans-
formation described in Sec. 4.4.2.3, so that only the general triclinic case will be discussed in detail. The
special case of a rectangular box results in minor simplifications at the level of the calculation of the influence
function, which will be mentioned in this context.

7.4.4.1. Discretization of the computational box. A general triclinic box may be discretized by means of
a grid G, defined by the number of subdivisions Na, Nb and Nc along the a, b and c box-edge vectors. The
three numbers must be even. It will be convenient to introduce the diagonal matrix N with elements Na,
Nb and Nc, i.e.

N =

Na 0 0

0 Nb 0

0 0 Nc

 . (7.59)

The matrices H′ and H are then defined as

H′ =

N−1
a a′x N−1

b b′x N−1
c c′x

N−1
a a′y N−1

b b′y N−1
c c′y

N−1
a a′z N−1

b b′z N−1
c c′z

 = L′ N−1 = SBN−1 , (7.60)

and

H =

N−1
a ax N−1

b bx N−1
c cx

N−1
a ay N−1

b by N−1
c cy

N−1
a az N−1

b bz N−1
c cz

 = LN−1 = RH′ = TBN−1 . (7.61)

The volume of a grid cell is noted VG =| H′ |=| H |.
Each point of the real-space grid G is associated with an index n = (na, nb, nc), with na ∈ [0;Na − 1],

nb ∈ [0;Nb− 1] and nc ∈ [0;Nc− 1]. Points outside this range are periodic copies of points within the range.
The corresponding real-space vector may be written in the different representations (Sec. 4.4.1.1)

řn = N−1n , r̆n = BN−1n , r′n = H′n , rn = Hn . (7.62)

Similarly, each point of the reciprocal-space grid G is associated with an index l = (la, lb, lc), with la ∈
[−Na/2 + 1;Na/2], lb ∈ [−Nb/2 + 1;Nb/2] and lc ∈ [−Nc/2 + 1;Nc/2]. The corresponding reciprocal-space
vector may be written in the different representations (Sec. 4.4.1.4)

ǩl = 2πl , k̆l = 2πB−1l ,k′
l = 2π(tL′)−1 ,kl = 2πtL−1l . (7.63)

All gridded functions, i.e. real- or reciprocal-space functions that only take a value at a grid point of G,
will be indicated with a g subscript.

The forward 3D-FFT operation converts a gridded function fg(rn) on the grid G into its finite Fourier

coefficients f̂g(kl) on the same grid

f̂g(kl) = VG
∑

n∈G

fg(rn) e
−ikl·rn , (7.64)

2-47

where kl = 2πtL−1l with l ∈ G. The backward 3D-FFT performs the reverse operation, namely

fg(rn) = V −1
∑

l∈G

f̂g(kl) e
ikl·rn . (7.65)

7.4.4.2. PPPM potential. The PPPM algorithm starts by distributing the Nq atomic partial charges
qi at locations ri within the computational box onto the neighbouring grid points (taking periodicity into
account), so as to generate the charge-density grid sg. This assignment is performed as

sg(rn) =

Nq∑

i=1

qi σg(rn; ri) (7.66)

with

σg(rn; r) = P (rn − r) , (7.67)

where P is a so-called assignment function discussed in Sec. 7.4.4.4. Note that sg is a real quantity. The
charge density grid is converted to its (complex) reciprocal-space representation ŝg(kl) by applying a forward
3D-FFT to sg(rn).

The reciprocal-space potential, i.e. the potential generated by the corresponding gridded (γ-b)-charges
(Sec. 7.4) is then computed in reciprocal space as

Φ̂γ,g(kl) = (ǫ0ǫls)
−1 Ĝ†

g(kl) ŝg(kl) , (7.68)

where Ĝ†
g represents the Fourier coefficients of the influence function. If all charges were located exactly at

grid points or if the grid spacing was infinitesimal, the quantity Ĝg would be given by k−2
l γ̂(akl). However,

since this is generally not the case, a significant gain in accuracy is reached by optimizing Ĝ†
g to compensate

for errors linked with the discretization procedure, taking into account possible variations in the shape and
size of the computational box. To this purpose, the influence function Ĝ†

g is defined as

Ĝ†
g(kl) = Ĝo

g(kl)− Tr[Γ̂Γ
o

g(kl)(
tLo)−1(tL− tLo)] (7.69)

where Ĝo
g is the influence function optimized for a given set Lo of box parameters and Γ̂Γ

o

g contains the
corresponding first-order derivative information in the form

Γ̂Γ
o

g(kl) = −∂Ĝ
o
g(kl)

∂Lo
tLo . (7.70)

The calculation of the quantities Ĝo
g and Γ̂Γ

o

g is described below. The optimal influence function Ĝo
g is only

optimal for a specific set Lo of box parameters L. When the shape and size of the computational box may
vary, the second term in Eq. 7.69 includes a first-order correction to the influence function optimized at Lo,

based on the derivative information calculated simultaneously. In practice, because Γ̂Γ
o

g is symmetric, the
storage of the two quantities requires seven grids of reals. This evaluation (but not the storage requirement)
is omitted for simulations not involving the calculation of the virial or the variation of the box parameters.

7.4.4.3. PPPM energy and forces. The reciprocal-space contribution Eγ to the total electrostatic energy
(Eq. 7.26) is given by

Eγ = (2ǫ0ǫls V)−1

Nq∑

i=1

Nq∑

j=1

∑

l∈G , l 6=0

qi σ̂g(kl; ri) qj σ̂
∗
g(kl; rj) Ĝ

†
g(kl) . (7.71)

For computational efficiency, this pairwise sum is evaluated as a single sum, through

Eγ = (2ǫ0ǫls V)−1
∑

l∈G, l 6=0

Ĝ†
g(kl) | ŝg(kl) |2 . (7.72)

The (approximate) forces associated with the energy contribution Eγ (Eq. 7.72) are obtained through the
evaluation of the gridded field Eg and its interpolation at the location of the charges. The reciprocal-space
force on atom i is then written

Fγ,i = qiE(ri) (7.73)

with

E(r) = VG
∑

n∈G

P (r− rn)Eg(rn) . (7.74)

2-48

The same assignment function P should be used here and for the charge assignment (Eq. 7.67), to ensure
conservation of the total linear momentum during the dynamics. The gridded field Eg to be used in Eq. 7.74
can be obtained in either of two ways.

The first method (finite-difference) relies on performing a backward 3D-FFT of the potential to obtain
the (real) real-space potential, and using a finite-difference approximation to compute the gridded field as

Eg(rn) = −
∑

n′∈G

i VGDg(rn − rn′)Φγ,g(rn′) (7.75)

where i VG Dg is is a so-called finite-difference operator, discussed below.

The second method (ik-differentiation) relies on computing the exact gridded field in reciprocal-space

Êg(kl) = −ikl Φ̂γ,g(kl) , (7.76)

One then performs three backward 3D-FFTs (one for each Cartesian component) to obtain the corresponding
(real) quantity Eg in real-space. Note that the choice of kl in Eq. 7.76 leaves room for some ambiguity. This
is because the gridded potential can be mapped to a continuous function (of which the gradient is to be
taken) in an infinite number of ways. Accordingly, kl in Eq. 7.76 can be any alias vector kl+mN of kl

with m ∈ Z3. The most realistic mapping of the potential is the one avoiding the introduction of spurious
oscillations, which corresponds to the kl vectors with the smallest norms. The convention adopted here is
to select the alias vectors with l components are in the ranges [−Nx/2 + 1;Nx/2], [−Ny/2 + 1;Ny/2], and
[−Nz/2 + 1;Nz/2].

In principle, the use of ik−differentiation requires the storage of three complex grids. In the program, this
storage is reduced to two by recycling the charge density / potential grid for the field component along the
z-axis.

The virial associated with the energy contribution Eγ (Eq. 7.72) is given in Eqs. 17.40 and 17.41.

7.4.4.4. Assignment function. The assignment function P of order p (Eqs. 7.67 and 7.74) performs the
distribution (interpolation) of a continuous function at an arbitrary location onto (from) values at the
neighbouring p3 grid points. This function is defined as28

P (r) = V −1
G

∑

n∈Z3

P̃ (r+ Ln) (7.77)

with

P̃ (r) = wp([H
−1r]a)wp([H

−1r]b)wp([H
−1r]c) . (7.78)

Here, wp(ξ) is a normalized one-dimensional function vanishing for | ξ |≥ p/2. These functions are listed in
Tab. 7.7. The assignment scheme is formulated in terms of oblique coordinates. Thus, in the general case,
the distribution (interpolation) of the function from (at) an arbitrary location onto (from) the neighbouring
grid points is not necessarily correlated with the Cartesian distance between the points (this is only the case
for a rectangular computational box). Note that P is a real quantity.

p wp(ξ) range

1 1 | ξ |< 1/2

2 1− | ξ | | ξ |< 1

3 3/4− ξ2 | ξ |< 1/2

(1/8)(2 | ξ | −3)2 1/2 <| ξ |< 3/2

4 (1/6)(3 | ξ |3 −6ξ2 + 4) | ξ |< 1

−(1/6)(| ξ | −2)3 1 <| ξ |< 2

5 (1/192)(48ξ4 − 120ξ2 + 115) | ξ |< 1/2

−(1/96)(16ξ4 − 80 | ξ |3 +120ξ2 − 20 | ξ | −55) 1/2 <| ξ |< 3/2

(1/384)(2 | ξ | −5)4 3/2 <| ξ |< 5/2

Table 7.7. One-dimensional functions wp(ξ) used to define the charge-assignment functions
(Eq. 7.78). The functions wp(ξ) vanish for | ξ |≥ p/2.

In practice, the assignment is performed as follows. For p odd, one finds the grid point ni closest to the
location of charge qi. For p even, one finds the grid-cell center closest to the location of charge qi. In this

2-49

case, ni has half-integer components. With the definitions ζζi = ni −H−1ri and ∆ni = n− ni, the fraction
of charge allocated to the periodic copy of the grid point n inside the computational box is given by

P (rn − ri) = V −1
G wp(ζi,a +∆ni,a)wp(ζi,b +∆ni,b)wp(ζi,c +∆ni,c) . (7.79)

Because, by construction, the components of ζζi are smaller than 1/2 in absolute value while wp(ξ) = 0 for
| ξ |≥ p/2, wp(ζ +∆n) vanishes for | ∆n |≥ p/2. The wp(ξ) functions reexpressed as wp(ζ +∆n) are listed
in Tab. 7.8.

p ∆n wp(ζ +∆n)

1 0 1

2 ±1/2 −(1/2)(±2ζ − 1)

3 0 −(1/4)(4ζ2 − 3)

±1 (1/8)(±2ζ − 1)2

4 ±1/2 (1/48)[32− 12(±2ζ + 1)2 + 3(±2ζ + 1)3]

±3/2 −(1/48)(±2ζ − 1)3

5 0 (1/192)(48ζ4 − 120ζ2 + 115)

±1 (1/96)[−16ζ4 ± 16ζ3 + 24ζ2 − (±44ζ) + 19]

±2 (1/384)(±2ζ − 1)4

Table 7.8. One-dimensional functions wp(ξ) (Tab. 7.7) represented as wp(ζ + ∆n) with
∆n integer (p odd) or half-integer (p even), and | ζ |≤ 1/2. The functions wp(ζ+∆n) vanish
for | ∆n |≥ p/2.

The Fourier coefficient P̂ of the assignment function P are given by

P̂ (k) = ŵp([
tHk]a)ŵp([

tHk]b)ŵp([
tHk]c) , (7.80)

with tHk = 2πN−1l, where ŵp(κ) is the continuous Fourier transform of wp(ξ), which evaluate to

ŵp(κ) = [2κ−1 sin(κ/2)]p(1− δκ) + δκ . (7.81)

Note that P̂ is a real quantity, that is non-periodic, and odd (p odd) or even (p even) with respect to a
change in the sign of any component of l

7.4.4.5. Finite- and exact-difference operators. The finite-difference operator iVGDg of order q (Eq. 7.75)
estimates the gradient of a given function at a grid point based on the value of the function at the 6q
neighbouring grid points along the three box axes. The operator Dg is defined as28

Dg(rn) =

q∑

j=1

cj dvg,j(rn) . (7.82)

In this expression, the centered-difference operator iVGdvg,j generates the gradient contribution evaluated

from the function at the 6 neighbouring points distant from the grid point by ±jN−1
a a, ±jN−1

b b and ±jN−1
c c

along the the three box axes. The operator dvg,j is given by

dvg,j(rn) = RSeg,j(rn) , (7.83)

where eg,j is the corresponding operator in terms of oblique coordinates, i.e.

eg,j,a(rn) = i V −1
G (2jN−1

a a)−1 δnb
δnc

∑

m∈Z

(δna−j+Nam − δna+j+Nam) , (7.84)

with similar expressions for the b and c components. Note that iVGDg is a real quantity.

The Fourier coefficients D̂g of the operator Dg are given by

D̂g(kl) =

q∑

j=1

cj d̂g,j(kl) , (7.85)

where

d̂g,j(kl) = R tS−1 êg,j(kl) (7.86)

2-50

and

êg,j,a(kl) = (jN−1
a a)−1 sin(j[tHkl]a) , (7.87)

with similar expressions for the b and c components. Taken together, Eqs. 7.85, 7.86 and 7.87 may be written

D̂g(kl) =
tH−1

q∑

j=1

cj j
−1

sin(j[tHkl]a)

sin(j[tHkl]b)

sin(j[tHkl]c)

 (7.88)

with tHkl = 2πN−1l. Note that D̂g is a real quantity, periodic in the components of l (with periods Na, Nb

and Nc), and characterized by the same symmetry properties as kl with respect to l (central antisymmetry in
the general case, antisymmetry with respect to changing the sign of any component for a rectangular box).

In addition, any component of tHD̂g(kl) vanishes when the corresponding l component is a half-integer

multiple of the corresponding number of grid subdivisions. This implies in particular that D̂g(kl) = 0 for
the vectors l with components equal to naNa/2, nbNb and ncNc with n ∈ Z3

In reciprocal space, Eq. 7.75 can be written

Êg(kl) = −iD̂g(kl) Φ̂γ,g(kl) . (7.89)

Comparing this expression with Eq. 7.76 shows that the exact difference operator corresponds to

D̂g(kl) = kl . (7.90)

In this specific case, D̂g retains the same symmetry properties as the finite-difference operators with respect
to the components of l, but is no longer periodic.

For a given finite-difference operator of order q, the coefficients cj in Eq. 7.82 may be selected so as
to minimize the difference between the corresponding finite-difference operator and the exact-difference
operator28,34. In reciprocal space, this leads to the requirement

tH−1
q∑

j=1

cj j
−1

sin(2πjN−1
a la)

sin(2πjN−1
b lb)

sin(2πjN−1
c lc)

 ≈ kl (7.91)

for any l or, equivalently,

q∑

j=1

cj j
−1 sin(2πjx) ≈ 2πx (7.92)

for any x. Differentiating with respect to x and dividing by 2π gives

q∑

j=1

cj cos(2πjx) ≈ 1 . (7.93)

Expanding the left-hand side in Taylor series around x = 0 up to order 2q − 2, equating the coefficients of
power m to δm, and solving the resulting system of equations results in the optimal coefficients listed in
Tab. 7.9.

q c1 c2 c3 c4 c5

1 1

2 4/3 -1/3

3 3/2 -3/5 1/10

4 8/5 -4/5 8/35 -1/35

5 5/3 -20/21 5/14 -5/63 1/12

Table 7.9. Optimal weighting coefficients cj (j ≤ q) for the finite-difference operator (Eq. 7.82).

2-51

7.4.4.6. Optimal influence function and derivatives. For a given set of box parameters characterized by
the matrix Lo, the influence function that optimally compensates for discretization errors can be computed
as

Ĝo
g(kl) =

D̂g(kl) · [∑m∈Z3 kl,mk
−2
l,mγ̂(akl,m)P̂ 2(kl,m)]

D̂2
g(kl) [

∑
m∈Z3 P̂ 2(kl,m)]2

, (7.94)

where

kl,m = kl+Nm = kl + 2πtH−1m (7.95)

with m ∈ Z3 is an alias vector of k. This is valid for l ∈ G and l 6= 0, together with Ĝg(0) = 0. In
practice, the summation over alias vectors is restricted to m vectors with integer components in the range
[−mmax...mmax]. A value of 2 or 3 for mmax is usually sufficient to reach convergence. The quantity P̂ is

given in by Eq. 7.80, the quantity D̂g by Eqs. 7.88 (finite-difference) or 7.90 (ik-differentiation), and the

quantity γ̂ by Eq. 7.20. Note that Ĝo
g is a real quantity.

Due to the summation over alias vectors, the second terms in both the numerator and denominator of
Eq. 7.94 are periodic in the components of l (with periods Na, Nb and Nc, respectively). The second term in
the numerator is also characterized by the same symmetry properties as kl with respect to these components
(central antisymmetry in the general case, antisymmetry with respect to changing the sign of any component

for a rectangular box). Due to the properties of D̂g (Sec. 7.4.4.5) one observes that : (i) Ĝo
g is periodic when

using a finite-difference operator (but not when using ik-differentiation) ; (ii) in the general triclinic case,

Ĝo
g is even with respect to a change in the sign of l ; (iii) in the rectangular case, Ĝo

g is even with respect
to a change in the sign of any component of l. Thus, for a triclinic box, the calculation of the influence
function may be simplified by evaluating it over a half-space (lc ∈ [0;Nc/2]) and symmetrizing the function
afterwards. When using a finite-difference operator and a triclinic box, some care must be taken in regard
to the boundary points. For example, if the points (Na/2, lb, lc) and (−Na/2,−lb,−lc) share the same value

of Ĝo
g, the points (−Na/2,−lb,−lc) and (Na/2,−lb,−lc) do not. Therefore, symmetry cannot be applied

to the boundary point, which still must be calculated only over the entire space to enforce the convention
for the definition of kl in Eq. 7.76. This problem does not arise when using a finite-difference operator
(D̂g is then periodic), or using a rectangular computational box (where the points (−Na/2,−lb,−lc) and

(Na/2,−lb,−lc) share the same value of Ĝo
g due to symmetry). For a rectangular box, the calculation may

be further limited to an single octant (la ∈ [0;Na/2], lb ∈ [0;Nb/2] and lc ∈ [0;Nc/2]) and symmetrizing

the function afterwards. The quantity kl,m can never be zero (and is thus not invertible) because Ĝo
g is not

needed for l = 0 (Eq. 7.72). However, when using a finite-difference operator, the numerator and denominator

vanish for the vectors l with components equal to naNa/2, nbNb and ncNc with n ∈ Z3, in which case Ĝo
g

should be separately set to zero.

In practice, the sum in the denominator of Eq. 7.94 is evaluated analytically as
∑

m∈Z3

P̂ 2(kl,m) =
∏

µ=x,y,z

ωp(Hµkµ) (7.96)

with

ωp(κ) = −[sin(κ/2)]2p
1

(2m− 1)!

d2p−1

dx2p−1
cot θ |θ=κ/2 . (7.97)

The values of the ωp(κ) functions are reported in Tab. 7.10

p ωp(κ)

1 1

2 1− (2/3)s2

3 1− s2 + (2/15)s4

4 1− (4/3)s2 + (2/5)s4 − (4/315)s6

5 1− (5/3)s2 + (7/9)s4 − (17/189)s6 + (2/2835)s8

Table 7.10. Functions used in the analytical evaluation of the denominator in Eq. 7.94
(Eq. 7.97), with s = sin(κ/2).

2-52

The negative derivative of the optimal influence function with respect to the box parameters Lo, amplified
on the right by tLo (Eq. 7.70) may be calculated simultaneously with the influence function using Eq. 4.46

and noting that P̂ is independent of Lo

Γ̂Γ
o

g(kl) =
1

D̂2
g(kl) [

∑
m∈Z3 P̂ 2(kl,m)]2

∑

m∈Z3

P̂ 2(kl,m)

k2l,m
{ (7.98)

{kl,m ⊗ D̂g(kl) + D̂g(kl)⊗ kl,m − 2[kl,m · D̂g(kl)]kl,m ⊗ kl,m

k2l,m

−2[kl,m · D̂g(kl)]D̂g(kl)⊗ D̂g(kl)

D̂2
g(kl)

}γ̂(akm)

+
[kl,m · D̂g(kl)]kl,m ⊗ kl,m

k2l,m
akl,m γ̂′(akl,m)}

with γ̂′(κ) = dγ̂(κ)/dκ (Tab. 7.5), valid for l ∈ G and l 6= 0, together with Γ̂Γ
o

g(0) = 0. Note that Γ̂Γ
o

g is a real

quantities. One further observes that : (i) Γ̂Γ
o

g is periodic when using a finite-difference operator (but not

when using ik-differentiation) ; (ii) in the general triclinic case, Γ̂Γ
o

g is even with respect to a change in the

sign of l ; (iii) in the rectangular case, the components of Γ̂Γ
o

g are odd with respect to a change in the sign of

any component of l involved in their definition. Thus, as for the influence function, the calculation of Γ̂Γ
o

g can
be restricted to a half-space (triclinic box) or to an octant (rectangular box), followed by symmetrization.

7.4.4.7. Accuracy estimate. When the charge-shaping function and the real-space cutoff are chosen so
that Eq. 7.43 is satisfied, which implies that the real-space force evaluation is exact, and under the assump-
tions that (i) the force error is a sum of pairwise contributions and (ii) the system is homogeneous and
disordered, the PPPM root-mean-square force error ∆F can be estimated as35,

∆F = [
1

Nq

Nq∑

i=1

(Fi − Fexact
i)2]

1/2 ≈ 1

4πǫ0
S̃2 (

Q

NqV
)1/2 , (7.99)

where Fexact
i is the the reference (exact) force, with

Q = 16π2V −1
∑

l∈G , l6=0

{ ∑

m∈Z3

k−2
l,m γ̂2(akl,m) (7.100)

+ [Ĝ†
g]

2(kl) D̂
2
g(kl) [

∑

m∈Z3

P̂ 2(kl,m)]2

−2 Ĝ†
g(kl) D̂g(kl) ·

∑

m∈Z3

kl,m k−2
l,m γ̂(akl,m) P̂ 2(kl,m)} .

Note that Eq. 7.100 is valid for any influence function (not necessary the optimal one defined in Eq. 7.94)
so that it can be used to estimate accuracy losses upon using the first-order corrected influence function of
Eq. 7.69 upon variations of the box dimensions. As for the influence function and its derivatives (Sec. 7.4.4.6)
the calculation can be restricted to a half-space (triclinic box) or to an octant (rectangular box), and amplified
by a symmetry weighting factor. Note that the vectors l with components equal to naNa/2, nbNb and ncNc

with n ∈ Z
3, for which Ĝo

g was set to zero (Sec. 7.4.4.6) must be included here.

This estimate is generally an upper bound to the error for realistic molecular systems. It is excellent for
random distribution of charges, but generally provides an upper bound in realistic molecular systems with
charge compensation (dipolar molecules, configurations favouring charge-charge, charge-dipole and dipole-
dipole cancellations).

In the special case where Ĝ†
g = Ĝo

g, inserting Eq. 7.94 into Eq. 7.100 gives

Q = 16π2V −1
∑

l∈G , l 6=0

{ ∑

m∈Z3

k−2
l,m γ̂2(kl,m) (7.101)

−
[D̂g(kl) · [∑m∈Z3 kl,mk

−2
l,mγ̂(kl,m)P̂ 2(kl,m)]]

2

D̂2
g(kl) [

∑
m∈Z3 P̂ 2(kl,m)]2

} .

An accuracy reevaluation through Eqs. 7.100 occurs everyNev steps in MD simulations (including step zero
if the influence function is read from file). If the estimated r.m.s. force error is larger than the threshold ∆Fev ,
the influence function is reoptimized (together with its derivatives if required). In addition, any calculation

2-53

of the influence function (in the first step unless the function was read from file, or subsequent during
reoptimizations after accuracy reevaluation) is accompanied by an accuracy evaluation through Eq. 7.101.
In this case, if the estimated r.m.s. force error is larger than ∆Fev, the program stops with an error message.

7.4.4.8. Calculation of the Ã2 self term in PPPM. In the PPPM case, the quantity Ã2 is evaluated as
follows. In a first step, one constructs the grid Rg(rn) using the assignment-like equation

Rg(rn) = V −1
G

Nq∑

i=1

q2i
∑

m∈Z3

∏

µ=x,y,z

fp(Lµmµ + nµ; si,µ) (7.102)

where

fp(n; s) =

(p−1)/2∑

n′=−(p−1)/2

wp(s+ n′ − n)wp(s+ n′), (7.103)

the n′-sum running over integers (p odd) or half integers (p even). For each charge, si is defined as follows.
For p odd, one finds the grid point ni closest to the location of charge qi. For p even, one finds the grid-cell
center closest to the location of charge qi. In this case, ni has half-integer components. Introducing the
definition si = ni −H−1ri, one easily sees that the components of si satisfy the condition | si,µ |≤ 1/2. The
functions wp in Eq. 7.103 are those used to construct the assignment function of order p (Tab. 7.8). Because
wp(s + n) with | s |≤ 1/2 vanishes for | n |≥ p/2, fp(n; s) vanishes for | n |≥ p. Thus, the assignment of
Eq. 7.102 distributes the square charge onto the (2p − 1)3 grid points neighbouring the origin of the grid
(taking periodicity into account). The functions fp are listed in Tab. 7.11. In a second step, one performs a

fast Fourier transform of Rg(rn) to obtain R̂g(kl). The time required for this FFT is included in the timing
information for the A2 calculation, not for the PPPM FFT. Note also that due to the symmetry of fp(n; s),
a cosine transform would be sufficient here.

In a third step, one computes A2 as

Ã2 =
4π

V S̃2

∑

l∈G

Ĝ∗
g(kl) R̂g(kl) , (7.104)

where Ĝ∗
g(kl) is the first-order corrected influence function. Due to the properties of si, the reciprocal-space

self-energy of a charge is a function of its relative position to the nearest grid point (or grid-cell center). For
large enough systems, these relative positions will be randomly distributed, and an estimate of the average
self-energy can be obtained by replacing fp(n; s) by

fp(n) =

∫ 1/2

−1/2

ds fp(n; s) (7.105)

in Eq. 7.102. The functions fp are listed in Tab. 7.11. Using fp (input switch NA2CLC=3), the self-energy
term is configuration-dependent and needs to be recalculated every step of the simulation, except for p = 1
(f1(n; s) = f1) where the two choices lead to the same (configuration-independent) result. Using fp (input
switch NA2CLC=4), this calculation needs only be done once (if the volume is constant). In practice, the

quantity Ã2 is calculated (input switch NA2CLC=3 or 4) either (i) once at the beginning of the simulation
(constant-volume simulation and NA2CLC=4), (ii) whenever an energy output (input switches NTPR and
NTWE) is required (constant-volume simulation and NA2CLC=3), or (iii) every step (constant-pressure

simulation). The value of Ã2 is assumed constant between updates. These choices, together with the
updating mode of A2 (see above), ensure that the constant-pressure dynamics is always correct, and the
energies and virial correct whenever printed into an energy output (they are only approximate in-between).

7.4.4.9. Reading and writing of the influence function and derivatives. If desired, the optimal influence

function Ĝo
g (and its derivatives Γ̂o

g whenever required), together with the corresponding reference edge
lengths Lo, can be read from file at the beginning of a simulation. They can also be written to file at the
end of a simulation. The file is unformatted and contains : 3 integers Na, Nb and Nc ; 6 reals for the box
parameters Lo; 1 logical indicating whether the six derivative grids are in the file ; 1 grid Ĝo

g ; 6 grids Γ̂o
g in

the order aa, ab, ac, bb, bc and cc (if the corresponding logical is set). Upon reading the file, the values of
Na, Nb and Nc are checked against the corresponding current parameters, the value Lo against the current L
(within an acceptably small tolerance, Lo is then exactly equalized to L), and the logical against the current
need for derivatives. Any incompatibility results in an error message.

2-54

p | n | fp(n; s) fp(n)

1 0 1 1

2 0 1/2(1 + 4s2) 2/3

1 1/4(1− 4s2) 1/6

3 0 1/32(19− 24s2 + 48s4) 11/20

1 1/16(3 + 8s2 − 16s4) 13/60

2 1/64(1− 8s2 + 16s4) = 1/64(1− 4s2)2 1/120

4 0 1/576(265+ 204s2 − 528s4 + 320s6) 151/315

1 1/2304(575− 564s2 + 1488s4 − 960s6) 397/1680

2 1/1152(23+ 84s2 − 240s4 + 192s6) 1/42

3 1/2304(1− 12s2 + 48s4 − 64s6) = 1/2304(1− 4s2)3 1/5040

5 0 1/73728(32227− 9520s2 + 28960s4 − 29440s6 + 8960s8) 15619/36288

1 1/18432(4389+ 1792s2 − 5472s4 + 5632s6 − 1792s8) 44117/181440

2 1/36864(1559− 1456s2 + 4512s4 − 4864s6 + 1792s8) 913/22680

3 1/18432(19+ 128s2 − 416s4 + 512s6 − 256s8) 251/181440

4 1/147456(1− 16s2 + 96s4 − 256s6 + 256s8) = 1/147456(1− 4s2)4 1/362880

Table 7.11. The functions fp(n; s) and fp(n) required for the evaluation of the exact

PPPM self energy term Ã2 (Eqs. 7.103 and 7.105). The variable s must satisfy | s |≤ 1/2,
and both functions vanish for | n |≥ p/2.

7.5. Polarization

7.5.1. Introduction. Polarisability allows for a more accurate description of the non-bonded inter-
actions in classical atomistic simulations and must be implemented in the software when using polarisable
force fields9.

Several methods have been described in the literature that explicitly treat electronic polarization. GROMOS

uses the charge on spring (COS) model36 (also called Drude oscillator37 or shell model38) where an inducible
dipole µi is modeled by attaching a massless, virtual site with a point-charge qvi to the polarisable center i,
via a spring with harmonic force constant khoi,

khoi =
(qvi)

2

αi
. (7.106)

The inducible dipole µi adapts its size and direction according to its polarisability αi and the electric
field E′

i at the COS of the polarisable center i (assuming isotropic αi and linear dependence of µi on E′
i)

according to

µi = αiE
′
i. (7.107)

The charge at the polarisable center with position ri, which may have a permanent charge qi, is then (qi−qvi).
Thus, the induced dipoles µi are represented by

µi = qvi (r
′
i − ri) (7.108)

where r′i is the position of the charge-on-spring. There is no electrostatic interaction between the virtual
charge qvi at r′i and the charge (qi − qvi) at ri. In COS based schemes in which the charges-on-spring are
not explicitly treated as additional degrees of freedom, the sum of the forces acting on any charge-on-spring
should be zero, and the virtual charge qvi must be positioned such that

f ′hoi + f ′couli = 0 (7.109)

with the force f ′hoi due to the spring given by

f ′hoi = −khoi(r′i − ri) = − (qvi)
2

αi
(r′i − ri) , (7.110)

2-55

and f ′couli due to the (Coulombic) electric field at the charge-on-spring (E′
i) given by

f ′couli = qviE
′
i . (7.111)

To satisfy eq Eq. 7.109, the µi, i.e., the r′i, must be determined from the E′
is where the field E′

i does not
contain a contribution from the charge (qi − qvi) at ri. However, since the displacement |r′i − ri| of the
charge-on-spring from the polarisable center is nonzero upon polarisation, an approximation of the ideal
inducible dipole µi at site i would require to determine r′i from the electric field Ei at the polarisable center
itself39,

r′i = ri +
αiEi

qvi
(7.112)

Using this approximation, the total force acting on the charge-on-spring is only zero if

Ei = E′
i (7.113)

which is usually not the case for the induced dipole due to the nonzero values for |r′i − ri| . By choosing
qvi large enough, |r′i − ri| adopts relatively small values, resulting in small differences between Ei and E′

i.
On the other hand, the size of qvi is limited to values for which |r′i − ri| is significant enough with respect
to interatomic distances such that numerical precision is ensured when calculating, e.g. interaction energies
involving induced dipoles.36,39 The COS method has been employed in combination with iterative procedures
to minimize the energy of the COS with respect to its position r′i, i.e. solving Eq. 7.109. In GROMOS qvi
is generally set to −8e.

7.5.2. Theory. The COS method treats the induced dipole moments via additional point charges only,
which allows for an easy introduction of polarisability into schemes to compute long-range electrostatic forces,
such as the reaction-field, Ewald-summation, Particle-Particle- Particle-Mesh (PPPM) and Particle-Mesh-
Ewald (PME) techniques or into a quantum-mechanical Hamiltonian for the electronic degrees of freedom
of a (solute) molecule. The electrostatic potential φi at the polarisable centers i due to the charges in the
system can be expressed using Coulombic terms

φi(r, r
′) =

1

4πǫ0ǫcs

N∑

j 6=i
j inside cut-off i
(i,j) not excluded

[
(qj − qvj)

|ri − rj |
+

qvj
|ri − r′j |

]
(7.114)

where the positions of the N atoms and corresponding virtual charges denoted by rrN = (r1, r2, . . . , rN) and
rr ′N = (r′1r

′
2, . . . , r

′
N), and ǫcs is the relative dielectric permittivity used for the model interactions. Because

of the dependence of the r′i on the rjs (and r′is) via Ei in eq Eq. 7.112, the relation between φi and the
electric field Ei is given by

Ei = −∇iφi(r, r
′) = −

∂φi
∂ri

+

N∑

k 6=i

∂φi
∂r′k

· ∂r
′
k

∂ri

 (7.115)

When applying a Born-Oppenheimer-like iterative self-consistent field (SCF) procedure, however, the ris
are at every iteration step determined in the fixed electric field due to the other qjs and qvj s. When using
a convergence criterion which minimizes the φis with respect to the positions r′i, the second term in eq
Eq. 7.115 is zero at convergence because ∂φi/∂r

′
k = 0. Thus

Ei = −∂φi
∂ri

=
1

4πǫ0ǫcs

N∑

j 6=i
j inside cut-off i
(i,j) not excluded

[
(qj − qvj)(ri − rj)

|ri − rj |3
+
qvj (ri − r′j)

|ri − r′j |3

]
(7.116)

The electrostatic part V(ele) of the potential energy can also be expressed in terms of Coulomb interactions.

The only non-Coulombic term to be added to V(ele) is the selfpolarization energy V self , which in the COS
model can be expressed in terms involving point charges as well

V(ele) = V coul + V self (7.117)

2-56

with

V coul(r, r′) =
1

4πǫ0ǫcs

N−1∑

i=1

N∑

j>i

j inside cut-off i

(i,j) not excluded

[
(qi − qvi)(qj − qvj)

|ri − rj |
+

(qi − qvi)q
v
j

|ri − r′j |
+

(qj − qvj)q
v
i

|r′i − rj |
+

qvi q
v
j

|r′i − r′j |

]

(7.118)

and

V self (r, r′) =
1

2

N∑

i=1

(qvi)
2

αi
|r′i − ri|2 (7.119)

Next we consider the expression for the forces f i that act on (polarisable) atomic centers i

f i = −∇iV
ele
i (r, r′) = −

∂V

(ele)

∂ri
+

N∑

k 6=i

∂V(ele)

∂r′k
· ∂r

′
k

∂ri

 . (7.120)

Note again the dependence of the r′ks on the ris that appears in the second term on the right in eq Eq. 7.120,

which might adopt nonzero values because V(ele) not only contains terms due to the φis (first two terms on
the right in Eq. 7.118) but also due to the φis (last two terms on the right in Eq. 7.118) and V self , whereas
when using eq Eq. 7.112 only the φis have been minimized with respect to the r′is. When nevertheless using
assumptions Eqs. 7.109 and 7.113, Eq. 7.120 reduces to

fredi = −∂V
(ele)

∂ri
= −

(
∂V coul

∂ri
+
∂V self

∂ri

)
. (7.121)

From the assumptions in Eqs. 7.109 and 7.113 we have

−∂V
self

∂ri
= fhoi = −f ′hoi = f ′couli = −∂V

coul

∂ri
(7.122)

and the reduced expression fredi for the atomic forces

fredi =
1

4πǫ0ǫcs

N−1∑

i=1

N∑

j>i

j inside cut-off i

(i,j) not excluded

[
(qi − qvi)(qj − qvj)(ri − rj)

|ri − rj |3

+
(qi − qvi)q

v
j (ri − r′j)

|ri − r′j |3

+
(qj − qvj)q

v
i (r

′
i − rj)

|r′i − rj |3

+
qvi q

v
j (r

′
i − r′j)

|r′i − r′j |3
]
. (7.123)

If the COS model is used with reaction field, a reaction-field term is to be added to V(ele)

V RF (rN) =
1

4πǫ0ǫcs

N−1∑

i=1

N∑

j>i

j inside cut-off i

(qi − qvi)(qj − qvj)

(
−

1
2Crf |ri − rj |2

Rrf
3

− 1− 1
2Crf

Rrf

)

+ (qi − qvi)qj

(
−

1
2Crf |ri − r′j |2

Rrf
3

− 1− 1
2Crf

Rrf

)

+ qvi (qj − qvj)

(
−

1
2Crf |r′i − rj |2

Rrf
3

− 1− 1
2Crf

Rrf

)

+ qvi q
v
j

(
−

1
2Crf |r′i − r′j |2

Rrf
3

− 1− 1
2Crf

Rrf

)
(7.124)

− 1

4πǫ0ǫcs

N∑

i=1

q2i
2

1− 1
2Crf

Rrf
(7.125)

2-57

where Rrf is the reaction-field cutoff and Crf is the reaction-field constant defined as

Crf =
2(ǫcs − ǫrf)(1 + κrfRrf)− ǫrf(κrfRrf)

2

(ǫcs + 2ǫrf)(1 + κrfRrf) + ǫrf(κrfRrf)2
(7.126)

where κrf is the inverse Debye screening length and ǫrf is the reaction-field dielectric permittivity outside
the reaction-field cutoff radius Rrf . The reaction field term makes the electrostatic force and interaction
zero at the reaction-field cut-off distance. Using a cut-off radius plus reaction field the summation over j
in Eq. 7.123 is over sites j inside the cut-off of site i, and omits the covalently bound nearest neighbours
j of atom i that are excluded from the non-bonded interaction. These neighbours j of i must not be ex-
cluded in the summation over j in Eq. 7.124 because they contribute to the reaction field40. The last term in
Eq. 7.124 is a constant that is added to represent the self-interaction of the permanent, i.e. non-COS, charges.

The Coulomb contribution Ecoul
i to the electrc field Ei is given by Eq. 7.116. The reaction field contribution

ERF
i is

ERF
i =

Crf

4πǫ0ǫcs

N∑

j 6=i

j inside cut-off i

[
(qj − qvj)(ri − rj)

Rrf
3

+
qvj (ri − r′j)

Rrf
3

]
. (7.127)

Since iteratively solving Eqs. 7.112, 7.116 and 7.127 is costly, the number of iterations to be carried through
till

Ei = Ecoul
i +ERF

i (7.128)

does not change significantly anymore should be kept low i.e. lower than a few. Since the molecular
configuration will not change much between subsequent MD time steps ∆t, one may use previous consistent
values for the displacement of the virtual charge qvi

∆rvi = r′i − ri, (7.129)

i.e. iterated till ∆rvi and Ei reach consistency, to obtain a good prediction of the next ∆rvi to be used to
start the iteration at t+∆t,

∆rvi (predicted) = 2∆rvi (t)−∆rvi (t−∆t). (7.130)

On average, two to three iterations are required at every time step to calculate the consistent fields with
the convergence criterion of41,42

maxi,x,y,z(|∆Ei,x|, |∆Ei,y |, |∆Ei,z |)|qO|dOH < ∆U (7.131)

with ∆U = 2.5 kJ mol−1, and where ∆Ei,x, ∆Ei,y and ∆Ei,z are the changes between consecutive iteration
steps in the electric field component at the COS site i along the x-, y- and z- axes, qO denotes the non-
polarisable part of the charge of an oxygen atom (typically of a water molecule) and dOH is the length of
the OH bond of water molecule.

7.5.3. Off-atom sites. For certain polarisable models43 it is necessary to add an additional virtual
atomic center M . The position of this virtual site M is defined in terms of the positions of three non-virtual
atoms i, j and k,

rM = ri +
γpol

2
(rji + rki) (7.132)

where γpol is a constant, which determines the distance diM = riM as a function of the distances dij = rij
and dik = rik. For example, in a model for H2O, i would denote the oxygen atom and j and k the hydrogen
atoms. The addition of the massless site M defined by Eq. 7.132 does not introduce any extra degrees of
freedom into the molecule in the calculation of the kinetic energy of the system. The ” pseudo-force” fM
that acts on the virtual-atom site M is redistributed to the non-virtual atoms i, j and k according to

f i + (1− γpol)fM

f j +
γpol

2
fM

fk +
γpol

2
fM (7.133)

2-58

7.5.4. Non-linear polarizability. A problematic feature of many polarisable models, apart from their
larger demand for computing power than nonpolarisable ones, is their tendency to allow for overpolarisation
in the presence of strong local electric fields, leading to the polarisation catastrophe and a too large static
dielectric permittivity. There are several approaches to resolve this problem. Using the GROMOS force
fields the polarisation catastrophe is avoided by a big enough repulsive Lennard-Jones interaction between
non-hydrogen atoms leading to dipole-dipole distances larger than (4α2

i)
1/6. Additionally the GROMOS

simulation software allows the linear dependence of the induced dipole µind,i on the electric field Ei to be
substituted by a sublinear dependence for large field strengths44,45 which can be achieved by making the
polarisability αi electric field dependent. For example, αi is replaced by αD,i = αD,i(E) for large Ei using

αD,i =

{
αi for Ei ≤ E0,i

αiE0,i

piE

[
pi + 1−

(
E0,i

Ei

)pi
]

for Ei > E0,i.
(7.134)

where pi is a polarisation damping parameter. The induced dipole is then defined as

µind
i =

{
αiEi for Ei ≤ E0,i

αiE0,i

pi

[
pi + 1−

(
E0,i

Ei

)pi
]

Ei

Ei
for Ei > E0,i.

(7.135)

This change also influences the self-polarisation contribution to the potential energy

V self,i =

1
2αiE

2
i for Ei ≤ E0,i

1
2αiE

2
0,i

+
αiE

2
0,i

pi(pi−1)

[
−p2i + (p2i − 1)

(
Ei

E0,i

)
+
(

E0,i

Ei

)pi−1
]

for Ei > E0,i

(7.136)

with V self =
∑

i V
self,i where i runs over all polarisable centers.

2-59

CHAPTER 8

Coarse-grained models and multi-resolution simulation

8.1. Introduction

In chemistry, different levels of modelling, i.e. involving different types of degrees of freedom, can be chosen
(Tab. 8.1). At the second most fine-grained level, one considers nuclei and electrons, as done in quantum
chemistry. If one is not interested in breaking or forming chemical bonds or excited states of molecules,
for example, one may eliminate the electronic degrees of freedom from the model and only consider atoms.
In other words, the fine-grained model is coarse-grained by elimination of electronic degrees of freedom.
This coarse-graining procedure can be applied between any two levels of modelling and thus any model
in chemistry can be viewed as a coarse-grained model with respect to the eliminated degrees of freedom.
However, the term coarse-grained modelling has predominately been used to indicate models in which the
particles that constitute the degrees of freedom of the model represent more than one non-hydrogen atom.

Level Particles Size of bead Scaling CG reduction CG reduction

/nm effort Ndf comput. effort

I Nucleons 10−6 N≥3
n

+ electrons

10-100 > 103

II Nuclei 10−6 − 10−5 N≥3
e

+ electrons

10-100 > 103

III Atoms 0.03-0.3 N1−2
a

2-5 2-25

IV Supra-
atomic
beads

0.5-1.0 N1−2
b

2-10 2-100

V Supra-
molecular
beads

0.5-1.0 N1−2
b

Table 8.1. Characteristic sizes of particles at different levels of resolution of modelling,
scaling of the computational effort as a function of the number of nucleons (Nn), electrons
(Ne), atoms (Na) or beads (Nb), and the reduction of the number of degrees of freedom or
interactions Ndf and the reduction of computational effort that can be achieved by coarse-
graining to the next level of modelling

If these atoms belong to one molecule, such a model is a supra-atomic, or molecular, coarse-grained model.
If the particles that constitute the degrees of freedom represent more than one molecule, such a model is a
supra-molecular coarse-grained model.

The interactions governing the motion of the particles of the different levels are: (I) strong interaction,
Coulomb and Pauli principle (II) Coulomb and Pauli principle (III) Coulomb, van der Waals, repulsive and
bonded terms (IV) Coulomb, van der Waals, repulsive and bonded terms (V) Coulomb, van der Waals, re-
pulsive terms The interactions of levels I and II are governed by quantum mechanics, while the interactions

2-61

of levels III-V are governed by classical statistical mechanics. The number of degrees of freedom, particles
or interaction sites will determine, together with the applicable equations of motion (quantum- or classical-
mechanical), the computational effort required, and thus the reduction of the latter that can be reached
by coarse-graining (Tab. 8.1). Coarse-graining from level II to level III has different characteristics and
problematic issues than coarse-graining from level III to level IV or V, because of the limited compatibility
of quantum and classical mechanical concepts. Therefore, here we only consider coarse-graining in the realm
of classical mechanics, i.e. between levels III, IV and V. For coarse-graining from level II to level III we refer
to Ref.3 and Chap. 15.

Coarse-graining implies eliminating degrees of freedom. This leads inevitably to a decrease of the appli-
cability of the model. For example, when coarse-graining from level II (nuclei and electrons) to level III
(atoms), relaxation of electronically excited states of molecules is not covered by the model any more. Gen-
erally, coarse-graining leads to a loss of accuracy of the model, although for particular properties and types
of models this need not be the case. For example, the properties of liquid water at ambient temperature are
more accurately described by the SPC model,46 a level III model, than by level II ab initio models based
on density-functional theory, due to the limited accuracy of the functionals used. In general, the choice of
degrees of freedom to be eliminated depends on the property and phase of the substance of interest.

The conditions that must be fulfilled by degrees of freedom in order that they may be eliminated in
a physically correct manner in the coarse-graining process, such that a computationally efficient and yet
accurate coarse-grained model is obtained, are:

1. they must be non-essential for the process or property of interest.
2. they must be large in number or computationally intensive, so that the computational gain is sub-

stantial enough to offset the loss in accuracy.
3. the interactions governing these degrees of freedom to be eliminated should be largely decoupled

from the interactions governing the other degrees of freedom of the system which are to be main-
tained. This means that the frequency components of the motion along the degrees of freedom to
be eliminated must be well separated from the other frequencies occurring in the system, and that
the coupling between the two types of motion is weak.47

4. their elimination should allow a simple, efficient representation of the interaction governing the other,
remaining degrees of freedom.

Two examples of coarse-graining between levels III and IV are discussed: the use of so-called united atoms
and of bond-length constraints. By treating the aliphatic CH, CH2 and CH3 groups as united atoms, the
number of atomic interaction sites is substantially reduced, up to almost a factor of 10 fewer pairwise non-
bonded interactions for lipids, at the cost of losing the dipolar interactions of the CH moieties and the van
der Waals interactions of the H atoms. The intra-moiety motions of these CHn groups are largely decoupled
from the motions of the other atoms and the torsional interactions involving these H atoms can be incorpo-
rated into the corresponding interactions for the torsional angle that does not involve an aliphatic H atom.
If the positions of these H atoms are needed, i.e. when calculating quantities such as nuclear Overhauser
effects (NOE s), residual dipolar couplings (RDCs) or S2 order parameters measurable by NMR, the H
atom positions can be easily recovered based on the positions of the carbon atom and its non-hydrogen cova-
lently bound neighbours. Thus, all four conditions for appropriate coarse-graining are largely met in this case.

The other example of coarse-graining is the use of geometric constraints for small molecules without
intra-molecular torsional-angle degrees of freedom, such as the solvents water, methanol or chloroform, or
bond-length constraints in macromolecules.47 The latter are standardly used in biomolecular simulations,
because they satisfy conditions 1 to 4 and allow, through the use of SHAKE or other similar techniques to
maintain such constraints, a gain of about a factor of four in computational efficiency.

An example of coarse-graining that does not satisfy conditions 3 and 4 is the use of an implicit solvent
model, i.e. the attempt to mimic the effect of the solvent by a function that is only dependent on the
solute coordinates. If the solvent is water, this leads to severe distortions of the energy surface of the solute.
Although the motions of a large solute may cover time scales ranging from femtoseconds to milliseconds
and the relaxation times of water molecules are of the order of picoseconds, their motions on picosecond
to nanosecond time scales are not decoupled, and thus condition 3 is not satisfied for particular processes.

2-62

Figure 8.1. Illustration of the hydrophobic effect and the adverse effect of eliminating
solvent degrees of freedom in the process of coarse-graining. The solvent is shown in orange,
the hydrophobes in blue, and the ions in red (positively charged) and green (negatively
charged).

In explicit solvents (orange particles in the left panel of Fig. 8.1), the non-polar particles (blue) aggregate,
and the electrostatic interaction between ions (red and green) is reduced, leading to dissolution. So-called
hydrophobic or non-polar particles do like water, but their interaction with water is less strong than the
interaction of water with itself, leading to water excluding the hydrophobes and their subsequent aggre-
gation. Ions with opposite charges do like water more than each other, which leads to water surrounding
the ions and dissolution of ion pairs. The ”hydrophobic effect”, the apparent attraction between non-polar
molecules or repulsion between ions in aqueous solution due to the stronger interaction between the wa-
ter molecules or between water molecules and ions, cannot be properly modelled in terms of solute and
ion coordinates only (right panel Fig. 8.1), because the effective interaction between solute atoms and their
entropy is a complex function of the distribution of solvent coordinates. Thus, condition 4 is difficult to meet.

Coarse-graining from level III to IV for biomolecules is a challenge because of the heterogeneity of
biomolecules. The scale invariance that lies at the heart of the renormalisation group approach to coarse-
graining of largely homogeneous polymers is not observed for biopolymers, which are composed of many
different, complex structural units that are connected through different types of interactions. In the coarse-
graining process, the basic geometry and the balance between the various interactions must be preserved in
order to avoid losing characteristic features of these molecules. In addition, entropy plays a non-negligible
role in biomolecular processes, which means that the loss of entropy in the process of coarse-graining must
be compensated for by a loss in energy in order to maintain the relevant free energy differences. Finally, the
reduction of the computational effort between levels III and IV is rather modest compared to that between
other levels (Tab. 8.1). These considerations lead us to the conclusion that coarse-graining from level III
to level IV does not pay off for biomolecules such as proteins, DNA, RNA and sugars. Only a limited de-
crease in the number of interaction sites is reached at the cost of losing the essential characteristics of such
molecules in terms of intra-molecular interactions, interactions with the solvent and entropy. Only lipids,
which have relatively long homogeneous aliphatic tails, may be able to retain the dominant characteristics
of an amphiphilic molecule with a particular geometry and flexibility upon coarse-graining from level III to
level IV. Due to the abundance of lipids in membranes, the reduction in computational cost may off-set the
loss of accuracy.

Since the inclusion of solvent degrees of freedom is essential to properly represent the hydrophobic effect
and because the calculation of the solvent-solvent interactions in a simulation of a biomolecule such as a

2-63

protein or a fragment of DNA in aqueous solution dominates the computational effort, coarse-graining of
the solvent degrees of freedom holds much promise to reduce the computational costs, in particular when
more than one solvent molecule is subsumed into a supra-molecular bead. In the case of water, such coarse-
graining from level III to level V should retain the thermodynamic and dielectric screening properties and
hydrogen-bonding capacity of water as much as possible, and a proper ratio between entropy and energy.48,49

This is not the case if a water bead is modelled as a Lennard-Jones particle without charge. Coarse-graining
of solvent degrees of freedom in a biomolecular simulation has a good chance of meeting conditions 1 to 4,
depending on how the coarse-grained interaction is modelled.

When coarse-graining from level III to level V, a few technical issues emerge that are generally not present
in atomic-level models.

1. Atomic biomolecular force fields generally use a relative dielectric constant ǫcs of 1 in the Coulomb
interaction, because there is vacuum between the atoms and the polarisability of atoms is neglected.
The supra-molecular beads should represent the polarisability or dielectric screening capability of
Nmol molecules. This is accounted for by using values of ǫcs > 1 in the direct Coulomb interaction.

2. When comparing the pressure calculated for the supra-molecular beads with the desired experimental
value, one should account for the fact that this pressure will be Nmol times smaller than in an atomic-
level simulation by using a scaling factor SSM = Nmol.

3. For thermodynamic quantities such as the heat of vaporisation, the excess free energy of a liquid
or the free energy of solvation that are defined by a difference of an energy or free energy between
the gas phase and the liquid phase, a meaningful comparison of values calculated with a supra-
molecular model (Nmol > 1) and experimental ones is not possible, because it would require a
reliable calculation of the (free) energy of cluster decomposition in the gas phase.

8.2. Multi-resolution simulation

Generally, a model developed for a particular level of modelling is only used at the same level of modelling.
For example, models for small molecular compounds in the liquid phase are used to study the properties of
mixtures of such compounds. However, this may limit the accessible time and length scales in biomolecular
simulations. Because of the heterogeneity of biomolecular systems in terms of their relaxation time scales
and the different types of interactions present it is of interest to combine different levels of modelling in one
simulation or system.
The combination of different levels of modelling or resolution, i.e. multi-graining, can take different forms.50

1. The simulation switches between the two levels of modelling in time: multi-graining in time. This
can be done in two ways:
a. the simulation is performed at the coarse-grained level and particular configurations are later

mapped back to the fine-grained level;
b. a coupling parameter λ is introduced that defines a path between the fine-grained (e.g. λ = 0) and

the coarse-grained (e.g. λ = 1) representation of the particles, which allows a smooth switching
between different levels of modelling in e.g. a Hamiltonian replica-exchange simulation.51

2. The system contains a mixture of fine-grained and coarse-grained particles: multi-graining in space.
This can be done in two ways:
a. the space occupied by the system is divided into a fine-grained and a coarse-grained region with a

small buffer region in which the particles change from one resolution to the other. The resolution
of the particles thus depends on their position in space;

b. the particles of the system are either fine-grained or coarse-grained and can freely mix. The
resolution of the particles is thus fixed.45,52,53

Multi-graining of type 2(b) is for example also applied between level II and level III in so-called hybrid
QM/MM simulations in which the electrons are treated quantum-mechanically (level II) and the nuclei and
surrounding atoms classically (level III). See Chap. 15.

2-64

CHAPTER 9

Special force-field terms

9.1. Introduction

The interaction function V(rr ; s) as given in Eq. 3.4 may contain special terms indicated as V(spec)(rr ; s),
which are only used under special circumstances. In GROMOS, the following special interaction terms have
been implemented.

A. atom position restraining (Sec. 9.2)
B. atom-atom distance restraining (Sec. 9.3)
C. bond-angle restraining (Sec. 9.5)
D. dihedral-angle restraining (Sec. 9.6)
E. 3J-coupling constant restraining (Sec. 9.7)
F. S2-order parameter restraining (Sec. 9.8)
G. crystallographic structure-factor amplitude restraining (Sec. 9.9)
H. crystallographic electron-density restraining (Sec. 9.10)
I. crystallographic symmetry restraining (Sec. 9.11)
J. distance-field restraining (Sec. 9.12)
K. local-elevation biasing (Sec. 9.13)

In cases Pts. A-F, the motion along a particular type of degree of freedom is restrained. Therefore, these

special terms are often called restraining interaction terms, V(res)(rr; s). They are commonly used in struc-
ture refinement based on NMR data and can also be employed as so-called umbrella functions to focus the
sampling of configuration space when determining a free energy profile along a given coordinate (Sec. 14.8).
Case K is an example of the use of a repulsive restraint, which diverts the system away from the parts of
configuration space it has already visited. This technique is useful when searching conformational space and
can also be used as an alternative to restraining. One may also choose to remove all motion for specific
atoms or along certain degrees of freedom. Such hard boundary conditions are referred to constraints and
will be the topic of Chap. 10.

When the interaction function V(spec)(rr; s) refers to non-atomic sites as centres of interaction, it is still
possible to decompose the force on a non-atomic site into forces on those atoms, of which the atomic positions
are used to define the position of the non-atomic site. The use of such non-atomic interaction sites, also
called virtual or pseudo atoms, is discussed in Sec. 9.4. It has only been implemented in GROMOS in the
context of atom-atom distance restraining special interaction terms.

When restraining an atom-atom distance or a 3J-coupling constant or an S2 order parameter to experi-
mental values obtained from NMR experiments, which generally represent an average over time and space,
one should restrain only the time-average of the function r−3 of the distance r or the time average of the
3J-coupling constant or S2 order parameter. This is discussed in Secs. 9.3, 9.7 and 9.8, respectively.

9.2. Atom-position restraining or fixed atoms

When simulating a molecular system, it may be desirable to fix specific atoms or parts of the system.
In MD simulation it is in general not advisable to immobilize atoms completely, because this may reduce
the flexibility of the system such that transitions and motions that are normally occurring in the system,
are completely inhibited by the rigidity of the atoms. Therefore, a better way to keep specific atoms
approximately at given reference positions is to restrain the motion of those atoms around these positions by
applying a harmonic restraining force, which still leaves room for flexibility and mobility. The application
of position constraints will be discussed in Sec. 10.3.

2-65

The special interaction term in V(spec)(rr; s) in Eq. 3.4 that performs atom position restraining reads

V(pr)(rr ; s) =

N (pr)∑

n=1

V(pr)
n(rn; k

(pr)
n; r

0
n)

=

N (pr)∑

n=1

1
2k

(pr)
n[rn − r0n]

2 (9.1)

The summation runs over a set of N (pr) selected atoms. The fixed reference positions are denoted by r0n.
The harmonic oscillator force constant k(pr)n can be chosen

- to be equal for all selected atoms, k(pr)n = CPOR, (NTPOR = 1), or
- to be inversely proportional to the atomicB -factors of the selected atoms, k(pr)n = CPOR/BFAC[n],
(NTPOR = 2),

where CPOR, NTPOR and BFAC[n] are user specified (see Vol. 4).

The actual position of the n-th restrained atom is denoted by rn.

The force on atom n due to the n-th term in Eq. 9.1 is

fn = −k(pr)n[rn − r0n] (9.2)

The atom sequence numbers of the restrained atoms are stored in JRC[1..NRC], NRC = N (pr). These are
used to select atom reference position coordinates from XC[1..3 ∗ Na], where Na denotes the total number
of atoms in the system. Reading of the reference positions in program MD++ is controlled by the switch
NTPORB. The reference positions can either be read from a startup file (NTPORB = 0) or from a special
file (NTPORB = 1). The specification of atoms and reference positions for atom position restraining is
discussed in Secs. 4-3.11 and 4-4.2. Position restraining can be applied to any atom of solute or solvent. The
switch NTPOR controls the atom position restraining or fixed atom option:

NTPOR = 0, no atom position restraining

= 1, harmonic atom position restraining, k(pr)n = CPOR

= 2, harmonic atom position restraining, k(pr)n = CPOR/BFAC[n]

= 3, position constraining

The reference positions can be scaled upon pressure scaling by using the switch NTPORS.

Applications of atom position restraining are the following.

- When a solute is placed in a box with solvent molecules, the solute-solvent atomic contacts may
be very unfavourable. When performing energy minimization or molecular dynamics starting from
such a configuration the solute conformation may be distorted by the bad non-bonded contacts with
the solvent molecules. By applying atom position restraining to the solute atoms the unfavourable
contacts can be relaxed without changing the solute conformation.

- When only a part of a molecular system is simulated under fixed boundary conditions (FBC), it is
necessary to restrain the atoms in the wall region in order to avoid distortion of the system due to
the vacuo boundary condition, see Sec. 4.3.

9.3. Distance restraining

When simulating a molecular system it may be desirable to restrain the distance between selected atoms
to a given value or to only a minimum value or maximum value.54 This can be performed by using as a

special term V(spec)(rr ; s) in the interaction function (Eq. 3.4) a harmonic oscillator or one half of a harmonic
oscillator for lower or upper bound. However, when the actual distance rnn′ between atoms n and n′ is very
different from the reference distance r0nn′ the energy and force due to a harmonic function may become very
large. Therefore, the special interaction term for atom-atom distance restraining is chosen to become linear
beyond a specified deviation ∆rh = r1 − r0 of rnn′ from r0nn′

55 (see Fig. 9.1).

2-66

Figure 9.1. Potential energy term for atom-atom distance restraining. The function and
its derivative are continuous at r = r0 and r = r1.

The special interaction term in V(spec)(rr; s) in Eq. 3.4 that performs atom-atom distance restraining reads

V(dr)(rr; s) =

N(dir)∑

m=1

V(dr)
m(rnn′ ; k(dr)m, r

0
m,∆rh) (9.3)

where the m-th atom-atom distance restraint involves atoms denoted by n and n’. The summation runs over
a set of N (dir) distance restraints. An attractive distance restraint m with length r0m between atoms n and
n’ is represented by56

V(dr)
m(rnn′ ; k(dr)m, r

0
m,∆rh)

= 0 0 < rnn′ < r0m

= 1
2k

(dr)
m[rnn′ − r0m]2 r0m < rnn′ < r0m +∆rh

= +k(dr)m[rnn′ − r0m − 1
2∆rh]∆rh r0m +∆rh < rnn′ (9.4)

The actual distance between atoms n and n’ is denoted by rnn′ and r1m = r0m + ∆rh is the distance at

which V(dr)
m changes from a quadratic (harmonic) to a linear function of rnn′

The forces on atoms n and n′ due to V(dr)
m in Eq. 9.4 are

fn = −∂V
(dr)

m

∂rnn′

∂rnn′

∂rn

= 0 0 < rnn′ < r0m

= −k(dr)m[rnn′ − r0m] · [rnn′/rnn′] r0m < rnn′ < r0m +∆rh

= −k(dr)m ·∆rh · [rnn′/rnn′] r0m +∆rh < rnn′ (9.5)

and

fn′ = −fn (9.6)

2-67

A repulsive distance restraint m with length r0m between atoms n and n’ is represented by

V(dr)
m(rnn′ , k(dr)m, r

0
m,∆rh)

= −k(dr)m[rnn′ − r0m + 1
2∆rh]∆rh 0 < rnn′ < r0m −∆rh

= 1
2k

(dr)
m[rnn′ − r0m]2 r0m −∆rh < rnn′ < r0m

= 0 r0m < rnn′ (9.7)

wherer1m = r0m − ∆rh is the distance at which V(dr)
m changes from a linear to a quadratic (harmonic)

function of rnn′ .

The forces on atoms n and n’ due to V(dr)
m in Eq. 9.7 are

fn = −∂V
(dr)

m

∂rnn′

∂rnn′

∂rn

= +k(dr)n ·∆rh · [rnn′/rnn′] 0 < rnn′ < r0m −∆rh

= −k(dr)m[rnn′ − r0m] · [rnn′/rnn′] r0m −∆rh < rnn′ < r0m

= 0 r0m < rnn′ (9.8)

and

fn′ = −fn (9.9)

The specification of the atoms n and n’ is given in a distance restraints file as discussed in Sec. 9.4, of this
volume and in Sec. 4-3.4 and Sec. 4-4.10. The force constants k(dr)n can be chosen

- to be equal for all specified distance restraints, k(dr)m = CDIR, (|NTDIR| = 1), or
- to be proportional to a distance restraint weight factor W0[1..NB], k(dr)m = CDIR ∗ W0[m],
(|NTDIR| = 2).

The factor CDIR is read from the input by program MD++. The reference distances r0m are denoted by
B0[1..NB] = R0[1..NDR], where NB = NDR = N (dir). Attractive restraining is selected when B0 = R0 >
0, whereas repulsive restraining is selected by changing the sign of B0 = R0 (< 0). Of course, r0m = |R0| is
used in the formulae. The distance ∆rh is denoted by DB0 = DIR0.

When the given atom-atom distance restraints r0m in Eq. 9.3 have been derived from NOE cross-peak
intensities originating from nuclei n and n’, they represent an average over space and time,

< r−p
nn′ >

− 1
p . (9.10)

This means that in the restraining interaction V(dr)
m(rnn′ ; k(dr)m, r

0
m,∆rh), the instantaneous distance rnn′

should be replaced by the average Eq. 9.10, so that only this average is restrained. The ensemble average
Eq. 9.10 can be taken as a time (trajectory) average

< r−p
nn′ >= r−p

nn′(t) ≡ t−1

∫ t

0

r−p(t′)dt′ (9.11)

or as an average over space, that is, different molecules57. In MD or SD simulations, the use of the time
average Eq. 9.11 is the natural choice. When averaging over relatively short times, the angular correlation
in the vector rnn′ should be neglected, which gives p = 3. The true average Eq. 9.11 is not suitable for use

in Eq. 9.3, from which the restraining force is obtained during a simulation: the rate of change of r−3
nn′(t)

2-68

depends on the length of the averaging period, t. This problem is avoided by building a decay into the
summation over time with a characteristic decay time or memory relaxation time τdr, so that58

< r−3
nn′ >= r−3

nn′(t; τdr) ≡
∫ t

0 exp(−(t− t′)/τdr)r
−3
nn′(t′)dt′

τdr[1− exp(−t/τdr)]
(9.12)

This time average is easily obtained in a simulation using discrete time steps ∆t. When

t≫ τdr (9.13)

we have

r−3
nn′(t; τdr) = [1− exp(−∆t/τdr)]r

−3
nn′(t)

+ exp(−∆t/τdr)r
−3
nn′(t−∆t; τdr). (9.14)

Upon insertion of

rnn′ ≡
[
r−3
nn′(t; τdr)

]− 1
3

(9.15)

into the distance restraining interaction Eq. 9.3 we obtain for the force on atom n due to V(dr)
m at time t

fn = −∂V
(dr)

m(rnn′ ; k(dr)m, r
0
m,∆rh)

∂rnn′

∂rnn′

∂rnn′

rnn′

rnn′

(9.16)

The second factor in Eq. 9.16 is

∂rnn′

∂rnn′

= [1− exp(−∆t/τdr)]

(
rnn′

rnn′

)4

(9.17)

and causes large fluctuations in the force. The switch FORCESCALE in the DISTANCERES block of
MD++ allows the selection of approximations. Setting FORCESCALE = 0, leads to the approximation

∂rnn′

∂rnn′

= 1 (9.18)

and setting FORCESCALE = 1, leads to the approximation

∂rnn′

∂rnn′

= [1− exp(−∆t/τdr)] (9.19)

while when using FORCESCALE = 2, equation Eq. 9.17 is used in formula Eq. 9.16. We note that the
total energy will not be conserved when applying time averaging due to the approximation Eq. 9.18 and the
dependence of the restraining interaction Eq. 9.3 on time points before time t59.

At the start of a simulation, the value of the average Eq. 9.15 is set such as to satisfy the restraint distance,

[
r−3
nn′(t = 0; τdr)

]− 1
3
= r0m (9.20)

At the end of a simulation the value of the average Eq. 9.15 is stored with the final configuration for use in
a continuation simulation (Sec. 4-4.10)

The choice of the values for the parameters k(dr)m and τdr = TAUDIR is discussed in60. The latter should
satisfy the condition

τdr ≪ tMD (9.21)

where tMD is the length of the simulation.

The switch NTDIR in program MD++ controls the atom-atom distance restraining options:

NTDIR = 0, no atom-atom distance restraining

> 0, atom-atom distance restraining, no time averaging

< 0, atom-atom distance restraining with time averaging

|NTDIR| = 1, force constants equal, k(dr)m = CDIR

= 2, force constants proportional to the individual distance re-
straint weight factors, k(dr)m = CDIR ∗W0[m]

2-69

Applications of atom-atom distance restraining are the following.

- When a molecular structure is to be obtained that satisfies a set of given interatomic distances,
atom-atom distance restraining can be used during EM or MD simulation to force the molecular
conformation in the desired direction.

- When a part of a molecule is required to keep its form during a simulation, atom-atom distance
restraining can be used to fix relative atom positions of a group of atoms without restraining the
mobility of the group.

- When a free energy (profile) as a function of the distance between two atoms is to be determined
by MD or SD simulation, the atom-atom distance restraining term can serve as umbrella function
to focus the sampling (Sec. 14.8).

- In mixed fine-grained / coarse-grained simulations, a layer of fine-grained solvent molecules may be
kept around the solute by applying the appropriate atom-atom distance restraints. Note that for this
application, a contribution to the virial due to the special interaction energy terms is appropriate,
which can be selected using option VDIR = 1 in the MD++ input file.

9.4. Virtual and pseudo atoms

In theGROMOS force fields most aliphatic hydrogen atoms are not explicitly treated, but are incorporated
in the carbon atom to which they are attached forming united atoms (Vol. 3). However, an atom-atom
distance restraint which is derived from proton NMR experiments, may refer to such a hydrogen atom,
which is called here a virtual atom. In that case the distance restraint interaction (Eq. 9.3) refers to a
non-atomic site as a centre of interaction. A proton-proton distance restraint may also refer to non-atomic
sites when a stereospecific assignment of a resonance to a proton cannot be obtained, e.g. Cβ protons in
proteins or methyl groups in the amino acid residues Leu and Val, or when dynamic effects such as rotation
of methyl group hydrogens and flipping of aromatic rings influence the NMR signal. In these cases the
distance restraint must refer to a pseudo atom and a correction term ∆rpsn must be added to the restraint
distance r0nn′

r0nn′(pseudo) = r0nn′(real) + ∆rpsn +∆rpsn′ (9.22)

The value of ∆rpsn depends on the geometry of construction of the pseudo atom site and is given in Tab. 9.1.
So, virtual and pseudo sites or atoms are massless points, whose positions are rigorously related to the
positions of the masses in the molecule.

When using pseudo or virtual sites, two additional steps are added to the calculation of the forces on the
real atoms.

2-70

group configuration atom
type

correction
term ∆rps on
distance re-
straint r0(nm)

geometric
code TYPE1
or TYPE2∗)

CH1 (aliphatic) virtual .00 1

CH1 (aromatic) virtual .00 2

CH2 (stereospecific) virtual .00 4

CH2 (non-stereospecific) pseudo .09 3

CH3 pseudo .10 5

CH3 (non-stereospecific,
Val, Leu)

pseudo .22 6

CH3 (non-stereospecific,
t-butyl)

pseudo .23 7

COG (center of geome-
try)

i

j

kn

pseudo .00 -1

COM (center of mass)

i

j

k
n

pseudo .00 -2

1

Table 9.1. Virtual and pseudo hydrogen atoms and distance restraint correction terms.
∗) see Sec. 4-3.4

2-71

1. Before the interaction terms Eqs. 9.3, 9.4, 9.7 involving virtual or pseudo sites can be evaluated, the
virtual or pseudo site n must be constructed using the positions of those atoms (i,j,k,l) that define
the virtual or pseudo atom n.

2. The force fn acting on the virtual or pseudo site n must be redistributed over the atoms (i,j,k,l) that
define the virtual or pseudo atom n. The contribution of fn to the force on atom i is e.g.

f i = fnx
∂xn
∂ri

+ fny
∂yn
∂ri

+ fnz
∂zn
∂ri

(9.23)

or in matrix notation

f ix

f iy

f iz

 =

∂xn/∂xi ∂yn/∂xi ∂zn/∂xi

∂xn/∂yi ∂yn/∂yi ∂zn/∂yi

∂xn/∂zi ∂yn/∂zi ∂zn/∂zi

fnx

fny

fnz

 (9.24)

Corresponding formulae hold for atoms j, k and l. The matrices of partial derivatives in Eq. 9.24
can easily be derived from the definition of rn in terms of ri, rj , rk and rl. These definitions have
been kept as simple as possible in order to avoid too complex derivatives.

The virtual and pseudo atoms that can be used when the distance restraining potential energy term
(Eqs. 9.3, 9.4, 9.7) is applied, are displayed in Tab. 9.1 (see also55). Three types of virtual atoms and six
types of pseudo atoms are distinguished:

9.4.1. CH1-group (aliphatic). The position vector of the hydrogen H n is given by

rn = ri + dCH s/s (9.25)

with

s = 3ri − rj − rk − rl (9.26)

and

s = (s · s) 1
2

= [sx
2 + sy

2 + sz
2]

1
2

(9.27)

The carbon-hydrogen distance dCH is stored in DISH. The partial derivatives are

∂rn
∂ri

=

[1 + 3dCH (s2 − sx
2)/s3] −3dCH sysx/s

3 −3dCH szsx/s
3

−3dCH sxsy/s
3 [1 + 3dCH (s2 − sy

2)/s3] −3dCH szsy/s
3

−3dCH sxsz/s
3 −3dCH sysz/s

3 [1 + 3dCH (s2 − sz
2)/s3]

 (9.28)

and

∂rn
∂rj

=

−dCH (s2 − sx
2)/s3 dCH sysx/s

3 dCH szsx/s
3

dCH sxsy/s
3 −dCH (s2 − sy

2)/s3 dCH szsy/s
3

dCH sxsz/s
3 dCH sysz/s

3 −dCH (s2 − sz
2)/s3

 (9.29)

and ∂rn/∂rk and ∂rn/∂rl are identical to Eq. 9.29.

9.4.2. CH1-group (aromatic). The position vector of the hydrogen H n is given by

rn = ri + dCH s/s (9.30)

with

s = 2ri − rj − rk (9.31)

and s defined by Eq. 9.27. Again, the carbon-hydrogen distance is denoted by dCH . The partial derivatives
are

∂rn/∂ri =

[1 + 2dCH (s2 − sx
2)/s3] −2dCH sysx/s

3 −2dCH szsx/s
3

−2dCH sxsy/s
3 [1 + 2dCH (s2 − sy

2)/s3] −2dCH szsy/s
3

−2dCH sxsz/s
3 −2dCH sysz/s

3 [1 + 2dCH (s2 − sz
2)/s3]

 (9.32)

and ∂rn/∂rj and ∂rn/∂rk are given by Eq. 9.29.

2-72

9.4.3. CH2-group (two virtual protons). The position vector of the hydrogen H n1 is given by

rn1 = ri + αs/s + βq/q (9.33)

with s defined by Eq. 9.31, s by Eq. 9.27 and q by

q = (ri − rj)× (ri − rk) (9.34)

with

q = (qx
2 + qy

2 + qz
2)

1
2 (9.35)

The values of α and β are derived from

α = dCH cos(θ/2)

β = dCH sin(θ/2) (9.36)

where θ is the tetrahedral angle and the carbon-hydrogen distance is dCH . The partial derivatives are (for
n = n1):

∂rn/∂ri = A+B+C (9.37)

with

A =

[1 + 2α(s2 − sx
2)/s3] −2αsysx/s

3 −2αszsx/s
3

−2αsxsy/s
3 [1 + 2α(s2 − sy

2)/s3] −2αszsy/s
3

−2αsxsz/s
3 −2αsysz/s

3 [1 + 2α(s2 − sz
2)/s3]

 (9.38)

and

B =

−βqxax/q3 −βqyax/q3 −βqzax/q3
−βqxay/q3 −βqyay/q3 −βqzay/q3
−βqxaz/q3 −βqyaz/q3 −βqzaz/q3

 (9.39)

and

C =

0 +βbz/q −βby/q
−βbz/q 0 +βbx/q

+βby/q −βbx/q 0

 (9.40)

where a = q× rkj =

ax

ay

az

 and b = rkj , and

∂rn/∂rj = D+E+ F (9.41)

where

D =

−α(s2 − sx
2)/s3 αsysx/s

3 αszsx/s
3

αsxsy/s
3 −α(s2 − sy

2)/s3 αszsy/s
3

αsxsz/s
3 αsysz/s

3 −α(s2 − sz
2)/s3

 (9.42)

and E is identical to B in Eq. 9.39 but with a = q × rik and F is identical to C in Eq. 9.40 but with b =
rik, and

∂rn/∂rk = D+G+H (9.43)

whereG is identical to B in Eq. 9.39 but with a = q×rji andH is identical toC in Eq. 9.40 but with b = rji.

The position vector rn2 of the second virtual proton H n2 can be obtained from the same formulae by
interchanging j and k.

2-73

9.4.4. CH2-groups (one pseudo site). When a distance restraint refers to one proton of a CH2-
group of which no stereospecific assignment is known, the restraint is referred to a pseudo site between the
two protons. The position vector of the pseudo atom n is defined by

rn = ri + αs/s (9.44)

where α is given by Eq. 9.36 and s is defined by Eq. 9.31 and s by Eq. 9.27. The partial derivatives are

∂rn/∂ri = A (9.45)

and

∂rn/∂rj = ∂rn/∂rk = D (9.46)

9.4.5. CH3-group (one pseudo site). For a single methyl group and for a methyl group of a di-
astereotopic pair for which the stereospecific assignment is known, the pseudo atom n is defined to be in the
middle of the three hydrogens:

rn = ri + γs/s (9.47)

with

γ = dCH cos(π − θ) (9.48)

and

s = ri − rj (9.49)

Again, θ is the tetrahedral angle and the carbon-hydrogen distance is dCH .

The partial derivatives are

∂rn
∂ri

=

[1 + γ(s2 − sx
2)/s3 −γsysx/s3 −γszsx/s3

−γsxsy/s3 [1 + γ(s2 − sy
2)/s3] −γszsy/s3

−γsxsz/s3 −γsysz/s3 [1 + γ(s2 − sz
2)/s3]

 (9.50)

and ∂rn/∂rj is identical to D in Eq. 9.42 but with α replaced by γ.

9.4.6. Two CH3-groups (one pseudo site). When a restraint involves a methyl group of a stereotopic
pair for which no stereospecific assignments are known, the restraint is referred to a pseudo atom n at the
geometric mean position of the 6 hydrogens of the pair:

rn = ri + δs/s (9.51)

with

δ = − cos(θ/2)[dCC + γ] (9.52)

where s is defined by Eq. 9.31, the carbon-carbon distance dCC is stored in DISC, θ is tetrahedral and γ is
given by Eq. 9.48. The partial derivative ∂rn/∂ri is identical to A in Eq. 9.38, but with α replaced by δ,
∂rn/∂rj and ∂rn/∂rk are identical to D in Eq. 9.42 but with α replaced by δ.

9.4.7. Three CH3-groups (one pseudo site). When a distance restraint refers to a t-butyl for which
no stereospecific assignments are known, the restraint is referred to a pseudoatom n at the geometric mean
position of the 9 hydrogens of the three CH3 groups:

rn = ri + εs/s (9.53)

with

ε = (dCC + γ) cos(π − θ) (9.54)

where s is defined by Eq. 9.49, the carbon-carbon distance dCC is stored in DISC, γ is given by Eq. 9.48,
and θ is the tetrahedral angle. The partial derivative ∂rn/∂ri is identical to Eq. 9.50, but with γ replaced
by ε, and ∂rn/∂rj is identical to D in Eq. 9.42 but with α replaced by ε.

2-74

9.4.8. Center of geometry (one pseudo site). For the δ and ε protons of tyrosine and phenylalanine
rings that are displaying fast 180o ring flips, or for the protons i and j of a planar NH2 group, a pseudo atom
can be constructed at the center of geometry of these atoms.

rn = N−1
ps

Nps∑

i=1

ri (9.55)

where Nps denotes the number of non-virtual atoms with position vector ri the centre of geometry of which
is to serve as pseudo atom n. The partial derivative ∂rn/∂ri is

∂rn/∂ri =

N−1
ps 0 0

0 N−1
ps 0

0 0 N−1
ps

 (9.56)

9.4.9. Center of mass (one pseudo site). Alternatively, one may choose to define a pseudo atom
at the centre of mass of given atoms using

rn =M−1
ps

Nps∑

i=1

miri (9.57)

with

Mps =

Nps∑

i=1

mi (9.58)

where Nps denotes the number of non-virtual atoms with position vector ri and mass mi the centre of mass
of which is to serve as pseudo atom n. The partial derivative ∂rn/∂ri is

∂rn/∂ri =

mi/Mps 0 0

0 mi/Mps 0

0 0 mi/Mps

 (9.59)

The various atom types are selected using the code shown in Tab. 9.1. For the first atom n1 of the pairs
these codes are listed in TYPE1[1..NB] = TYPE1[1..NDR] and the atom sequence numbers of the atoms i,
j, k and l that define atom n1 are given in I1, J1, K1, L1[1..NB] see Sec. 4-3.4. For the second atom n2 of
the pairs the corresponding arrays are denoted by TYPE2, etc. The carbon-hydrogen distance is denoted
by DISH and the carbon-carbon distance by DISC.

We note that the correction terms ∆rpsn which are listed in Tab. 9.1 are not automatically incorporated
into the specified restraint distance r0m by applying Eq. 9.22. The user must incorporate the correction terms
∆rpsn into B0[1..NB] = R0[1..NDR]. The GROMOS++ program prep noe may help to prepare the correct
distance restraints for virtual and pseudo atoms commonly encountered in biomolecular systems.

9.5. Bond-angle restraining

One may wish to restrain a bond angle to a given value. For this case of restraining no special subroutines
have been made in GROMOS. The bond angle θ(ijk) between atoms i, j and k can be restrained by applying
distance restraints (Sec. 9.3) to the three distances ij, jk and ik. An alternative is to add to the molecular
topology of a molecular system the bond angle θ(ijk) and to choose appropriate values for K θn and θ0n
(Sec. 5.2).

9.6. Dihedral-angle restraining

The special interaction term V(spec)(rr; s) in Eq. 3.4 that performs dihedral-angle restraining reads

V(tr)(rr ; s) =

N (tr)∑

n=1

V(tr)
n(ϕn; k

(tr), ϕ0
n,∆ϕ

h) (9.60)

The summation runs over a set of N (tr) selected dihedral angles ϕn , which are defined by specifying the

atom sequence numbers i, j, k and l of the atoms forming dihedral angle ϕn(i− j − k− l). The V(tr)
n reads

V(tr)
n(ϕn; k

(tr), ϕ0
n,∆ϕ

h)

= −k(tr)n(∆ϕn + 1
2∆ϕ

h)∆ϕh ∆ϕn < ∆ϕh

2-75

= 1
2k

(tr)
n(∆ϕn)

2 −∆ϕh < ∆ϕn < ∆ϕh

= k(tr)n(∆ϕn − 1
2∆ϕ

h)∆ϕh ∆ϕn > ∆ϕh

(9.61)

where ∆ϕn = ϕn − ϕ0
n + 2mπ, where m is chosen such that ϕn is within the range [ϕ0

n + δn − 2π, ϕ0
n + δn].

Using this dihedral angle restraint formulation δn determines at which position the direction of the rotation

around the dihedral angle inverts. Typically, δn is set to 180o. The interaction V(tr)(rr; s) has the same
form as the improper dihedral angle interaction V (ξ)(rr; s) described in Sec. 5.3. So, the formulae Eq. 17.11-

Eq. 17.14 give the forces on atoms i, j, k and l due to the interaction (Eq. 9.60), if ξn is replaced by ϕn, k
(ξ)
n

by k(tr)n and ξ0n by ϕ0
n.

The atom sequence numbers of the atoms i, j, k and l that define ϕn and the force constant k(tr)n and
reference dihedral angle ϕ0

n are to be specified in a dihedral angle restraints file and stored in the arrays
IPLR, JPLR, KPLR, LPLR, WPLR, PDLR, DELTA[1..NDLR], with NDLR = N (tr), as described in Sec. 4-
3.5. The dihedral angle restraining interaction (Eq. 9.60) can be multiplied by an overall weight factor,
CDLR, which is read from the input by program MD++. The switch NTDLR controls the dihedral angle
restraining option:

NTDLR = 0, no dihedral-angle restraining

= 1, dihedral-angle restraining with equal force constants,
k(tr)n = CDLR

= 2, dihedral angle restraining with force constants proportional
to the individual dihedral angle weight factors, k(tr)n =
CDLR ∗WDLR[n]

= 3, dihedral angle constraining

Dihedral angle restraining may be applied as umbrella function when a free energy (profile) as a function
of a dihedral angle is to be determined by MD or SD simulation.61,62 The implementation of dihedral angle
constraints will be discussed in Sec. 10.6.

9.7. 3J-coupling constant restraining

When simulating a molecular system, it may be desirable to restrain the spin-spin 3J-coupling constant,
3Jmm′ , between two nuclei m and m′, to a given value 3J0. If 3J0 is an experimental value, measured as an
average over time and space in an NMR experiment, then the time-average should be restrained.

The 3J-coupling constant 3Jmm′ depends on the value of the dihedral angle ζn(m− j − k−m′) involving
the three covalent bonds connecting the atoms m and m′ through atoms j and k according to the Karplus
relation (see, e.g. Fig. 9.2)

3Jmm′ = a cos2(ζn(m− j − k −m′))

+ b cos(ζn(m− j − k −m′)) + c. (9.62)

The coefficients a, b and c will depend on the types of the atoms m, j, k and m′ (Tab. 9.2).

The special interaction term V(spec)(rr; s) in Eq. 3.4 that performs 3J-coupling constant restraining reads

V(Jr)(rr ; s) =

NJr∑

n=1

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) (9.63)

where the dihedral angle ζ(m − j − k −m′) is denoted by ζn, the reference 3J0
mm′ value by J0

n and the
superscript 3 has been dropped from the J .

In the case of experimentally measured 3J-couplings, which are averages over space and time, it is prefer-
able to apply the restraint to the time-averaged 3J-couplings. The special interaction term then becomes

V(Jr)(rr ; s) =

NJr∑

n=1

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) (9.64)

where the horizontal bar denotes a time-average.

2-76

The functional form of V(Jr)
n may be harmonic, half-harmonic attractive, half-harmonic repulsive, bi-

quadratic or periodically scaled. Whilst using a single half-harmonic potential energy term makes little
sense in the case of a periodic structural feature such as a dihedral angle, two half-harmonic potential energy
terms may be combined to form a full harmonic potential energy term that is asymmetric with respect to
J0

n (in contrast to standard flat-bottomed restraining, see Eqs. 9.75 and 9.76).

For instantaneous restraining, the harmonic form is defined as

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) =
1

2
k(Jr)n

[
J(ζn)− J0

n

]2
, (9.65)

the half-harmonic attractive form as

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) = 0 J(ζn) < J0
n (9.66)

=
1

2
k(Jr)n

[
J(ζn)− J0

n

]2
J(ζn) > J0

n,

and the half-harmonic repulsive form as

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) =
1

2
k(Jr)n

[
J(ζn)− J0

n

]2
J(ζn) < J0

n (9.67)

= 0 J(ζn) > J0
n.

For standard time-averaging, the harmonic form is

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) =
1

2
k(Jr)n

[
J(ζn)− J0

n

]2
(9.68)

and the half-harmonic forms are easily derived from Eqs. 9.66 and 9.67.

A further option with time-averaging is to use a biquadratic penalty function63

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) =
1

2
k(Jr)n

[
J(ζn)− J0

n

]2 ·
[
J(ζn)− J0

n

]2
. (9.69)

This functional form avoids the large structural fluctuations that occur when standard time-averaging is
used with 3J-value restraints.64,65

When using time-averaging, it is possible to periodically scale the potential energy function for the dihedral
angles related to the 3J-couplings and the 3J-coupling restraint itself by the introduction of an oscillating
factor cos2(ωJrt). During the scaling period, τsJr = 180◦

ωJr , the restraining function is given by66

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) = cos2(ωJrt)· (9.70)[
V (ϕ)(ϕn; k

(ϕ), ϕ0
n) + V(Jr)

n(J(ζn); k
(Jr)
n , J0

n)
]
.

and V (ϕ) (ϕn ; k(ϕ) , ϕ0
n) is taken out of the sum in Eq. 5.18.

The oscillating factor is switched on as soon as the average 3J-value deviates more than a certain threshold
(∆J0, see below) from the target value. After one oscillating period, τsJr , is completed, the scaling is
suspended for a time period ∆tω. This allows the system to deviate from the reference value for some time,
which may be useful to overcome the degeneracy of the Karplus curve, as in the following example. Consider
the Karplus curve in Fig. 9.2 and assume that a reference J0

n value of 9 Hz is used. For dihedral angle
values around φ = 60◦, the restraint may get stuck in the local minimum with maximum 3J values of 7 Hz.

A further possibility is to use local-elevation (LE) biasing rather than restraining the 3J-couplings. In

this case, V(Jr)
n is a sum of Nle LE terms

V(Jr)
n(J(ζn); k

(Jr)
n , J0

n) =

Nle∑

i=1

V(Jr)
ni(J(ζn); k

(Jr)
n , J0

n). (9.71)

Only the Gaussian functional form is currently implemented, giving

V(Jr)
ni(J(ζn); k

(Jr)
n , J0

n) = k(Jr)n wζni exp
(
−(ζn − ζni

0)2/2(∆ζ0)2
)
. (9.72)

2-77

In Eq. 9.72, wζni is the weight of the ith penalty term, the centres ζni
0 of the Gaussian functions V(Jr)

ni

are equally distributed over the range of possible values of ζn (ζni
0 = 360◦i/Nle with i = 1, . . . , Nle) and

the width is given by ∆ζ0 = 360◦/Nle.

The weight, wζni, is calculated according to

wζni = t−1

∫ t

0

δζnζn
0

[
J(ζn)− J0

n

]2
(9.73)

for time-averaging and

wζni = t−1

∫ t

0

δζnζn
0

[
J(ζn)− J0

n

]2 ·
[
J(ζn)− J0

n

]2
(9.74)

for biquadratic time-averaging. The Kronecker delta, δζnζn
0 , is defined using finite differences

δζnζn
0 =

1 if ζni
0 −∆ζ0/2 ≤ ζn < ζni

0 +∆ζ0/2

0 otherwise.

It is often desirable to allow for some uncertainty in the reference 3J-values, J0
n. This can be done by

using flat-bottomed restraining, where the restraint penalty function is only applied if the calculated 3J-
values deviate by more than a given value ∆J0 from J0

n. The instantaneous contribution to the special
interaction function (Eqs. 9.63, 9.65, 9.66 and 9.67) then depends on

[J(ζn)− J0
n −∆J0]2 for J(ζn) > J0

n +∆J0 (9.75)

[J(ζn)− J0
n +∆J0]2 for J(ζn) < J0

n −∆J0

0 otherwise

and, likewise, the time-averaged factor (Eqs. 9.64 and 9.67) depends on

[J(ζn)− J0
n −∆J0]2 for J(ζn) > J0

n +∆J0 (9.76)

[J(ζn)− J0
n +∆J0]2 for J(ζn) < J0

n −∆J0

0 otherwise.

A slight complication arises when one or both of the atoms m and m′ defining the angle ζn(m−j−k−m′)
are not explicitly treated in the simulation. This is, for example, the case for the GROMOS force fields, in
which most hydrogen atoms that are attached to carbon atoms are not explicitly treated, but are instead
incorporated into the carbons, forming united atoms (Sec. 3.2). In such a case, when atom m is incorporated
into atom j or atom m′ is incorporated into atom k, the dihedral angle ζn(m− j − k−m′) is not defined in
terms of atomic coordinates of real atoms. However, if another (real, non-H) atom i is bound to atom j, or
another (real, non-H) atom l is bound to atom k, the dihedral angle ζn(m− j − k −m′) can be related to
the dihedral angle ηn(i − j − k − l) by the relation

ζn(m− j − k −m′) = ηn(i − j − k − l) + δn (9.77)

where δn is a phase shift. Examples of the relation Eq. 9.77 are given in Tab. 9.2 and a Karplus curve is
shown in Fig. 9.2.

The true time-averaged 3J-coupling constant is defined as a trajectory average

Jn(t) ≡ t−1
t

∫
0
Jn(t

′)dt′

= a cos2(ηn(t) + δn) + b cos(ηn(t) + δn) + c. (9.78)

As for distance restraining, the true average (Eq. 9.78) is not suitable for use in Eq. 9.64 to derive the forces
on atoms i, j, k and l. A characteristic decay time or memory relaxation time τJr is therefore introduced, so
that64

Jn(t; τJr) ≡

t∫
0

exp(−(t− t′)/τJr)Jn(t
′)dt′

[τJr[1− exp(−t/τJr)]]
2-78

Figure 9.2. The Karplus curve (Eq. 9.62) for the angle ζn (H-N-Cα-Hα) given as a function
of the angle ηn = φ(C-N-Cα-C) (Eq. 9.77). The phase shift δn = ζn − ηn = −60◦ for an
L-amino acid has been applied and the calibration of Pardi et al.67, with a = 6.4 Hz,
b = −1.4 Hz and c = 1.9 Hz, was used.

ζn ηn δn (degrees) a (Hz) b (Hz) c (Hz)

H - N - Cα - Hα
67 C - N - Cα - C - 60 (L) +60 (D) 6.4 -1.4 1.9

Hα - Cα - Cβ - Hβ2
68 N- Cα - Cβ - Cγ -120 (L) 0 (D) 9.5 -1.6 1.8

Hα - Cα - Cβ - Hβ3
68 N - Cα - Cβ - Cγ 0 (L) +120 (D) 9.5 -1.6 1.8

N - Cα - Cβ - Hβ2
69 N - Cα - Cβ - Cγ 120 (L) -120 (D) 4.4 -1.2 -0.1

N - Cα - Cβ - Hβ3
69 N - Cα - Cβ - Cγ -120 (L) 0 (D) 4.4 -1.2 -0.1

H - N - Cα- Cβ
70 C - N - Cα - C +60 (L) - 60 (D) 4.7 -1.5 -0.2

H - N - Cα- C
70 C - N - Cα- C -180 (L,D) 5.7 -2.7 0.1

Table 9.2. Relations between 3J-coupling constants and dihedral angles ζn = ηn + δn
occurring in polypeptides. The dihedral angles and atom names are defined according to
the IUPAC-IUB convention.25 L- and D-amino acid residues are indicated by L and D
respectively.

= a cos2(ηn + δn)(t; τJr) + b cos(ηn + δn)(t; τJr) + c. (9.79)

The time averages of cosm(ηn(t) + δn) in Eq. 9.79 are easily obtained in a simulation using discrete time
steps ∆t. When

t ≪ τJr (9.80)

we have

cosm(ηn + δn)(t; τJr) = [1− exp(−∆t/τJr)]cos
m(ηn(t) + δn)

+ exp(−∆t/τJr) cosm(ηn + δn)(t−∆t; τJr). (9.81)

The force on an atom i due to an instantaneous 3J-value restraint in Eq. 9.63 can be written as

f inst = −∂V
(Jr)

n(J(ζn); k
(Jr)
n , J0

n)

∂J
· ∂Jn

∂ηn
· ∂ηn
∂ri

. (9.82)

2-79

where the first factor in Eq. 9.82 is

∂V(Jr)
n

∂Jn
= k(Jr)n [Jn − J0

n]. (9.83)

for the harmonic function (Eq. 9.65) and corresponding expressions are obtained for the half-harmonic cases
(Eq. 9.66 and Eq. 9.67).

Using the relation

cos(ηn + δn) = cosηncosδn − sinηnsinδn (9.84)

we find for the second factor in Eq. 9.82

∂Jn

∂ηn
= (2a cos(ηn + δn) + b) · (−sin(ηn + δn))

= (2a (cosηncosδn − sinηnsinδn) + b) · (−sinηncosδn − cosηnsinδn).

(9.85)

The third factor in Eq. 9.82, the derivative of the angle ηn (i-j-k-l) with respect to the positions ri, rj , rk
and rl can be obtained from the expressions and definitions in Sec. 17.4 with the angle ξn replaced by ηn.

∂ηn
∂ri

=
rkj
r2mj

rmj , (9.86)

∂ηn
∂rl

= − rkj
r2nk

rnk , (9.87)

∂ηn
∂rk

= −∂ηn
∂ri

− ∂ηn
∂rj

− ∂ηn
∂rl

, (9.88)

∂ηn
∂rj

=

[
(rij · rkj)

r2kj
− 1

]
∂ηn
∂ri

− (rkl · rkj)
r2kj

∂ηn
∂rl

. (9.89)

For time averaged 3J-value restraints we use the short-hand notation

Jn = Jn(t; τJr), (9.90)

and find the force on atom i due to V(Jr)
n in Eq. 9.64 at time t to be

f i = −∂V
(Jr)

n(Jn; k
(Jr)
n , J0

n)

∂Jn

· ∂Jn

∂ηn
· ∂ηn
∂ri

. (9.91)

The first factor in Eq. 9.91 is

∂V(Jr)
n

∂Jn

= k(Jr)n

[
Jn − J0

n

]
(9.92)

for the harmonic function (Eq. 9.65) and corresponding expressions are obtained for the half-harmonic
cases (Eqs. 9.66 and 9.67).

Using the relation Eq. 9.84

cos(ηn + δn) = cos ηn cos δn − sin ηn sin δn (9.93)

we find for the second factor in Eq. 9.91

∂Jn

∂ηn
= [1− exp(−∆t/τJr)] [2a cos(ηn + δn) + b] [− sin(ηn + δn)]

= [1− exp(−∆t/τJr)] · [2a[cos ηn cos δn − sin ηn sin δn] + b]·
2-80

[− sin ηn cos δn − cos ηn sin δn]. (9.94)

As for distance restraining, the factor [1 − exp(∆t/τJr)] may be set to one when inserting Eq. 9.94 into

Eq. 9.91. This may be done for practical reasons: to avoid having to choose the values for k
(Jr)
n proportional

to [1− exp(∆t/τJr)]
−1.

When using the biquadratic functional form the force on atom i becomes the sum of equations Eq. 9.82
and Eq. 9.91, where

f bii = f tavi + f insti (9.95)

And

∂V(Jr)
n

∂Jn
= k(Jr)n (Jn − J0

n)
2(Jn − J0

n). (9.96)

and

∂V(Jr)
n

∂Jn

= k(Jr)n

[
Jn − J0

n

]
(Jn − J0

n)
2. (9.97)

As for normal time averaging the term on the right hand side of (Eq. 9.97) is multiplied with the factor
[1 − exp(∆t/τJr)]. Alternatively this factor can be set to one or to zero, respectively. The latter option
means that there will be no contribution of (Eq. 9.97) to the restraining force.

We note that the total energy will not be conserved when applying time-averaging due to the dependence
of the restraining interaction (Eq. 9.64) on time points before time t.64

At the start of a simulation the value of the average (Eq. 9.79) is set equal to the 3J-value calculated from
the starting configuration

Jn(t = 0; τJr) = Jn(t = 0)

= acos2(ηn(t = 0) + δn) + b cos(ηn(t = 0) + δn) + c.
(9.98)

At the end of a simulation the values of the averages (Eq. 9.79) are stored with the final configuration for
use in a continuation simulation (Sec. 4-4.11).

The type of restraining applied to the 3J-couplings (NTJVR: instantaneous, time-averaged or biquadratic
time-averaged or with local-elevation (LE) (only with time-averaging)), whether or not this is a continuation

run (NTJVRA), the value of the overall force constant, k
(Jr)
n = CJVR, the coupling time, τJr = TAUJVR,

the option to omit the factor [1− exp(∆t/τJr)], i.e. set it to one, in case of normal time-averaging (NJVR-
TARS), the option to weight the contribution of (Eq. 9.97) to the force in case of biquadratic restraining
(NJVRBIQW), the number of grid points for the local-elevation potential (NGRID), the tolerance to de-
viation from the experimental value, ∆J0 (DELTA) and whether to write the 3J-value data to a special
trajectory are specified in the JVALUERES block of the MD input file (see Chap. 4-8).

The use of periodic scaling is controlled by setting RESTYPE=jrest in the PERSCALE block of the MD
input file (see Chap. 4-8). Within this block, the maximum scaling factor for the dihedral angle potential
energy term (KDIH) and for the 3J-value restraint potential energy term (KJ), the period τsJr of the cosine
scaling function (T), the minimum deviation ∆J0 from the target value to start a scaling period (DIFF),
the minimum fraction of τsJr that needs to be passed before starting a new scaling period (RATIO) and the
reading of the scaling parameters (READ) can be specified. An example of 3J-coupling constant restraining
using this method is given in66.

An application of 3J-coupling constant restraining using time-averaging, including a discussion of the
choice of the values for CJVR and TAUJVR, is given in64. The latter should satisfy the condition

τJr ≪ tMD (9.99)

where tMD is the length of the simulation. The overall force constant CJVR can be multiplied by individual
weight factors WJVR specific to each 3J-coupling constant (see below).

The choices for NGRID, DELTA and TAUJVR when local-elevation is used are discussed in71, which
contains an example of 3J-value restraining using time-averaging and local-elevation.

The atom sequence numbers of the atoms i, j, k and l that define ηn (IPJV, JPJV, KPJV, LPJV [1..NDJV]),
the individual restraint weights (WJVR[1..NDJV]), the reference 3J-values J0

n (PJR0[1..NDJV]), the phase
shifts δn = ζn−ηn (PSJR[1..NDJV]) the Karplus parameters a, b and c (AJV, BJV, CJV[1..NDJV]) belonging

2-81

to the angles ζn and the type of restraining potential energy term (NHJV: harmonic, half-harmonic attractive
or half-harmonic repulsive) are specified in the JVALRESSPEC block of a 3J-coupling constant restraints
file (see Sec. 4-3.6).

9.8. S2-order parameter restraining

The special interaction term V(spec)(rr ; s) in Eq. 3.4 that performs S2-order parameter restraining reads72

V(Sr)(rr ; s) =

NSr∑

n=1

V(Sr)
n(S(rXY); k

(Sr)
n , S0

n,∆S
0
n) (9.100)

where the horizontal bar denotes a time-average and the n-th S2-order parameter restraint restrains the
motion of atoms X and Y . The summation runs over a set of NSr S

2-order parameter restraints. The

functional form of V(Sr) reads

V(Sr)
n(S(rXY); k

(Sr)
n , S0

n,∆S
0
n)

= 1
2k

(Sr)
n [S(rXY)− S0

n −∆S0
n]

2 for S(rXY) > S0
n +∆S0

n

= 1
2k

(Sr)
n [S(rXY)− S0

n +∆S0
n]

2 for S(rXY) < S0
n −∆S0

n

= 0 otherwise. (9.101)

where the value ∆S0
n allows for some uncertainty in the reference S0

n -values. The time-averaged order
parameter is calculated from72,73

S(rXY (t)) =
1

2

3

3∑

α=1

3∑

β=1

[
Qαβ(t)

]2
−
[
D(t)

]2

 · (reffXY)

6 (9.102)

where reffXY is an effective internuclear distance between atomsX and Y . The time averaged quantities Qαβ(t)

and D(t) are calculated in the usual damped memory manner58 with the memory relaxation time τsr,

Qαβ(t) =
1

τsr[1− e−t/τsr]

t∫

0

e−(t−t′)/τsrQαβ(t
′)dt′ (9.103)

and

D(t) =
1

τsr[1− e−t/τsr]

t∫

0

e−(t−t′)/τsrD(t′)dt′ (9.104)

and

Qαβ(t
′) =

(rXα(t
′)− rYα(t

′))(rXβ(t
′)− rYβ(t

′))
(rXY(t′))5

(9.105)

and

D(t′) =
1

rXY(t′)3
(9.106)

with

rXY = rX − rY and rXY = [(rX − rY) · (rX − rY)]
1/2

(9.107)

and

rX1 = x− component of vector rX

rX2 = y− component of vector rX

rX3 = z− component of vector rX (9.108)

2-82

and likewise for rY . The discretized form, applicable to atomic trajectories, in which configurations are
separated by a time interval ∆t, is

Qαβ(m∆t) =
(rXα(m∆t)− rYα(m∆t))(rXβ(m∆t)− rYβ(m∆t))

(rXY(m∆t))5
(9.109)

and

Qαβ(n∆t) = Qαβ(n∆t)
{
1− e−∆t/τsr

}
+ e−∆t/τsrQαβ((n−1)∆t) (9.110)

and

S2
XY(n∆t) =

1

2

3

3∑

α=1

3∑

β=1

[
Qαβ(n∆t)

]2
−
[
D(n∆t)

]2

 · (reffXY)

6 (9.111)

with

D(m∆t) =
1

rXY(m∆t)3
(9.112)

and

D(n∆t) = D(n∆t)
{
1− e−∆t/τsr

}
+ e−∆t/τsrD((n−1)∆t). (9.113)

The restraining force on atom X then becomes

fX(t) = −∂V
restr(~rN (t))

∂~rX(t)

= −Ksr
[
S2
XY(~r

N (t)) − S2
XY(exp)

]
(9.114)

·1
2

3

3∑

α=1

3∑

β=1

2Qαβ(t)
∂Qαβ(t)

∂Qαβ(t)

∂Qαβ(t)

∂~rX(t)
− 2D(t)

∂D(t)

∂D(t)

∂D(t)

∂~rX(t)

 · (reffXY)

6

and the restraining force on atom Y becomes

fY (t) = −∂V
restr(~rN (t))

∂~rY(t)

= −Ksr
[
S2
XY(~r

N (t))− S2
XY(exp)

]
(9.115)

·1
2

3

3∑

α=1

3∑

β=1

2Qαβ(t)
∂Qαβ(t)

∂Qαβ(t)

∂Qαβ(t)

∂~rY(t)
− 2D(t)

∂D(t)

∂D(t)

∂D(t)

∂~rY(t)

 · (reffXY)

6

although using 9.110 we have

∂Qαβ(t)

∂Qαβ(t)
=
∂Qαβ(n∆t)

∂Qαβ(n∆t)
=
[
1− e−∆t/τsr

]
(9.116)

the approximation63

∂Qαβ(t)

∂Qαβ(t)
= 1 (9.117)

is often used, which only leads to a rescaling of Ksr in practice, and likewise

∂D(t)

∂D(t)
= 1. (9.118)

For the derivatives
∂Qαβ(t)
∂~rX(t) we find using 9.105, where we omit the variable t and denote the three components

of the position vector ~rX of atom X by rXγ with γ = 1, 2, 3,

∂Qαβ

∂rXγ

=
(rXY)

5 {δγα(rXβ − rYβ) + δγβ(rXα − rYα)}
(rXY)10

− (rXα − rYα)(rXβ − rYβ) · 5(rXY)
4(rXγ − rYγ)(rXY)

−1

(rXY)10
(9.119)

=
(rXY)

2 {δγα(rXβ − rYβ) + δγβ(rXα − rYα)} − 5(rXα − rYα)(rXβ − rYβ)(rXγ − rYγ)

(rXY)7

2-83

where δij is the Kronecker delta. For the derivatives
∂Qαβ(t)
∂~rY(t) we find likewise

∂Qαβ

∂rYγ
= −∂Qαβ

∂rXγ
. (9.120)

Thus the restraining force on atom Y is the negative of the restraining force on atom X for this restraining

function. For the derivatives ∂D(t)
∂~rX(t) we find using 9.106 likewise

∂D

∂rXγ
=

−3(rXγ − rYγ)

(rXY)5
(9.121)

and

∂D

∂rXγ
= − ∂D

∂rYγ
. (9.122)

Note that the use of order parameters to bias MD simulations is conceptually different from the use of
other properties such as nuclear Overhauser enhancement (NOE) atom-atom distance bounds or 3J-coupling
constants, because order parameters are not instantaneous observables, i.e. the order parameter for a single
configuration is by definition equal to unity. Therefore, τsr represents not only the memory relaxation but
also the experimentally determined averaging period. Thus it should be chosen larger than the decay time
of the internal autocorrelation function of the vector connecting the two atoms, but not larger than the
sensitivity time window of the NMR experiment.

At the start of a simulation the values of the averages 9.103 and 9.104 are set to their instantaneous values
calculated from the starting configuration. At the end of a simulation the values of the averages (9.103 and
9.104) are stored with the final configuration for use in a continuation simulation.

9.9. X-ray structure factor amplitude restraining

In GROMOS a five Gaussian parametrisation74 of the atomic scattering factor fi is used,

fi(k) = Oi exp

(
− Bi

4k2

)

5∑

j=1

[
aij exp

(
− bij
4k2

)]
+ ci

 . (9.123)

Here, Oi and Bi are the atomic occupancy and the atomic B-factor, a, b and c are coefficients which depend
on the type and charge of the atom i74. The atomic electron density ρi is given by the analytical Fourier
backwards transform of the scattering factor fi. The global electron density is then computed as the sum of
the atomic densities

ρ(r; rrNa) =

Na∑

i=1

ρi(r; rr
Na) (9.124)

on a grid whose resolution is an adjustable parameter. The structure factor is obtained by Fourier transform
of the electron density of the system

F (k; rrNa) = F{ρ(r; rrNa)}. (9.125)

The structure factors obtained by the procedure described above are denoted as the calculated structure
factors. Their amplitudes | F | can be compared to the observed structure-factor amplitudes | F 0 |, derived
from the scattering intensities, through the R-factor which is given by

R =

∑NF

i=1 | | F 0
i | −s | F i | |∑NF

i=1 | F 0
i |

, (9.126)

where NF is the number of observed structure-factor amplitudes. As | F 0 | is generally on an arbitrary scale,
the calculated amplitudes are fitted to the observed ones by means of a weighted linear regression, leading
to the scaling factor

s =

∑NF

i=1 wi | F 0
i || F i |∑NF

i=1 wi | F i |2
. (9.127)

The weight wi of an individual reflection is generally taken as the inverse of the variance of the structure-
factor amplitude.

2-84

As for 3J-couplings, a harmonic potential energy term for the structure-factor amplitude can be used to
restrain the computed structure-factor amplitudes to the observed ones

V(Fxr)(rrNF ; | F 0 |) = 1

2

kxr
∑NF

i=1 wi | F 0
i |2

NF∑

i=1

wi

(
| F 0

i | −s | F i(rr
NF) |

)2
. (9.128)

The weight factor or force constant kxr is made resolution independent by the factor 1
∑NF

i=1 wi|F 0
i |2

. Time-

averaging is introduced by substitution of | F i | by 〈| F i |〉t in 9.12875. In addition to the instantaneous and
time-averaging restraining term, a biquadratic term is available

V(Fxr)(rrNF ; | F 0 |) =
1

2

kxr
∑NF

i=1 wi | F 0
i |4

(9.129)

NF∑

i=1

wi

(
| F 0

i | −sinst | F i(rr
NF) |

)2 (| F 0
i | −savg

〈
| F i(rr

NF) |
〉
t

)2
.

We note that two individual scaling constants sinst and savg are used. sinst is computed using 9.127, while
savg is calculated using the same relation, where the calculated amplitudes | F i | were replaced by the
time-averaged ones 〈| F i |〉t.

9.10. X-ray electron density restraining

In X-ray crystallography, the electron density ρ0 is not an experimentally observable quantity. As the
phase of F 0 is generally not observable, it is taken from the structure factor F computed from an atomic
model. The electron density ρ0 is then computed as

ρ0(r) = F−1{
(
2 | F 0(k) | −s | F (k) |

)
exp [i arg (F (k))]}, (9.130)

where arg (F) is the phase computed from the model. In analogy to 9.126, a real-space R-factor76 can be
defined

R =

∑
r | βρ0(r) + α− ρ(r) |∑
r | βρ0(r) + α+ ρ(r) | . (9.131)

Summation is only carried out over the extent of the atoms of interest. α and β are scaling constants
computed using a linear regression of

ρ(r) = βρ0(r) + α. (9.132)

These values can be calculated for an arbitrary set of atoms. Fitting is carried out using only the grid points
lying within spheres with a radius Rcut centered at the positions of these atoms.

The electron density computed using 9.130 can be used for restraining. The penalty function77 is defined
as

V(exr)(rrNa ; ρ0) =
1

2
kxr

∑

r

(
βρ0 + α− ρ(rrNa)

)2
. (9.133)

The summation is carried out over all grid points of the unit cell. Time-averaging is not available for electron
density restraints, neither is a biquadratic penalty function.

9.11. X-ray crystallographic symmetry restraining

In a crystal, having a space group different from P1, multiple identical asymmetric units (ASUs) are
assembled to construct the unit cell. The relationship between the ASUs is fully defined by the space group
and the size of the unit cell. A space group S contains Nsym number of symmetry operations Si. Every atom

position in the first asymmetric unit ri has Nsym − 1 images r
(j)
i defined as

r
(j)
i = Sjri. (9.134)

Note that S1 is the identity symmetry operation and thus r
(1)
i and ri are identical. Symmetry operations

can be described in terms of a rotation followed by a translation,

Sjri = Rjri + tj . (9.135)

2-85

Here, the rotation matrix Rj of the symmetry operation j is, in contrast to the translation vector tj ,
independent of the size of the unit cell. The inverse symmetry operation symop−1 can be formulated as

Sj
−1ri = Rj

−1 (ri − tj) . (9.136)

When simulating a unit cell, one may want to impose restraints on the symmetry of the system as, in
many cases, insufficient experimental data for refinement of the whole unit cell is available. An easy way
of achieving this is by adding harmonic potential energy terms for every symmetry-related pair. For every
atom i in the first asymmetric unit, the term

V(sxr) (ri; k
sym) =

1

2
ksym

Nsym−1∑

i′=1

Nsym∑

j′=i′+1

[
Sj′

−1r
(j′)
i − Si′

−1r
(i′)
i

]2
(9.137)

is added. The term can be interpreted as follows: all possible symmetry pairs are transformed to their
position in the first asymmetric unit and a set of springs between corresponding atoms is introduced for each
pair of molecules.

9.12. Distance-field distance restraining

The calculation of protein-ligand binding free energy energies is an important goal in the field of com-
putational chemistry. Applying path-sampling methods for this purpose involves calculating the associated
potential of mean force (PMF) and gives insight into the binding free energy along the binding process.
Without a priori knowledge about the binding path, sampling reversible binding can be difficult to achieve.
To alleviate this problem, the distance field (DF) has been introduced as reaction coordinate for such calcu-
lations.78 DF is a grid-based method in which the shortest distance between the binding site and a ligand is
determined avoiding routes that pass through the protein. Combining this reaction coordinate with Hamil-
tonian replica-exchange molecular dynamics (REMD) allows for the reversible binding of the ligand to the
protein.

In the case of protein ligand binding, a DF restraint can be applied between (virtual) atom i and (virtual)
atom j, representing the active site and the ligand, respectively. At the start of a simulation employing a
DF restraint, a 3-dimensional grid is created with the grid spacing, gs, as set by the user (input parameter
GRID in the DISTANCEFIELD block). The minimal DF distance from a (virtual) atom i to each of the
grid points is then assigned by applying Dijkstra’s algorithm.79

1. The DF distance at every grid point is initialized to a large value that cannot be reached during the
simulation. Here, we have chosen this value to be 4×a×b×cwhere a, b and c are the box edge lengths.
The grid points that are positioned within a user-specified cutoff distance (PROTEINCUTOFF in
block DISTANCEFIELD) of any protein atom are flagged by a large value (PROTEINOFFSET in
block DISTANCEFIELD).

2. All grid points are marked as unvisited. The initial node is the grid point closest to (virtual) atom
i. This grid point is assigned as the current node and a DF distance of 0 is assigned to it.

3. The unvisited nodes that are neighboring the current node are subsequently considered.
- A new DF distance for the neighboring grid point is initially calculated as the DF distance
assigned to the current node plus the distance between the two grid points (gs). If a neighboring
node is flagged as protein, an additional user-specified protein penalty is added to the distance.

- When the new DF distance is less than the previously assigned preliminary distance, the latter
is overwritten. Otherwise the distance does not change. In both cases, the neighbors are still
marked ’unvisited’ and the assigned DF distances are still preliminary.

4. When all neighbors are considered, the current node is marked as ’visited’. With this marking, the
preliminary distance becomes final and this node will not be considered anymore.

5. The unvisited grid point with the lowest preliminary distance becomes the current node. Go back
to step 3 and continue until all grid points are marked ’visited’.

Using this approach, periodic boundary conditions are taken fully into account and grid points are not
revisited. Once the updating step is completed, all grid points are assigned the shortest DF distance from
atom i. The DF distances are updated (by applying steps 1-5) every UPDATE steps (in block DISTANCE-
FIELD). Not updating every time step speeds up the simulation significantly and is allowed as long as the
protein does not change its conformation too much between the updates, even though this will come at the
expense of a slight loss of energy conservation. Using an UPDATE value of 100, the simulations are slowed
down by 20 percent with respect to regular distance restraint simulations.

2-86

To avoid simulation artifacts, several extra features are implemented.

1. If (virtual) atom i is flagged as being within the protein, the DF distances of the grid points are not
updated. It sometimes happens that this virtual atom temporarily gets buried in the active site due
to the flexibility of the protein. If an update step would be performed, all DF distances are very
large, because each of them has the additional protein penalty which was added to the first point.
The forces induced by a DF restraint will thus get very large and may disrupt the structure. Also,
because each grid point has the additional penalty, the DF distance converges to a normal radial
distance with an initial offset.

2. The user can specify the number of smoothening rounds that are applied after each updating step
(input parameter SMOOTH in the DISTANCEFIELD block). In a smoothening round, we loop
over all non-protein grid points and check if one of its neighbors is flagged as protein. If this is the
case, we are dealing with a grid point that is at the edge of the protein. In order to avoid large forces
pointing away from the protein, the DF distance on the flagged protein grid point is determined
again based on its direct neighbors, but now without the protein penalty. In this way, the large
forces arising from the protein penalty on the grid are buried within the protein, and the regular van
der Waals repulsion will ensure that the ligand never reaches these grid points. The DF distances
of other grid points and the optimal route for atom j are not affected as this smoothening step is
performed after the normal updating steps (1-5) have finished.

Once the DF distances are defined for all grid points, we can impose a DF restraint on the distance
between atoms i and j. The forces and energies due to the DF restraint are calculated at each time step. We
start this process by determining the 8 grid points that are closest to atom j, to which DF distances have
been determined in the updating step. In order to be able to calculate the forces, the derivatives of the DF
distance, l in the x, y and z directions have to be determined for each of the 8 neighboring grid points. This
is done using a finite differences approach as illustrated in Eq. 9.138 for grid point k, in the x direction.

dl

dxk
=
l(xk − 1, yk, zk)− l(xk + 1, yk, zk)

2gs
(9.138)

Here, l(xk − 1, yk, zk) is the DF distance assigned to the neighbor of grid point k with the smaller x
coordinate and gs is the grid spacing. In order to interpolate the DF distance and its derivatives from the
neighboring points to atom j, an assignment function of order 2 is used, similar to the one used for charges
in the PPPM method (see Sec. 7.4.4.4).

The potential energy associated with the DF restraint, V(df), can now be calculated using

V(df)(lij , k
(df), l0,∆lh)

= −k(df)[lij − l0 + 1
2∆l

h]∆lh lij ≤ l0 −∆lh

= 1
2k

(df)[lij − l0]2 l0 −∆lh < lij ≤ l0 +∆lh

= k(df)[lij − l0 − 1
2∆l

h]∆lh lij > l0 +∆lh (9.139)

k(df) is the force constant of the harmonic DF restraint, l0 is the reference DF distance and lij is the
current DF distance between atoms i and j. The interaction term is linearized after a certain deviation ∆lh

to prevent too large energy and forces for larger deviations (input parameter RL in the DISTANCEFIELD
block). The forces on atom i and j are calculated with

f j = −∂V
(df)

∂lij

∂lij
∂rj

= k(df)∆lh
∂lij
∂rj

lij ≤ l0 −∆lh

2-87

= −k(df)(lij − l0)
∂lij
∂rj

l0 −∆lh < lij ≤ l0 +∆lh

= −k(df)∆lh∂lij
∂rj

lij > l0 +∆lh (9.140)

and

f i = −f j (9.141)

9.13. Biasing energy functions

The force field may be combined with a bias energy, so as to penalise or favour specified parts of conforma-
tional space. Such a bias energy may be time-dependent, such as in the local elevation method (Sec. 9.13.1)
or time-independent, such as in the umbrella sampling method (Sec. 9.13.2) or may be a combination of
these, such as in the local elevation umbrella sampling methods (Sec. 9.13.3 and Sec. 9.13.4). GROMOS

allows a specification of a bias energy based on the following steps:

1. definition of a set of N LE coordinates, collectively noted by the vector QQ = {Qn, n = 1..NLE}, of
which the bias energy will depend. The chosen set of coordinates will be named local elevation- or
LE-coordinates. These coordinates are assumed to be well defined and differentiable functions of
the vector rr encompassing the Cartesian coordinates of all particles in the system, i.e. the vector
function QQ = QQ(rr) must be defined for any rr and its derivative must be non-singular. Examples
of possible internal coordinates include e.g. distances between atom pairs, angles between atom
triples, dihedral angles between atom quadruples, root-mean-square atomic positional deviations
from given reference structures, extended-system variables (e.g. λ-variables in λ-dynamics80–82), or
any (differentiable) mathematical combination of these. Currently implemented is dihedral angle
[VARTYPE=1], distance [VARTYPE=2] and distance-field distance [VARTYPE=6].

2. a specification of one (or more) grid(s) within the space of the LE-coordinates consisting of Γ+1 grid
points and a memory force-constant vector Mk = {Mk,i, i = 0..Γk} giving the force constants at
each grid point. Three types of grid may be specified, (i) a full-dimensional grid, used in the LE and
LEUS methods; (ii) a spherical grid and (iii) a line grid, the latter two used in the B&S− LEUS83

method.
3. a set of basis functions γ to give a continuous interpolation between grid points. Various LE basis

functions are available for the use in GROMOS, and a discussion of the different functions can be
found in84. The LE basis function may be of Gaussian type

γGauss(x) = H(rcut − |x|) exp
[
− (x)2

2σ2

]
(9.142)

or of polynomial form with continuous 1st derivative (NTLEFU = 0)

γPoly1(x) = H(rcut − |x|)[1 − 3
|x|2
σ2

+ 2
|x|3
σ3

] (9.143)

or with continuous second derivative

γPoly2(x) = H(rcut − |x|)[1 − 10
|x|3
σ3

+ 15
|x|4
σ4

− 6
|x|5
σ5

] , (9.144)

where σ describes the width of the basis functions WLES. For the polynomial forms σ equals the
grid spacing of the defined grid.

9.13.1. Local elevation biasing. MD or SD simulation can also be used as a method to search the
conformational space of a molecule for conformations of low energy. Due to the presence of relatively high
barriers on the energy surface, MD and SD simulations have the tendency to repeatedly visit a small set
of local energy minima. To avoid resampling of conformations, we may add a penalty potential energy to
energetically penalise conformations already sampled. The local elevation method85 offers a way to produce
such a penalty potential energy by gradually adding small, local, repulsive potential energy terms (LE basis
function γ) during the simulation. In practice, this is performed by increasing the values of the memory
force-constant vector M according to the grid point visited at the current time, giving a time-dependent bias
energy. The local elevation method can also be used in combination with time-averaging to bias a simulation
towards conformations that, on average, satisfy a set of experimental data such as 3J-couplings (Sec. 9.7).

2-88

If the number of LE coordinates is low (N le ≈≤ 5), one may enhance the sampling in the complete LE-
subspace. This can be done by using a full-dimensional grid (NTLES), where the special interaction term

(V(spec)(rr; s) in Eq. 3.4) defining the local elevation bias reads

V(spec)(rr ; s) = V(le)(QQ;M(t))

=

Γ∑

k=0

Mk(t)

Nle∏

i=1

γi(QQi −QQ0
k,i) (9.145)

where the sum k goes over the Γ + 1 grid points (in practice over visited grid points), the product i runs
over the Nle local elevation (LE) coordinates QQi, γi is the LE basis function and M(t) describes a (time-
dependent) memory force-constant vector. In the LE method, the time dependence of the memory force-
constant vector is simply given as

Mk(t) =Mk(t−∆t) + k(le) (9.146)

where k(le) is the LE force constant CLES and QQi(t) is within the range of grid point k. We note that the
total energy will not be conserved when applying the LE interaction due to the change of the memory force-
constant vector M(t) as a function of time85. Under specific conditions of the memory force-constant vector
M(t), the bias potential energy generated by the LE procedure will, together with the physical potential
energy, create an approximately flat free energy surface86,87, thus we can in principle approximate the free
energy surface as the negative of the LE bias potential energy. However, to obtain accurate free energies (and
other ensemble properties), it is highly recommended to freeze the build up and use the LE bias potential
energy as an (time-independent) umbrella potential energy term, as done in the LEUS method.

At the end of a simulation, the information concerning the definition of LE conformations, which LE
conformations have been visited and how many times (ILEPOT), are stored with the final configuration for
use in a continuation simulation.

Whether or not to apply LE (NTLES) and the build-up or freezing of each potential energy term
(NTLEFR) are read from the LOCALELEV block of the MD input file. Parameters to describe the
form of the potential energy term may be read from the LOCALELEV block (NTLESA=0, starting with

V(le) = 0), or together with the potential energy from the coordinate file (NTLESA=1) or a LEUS database
file (NTLESA=2). The atom sequence numbers defining the LE coordinate and the identifiers of the poten-
tial energy are given in the LOCALELEVSPEC block of the LE input file. An application of LE search is
given in85.

9.13.2. Umbrella sampling. According to the umbrella sampling method88, one can recover the
ensemble properties of an unbiased ensemble by means of reweighting as

A =
< A(qq, ppqq) exp[

V(spec)

kBT] >B

< exp[V
(spec)

kBT] >B

(9.147)

A suitable bias energy may therefore be specified, so as to calculate ensemble properties such as free
energy, 3J-couplings and occurrences of hydrogen bonds at a higher efficiency than a normal MD simulation.
One example may be the application of an energy bias that cancels out the potential of mean force, giving
uniform sampling in the space of the selected LE-coordinates. The potential of mean force is however in
most cases unknown and is often the sought result of the simulation, and a manual specification of the bias
potential energy term is therefore in most cases not possible.

9.13.3. Local elevation umbrella sampling (LEUS). As described in Sec. 9.13.1, an energy bias as
built by the LE method will approximate the negative of the free energy surface. In practice however, the
quality of the approximation is depending on the chosen build-up parameters and includes a certain amount
of statistical uncertainty. To get accurate free energies and other ensemble properties one may either attempt
to optimise the build-up procedure itself, or correct for the uncertainties by freezing the LE-build up and run
an umbrella sampling procedure where the bias energy is time-independent. In practice, the second choice
is simpler to accomplish, as uncertainties in the bias energy up to approximately kBT will be corrected for.
This is the principle of the LEUS method: first a relatively short LE run is performed to create a biasing
term that allows an approximate uniform sampling in the space of LE-coordinates and secondly a US run is
performed with the LE bias energy term frozen to obtain accurate simulation results.

2-89

The build-up or freezing of the bias potential energy terms (NTLEFR) are read from the LOCALELEV
block of the MD input file.

An application of LEUS is given in Ref.89.

9.13.4. Ball and stick LEUS. In the case where the LE-space is of a high dimension, the application of
a full-dimensional grid becomes unpractical. A solution to this problem for systems with well-defined confor-
mational states is presented in the ball-and-stick local elevation umbrella sampling method (B&S− LEUS)83,
where sampling is restricted to and enhanced within a prespecified subspace of the chosen LE coordinates.

The B&S− LEUS method consists of seven steps.

1. Choice of a LE subspace permitting the definition of the relevant conformational states. Note that
periodic internal coordinates (e.g. dihedral angles) should not be ′′refolded′′ to a reference period,
i.e. their time evolution must be continuous. Furthermore it is assumed that the definition of
any internal coordinate (with a specified unit) is associated with the selection of a corresponding
reference value σn (with the same unit), and that Qn is defined by the unitless ratio of the two
quantities. It is important to stress that the results of a B&S− LEUS simulation depend on a given
choice of the σn factors, so that these factors must be clearly specified as an integral part of the
definition of the conformational subspace.

2. Representation of the relevant conformational states by means of K centered volumes within the
reduced conformational subspace. One possible type of centered volume is the sphere. The biasing
potential energy function Bk(QQ) corresponding to a sphere Sk associated with a state k is defined
by the following parameters: a sphere center QQk, a radius Rk, a restraining force constant ck, a
number of radial grid points Γk + 1, and a memory force-constant vector Mk = {Mk,i, i = 0..Γk}.
The corresponding expression is (for k = 1..K)

Bk(QQ) =

{
Mk,Γk

+ 1
2ck(rk −R)2 if rk ≥ Rk∑Γk

i=0Mk,iγ(dk,i) if rk < Rk

, (9.148)

where γ is the LE basis function, and the quantities rk and dk,i depend on QQ as

rk = ||QQ −QQk|| (9.149)

and

dk,i = ΓkR
−1
k rk − i . (9.150)

Within the sphere (rk < Rk), the memory vector Mk permits to enforce a radially-dependent
potential energy term of arbitrary form (with an approximate resolution Γ−1

k Rk), expressed as a
weighted sum of Γk + 1 repulsive local functions γ. Outside the sphere (rk ≥ Rk), the potential
energy term is changed to an attractive half-harmonic restraint. It is easily verified that the biasing
potential energy term Bk defined by Equation Eq. 9.148 is continuous and differentiable84.

A carefully adjusted one-dimensional memory may be used to obtain a biasing potential energy
term enforcing a homogeneous radial sampling of the centered volume, but this potential energy
term will generally not lead to a homogeneous sampling of the multi-dimensional volume itself, the
directional (non-radial) dimensions remaining unbiased. Note also that such a potential energy term
will guarantee that the center of the volume is sampled.

3. Definition of a set of conformational paths connecting the centers of the volumes representing the
K states. Only the simplest possible type of path will be considered here, namely the line or, more
precisely, the line segment. The numbering of the corresponding biasing potential energy terms
will start at K + 1. The biasing potential energy term Bl(QQ) corresponding to a line Ll is defined
by the following parameters: a starting point QQl, an ending point QQ′

l, a width Wl, a restraining
force constant cl, a number of longitudinal grid points Γl + 1, and a memory force-constant vector
M l = {M l,i, i = 0..Γl}. The corresponding expression is (for k = K + 1..K + L)

Bl(QQ) =

M l,0 +
1
2clH(rl −Wl)(rl −Wl)

2 if ul ≤ 0

M l,Γl
+ 1

2clH(r′l −Wl)(r
′
l −Wl)

2 if ul ≥ Ul∑Γk

i=0[M l,i +
1
2clH(pl −Wl)(pl −Wl)

2]γ(dl,i) if 0 < ul < Ul

, (9.151)

where the where γ is the LE basis function, Ul is the line length

Ul = ||QQ′
l −QQl|| , (9.152)

2-90

and the quantities ul, pl, rl, r
′
l and dl,i depend on QQ as

ul = U−1
l (QQ′

l −QQl)
T (QQ −QQl) , (9.153)

pl = ||(QQ −QQl)− U−1
l ul(QQ

′
l −QQl)|| , (9.154)

rl = ||QQ −QQl|| , (9.155)

r′l = ||QQ −QQ′
l|| , (9.156)

vT indicating the transpose of a vector v, and

dl,i = ΓlU
−1
l ul − i . (9.157)

Note that Eq. 9.151 is formulated so as to allow for displaced lines and lines with longitudinally-
dependent widths or force constants. The quantity ul represents the longitudinal distance between
the starting point of the line and the current point QQ, while the parameter pl represents the cor-
responding transverse (perpendicular) distance. Within the line (0 < ul < Ul), the memory vector
M l permits to enforce a longitudinally-dependent potential energy term of arbitrary form (with an
approximate resolution Γ−1

l Ul), expressed as a weighted sum of Γl + 1 repulsive local functions γ,
and applied together with a transverse attractive flat-bottom (width Wl) half-harmonic restraining
potential energy term. Outside the line, i.e. when going past its two terminal points in terms of
longitudinal distance (ul ≤ 0 or ul ≥ Ul), the potential energy term is changed to an attractive
flat-bottom (width Wl) half-harmonic restraint depending on the distance to the corresponding end
point. It is easily verified that the biasing potential energy term Bl defined by Equation Eq. 9.151
is continuous and differentiable.

GROMOS also allows a non-linear variant of the line, the displaced line, where an offset coor-
dinate ∆QQl,i perpendicular to the line (i.e. with ∆QQT

l,i(QQ
′
l −QQl) = 0 and ∆QQl,0 = ∆QQl,Γl

= 0), and
replacing pl in Equation Eq. 9.151 by

pl,i = ||(QQ−QQl)− U−1
l ul(QQ

′
l −QQl)−∆QQl,i||. (9.158)

This requires the specification of a set of orthonormal vectors, orthogonal to the defined line together
with the specification of the displacement along each of these vectors for each grid point. Another
possible variant involves the use of longitudinally-dependent line widths or/and restraining force
constants, i.e. the replacement of cl and Wl in Equation Eq. 9.151 by corresponding grid-point
dependent quantities cl,i and Wl,i. In principle, the L paths will be chosen to connect pairs among
the K centered volumes defining the states. This must be done in such a way that all states are
connected to each other via at least one path or succession thereof. The minimum number of paths
is thus L = K − 1 (maximum-spanning tree), but it may be advantageous in terms of convergence
properties to include additional (redundant) paths. Note that the end points of the paths must
be identical to the centers of the states (e.g. they should not connect to the periphery of the
centered volumes). This is essential because independent biasing potential energy terms leading
to a homogeneous radial sampling of the centered volumes and longitudinal sampling of the paths
can only guarantee that these specific points are sampled (for lines, assuming sufficiently small line
widths at the end points).

4. Unification of the biasing potential energy terms associated with the M = K + L centered volumes
and paths into a single biasing potential energy term according to the enveloping distribution sam-
pling procedure90. For the ease of notation, these objects have been given the generic notation Bm,
where the index m ranges from 1 to M = K + L (1..K for the centered volumes, K + 1..M for the
paths). The various LEUS potential energy terms are combined following the EDS principle as

V(bias)(rr ;M) = − 1

βs
ln

(
M∑

m=1

exp[−βsBm(QQ(rr))]

)
, (9.159)

where β = (kBT)
−1, kB being Boltzmann’s constant and T the absolute temperature, rr represents

the system configuration (Cartesian coordinates of all particles), QQ(rr) the corresponding represen-
tative point in the reduced subspace, s a (positive) smoothing parameter, and M the joint memories

of the M objects, i.e. a vector containing NM =
∑M

m=1 Γm elements.
Qualitatively speaking, the exponential weighting in Equation Eq. 9.159 ensures that the com-

bined biasing potential energy term V(bias) is low in the regions of the conformational subspace
where any of the Bm is low, and high in the regions where all the Bm are high. For the ease of

2-91

reference, the subvolume of the reduced conformational subspace where any of the Bm is low, i.e.
the union of all centered volumes and paths, will be referred to as the active subspace.

The forces derived from V(bias) in Eq. 9.159 are given by

ff bias(rr) = −∂V
(bias)(rr;M)

∂rr
= −

M∑

m=1

wm(QQ)
dBm(QQ)

dQQ

∂QQ

∂rr
(9.160)

where

wm(QQ) =
exp[−βsBm(QQ)]

∑M
m=1 exp[−βsBm(QQ)]

(9.161)

can be interpreted as measuring the relative influence (weight) of a single-object biasing potential
energy term m on the dynamics of the system in a conformation QQ. Note that the forces defined by
Equation Eq. 9.160 are non-singular, because Bm(QQ) and QQ(rr) are both differentiable functions of
their arguments.

5. LE build-up phase to optimize the memory, leading to a biasing potential energy term enabling
nearly uniform sampling (radially within the centered volumes, longitudinally within the paths) of
the active subspace. The updating scheme for the memory M(t) relies on the equation

Mm,i(t+∆t) =Mm,i(t) + k(le)f
IR(t;γLE ,nLE)
LE jm,i(QQ)hm,i(QQ)wm(QQ) , (9.162)

where Mm,i is the memory associated with grid point i of object m, QQ = QQ(rr(t)), ∆t is the

simulation timestep, k(le) the basis force-constant increment, fLE a force-constant reduction factor,
IR a force-constant reduction counter, associated with a defined conformational region R, γLE

a local visiting cutoff (real), nLE a global visiting cutoff (integer), jm,i a distribution-alteration
function, hm,i a grid-assignment function, and wm the weight defined by Eq. 9.161. In the absence
of prior knowledge concerning the form on the free-energy hypersurface, the memory will typically
be initiated to M(0) = 0. The different factors involved in Eq. 9.162 are explained below.

The grid-assignment function evaluates to one for a single grid point in each of the single-object
biasing potential energy terms and to zero for all other grid points, namely the grid point i in object
m that is (radially for centered volumes, longitudinally for paths) closest to QQ. For a sphere k, one
has (k = 1..K)

hk,i(QQ) =

{
δi,Γk

if rk ≥ Rk

δi,NINT(ΓkR
−1
k

rk)
if rk < Rk

, (9.163)

where δ is the Kronecker symbol and the function NINT returns the nearest integer to a real number.
For a line l, one has (l = K + 1..M)

hk,i(QQ) =

δi,0 if ul ≤ 0

δi,Γl
if ul ≥ Ul

δi,NINT(ΓlU
−1
l ul)

if 0 < ul < Ul

. (9.164)

As a result, the build-up always affects one and only one grid point in each of the M single-object
memories. However, the presence of the weight factor wm in Equation Eq. 9.162 ensures that the
build-up is only significant within the objects encompassing or closest to point QQ (note that the sum
of wm over all objects is one).

The distribution-alteration function is generally set to

jm,i(QQ) = 1 , (9.165)

leading to a nearly homogenous sampling (radially within the centered volumes, longitudinally within
the paths) of the active subspace. However, this function may be used to enforce deviations from
this homogenous sampling. As a simple example, one may observe that the volume of relevant
conformational subspace accounted for by a radial grid point i within a sphere k (distance Γ−1

k iRk

from the center) increases with (ik+
1
2)

N−1 (Jacobian factor), whereN is the subspace dimensionality.
One may then decide to bias the sampling of the sphere towards its periphery, which can be achieved
by setting for all spheres k (k = 1..K)

jk,i(QQ) =
(i+ 1

2)
1−N

∑Γk

j=0(j +
1
2)

1−N
. (9.166)

2-92

The force-constant reduction factor can be used in the context of an iterative procedure to
progressively decrease the build-up rate during the searching phase. As noted previously by other
authors86,91, a high build-up rate is desired in the early stage of the searching, where the deep
free-energy basins have to be ”filled up” coarsely (i.e. without wasting computer time), while a
low build-up rate (near-equilibrium situation) is preferable in the later stage, where the remaining
shallower free-energy wiggles have to be ”levelled off” (so as to produce a close-to-optimal biasing
potential energy term). This can be achieved by a progressive reduction of the build-up rate,
enforced in Equation Eq. 9.162 by using fLE < 1 along with a force-constant reduction counter IR
progressively increasing with time (the choice fLE = 1 switches off the force-reduction procedure).
In the B&S− LEUS algorithm, the force-reduction procedure is associated with a region R within
the active subspace, defined by a specific collection of grid points. The reduction counter IR is
propagated in time according to the following procedure. IR(t) as well as an auxiliary counter Nc(t)
are set to 0 at t = 0. An auxiliary memory A(t) is also set to 0 at t = 0 and propagated in time
according to the equation

Am,i(t+∆t) = Am,i(t) + wm(QQ)hm,i(QQ) . (9.167)

When Am,i(t) exceeds a specified local visiting cutoff γLE for all grid points (m, i) ∈ R, the
auxiliary counter is increased by one and the auxiliary memory reset to zero. When the auxiliary
counter exceeds a global visiting cutoff nLE, IR is increased by one and the auxiliary counter reset
to zero. Two possible (reasonable) choices for R are either: (i) the i = 0 (central) grid points of
all centered volumes k (k = 1..K), a choice that will be noted R = C; (ii) all grid points i of all
objects m (m = 1..M), a choice that will be referred to as R = A. Possible (reasonable) choices
for the parameters γLE and nLE are 1.0 and 2, respectively. The reasoning behind the present
force-constant reduction scheme (assuming γLE = 1.0 and nLE = 2) is that when all grid points of
R have undergone an “effective” number of visits (auxiliary memory, i.e. based on the wm weights)
of one, it is still possible that the “flattened” free-energy hypersurface retains an overall “slope”.
However, when all these points have undergone an “effective” number of visits of one for the second
time, even the points that were “uphill” have been revisited. When this condition is met, it becomes
advantageous to reduce the build-up rate by incrementing IR, which in effect scales this rate by a
factor fLE.

Finally, the constant k(le) in Equation Eq. 9.162 represents the basic force-constant increment
(units of energy) and determines the initial rate of the build-up. Note that the above force-reduction
procedure also presents the advantage of permitting a convergence assessment of the build-up phase,
by monitoring the time evolution of IR. The build-up phase can, for example, be terminated
whenever IR reaches a threshold value Imax

R . In this case, the procedure guarantees that all grid
points of IR have undergone an ”effective” number of visits of at least nLEγLEI

max
R , while the

energetic resolution of the biasing potential energy term is of the order of f
Imax
R

LE k(le). Alternatively,
the termination may be based on the time interval separating successive incrementations of IR.
In the initial stage of the build-up, the diffusion of the system within the active subspace will
be accelerated (hill surfing). However, as the free-energy hypersurface becomes increasingly ”flat”
and the build-up rate is decreased, this diffusion will progressively slow down towards a ”natural”
regime (as determined by the physical system after removal of the free-energy bias). Thus, the force-
reduction procedure could also be terminated when the interval separating successive increments of
IR has increased and leveled off to an approximately constant time.

6. US sampling phase to generate of a biased ensemble of configurations, using the biasing potential
energy term pre-optimized during the LE build-up phase. Owing to Eq. 9.159 the biased sampling
during this phase should be approximately homogeneous (radially within the centered volumes,
longitudinally along the paths) within the active subspace.

7. Reweighting and state assignment so as to calculate the relative free energies of the states in the
physical ensemble. For each state k, the free energy can be written (for k = 1...K)

Gk = −β−1 ln
〈
exp[βV(bias)(rr;M)]

〉
QQ(rr)∈S′

k

+ CG (9.168)

where CG is an offset constant and 〈..〉QQ(rr)∈S′
k
denotes ensemble (trajectory) averaging over the

biased ensemble (sampling phase), restricted to conformations belonging to state k (see also Sec. 14.8
and Eq. 14.162). The symbol S ′

k has been used rather than Sk to underline the fact that the regions

2-93

used to assign the states need not necessarily be exactly identical to the centered volumes involved
in the construction of the biasing potential energy term.

2-94

CHAPTER 10

Constraints

10.1. Introduction

This chapter will discuss various kinds of hard geometric boundary conditions that are implemented in
GROMOS. These may concern the position of atoms, the distance between pairs of atoms, the dihedral
angle defined by four atoms or the overall translation and rotation of a set of atoms. The application of
holonomic geometric constraints in molecular simulation may have the following advantages.

1. When constructing a molecular model in which certain degrees of freedom are ill-defined, one may
optimize or sample these degrees of freedom under the constraint that the other degrees of freedom
do not change.

2. If a degree of freedom is characterized by vibrational frequencies ν, for which

hν ≫ kBT (10.1)

the motion will be of quantum-mechanical nature. In equilibrium at room temperature, condition
Eq. 10.1 is fulfilled for e.g. the bond-stretching vibrations. Treating the bonds as constraints is
probably a better approximation of their quantum behaviour than treating them as classical har-
monic oscillators92.

3. When the range of frequencies in a molecular simulation is very broad, this may cause the energy
relaxation between high-frequency and low-frequency modes to be slow. If the forces for the different
modes are computed with different accuracies, the different modes will suffer from different heating
rates. When the latter are faster than the energy relaxation rate of the system, the system will not
reach equilibrium, but remain in a stationary state. This problem can be solved by coupling the
degrees of freedom of different frequency and heating rate to separate temperature baths (Sec. 12.2).
However, the application of constraints generally reduces the range of frequencies in the system and
thus alleviates this problem.

4. The application of constraints will generally save computing effort. The length of the time step
∆t in a MD or SD simulation is limited by the highest frequency νmax occurring in the molecular
system of interest,

∆t ≫ ν−1
max. (10.2)

By constraining the degrees of freedom with the highest frequencies the time step ∆t can generally
be lengthened, which reduces the computer time required for a simulation of a given length. For
molecular systems one may think of reducing computational effort by constraining bond lengths or
additionally bond angles, the latter only for molecules without internal torsional degrees of freedom.

5. A potential of mean force along a degree of freedom can be obtained by applying a constraint along
the degree of freedom and performing a thermodynamic integration in which the derivative of the
free energy with respect to a modification of the constraint is calculated from the constraint forces.

6. In order to minimize the amount of solvent needed to solvate a large molecular system, one may
constrain the overall translation and rotation of a given set, allowing for a smaller computational
box, but ensuring that the cutoff criterion (Eq. 4.26) will not be violated due to a rotation of the
system within the box.

The application of constrained dynamics makes physical sense only when47

2-95

1. the frequencies of the frozen degrees of freedom are (considerably) higher than those of the remaining
ones, thereby allowing a (considerable) increase of ∆t, and when

2. the frozen degrees of freedom are only weakly coupled to the remaining ones, viz. when the motion
of the molecules is not affected by application of the constraints93, and when

3. metric tensor effects due to constraining the molecules to a hypersurface in configuration space, play
a minor role.94

For biomolecules the effect of constraining bond lengths and bond angles has been evaluated93. It turns
out that the application of bond-length constraints saves about a factor of 2 in computer time when hydrogen
atoms are explicitly treated and a factor of 3 when the united-atom model is used47. Metric tensor correc-
tions play no role when only bond-length constraints are applied94. The use of bond-angle constraints is not
allowed in flexible (viz. with rotational internal degrees of freedom) molecules, since it affects the dynamics
of such molecules considerably93. Moreover, metric tensor effects are non-negligible in this case94. The
bond-angle degrees of freedom appear to be coupled to the other molecular degrees of freedom, such as the
torsional-angle ones. However, for completely rigid molecules, that is, without internal degrees of freedom,
metric tensor effects play no role, and the application of bond-length and bond-angle constraints is common
practice.

The application of position constraints is described in Sec. 10.2. For application of distance constraints
GROMOS uses the SHAKE-method95 and its derivatives (viz. SETTLE96, M-SHAKE97, and LINCS98,
and FLEXSHAKE99), which will be described in Sec. 10.3. The application of bond-length constraints to
a solute molecule is described in Sec. 10.4, and the use of constraints in rigid solvent molecules is discussed
in Sec. 10.5. Dihedral-angle constraints are described in Sec. 10.6, and overall translational and rotational
constraints in Sec. 10.7.

10.2. Position Constraints

In certain cases, it may be advantageous to prevent certain atoms from moving completely. GROMOS al-
lows the user to apply position constraints to selected atoms. The selection of the atoms which are to be kept
fixed at given reference positions during a simulation or energy minimization is done as for harmonic posi-
tion restraining (Sec. 9.2), except that the switch NTPOR = 3. Solvent atom positions cannot be kept fixed.

Atoms can be kept at their initial positions ri = r0i by setting their velocities vi and forces f i equal to zero
before every MD or EM integration (time) step. When applying constraints using the SHAKE method, see
Sec. 10.3.1, the atomic position of an atom i involved in a constraint is changed with m−1

i as weight factor.
If such an atom is selected for position fixing, its mass is increased such that the atom position is effectively
not changed when applying SHAKE. If two atoms i and j are involved in a distance (bond-length) constraint
r ij = d0ij to be imposed by SHAKE (NTC > 1) and they are both selected as atoms to be kept fixed, the

constraint d0ij will be skipped when the constraint list is handled by SHAKE.

If one or more atoms of the molecular system are kept fixed, removal of centre of mass motion is disabled
(even though NSCM > 0).

Fixing of atom positions should not be used in a free energy perturbation calculation.

When calculating a temperature, the total kinetic energy of the degrees of freedom for which the tem-
perature is to be determined, is divided by the number of these degrees of freedom multiplied by 1

2kB(kB
= Boltzmann’s constant). When N (pr) atoms are kept fixed, the system contains 3N (pr) less degrees of
freedom. If atoms are kept fixed, the choice of temperature bath coupling is restricted: i) solute internal/ro-
tational degrees of freedom should be coupled to the same bath as solute translational degrees of freedom,
ii) if the whole molecule is positionally constrained, temperature coupling makes no sense.

10.3. Constraints using the SHAKE method and its derivatives

10.3.1. Constraints using the SHAKE method. The SHAKE method95 can be used to impose
distance constraints onto the molecular system. Bond-length and bond-angle constraints can be put in the
form of distance constraints between atoms k1 and k2,

σk(r
N) ≡ r2k1k2

− (d0k1k2
)
2
= 0 k = 1, 2, ..., N (c) (10.3)

2-96

where k≡(k1,k2), the constraint distance is given by d0k1k2
and the actual distance between atoms k1 and

k2 by rk1k2 . The equations of motion Eqs. 2.8, 2.9, 2.10 and 2.12 (Newtonian equations of motion) or
2.13 (Langevin equations of motion) have to be integrated while satisfying conditions Eq. 10.3. This can
be accomplished by applying Lagrange’s method of undetermined multipliers. A zero term, expression
Eq. 10.3, is added to the potential energy function V (r) in Eq. 2.10, which then yields the equations of
motion (Newton)

mi
d2ri(t)

dt2
= − ∂

∂ri

V(r) +

N(c)∑

k=1

lk(t)σk(r)

 . (10.4)

The time-dependent multipliers lk(t) are to be determined such that the conditions Eq. 10.3 are satisfied.
The first term on the right hand side of Eq. 10.4 represents the unconstrained force fuci (t) derived from the
interaction function, and the second term represents the yet unknown constraint force

f
(c)
i (t) = −

N(c)∑

k=1

lk(t)
∂σk(r(t))

∂ri(t)
(10.5)

which compensates the components of fuci (t) that act along the directions of the constraints.

In the leap-frog MD or SD algorithm, which is used in GROMOS, solving for lk(t) is done as follows.
The leap-frog equation (see Sec. 12.1) for the atomic positions with the unconstrained forces gives the
unconstrained positions at time t +∆t,

ruci (t+∆t) = ri(t) + vi(t−∆t/2)∆t+m−1
i fuci (t)(∆t)2 (10.6)

Since the constrained positions at t +∆t,

ri(t+∆t) = ruci (t+∆t) +m−1
i f (c)i(t)(∆t)

2 (10.7)

must satisfy the constraint equation Eq. 10.3, we find
([

ruck1
(t+∆t) +m−1

k1
f
(c)
k1

(t)(∆t)2 − ruck2
(t+∆t)−m−1

k2
f
(c)
k2

(t)(∆t)2
])2

−(d0k1k2
)
2
= 0. with k = 1, 2, ..., N (c) (10.8)

Substituting

f
(c)
i (t) = −2

N(c)∑

k=1

lk(t)(δik1 − δik2
)rk1k2(t) (10.9)

into Eq. 10.8 we find
[
ruck1k2

(t+∆t)− 2lk(t)(m
−1
k1

+m−1
k2

)rk1k2(t)(∆t)
2
]2 − (d0k1k2

)
2
= 0

k = 1, 2, ..., N (c)
(10.10)

which is a set of N (c) quadratic equations from which the N (c) multipliers lk(t) are to be solved and used
to obtain the constrained positions r (t +∆t) through Eqs. 10.7 and 10.9. In the SHAKE method, the
equations Eq. 10.10 are linearized by neglecting the terms quadratic in lk(t), which yields

lk(t) =
(d0k1k2

)
2 − (ruck1k2

(t+∆t))2

−4(∆t)2(m−1
k1

+m−1
k2

)(rk1k2(t) · ruck1k2
(t+∆t))

(10.11)

Since the atoms may be involved in more than one constraint, the set of equations Eq. 10.10 is solved
iteratively, where the corrections to the unconstrained positions are given by

∆ruck1
(t+∆t) = −2(∆t)2m−1

k1
lk(t)rk1k2(t)

= m−1
k1
gk(t)rk1k2(t) (10.12)

and

∆ruck2
(t+∆t) = +2(∆t)2m−1

k2
lk(t)rk1k2(t)

= −m−1
k2
gk(t)rk1k2(t) (10.13)

2-97

This implies that corrections due to the distance constraint d0k1k2
to the positions of atoms k1 and k2 are

applied in the direction of the vector rk1k2 , and are in opposite direction, weighted by the inverse mass of
atoms k1 and k2. This is illustrated in Fig. 10.1. The iterations over all N (c) constraints in SHAKE are
terminated,

1. if all N (c) distance constraints are satisfied within a given relative tolerance tol (TOL), or
2. if an excessive (1000) number of iterations is required, or
3. if the positional shift in the unconstrained step, ruck1 - rk1 or ruck2

- rk2 is so big that no corrections

(Eq. 10.12, Eq. 10.13) along rk1k2 can be found that will produce a distance d0k1k2
between the

corrected positions of atoms k1 and k2 , see Fig. 10.2.

The application of the procedure SHAKE will be denoted by

SHAKE (r(t); ruc(t+∆t); r(t +∆t)). (10.14)

This means that the positions ruc(t+∆t) that result from the non-constrained time step, will be reset to give
the constrained positions r(t + ∆t). The direction of the correction vectors is determined by the reference
positions r(t), that is, for each individual distance constraint involving atom k1 and k2 , the correction vector
is parallel to the vector rk1k2(t) of the reference configuration.

dk1k2

rk1
rk2

r
uc
k1

dk1k2

r
uc
k2

∆r
uc
k1

=
gk

mk1

rk1k2

∆r
uc
k2

=
−gk

mk2

rk1k2

unconstrained step

Figure 10.1. Positional corrections ∆ruc induced by SHAKE.

rk1
rk2

r
uc
k1

r
uc
k2

dk1k2

∆r
uc
k1k2

along rk1k2

distance > dk1k2

unconstrained step

Figure 10.2. Situation in which SHAKE fails due to a too large unconstrained step.

When using SHAKE in combination with the GROMOS force field the geometric tolerance (TOL) should
be chosen such that the noise in the simulation due to SHAKE is much smaller than that due to other sources,
such as the application of a nonbonded interaction cutoff radius, etc. When applying energy minimization

2-98

(EM), we choose TOL = 10−3, whereas in MD a value of at least TOL = 10−4 is used, based on the
observation that MD is more sensitive to the accumulation of errors when moving through configuration
space.

10.3.2. Constraints using the SETTLE method. The time derivatives of Eq. 10.3 give constraints
on the velocities,

rij · vij = 0 (10.15)

This suggests that the component of the relative velocity along the bond should be zero. This constraint
can be applied to both the position constraint, similar to the SHAKE method, and the velocity constraint,
similar to the RATTLE method.

In the SETTLE method, the determination of ri(t0 + δt) is through the use of quasi-Euler angles thus the
explicit calculation of constraint forces is avoided.

Taking a rigid water molecule as an example, a triangle ABC is defined with the oxygen and the two
hydrogen atoms corresponding to A, B, and C respectively. ∆A0B0C0, ∆A1B1C1, and ∆A3B3C3 are the
triangles at time t0, t0 + δt in the absence of constraints, and t0 + δt with constraints. Ideally, triangles
∆A0B0C0 and ∆A3B3C3 should overlap each other after proper rotation (about the y′ axis by ψ (−π/2 ≤
ψ ≤ π/2, about the x′ axis by φ (−π < φ ≤ π) and about the z′ axis by θ (−π < φ ≤ π)), assuming zero
centre of mass motion.

By introducing an orthogonal coordinate system x′y′z′ which the origin coincides with the center of mass
d0 and the x′y′ plane is parallel to the plane of ∆A0B0C0, the angles ψ, φ are determined uniquely from
∆A1B1C1. The angle θ can then be calculated analytically by using the condition that constraint forces
directed along the bond at time t0 are of equal magnitudes and opposite orientations.

In the case of velocity constraints, the solution of the constrained velocity is

vi(t0 + δt) = vuc
i (t0 + δt) + δv0

i (t0 + δt) (10.16)

where vuc
i (t0 + δt) is the velocity after an unconstraint step (δt) and δvi(t0 + δt) is the correction velocity

necessary to satisfy the constraints,

δvi(t0 + δt) = 1/2 · δt/mi ·
∑

gij(t0 + δt)

= 1/2 · δt/mi ·
∑

lij(t0 + δt)rij(t0 + δt). (10.17)

where the Lagrangian multipliers, lij(t0), (lij = lji) are chosen so that the constraint Eq. 10.3 are satisfied
at time t0 + δt.

A physical picture of this is that constraint forces [f (c)ij(t0)] of equal magnitudes and opposite orientations
are applied to the atoms i and j and are directed along the bond vectors [rij(t0)] at time t0. In the
conventional method a set of quadratic equations for lij is obtained by substitution of Eq. 10.16 and Eq. 10.17
into Eq. 10.15. The solution to the quadratic equations is given by first solving them in their linear form
and subsequently iterating them until all the constraints are fulfilled to within an acceptable tolerance. The
linear equations can be solved by either matrix inversion or by the SHAKE method.

The constrained velocities at time t0 + δt of the three vertices are:

vA(t0 + δt) = vuc
A (t0 + δt) + δt/2ma · (τAB(t0 + δt)

−τCA(t0 + δt)) (10.18)

where τAB and τCA are the Lagrangian multipliers.

According to the constraint in Eq. 10.15,

rAB · vAB = rAB · (vB − vA) = 0 (10.19)

the rearrangement of Eq. 10.19 gives

δt(ma +mb)τAB + δt ·maτBC · cosB+ δt ·mbτCA · cosA

= 2mambêAB · vuc
AB

(10.20)

where cosA and cosB are cosines of the apex angles of A and B, and eAB is the unit vector of rAB .

2-99

Similarly,

δt(mb +mc)τBC + δt ·mbτCAcosC+ δt ·mcτABcosB

= 2mbmceBC · vuc
BC

(10.21)

δt(mc +ma)τCA + δt ·mcτABcosA+ δt ·maτBCcosC

= 2mcmaeCA · vuc
CA

(10.22)

These equations are simultaneous linear equations with respect to the variables τAB, τBC , τCA, and they
can be solved by use of Cramer’s rule. The τAB , τBC , τCA can then be used to calculate the constrained
velocities.

10.3.3. Constraints using the LINCS method. The LINear Constraint Solver (LINCS) method
was developed for the treatment of bond constraints by means of two steps of projections:

1. project the new bonds onto the old directions of the bonds;
2. correction for rotational lengthening.

The equation of motion with constraints Eq. 10.4 can be rewritten as:

-m
d2r

dt2
+BT l+ fuc = 0 (10.23)

where B is a K × 3N matrix containing the directions of the constraints, and defined by

Bki =
∂σk
∂ri

(10.24)

Since

d2σk
dt2

= B
d2r

dt2
+
dB

dt

dr

dt
= 0 (10.25)

The equation of motion Eq. 10.23 can be rewritten as

d2r

dt2
= (I - TB)m−1fuc- T

dB

dt

dr

dt
(10.26)

where T = m−1BT (Bm−1BT)−1 is a 3N ×K matrix that transforms motions in Cartesian coordinates,
without changing the equations of motion of the unconstrained coordinates. I - TB is a projection matrix
that sets the constrained coordinates to zero, Bm−1fuc is a K vector of second derivatives of the bond
lengths in the direction of the bonds. The last term represents centripetal forces caused by rotating bonds.

In a leap-frog algorithm, the constrained positions at time step n+1 (in other words, at time (n+1)∆t),

rn+1 = (I−TnBn)(rn +∆tvn− 1
2
+∆t2m−1fucn) +Tnd

0

= (I−TnBn)r
uc
n+1 +Tnd

0

= rucn+1 −m−1Bn(Bnm
−1BT

n)
−1(B · rucn+1 − d0) (10.27)

The matrix (Bn m−1 BT
n) has diagonal elements of 1/mk1 + 1/mk2 , and non-zero off-diagonal elements

of cosφ/mc when two bonds are connected by the atom with the mass of mc and a bond angle of φ. Its
inversion can be transformed to the following form:

(Bnm
−1BT

n)
−1 = SS−1(Bnm

−1BT
n)

−1S−1S

= S(I−An)
−1S (10.28)

where S is a K ×K matrix,

S = Diag(

√
1

m11

+
1

m12

, . . . ,

√
1

mk1

+
1

mk2

) (10.29)

2-100

Since An is symmetric and sparse and has zeros on the diagonal, the inversion of the matrix (I - An) can
be solved efficiently through an expansion,

(I−An)
−1 = I+An +A2

n +A3
n + . . . (10.30)

10.3.4. Constraints using the M-SHAKE method. In the SHAKE procedure, two approximations
are made to solve a system of N (c) quadratic equations for the Lagrange multipliers:

1. the system of equations is linearized by neglecting any term quadratic in the multipliers,
2. the multipliers are determined independently in sequence by omitting the coupling between distance

constraints involving a common atom.

As a consequence of these approximations, the procedure must be performed iteratively until satisfaction
of all constraints within a specified tolerance. Note, however, that the second approximation can easily be
removed by a M-SHAKE procedure (Matrix-inversion SHAKE). In this procedure, the linearized system of
coupled equations is solved exactly through the inversion of an N (c) ×N (c) matrix.

According to Eq. 10.10, a set of N (c) quadratic equations is obtained and to be solved for the Lagrange
multipliers lk(t)

{ruck1k2
(t+∆t)− 2(∆t)2

N(c)∑
k′=1

lk′(t)rk′
1k

′
2
(t)

×[m−1
k1

(δk1,k′
1
− δk1,k′

2
) +m−1

k2
(δk2,k′

2
− δk2,k′

1
)]}2

−(d0k1k2
)
2
= 0 k = 1, 2, ..., N (c)

(10.31)

After linearization, Eq. 10.31 is rewritten in the matrix form

Al = c (10.32)

where l is an N (c)-dimensional vector containing the Lagrange multipliers, and the elements of the vector c
are given by:

ck =
[ruck1k2

(t+∆t)]2 − (d0k1k2
)
2

4(∆t)2
(10.33)

and the elements of the matrix A

Akk′ = [m−1
k1

(δk1,k′
1
− δk1,k′

2
) +m−1

k2
(δk2,k′

2
− δk2,k′

1
)]

×rk′
1k

′
2
(t)ruck1k2

(t+∆t).

(10.34)

It is easily seen that the diagonal elements Akk characterize the force directly due to constraint k, whereas
the off-diagonal elements Akk′ (k′ 6= k) account for the effect along a constraint k of the forces due to a
constraint k′. These off-diagonal elements are neglected in SHAKE.

In M-SHAKE, Eq. 10.32 is solved directly by matrix inversion with the following methods:

1. Explicit (hard-coded) calculation of A−1. This was only done for water (N (c) = 3), because the
expressions quickly become very complex for larger matrices.

2. Use of Cramer’s rule. In this method, each component of the vector l is calculated as lk = |Ak|/|Aj |,
where Ak is the determinant obtained by replacing the kth column of A by the vector c. Here again,
the expressions quickly become untractable for larger matrices and the method was only tested for
water.

3. Use of the LU -factorization method. In this method, a square, non-singular matrix A is factorized
into a lower triangular matrix L and an upper triangular matrix U, such that LU = A. The
computational cost of the factorization scales as N (c)3, whereas the inversion of the triangular
matrices only scales as N (c)2.

4. Use of the LDLt-factorization method. In this case, the matrix A is approximated by a symmetric
matrix A’ with identical diagonal elements, but in which any occurrence of ruck1k2

(t + ∆t) in the

off-diagonal elements is replaced by rk1k2(t). The symmetric matrix A’ is then factorized as LDLt

= A, where D is a diagonal matrix, L a lower triangular matrix, and the t superscript denotes the

2-101

transpose. This factorization method also scales as N (c)3, but is about twice less expensive in terms
of floating-point operations compared to LU -factorization.

10.3.5. Constraints using the FLEXSHAKE method. In the FLEXSHAKE method, the ideal
constrained bond lengths for every constraint are recalculated at each time step, and the total energy Uuc

and a hypothetic harmonic bond-stretching energy U c =
∑N(c)

k=1 U
c
k is minimized with respect to the bond or

constraint lengths d0k at each time step99.

The Hamiltonian for a flexible constrained system is:

d

dt
qq = m−1pp (10.35)

d

dt
qq = −∇qqU c(qq)−∇qq

N(c)∑

k=1

lk(t)σ
′
k(qq, t) (10.36)

σ′
k(qq, t) = |rk|2 − (d0k)

2
(t), k = 1, 2, · · · , N (c) (10.37)

The constrained forces are given by

f
(c)
i (t) = −∇qq

N(c)∑

k=1

lk(t)σ
′
k(qq, t)

= −2

N(c)∑

k=1

lk[rk(t)(δik1 − δik2)− d0k(t+∆t)∇qqi
d0k(t+∆t)] (10.38)

The new constrained positions are given by

ri(t+∆t) = ruci (t+∆t)− 2(∆t)2

mi

N(c)∑

k=1

lk[(δik1 − δik2)rk(t)

−d0k(t+∆t)∇qq
i
d0k(t+∆t)]. (10.39)

Inserting Eq. 10.39 into Eq. 10.37 and neglecting the second order terms of lk gives the Lagrange multipliers
lk

lk(t) =
d0k(t+∆t)2 − (ruck (t+∆t))2

−4(∆t)2 · ruck (t+∆t)
(10.40)

· 1

(m−1
k1

+m−1
k2

)rk(t)− d0k(t+∆t)[m−1
k1

∇qqk1
d0k(t+∆t)−m−1

k2
∇qqk2

d0k(t+∆t)]

The N (c) equations can be solved iteratively using the SHAKE method, and the lk can be then used to
calculate the new positions and constrained forces.

10.3.6. Constrained positions. When a given molecular configuration r0 does not satisfy a set of
constraints, SHAKE or its derived methods can be used to obtain a constrained configuration r, viz. that
satisfies the constraints. This is done by using r0 as reference positions when using, e.g. SHAKE, with ruc

= r0 as initial configuration:

SHAKE(r0; ruc; r) (10.41)

10.3.7. Constrained velocities. Since the unconstrained forces fuc in Eq. 10.4 will generally contain
components along the constraint directions, this will also be true for the velocities obtained from the leap-frog
equation.

vi(t+∆t/2) = vi(t−∆t/2) +m−1
i fuci (t)∆t, (10.42)

When applying constraints these components have to be removed, that is, the velocities must be shaken. In
the leap-frog algorithm the constrained velocities are simply determined by inverting the leap-frog equation
for the positions

ri(t+∆t) = ri(t) + vi(t+∆t/2)∆t (10.43)

2-102

and using constrained positions at times t and t+∆t,

vi(t+∆t/2) = [ri(t+∆t)− ri(t)]/∆t (10.44)

If unconstrained positions r(t) and velocities v(t) are given at the same time t, the positions are made to
satisfy the constraints by applying SHAKE as specified in Sec. 10.3.1. Using the constrained positions r(t)
the velocities are constrained in three steps:

1. Compute

ruci (t+∆t) = ri(t) + vi(t+
∆t

2
)∆t (10.45)

2. Perform

SHAKE(r(t); ruc(t+∆t); r(t +∆t)) (10.46)

3. Obtain the shaken or constrained velocities from

vi(t+
∆t

2
) = [ri(t+∆t)− ri(t)]/∆t (10.47)

10.3.8. Constrained forces. From Eq. 10.7 it is clear that the constraint forces f
(c)
i (t) can be derived

by saving the unconstrained configuration ruc(t) before application of SHAKE and using

f
(c)
i (t) = [ri(t+∆t)− ruci (t+∆t)]mi/(∆t)

2 (10.48)

We note that the constrained forces, that is, the forces that contain no components along the constraints,

are given by fuci +f
(c)
i , since the procedure SHAKE yields a f

(c)
i which compensates the components of fuci

along the directions of the constraints.

10.4. Bond-length constraints in the solute

The ”solute” part of a molecular topology contains two lists of covalent bonds, one of bonds involving
hydrogen atoms, and one involving the other bonds. The two lists of covalent bonds can be used to specify
the constraints that are imposed on the molecular system by SHAKE or its derived methods. In addition
MD++ allows the user to specify a third list in the topology with selected bonds to be considered. The
switch NTC in MD++ controls which lists of atom pairs are to be used for constraining. The switches
NTF[1] and NTF[2] in the input block FORCE are used to skip the bond interaction terms in the interaction
function Eq. 3.6 when the bond lengths are constrained. A sensible choice of the longest time step is:

1. 0.0005 ps when no constraints are used;
2. 0.001 ps when only bonds with hydrogen atoms are constrained;
3. 0.002 ps when all bonds are constrained.

The usage of the switches that control the constraint lists and methods are shown below:
MD++: blockname CONSTRAINT

- NTC: controls application of constraints to bonds
– 0: no constraints are applied
– 1: constraints are applied to solvent only
– 2: constraints are applied to solvent and solute bonds involving hydrogen atoms
– 3: constraints are applied to solvent and solute bonds
– 4: constraints are applied to bonds specified in the CONSTRAINT block in topology only

- NTCP: controls the algorithms to apply solute constraints
– shake(1): apply SHAKE for solute
– lincs(2): apply LINCS for solute
– flexshake(3): apply flexible SHAKE for solute

- NTCS: controls the algorithm to apply solvent constraints
– shake(1): apply SHAKE for solvent
– lincs(2): apply LINCS for solvent
– flexshake(3): apply flexible SHAKE for solvent
– settle(4): apply SETTLE for solvent
– m shake(5): apply M SHAKE for solvent
– gpu shake(6): apply M SHAKE for solvent using GPU

2-103

In an MD simulation the solute temperature T is determined by the total kinetic energy of the solute
molecules, K (solutes), and the number of degrees of freedom of the solutes,

K(solutes) =

Na∑

i=1
solutes

1
2miv

2
i = 1

2Nd(solutes)kBT (10.49)

where kB is Boltzmann’s constant (kB = 8.31441 10−3 kJ mol−1K−1) and the number of degrees of freedom
of the solutes is denoted by

Nd(solutes) = 3Na(solutes)−N (c)(solutes) (10.50)

Here the number of solute atoms is Na(solutes) and the number of solute constraints is N (c) (solutes). The
latter is dependent on the value of switch NTC. In an MD simulation, the size of the solute kinetic energy
K (solute) and the size and direction of the atomic velocities vi will depend on the value of NTC, that is,
whether solute constraints are applied or not. This means that if the value of NTC is changed in the course
of a MD simulation the velocities have to be rescaled in order to let them correspond to the unchanged
temperature T .

For example, an MD job with NTC=3 has produced a final configuration with velocities vi(NTC=3). If
one would continue the simulation with NTC=1 so, if one would assume vi(NTC=1) = vi(NTC=3), the
temperature T (NTC=1) would become approximately 2/3 T (NTC=3). This can be understood by taking
Eq. 10.49 for NTC=1 and NTC=3 and using the equality of the velocities,

T (NTC = 1) =
Nd(solutes;NTC = 3)

Nd(solutes;NTC = 1)
· T (NTC = 3) (10.51)

Since in a linear molecule the number of covalent bonds is approximately equal to the number of atoms, one
has T (NTC=1) = 2/3 T (NTC=3).

In order to avoid this effect, the solute velocities should be rescaled upon changing NTC from NTC to

NTC’ by a factor Nd(solutes;NTC′)
Nd(solutes;NTC) .

If two atoms i and j are involved in a bond-length constraint rij = d0ij to be imposed by SHAKE (NTC>1)

and they are both selected as atoms to be kept at fixed positions, the constraint d0ij will be skipped when
handling the set of constraints in SHAKE.

10.5. Bond-length and bond-angle constraints in solvent

In Chap. 4-3 it is discussed that solvent molecules of which the topological properties are contained in
the “solvent” part of a molecular topology file, are subject to a number of restrictions. One of these is
that a solvent molecule is assumed to be rigid. Its internal structure is maintained by the application of
distance constraint forces between its atoms using SHAKE or its derived methods. It is called with the
constraint lengths taken from the SOLVENTCONSTRAINT block in the molecular topology. For examples,
see Chap. 3-4.

The solvent temperature is calculated from

K(solvent) =

Na∑

i=1
solvent

1
2miv

2
i = 1

2Nd(solvent)kBT (10.52)

with

Nd(solvent) = 3Na(solvent)−N (c)(solvent) = 6 (10.53)

10.6. Dihedral-angle constraints

GROMOS also allows for dihedral-angle constraints which may be used to evaluate a potential of mean
force.100 For dihedral-angle constraints, the derivation of the expressions for the constraint forces f (c) follows
the same lines as that for the distance constraints. However, due to the not very simple dependence of a
dihedral angle ϕn(r) upon the positions ri, rj , rk and rl of its four constituting atoms i, j, k and l (i.e.
i− j − k − l), the formulae become much more complicated.

Following the definition in Eq. 5.19 we have

ϕn
.
= sign(ϕn) arccos

(
rm′j · rn′k

rm′jrn′k

)
with − π < ϕn ≤ π (10.54)

2-104

where

rm′j ≡ rij × rkj , (10.55)

rn′k ≡ rkj × rkl, (10.56)

and

sign(ϕn) = sign(rij · rn′k), (10.57)

following the IUPAC-IUB convention.25

Because of the occurrence of the arccos function in the definition of the dihedral angle ϕn the constraints
are to be formulated in terms of cos(ϕn). The occurrence of the square root functions in the distances |rm′j |
and |rn′k| in the denominator of Eq. 10.54 suggests that the use of cos2(ϕn) will simplify the expressions.
Thus, we consider a set of Nc dihedral-angle constraints

σn(ϕn(r);ϕ
0
n(λ)) ≡ cos2(ϕn(r)) − cos2(ϕ0

n(λ)) = 0, n = 1, 2, .., Nc (10.58)

where the angle ϕn(r) is constrained to the λ-dependent value (see Chap. 14)

ϕ0
n(λ) = (1 − λ)ϕ0

n
A + λϕ0

n
B, (10.59)

in which ϕ0
n
A is the ϕn-value in state A and ϕ0

n
B that in state B.

Newton’s equations of motion for Na atoms become

mm
d2ri(t)

∆t2
= − ∂

∂rm

(
V(phys)(r) +

Nc∑

n=1

ln(t)σn(ϕn(r);ϕ
0
n(λ))

)
, m = 1, 2, .., N (10.60)

where the Lagrange multipliers lk(t) are to be determined such that the condition given in Eq. 10.58 is
satisfied. The second term on the right in Eq. 10.60 represents the (yet unknown) constraint forces,

f (c)m (t) = −
Nc∑

n=1

ln(t)
∂σn(ϕn(r);ϕ

0
n(λ))

∂rm

= +

Nc∑

n=1

ln(t)2cos(ϕn)sin(ϕn)
∂ϕn(r)

∂rm
. (10.61)

where ∂ϕn

∂rm
is given by101–103

∂ϕn(r)

∂rm
= δmi

|rkj |
|rm′j |2

rm′j

+δmj

[(
rij · rkj
|rkj |2

− 1

) |rkj |
|rm′j |2

rm′j +
rkl · rkj
|rkj |2

|rkj |
|rn′k|2

rn′k

]

−δmk

[(
rkl · rkj
|rkj |2

− 1

) |rkj |
|rn′k|2

rn′k +
rij · rkj
|rkj |2

|rkj |
|rm′j |2

rm′j

]

−δml
|rkj |
|rn′k|2

rn′k. (10.62)

To shorten the expressions we denote the four terms in Eq. 10.62, apart from the Kronecker delta’s, by
ai, aj , ak, and al, respectively. Then we have

f (c)m(t) =

Nc∑

k=1

lk(t)sin(2ϕn(t) [δmiai(t) + δmjaj(t) + δmkak(t) + δmlal(t)] . (10.63)

The leap-frog scheme yields the unconstrained positions rucm (tn+δt) from Eq. 10.6. The constrained positions
rm(tn+δt) are related to the constraint forces (Eq. 10.63) through Eq. 10.7 and should satisfy the constraint
Eq. 10.58,

cos2(ϕn(r(tn + δt))− cos2(ϕ0
n(λ)) = 0, k = 1, 2, .., Nc, (10.64)

or using Eq. 10.54,
[
rm′j(tn + δt) · rn′k(tn + δt)

|rm′j(tn + δt)||rn′k(tn + δt)|

]2
− cos2(ϕ0

n(λ)) = 0. (10.65)

Since rm′j(tn+δt) and rn′k(tn+δt) are each quadratic in the Lagrange multipliers lk(tn), both the numerator
and the denominator of the left term in Eq. 10.65 contain powers of up to eight of the lk(tn). Thus a set of

2-105

Nc equations consisting of terms containing up to powers of eight of the unknowns lk(tn) is to be solved. As
for the case of distance constraints this is achieved by linearizing the equations for each constraint, omitting
the coupling between the different constraints (equations), and iterating through all ncon equations until
the lk(tn) converge to a consistent value.

Using Eqs. 10.7 and 10.63 we find for the k-th constraint

rij(tn + δt) = rucij (tn + δt)

+lk(tn)sin(2ϕn(tn))(δt)
2
(
m−1

i ai(tn)−m−1
j aj(tn)

)
(10.66)

and likewise for rkj(tn + δt) and rkl(tn + δt). Building the cross products in Eqs. 10.55 and 10.56 and
linearizing the resulting expressions yields

rm′j(tn + δt) = rucij (tn + δt)× ruckj (tn + δt)

+lk(tn)sin(2ϕn(tn))(δt)
2

[
rucij (tn + δt)×

(
m−1

k ak(tn)−m−1
j aj(tn)

)
−

ruckj (tn + δt)×
(
m−1

i ai(tn)−m−1
j aj(tn)

)]
(10.67)

or using a shorter notation bijk(tn + δt) for the last factor

rm′j(tn + δt) = rucij (tn + δt)× ruckj (tn + δt)

+lk(tn)sin(2ϕn(tn))(δt)
2bijk(tn, tn + δt), (10.68)

and

rn′k(tn + δt) = ruckj (tn + δt)× ruckl (tn + δt)

+lk(tn)sin(2ϕn(tn))(δt)
2

[
ruckj (tn + δt)×

(
m−1

k ak(tn)−m−1
l al(tn)

)
−

ruckl (tn + δt)×
(
m−1

k ak(tn)−m−1
j aj(tn)

)]
(10.69)

or using the shorter notation

rn′k(tn + δt) = ruckj (tn + δt)× ruckl (tn + δt)

+lk(tn)sin(2ϕn(tn))(δt)
2bjkl(tn, tn + δt). (10.70)

The scalar product in the numerator of the first term in Eq. 10.65 becomes after linearization

rm′j(tn + δt) · rn′k(tn + δt) =(
rucij (tn + δt)× ruckj(tn + δt)

)
·
(
ruckj (tn + δt)× ruckl (tn + δt)

)

+lk(tn)sin(2ϕn(tn))(δt)
2

[(
rucij (tn + δt)× ruckj(tn + δt)

)
· bjkl(tn, tn + δt)+

(
ruckj(tn + δt)× ruckl (tn + δt)

)
· bijk(tn, tn + δt)

]
(10.71)

or in a shorter notation

rm′j(tn + δt) · rn′k(tn + δt) = cijkl(tn + δt)

+lk(tn)sin(2ϕn(tn))(δt)
2dijkl(tn, tn + δt). (10.72)

The square becomes after linearization
(
rm′j(tn + δt) · rn′k(tn + δt)

)2
= (cijkl(tn + δt))

2

+2lk(tn)sin(2ϕn(tn))(δt)
2cijkl(tn + δt)dijkl(tn, tn + δt). (10.73)

The factors in the denominator of the first term in Eq. 10.65 become

|rm′j(tn + δt)|2 =
(
rucij (tn + δt)× ruckj(tn + δt)

)2

+2lk(tn)sin(2ϕn(tn))(δt)
2

(
rucij (tn + δt)× ruckj(tn + δt)

)
· bijk(tn + δt) (10.74)

and

|rn′k(tn + δt)|2 =
(
ruckj(tn + δt)× ruckl (tn + δt)

)2

+2lk(tn)sin(2ϕn(tn))(δt)
2

(
ruckj(tn + δt)× ruckl (tn + δt)

)
· bjkl(tn + δt). (10.75)

2-106

The linearized denominator of the first term in Eq. 10.65 is then

|rm′j(tn + δt)|2|rn′k(tn + δt)|2 =(
rucij (tn + δt)× ruckj(tn + δt)

)2 (
ruckj(tn + δt)× ruckl (tn + δt)

)2

+2lk(tn)sin(2ϕn(tn))(δt)
2

[
(
rucij (tn + δt)× ruckj(tn + δt)

)2

(
ruckj(tn + δt)× ruckl (tn + δt)

)
· bjkl(tn, tn + δt)

+
(
ruckj(tn + δt)× ruckl (tn + δt)

)2

(
rucij (tn + δt)× ruckj(tn + δt)

)
· bijk(tn, tn + δt)

]
(10.76)

Finally, the equation for the Lagrange multiplier of the k-th constraint becomes

lk(tn) =

[
cos2(ϕ0

n(λ))
(
rucij (tn + δt)× ruckj(tn + δt)

)2

(
ruckj (tn + δt)× ruckl (tn + δt)

)2 − (cijkl(tn + δt))
2

]

[
2sin(2ϕn(tn))(δt)

2
[
cijkl(tn + δt)dijkl(tn + δt)

−cos2(ϕ0
n(λ))

(
(rucij (tn + δt)× ruckj (tn + δt))2

(ruckj (tn + δt)× ruckl (tn + δt)) · bjkl(tn, tn + δt)

+(ruckj(tn + δt)× ruckl (tn + δt))2

(rucij (tn + δt)× ruckj(tn + δt)) · bijk(tn, tn + δt)
)]]−1

(10.77)

The derivative of the contribution of the constraint forces to the free energy for the k-th constraint becomes

df
(c)
k (λ)

dλ
= < lk >λ sin(2ϕ

0
n(λ))

(
ϕ0
n
B − ϕ0

n
A
)
. (10.78)

We note that the expressions given here for the application of dihedral-angle constraints are different from
the formalism presented in Ref.104, which is based on matrix inversion.

10.7. Translational and rotational constraints

In MD++ it is possible to apply rotational and translational constraints. These constraints, if jointly
applied, are called roto-translational constraints. It may be advantageous to perform simulations with
translational and/or rotational constraints, because: (i) the simulation of non-spherical solutes can be done in
computational boxes whose shape is optimally adjusted to the shape of the solute, thus reducing the required
amount of solvent molecules; (ii) it is possible to prevent the coupling of internal degrees of freedom with
the roto-translational ones, which may speed up equilibration of a system; (iii) many interesting simulations
can be performed, such as e.g. the modelling of solvent molecules as Langevin dipoles at fixed grid points, or
ligand-binding studies involving ligands exempt of rotational degrees of freedom; (iv) simulations in vacuo
may benefit from the application of statistically-mechanically rigorous roto-translational constraints rather
than merely setting the angular momentum to zero.

A translational constraint Ct on a set of atoms GT j consisting of atoms i = 1, ..., NGT j is defined as

Ct(GT j) :

NGT j∑

i=1

miri(t) = const , (10.79)

where mi denotes the atomic masses and ri(t) the atomic Cartesian coordinates at time t in the fixed
orthonormal laboratory frame. From Eq. 10.79 it is obvious that Ct(GT j) fixes the position (Cartesian

2-107

coordinates in the fixed orthonormal laboratory frame) of the centre-of-mass (COM) of GT j ,

rCOM (t;GT j) =
1

∑NGT j

i=1 mi

NGT j∑

i=1

miri(t) , (10.80)

during the simulation. In a simulation involving constant pressure (i.e., involving a variation of the volume
of the computational box), it is the oblique Cartesian coordinates of the COM, r̃COM (t;GT j) which are fixed,
i.e.

Ct(GT j) :

NGT j∑

i=1

miL
−1(t)ri(t) = const , (10.81)

where L(t) is the box matrix at time t, and

r̃COM (t;GT j) =
1

∑NGT j

i=1 mi

NGT j∑

i=1

miL
−1(t)ri(t) . (10.82)

Due to its more general nature, Eq. 10.81, rather than Eq. 10.79 is used in the following to describe trans-
lational constraints.
A rotational constraint Cr on a set of atoms GT j consisting of atoms i = 1, ..., NGT j is defined as

Cr(GT j) :

NGT j∑

i=1

mi[q
o
i × qi(t)] = 0 , (10.83)

where qo
i and qi(t) are reference and instantaneous atomic Cartesian coordinates, respectively, in a a local

orthonormal frame whose origin lies at the COM of GT j . From Eq. 10.83 it is obvious that Cr(GT j) fixes
the rotational orientation of GT j with respect to the reference orientation given by the set of qo

i during the
simulation.

The implementation of Eq. 10.81 and Eq. 10.83 is done in a Lagrange-multiplier formalism relying on six
linear holonomic constraints captured by the corresponding Ct(GT j) and Cr(GT j), as described in Ref.105.

The gradients of these constraint equations,
∂Ct

(k)(GT j)

∂qi,α
(t) and

∂Cr
(k)(GT j)

∂qi,α
(t), where k = 1, 2, 3, i denotes an

atom of GT j and α denotes a Cartesian vector component (x, y or z), give the constraint forces as linear
combinations thereof (in conjunction with the corresponding Lagrange multipliers as the coefficients of the
gradients in this linear combination).
More precisely,

Ct(1)(t;GT j)
.
=

NGT j∑

i=1

miqi,x(t) = 0 , (10.84)

Ct(2)(t;GT j)
.
=

NGT j∑

i=1

miqi,y(t) = 0 , (10.85)

Ct(3)(t;GT j)
.
=

NGT j∑

i=1

miqi,z(t) = 0 , (10.86)

Cr(1)(t;GT j)
.
=

NGT j∑

i=1

mi[q
o
i,yqi,z(t)− qoi,zqi,y(t)] = 0 , (10.87)

Cr(2)(t;GT j)
.
=

NGT j∑

i=1

mi[q
o
i,zqi,x(t)− qoi,xqi,z(t)] = 0 , (10.88)

Cr(3)(t;GT j)
.
=

NGT j∑

i=1

mi[q
o
i,xqi,y(t)− qoi,yqi,x(t)] = 0 , (10.89)

2-108

and the resulting constraint forces acting on atom i are F(Ct)
i[t; Ct(GT j)] and F(Cr)

i[t; Cr(GT j)], with com-

ponents f
(Ct)
i,α [t; Ct(GT j)], f

(Cr)
i,α [t; Cr(GT j)] given by

f
(Ct)
i,α [t; Ct(GT j)] =

3∑

k=1

λt,k(t)
∂Ct(k)(t;GT j)

∂qi,α
(t) (10.90)

and

f
(Cr)
i,α [t; Cr(GT j)] =

3∑

k=1

λr,k(t)
∂Cr(k)(t;GT j)

∂qi,α
(t) , (10.91)

where the Lagrange multipliers λt = (λt,1 λt,2 λt,3)
T and λr = (λr,1 λr,2 λr,3)

T (with T denoting the
transpose) are given as

λt = −Θ−1
t ct (10.92)

and

λr = −Θ−1
r cr , (10.93)

with

Θt =

θt,11 0 0

0 θt,22 0

0 0 θt,33

 (10.94)

and

Θr =

θr,11 θr,12 θr,13

θr,21 θr,22 θr,23

θr,31 θr,32 θr,33

 . (10.95)

The matrix elements θt,ii and θr,ij can be shown to be

θt,11 = θt,22 = θt,33 = (∆t)2
NGT j∑

i=1

mi , (10.96)

θr,11 = (∆t)2
NGT j∑

i=1

mi(q
o
i,y

2 + qoi,z
2) , (10.97)

θr,12 = θr,21 = −(∆t)2
NGT j∑

i=1

miq
o
i,xq

o
i,y , (10.98)

θr,13 = θr,31 = −(∆t)2
NGT j∑

i=1

miq
o
i,xq

o
i,z , (10.99)

θr,22 = (∆t)2
NGT j∑

i=1

mi(q
o
i,x

2 + qoi,z
2) , (10.100)

θr,23 = θr,32 = −(∆t)2
NGT j∑

i=1

miq
o
i,yq

o
i,z , (10.101)

θr,33 = (∆t)2
NGT j∑

i=1

mi(q
o
i,x

2 + qoi,y
2) , (10.102)

where ∆t is the integration time step. Note that θr,ij is dependent on the set of reference coordinates qo
i.

If simulations are performed at constant pressure, these reference coordinates are scaled along with all other
box-dependent quantities (box matrix, atomic Cartesian coordinates) by the appropriate scaling factors.

2-109

That is, Θr = Θr(t), i.e. will change during the simulation.
The vectors ct = (ct,1 ct,2 ct,3)

T and cr = (cr,1 cr,2 cr,3)
T can be shown to be

ct,k =

NGT j∑

i=1

∑

α=x,y,z

∂Ct(k)(t;GT j)

∂qi,α
∆ri,α (10.103)

and

cr,k =

NGT j∑

i=1

∑

α=x,y,z

∂Cr(k)(t;GT j)

∂qi,α
∆ri,α , (10.104)

where k = 1, 2, 3 and ∆ri,α is the α-component of the displacement vector ∆ri of atom i, with the dis-
placement being that coordinate change since the last time step which the corresponding constraint force
is correcting for, e.g.: (i) the displacement due to the conservative force in the current time step, if no
other constraint forces are applied; (ii) the displacement due to the conservative force and a subsequent
SHAKE force in the current time step, if bond constraints are enforced with the SHAKE algorithm; (iii) the
displacement due to the conservative force and any sum of subsequently, iteratively-applied other constraint
forces in the current time step.

Any input settings concerning roto-translational constraints are specified in the ROTTRANS and INI-
TIALISE blocks of the MD++ imd file.
Roto-translational constraints are always applied on the first specified number of atoms. It is not possible
to separately apply a translational or rotational constraint only. Thus, for instance, one can apply a roto-
translational constraint to a solvated biomolecule (one solute molecule).
Note that, upon starting a new MD simulation, a rotational constraint on a certain temperature group can
be initialised in either of two ways: The reference coordinates qo

i may be read from the ROTOTRANSREF-
POS block in the configuration file, or may be computed from scratch based on the set of initial coordinates
given in the configuration file (POSITION block). This decision is specified in the INITIALISE block of the
MD++ input file.

2-110

CHAPTER 11

Energy Minimization

11.1. Introduction

Energy minimization (EM) with an empirical energy function such as Eq. 3.4 is a widely used tool for
obtaining low-energy configurations of a molecular system. Various function minimization methods can be
used, which can be classified as follows:

1. Direct search methods, requiring only function values. They converge slowly and are therefore not
considered here.

2. Gradient methods, requiring function and derivative values. These methods fall into three subclasses:
a. The steepest descent method (SDEM) performs well far from a minimum, but converges slowly

near a minimum, or when searching in a long, thin, curving valley. It is a robust method, which
is easy to implement.

b. The conjugate gradient method106 (CGEM) which searches along directions corresponding to the
local quadratic approximation to the function, usually converges superlinearly. Because it is the
most rapidly converging minimizer that does not require manipulation and storage of matrices
of dimension equal to the number of degrees of freedom, it appears to be most appropriate for
very large systems, like macromolecules.

c. The variable metric or quasi-Newton methods, which use various approximations to the inverse
of the Hessian matrix (matrix of second partial derivatives), are also quadratically convergent,
but they require storage space for the inverse Hessian and time for its manipulation. Hence,
they are less suited for application to large systems.

3. Second-order methods, requiring function, derivative and Hessian matrix. These methods are not
well suited for application to large systems for the same reason as mentioned under 2c.

For references to the different methods we refer to ref.107. The method of steepest descents is discussed in
Sec. 11.2, the conjugate gradient technique in Sec. 11.3. In Sec. 11.4 and 11.5 it is described how the SHAKE
method for constraining bond lengths and/or bond angles can be incorporated in the steepest descent and
conjugate gradient energy minimization algorithm.

When applying EM algorithms one searches for a minimum energy configuration of a system by moving
(approximately) along the gradient of the potential energy through configuration space,

∆ri ∼ − ∂

∂ri
V (r1, r2, ..., rN), (11.1)

where ∆ri denotes the shift in position of atom i. Since in this way one basically moves only downhill over
the energy hypersurface, EM yields only a local minimum energy configuration, which is generally not far
from the initial one. Using formulae like Eq. 11.1 crossing of energy barriers is impossible. A more efficient
way to find low energy configurations is to apply molecular dynamics (MD). The available kinetic energy
may be used to pass over energy barriers which are not much higher than kBT (kB = Boltzmann’s constant
and T = absolute temperature). It has been shown108 that MD at elevated temperatures can be used to gen-
erate a variety of configurations. Therefore, MD searches a larger part of configuration space for an energy
minimum and generally ends up in a lower energy minimum than an ordinary energy minimizer does109.
However, the application of MD starting from a highly strained, very high potential energy configuration
is not recommended, since the immediate conversion of potential energy into kinetic energy will raise the
temperature to unacceptably high values. In that case, one should first perform a number of EM steps in
order to reduce the high potential energy of the system. When the high potential energy is due to close
non-bonded contacts or stretched bond lengths or bent bond angles in a molecular system, ten to fifty EM
steps generally suffice to reduce the potential energy to values which are normal at room temperature.

2-111

The configuration at the n-th minimization step is denoted by rr(tn) ≡ (r1(tn), r2(tn), . . . , rN (tn)), where
tn is used in analogy with MD simulation and the configuration consists of N atoms. The scalar product of
two configurations rr and rr ′ is denoted by

< rr|rr ′ > ≡
N∑

i=1

ri · r′i (11.2)

When a set of atoms is to be kept fixed, their positions ri are not changed and the forces (negative gradi-
ents) f i on them are kept equal to zero at each minimization step. Their inverse masses are set to zero in
order to immobilize these atoms when their position might be up for resetting by the procedure SHAKE in
case a fixed atom is involved in a constraint to a non-fixed atom.

11.2. Steepest-descent minimization

Energy minimization by the steepest-descent (SDEM) algorithm is simple. The computational scheme for
the (n+1)-th minimization step reads,

1. Calculate the forces ff(tn) = ff(rr(tn)) from the interaction function V (rr) (see Eq. 3.4) using expres-
sion Eq. 2.10 and the configuration rr(tn).

2. Compute the next configuration from

rr(tn+1) = rr(tn) + ∆x < ff(tn)|ff (tn) >− 1
2 ff(tn) (11.3)

where the step size is denoted by ∆x.

SDEM is selected by setting switch NTEM=1 in the input of MD++. The initial step size ∆x is to be
specified in DX0. As long as the potential energy decreases, the step size ∆x is increased by 20% per step.
If the potential energy increases, ∆x is halved. The growth of the step size can be limited by specifying a
maximum value, DXM. The energy minimization is terminated when the number of EM steps reaches the
value NSTLIM or when the potential energy change between two subsequent steps is less than the value
DELE. However, one may specify a minimum number of steps to take using parameter NMIN. The final
configuration is saved.

At every NTPR-th minimization step a number of quantities (step number (TIMESTEP), various ener-
gies (ENERGY block), etc. see Sec. 12.7) are printed. In addition, coordinate or energy trajectories may be
written (see Vol. 4).

11.3. Conjugate-gradient minimization

The conjugate gradient (CGEM) algorithm can be summarized as follows. It is started by calculating
the forces or negative gradients, ff(t0) = ff(rr(t0)), from the interaction function V (rr) (see Eq. 3.4) using
expression Eq. 2.10 and the initial configuration rr(t0), and by taking the first search directions pp(t0) ≡
(p1(t0),p2(t0), . . . ,pN (t0)) along the negative gradients, that is,

pp(t0) = ff(t0) (11.4)

The computational scheme for the (n+1)-th minimization step reads,

1. Find the minimum of the potential energy V(rr) on the line through rr(tn) in the direction pp(tn),
that is, determine smin such that

V(rr(tn) + sminpp(tn)) (11.5)

finds its minimum, or equivalently, such that

g(tn; smin) ≡< pp(tn)|ff(rr(tn) + sminpp(tn)) >= 0 (11.6)

The determination smin is done in two stages: the first establishes bounds a and b on smin′(a <
smin 6 b), and the second interpolates its value in the interval (a, b).

2-112

a. As a first guess for the bounds, take a = 0, and b = ∆x < pp(tn)|pp(tn) >− 1
2 . The step size ∆x

should be chosen such that no iterations are required when establishing the bound b. We already
know the energy V(rr(tn)+app(tn)) = V (rr(tn)) and also the forces ff(rr(tn)+app(tn)) = ff(rr(tn)),
so g(tn; a) is easily obtained. The same quantities have to be examined at b, so we compute
rr(tn) + bpp(tn) and evaluate the energy V(rr(tn) + bpp(tn)) and the forces ff(rr(tn) + bpp(tn)), and
compute g(tn; b). The value b is accepted as upper bound on smin if

g(tn; b) < 0 (11.7)

or

V(rr(tn) + bpp(tn)) ≥ V(rr(tn) + app(tn)) (11.8)

Otherwise smin lies beyond b, so b is too small and so is ∆x and the process of looking for
bounds on smin is to be repeated with doubled b.

b. Use a cubic interpolation formula in order to estimate smin in the interval (a, b),

smin = b− [W − Z − g(tn; b)][b− a]

[g(tn; a)− g(tn; b) + 2W]
(11.9)

in which

W ≡
[
Z2 − g(tn; a)g(tn; b)

]1/2
(11.10)

and

Z ≡ 3[V(rr(tn) + app(tn))− V(rr(tn) + bpp(tn))]

[b− a]

−g(tn; a)− g(tn; b). (11.11)

c. In order to improve the estimate of smin,0 and allow for tighter convergence, it is accepted only
if RMSD between the new and the previous estimate is smaller than the threshold ∆rthres, that
is if

|smin,i+1 − smin,i|
√

〈pp(tn)|pp(tn)〉
N

< ∆rthres (11.12)

where for first iteration smin,0 = a. If RMSD is higher than ∆rthres, the energy V(rr(tn) +
smin,i+1pp(tn)), forces ff(rr(tn)+smin,i+1pp(tn)) and g(tn; smin,i+1) are calculated. If g(tn; smin,i+1)
is less than 0 and the energy is lower than V(rr(tn) + app(tn)), the upper bound b is moved to
smin,i+1, that is b = smin,i+1, otherwise a = smin,i+1. Steps 1b and 1c are repeated until RMSD
is below ∆rthres or maximum number of steps imax is reached. ∆rthres and imax can be set
using parameters CGIC and CGIM, respectively. By setting imax = 1 the first estimate of smin

is always accepted. imax > 1 is useful for tight convergence. With the accepted smin the new
configuration is

rr(tn+1) = rr(tn) + sminpp(tn) (11.13)

2. Calculate the new energy V(rr(tn+1)) and the forces ff(tn+1) = ff(rr(tn+1)) from the interaction
function V(rr).

3. Determine the new search directions pp(tn+1) from

pp(tn+1) = ff(tn+1) + βnpp(tn) (11.14)

where in Fletcher-Reeves method (FRCG)106

βn =
< ff(tn+1)|ff (tn+1) >

< ff(tn)|ff (tn) >
. (11.15)

2-113

or in Polak-Ribiére method (PRCG)110

βn =
< ff(tn+1)− ff(tn)|ff(tn+1) >

< ff(tn)|ff (tn) >
. (11.16)

Each new direction of search is partly determined by previous search directions. The weight depends
on the relative size of the forces at rr(tn+1) and rr(tn). Although both CGEM algorithms perform at least
two function evaluations of V(rr) per minimization step, they are generally more efficient than the SDEM
algorithm, which performs one function evaluation per step.107 However, the latter algorithm is more robust.

CGEM energy minimization is selected by setting the switch NTEM = 2 for FRCG or NTEM = 3 for
PRCG in the input of program MD++. The CGEM step size ∆x is to be specified in DX0 and should
be carefully chosen. It should be just large enough to avoid interval doubling iterations when establishing
bounds a and b on smin (step 1a), but small enough to allow for a good estimate of smin by interpolation
(step 1b). If the estimated smin was found within first 10% of the search interval, ∆x is decreased by 10%
in the next step. If smin was found beyond the initial b, next ∆x is increased by 10%. The growth of ∆x can
be limited by specifying a maximum value, DXM. If the energy decreases slowly near a local minimum, one
may try to reach it faster by restarting the CGEM algorithm with a smaller ∆x value. It may be sometimes
useful to limit the number of CGEM steps taken with a given series of search direction vectors. This can be
achieved by setting the variable NCYC a finite (<NSTLIM) value: after every NCYC CGEM minimization
steps the algorithm will use

βn = 0 (11.17)

instead of βn given by 11.15 or 11.16, thereby discarding the contribution of previous search directions to
pp(tn+1) in Eq. 11.13.

So, for NCYC = 1 the CGEM algorithm reduces to a SDEM algorithm with cubic interpolation. With
NCYC = 0 the search direction vectors are reset only if the energy grows in the search direction, that is if

g(tn; a) < 0 (11.18)

The energy minimization is terminated when the number of EM steps reaches the value NSTLIM or when
the RMS force is less than the value DELE

fRMS(tn) =

√
〈ff(tn)|ff(tn)〉

N
< DELE (11.19)

However, one may also specify a minimum number of steps to take using parameter NMIN. The final
configuration is saved. In addition, coordinate or energy trajectories may be written (see Vol. 4).

11.4. Steepest-descent minimization with constraints (SHAKE)

The essential feature of the SHAKE method for conserving constraints is that after each minimization
step, the constraints are satisfied by adding displacement vectors to the position vectors of the atoms that
result from an unconstrained minimization step. The added displacement vectors are determined such that
the constraints are satisfied at the final positions (see Sec. 10.3).

The procedure SHAKE can be directly incorporated into the steepest-descent energy minimization algo-
rithm in the following way. The initial configuration rr(t0) must be made satisfy the constraints as discussed
in Sec. 10.3.1. Shaking of the initial configuration is selected by taking NTISHK = 1 in the input file. Then,
the computational scheme for the (n+1)-th constrained minimization step reads,

1. Calculate the unconstrained forces fuc(tn) = fuc(rr(tn)) from the interaction function V(rr) (see
Eq. 3.4), from which the terms acting only along the constrained degrees of freedom are excluded
(e.g. the bond length interactions), using Eq. 2.8 and the (shaken) configuration rr(tn).

2-114

2. Determine the unconstrained positions at step t n+1,

ruc(tn+1) = rr(tn) + ∆x < fuc(tn)|f(tn) >−1/2 fuc(tn) (11.20)

where the step size is denoted by ∆x. The positions ruc(tn+1) do not, in general, satisfy the con-
straints, as the forces normally contain components in the constrained directions.

3. The positions are made satisfy the constraints by performing

SHAKE(rr(tn); r
uc(tn+1); rr(tn+1)) (11.21)

Most of the parameters of the SDEM algorithm with SHAKE are identical to those discussed in Sec. 11.2
for the unconstrained SDEM algorithm. An additional feature is that the step size ∆x is halved when the
number of iterations in SHAKE in Eq. 11.21 exceeds 100. The constrained forces ff(tn) = fuc(tn) + f (c)(tn)
can be obtained from solving Eq. 11.20 for fuc(tn) and using rr(tn+1) instead of ruc(tn+1),

ff(tn) =
rr(tn+1)− rr(tn)

∆x < fuc(tn)|fuc(tn) >−1/2
. (11.22)

11.5. Conjugate-gradients minimization with constraints (SHAKE)

Incorporation of SHAKE into the conjugate-gradients algorithm is more complex than in the case of steep-
est descent, since there only the positions ruc(tn+1) had to be shaken. Here, the search direction, which is
composed of the force direction and previous search directions, also must be chosen such that it does not
contain components along the constraints. Hence, fuc(tn+1) and puc(tn+1) have to be shaken too.

The initial configuration rr(t0) must be made satisfy the constraints as discussed in Sec. 10.3.1. Shaking
of the initial configuration is selected by taking NTISHK = 1 in the input block INITIALIZE. The initial
unconstrained forces fuc(t0) can be shaken by the procedure, which was used to remove components along
the constraint directions from the velocities in Sec. 10.3.7,

A. Determine

ruc(t1) = r(t0) + ∆xucfuc(t0) (11.23)

where ∆xuc = ∆x 〈fuc(t0)|fuc(t0)〉−
1
2 and ∆x is the conjugate-gradients step size.

B. Perform

SHAKE(r(t0); r
uc(t1); r(t1)). (11.24)

C. Obtain the constrained or shaken forces f(t0) from

f(t0) =
r(t1)− r(t0)

∆xuc
. (11.25)

The initial search direction is taken along ff(t0), that is, p(t0) = ff(t0). Then, the computational scheme
for the (n+1)-th minimization step reads,

1. Find the minimum of the potential energy V(rr) on the line through rr(tn) in the direction p(tn),
that is, determine smin such that

V(rr(tn) + sminp(tn)) (11.26)

finds its minimum, or such that

g(tn; smin) ≡ 〈p(tn)|f(r(tn) + sminp(tn))〉 = 0 . (11.27)

When the components along the constraints have been eliminated from p(tn) and ff(rr(tn) +
sminp(tn), the conditions Eq. 11.26 and Eq. 11.27 are not equivalent and V(rr(tn)+ sminp(tn)) may
have a minimum with g(tn; smin) 6= 0.

2-115

The determination of smin is done in two stages: the first establishes bounds a and b on smin′(a <
smin 6 b), and the second interpolates its value in the interval (a, b).

a. As a first guess for the bounds, take a = 0 and b = ∆x 〈p(tn)|p(tn)〉
1
2 . We already know the

energy V(rr(tn) + ap(tn)) = V(rr(tn)) and the constrained (shaken) forces f(rr(tn) + ap(tn)) =
f(r(tn)), so g(tn; a) is easily obtained. The same quantities have to be examined at b, so we
compute

r(tn; b) ≡ r(tn) + bp(tn) (11.28)

and evaluate the energy V(rr(tn) + bp(tn)) and the forces

fuc(tn; b) ≡ fuc(r(tn) + bp(tn)) (11.29)

from the interaction function, from which the terms acting only along the constrained degrees
of freedom are excluded. The components along the directions of the constraints are removed
by the procedure Eq. 11.23-Eq. 11.25, that is, by performing

ruc(tn+1; b) ≡ r(tn; b) + ∆xucfuc(tn; b) (11.30)

where

∆xuc =
b 〈p(tn)|p(tn)〉

〈fuc(tn; b)|fuc(tn; b)〉
(11.31)

and

SHAKE(r(tn; b); r
uc(tn+1; b); r(tn+1; b)) (11.32)

and

f(tn; b) ≡ r(tn+1; b)− r(tn; b)

∆xuc
. (11.33)

With the shaken forces (Eq. 11.33) g(tn;b) can be computed. The values a and b are accepted
as bounds on smin if

g(tn; b) < 0 (11.34)

or

V(rr(tn) + bp(tn)) > V(r(tn) + ap(tn)) (11.35)

Otherwise smin lies beyond b, so b is too small (and so is ∆x) and the process of looking for
bounds on smin is to be repeated with b doubled.

a. Use the cubic interpolation formulae Eqs. 11.9-11.13 in order to find smin in the interval (a, b)
and determine the new unconstrained configuration

ruc(tn+1) = rr(tn) + sminp(tn) (11.36)

which has to be shaken,

SHAKE(rr(tn); r
uc(tn+1); rr(tn+1)) (11.37)

2. Calculate the new energy V(rr(tn+1)) and the unconstrained forces fuc(tn+1) = fuc(rr(tn+1)) from
the interaction function excluding the interaction terms that act only along the constraints. The
components of the forces along the constraints are removed as above by performing

ruc(tn+2) = r(tn+1) + ∆xucfuc(tn+1) (11.38)

2-116

where

∆xuc =
smin 〈p(tn)|p(tn)〉1/2

< fuc(tn+1)|fuc(tn+1) >1/2
(11.39)

and

SHAKE(r(tn+1); r
uc(tn+2); r(tn+2)) (11.40)

and

f(tn+1) ≡ r(tn+2)− r(tn+1)

∆xuc
. (11.41)

3. The new search direction p(tn+1) could be directly obtained from Eq. 11.13. It is a linear combination
of (n+2) shaken vectors. As the number of minimization steps n increases, the components of
p(tn+1) along the constraint directions will grow, unless the search direction is also shaken at every
minimization step. This can be achieved by solving p(tn) from Eq. 11.36 with rr(tn+1) instead of
ruc(tn+1),

p(tn) ≡ rr(tn+1)− rr(tn)

smin
. (11.42)

Then, the new search direction becomes

p(tn+1) = ff(tn+1) + βnp(tn), (11.43)

with βn given by Eq. 11.14).

Most of the parameters of the CGEM algorithm with SHAKE are identical to those discussed in Sec. 11.3
for the unconstrained CGEM algorithm. When applying constraints, conditions Eqs. 11.26 and 11.27 are
not equivalent. This implies that it may occur that

Z2 − g(tn; a)g(tn; b) < 0 (11.44)

in (Eq. 11.9), in which case the minimization is terminated.

At every NTPR-th minimization step the same quantities as described in Chapters Secs. 11.2-11.3 for
unconstrained SDEM and CGEM minimization are printed.

2-117

CHAPTER 12

Molecular Dynamics

12.1. Introduction

Molecular dynamics (MD) simulation with an empirical energy function such as Eq. 3.4 is a widely used
tool to study the equilibrium and non-equilibrium structural, dynamical and thermodynamic properties of
molecular systems. The equations of motion of classical mechanics for the atoms are integrated forward in
time. When using Cartesian coordinates, these equations are Newton’s equations of motion Eq. 2.8, with
the forces ff calculated as the negative gradient of the energy function V , Eq. 2.10.

A simple but efficient algorithm for integration of Newton’s equations of motion is the leap-frog scheme,
which is obtained as follows. A Taylor expansion of the velocity vi(tn − ∆t/2) at time point t = tn is
subtracted from a Taylor expansion of vi(tn +∆t/2) at t = tn.

Neglecting terms of third and higher order in the time step ∆t and using Eq. 2.12 we obtain

vi(tn +∆t/2) = vi(tn −∆t/2) +m−1
i f i(tn)∆t, (12.1)

the leap-frog velocity formula. Subtracting a Taylor expansion of the position ri(tn) at time point t =
tn + ∆t/2 from a Taylor expansion of ri(tn + ∆t) at t = tn + ∆t/2, neglecting terms of third and higher
order in ∆t and using Eq. 2.9 we obtain

ri(tn +∆t) = ri(tn) + vi(tn +∆t/2)∆t, (12.2)

the leap-frog position formula. Eq. 12.1 and Eq. 12.2 form the leap-frog scheme (Fig. 12.1).

time tn −∆t/2 tn tn + ∆t/2 tn + ∆t tn + 3∆t/2

stochastic Ri(tn −∆t/2; ∆t/2) Ri(tn + ∆t/2;−∆t/2) Ri(tn + ∆t/2; ∆t/2) Ri(tn + 3∆t/2;−∆t/2) Ri(tn + 3∆t/2; ∆t/2)

integrals vi(tn;−∆t/2) vi(tn; ∆t/2) vi(tn + ∆t; ∆t/2) vi(tn + 2∆t;−∆t/2)

positions ri(tn) ri(tn + ∆t)

velocities vi(tn − ∆t/2) vi(tn + ∆t/2) vi(tn + 3∆t/2)

forces fi(tn) fi(tn + ∆t/2)

Figure 12.1. The leap-frog scheme.

In a standard MD simulation, the total energy E of the molecular system is a constant of motion. Since
the number of atoms N and the volume of the computational (periodic) box V are standardly kept fixed,
such an MD simulation is called an (N, V, E) simulation. In practice one would often prefer to keep the
temperature T fixed instead of the energy, leading to an (N, V, T) simulation. In addition, one may want
to keep the pressure P fixed instead of the volume, leading to an (N, P, T) simulation. Coupling of the
molecular system to a temperature or pressure bath will imply a modification of the equations of motion
and so of the simple leap-frog MD algorithm. In Sec. 12.2 coupling to a temperature bath is described and in
Sec. 12.5 coupling to a pressure bath. The latter requires the calculation of the virial, which is discussed in
Sec. 12.4. In Sec. 12.6 the leap-frog scheme including the modifications due to temperature scaling, pressure
scaling and the presence of constraints, as it has been implemented in GROMOS, is presented. In Sec. 12.7
issues with respect to initialization, equilibration and sampling of an MD simulation are discussed.

2-119

12.2. Temperature scaling

MD simulations at constant temperature have several advantages: (i) the ensemble generated may be
closer to the ensemble generated under experimental conditions; (ii) the sampling of conformations may
be enhanced by performing simulations at high temperatures; (iii) energetic drifts caused by numerical
inaccuracies or cutoff artifacts can be ameliorated; (iv) temperature dependent properties can be studied.

Thermostatting in MD++ relies on coupling a certain set of degrees of freedom {D}i to a certain tem-
perature bath BT j({D}i) such that energy can “flow” between {D}i and BT j({D}i) and hence allow for the
instantaneous temperature T (t; {D}i) of the degrees of freedom set {D}i to be rigorously constant, or to
fluctuate about the reference temperature To[BT j({D}i)]. (This flow of energy does, of course, not change
the reference temperature To[BT j({D}i)]). The coupling is implemented by scaling the velocities of all atoms
contained in {D}i with a (time-dependent) scaling factor λ[t;BT j({D}i)].

{D}i may contain translational, internal+rotational, or both types of degrees of freedom. The calculation
of the corresponding instantaneous temperature T (t; {D}i) is explained in Sec. 12.2.1. The variables charac-
terizing BT j , as well as the precise form of coupling between BT j and {D}i are dependent on the thermostat
algorithm employed. These algorithms will be detailed in Sec. 12.2.2. The concept of temperature groups,
sets of degrees of freedom and temperature baths will be discussed in more detail in Sec. 12.2.3. The precise
calculation of the number of degrees of freedom is explained in Sec. 12.3.

12.2.1. Temperature calculation in MD++. Thermostatting involves the comparison of the in-
stantaneous temperature T (t− ∆t

2 ; {D}i) with the reference temperature To[BT j({D}i)], where

T
(
t− ∆t

2
; {D}i

)
=

2K(t− ∆t
2 ; {D}i)

Ndf({D}i)kB
, (12.3)

with K(t− ∆t
2 ; {D}i) and Ndf({D}i) being the kinetic energy and number of degrees of freedom, respectively

associated with {D}i and kB being Boltzmann’s constant. In the following, we use t− ∆t
2 = t′.

K(t′; {D}i) is computed as the sum of the kinetic energies pertaining to the individual temperature groups
GT j contained in {D}i,

K(t′; {D}i) =
∑

GT j∈{D}i

K(t′;GT j) . (12.4)

The calculation of K(t′;GT j), in turn, considers the type of degrees of freedom contributed by the different
temperature groups:
Translational velocities vtr(t

′;GT j) of a temperature group GT j are computed as

vtr(t
′;GT j) =M−1(GT j)

∑

k∈GT j

mkvk(t
′) , (12.5)

where M(GT j) =
∑

k∈GT j
mk is the total mass of the temperature group GT j and vk(t

′) and mk are the

velocities and masses of atom k (belonging temperature group GT j). The corresponding translational kinetic
energy is

Ktr(t
′;GT j) =

1

2

∑

k∈GT j

{
mkv

2
k(t

′)−mk

[
vk(t

′)− vtr(t
′;GT j)

]2}
. (12.6)

The corresponding internal+rotational kinetic energy is

Kir(t
′;GT j) =

1

2

∑

k∈GT j

mk

[
vk(t

′)− vtr(t
′;GT j)

]2
. (12.7)

Eq. 12.6 and Eq. 12.7 can be easily understood as the latter arising from atomic velocities measured with
respect to the centre of mass velocity of the temperature group the atoms belong to, whereas the former
merely constitutes the rest (difference of total kinetic energy and the internal+rotational contribution).

For the calculation of the instantaneous temperature according to Eq. 12.3, a set of degrees of freedom
involving only translational degrees of freedom will contribute translational kinetic energies only, whereas
a set of degrees of freedom involving only internal+rotational degrees of freedom will contribute inter-
nal+rotational kinetic energies only. A set of degrees of freedom involving both translational and inter-
nal+rotational degrees of freedom will contribute a sum of translational and internal+rotational kinetic

2-120

energies.
Finally, it should be emphasized that the velocities vk(t

′) used in the temperature calculation are con-
strained velocities, that is, rather than being free-flight velocities deriving from the physical force field, they
are corrected for the application of various constraints.

12.2.2. Thermostat algorithms in MD++. Algorithms that modify Newton’s equation of motion
in order to generate a constant-temperature (rather than a constant-energy) ensemble are called thermo-
stat algorithms. Several methods for performing MD at constant temperature have been proposed in the
literature.7,111 Among non-stochastic thermostatting methods, one can distinguish between temperature
constraining and temperature relaxation approaches. The latter can e.g. be implemented in a weak coupling
or an extended-system scheme.
MD++ offers a weak coupling and an extended-sytem [Nosé-Hoover (chain)] thermostat. Here, we present
the implementation of these algorithms in the context of a simple velocity-scaling scheme acting on free-flight
velocities. Denoting the unscaled free-flight velocity of atom k pertaining to the degrees of freedom set {D}i
with vun

k

(
t+ ∆t

2

)
, the velocity scaling obeys the following equations:

- in the case of only the translational degrees of freedom of atom k (belonging to temperature group
GT j) being coupled to a temperature bath BT n({D}i),

vk

(
t+

∆t

2

)
= λ[t;BT n({D}i)]vun

tr

(
t+

∆t

2
;GT j

)
(12.8)

+

[
vun

k

(
t+

∆t

2

)
− vun

tr

(
t+

∆t

2
;GT j

)]
;

- in the case of only the internal+rotational degrees of freedom of atom k (belonging to temperature
group GT j) being coupled to a temperature bath BTm({D}i),

vk

(
t+

∆t

2

)
= vun

tr

(
t+

∆t

2
;GT j

)
(12.9)

+ λ[t;BTm({D}i)]
[
vun

k

(
t+

∆t

2

)
− vun

tr

(
t+

∆t

2
;GT j

)]
;

- in the case of the translational degrees of freedom of atom k (belonging to temperature group GT j)
being coupled to a temperature bath BT n({D}i) and the internal+rotational degrees of freedom of
atom k (belonging to temperature group GT j) being coupled to a temperature bath BTm({D}i),

vk

(
t+

∆t

2

)
= λ[t;BT n({D}i)]vun

tr

(
t+

∆t

2
;GT j

)
(12.10)

+ λ[t;BTm({D}i)]
[
vun

k

(
t+

∆t

2

)
− vun

tr

(
t+

∆t

2
;GT j

)]
,

where, in analogy to Eq. 12.5, the unscaled translational velocity of temperature group GT j is computed as

vun
tr

(
t+

∆t

2
;GT j

)
=M−1(GT j)

∑

k∈GT j

mkv
un

k

(
t+

∆t

2
;GT j

)
. (12.11)

For details about the isothermal equations of motions resulting from the application of the different ther-
mostat algorithms, the corresponding phase space metrics and conserved properties, the reader is referred
to the original papers introducing these methods.

Woodcock thermostat

A temperature constraint algorithm does not allow any temperature fluctuations, i.e., it enforces, at each
time step, the instantaneous temperature T (t′; {D}i) to be equal to the corresponding reference temperature
To[BT j({D}i)]). This can be done with e.g. the Woodcock thermostat112, where the scaling factor at time
t is computed as

λ[t;BT j({D}i)] =
[
Ndf({D}i)− 1

Ndf ({D}i)
To[BT j({D}i)]
T (t′; {D}i)

] 1
2

. (12.12)

The Woodcock thermostat generates a canonical distribution of coordinates, but (due to the absence of
kinetic energy fluctuations) not momenta, at To.

Berendsen thermostat

2-121

A weak-coupling algorithm11 achieves a first-order relaxation of the instantaneous temperature T (t′; {D}i)
to the corresponding reference temperature To[BT j({D}i)]) according to

dT (t′; {D}i)
dt

= τ−1[BT j({D}i)]
{
To[BT j({D}i)]− T (t′; {D}i)

}
. (12.13)

The scaling factor describing this relaxation in terms of a velocity-scaling according to Eq. 12.8-Eq. 12.10 is
found by expressing the change of the kinetic energy in terms of the heat capacity (per degree of freedom)
at constant volume cdfv as

∆K(t′; {D}i) = Ndf ({D}i)cdfv kB∆T (t′) , (12.14)

so that, using11 cdfv = 1
2kB , the so-called Berendsen thermostat is recovered, with

λ[t;BT j({D}i)] =

{
1 + 2cdfv k

−1
B τ−1[BT j({D}i)]∆t

[To[BT j({D}i)]
T (t′; {D}i)

− 1

]} 1
2

=

{
1 + τ−1[BT j({D}i)]∆t

[To[BT j({D}i)]
T (t′; {D}i)

− 1

]} 1
2

. (12.15)

The temperature bath-specific parameter τ [BT j({D}i)] is a purely empirical quantity adjusting the strength
of the coupling of the degrees of freedom set {D}i to the heat bath BT j({D}i). In the limit τ [BT j({D}i)] =
∆t, the Berendsen algorithm is equivalent to the Woodcock temperature constraining algorithm, except for
the reduction of degrees of freedom by one. In the limit τ [BT j({D}i)] → ∞, thermostatting is disabled,
and Newton’s equations of motion are recovered. Note that the isothermal equations of motion given by
the Berendsen thermostat will not sample canonical coordinates and momenta. Only if the Berendsen ther-
mostat reduces to the Woodcock one (τ [BT j({D}i)] = ∆t) will the generated configurations be canonical.
Neither the Woodcock nor the Berendsen thermostat render possible canonical sampling of the momenta.
This deficiency has to be considered if fluctuation-dependent properties113 are to be computed in the anal-
ysis of simulation data.

Nosé-Hoover thermostat

The modification of Newton’s equations of motion to generate an isothermal trajectory can also be done
in an extended-system approach. This thermostatting method was originally developed by Nosé,114 and
subsequently cast into the more practical framework nowadays-known as the Nosé-Hoover thermostat.115,116

The corresponding equations of motion sample a microcanonical ensemble in the extended system, and a
canonical emsemble in the real system. The extension of the system is brought about by introducing an
additional artificial dynamical variable s̃1(t) [with mass Q1 > 0 and velocity ˙̃s1(t)]. The velocity ˙̃s1(t)
of the extended-system variable is equal to the function γ1(t) controlling the heat exchange between the
thermostatted (real) system and the heat bath, such that, for atom k,

ṗk(t) = fk(t)− γ1(t)pk(t) , (12.16)

with fk(t) denoting the force acting on atom k at time t and pk(t) denoting the momentum corresponding to
the thermostatted velocity of atom k. The time-evolution of s̃1(t) is described by a second-order equation,
which implies that heat fluxes between the system and the bath, and hence the temperature evolution, are
oscillatory. These oscillations can be tuned by the mass Q1 of s̃1(t). Considering the first-order evolution of
γ1(t) [rather than the second-order evolution of s̃1(t)] for a certain temperature bath BT j ,

γ̇1[t;BT j({D}i)] = −kBNdf ({D}i)Q−1
1 [BT j({D}i)]·{

To[BT j({D}i)]− T (t′; {D}i)
}

, (12.17)

and using Q1[BT j({D}i)] = τ21 [BT j({D}i)]Ndf ({D}i)kBTo[BT j({D}i)], one finds

γ̇1[t;BT j({D}i)] = −τ−2
1 [BT j({D}i)]

{
1− T (t′; {D}i)

To[BT j({D}i)]

}
, (12.18)

thereby introducing an effective relaxation time

τ1[BT j({D}i)] =
{

Q1[BT j({D}i)]
Ndf ({D}i)kBTo[BT j({D}i)]

} 1
2

(12.19)

2-122

instead of the less intuitive effective mass Q1[BT j({D}i)] to characterize the strength of the coupling to the
heat bath.

MD++ implements the Nosé-Hoover thermostat by using

λ[t;BT j({D}i)] = 1−∆tγ1[t;BT j({D}i)] , (12.20)

where γ1[t;BT j({D}i)] is determined by discrete integration,

γ1[t;BT j({D}i)] = γ1[t−∆t;BT j({D}i)] (12.21)

+ ∆tτ−2
1 [BT j({D}i)]

{ T (t′; {D}i)
To[BT j({D}i)]

− 1

}
,

which follows from Eq. 12.16 propagating the momentum variables at (due to use of the leap-frog scheme)
half-integer time steps as

pk(t
′ +∆t) = pk(t

′) + ∆t [fk(t)− γ1(t)pk(t
′)] = mkv

un
k [1− γ1(t)∆t] , (12.22)

where, again, vun
k denotes the unscaled free-flight velocity of atom k.

The temperature bath-specific parameter τ [BT j({D}i)] is a purely empirical quantity adjusting the strength
of the coupling of the degrees of freedom set {D}i to the heat bath BT j({D}i). Too large values of
τ [BT j({D}i)] (loose coupling; high mass of the extended-system variable) may cause a poor temperature
control (the limiting case τ [BT j({D}i)] → ∞ generating the microcanonical ensemble), whereas too small
values (tight coupling; low mass of the extended-system variable) may cause high-frequency temperature
oscillations.

Nosé-Hoover chain thermostat

The Nosé-Hoover chain thermostat117 aims at relaxing the instantaneous temperature T (t′; {D}i) to
the reference value To[BT j({D}i)] based on a chain of successive thermostat variables. In this case, the
single thermostat variable γ1[t;BT j({D}i)] of the Nosé-Hoover scheme is enhanced by a chain of variables
γc[t;BT j({D}i)], c = 2, ..., Nc, applying a thermostat to each other in sequence. This algorithm has been

introduced117 to alleviate the two main drawbacks of the Nosé-Hoover algorithm: (i) the presence of spurious
temperature oscillations; (ii) the non-ergodicity of the sampling for small or stiff systems, or systems at low
temperatures.
MD++ implements the Nosé-Hoover chain thermostat in analogy to Eq. 12.20 and Eq. 12.21 as

λ[t;BT j({D}i)] = 1−∆tγ1[t;BT j({D}i)] , (12.23)

where γ1[t;BT j({D}i)] is determined by discrete integration,

γ1[t;BT j({D}i)] = γ1[t−∆t;BT j({D}i)] + ∆tτ−2
1 [BT j({D}i)]

{ T (t′; {D}i)
To[BT j({D}i)]

− 1

}

− ∆tγ1[t−∆t;BT j({D}i)]γ2[t;BT j({D}i)] , (12.24)

each successive chain thermostat γc[t;BT j({D}i)], c = 2, ..., Nc − 1 is propagated according to

γc[t;BT j({D}i)] = γc[t−∆t;BT j({D}i)]
+ ∆t

{
τ−2
c [BT j({D}i)]

[
τ2c−1[BT j({D}i)]γ2c−1[t−∆t;BT j({D}i)]

− Ndf
−1({D}i)

]
− γc[t−∆t;BT j({D}i)]γc+1[t;BT j({D}i)]

}
,

(12.25)

the last one being

γNc [t;BT j({D}i)] = γNc [t−∆t;BT j({D}i)] (12.26)

+ ∆tτ−2
Nc

[BT j({D}i)]
[
τ2Nc−1[BT j({D}i)]γ2Nc−1[t−∆t;BT j({D}i)]

− Ndf
−1({D}i)

]
.

This follows from the chain analog of Eq. 12.22

pk(t
′ +∆t) = pk(t

′) + ∆t [fk(t)− γ1(t)pk(t
′)] = mkv

un
k [1− γ1(t)∆t] , (12.27)

with the corresponding equations for the chain thermostat variables,

pγ1(t
′ +∆t) = pγ1(t

′) (12.28)

+ ∆t
{
2∆K(t′; {D}i)−Ndf({D}i)kBTo[BT j({D}i)]

}

2-123

− pγ1(t
′)

pγ2(t
′ +∆t)

τ22 [BT j({D}i)]Ndf ({D}i)kBTo[BT j({D}i)]
,

pγc(t
′ +∆t) = pγc(t

′) (12.29)

+ ∆t

{
p2
γc−1

(t′)

τ2c−1[BT j({D}i)]Ndf ({D}i)kBTo[BT j({D}i)]
− kBTo[BT j({D}i)]

}

− pγc(t
′)

pγc+1(t
′ +∆t)

τ2c+1[BT j({D}i)]Ndf ({D}i)kBTo[BT j({D}i)]
,

and

pγNc
(t′ +∆t) = pγNc

(t′) (12.30)

+ ∆t

{
p2
γNc−1

(t′)

τ2Nc−1[BT j({D}i)]Ndf({D}i)kBTo[BT j({D}i)]
− kBTo[BT j({D}i)]

}
,

where Nc chain thermostats are used.

12.2.3. Use of temperature groups, sets of degrees of freedom and thermostats. If different
parts of the molecular system are subject to different heating rates due to, for example, the use of a non-
bonded interaction cut-off radius, it may be necessary to separately couple the different parts of the system
to different temperature baths.
In the following we will explain the characterisation and definition of temperature groups, degrees of freedom
sets and temperature baths in MD++. Finally, we will summarize the flexibility of temperature coupling
in MD++ and provide an example of a typical thermostat setting in a biomolecular simulation.
In the following, we will use the abbreviation tr for translational, i+r for internal+rotational degrees of
freedom and dof for degrees of freedom.

- Temperature groups in MD++
Temperature groups are molecular entities serving to dissect tr and i+r properties, e.g. in the
computation of degrees of freedom, velocities or kinetic energies, or in the application of translational
and/or rotational constraints. Usually, one molecule forms one temperature group, e.g. one protein,
or one water molecule. But also just one particle, e.g. an ion, can be one temperature group.

Temperature groups are defined in the molecular topology file (TEMPERATUREGROUPS
block) for those molecular entities contained in the solute molecular topology (SOLUTEATOM
block). If the system contains solvent molecules from the solvent molecular topology (SOLVEN-
TATOM block), each solvent molecule inevitably (i.e. not changeable by the user) constitutes one
separate temperature group.

- Sets of degrees of freedom in MD++
A dof set is a collection of atoms (MD++) that are affected by the same thermostat settings.
A dof set I is defined and characterized in the MULTIBATH block via the joint specification of:
(i) the last atom in this dof set [LAST(I)]; (ii) the temperature bath the tr dof of this dof set are
coupled to [COM-BATH(I)]; (iii) the temperature bath the i+r dof of this dof set are coupled to
[IR-BATH(I)].

- Temperature baths in MD++
A temperature bath is a heat reservoir of constant reference temperature thermostatting one or
several dof sets.

A temperature bath I is defined and characterized in the MULTIBATH block via the joint
specification of: (i) the reference temperature of this bath [TEMP0(I)]; (ii) the coupling time of
this bath [TAU(I)]. Note that the specification of a certain thermostat algorithm, as well as of the
number of chains in the Nosé-Hoover chain thermostat, thus inevitably apply to all temperature
baths. In adddition, in the case of thermostatting with the Nosé-Hoover chain algorithm, each of
the chain thermostat variables will have the same coupling time.

Finally, we consider the example of two peptide copies in a methanol-water mixture. More specifically, we
consider a topology whose solute block consists of two peptides (2x50 atoms) and 500 methanol molecules
(1500 atoms). Furthermore, we assume the system to contain 4000 water molecules, i.e. the coordinate file
will contain 100 peptide and 1500 methanol atoms as well as 12000 water atoms. We define the following

2-124

4502 temperature groups: Peptides 1 and 2 (temperature group defined in the molecular topology file),
each of methanol molecules 1-500 (temperature groups defined in the molecular topology file), and each of
the water molecules 1-4000 (temperature group definitions being an immediate consequence of the solvent
nature).

In a typical MD simulation, one would here employ three different temperature baths. In a physically-
realistic equilibrium situation, these three baths would have equal temperatures. One would couple the tr
dof of the two peptides to bath 1, the i+r dof the two peptides to bath 2, and the tr and rotational dof of
all (rigid) methanol and water molecules to bath 3. We assume thermostatting at 298.15 K by the weak
coupling method with a coupling time of 0.1 ps.
The MD++ MULTIBATH block reads:
MULTIBATH

general thermostatting settings

ALGORITHM

0

NBATHS

3

temperature bath definition and characterisation

TEMP0(1..NBATHS)

298.15 298.15 298.15

TAU(1..NBATHS)

0.1 0.1 0.1

DOFSET

4

dof set definition and characterisation

LAST(1..DOFSET) COM-BATH(1..DOFSET) IR-BATH(1..DOFSET)

peptides

100 1 2

500 methanol molecules

1600 3 3

solvent molecules

13600 3 3

END

Finally, an important practical issue arises in thermostatted MD simulations: When Newton’s equations
of motion Eq. 2.8 are integrated, the total energy and the total translational momentum of the system are
conserved. This need no longer be true when a coupling to a temperature bath is applied. The centre of
mass may slowly pick up motion during an MD simulation, even when initially at rest. This motion may be
regularly removed, which is described in Sec. 4.4.

12.3. Number of degrees of freedom

It is important to know exactly how many and which degrees of freedom are being simulated. For a system
with Na particles moving in three dimensions, the total number of degrees of freedom Nd is essentially 3Na.
However, the application of various boundary conditions in the form of geometric constraints will reduce
this number. Each temperature group (TG) GT i is assigned a certain number of translational [N t

df (GT i)] and

internal+rotational [N ir
df (GT i)] degrees of freedom (DOF). In the absence of any constraints, the values of

these variables for a given TG GT i consisting of NGT i atoms are N t
df (GT i) = 3, and N ir

df (GT i) = 3(NGT i− 1),
respectively. However, simulations are usually performed in ensembles involving a variety of different con-
straints, e.g. position, distance, dihedral angle, rotational and/or translational constraints, or constraints of
the linear and/or angular momentum or of the temperature of the system. Any application of constraints
(not redundant to already existing constraints) to a given TG I will reduce the number of degree of freedom
of this TG. The following section explains how the number of degree of freedom is reduced.

2-125

If TG GT i contains Nposcon
GT i

> 0 posititionally-constrained atoms, N t
df (GT i) is decreased by three and

N ir
df (GT i) by 3(Nposcon

GT i
− 1). Remember that a temperature group consists of covalently bound atoms,

meaning that a single position restraint on an atom in the group removes the translational degrees of
freedom of the group.

If TG GT i contains N
discon
GT i

> 0 distance-constraints involving at least one non-positionally-constrained

atom, N ir
df (GT i) is decreased by Ndiscon

GT i
. Any dof reduction arising from distance constraints between two

different TG is distributed in equal amounts (one half) between the two TG.

If TG GT i contains Ndihcon
GT i

> 0 dihedral-angle constraints involving at least one non-positionally-

constrained atom, N ir
df (GT i) is decreased by Ndihcon

GT i
. Any dof reduction arising from dihedral-angle con-

straints between two different TG GT i, GT j is distributed in a ratio of
Ndih,a(GT i)
Ndih,a(GT j)

between the two TG,

where 1 ≤ Ndih,a(GT i) ≤ 3, 1 ≤ Ndih,a(GT j) ≤ 3 (with Ndih ,a(GT i) +Ndih ,a(GT j) = 4) are the numbers of
dihedral-angle atoms contained in TG GT i and GT j, respectively.

If TG GT i is translationally-constrained, N
t
df (GT i) will be decreased by three. If TG GT i is rotationally-

constrained, N ir
df (GT i) will be decreased by three.

When the system linear and/or angular momentum is constrained, three dof must be removed for each
constrained type of momentum. After application of the previous rules, there will be M TG GT i for which
N t

df (GT i) > 0. For these groups, N t
df (GT i) is decreased by 3/M if the system linear momentum is constrained

and by 3/M if the system angular momentum is constrained. When instead the centre-of-mass motion is
removed every NSCM steps, NDFMIN degrees of freedom are removed in the same way at those time points.

When temperature constraining is applied, the number of dof of TG GT i coupled to a temperature bath
involved in temperature constraining must be decreased by one (to ensure canonical sampling in the con-
figurational space). In this case, and after application of the previous rules and for a given translational
set of DOF {Dt}j , there will be M({Dt}j) TG GT i ∈ {Dt}j for which N t

df (GT i) > 0. For these groups,

N t
df (GT i) > 0 is decreased by 1/M({Dt}j). Similarly, for a given internal+rotational set of DOF {Dir}j ,

there will be N({Dir}j) TG GT i ∈ {Dir}j for which N ir
df (GT i) > 0. For these groups, N ir

df (GT i) is decreased

by 1/N({Dir}j).

12.4. Calculation of the virial

In theGROMOS implementation, the way the virial is calculated can be chosen. In the PRESSURESCALE
block the switch VIRIAL can be set to none(0) (no virial calculated), atomic(1) (atomic virial) or group(2)
(group-based virial), and these settings equally apply to solute and solvent.

The group based instantaneous pressure tensor P is related to the group-based virial and group-based
internal kinetic energy tensor of the system. The word group-based refers to a pressure definition exclud-
ing virial and kinetic-energy contributions within user-specified groups of (covalently-linked) atoms118,119.
These groups will be referred to as pressure groups (see Vol. 3). Single atoms can be used as pressure groups,
in which case an atom-based pressure definition is recovered. In the same way molecules can be defined as
pressure groups to recover a molecular-based pressure definition. The average pressure is not affected by
the specific choice of groups, but the pressure fluctuations are. In practice, atom grouping is used to reduce
these fluctuations. The pressure is only calculated for systems under periodic boundary conditions. Note
also that the contribution of special (nonphysical) forces (e.g., atom-position or atom-distance restraining) to
the pressure is generally not included, except for atom-distance restraining. The instantaneous atom-based
pressure tensor is computed as

P∗ =
2

V (K∗ −W∗) (12.31)

where

K∗ = 1
2

N∑

i=1

miṙi ⊗ ṙi (12.32)

and

2-126

W∗
µν = 1

2

∑

λ

∂U
∂Bµλ

Bνλ (12.33)

are the instantaneous atom-based internal kinetic energy and virial tensors, and V and U being the
instantaneous volume and total potential energy of the system, B the box matrix introduced in Sec. 3.5 and
ṙi the internal velocities. The corresponding isotropic (scalar) quantities are related to the tensor quantities
through

K∗ = Tr[K∗],W∗ = Tr[W∗],P∗ = (1/3)Tr[P∗], (12.34)

where Tr returns the trace of a matrix, K∗ is equivalent to Eq. 2.6, and W is defined as

W∗ =
3V
2

∂U
∂V . (12.35)

One can show that:102,120 (1) the contribution to the atom-based virial tensor of a potential energy
term that solely depends on the scalar products or determinants defined by a set of interatomic vectors
is symmetric; (2) the contribution to the atom-based virial tensor of a potential energy term that solely
depends on the angles defined by a set of vectors is (in addition) traceless. The first observation implies
that all covalent (bond stretching or constraint, bond-angle bending, proper and improper dihedral angle),
and pairwise nonbonded force field terms lead to a symmetric contribution to the atom-based virial. The
second observation implies that covalent bond-angle bending as well as proper and improper dihedral angle
(but not bond stretching or constraint and pairwise nonbonded) terms lead to a traceless contribution to
the atom-based virial (i.e., no contribution to the scalar atom-based pressure). However, these results are
generally not valid for the corresponding group-based tensor (see below).

In the special case of a pairwise-additive interaction term Up depending on minimum-image interatomic
distances and without explicit dependence on the box dimensions (bond stretching or constraint and pairwise
nonbonded terms; but not reciprocal-space lattice-sum interactions118,119 see Sec. 7.4), Eq. 12.33 leads to
a virial contribution

W∗
p = − 1

2

N∑

i=1

N∑

j>i

fp,ij ⊗ rij , (12.36)

where rij = ri−rj is the vector connecting j to i, rij the corresponding minimum-image vector, and fp,ij the
pairwise force exerted by atom j on atom i. This equation is easily generalized to interaction terms involving
more than two atoms (bond-angle bending, proper and improper dihedral-angle terms). The atom based
virial contribution of all covalent (including bond constraints) and nonbonded (excluding reciprocal-space
lattice-sum interactions) terms is calculated using Eq. 12.36 or one of its generalizations. Note that MD++

internally stores the virial without the prefactor − 1
2 .

The GROMOS implementation includes the possibility of using a group-based pressure definition (corre-
sponding to any arbitrary partitioning of atoms into virial groups), instead of the atom-based one. In this
case, the intragroup contribution to the kinetic energy as well as the contribution of intragroup forces to
the virial are removed from the pressure definition (which affects the fluctuations of this quantity, but not
its average value). As shown elsewhere118,119 (the equations reported therein should be altered by halving
the virial and replacing rij by −rij to match the present conventions), the group-based virial tensor can be
calculated from the corresponding atom-based tensor by adding a simple correction term, which depends on
the overall atomic forces and on the pressure group definitions. More precisely, the group-based virial tensor
is given by

W = W ∗+ 1
2

∑

Iα

f Iα ⊗ dIα, (12.37)

where Iα denotes atom α in pressure group I, f Iα the overall force on atom Iα, and dIα the coordinate
vector of atom Iα relative to the center of mass of the gathered pressure group I containing this atom. The
gathered representation of the pressure group is generated by following the atoms as they drift throughout
the periodic system. The group-based pressure tensor is then calculated as

P =
2

V (K −W) (12.38)

2-127

where K is the group-based internal kinetic energy tensor, defined as

K = 1
2

Ns∑

I=1

Nα(I)∑

α=1

mi

−1

Nα(I)∑

α=1

miṙi

⊗

Nα(I)∑

α=1

miṙi

 (12.39)

where Ns is the number of pressure groups and Nα(I) the number of atoms in pressure group I.

Although the atom-based pressure tensor P∗ is typically symmetric, this is generally not the case for the
group-based pressure tensor P (although the antisymmetric contribution to this tensor should vanish upon
time averaging). When applying a barostat algorithm, the antisymmetric component of P should induce
an overall rotation of the computational box (which would alter the box angular momentum), while the
symmetric component results in a deformation of the box (which conserves the box angular momentum).
In practice, the overall rotation of the box is rather a nuisance, and is avoided by symmetrizing the tensor
(P → [P + TP]) prior to application of the barostat algorithm121 where the T presuperscript indicates the
transpose of the matrix.

12.5. Pressure scaling

For compatibility with experiment, it is often desirable to sample configurations from the isothermal-
isobaric ensemble (constant temperature and pressure). Thermostat algorithms have been described in
Sec. 12.2. A modification of the basic MD scheme with the purpose of maintaining the pressure constant
(on average) is called a barostat algorithm. The various methods for carrying out MD at constant pressure
are based on the same principles as the constant temperature schemes with the role of temperature played
by the pressure and the role of the atomic velocities played by the atomic positions.

The use of a barostat is only applicable to simulations under periodic boundary conditions. In the
GROMOS implementation, the various options for the variations for the box parameters (and the associated
scaling of atomic coordinates) involved in the use of a barostat are: (1) no variations of the box parameters;
(2) isotropic scaling, that is, identical relative variations of the box-edge lengths only; (3) semi-anisotropic
scaling, that is, two box-edge lengths are scaled identically (or left constant) while the third box-edge length
is scaled individually (or left constant); (4) partially anisotropic scaling, that is, independent relative vari-
ations of the box-edge lengths only; (5) fully anisotropic scaling, that is, independent variations of all box
parameters (box-edge lengths, box angles, and Euler angles). For a truncated-octahedral box, only the first
two options are allowed. For a rectangular box, only the first four options are allowed. For a triclinic box,
all options are allowed. In the latter case, variations in the box shape are accompanied by variations in the
box Euler angles, so as to guarantee that the barostat does not introduce a rigid-body rotational component
to the box orientation. Note, however, that the location of the box center of mass is affected by any type
of coordinate scaling. Like in the temperature scaling the weak-coupling method (Berendsen barostat11) is
again very simple.

The atomic equations of motion are modified such that the net result on the system is a first-order
relaxation of the pressure P towards the preset reference value P 0

dP(t)

dt
= τ−1

P [P 0 − P(t)] (12.40)

As described in Sec. 12.4 the hydrostatic pressure tensor can be calculated with Eq. 12.38 using the virial
theorem,

Pαβ(t) = 2[Kαβ(t)−Wαβ(t)]/V(t) (12.41)

where α = x, y or z and β = x, y or z, W(t) is the virial tensor (Sec. 12.4) and V (t) is the volume of the
computational box. For a rectangular box we have (Sec. 4.4.2.1)

V(t) = a(t)b(t)c(t) (12.42)

with a, b and c the lengths of the x-, y- and z-axes of the computational box. For a truncated octahedron
we have Sec. 4.4.2.2

V(t) = 1
2a

3(t). (12.43)

and for a triclinic box (Sec. 4.4.1.3)

V(t) = a(t)b(t)c(t)[1 − cos2 α(t)− cos2 β(t)− cos2 γ(t)

+ 2 cosα(t) cos β(t) cos γ(t)]1/2 . (12.44)

2-128

The pressure components along the x-, y- and z-axes, that is, the diagonal elements Pxx, Pyy and Pzz

can be defined correspondingly,

Pαα(t) = 2[Kαα(t)−Wαα(t)]/V(t) (12.45)

where α = x, y or z. The isotropic hydrostatic pressure P can then be calculated with

P(t) =
1

3
(Pxx(t) + Pyy(t) + Pzz(t)) (12.46)

as described in Eq. 12.34. The isothermal compressibility κT will relate a change in pressure ∆P at constant
temperature to a change in volume ∆V ,

∆P(t) =
−∆V(t)
κTV(t)

(12.47)

and a change in volume can be obtained by scaling the atomic coordinates and the edges of the computational
box with a factor µ,

∆V(t) = [(µ(t))3 − 1]V(t). (12.48)

Discretizing Eq. 12.40 using the MD time step ∆t and solving the pressure scaling factor µ(t) from Eq. 12.40
and Eq. 12.46, Eq. 12.47 yields

µ(t) =

[
1− κ

T

∆t

τp
[P 0 − P(t)]

] 1
3

(12.49)

in the isotropic case,

µα(t) =

[
1− κ

T

∆t

τp
[P 0,αα − Pαα(t)]

] 1
3

(12.50)

in case the x-, y- and z-dimensions are scaled separately and

µαβ(t) =

[
δαβ − κT

∆t

τp
[P 0,αβ − Pαβ(t)]

] 1
3

(12.51)

in case of fully anisotropic scaling. In the case of semi anisotropic scaling where two axes α and β are scaled
with the same scaling factor

µα,β(t) =

[
1− κT

∆t

τp
[(P 0,αα − Pαα(t)) + (P 0,ββ − Pββ(t)))/2]

] 1
3

. (12.52)

The elements of P0,αβ can be set separately. This is done with a reference pressure tensor PRES0(,) in the
PRESSURESCALE block.

The scaling of the atomic coordinates ri(t) and the box edges a(t), b(t) and c(t) with the factor µ(t)
at each MD step will make the pressure P(t) or the components Pαβ(t) relax towards P0 (or P0,αβ), the
relaxation rate being controlled by the ratio of the isothermal compressibility κT of the system and the
chosen pressure relaxation time τP . The value of κT may not be accurately known, but this is no problem,
since τP is an adjustable parameter. The values of the isothermal compressibility of water at a pressure of
1atm = 1.01325 Bar = 0.0610184 kJ mol−1nm−3 and a temperature of 293K is for example κT = 45.91 10−6

Bar−1 = 76.24 10−5 (kJmol−1nm−3)−1122. The compressibility of proteins is about 10 to 20% of that of
water123. So, for a system consisting of half protein half water we find an estimated value of κ

T
= 45.75

10−5 (kJmol−1nm−3)−1. The switch to set the compressibility κT is called COMP. The value of τP , TAUP,
should be chosen sufficiently small (strong coupling) to achieve the required average pressure, but on the
other hand sufficiently large (weak coupling) to avoid disturbance of the properties of the system by the
coupling to the pressure bath.11 Since the definition of the pressure, Eqs. 12.41, 12.45), depends on the
kinetic energy, the pressure coupling should not be stronger than the temperature coupling,

τp > τ
T
. (12.53)

Typical values for τP are 0.4-0.5 ps.11

The following switches of the PRESSURESCALE block in MD++ have not been described yet (see
Vol. 4):
The switch COUPLE is used to control the pressure scaling: COUPLE=off(0), no pressure calculation or
scaling
COUPLE=calc(1), pressure calculation, but no scaling

2-129

COUPLE=scale(2), pressures calculation and scaling.
The switch SCALE chooses the scaling applied:
SCALE=off(0), no pressure scaling
SCALE=iso(1), isotropic pressure scaling
SCALE=aniso(2), anisotropic pressure scaling (x-, y-, z-axes, no angle deformation)
SCALE=full(3), fully anisotropic pressure scaling
SCALE=semianiso(4), semi-anisotropic pressure scaling
SEMI(1..3) gives the settings for the semi anisotropic pressure scaling. The 3 numbers can have values 0, 1
or 2 and represent the x-, y- and z-axes. If one of the numbers is 0, the according axis is not scaled. If two
have the same number, they are scaled together.

12.6. MD algorithms

The algorithm for MD simulation based on the leap-frog integration scheme, which may include coupling
to a temperature bath (indicated by the symbol T) and a pressure bath (indicated by the symbol P), and
which may include the application of distance constraints (indicated by the symbol C) using one of the
constraining methods described in Chap. 10 can be summarized by the following steps. The application of
periodic boundary conditions is indicated by the symbol B. Writing data to file is indicated by the symbol W.

0. The positions ri(tn) and velocities vi(tn − ∆t/2) for all atoms are given. Calculate the kinetic
energies K(tn −∆t/2), and the temperatures T (tn −∆t/2). The initial step number is zero, n = 0.

0P. The box lengths a(tn), b(tn), c(tn) are given.

0C. The mentioned positions satisfy the constraints and the mentioned velocities, temperatures and
kinetic energies do not contain components along the constraints.

0B. The solvent molecules may not be split by the periodic boundaries, they must be covalently con-
nected. The same condition must hold for the atoms of a solute charge group.

1. Calculate the translational (Ktr(tn −∆t/2)) and rotational (Kir(tn −∆t/2)) kinetic energy for the
relevant temperature groups, using Eq. 12.6 and Eq. 12.7. Calculate the relative positions diα, for
solute and solvent as preparation for the virial calculation (Eq. 12.37).

1B. If required, apply the periodic boundary conditions to put the solute charge groups and solvent
molecules in the central computational box (see Sec. 4.4.1.2).

2. Calculate the (unconstrained) forces from the potential energy function V(rr(t))

f i(tn) = −∂V(rr(tn))
∂ri

(12.54)

(Eq. 12.54)) using the nearest image convention in case of periodic boundary conditions, and at the
same time

2P. calculate the atomic or group-based virial W∗(tn) or W(tn).

3C. If required, apply positions constraints (see Sec. 10.2), i.e. set forces and velocities to zero.

4. Determine the (unconstrained) velocities vi(tn +∆t/2) from Eq. 12.1.

5T. In case the group-based translational kinetic energy and the internal, rotational kinetic energy are
jointly coupled to a temperature bath, scale the velocities vi(tn + ∆t/2) of the atoms that are
coupled to a temperature bath with the appropriate temperature scaling factor λ(tn −∆t/2) based
on the relevant contributions to K(tn −∆t/2). The calculation of the scaling factors is dependent
on the thermostat chosen, see Sec. 12.2.

6. Determine the (unconstrained) positions ri(tn +∆t) from Eq. 12.2.

7C. Make the positions satisfy the constraints (see Sec. 10.3.1)

C(rr(tn); rr(tn +∆t); rr(tn +∆t)) (12.55)

2-130

8C. Calculate the constrained velocities

v(tn +∆t/2) = [rr(tn +∆t)− rr(tn)]/∆t (12.56)

9. Calculate the kinetic energies K(tn +∆t/2) to determine the scaling factors λ(tn +∆t/2) and the
temperatures T (tn +∆t/2).

10P. Calculate the volume of the periodic box V(tn), and calculate the atomic or group-based pressure
tensor P(tn) from Eq. 12.41 and Eq. 12.45 using the appropriate kinetic energy Ktr calculated in
step 1 and the virial from step 2P.

11P. Scale the atomic positions ri(tn +∆t) and the box lengths a(tn), b(tn), c(tn) to obtain a(tn +∆t),
b(tn + ∆t), c(tn + ∆t) with the appropriate pressure scaling factor µ(tn), Eq. 12.48, using the
pressure (components) from step 10P. If atoms are positionally restrained or kept fixed (Sec. 10.2),
scale their reference positions also with the pressure scaling factor.

12. In case of perturbation (see Sec. 14.6), possibly change λ-values and update the masses and individual
λ-values.

13. Calculate the total energies and update the energy averages. The kinetic energy at tn is calculated
as the average of the kinetic energies at tn − 1

2∆t and tn + 1
2∆t

124.

14W. At the end of a MD step print the energies (ENERGY block at time tn), pressure and volume (PRES-
SURE block) and scaling data (MULTIBATHCOUPLING block and PCOUPLE block), replica data
(REMD block). Write the configuration rr(tn +∆t) to the trajectory file.

15W. If at the end of the run, write the final configuration rr(tn + ∆t) and velocities v(tn + ∆t/2) to a
single configuration file and write perturbation data: energy derivatives with respect to λ at time tn,
λ-values at time tn +∆t, atom-atom distance restraints data at tn,

3J-coupling constant restraints
data at tn, S

2-order parameter restraints data at tn, local-elevation data at tn, replica data at tn,
X-ray scaling constants at tn and R-values at tn.

15. Increase the time to tn+1 = tn +∆t and the step number n to n+1.

When a set of atoms is to be kept fixed, their positions ri are kept equal to their reference positions and
the forces f i on them and their velocities vi are kept equal to zero at each MD step. Their inverse masses are
set to zero in order to immobilize these atoms when their position might be up for resetting by the constraint
procedure in case a fixed atom is involved in a constraint to a non-fixed atom.

12.7. Initialization, equilibration and sampling

An MD simulation starts with initial atomic positions and velocities. Although the results should be
independent of these, it is good practice to choose the initial configuration as representative for the molecular
system in equilibrium as possible. Strain in the configuration should be removed by a short (10-100 steps)
energy minimization in order to avoid conversion of the strain energy into kinetic energy leading to a high
temperature which will induce unsollicited barrier crossings, dihedral angle transitions, etc. The reading of
the initial configuration in GROMOS is controlled in the block INITIALISE. If no velocities are available,
they can be taken from a Maxwell distribution of a temperature T i (TEMPI)

P (vj) = [2πkBT i/mj]
− 3

2 exp[−mjv
2
j/(2kBT i] (12.57)

where P (vj) is the probability of occurrence of velocity vj of atom j. Mathematically, this velocity
distribution has the form of a product of 3 Gaussian distributions for the components vxj , vyj and vzj with
the standard deviation σ given by

σ = [kBT i/mj]
1
2 (12.58)

Given the atomic masses, Boltzmann’s constant, the initial temperature (TEMPI) and a random number
generator seed (IG), Maxwellian initial velocities vi(t0 −∆t/2) can be generated if the variable NTIVEL =
1. If NTIVEL = 0 the initial velocities will be read from single-configuration file. This option is required to
continue an MD simulation without a discontinuity in the trajectory.

2-131

The initial configuration and velocities may not satisfy the solute or solvent constraints. Besides, the
atoms of charge groups of the solute may be split by the periodic box, Sec. 4.4.1.2. In the block INITIALISE
shaking of the initial configuration is controlled with the switch NTISHK:

NTISHK = 0: initial coordinates rr(t0) and velocities vv(t0 −∆t/2) will not be shaken.

= 1: initial coordinates rr(t0) will be shaken.

= 2: initial velocities vv(t0 −∆t/2) will be shaken.

= 3: initial coordinates rr(t0) and velocities vv(t0 −∆t/2) will be shaken;

the solute charge groups are reassembled if necessary.

By using the switch NTICOM the translational motion of and the rotational motion about the centre of
mass can be removed from the initial velocities:

NTICOM = 0: initial centre of mass motion will not be removed.

= 1: initial translational motion of the centre of mass will be removed.

= 2: in addition, initial rotational motion about the centre of mass will be removed.

The removal of centre of mass motion during MD simulation is controlled within the COMTRANSROT
block with variable NSCM:

NSCM = 0: centre of mass motion will not be removed.

< 0: centre of mass translation and rotation will be removed every NSCM steps.

> 0: centre of mass translation will be removed every NSCM steps.

For long MD simulations removal of the centre of mass motion should be regularly (every 10-100 ps) done.
If atoms are kept fixed in a simulation, the centre of mass motion is not removed. For an in vacuo simulation
without centre of mass translation or rotation, NDFMIN = 6 degrees of freedom should be subtracted from
the total number of degrees of freedom when calculating the temperature from the kinetic energy. For a
simulation using periodic boundary conditions without centre of mass translation, NDFMIN = 3 should be
used. For a simulation using an extended wall region of positionally restrained or fixed atoms, NDFMIN
= 0 should be used. Alternatively, the simulation can be performed under rototranslational constraints, as
described in Sec. 10.7.

In order to continue an MD simulation the single-configuration file must contain the appropriate data for
a continuation run:

- atomic coordinates at time t0,
- atomic velocities at time t0 −∆t/2,
- dimensions of the periodic box,
- setting for lattice shift vectors,
- perturbation data (cumulative energy derivatives at time t0 −∆t, λ-values at time t0),
- atom-atom distance restraint data (averages at time t0 −∆t),
- 3J-coupling constant restraint data (averages at time t0 −∆t),
- S2-order parameter restraint data (averages at time t0 −∆t),
- local-elevation data (conformations visited so far, at time t0 −∆t),
- setting of positions and orientations for roto-translational constraints,
- replica data,
- X-ray scaling constants and R-values (averages at time t0 −∆t).

These data are written after the last (NSTLIM-th) step to a single-configuration file in order to allow for
further continuation simulation.

The number of MD time steps of size ∆t (DT) is to be specified in NSTLIM within the block STEP. The
initial time point t0 may be specified in the variable T for administrative purposes. It does not play a role in
the algorithm, which only counts steps. Before the first step the non-bonded interaction charge group pair
list must be generated. It will be regenerated every NSNB (5-10) steps (PAIRLIST block).

In order to start the simulation in a gentle way, the initial velocities can be taken from a Maxwell distri-
bution of low temperature (say 50K) and subsequently the reference temperature can be raised after short

2-132

simulation periods (few ps) in a few steps (100K, 200K) to room temperature. At the same time harmonic
position restraining can be applied to parts, e.g. the solute of the system in order to prevent possible distor-
tions due to the release of strain present in the initial configuration, e.g. due to bad solute-solvent contacts.
The coupling to the temperature and pressure baths can be made strong (τT ≈ 0.01ps, τP ≈ 0.05ps) during
the initial stage (few ps) of a simulation in order to allow for a rapid transfer of excess heat and pressure to
the respective baths.

Ideally, the equilibration period of a simulation should be longer than the relaxation time of the system
in order to secure equilibration. It will depend on the relaxation time of the property one is interested in.
Some properties, such as the kinetic energy, require short (picoseconds) equilibration times, whereas others,
such as dielectric properties, may require longer times, of the order of hundreds of picoseconds. During a
simulation a number of quantities, such as the kinetic energy, the potential energy and the various terms
contributing to it, the diffusion away from the initial structure, can be monitored to obtain a picture of the
stability of a simulation.

At every NTPR-th time step a number of quantities are printed. In the TIMESTEP block MD time step
number and time at the current MD step are given. In the ENERGIES block the following quantites are
printed at time t:

E Total = total energy of the molecular system

E Kinetic = total kinetic energy of the molecular system

E Potential = total potential energy of the molecular system

E Covalent = total energy of covalent terms (solutes)

E Bonds = total energy of bond-stretching terms (solutes)

E Angles = total energy of bond-angle bending terms (solutes)

E Improper = total energy of improper (harmonic) dihedral angle terms (solutes)

E Dihedral = total energy of (trigonometric) dihedral angle terms (solutes)

E Crossdihedral = total energy of cross-dihedral angle terms (solutes)

E Non-bonded = total energy of nonbonded terms (solutes)

E Vdw = total energy of van der Waals interaction terms (at time t)

E El (RF) = total energy of the electrostatic interaction terms, V(ele), in the reaction-field elec-
trostatic scheme

E El (LS) = total energy of the electrostatic interaction terms, V(ele), in the lattice sum elec-
trostatic scheme

E El (pair) = pairwise potential energy contribution, V(ele,pws), to the total electrostatic energy

interaction term V(ele)

E El (real-space) = real-space pairwise potential energy contribution to V(ele,pws) in the lattice sum
electrostatic scheme

E El (k-space) = reciprocal-space pairwise potential energy contribution to V(ele,pws) in the lattice
sum electrostatic scheme

E El (A term) = A-term potential energy contribution to V(ele,pws) in the lattice sum electrostatic
scheme

2-133

E El (lattice sum self)

= self potential energy contribution, V(ele,slf), to the total electrostatic energy inter-

action term V(ele)

E El (surface term)

= surface potential energy contribution, V(ele,srf), to the total electrostatic energy

interaction term V(ele)

E Polarisation self

= total energy of polarisation self term

E Special = total energy of special terms

E SASA = total energy of SASA terms

E Volume = total energy of SASA volume term

E Constraints = total energy due to constraints in the molecular system

E Distanceres = total energy of atom-atom distance restraint term

E Disfieldres = total energy of distance-field restraint

E Dihrest = total energy of dihedral restraining term

E Posrest = total energy of atom position restraining term

E EDS reference = total energy of EDS reference state

E Jrest = total energy of 3J-value restraining term

E X-ray restraints = total energy of X-ray restraining term

E Local elevation = total energy of local elevation term

E Order-parameter rest.

= total energy of S2-order parameter restraining term

E RDCrest = total energy of RDC restraints

E Symmetry restraints

= total energy of symmetry restraints

E EDS reference = EDS reference energy

E Entropy = total entropy term

E QM = total energy of QM/MM interactions

When a free energy perturbation calculation is performed, the free energy perturbation parameter λ and
the derivatives of the terms listed above with respect to λ are also written out.

In the TEMPERATURES block active temperature baths coupled to temperature groups in the system are
given. For each temperature bath the total kinetic energy (EKIN), translational kinetic energy (EKIN-MOL-
TR), sum of internal and rotational kinetic energy (EKIN-MOL-IR) and the corresponding temperatures (T,
T-MOL-TR and T-MOL-IR) as well as the temperature scaling factors (SCALE) are printed for the degrees
of freedom that are coupled to each bath.

In the PRESSURE block molecular kinetic energies, virial, pressure tensor, volume of the periodic box
and total pressure are printed.

The centre of mass motion is regularly printed, and a least-squares fit of the total energy as function of the
step number to a straight line is also regularly carried out and printed. This allows an examination of the

2-134

conservation of translational and rotational momentum and of the total energy. The latter should be con-
served in MD simulations without coupling to temperature and pressure baths, without time-averaging and
local-elevation terms, without fixed atoms, and in the absence of cut-off noise and noise due to constraints.
If in addition no atoms are positionally restrained, the translational momentum should also be conserved. If
in addition no periodic boundary conditions are used, the rotational momentum should also be conserved.
The dihedral-angle transitions are not printed to the output file but to a special trajectory (see Vol. 5).

The switch array NTF[1..6] controls the presence (=1) or absence (=0) in Eq. 3.5 of the different terms

of the GROMOS force field, V(phys) in Eq. 3.4:

NTF[1]: bond-stretching interaction

NTF[2]: bond-angle bending interaction

NTF[3]: improper (harmonic) dihedral-angle bending interaction

NTF[4]: (trigonometric) dihedral-angle torsion interaction

NTF[5]: non-bonded interaction involving charges

NTF[6]: non-bonded interaction

The special terms V special in Eq. 3.4 are controlled by separate switches, which were discussed in Chap. 9.

NTPOR: atom position restraining or fixing

NTDIR: atom-atom distance restraining

NTDFR: distance-field restraining

NTDLR: dihedral-angle restraining

NTJVR: 3J -coupling constant restraining

NTOPR: S2-order parameter restraining

At the end of a simulation the averages and root-mean-square fluctuations of the quantities mentioned
above are printed together with the average temperatures and pressure and their r.m.s. fluctuations. The
final configuration and velocities and other quantities that are needed to continue the simulation are saved
(see Vol. 4).

The sampling period or analysis period of a simulation should be long enough to allow for an appropriate
sampling of the property of interest, that is, the sampling period should be longer than the relaxation time
of the property of interest.125 The results are generally analyzed by taking time averages over the simulation
or parts of a simulation. By monitoring the time averages as a function of the length of the averaging period
it can be tested whether the time averages are converging.126

In the WRITETRAJ block there are several switches which control writing of trajectories of data (coor-
dinates, velocities, forces, energies and free energies). The switches NTWX and NTWSE control the writing
of configurations. For NTWX > 0 solute and solvent coordinates are printed every NTWX steps, beginning
at step n = 0 and ending at step n = NSTLIM-|NTWX|. For NTWX < 0 only solute coordinates are
printed, which may reduce disk space requirements. When searching conformational space, one would rather
save low energy configurations than configurations at regular intervals. For NTWSE = 0 normal coordinate
trajectory is written out and for NTWSE > 0 a minimum-energy coordinate and energy trajectory is written
out. The switch NTWV controls the writing of velocities. If NTWV > 0 solute and solvent velocities are
written out, beginning at step n = 0, and ending at step n = NSTLIM - |NTWV|. If NTWV < 0 only
solute velocities are written out. The switch NTWF controls writing of the force trajectory. For NTWF > 0
the FREEFORCERED and CONSFORCERED blocks (see Vol. 4) are written out every NTWF steps, for
NTWF < 0 only solute forces are written out. The switch NTWE controls the writing of energy, pressure
and volume data. If NTWE > 0, every NTWE-th time step the ENERGY03 and VOLUMEPRESSURE03
blocks (see Vol. 4) are saved, beginning at step n = 0, and ending at step n = NSTLIM - NTWE. The switch

2-135

NTWG controls the writing of free energy data. If NTWG > 0 every NTWG-th time step the FREEEN-
ERDERIVS03 block (see Vol. 4) is saved, beginning at step n = 0, and ending at step n = NSTLIM - NTWG.
The switch NTWB controls writing of a block-averaged energy trajectory. If NTWB > 0 block-averaged
energies and free energies (if NTWG > 0) are printed every NTWB steps.

2-136

CHAPTER 13

Stochastic Dynamics

13.1. Introduction

Stochastic dynamics (SD) simulation with an empirical energy function such as Eq. 3.4 is also much used
to study the equilibrium structural, dynamic and thermodynamic properties of molecules. It is an extension
of MD simulation, a frictional force and a randomly fluctuating force are added to the forces derived from

V(phys) (r) and V(spec) (r), which leads to the Langevin equations of motion Eq. 2.13, as discussed in Sec. 2.4.
These additional forces approximate partly the effect of degrees of freedom that are not explicitly treated
in the simulation on the explicitly treated degrees of freedom. A major application is the replacement of
explicit solvent molecules in an MD simulation of a (macro)molecule in solution by (implicit) stochastic
and frictional forces on the (macro)molecule in a SD simulation. SD simulation is also a useful method for
searching conformational space for low energy conformers. Due to the random components in the forces,
it may search a wider part of space than a comparable MD simulation. A third type of application of SD
simulation is in conjunction with the extended wall region boundary condition (Sec. 4.3). The motion of
the positionally restrained atoms of the wall region may be treated by the Langevin equation, so that it
gets randomized and the wall region can exchange heat with the hypothetical environment (vacuum) outside
the extended wall region. SD simulation may also be used to control the temperature, i.e. as a Langevin
thermostat.127

Here, we only consider the differences of SD simulation with respect to MD simulation. In the first three
applications of SD simulation mentioned above the application of periodic boundary conditions (Sec. 4.4)
would not make much sense. However, it is possible to use periodic boundary conditions within SD. In case
of using periodic boundary conditions it has to be considered that the calculations of the virial and pressure
are incomplete. Thus, SD simulation at constant pressure, means coupling to a pressure bath, is impos-
sible. The possibility to use weak coupling to a temperature bath is maintained for the following reason.
Application of SD simulation with non-zero atomic friction coefficients γi implies an atomic coupling to a
temperature T ref (TEMPSD) in Eq. 2.15. However, atoms for which γi = 0 feel no random and no frictional
force, so are not coupled to the temperature bath at T ref . The combination of weak temperature coupling
to a temperature bath at T 0, as discussed in Sec. 12.2, with SD simulation is a, be it not very elegant, option
to redress the temperature of atoms for which γi = 0 and which are subject to noise. Therefore, only a
simplified version of weak temperature coupling can be combined with SD.

The leap-frog SD algorithm is given in Sec. 13.2. The choice of the atomic friction coefficients γi is dis-
cussed in Sec. 13.3.

13.2. Leap-frog SD algorithm

Apart from a mean-force term, Langevin’s equation of motion Eq. 2.13 differs from Newton’s equation
Eq. 2.8 by the occurrence of a stochastic force fsti (t) and a frictional force −miγivi(t). These extra terms
make the SD version of the leap-frog scheme more complicated than the MD one128. The solution of Eq. 2.13
in terms of vi(t) around time t = tn is

vi(t) = vi(tn)exp[−γi(t− tn)]

+ m−1
i exp[−γi(t− tn)]

∫ t

tn

exp[−γi(tn − t′)][f i(t
′) + fsti (t′)]dt′ (13.1)

Since the stochastic properties of the random force fsti (t′) are given (postulated), the stochastic properties
of the integral over fsti (t′) can be obtained directly. The integral over the force f i(t

′) is, as in Sec. 12.1 for

2-137

MD, obtained by expanding f i(t
′) in a Taylor series around t = tn and omitting all terms beyond third order

in the time step ∆t in the positions, beyond second order in the velocities, and beyond first order in the
forces. The SD equivalent of the leap-frog velocity formula Eq. 12.1 then becomes128

vi(tn +∆t/2) = vi(tn −∆t/2)exp(−γi∆t)

+ m−1
i f i(tn)∆t[1 − exp(−γi∆t)]/(γi∆t) (13.2)

− exp[−γi∆t]Vi(tn;−∆t/2) +Vi(tn; ∆t/2)

where

Vi(tn; ∆t/2) ≡ m−1
i exp(−γi∆t/2)

tn+∆t/2∫

tn

exp[−γi(tn − t′)]fsti (t′)dt′ (13.3)

The equivalent of the leap-frog position formula Eq. 12.2 is obtained by integrating Eq. 2.9 using Eq. 13.1
for the velocity128

ri(tn +∆t) = ri(tn)

+ vi(tn +∆t/2)∆t[exp(γi∆t/2)− exp(−γi∆t/2)]/(γi∆t)
− Ri(tn +∆t/2;−∆t/2) +Ri(tn +∆t/2;∆t/2) (13.4)

where

Ri(tn; ∆t/2) ≡ (miγi)
−1

tn+∆t/2∫

tn

[1− exp[γi(tn +∆t/2− t′)]]fsti (t′)dt′. (13.5)

When the friction coefficient γi tends to zero, the SD leap-frog scheme Eq. 13.2 and Eq. 13.4 reduces to
the MD leap-frog scheme Eq. 12.1 and Eq. 12.2. Due to condition Eq. 2.15, which connects the stochastic
force fsti with the friction coefficient γi, the stochastic integrals Eq. 13.3 and Eq. 13.5 tend to zero for γi
tending to zero.

When using the SD leap-frog integration scheme Eq. 13.2 and Eq. 13.4 it must be noted that the stochastic
variable Vi(tn;−∆t/2) is correlated with the stochastic variable Ri(tn−∆t/2;∆t/2), since they are different
integrals of the stochastic force fsti (t′) over the same time interval (tn − ∆t/2, tn). The same observation
holds for the stochastic variables Ri(tn + ∆t/2;−∆t/2) and Vi(tn; ∆t/2), which are integrals over fsti (t′)
over the same time interval (tn, tn +∆t/2). This means that these correlated stochastic variables must be
sampled in a correlated manner128

The probability distribution for the x-, y-, z-components of Ri(tn −∆t/2;∆t/2), irrespective the value of
Vi(tn;−∆t/2), is

P (Rix) = [2πσ2
1]

− 1
2 exp[−R2

ix/(2σ
2
1)], (13.6)

and the conditional probability distribution for the x-, y-, z-components of Vi(tn;−∆t/2), given the specific
value Ri(tn −∆t/2;∆t/2) sampled from Eq. 13.6, is

P (Vix|Rix) = [2πσ2
2]

− 1
2 exp[−(Vix − σ3Rix)

2/(2σ2
2)] (13.7)

where

σ2
1 ≡ kBT refm

−1
i C(γi∆t/2)/γ

2
i , (13.8)

σ2
2 ≡ kBT refm

−1
i B(γi∆t/2)/C(γi∆t/2), (13.9)

σ3 ≡ γiD(γi∆t/2)/C(γi∆t/2), (13.10)

2-138

with

B(γi∆t/2) ≡ γi∆t[exp(+γi∆t)− 1]− 4[exp(+γi∆t/2)− 1]2, (13.11)

C(γi∆t/2) ≡ γi∆t− 3 + 4exp(−γi∆t/2)− exp(−γi∆t) (13.12)

and

D(γi∆t/2) ≡ 2− exp(+γi∆t/2)− exp(−γi∆t/2). (13.13)

The probability distribution for the x-, y-, z-components of Vi(tn; ∆t/2), irrespective the value of
Ri(tn +∆t/2;−∆t/2), is

P (Vix) = [2πρ21]
− 1

2 exp[−V 2
ix/(2ρ

2
1)], (13.14)

and the conditional probability distribution for the x-, y-, z-components of Ri(tn +∆t/2;−∆t/2), given the
specific value Vi(tn; ∆t/2) sampled from Eq. 13.14, is

P (Rix|Vix) = [2πρ22]
− 1

2 exp[−(Rix − ρ3Vix)
2/(2ρ22)] (13.15)

where

ρ21 ≡ kBT refm
−1
i [1− exp(−γi∆t)], (13.16)

ρ22 ≡ kBT refm
−1
i B(−γi∆t/2)/[γ2i [1− exp(−γi∆t)]], (13.17)

ρ3 ≡ D(−γi∆t/2)/[−γi[1− exp(−γi∆t)]]. (13.18)

The algorithm for SD simulation based on the leap-frog integration scheme, which may include weak
coupling to a temperature bath of temperature T 0 (indicated by the symbol T), and which may include
the application of distance constraints (indicated by the symbol C) using one of the constraining methods
described in Chap. 10 can be summarized in the following steps.

0. The positions ri(tn) and velocities vi(tn − ∆t/2) for all atoms are given. Calculate the kinetic
energies K(tn −∆t/2), and the temperatures T (tn −∆t/2). The initial step number is zero, n = 0.

0C. The mentioned positions satisfy the constraints and the mentioned velocities, temperatures and
kinetic energies do not contain components along the constraints.

1. Remove the centre of mass motion: Calculate the molecular centre of mass positions for the temper-
ature groups and the translational (Ktr(tn −∆t/2;GT)) and rotational Kir(tn −∆t/2;GT)) kinetic
energy. Calculate the relative positions diα(tn), for use in Eq. 12.37.

1B. If required, apply the periodic boundary conditions (not for vacuum simulation).

2. Calculate the (unconstrained) forces from the potential energy function V(rr)

f i(tn) = −∂V(rr(tn)
∂ri

(13.19)

3C. If required, apply positions constraints (see Sec. 10.2).

4. Sample the x-, y-, z-components of a vector Vi from a Gaussian distribution with zero mean and
width σ2

2 and determine

Vi(tn;−∆t/2) = σ3Ri(tn −∆t/2;∆t/2) +V
′

i (13.20)

2-139

5. Sample the x-, y-, z-components of a vector Vi(tn; ∆t/2) from a Gaussian distribution with zero
mean and width ρ21.

6. Determine the (unconstrained) velocities vi(tn +∆t/2) from Eq. 13.2.

7. Calculate the new positions excluding the contributions of the stochastic integrals in Eq. 13.4

ri(tn +∆t) = ri(tn) + vi(tn +∆t/2)∆tE(γi∆t/2) (13.21)

where

E(γi∆t/2) ≡ [exp(γi∆t/2)− exp(−γi∆t/2)]/(γi∆t) (13.22)

8T. Scale the velocities vi(tn + ∆t/2) of the atoms that are coupled to a temperature bath with the
appropriate temperature scaling factor λ(tn −∆t/2), belonging to the groups of degrees of freedom
that are jointly coupled to the bath (Sec. 12.2). The scaling factors are based on K(tn −∆t/2) and
depend on the thermostat chosen.

9C. Make the velocities satisfy the constraints by the following two steps. Perform

C(rr(tn); rr(tn +∆t); rr(tn +∆t)) (13.23)

Calculate the constrained velocities

v(tn +∆t/2) = [ri(tn +∆t)− ri(tn)]/[∆tE(γi∆t/2)] (13.24)

10. Calculate the kinetic energies K(tn +∆t/2) to determine the scaling factors λ(tn +∆t/2) and the
temperatures T (tn +∆t/2).

11. Sample the x-, y-, z-components of a vector R
′

i from a Gaussian distribution with zero mean and
width ρ22 and determine

Ri(tn +∆t/2;−∆t/2) = ρ3Vi(tn; ∆t/2) +R
′

i (13.25)

12. Sample the x-, y-, z-components of Ri(tn + ∆t/2; ∆t/2) from a Gaussian distribution with zero
mean and width σ2

1 .

13. Add the stochastic integrals from Eq. 13.4 to obtain the (unconstrained) positions

ri(tn +∆t) = ri(tn +∆t)−Ri(tn +∆t/2;−∆t/2)

+ Ri(tn +∆t/2;∆t/2) (13.26)

14C. Make the positions satisfy the constraints

C(rr(tn); rr(tn +∆t); rr(tn +∆t)) (13.27)

15. In case of perturbation (see Sec. 14.6), possibly change λ-values and update the masses and individual
λ-values.

16. Calculate the total energies and update the energy averages. The kinetic energy at tn is calculated
as the average of the kinetic energies at tn −∆t/2 and tn +∆t/2124.

17W. At the end of an MD step print the energies (ENERGY block at time tn), stochastic integrals
Ri(tn + ∆t/2;∆t/2), scaling data (MULTIBATHCOUPLING block), replica data (REMD block).
Write the configuration ri(tn +∆t) to the trajectory file.

18W. If at the end of the run, write the final configuration ri(tn +∆t) and velocities vi(tn +∆t/2) to a
single configuration file and write perturbation data (energy derivatives with respect to λ at time
tn, the λ-values at time tn + ∆t), atom-atom distance restraints data at tn,

3J-coupling constant
restraints data at tn, S

2-order parameter restraints data at tn, local-elevation data at tn, replica
data at tn, X-ray scaling constants at tn and R-values at tn.

2-140

18. Increase the time to tn+1 = tn +∆t and the step number Nt to Nt + 1.

When computing the coefficients involving exponents of γ∆t, for small values of γi∆t the numerical ac-
curacy of the expressions is not guaranteed. Using an 48-bit mantissa they are only accurate to better than
1:106 when γi∆t > 0.05. For γi∆t < 0.05 series expansion expressions are used.128

When weak coupling to a temperature bath is used, its temperature T 0(TEMP0m) should be taken equal
to the SD reference temperature T ref (TEMPSD).

13.3. Choice of atomic friction coefficient

When performing a SD simulation, atomic friction coefficients γi must be given. In the case of a solute
in a stochastic solvent, the γi of the solute atoms should be proportional to the fraction ωi of the atomic
surface that is accessible to solvent and to the friction coefficient γsolv of the solvent molecules,

γi(t) = γsolvωi(t) (13.28)

An approximate value for γsolv can be obtained from the experimental solvent viscosity ηsolv using Stokes’
law

γsolv = 6πRsolvηsolv/msolv (13.29)

where Rsolv is the Stokes radius and msolv the mass of a solvent molecule. In this way a friction coefficient
γsolv = 91 ps−1 for H2O and γsolv = 24 ps−1 for CCl4 was derived (T = 300K)129. The calculation of an
exact solvent accessible surface area for each atom is an expensive task. Since the stochastic model of the
solvent effects is anyway not correct in atomic detail, it makes no sense to accurately determine the ωi.
Therefore, one may use the approximate formula

ωi(t) = maximum(0, 1−Nnb
i (t)/Nnbref) (13.30)

in which the number of neighbour atoms of atom i at time t within a 3D sphere of radius Rnbref (RCUTF)
is denoted by N nb

i (t) and N nbref (NBREF) should be chosen equal to the number of neighbours at which
atom i looses its contact with the solvent. For example, for Rnbref = 0.3 nm we use N nbref = 6129. The
atomic solvent accessible area weight factors ωi(t) need not be calculated at every time step, since they
should be a slowly varying function of the solute conformation. They will be recalculated every NSFR
(100-1000) steps (if NTFR = 3).

An alternative is to specify the atomic friction coefficients GAM[i] in an atomic friction coefficients file,
see Vol. 4, or to take them all equal to one value, CFRIC. This input variable also serves as overall weight
factor. The switch NTFR controls the application of stochastic dynamics:

NTFR = 0, no SD simulation

= 1, SD simulation with γi = CFRIC

= 2, SD simulation with γi = CFRIC * GAM[i] and GAM[1..NR] is

read from an atomic friction coefficients file

= 3, SD simulation with γi = CFRIC * ωi from Eq. 13.30

2-141

CHAPTER 14

Free Energy Determination

14.1. Introduction

Several methods exist for calculating the free energy difference between two states A and B of a molecular
system or between two molecular systems A and B, which are based on statistical mechanics.130 In the so-
called coupling parameter approach, the Hamiltonian Eq. 3.1 is made an analytical function of the coupling
parameter λ,

H(pp, rr;λ) = K(pp;λ) + V(rr ;λ) (14.1)

such that

H(pp, rr;λA) = HA(pp, rr) (14.2)

H(pp, rr;λB) = HB(pp, rr) (14.3)

where the Hamiltonians HA and HB characterize states or systems A and B. In order to keep the notation
concise, we omit in the formulae of this chapter the explicit dependence of the Hamiltonian (terms) on the
force-field parameters s, the masses m and the box matrix B. Using the λ−dependent Hamiltonian Eq. 14.1,
the (Helmholtz) free energy F becomes a function of λ,

F(λ) = −kBT lnZ(λ), (14.4)

where the (λ-dependent) canonical partition function of the system of Na atoms is given by

Z(λ) = [h3NaNa!]
−1

∫ ∫
e−H(pp,rr ;λ)/kBTdppdrr. (14.5)

where h is Planck’s constant, and the factor (Na!)
−1 should be omitted when the atoms of the system are

distinguishable. The free energy difference ∆FBA then reads

∆FBA = F(λB)−F(λA)

= −kBT ln

(Z(λB)

Z(λA)

)

= −kBT ln

(∫ ∫
e−[H(pp,rr ;λB)−H(pp,rr ;λA)]/kBTP (pp, rr;λA)dpdr

)

= −kBT ln

(〈
e−[H(λB)−H(λA)]/kBT

〉
λA

)
. (14.6)

The probability of the configuration rr with momenta pp in the (canonical) ensemble is defined as

P (pp, rr;λ) ≡ e−H(pp,rr ;λ)/kBT

∫ ∫
e−H(pp,rr ;λ)/kBT dppdrr

(14.7)

and the brackets 〈...〉λ denote an ensemble average over an ensemble generated using the Hamiltonian
H(pp, rr;λ). Eq. 14.6 is called the free energy perturbation formula, since the average involved will converge
slowly unless the difference between the states described by H(λA) and H(λB) is small. The free energy
difference ∆FBA can also be expressed as an ensemble average at λ = λB ,

∆FBA = +kBT ln

(〈
e−[H(λA)−H(λB)]/kBT

〉
λB

)
. (14.8)

2-143

Formulae Eq. 14.6 and Eq. 14.8 can also be written as a perturbation formula for a change of Hamiltonian
characterized by ±∆λ,

∆Fλ±∆λ ≡ F(λ±∆λ)−F(λ)

(14.9)

= −kBT ln
(〈
e−[H(λ±∆λ)−H(λ)]/kBT

〉
λ

)
.

Taking the derivative of F(λ) with respect to λ one finds

F ′(λ) ≡ ∂F(λ)

∂λ
=

〈
∂H(λ)

∂λ

〉

λ

(14.10)

which leads to the thermodynamic integration formula

∆FBA =
λB

∫
λA

F ′(λ)dλ =
λB

∫
λA

〈
∂H(λ)

∂λ

〉

λ

dλ. (14.11)

The formulae given above concern the canonical ensemble, so are applicable to trajectories from (N,V,T)
simulations and give (Helmholtz) free energy differences. The corresponding formulae for (N,P,T) simula-
tions giving Gibbs free energy or free enthalpy differences can be found in ref.131.

In standard free energy perturbation calculations the atomic masses m(λ) and force-field parameters s(λ)
are made a function of the coupling parameter λ. The dependence of the Hamiltonian H(pp, rr;λ) on λ is
given in Sec. 14.2.

When constraints are applied (Chap. 10), these appear formally as parameters in the Hamiltonian.130 So,
changing a distance constraint σk(rr;λ), Sec. 10.3.1, as a function of λ may lead to a change in free energy.
Formulae for obtaining free energy differences due to differences in distance constraints (bond lengths) are
given in Sec. 14.3.

Technical and practical issues with respect to the choice of pathway and of states A and B are discussed
in Sec. 14.4. The use of the thermodynamic integration formula is discussed in Sec. 14.6 and that of the
perturbation formula in Sec. 14.7.

In Sec. 14.8 it is briefly indicated how the various restraining functions of V(spec)(rr ; s) can be used to bias
the sampling along a chosen reaction coordinate R to obtain the free energy F(R) as a function of R using
umbrella sampling techniques.130,132 Sec. 14.9, finally, discusses a special use of the perturbation formula,
in terms of enveloping distribution sampling.

14.2. Parameterization of the Hamiltonian

In free energy perturbation, the Hamiltonian H depends on the coupling parameter λ

H(p, r;λ) = K(p, r;λ) + V(r;λ). (14.12)

The parameter λ controls the change from state A to state B,

λ = λA = 0 : state A

λ = λB = 1 : state B (14.13)

Under these conditions we may write

H(p, r;λ) = K(p, r;λ) + V(b)(r;λ) + V(θ)(r;λ) + V(ξ)(r;λ)

+ V(ϕ)(r;λ) + V(nbd)(r;λ)

+ V(Jr)(r) + V(le)(r) + V(pr)(r)

+ V(dr)(r;λ) + V(tr)(r;λ) (14.14)

2-144

Of the last five terms, which are the special interaction terms described in Chap. 9, only V(dr) (Sec. 9.3)

and V(tr) (Sec. 9.6) can be made λ−dependent, see Secs. 14.2.10 and Sec. 14.2.11.

We note that atom position fixing (Sec. 10.2) should not be used in a free energy perturbation calculation.

When distance constraints are applied, the kinetic energy K(p, r;λ) depends on the atomic coordinates
r. Using SHAKE, the momenta p will depend on the coordinates r, since the velocities are calculated from
shaken positions (Eq. 12.56 and Eq. 13.24). The λ−dependent kinetic energy is

K(p, r;λ) =
Na∑
i=1

(pi)
2

2mi(λ)
=

Na∑
i=1

1
2mi(λ)(vi)

2 (14.15)

with

mi(λ) = (1 − λ)mA
i + λmB

i . (14.16)

The mass of atom i in state A is mA
i and in state B it is mB

i . For the derivatives with respect to λ (using
K as a function of p, not of v) one finds133

∂K(p, r;λ)

∂λ
= −

Na∑

i=1

1
2 (m

B
i −mA

i)(vi)
2 (14.17)

The corresponding expression for use in the perturbation formula Eq. 14.9 is, assuming that p and r
correspond to λ,

K(p, r;λ±∆λ) −K(p, r;λ) = ∓∆λ
Na∑
i=1

1
2 (m

B
i −mA

i)
mi(λ)

mi(λ±∆λ) (vi)
2 (14.18)

We note that the mass of a positionally fixed atom (Sec. 10.3.6) cannot be made λ−dependent.

14.2.1. Covalent bond forces. The λ−dependent version of the quartic potential-energy function
term describing the covalent bond-stretching interaction (Sec. 5.1) is obtained by making the force constant

k
(b,q)
n and the ideal bond length b0n linearly dependent on λ,

V (b,q)(r;λ) =
N(b)∑
n=1

V (b,q)
n(bn;λ)

=
N(b)∑
n=1

1
4

[
(1 − λ)k

(b,q)
n

A + λk
(b,q)
n

B
] [

bn
2 −

[
(1− λ)b0n

A + λb0n
B
]2]2

=
N(b)∑
n=1

1
4k

(b,q)
n

A
[
bn

2 − (b0n
A)2
]2

+
N(b)∑
n=1

1
4λ
{
− 2k

(b,q)
n

A
[
b0n

B − b0n
A
] [

2b0n
A + λ(b0n

B − b0n
A)
] [
(bn

2 − (b0n
A)2
]

+λk
(b,q)
n

A
[
b0n

B − b0n
A
]2[

2b0n
A + λ(b0n

B − b0n
A)
]2

+
[
k
(b,q)
n

B − k
(b,q)
n

A
] [

bn
2 −

[
b0n

A + λ(b0n
B − b0n

A)
]2]2}

= V (b,q)(r;λ = λA = 0) + ∆V (b,q)A(r;λ)

(14.19)

2-145

The forces f (b,q)Ai and f (b,q)Aj in state A (λ = λA = 0) on atoms i and j due to the n-th term in Eq. 5.1 are

given by expressions Eq. 17.1 and Eq. 17.2, using k
(b,q)
n = k

(b,q)
n

A and using b0n = b0n
A. The forces on atoms

i and j due to the n-th term of the energy difference ∆V (b,q)A(r;λ) are

f (b,q)∆A
i = −∂∆V (b,q)A

n

∂bn2
∂bn

2

∂ri

= λ
{
k
(b,q)
n

A
[
b0n

B − b0n
A
] [

2b0n
A + λ(b0n

B − b0n
A)
]

−
[
k
(b,q)
n

B − k
(b,q)
n

A
] [

bn
2 − [b0n

A + λ(b0n
B − b0n

A)]2
] }

rij

(14.20)

and

f (b,q)∆A
j = −f (b,q)∆A

i . (14.21)

The derivative with respect to λ of the energy V (b,q)(r;λ) and of the energy difference ∆V (b,q)A(r;λ) with
respect to state A is

∂V (b,q)(r;λ)
∂λ = ∂∆V (b,q)A(r;λ)

∂λ

=
N(b)∑
n=1

1
4

{
−4
[
k
(b,q)
n

A + λ(k
(b,q)
n

B − k
(b,q)
n

A)
] [

b0n
B − b0n

A
]

·
[
b0n

A + λ(b0n
B − b0n

A)
] [

bn
2 − [b0n

A + λ(b0n
B − b0n

A)]2
]

+
[
k
(b,q)
n

B − k
(b,q)
n

A
] [

bn
2 − [b0n

A + λ(b0n
B − b0n

A)]2
]2}

.

(14.22)

The corresponding expression for use in the perturbation formula Eq. 14.9 is

V (b,q)(r;λ ±∆λ)− V (b,q)(r;λ) (14.23)

which can easily be obtained from Eq. 14.19.

The λ−dependent version of the harmonic potential-energy function term describing the covalent bond-

stretching (Sec. 5.1) is obtained by making the force constant k
(b,h)
n and the ideal bond length b0n linearly

dependent on λ,

V (b,h)(r;λ) =
N(b)∑
n=1

V (b,h)(bn;λ)

=
N(b)∑
n=1

1
2

[
(1 − λ)k

(b,h)
n

A + λk
(b,h)
n

B
] [
bn − [(1− λ)b0n

A + λb0n
B]
]2

=
N(b)∑
n=1

1
2k

(b,h)
n

A[bn − b0n
A]2

+
N(b)∑
n=1

1
2λ
{
−k(b,h)n

A
[
b0n

B − b0n
A
] [

2[bn − b0n
A]− λ[b0n

B − b0n
A]
]

+
[
k
(b,h)
n

B − k
(b,h)
n

A
] [

bn − b0n
A − λb0n

B − b0n
A)
]2}

= V (b,h)(r;λ = λA = 0) + ∆V (b,h)A(r;λ).

(14.24)

The forces f (b,h)Ai and f (b,h)Aj in state A (λ = λA = 0) on atoms i and j due to the n-th term in Eq. 5.6

are given by expressions Eq. 17.3 and Eq. 17.4, using k
(b,h)
n = k

(b,h)
n

A and b0n = b0n
A.

2-146

The forces on atoms i and j due to the n-th term in the energy difference ∆V (b,h)A(r;λ) are

f (b,h)∆A
i = −∂∆V

(b,h)A
n

∂bn

∂bn
∂ri

(14.25)

= λ
{
k(b,h)n

A[b0n
B − b0n

A]

−
[
k(b,h)n

B − k(b,h)n
A
] [

bn − b0n
A − λ(b0n

B − b0n
A)
]} ∂bn

∂ri

and

f (b,h)∆A
j = −f (b,h)∆A

i (14.26)

The derivative with respect to λ of the energy V (b,h)(r;λ) and of the energy difference ∆V (b,h)A with
respect to the state A is:

∂V (b,h)(r;λ)
∂λ = ∂∆V (b,h)A(r;λ)

∂λ

=
N(b)∑
n=1

1
2

{
−2
[
k
(b,h)
n

A + λ(k
(b,h)
n

B − k
(b,h)
n

A)
] [

b0n
B − b0n

A
]

[
bn − b0n

A − λ(b0n
B − b0n

A)
]

+
[
k
(b,h)
n

B − k
(b,h)
n

A
] [

bn − b0n
A − λ(b0n

B − b0n
A)
]2}

.

(14.27)

The expression for use in the perturbation formula Eq. 14.9 is

V (b,h)(r;λ±∆λ) − V (b,h)(r;λ) (14.28)

which can easily be obtained from Eq. 14.24.

14.2.2. Covalent bond forces (soft potential energy function). When the perturbation involves

the breaking of a bond numerical instabilities occur in ∂V (b,h)(r;λ)
∂λ because the distance b between the formerly

bonded atoms becomes large in the state where the bond stretching force constant is 0. This can be avoided
by using a modified, ”soft” bond stretch potential energy function, introducing a softness term S(b, λ). Wang
et al134 formulate the contribution to the potential energy due to a soft harmonic bond b with force constant
k(b,h) and target value b0 that is broken at λ = 0 and has its full strength at λ = 1 as follows:

V (b, λ) =
1

2
Kλ(b− b0)2

1

S(b, (1− λ))
(14.29)

where

S(b, λ) = 1 + αbλ(b − b0)2

and αb is a positive number that can be adjusted to maximize the phase space overlap between neighbouring
λ windows.134

2-147

In GROMOS a more general form of the soft harmonic bond stretch potential energy function is imple-
mented, which allows the bond in either of the two states to be broken and the bond lengths in the two
states to be different. In analogy to Eq. 14.24:

V (bs,h)(r;λ) =
N(bs)∑
n=1

V (bs,h)(bn;λ)

=
N(bs)∑
n=1

1
2

[
(1− λ)

k(b,h)
n

A

SA
n (bn,λ)

+ λ
k(b,h)
n

B

SB
n (bn,1−λ)

] [
bn − b0n(λ)

]2
(14.30)

where N (bs) is the number of soft bonds and SX
n (bn, λ) the softness term for state X

SX
n (bn, λ) = 1 + αbλ(bn − b0n

X)2 (14.31)

and

b0n(λ) = (1− λ)b0n
A + λb0n

B

The forces on atoms i and j due to the n-th term in the energy V (bs,h)(r;λ) are

f (bs,h)i = −∂V
(bs,h)

n

∂bn

∂bn
∂ri

(14.32)

= −
[
(1− λ)k

(b,h)
n

A

SA
n (bn, λ)

2
+

λk
(b,h)
n

B

SB
n (bn, 1− λ)2

]
[
bn − b0n(λ)

] ∂bn
∂ri

= −
[
(1− λ)k

(b,h)
n

A

SA
n (bn, λ)

2
+

λk
(b,h)
n

B

SB
n (bn, 1− λ)2

]
[
bn − b0n(λ)

] rij
rij

and

f (bs,h)j = −f (bs,h)i (14.33)

The derivative with respect to λ of the energy V (bs,h)(r;λ) is:

∂V (bs,h)(r;λ)

∂λ
= (14.34)

=
N(bs)∑

n=1

1

2
(bn − b0n(λ))

2

[
k
(b,h)
n

A

SA
n (bn, λ)

2
(−X1 +X2) +

k
(b,h)
n

B

SB
n (bn, 1− λ)2

(X1 +X2)

]

−(bn − b0n(λ))(b
0
n
B − b0n

A)

[
(1− λ)k

(b,h)
n

A

SA
n (bn, λ)

+
λk

(b,h)
n

B

SB
n (bn, 1− λ)

]

with

X1 = 1 + α(bn − b0n(λ))
2 (14.35)

X2 = 2αλ(1 − λ)(bn − bn
0(λ))(b0n

B − b0n
A)

2-148

14.2.3. Covalent bond-angle forces. The λ−dependent version of the potential-energy function de-
scribing the covalent bond-angle bending interaction, which is harmonic in the cosine of the bond angles

(Sec. 5.2 , Eq. 5.7) is obtained by making the force constant k
(θ,c)
n and the cosine of the ideal bond angle θn

linearly dependent on λ,

V (θ,c)(r;λ) =
N(θ)∑
n=1

V (θ,c)
n(θn;λ)

=
N(θ)∑
n=1

1
2

[
(1− λ)k

(θ,c)
n

A + λk
(θ,c)
n

B
] [

cos θn − [(1 − λ) cos θ0n
A + λ cos θ0n

B]
]2

=
N(θ)∑
n=1

1
2k

(θ,c)
n

A
[
cos θn − cos θ0n

A
]2

+
N(θ)∑
n=1

1
2λ
{

−k(θ,c)n
A[cos θ0n

B − cos θ0n
A]
[
2[cos θn − cos θ0n

A]− λ[cos θ0n
B − cos θ0n

A]
]

+[k
(θ,c)
n

B − k
(θ,c)
n

A]
[
cos θn − cos θ0n

A − λ[cos θ0n
B − cos θ0n

A]
]2}

= V (θ,c)(r;λ = λA = 0) + ∆V (θ,c)A(r;λ).

(14.36)

The forces f (θ,c)Ai , f (θ,c)Aj and f (θ,c)Ak in state A (λ = λA = 0) on atoms i, j and k due to the n-th term

in Eq. 5.7 are given by expressions Eq. 17.5, Eq. 17.6 and Eq. 17.7 using k
(θ,c)
n = k

(θ,c)
n

A and θ0n = θ0n
A.

The forces on atoms i, j and k due to the n-th term in the energy difference ∆V (θ,c)A(rr ;λ) are

f (θ,c)∆A
i = −∂∆V

(θ,c)A
n

∂ cos θn

∂ cos θn
∂ri

= λ
{
k(θ,c)n

A[cos θ0n
B − cos θ0n

A] (14.37)

−
[
k(θ,c)n

B − k(θ,c)n
A
] [

cos θn − cos θ0n
A − λ[cos θ0n

B − cos θ0n
A]
]} ∂ cos θn

∂ri

f (θ,c)∆A
k = −∂∆V

(θ,c)A
n

∂ cos θn

∂ cos θn
∂rk

(14.38)

and

f (θ,c)∆A
j = −f (θ,c)∆A

i − f (θ,c)∆A
k . (14.39)

The derivative with respect to λ of the energy V (θ,c)(r;λ) and of the energy difference ∆V (θ,c)A(r;λ) with
respect to state A is

∂V (θ,c)(r;λ)

∂λ
=

∂∆V (θ,c)A(r;λ)

∂λ

=
N(θ)∑

n=1

1
2

{
−2
[
k(θ,c)n

A + λ(k(θ,c)n
B − k(θ,c)n

A)
] [

cos θ0n
B − cos θ0n

A
]

[
cos θn − cos θ0n

A − λ(cos θ0n
B − cos θ0n

A)
]

+
[
k(θ,c)n

B − k(θ,c)n
A
] [

cos θn − cos θ0n
A − λ(cos θ0n

B − cos θ0n
A)
]2}

.

(14.40)

2-149

The corresponding expressions for use in the perturbation formula Eq. 14.9 are

V (θ,c)(r;λ±∆λ) − V (θ,c)(r;λ) (14.41)

which can easily be obtained from Eq. 14.36.

The λ−dependent version of the harmonic potential-energy function describing the covalent bond-angle

bending interaction (Eq. 5.11) is obtained by making the force constant k
(θ,h)
n and the ideal bond angle θ0n

linearly dependent on λ,

V (θ,h)(r;λ) =
N(θ)∑
n=1

V (θ,h)
n(θn;λ)

=
N(θ)∑
n=1

1
2

[
(1− λ)k

(θ,h)
n

A + λk
(θ,h)
n

B
] [
θn − [(1− λ)θ0n

A + λθ0n
B]
]2

=
N(θ)∑
n=1

1
2k

(θ,h)
n

A
[
θn − θ0n

A
]2

+
N(θ)∑
n=1

1
2λ
{
−k(θ,h)n

A[θ0n
B − θ0n

A]
[
2[θn − θ0n

A]− λ[θ0n
B − θ0n

A]
]

+[k
(θ,h)
n

B − k
(θ,h)
n

A]
[
θn − θ0n

A − λ[θ0n
B − θ0n

A]
]2}

= V (θ,h)(r;λ = λA = 0) + ∆V (θ,h)A(r;λ).

(14.42)

The forces f (θ,h)Ai , f (θ,h)Aj and f (θ,h)Ak in state A (λ = λA = 0) on atoms i, j and k due to Eq. 5.11 are

given by expressions Eq. 17.8, Eq. 17.9 and Eq. 17.10 using k
(θ,h)
n = k

(θ,h)
n

A and θ0n = θ0n
A.

The forces on atoms i, j and k due to the n-th term in the energy difference ∆V (θ,h)A(r;λ) are

f (θ,h)∆A
i = −∂∆V

(θ,h)A
n

∂θn

∂θn
∂ri

(14.43)

= λ
{
k(θ,h)n

A[θ0n
B − θ0n

A]

−
[
k(θ,h)n

B − k(θ,h)n
A
] [

θn − θ0n
A − λ(θ0n

B − θ0n
A)
]} ∂θn

∂ri

f (θ,h)∆A
k = −∂∆V

(θ,h)A
n

∂θn

∂θn
∂rk

(14.44)

and

f (θ,h)∆A
j = −f (θ,h)∆A

i − f (θ,h)∆A
k . (14.45)

The derivative with respect to λ of the energy V (θ,h)(r;λ) and of the energy difference ∆V (θ,h)A(r;λ) with
respect to state A is

∂V (θ,h)(r;λ)

∂λ
=

∂∆V (θ,h)A(r;λ)

∂λ

=
N(θ)∑

n=1

1
2

{
−2
[
k(θ,h)n

A + λ(k(θ,h)n
B − k(θ,h)n

A)
] [

θ0n
B − θ0n

A
]

[
θn − θ0n

A − λ(θ0n
B − θ0n

A)
]

+
[
k(θ,h)n

B − k(θ,h)n
A
] [

θn − θ0n
A − λ(θ0n

B − θ0n
A)
]2}

.

(14.46)

2-150

The expression for use in the perturbation formula Eq. 14.9 is

V (θ,h)(r;λ±∆λ) − V (θ,h)(r;λ) (14.47)

which can easily be obtained from Eq. 14.42.

14.2.4. Covalent bond-angle forces (soft potential energy function). When a bond is broken
also the force constants of affected bond angles should go to zero and numerical instabilities are - even
though weaker than in the bond-stretching term (see Sec. 14.2.2) - also apparent in the λ derivatives of the

bond-angle bending term ∂V (θ,c)(r;λ)
∂λ . A soft potential energy function V (θs,c)(r;λ) and the corresponding λ

derivative ∂V (θs,c)(r;λ)
∂λ can be used analogous to Eq. 14.30 and Eq. 14.34, simply substituting b with cos θ.

The forces on atoms i, j, and k of the n-th soft angle are then:

f (θs,c)i = −∂V
(θs,c)
n

∂ cos θn

∂ cos θn
∂ri

(14.48)

= −
[
(1− λ)k

(θ,c)
n

A

SA
n (cos θn, λ)

2
+

λk
(θ,c)
n

B

SB
n (cos θn, 1− λ)2

]
[
cos θn − cos θ0n(λ)

] ∂ cos θn
∂ri

= −
[
(1− λ)k

(θ,c)
n

A

SA
n (cos θn, λ)

2
+

λk
(θ,c)
n

B

SB
n (cos θn, 1− λ)2

]
[
cos θn − cos θ0n(λ)

] [rkj
rkj

− rij
rij

cos θn

]
1

rij

f (θs,c)k = −∂V
(θs,c)
n

∂ cos θn

∂ cos θn
∂rk

= −
[
(1− λ)k

(θ,c)
n

A

SA
n (cos θn, λ)

2
+

λk
(θ,c)
n

B

SB
n (cos θn, 1− λ)2

]
[
cos θn − cos θ0n(λ)

] [rij
rij

− rkj
rkj

cos θn

]
1

rkj

f (θs,c)j = −f (θs,c)i − f (θs,c)k

with

SX
n (cos θn, λ) = 1 + αθλ(cos θn − cos θ0n

X)2 (14.49)

and

cos θ0n(λ) = (1 − λ) cos θ0n
A + λ cos θ0n

B . (14.50)

14.2.5. Improper dihedral-angle forces. The λ−dependent version of the harmonic improper dihedral-

angle bending interaction (Sec. 5.3) is obtained by making the force constant k
(ξ)
n and the ideal improper

2-151

dihedral-angle ξ0n linearly dependent on λ,

V (ξ)(r;λ) =
N(ξ)∑
n=1

V (ξ)
n(ξn;λ)

=
N(ξ)∑
n=1

1
2

[
(1− λ)k

(ξ)
n

A + λk
(ξ)
n

B
] [

ξn − [(1− λ)ξ0n
A + λξ0n

B]
]2

=
N(ξ)∑
n=1

1
2k

(ξ)
n

A[ξn − ξ0n
A]2

+
N(ξ)∑
n=1

1
2λ
{

−k(ξ)n
A
[
ξ0n

B − ξ0n
A
] [

2[ξn − ξ0n
A]− λ[ξ0n

B − ξ0n
A]
]

+
[
k
(ξ)
n

B − k
(ξ)
n

A
] [

ξn − ξ0n
A − λ(ξ0n

B − ξ0n
A)
]2}

= V (ξ)(r;λ = λA = 0) + ∆V (ξ)A(r;λ).

(14.51)

The forces f (ξ)Ai , f (ξ)Aj , f
(ξ)A

k and f (ξ)Al in state A (λ = λA = 0) on atoms i, j, k and l due to the n-th

term in Eq. 5.13 are given by expressions Eq. 17.11, Eq. 17.12, Eq. 17.13 and Eq. 17.14 using k
(ξ)
n = k

(ξ)
n

A

and ξ0n = ξ0n
A.

The forces on atoms i, j, k and l due to the n-th term in the energy difference ∆V (ξ)A(r;λ) are

f (ξ)∆A
i = −∂∆V

(ξ)A
n

∂ξn

∂ξn
∂ri

(14.52)

= λ
{
k(ξ)n

A[ξ0n
B − ξ0n

A]

−
[
k(ξ)n

B − k(ξ)n
A
] [

ξn − ξ0n
A − λ(ξ0n

B − ξ0n
A)
]} ∂ξn

∂ri

f (ξ)∆A
j = −∂∆V

(ξ)A
n

∂ξn

∂ξn
∂rj

(14.53)

f (ξ)∆A
l = −∂∆V

(ξ)A
n

∂ξn

∂ξn
∂rl

(14.54)

and

f (ξ)∆A
k = −f (ξ)∆A

i − f (ξ)∆A
j − f (ξ)∆A

l . (14.55)

2-152

The derivative with respect to λ of the energy V (ξ)(r;λ) and of the energy difference ∆V (ξ)(r;λ) with
respect to state A is

∂V (ξ)(r;λ)
∂λ = ∂∆V (ξ)A(r;λ)

∂λ

=
N(ξ)∑
n=1

1
2

{
−2
[
k
(ξ)
n

A + λ(k
(ξ)
n

B − k
(ξ)
n

A)
] [

ξ0n
B − ξ0n

A
]

[
ξn − ξ0n

A − λ(ξ0n
B − ξ0n

A)
]

+
[
k
(ξ)
n

B − k
(ξ)
n

A
] [

ξn − ξ0n
A − λ(ξ0n

B − ξ0n
A)
]2}

.

(14.56)

The expression for use in the perturbation formula Eq. 14.9 is

V (ξ)(r;λ ±∆λ)− V (ξ)(r;λ) (14.57)

which can easily be obtained from Eq. 14.51.

14.2.6. Improper dihedral-angle forces (soft potential energy function). A soft potential en-
ergy function, analogous to the ones for the bond stretching and bond-angle bending terms can also be
applied to the improper dihedrals to reduce numerical instabilities when a bond is broken. A soft potential

energy V (ξs)(r;λ) and the corresponding λ derivative ∂V (ξs)(r;λ)
∂λ are defined as in Eq. 14.30 and Eq. 14.34,

simply substituting b with ξ.

The forces on atoms i, j, k and l of the n-th soft improper dihedral angle are then:

f (ξs)i = −∂V
(ξs)

n

∂ξn

∂ξn
∂ri

(14.58)

= −
[
(1− λ)k

(ξ)
n

A

SA
n (ξn, λ)

2
+

λk
(ξ)
n

B

SB
n (ξn, 1− λ)2

]
[
ξn − ξ0n(λ)

] ∂ξn
∂ri

= −
[
(1− λ)k

(ξ)
n

A

SA
n (ξn, λ)

2
+

λk
(ξ)
n

B

SB
n (ξn, 1− λ)2

]
[
ξn − ξ0n(λ)

] rkj
r2mj

rmj

f (ξs)l = −∂V
(ξs)

n

∂ξn

∂ξn
∂rl

= −
[
(1− λ)k

(ξ)
n

A

SA
n (ξn, λ)

2
+

λk
(ξ)
n

B

SB
n (ξn, 1− λ)2

]
[
ξn − ξ0n(λ)

] rkj
r2nk

rnk

f (ξs)j = −∂V
(ξs)

n

∂ξn

∂ξn
∂rj

=

[
rij · rkj
r2kj

− 1

]
f (ξs)i −

rkl · rkj
r2kj

f (ξs)l

f (ξs)k = −f (ξs)i − f (ξs)j − f (ξs)l

where

SX
n (ξn, λ) = 1 + αξλ(ξn − cos ξ0n

X)2, (14.59)

2-153

ξ0n(λ) = (1− λ)ξ0n
A + λξ0n

B (14.60)

and

rmj = rij × rkj

rnk = rkj × rkl

rmj = (rmj · rmj)
1/2

rnk = (rnk · rnk)1/2.

14.2.7. Dihedral-angle torsion forces. The λ−dependent version of the trigonometric dihedral-
angle torsion interaction (Sec. 5.4) is obtained by applying a linear combination of the interaction function
at states A and B,

V (ϕ,s)(r;λ) =
N(ϕ)∑
n=1

V (ϕ,s)
n(ϕn;λ)

=
N(ϕ)∑
n=1

(1 − λ)k
(ϕ,s)
n

A[1 + cos(ϕ0
n
A) cos(m

(ϕ)
n

Aϕn)] + λk
(ϕ,s)
n

B[1 + cos(ϕ0
n
B) cos(m

(ϕ)
n

Bϕn)]

=
N(ϕ)∑
n=1

k
(ϕ,s)
n

A[1 + cos(ϕ0
n
A) cos(m

(ϕ)
n

Aϕn)] +
N(ϕ)∑
n=1

λ
{
k
(ϕ,s)
n

B[1 + cos(ϕ0
n
B) cos(m

(ϕ)
n

Bϕn)]

−k(ϕ,s)
n

A[1 + cos(ϕ0
n
A) cos(m

(ϕ)
n

Aϕn)]
}

= V (ϕ,s)(r;λ = λA = 0) + ∆V (ϕ,s)A(r;λ).

(14.61)

The forces f (ϕ,s)A
i , f (ϕ,s)A

j , f
(ϕ,s)A

k and f (ϕ,s)A
l in state A (λ = λA = 0) on atoms i, j, k and l due to the n-th

term in Eq. 5.18 are given by expressions Eq. 17.16, Eq. 17.18, Eq. 17.19 and Eq. 17.20 using k
(ϕ,s)
n = k

(ϕ,s)
n

A,

ϕ0
n = ϕ0

n
A and m

(ϕ)
n = m

(ϕ)
n

A.

The forces on atoms i, j, k and l due to the n-th term in the energy difference ∆V (ϕ,s)A(r;λ) are

f (ϕ,s)∆A
i = −∂∆V

(ϕ,s)A
n

∂ cosϕn

∂ cosϕn

∂ri

= −λ
{
k(ϕ,s)
n

B cos(ϕ0
n
B)
∂ cos(m

(ϕ)
n

Bϕn)

∂ cosϕn
(14.62)

−k(ϕ,s)
n

A cos(ϕ0
n
A)
∂ cos(m

(ϕ)
n

Aϕn)

∂ cosϕn

}
∂ cosϕn

∂ri

f (ϕ,s)∆A
j = −∂∆V

(ϕ,s)A
n

∂ cosϕn

∂ cosϕn

∂rj
(14.63)

f (ϕ,s)∆A
l = −∂∆V

(ϕ,s)A
n

∂ cosϕn

∂ cosϕn

∂rl

(14.64)

and

f (ϕ,s)∆A
k = −f (ϕ,s)∆A

i − f (ϕ,s)∆A
j − f (ϕ,s)∆A

l . (14.65)

2-154

The derivative with respect to λ of the energy V (ϕ,s)(r;λ) and of the energy difference ∆V (ϕ,s)A(r;λ)
with respect to state A is

∂V (ϕ,s)(r;λ)
∂λ = ∂∆V (ϕ,s)A(r;λ)

∂λ

=
N(ϕ)∑
n=1

{
k
(ϕ,s)
n

B
[
1 + cos(ϕ0

n
B) cos(m

(ϕ)
n

Bϕn)
]

−k(ϕ,s)
n

A
[
1 + cos(ϕ0

n
A) cos(m

(ϕ)
n

Aϕn)
]}
.

(14.66)

The corresponding expression for use in the perturbation formula Eq. 14.9 is

V (ϕ,s)(r;λ±∆λ)− V (ϕ,s)(r;λ) (14.67)

which can easily be obtained from Eq. 14.61.

The generalized λ−dependent version of the trigonometric dihedral-angle torsion interaction (Sec. 5.4) is
obtained in a similar way,

V (ϕ,g)(r;λ) =
N(ϕ)∑
n=1

V (ϕ,g)
n(ϕn;λ)

=
N(ϕ)∑
n=1

(1 − λ)k
(ϕ,g)
n

A[1 + cos(m
(ϕ)
n

Aϕn − ϕ0
n
A)] + λk

(ϕ,g)
n

B[1 + cos(m
(ϕ)
n

Bϕn − ϕ0
n
B)]

=
N(ϕ)∑
n=1

k
(ϕ,g)
n

A[1 + cos(m
(ϕ)
n

Aϕn − ϕ0
n
A)] +

N(ϕ)∑
n=1

λ
{
k
(ϕ,g)
n

B [1 + cos(m
(ϕ)
n

Bϕn − ϕ0
n
B)]

−k(ϕ,g)
n

A[1 + cos(m
(ϕ)
n

Aϕn − ϕ0
n
B)]
}

= V (ϕ,g)(r;λ = λA = 0) + ∆V (ϕ,g)A(r;λ).

(14.68)

The forces f (ϕ,g)A
i , f (ϕ,g)A

j , f
(ϕ,g)A

k and f (ϕ,g)A
l in state A (λ = λA = 0) on atoms i, j, k and l due to

the n-th term in Eq. 5.18 are given by expressions Eq. 17.21, Eq. 17.23, Eq. 17.25 and Eq. 17.26 using

k
(ϕ,g)
n = k

(ϕ,g)
n

A, ϕ0
n = ϕ0

n
A and m

(ϕ)
n = m

(ϕ)
n

A.

The forces on atoms i, j, k and l due to the n-th term in the energy difference ∆V (ϕ,g)A(r;λ) are

f (ϕ,g)∆A
i = −∂∆V

(ϕ,g)A
n

∂ϕn

∂ϕn

∂ri

= −λ
{
k(ϕ,g)
n

Bm(ϕ)
n

Bsin(m(ϕ)
n

Bϕn − ϕ0
n
B) (14.69)

−k(ϕ,g)
n

Am(ϕ)
n

Asin(m(ϕ)
n

Aϕn − ϕ0
n
A)
∂ϕn

∂ri

f (ϕ,g)∆A
j = −∂∆V

(ϕ,g)A
n

∂ϕn

∂ϕn

∂rj
(14.70)

f (ϕ,g)∆A
l = −∂∆V

(ϕ,g)A
n

∂ϕn

∂ϕn

∂rl

(14.71)

and

f (ϕ,g)∆A
k = −f (ϕ,g)∆A

i − f (ϕ,g)∆A
j − f (ϕ,g)∆A

l . (14.72)

2-155

The derivative with respect to λ of the energy V (ϕ,g)(r;λ) and of the energy difference ∆V (ϕ,g)A(r;λ)
with respect to state A is

∂V (ϕ,g)(r;λ)
∂λ = ∂∆V (ϕ,g)A(r;λ)

∂λ

=
N(ϕ)∑
n=1

{
k
(ϕ,g)
n

B
[
1 + cos(m

(ϕ)
n

Bϕn − ϕ0
n
B)
]

−k(ϕ,g)
n

A
[
1 + cos(m

(ϕ)
n

Aϕn − ϕ0
n
A)
]}
.

(14.73)

The corresponding expression for use in the perturbation formula Eq. 14.9 is

V (ϕ,g)(r;λ±∆λ) − V (ϕ,g)(r;λ) (14.74)

which can easily be obtained from Eq. 14.68.

14.2.8. Non-bonded forces. The λ−dependent version of the non-bonded (van der Waals and elec-
trostatic) interaction (Sec. 3.3, Eqs. 6.6 and 6.7) to be a non-linear function of λ. Both the soft-core radius
and the strength of the interaction depend non-linearly on λ in order to allow for a smooth change of real
atoms to dummy atoms and vice versa26. The λ−dependent non-bonded interaction is only implemented
for reaction field electrostatics and reads

V(nbd)(r;λ) =
∑

nonbonded
perturbed
pairs(i,j)

{ [
λnV(nbd)(rij ;B; (1− λ)) +(1− λ)nV(nbd)(rij ;A;λ)

]
}

(14.75)

with n = integer > 0, and for reaction field electrostatics,

V(nbd)(rij ;X ;λ) = V(vdw)(rij ;X ;λ)

+V(ele)(rij ; q
X
i , q

X
j , X ;λ)

(14.76)

= 1
[αLJ (i,j)(λ2)CX

126(i,j)+(rij)6]
·
[

C12
X (i,j)

[αLJ (i,j)(λ2)CX
126(i,j)+(rij)6]

− C6
X(i, j)

]

+
qXi qXj
4πε0ε1

[
1

[αc(i,j)(λ2)+(rij)2]
1
2

−
1
2Crf (rij)

2

[αc(i,j)(λ2)+Rrf
2]

3
2

− (1− 1
2Crf)

Rrf

]
(14.77)

where the interaction parameters that are different in states A and B are indicated by the superscript X
(=A or B):

qXi = partial charge of atom i in state X(A or B) (14.78)

C12
X(i, j) = r12 vdW parameter for atom pair (i, j) in state X(A or B)

C6
X(i, j) = r6 vdW parameter for atom pair (i, j) in state X(A or B)

and

CX
126(i, j) = C12

X (i,j)
C6

X (i,j) if C6
X(i, j) 6= 0

= 0 if C6
X(i, j) = 0 (14.79)

The reaction field parameters Rrf and Crf are defined in Sec. 2-7.3.

Softcore parameters αLJ(i, j) and αC(i, j) are determined based on input parameters ALPHLJ and
ALPHC in the input block PERTURB and may be multiplied by atom specific weights specified in the
perturbation topology ISCLJ[i] and ISCC[i]. We distinguish the following cases

- Both atoms i and j are listed in the perturbation topology
αLJ(i, j) = ALPHLJ * ([ISCLJ[i] + ISCLJ[j])/2
αC(i, j) = ALPHC * (ISCC[i] + ISCC[j])/2

2-156

- Only atom i is listed in the perturbation topology
αLJ(i, j) = ALPHLJ * ISCLJ[i]
αC(i, j) = ALPHC * ISCC[i]

- Only atom j is listed in the perturbation topology
αLJ(i, j) = ALPHLJ * ISCLJ[j]
αC(i, j) = ALPHC * ISCC[j]

The summation in Eq. 14.75 runs over all pairs of atoms with sequence numbers i and j and which
involve at least one perturbed atom. Atoms are considered to be perturbed when they are occurring in the
perturbation molecular topology file (see Sec. 4-3.3). As discussed in Sec. 2.3, a number of pairs is excluded
from the summation in Eq. 14.75:

- excluded neighbour atom pairs (Sec. 2.3), for these pairs, however, the reaction-field and self-
interaction terms corresponding to Eq. 7.11 and Eq. 7.12 are evaluated accordingly.

- atom pairs not included in the charge group pair list (cut-off Rcp) or in the long-range non-bonded
interaction (cut-off Rcl).

The non-bonded interaction between not-perturbed atoms is evaluated using Eq. 6.1 and Eq. 7.10-Eq. 7.12.
This implies that for such atom pairs no soft-core interaction can be invoked. In other words, for a con-
formational search simulation involving soft-core atoms, the soft-core atoms can only be selected using the
perturbation topology file.

We note that for n > 1 in Eq. 14.75 or αLJ 6= 0 or αC 6= 0 in Eq. 14.76 the path connecting V(nbd)(A)

and V(nbd)(B) is non-linear. This implies that even when the end states are chosen to be identical, A = B,
the path connecting them is λ−dependent. For example, considering only a λ−dependence between state

A (λ = 0) and state B (λ = 1) taken equal to A, we have V(nbd)(λ = 0) = V(nbd)(λ = 1) 6= V(nbd)(0 < λ < 1).

The forces on atoms i and j due to the (i, j)-th term in formula Eq. 14.75 are

f (nbd)i = −∂V(nbd)

∂ri

= − λn
∂V(nbd)(rij ;B;(1−λ))

∂ri
−(1− λ)n

∂V(nbd)(rij ;A;λ)
∂ri

(14.80)

and

f (nbd)j = −f (nbd)i (14.81)

with

∂V(nbd)(rij ;X;λ)
∂ri

=

−6(rij)
4

[αLJ (i,j)(λ2)CX
126(i,j)+(rij)6]

2 ·
[

2C12
X (i,j)

[αLJ (i,j)(λ2)CX
126(i,j)+(rij)6]

− C6
X(i, j)

]
· rij

− qXi qXj
4πε0ε1

[
1

[αc(i,j)(λ2)+(rij)2]
3
2

+
Crf

[αc(i,j)(λ2)+Rrf
2]

3
2

]
· rij .

(14.82)

The derivative with respect to λ of the non-bonded interaction is

∂V(nbd)

∂λ =

∑
nonbonded
perturbed
pairs(i,j)

{
nλn−1V(nbd)(rij ;B; (1− λ)) + λn

∂V(nbd)(rij ;B;(1−λ))
∂λ

−n(1− λ)n−1V(nbd)(rij ;A;λ)+(1− λ)n
∂V(nbd)(rij ;A;λ)

∂λ

}

(14.83)

2-157

with

∂V(nbd)(rij ;X;λ)
∂λ =

−2λαLJ (i,j)C
X
126(i,j)

[αLJ (i,j)(λ2)CX
126(i,j)+(rij)6]

2 ·
[

2C12
X (i,j)

[αLJ (i,j)(λ2)CX
126(i,j)+(rij)6]

− C6
X(i, j)

]

− qXi qXj
4πε0ε1

· λαc(i, j) ·
[

1

[αc(i,j)(λ2)+(rij)2]
3
2

−
3
2Crf (rij)

2

[αc(i,j)(λ2)+Rrf
2]

5
2

]
(14.84)

and

∂V(nbd)(rij ;X ; (1− λ))

∂λ
= −∂V

(nbd)(rij ;X ;λ)

∂λ
(14.85)

The corresponding expression for use in the perturbation formula Eq. 14.9 is

V(nbd)(rij ;λ±∆λ)− V(nbd)(rij ;λ) (14.86)

which can easily be obtained from Eq. 14.75 and Eq. 14.76.

14.2.9. Polarization. For free energy calculations using the coupling parameter approach (Sec. 14.1)
the Hamiltonian of the system has to be made dependent on a coupling parameter λ. Free energy differences
between two states A (λ = 0) and B (λ = 1) are then obtained from a thermodynamic integration over the
averages of the derivative of the Hamiltonian with repect to λ. Several terms will change compared to the
non-polarisable case45.

The λ-dependent V coul is

Vcoul(rrN , rr ′N ;λ) =
1

4πǫ0ǫcs

N−1∑

i=1

N∑

j>i
j inside cut−off i
(i,j) not excluded

[

(1− λ)n

{
(qAi − qA,v

i)(qAj − qA,v
j)

(
1

(|ri − rj |2 + αCλ2)1/2

)

+ (qAi − qA,v
i)qAj

(
1

(|ri − r′j |2 + αCλ2)1/2

)

+ qA,v
i (qAj − qA,v

j)

(
1

(|r′i − rj |2 + αCλ2)1/2

)

+ qA,v
i qA,v

j

(
1

(|r′i − r′j |2 + αCλ2)1/2

)}

+ λn

{
(qBi − qB,v

i)(qBj − qB,v
j)

(
1

(|ri − rj |2 + αC(1− λ)2)1/2

)

+ (qBi − qB,v
i)qBj

(
1

(|ri − r′j |2 + αC(1− λ)2)1/2

)

+ qB,v
i (qBj − qB,v

j)

(
1

(|r′i − rj |2 + αC(1− λ)2)1/2

)

+ qB,v
i qB,v

j

(
1

(|r′i − r′j |2 + αC(1 − λ)2)1/2

)}]

(14.87)

and the λ-dependent V rf is

V rf (rrN , rr ′N ;λ) = − 1

4πǫ0ǫcs

N−1∑

i=1

N∑

j>i
j inside cut−off i

[

(1 − λ)n

{
(qAi − qA,v

i)(qAj − qA,v
j)

(
Crf ,aux(λ)|ri − rj |2 +

1− 1
2Crf

Rrf

)

2-158

+ (qAi − qA,v
i)qAj

(
Crf ,aux(λ)|ri − r′j |2 +

1− 1
2Crf

Rrf

)

+ qA,v
i (qAj − qA,v

j)

(
Crf ,aux(λ)|r′i − rj |2 +

1− 1
2Crf

Rrf

)

+ qA,v
i qA,v

j

(
Crf ,aux(λ)|r′i − r′j |2 +

1− 1
2Crf

Rrf

)}

+ λn

{
(qBi − qB,v

i)(qBj − qB,v
j)

(
Crf ,aux(1 − λ)|ri − rj |2 +

1− 1
2Crf

Rrf

)

+ (qBi − qB,v
i)qBj

(
Crf ,aux(1− λ)|ri − r′j |2 +

1− 1
2Crf

Rrf

)

+ qB,v
i (qBj − qB,v

j)

(
Crf ,aux(1− λ)|r′i − rj |2 +

1− 1
2Crf

Rrf

)

+ qB,v
i qB,v

j

(
Crf ,aux(1− λ)|r′i − r′j |2 +

1− 1
2Crf

Rrf

)}]

− 1

4πǫ0ǫcs

N∑

i=1

[(1− λ)n(qAi)
2 + λn(qBi)

2]
1

2

(1 − 1
2Crf)

Rrf
(14.88)

where

Crf aux(λ) =
1
2Crf

(Rrf
2 + αCλ2)3/2

(14.89)

is an auxilary function to simplify the formula, q
A(B)
i is the charge on atom i in state A(B), αC is the soft

core parameter, and Crf defined by Eq. 7.126. The derivatives with respect to λ are then

∂V coul

∂λ
=

1

4πǫ0ǫcs

N−1
∑

i=1

N
∑

j>i
j inside cut−off i
(i,j) not excluded

[

− (1− λ)nλαC

{

(qAi − q
A,v
i)(qAj − q

A,v
j)

(

1

(|ri − rj |2 + αCλ2)3/2

)

+ (qAi − q
A,v
i)qAj

(

1

(|ri − r
′

j |
2 + αCλ2)3/2

)

+ q
A,v
i (qAj − q

A,v
j)

(

1

(|r′i − rj |2 + αCλ2)3/2

)

+ q
A,v
i q

A,v
j

(

1

(|r′i − r
′

j |
2 + αCλ2)3/2

)

}

+ λ
n(1− λ)αC
{

(qBi − q
B,v
i)(qBj − q

B,v
j)

(

1

(|ri − rj |2 + αC(1− λ)2)3/2

)

+ (qBi − q
B,v
i)qBj

(

1

(|ri − r
′

j |
2 + αC(1− λ)2)3/2

)

+ q
B,v
i (qBj − q

B,v
j)

(

1

(|r′i − rj |2 + αC(1− λ)2)3/2

)

+ q
B,v
i q

B,v
j

(

1

(|r′i − r
′

j |
2 + αC(1− λ)2)3/2

)

}

− n(1− λ)n−1

{

(qAi − q
A,v
i)(qAj − q

A,v
j)

(

1

(|ri − rj |2 + αCλ2)1/2

)

+ (qAi − q
A,v
i)qAj

(

1

(|ri − r
′

j |
2 + αCλ2)1/2

)

+ q
A,v
i (qAj − q

A,v
j)

(

1

(|r′i − rj |2 + αCλ2)1/2

)

+ q
A,v
i q

A,v
j

(

1

(|r′i − r
′

j |
2 + αCλ2)1/2

)

}

+ nλ
n−1

{

(qBi − q
B,v
i)(qBj − q

B,v
j)

(

1

(|ri − rj |2 + αC(1− λ)2)1/2

)

+ (qBi − q
B,v
i)qBj

(

1

(|ri − r
′

j |
2 + αC(1− λ)2)1/2

)

+ q
B,v
i (qBj − q

B,v
j)

(

1

(|r′i − rj |2 + αC(1− λ)2)1/2

)

+ q
B,v
i q

B,v
j

(

1

(|r′i − r
′

j |
2 + αC(1− λ)2)1/2

)

}]

(14.90)

2-159

and

∂V rf

∂λ
=

1

4πǫ0ǫcs

N−1
∑

i=1

N
∑

j>i
j inside cut−off i

[

− (1− λ)nλαC

{

(qAi − q
A,v
i)(qAj − q

A,v
j)

(

−
3
2
Crf |ri − rj |

2

(R2
rf + αCλ2)5/2

)

+ (qAi − q
A,v
i)qAj

(

−
3
2
Crf |ri − r

′

j |
2

(R2
rf + αCλ2)5/2

)

+ q
A,v
i (qAj − q

A,v
j)

(

−
3
2
Crf |r

′

i − rj |
2

(R2
rf + αCλ2)5/2

)

+ q
A,v
i q

A,v
j

(

−
3
2
Crf |r

′

i − r
′

j |
2

(R2
rf + αCλ2)5/2

)}

+ λ
n(1− λ)αC
{

(qBi − q
B,v
i)(qBj − q

B,v
j)

(

−
3
2
Crf |ri − rj |

2

(R2
rf + αC(1− λ)2)5/2

)

+ (qBi − q
B,v
i)qBj

(

−
3
2
Crf |ri − r

′

j |
2

(R2
rf + αC(1− λ)2)5/2

)

+ q
B,v
i (qBj − q

B,v
j)

(

−
3
2
Crf |r

′

i − rj |
2

(R2
rf + αC(1− λ)2)5/2

)

+ q
B,v
i q

B,v
j

(

−
3
2
Crf |r

′

i − r
′

j |
2

(R2
rf + αC(1− λ)2)5/2

)}

− n(1− λ)n−1

{

(qAi − q
A,v
i)(qAj − q

A,v
j)

(

−Crf ,aux(λ)|ri − rj |
2 −

1− 1
2
Crf

Rrf

)

+ (qAi − q
A,v
i)qAj

(

−Crf ,aux(λ)|ri − r
′

j |
2 −

1− 1
2
Crf

Rrf

)

+ q
A,v
i (qAj − q

A,v
j)

(

−Crf ,aux(λ)|r
′

i − rj |
2 −

1− 1
2
Crf

Rrf

)

+ q
A,v
i q

A,v
j

(

−Crf ,aux(λ)|r
′

i − r
′

j |
2 −

1− 1
2
Crf

Rrf

)

}

+ nλ
n−1

{

(qBi − q
B,v
i)(qBj − q

B,v
j)

(

−Crf ,aux(1− λ)|ri − rj |
2 −

1− 1
2
Crf

Rrf

)

+ (qBi − q
B,v
i)qBj

(

−Crf ,aux(1− λ)|ri − r
′

j |
2 −

1− 1
2
Crf

Rrf

)

+ q
B,v
i (qBj − q

B,v
j)

(

−Crf ,aux(1− λ)|r′i − rj |
2 −

1− 1
2
Crf

Rrf

)

+ q
B,v
i q

B,v
j

(

−Crf ,aux(1− λ)|r′i − r
′

j |
2 −

1− 1
2
Crf

Rrf

)

}]

−
1

4πǫ0ǫcs

N
∑

i=1

([−n(1− λ)n−1(qAi)
2 + nλ

n−1(qBi)2]
1

2

(1− 1
2
Crf)

Rrf
(14.91)

Using for the λ-dependence of the polarisability αi(λ)

αi(λ) = (1− λ)mαA
i + λmαB

i ,

the λ-dependence of the electric field Ei(λ) is

Ecoul
i (λ) =

1

4πǫ0ǫcs

N∑

j>i
j inside cut−off i
(i,j) not excluded

{
(1 − λ)n

[
(qAj − qA,v

j)(ri − rj)

(|ri − rj |2 + αCλ2)3/2
+

qA,v
j (ri − r′j)

(|ri − r′j |2 + αCλ2)3/2

]

+λn

[
(qBj − qB,v

j)(ri − rj)

(|ri − rj |2 + αC(1− λ)2)3/2
+

qB,v
j (ri − r′j)

(|ri − r′j |2 + αC(1− λ)2)3/2

]}
(14.92)

and

Erf
i (λ) =

Crf

4πǫ0ǫcs

N∑

j>i
j inside cut−off i

{
(1− λ)n

2-160

[
(qAj − qA,v

j)(ri − rj)

(R2
rf + αCλ2)3/2

+
qA,v
j (ri − r′j)

(R2
rf + αCλ2)3/2

]

+λn

[
(qBj − qB,v

j)(ri − rj)

(R2
rf + αC(1− λ)2)3/2

+
qB,v
j (ri − r′j)

(R2
rf + αC(1− λ)2)3/2

]}
(14.93)

and one gets for the λ-dependent V self,i

V self,i (14.94)

=
1

2
αi(λ)(Ei(λ))

2 for Ei(λ) ≤ E0,i

=
1

2
αi(λ)(E0,i)

2

+
αi(λ)(E0,i)

2

pi(pi − 1)

[
−p2i + (p2i − 1)

(
Ei(λ)

E0,i

)
+

(
E0,i

Ei(λ)

)pi−1
]

for Ei(λ) > E0,i.

The λ-derivative of this perturbed self polarisation potential energy is

∂V self,i

∂λ
(14.95)

=
1

2
m(λm−1αB

i − (1− λ)m−1αA
i)(Ei(λ))

2 + αi(λ)Ei(λ) ·
∂Ei(λ)

∂λ
for Ei(λ) ≤ E0,i

= m(λm−1αB
i − (1− λ)m−1αA

i)(E0,i)
2

(
1

2
+

1

pi(pi − 1)

[
− p2i + (p2i − 1)

(
Ei(λ)

E0,i

)
+

(
E0,i

Ei(λ)

)pi−1
])

+
αi(λ)E0,i

pi

[
(pi + 1)−

(
E0,i

Ei(λ)

)pi
]
∂Ei(λ)

∂λ
for Ei(λ) > E0,i.

with

∂Ei(λ)

∂λ
=

Ei(λ) · ∂Ei(λ)
∂λ

(Ei(λ) · Ei(λ))1/2
(14.96)

14.2.10. Perturbed atom-atom distance restraints. The λ−dependent version of the atom-atom
distance restraining term (Sec. 9.3) is obtained by making the restraining force constant k(dr)k and the
(repulsive or attractive) distance restraint k with length r0k between atoms i and i′ dependent on λ,

V(dr)(r;λ) =

N(dir)∑

k=1

2n+mλn(1− λ)mV(dr)AB
k (rii′ ; k

(dr)A
k , k

(dr)B
k ; r

0A
k , r

0B
k ,∆r

h) (14.97)

The pre-factor 2n+m λn (1 − λ)m with user-specified exponents n and m is added to make the use of
perturbed distance restraints possible without restraining the system in the end states,100 using the so-
called hidden restraints.

For a perturbed attractive distance restraint, V(dr)AB
k reads

V(dr)AB
k (rii′ , k

(dr)A
n , k

(dr)B
k , r

0A
k , r

0B
k ,∆r

h) = 0

for 0 < rii′ < (1− λ)r0Ak + λ r0Bk

= 1
2 ((1 − λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk]

2

for (1− λ)r0Ak + λr0Bk < rii′ < (1− λ)r0Ak + λr0Bk +∆rh

= ((1 − λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk − 1
2∆r

h]∆rh

for (1− λ)r0Ak − λr0Bk +∆rh < rii′ (14.98)

2-161

and the forces on atom i and i′ due to V(dr)AB
k in Eq. 14.98 are

f (dir)i = −2n+mλn(1− λ)m
∂V(dr)AB

k

∂rii′

∂rii′

∂ri
(14.99)

with

∂V(dr)AB
k

∂rii′

∂rii′

∂ri
= 0

for 0 < rii′ < (1− λ)r0Ak − λr0Bk

= ((1 − λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk] ·
ri
rii′

for (1− λ)r0Ak − λr0Bk < rii′ < (1− λ)r0Ak − λr0Bk +∆rh

= ((1 − λ)k(dr)Ak + λk(dr)Bk) ·∆rh · ri
rii′

for (1− λ)r0Ak − λr0Bk +∆rh < rii′ (14.100)

and

f (dir)i′ = −f (dir)i (14.101)

For a perturbed repulsive distance restraint, V(dr)AB
k reads

V(dr)AB
k (rii′ , k

(dr)A
k , k

(dr)B
k , r

0A
k , r

0B
k ,∆r

h)

= ((1 − λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk − 1
2∆r

h]∆rh

for 0 < rii′ < (1− λ)r0Ak − λr0Bk −∆rh

= 1
2 ((1 − λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk]

2

for (1− λ)r0Ak − λr0Bk −∆rh < rii′ < (1− λ)r0Ak − λr0Bk

= 0

for (1− λ)r0Ak − λr0Bk < rii′ (14.102)

and the forces on atom i and i′ due to V(dr)AB
k in Eq. 14.102 are calculated from Eq. 14.99 with

∂V(dr)AB
k

∂rii′

∂rii′

∂ri
= ((1− λ)k(dr)Ak + λk(dr)Bk) · ∆rh · ri

rii′

for 0 < rii′ < (1− λ)r0Ak − λr00,Bk −∆rh

2-162

= ((1 − λ)k(dr)Ak + λk(dr)Bk) · [rii′ − (1− λ)r0Ak − λr0Bk] ·
ri
rii′

for (1− λ)r0Ak − λr0Bk −∆rh < rii′ < (1− λ)r0Ak − λr0Bk

= 0

for (1− λ)r0Ak − λr0Bk < rii′ (14.103)

and

f (dir)i′ = −f (dir)i (14.104)

The λ−derivative of V(dr)(r;λ) reads

∂V(dr)(r;λ)

∂λ
=

N(dir)∑

k=1

2n+m[(nλn−1(1 − λ)m −mλn(1 − λ)m−1)

· V(dr)AB
k (rii′ , k

(dr)A
k , k

(dr)B
k , r

0A
k , r

0B
k ,∆r

h)

+λn(1− λ)m
∂V(dr)AB

k (rii′ , k
(dr)A

k , k
(dr)B

k , r
0A
k , r

0B
k ,∆r

h)

∂λ
]

(14.105)

In case of an attractive distance restraint,

∂V(dr)AB
k (rii′ , k

(dr)A
k , k

(dr)B
k , r

0A
k , r

0B
k ,∆r

h)

∂λ
= 0

for 0 < rii′ < (1− λ)r0Ak + r0Bk

= 1
2 (k

(dr)B
k − k(dr)Ak)[rii′ − (1− λ)r0Ak − λr0Bk]

2

+((1− λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk] · (r0Ak − r0Bk)

for (1− λ)r0Ak + λr0Bk < rii′ < (1− λ)r0Ak + λr0Bk +∆rh

= (k(dr)Bk − k(dr)Ak)(rii′ − (1 − λ)r0Ak − λr0Bk − 1
2∆r

h)∆rh

+((1− λ)k(dr)Ak + λk(dr)Bk)∆r
h(r0Ak − r0Bk)

for (1− λ)r0Ak + λr0Bk +∆rh < rii′ (14.106)

In case of a repulsive distance restraint,

∂V(dr)AB
k (rii′ , k

(dr)A
k , k

(dr)B
k , r

0A
k , r

0B
k ,∆r

h)

∂λ

= −[(k(dr)Bk − k(dr)Ak)(rii′ − (1− λ)r0Ak − λr0Bk − 1
2∆r

h)∆rh

2-163

+((1− λ)k(dr)Ak + λk(dr)Bk)∆r
h(r0Ak − r0Bk)]

for 0 < rii′ < (1− λ)r0Ak − λr0Bk −∆rh

= 1
2 (k

(dr)B
k − k(dr)Ak)[rii′ − (1− λ)r0Ak − λr0Bk]

2

+((1− λ)k(dr)Ak + λk(dr)Bk)[rii′ − (1− λ)r0Ak − λr0Bk] · (r0Ak − r0Bk)

for 0 < rii′ < (1− λ)r0Ak − λr0Bk −∆rh

= 0

for (1− λ)r0Ak + λr0Bk < rii′ (14.107)

14.2.11. Perturbed dihedral angle restraints. Similar to distance restraining, a λ dependence can
be introduced to the dihedral-angle restraints to enforce conformational sampling along a pathway from state
A to state B

V(tr)(rr, λ) =
N (tr)∑

k=1

2n+mλn (1− λ)m V(tr)AB(φk; k
(tr)A, k(tr)B;φ0Ak , φ0Bk , δφhk ,), (14.108)

The pre-factor 2n+mλn(1 − λ)m with user-specified exponents n and m is added to make use of per-
turbed dihedral restraints possible without restraining the system in the end states, using so-called hidden
restraints.100

For a perturbed dihedral angle restraint, V(tr)AB reads

V(tr)AB(φ; k(tr)A, k(tr)B;φ0Ak , φ0Bk , δφhk) = (14.109)

−[(1− λ)k(tr)A + λk(tr)B](∆φk + 1/2∆φh)∆φh ∆φk < −∆φh

1/2[(1− λ)k(tr)A + λk(tr)B](∆φk)
2 −∆φh ≤ ∆φk ≤ ∆φh

[(1− λ)k(tr)A + λk(tr)B](∆φk − 1/2∆φh)∆φh ∆φk > ∆φh

where

∆φk = φk − (1− λ)φ0Ak − λφ0Bk + 2mπ. (14.110)

and m is chosen such that φk is within the range [(1 − λ)φ0Ak − λφ0Bk + δk − 2π, (1 − λ)φ0Ak − λφ0Bk + δk].
Using this dihedral angle restraint formulation δk determines at which position the direction of the rotation
around the dihedral angle inverts. Typically, δk is set to 180o. The force on atom i is

f i = −2n+mλn (1− λ)
m ∂V(tr)AB

∂∆φk

∂φk
∂ri

where

∂V(tr)AB

∂∆φk
= (14.111)

−[(1− λ)k(tr)A + λk(tr)B]∆φh
∂φk
∂ri

∆φk < −∆φh

[(1− λ)k(tr)A + λk(tr)B]∆φk
∂φk
∂ri

−∆φh ≤ ∆φk ≤ ∆φh

[(1− λ)k(tr)A + λk(tr)B]∆φh
∂φk
∂ri

∆φk > ∆φh

and ∂φk

∂ri
is equivalent to the expression used for the physical dihedral angle potential term.

2-164

The λ-derivative of V(tr)(rr, λ) reads

∂V(tr)(rr, λ)

∂λ
=

N (tr)∑

k=1

2n+m[nλn−1(1 − λ)m −mλn(1 − λ)m)V(tr)AB (14.112)

+λn(1− λ)m
∂V(tr)AB

∂λ

where

∂V(tr)AB

∂λ
=

∆φh
(
(k(tr)Bk − k(tr)Ak)

(
∆φkλ − 1/2φ0lin

)

+
(
(1− λ)k(tr)Ak + λk(tr)Bk

)(
φ0,Ak − φ0,Bk

))
, ∆φk < −∆φh

1/2
(
− (k(tr)Bk − k(tr)Ak)(∆φkλ)

2

+ 2
(
(1− λ)k(tr)Ak + λk(tr)Bk

)
∆φk

(
φ0,Ak − φ0,Bk

))
, −∆φh ≤ ∆φk ≤ ∆φh

∆φh
(
(k(tr)Bk − k(tr)Ak)

(
∆φk − 1/2∆φh

)

+
(
(1− λ)k(tr)Ak + λk(tr)Bk

)(
φ0,Ak − φ0,Bk

))
. ∆φk > ∆φh

14.2.12. Perturbed distance-field distance restraints. The DF restraint can also be made depen-
dent on a coupling parameter λ, making it more broadly applicable. In this case, the force constant and
reference value of a DF restraint at a certain λ-value can be obtained with

l0AB(λ) = (1− λ)l0A + λl0B (14.113)

k
(df)
AB (λ) = (1− λ)k

(df)
A + λk

(df)
B (14.114)

Here, l0A and l0B are the reference values in two states A and B, respectively. Similarly, k
(df)
A and k

(df)
B

represent the force constants for the DF restraint in states A and B, respectively. The potential energy can
be calculated with

V(df)(λ) = 2n+mλn(1− λ)mV(df)(lij , k
(df)
AB (λ), l0AB(λ),∆l

h) (14.115)

with V(df)(lij , k
(df)
AB (λ), l0AB(λ),∆l

h) calculated according to Eq. 9.139. Here, we have introduced the pref-
actor term with variables m and n to be able to create so called hidden restraints.100 Depending on the
choice of these variables, the restraint is not present in one or both of the end states. The energy derivative
can now be calculated using Eq. 14.116 and Eq. 14.117:

∂V(df)(λ)

∂λ
= 2n+m[nλn−1(1 − λ)m −mλn(1 − λ)m−1]V(df)(lij , k

(df)
AB (λ), l0AB(λ),∆l

h)

+ 2n+mλn(1− λ)m
∂V(df)(lij , k

(df)
AB (λ), l0AB(λ),∆l

h)

∂λ
(14.116)

with

∂V(df)(lij , k
(df)
AB (λ), l0AB(λ),∆l

h)

∂λ

= −(k
(df)
B − k

(df)
A)[lij − l0AB(λ) +

1
2∆l

h] 12∆l
h + k

(df)
AB (λ)(l0B − l0A)∆l

h lij ≤ l0 −∆lh

= 1
2 (k

(df)
B − k

(df)
A)[lij − l0AB(λ)]

2 − k
(df)
AB (λ)[lij − l0AB(λ)](l

0
B − l0A) l0 −∆lh < lij ≤ l0 +∆lh

= (k
(df)
B − k

(df)
A)[lij − l0AB(λ) − 1

2∆l
h] 12∆l

h − k
(df)
AB (λ)(l0B − l0A)∆l

h lij > l0 +∆lh

(14.117)

The forces are calculated similar as for the non-perturbed DF restraint:

f j(λ) = 2n+mλn(1− λ)mfAB
j (λ) (14.118)

and fAB
j (λ) is calculated using Eq. 9.140, replacing k(df) with k

(df)
AB (λ) and l0 with l0AB(λ).

2-165

The current implementation allows for applications of DF in normal MD simulations, in free energy
calculations or in combination with enhanced sampling methods like local elevation (LE, see Sec. 9.13.1) or
Hamiltonian replica exchange (REMD, see Sec. 16.3).

14.3. Constraints

When constraints are applied in a simulation (Chap. 10), these appear formally as parameters in the
Hamiltonian130,133. If the distance constraint Sec. 10.3 is dependent on the coupling parameter λ,

σk(r;λ) ≡ r2k1k2
− d02k1k2

(λ) = 0 with k = 1, 2, ..., N (c) (14.119)

the constraint forces at time t (Sec. 10.3.8)

f (c)i(t) = −
N(c)∑
k=1

lk(λ; t)
∂σk(r(t);λ)

∂ri(t)

= −2
N(c)∑
k=1

lk(λ; t)(δik1
− δik2

)rk1k2(t)

(14.120)

and the Lagrange multipliers lk(λ; t) will also depend on λ. The λ−dependent version of the distance con-
straints is taken linear in the distance constraint lengths d0k1k2 ,

d0k1k2(λ) = (1− λ)d0Ak1k2
+ λd0Bk1k2

. (14.121)

Following the derivation in Sec. 10.3 the set of N (c) quadratic equations from which the N (c) multipliers
lk(λ; t) are to be solved and used to obtain the constrained positions r(t+∆t) through Eq. 10.7 and Eq. 10.8
become also λ−dependent,

[
ruck1k2(t+∆t)− 2lk(λ; t)(m

−1
k1

+m−1
k2

)rk1k2(t) · (∆t)2
]2

−
[
(1− λ)d0Ak1k2

+ λd0Bk1k2

]2
= 0 with k = 1, 2, ..., N (c)

(14.122)

After linearization of Eq. 14.122 the λ−dependent expressions for the Lagrange multipliers and the correc-
tions to the unconstrained positions become

lk(λ; t) =
((1− λ)d0Ak1k2

+ λd0Bk1k2
)2 − (ruck1k2(t+∆t))2

−4(∆t)2(m−1
k1

+m−1
k2

)(rk1k2(t) · ruck1k2(t+∆t))
. (14.123)

∆ruck1(t+∆t) = −2(∆t)2m−1
k1
lk(λ; t)rk1k2(t)

= m−1
k1
gk(λ; t)rk1k2(t)

(14.124)

and

∆ruck2(t+∆t) = +2(∆t)2m−1
k2
lk(λ; t)rk1k2(t)

= −m−1
k2
gk(λ; t)rk1k2(t).

(14.125)

Since the atoms may be involved in more than one constraint, the set of equations Eq. 14.122 is solved
in linearized form iteratively by the procedure SHAKE, that is, SHAKE as discussed in Sec. 10.3.1 changes
the atomic positions ruc(t + ∆t) iteratively, such that at the end of the iterative process they satisfy the
constraints, and can be returned as r(t +∆t). The number of iterations Nsh is determined as discussed in
Sec. 10.3. At the n-th iteration step, for each constraint k = 1, 2, ..., N (c) the quantities

gk(λ; t;n) = −2(∆t)2lk(λ; t;n) (14.126)

are calculated from Eq. 14.123 and the atomic positions ruc(t+∆t) changed by applying the current (n-th)
approximation of the constraint force Eq. 14.120

ruck2(t+∆t;n) = ruck2(t+∆t;n− 1)−m−1
k2
gk(λ; t;n)rk1k2(t). (14.127)

ruck1(t+∆t;n) = ruck1(t+∆t;n− 1) +m−1
k1
gk(λ; t;n)rk1k2(t) (14.128)

2-166

The Lagrange multipliers at time t become

lk(λ; t) =

Nsh∑

n=1

lk(λ; t;n) (14.129)

or

gk(λ; t) =

Nsh∑

n=1

gk(λ; t;n). (14.130)

The contribution of the constraints Eq. 14.119 to the derivative of the free energy F(λ) with respect to λ
at time t is130

∂F(c)(λ;t)
∂λ = ∂

∂λ

N(c)∑
k=1

lk(λ; t)σk(r(t);λ)

=
N(c)∑
k=1

lk(λ; t)
∂σk(r(t);λ)

∂λ

=
N(c)∑
k=1

∂F(c)
k (λ;t)

∂λ

(14.131)

in which the contribution of the k -th constraint is

∂F(c)
k

(λ;t)

∂λ = −2lk(λ; t)d
0
k1k2(λ)(d

0B
k1k2

− d0Ak1k2
)

= (∆t)−2gk(λ; t)[(1 − λ)d0Ak1k2
+ λd0Bk1k2

](d0Bk1k2
− d0Ak1k2

).

(14.132)

The corresponding expression for use in the perturbation formula Eq. 14.9 is, assuming that r corresponds
to λ,

N(c)∑
k=1

lk(λ)[σk(r;λ±∆λ) − σk(r;λ)]

= −
N(c)∑
k=1

lk(λ)[d
02
k1k2

(λ±∆λ)− d02k1k2
(λ)]

= −
N(c)∑
k=1

lk(λ)∆λ(d
0B
k1k2

− d0Ak1k2
) ·
[
∆λ(d0Bk1k2

− d0Ak1k2
)± 2(d0Ak1k2

+ λ(d0Bk1k2
− d0Ak1k2

))
]

=
N(c)∑
k=1

1
2 (∆t)

−2gk(λ)
[
d02k1k2

(λ ±∆λ)− d02k1k2
(λ)
]
.

(14.133)

14.4. Assigning different λ−dependences for specific groups of atoms

The Hamiltonian, as described in Sec. 14.1 and Sec. 14.2 was made dependent on a global coupling
parameter λ, for which the value is set via the RLAM variable in the PERTURBATION block of the MD
input file (Chap. 4-8). MD++ additionally offers the possibility to introduce (via the LAMBDAS block in
the MD input file, Chap. 4-8) for specific types of interactions that involve atoms of two energy groups i and
j a coupling parameter Λij , which is related to the global coupling parameter λ via the polynomial

Λij = aijλ
4 + bijλ

3 + cijλ
2 + dijλ+ eij , (14.134)

where the polynomial coefficients aij , bij , cij , dij and eij are constants and specified by the user in the
LAMBDAS block as well. When specifying a coupling parameter Λij involving covalent, special interactions
or masses, i should be equal to j, and covalent or special interactions are only perturbed using Λii when

2-167

the first atom given in the topology (or restraining) file to specify the atom-atom distance or covalent bond,
angle or (im)proper dihedral, is part of energy group i. Λij can only be specified for covalent interactions
listed in the perturbation topology, or for masses and nonbonded interaction involving atoms listed in the
perturbation topology.

For any perturbed interaction that is not specified the LAMBDAS block of the MD input file, aij , bij , cij
and eij in Eq. 14.134 can be considered to have a zero value, and dij = 1 in Eq. 14.134.

The use of Λij for perturbing specific interactions implies the following for the expressions for the perturbed
Hamiltonian. λ in the expressions for the atomic masses, kinetic energy and covalent interactions and forces
as given in Sec. 14.2 is replaced by Λij(= Λii) and the right-hand side of the equations Eq. 14.17, Eq. 14.22,
Eq. 14.27, Eq. 14.40, Eq. 14.46, Eq. 14.56, Eq. 14.66 and Eq. 14.73 for the λ-derivatives of the kinetic and
covalent interaction energy terms (in which λ is to be changed with Λij(= Λii) as well) have to be multiplied

by
∂Λij

∂λ . From equation Eq. 14.134

∂Λij

∂λ
= 4aijλ

3 + 3bijλ
2 + 2cijλ+ dij (14.135)

Expressions Eq. 14.75 and Eq. 14.76 for the perturbed non-bonded interaction is to be replaced by

V(nbd)(r;λ) =

∑
nonbonded
perturbed
pairs(i,j)

{ [
(Λ

(vdw)
ij)nV(vdw)(rij ;B; (1− Λ

(sl)
ij)) +(1− Λ

(vdw)
ij)nV(vdw)(rij ;A; Λ

(sl)
ij)

]

+[((Λ
(ele)
ij)nV(ele)(rij ;B; (1 − Λ

(sc)
ij))) +(1− Λ

(ele)
ij)nV(ele)(rij ;A; (1 − Λ

(sc)
ij))

]
}

(14.136)

where four different interaction-specific coupling parameters Λij can be specified:

- Λ
(vdw)
ij scales the Lennard-Jones interactions

- Λ
(sl)
ij determines the softness in the Lennard-Jones interactions

- Λ
(ele)
ij scales the electrostatic interactions

- Λ
(sc)
ij determines the softness in the electrostatic interactions.

In equation Eq. 14.136, V(vdw) and V(ele) for state X reads as:

V(vdw)(rij ;X ; Λ
(sl)
ij) = 1

[αLJ (i,j)(Λ
(sl)
ij)2CX

126(i,j)+(rij)6]

·
[

C12
X(i,j)

[αLJ (i,j)(Λ
(sl)
ij)2CX

126(i,j)+(rij)6]
− C6

X(i, j)

] (14.137)

2-168

and

V(ele)(rij ;X ; Λ
(sc)
ij) =

qXi qXj
4πε0ε1

[
1

[αc(i,j)(Λ
(sc)
ij)2+(rij)2]

−
1
2Crf (rij)

2

[αc(i,j)(Λ
(sc)
ij)+(Rrf)2]

3
2

− (1− 1
2Crf)

Rrf

]
(14.138)

The forces on atoms i and j due to the (i, j)-th term in Eq. 14.136 are

f (nbd)i = (Λ
(vdw)
ij)n

∂V(vdw)(rij ;B;(1−Λ
(sl)
ij))

∂ri
+ (1− Λ

(vdw)
ij)n

∂V(vdw)(rij ;A;Λ
(sl)
ij)

∂ri

+(Λ
(ele)
ij)n

∂V(ele)(rij ;B;(1−Λ
(sc)
ij))

∂ri
+ (1 − Λ

(ele)
ij)n

∂V(ele)(rij ;A;(1−Λ
(sc)
ij))

∂ri

(14.139)

and

f (nbd)j = −f (nbd)i (14.140)

with

∂V(vdw)(rij ;X;λ)
∂ri

=
−6(rij)

4

[αLJ (i,j)(Λ
(sl)
ij)2CX

126(i,j)+(rij)6]2

·
[

C12
X(i,j)

[αLJ (i,j)(Λ
(sl)
ij)2CX

126(i,j)+(rij)6]
− C6

X(i, j)

]
· rij

(14.141)

and

∂V(ele)(rij;X;λ)
∂ri

=
qXi qXj
4πε0ε1

[
1

[αc(i,j)(Λ
(sc)
ij)2+(rij)2]

3
2

+
Crf

[αc(i,j)(Λ
(sc)
ij)2+(Rrf)2]

3
2

]
· rij

(14.142)

The λ−derivative of the right-hand side of equation Eq. 14.136 reads

∂V(nbd)(r;λ)
∂λ = {n(Λ(vdw)

ij)n−1V(vdw)(rij ;B; (1− Λ
(sl)
ij))

∂Λ
(vdw)
ij

∂λ

+(Λ
(vdw)
ij)n

∂V(vdw)(rij ;B;(1−Λ
(sl)
ij))

∂Λ
(sl)
ij

∂Λ
(sl)
ij

∂λ − n(1− Λ
(vdw)
ij)nV(vdw)(rij ;A; Λ

(sl)
ij)

∂Λ
(vdw)
ij

∂λ

+(1− Λ
(vdw)
ij)n

∂V(vdw)(rij ;A;Λ
(sl)
ij)

∂Λ
(sl)
ij

∂Λ
(sl)
ij

∂λ + n(Λ
(ele)
ij)n−1V(ele)(rij ;B; (1 − Λ

(sc)
ij))

∂Λ
(ele)
ij

∂λ

+(Λ
(ele)
ij)n

∂V(ele)(rij ;B;(1−Λ
(sc)
ij))

∂Λ
(sc)
ij

∂Λ
(sc)
ij

∂λ − n(1− Λ
(ele)
ij)n−1V(ele)(rij ;A; Λ

(sc)
ij)

∂Λ
(ele)
ij

∂λ

+ (1− Λ
(ele)
ij)n

∂V(ele)(rij ;A;Λ
(sc)
ij)

∂Λ
(sc)
ij

∂Λ
(sc)
ij

∂λ

(14.143)

2-169

In Eq. 14.143, the
∂ΛX

ij

∂λ terms are evaluated according to equation Eq. 14.135, and

∂V(vdw)(rij ;X;Λ
(sl)
ij)

∂Λ
(sl)
ij

=

−2Λ
(sl)
ij αLJ (i,j)C

X
126(i,j)

[

αLJ (i,j)(Λ
(sl)
ij)2CX

126(i,j)+(rij)6
]2

[
2C12

X(i,j)
[

αLJ (i,j)(Λ
(sl)
ij)2CX

126(i,j)+(rij)6
] − C6

X(i, j)

] (14.144)

∂V(ele)(rij ;X;Λ
(sc)
ij)

∂Λ
(sc)
ij

= − qXi qXj
4πε0ε1

· Λ(sc)
ij αc(i, j)

·

 1

[

αc(i,j)(Λ
(sc)
ij)2+(rij)2

]

3
2

−
3
2Crf (rij)

2

[

αc(i,j)(Λ
(sc)
ij)2+(Rrf)2

]

5
2

(14.145)

and

∂V(nbd)(r;X;(1−Λ
(sl/sc)
ij))

∂Λ
(sl/sc)
ij

= −∂V(nbd)(r;X;Λ
(sl/sc)
ij)

∂Λ
(sl/sc)
ij

(14.146)

14.5. Choice of pathway and states A and B

Technical aspects of specifying the states A and B are discussed in Sec. 4-3.3. The molecular topology, as
described in Sec. 4-3.2, the so-called unperturbed topology, corresponds to state A. Since atoms cannot be
created or destroyed, only their interaction with other atoms can be modified or perturbed, the unperturbed
topology corresponding to state A must contain all atoms involved in the perturbation as either real or
dummy (i.e. non-interacting) atoms. So, state B has the same number of atoms as state A. The difference
between state B and A is specified in a perturbation molecular topology (Sec. 4-3.3). In Sec. 4-3.3 eight points
of interest are listed, which should be kept in mind when constructing both, molecular and perturbation,
topology files for use in a free energy calculation.

General considerations and indications with respect to the choice of pathways in free energy calculations
have been discussed in refs.130,131,135. Here, we shall only list the most important issues.

1. Choice of thermodynamic cycle and its four end states.
In most free energy calculations the concept of a thermodynamic cycle is used. Since the free

energy F is a state function, a change in free energy, ∆F , will be independent of the path connecting
the end states, as long as the system is in equilibrium and is changed in a reversible way. In that
case, along a closed pathway or cycle we have ∆F = 0. This result implies that there are many
possibilities of obtaining ∆F between two end states A and B. One may calculate ∆F directly using
a pathway connecting states A and B, or one may design a cycle of which a pathway from state A
to state B is only one part, and calculate the ∆F of the remaining part of the cycle. The power of
the thermodynamic cycle technique resides in the fact that pathways and cycles may correspond to
non-chemical processes, and so may be chosen such as to optimize the accuracy of the calculation.
Generally, equilibration and sampling are optimized by keeping the differences between states A and
B minimal. Secondly, the end states A and B should be structurally well characterized in order to
avoid excessively long equilibration and sampling periods130. The end states and the connecting
pathway should be chosen such that the relaxation time of the system with respect to the change
in Hamiltonian and the time required to sample the ensemble are both minimized. This implies
that the most direct or chemical path is not necessarily the most efficient136,137. As only terms
in the Hamiltonian that are modified, i.e. depend on λ, contribute to the change in free energy,
the number of λ dependences should be minimized. The introduction of additional or removal of
degrees of freedom should be avoided: generally, when changing a real atom into a dummy atom
or vice versa, only non-bonded interactions should be modified, bonded terms such as bond-length,
bond-angle and dihedral-angle terms should remain unchanged. This avoids the additional work
required to modify the associated force constants and the additional sampling required as the atom

2-170

gains degrees of freedom. Perturbations should be defined such that an atom does not become fully
uncoupled from the rest of the system. If possible, the mass of an atom should remain unperturbed.

Figure 14.1. Thermodynamic cycle with respect to the relative binding of two inhibitors
I1 and I2 to an enzyme E. The symbol ’:’ indicates complexation.138

2. Choice of boundary conditions.
Thermodynamic cycles allow for the cancellation of systematic errors occurring in parallel legs of

a cycle. For example, errors in processes 3 and 4 in Fig. 14.1 may cancel when ∆∆F43 = ∆F4−∆F3

is calculated. However, cancellation may only happen when the simulation conditions along the par-
allel legs are chosen as similar as possible: the simulations along legs 3 and 4 should not involve
different box shapes, different spatial boundary conditions (e.g. periodic versus extended wall) or
different thermodynamic boundary conditions (e.g. (N,V,T) versus (N,P,T)).

3. Absence and presence of force field terms.
In a thermodynamic cycle the contribution of given force-field terms may be equal along parallel

legs, and so might be ignored. Great care is required, however, when selecting force-field or Hamil-
tonian terms to be neglected. For example, the work done increasing or decreasing a charge during
a simulation will depend on the dielectric permittivity of the medium. Long-range electrostatic
contributions can only be ignored if the dielectric properties of the environments on both legs of
the thermodynamic cycle are equivalent. This is not the case when one leg corresponds to the low
dielectric interior of a protein or non-polar solvent and the other to a high dielectric medium such
as water139. Whether bonded force terms can be ignored is also questionable: if the conformational
freedom of (part of) the molecular system is different along parallel legs of a cycle, bonded force
terms will make a different contribution along the different legs which must be explicitly calculated.
Finally, we note that the terms in the Hamiltonian Eq. 14.14 that do not depend on λ should be
kept identical along (parallel) legs of a cycle: position restraining, atom-atom distance restraining,
dihedral-angle restraining, 3J-coupling constant restraining interactions, etc. should not be different
along different legs of a cycle. Switches for force field terms, such as NTF[1..10] (Sec. 12.7), should
also not be different. Local-elevation interaction and time-averaging distance or 3J-value restraining
or S2-order parameter restraining should not be used at all, since they involve changing the Hamil-
tonian as a function of time.

4. Choice of atomic masses.
Due to the factor m−1

i in the equations of motion Eq. 2.8 and Eq. 2.13, the mass of an atom
should not be chosen equal to zero.

5. Atoms without non-bonded interactions.
The van der Waals and Coulomb potential energy terms contain a singularity when the inter-

atomic distance r becomes zero. For fully interacting atom pairs this singularity is never sampled
in a simulation due to the repulsive term in the van der Waals interaction. This singularity in

V(nbd), ∂V
(nbd)

∂r or ∂V(nbd)

∂λ will be sampled if the non-bonded interaction is defined to be zero in state

A or state B (presence of dummy atoms), leading to numerical instabilities in the simulation26.
When the effective non-bonded interaction radius of an atom becomes smaller than the length of
flight of the atom per (finite) MD time step, very high energy regions of the potential energy will
be sampled. To avoid such problems, a soft-core interaction should be selected for atoms without
non-bonded interaction (i.e. dummy atoms) in one of the end states B and A26.

2-171

14.6. Thermodynamic integration

In the early applications of the thermodynamic integration (TI) Eq. 14.11 the coupling parameter λ was
made a function of time t, λ(t), and the integral was integrated in small time steps ∆t during an MD
simulation of Nt steps

∆FBA =

Nt∑

n=1

∂H
∂λ

∂λ

∂t
∆t. (14.147)

This technique is called continuous change of λ, or slow growth or single-configuration TI. It suffers from
a number of disadvantages135. The system is never truly in equilibrium, but lags behind the changing
Hamiltonian. This results in excess work being done on the system and a systematic overestimation of the
free energy change. Attempting to correct for this overestimation by averaging results for the forward and
reverse change from short simulations is an unreliable procedure. A necessary but not sufficient condition to
obtain a reliable free energy change is that the difference between forward and reverse processes or hysteresis
is small. A small hysteresis, however, indicates only the degree of reversibility. It indicates neither that
the system is in equilibrium nor that a representative ensemble has been sampled for each value of λ. If a
change of H(λ) is carried out much faster than the system can respond, the system will remain trapped in
a (non-representative) local state. If this state is adequately sampled during the simulation, the change will
appear reversible and a small hysteresis will be observed. The calculated free energy change will, however, be
dependent on the precise starting configuration and as the length of the simulation is increased, the apparent
hysteresis will also increase140. In practice, slow growth procedures should only be used to bring the system
gradually from one λ−value to another.

An alternative use of the thermodynamic integration formula Eq. 14.11 is to compute ensemble averages
at a few, Nλ, fixed λ−values and perform the integration numerically using interpolation formulae for the
integrand,

∆FBA =

Nλ∑

n=1

〈
∂H
∂λ

〉

λn

w(λn), (14.148)

where the weight factors of the numerical integration formula that is used are denoted by w(λn). This
technique is called TI with numerical quadrature or multi-configurational TI. It has a number of practical
advantages. Effects due to the equilibration of the system with respect to the change in Hamiltonian and
those depending on the extent of sampling can be largely separated. The convergence of the ensemble average
〈...〉λn at fixed λn-value can be monitored as a function of the simulation time. If the integrand turns out to
vary rapidly as a function of λ, more intermediate λ-values can be added into the numerical integration140.
Simple numerical integration methods such as the trapezoidal rule, Simpson’s rule or cubic spline integration
may be used to integrate over λ.

To estimate the precision of 〈∂H/∂λ〉λn , the following formula can be used for the standard deviation on
the mean139,

σ

(〈
∂H
∂λ

〉

λn

)
=

(
Sλn

Nconf

) 1
2
σ

(
∂H
∂λ

)
, (14.149)

where Nconf denotes the number of configurations over which the ensemble average at λ = λn is taken, and
σ(∂H/∂λ) is calculated as the square root of the variance over the ensemble

σ2

(
∂H
∂λ

)
=

1

Nconf

Nconf∑

t=1

[
∂H
∂λ

−
〈
∂H
∂λ

〉

λn,Nconf

]2
. (14.150)

To calculate the statistical inefficiency, Sλn , the total simulation time at λ = λn is divided into M blocks of
length b, and Nb configurations are taken from each block such that M · Nb = Nconf .

The variance in the mean is then calculated for each possible block length b as

σ2

(〈
∂H
∂λ

〉

λn,b

)
=

1

M

M∑

m=1

[〈
∂H
∂λ

〉

λn,Nb,m

−
〈
∂H
∂λ

〉

λn,Nconf

]2
, (14.151)

2-172

where < ... >λn,Nb,m denotes the ensemble average at λ = λn over Nb sample configurations of the m-th
block. Sλn is then calculated as

Sλn = lim
Nb→∞

Nbσ
2
(〈

∂H
∂λ

〉
λn,b

)

σ2
(
∂H
∂λ

) . (14.152)

Effectively, only one configuration of every Sλn configurations used contributes new information to the
average. The simulation periods needed to obtain a given degree of convergence of 〈∂H/∂λ〉λn may be quite
different for different λn-values

139,141.

To estimate the precision of the numerical quadrature, one may assume that the integrand is Gaussian
distributed with a mean 〈∂H/∂λ〉λn and a width given by Eq. 14.149. Assuming no correlation between the
distributions at different λn points, the standard deviation on ∆FBA becomes139

σ(∆FBA) =

[Nλ∑

n=1

w(λn)σ
2

(〈
∂H
∂λ

〉

λn

)]1/2
. (14.153)

Additional tests of the reliability of the obtained free energy difference ∆FBA can and should be carried
out130.

1. The addition of extra λ -values in the numerical integration over λ in Eq. 14.147 should not dra-
matically change the ∆FBA-value obtained so far140.

2. When carrying out more than one change of a system, e.g. from state A to state B and from A to
C, the quality of the equilibration, sampling and integration over λ can be tested by performing the
change from state B to C, which closes a cycle140

∆FBA +∆FCB +∆FAC = 0 (14.154)

3. Repetition of individual simulations with different initial equilibrium configurations or velocities
should yield the same result.

4. Small changes in the computational procedure should not affect the obtained ∆FBA-value
142.

14.7. Thermodynamic perturbation and extrapolation

The perturbation formulae Eq. 14.6, Eq. 14.8 and Eq. 14.9 can also be used to compute free energy
differences. In the limit of infinite sampling or when the ensembles corresponding to H(λ) and H(λ ±∆λ)
overlap perfectly the perturbation formula Eq. 14.9 will yield the exact ∆Fλ±∆λ value. In practice, these
conditions are never fulfilled. If the ensembles corresponding to states A and B do not overlap closely,
calculations based on the perturbation formula must be split into a number of steps between intermediate
systems along the pathway connecting states A and B that are sufficiently similar to allow for the use of
Eq. 14.9, and then ∆FBA is just the sum of the ∆F values for all intermediate steps,

∆FBA =
Nλ−1∑
n=0

−kBT ln
〈
e−[H(λn+1)−H(λn)]/kBT

〉
λn

=
Nλ∑
n=1

+kBT ln
〈
e−[H(λn−1)−H(λn)]/kBT

〉
λn
.

(14.155)

We note that the sampling and convergence properties of the thermodynamic integration formula Eq. 14.147
and the perturbation formula Eq. 14.155 are different.143 The requirement of closely overlapping ensembles
for neighbouring λ-values in Eq. 14.155 does not apply to the TI formula Eq. 14.147, since the latter is
based on the assumption of the smoothness of F ′(λ), which is different from the assumption of overlapping
ensembles for λ and λ ± ∆λ135. For the TI formula the convergence of the ensemble average does not
depend on the magnitude of the change ∆λ in λ, as it does for the perturbation formula. Therefore, the TI
formula offers the better opportunity to reduce and monitor errors in practice.139

Free energy calculations based on Eq. 14.147 or Eq. 14.155 are computationally very expensive. If one
would like to obtain the relative free energy differences of a number (M) of end states B1, B2, ..., BM with
respect to state A, M · Nλ converged simulations, at the various λ−points along the different pathways from
A to B1, B2, ..., BM , are required. This number could be reduced to 1 if one could use the perturbation
formula Eq. 14.6 directly, that is, without intermediate λ-values between states A and Bm. One would
use state A as reference state, the ensemble of which is used to extrapolate the behaviour of ∆FλA+∆λ to
∆λ = λBm − λA, i.e. state Bm. This approach has two advantages.

2-173

1. Only a single reference state A (λ = λA) need be considered and simulated.
2. The fluctuations in this reference state A are only dependent on λA not on the λBm , that is, not on

the λ changes to be considered.

The question is, however, whether the changes in free energy, ∆FBmA can be accurately estimated for
physically relevant states A and Bm. This is the case when the following two concepts are used143,144 (see
Eq. 14.155).

1. Eq. 14.6 gives incorrect results, if the configurations sampled in the reference state A (λ = λA)
do not correspond to low energy configurations in the end states Bm. This is especially the case
when real atoms are changed into dummy atoms or vice versa. A remedy is to introduce soft-core
non-bonded interactions such as Eq. 14.75 - Eq. 14.77 in state A at positions where real atoms are
to be changed into dummy atoms or vice versa. In this way the sampling of this new reference state
A′ is biased such that it encompasses the parts of configuration space accessible to the system in
state A and in the end states Bm. So, a non-physical state A′ is simulated which is chosen such that
the accuracy of the free energy differences ∆FAA′ and ∆FBmA′ (m = 1,2, ..., M) calculated using
Eq. 14.6 is optimized.

2. The difference in free energy between the various physical states A and Bm can then be determined
as

∆FBmA = ∆FBmA′ −∆FA′A with m = 1, 2, ...,M. (14.156)

Use of the perturbation formula in combination with soft-core non-bonded interaction sites and a non-
physical reference state that is simulated makes estimation of a series of free energy differences based on a
single simulation possible.

The energetic contribution ∆UBA and the entropic contribution T ·∆SBA to the total free energy difference
∆FBA can be obtained using the formulae143,145

∆UBA = 〈H(λB)〉λB
− 〈H(λA)〉λA

=
〈
H(λB)e

+[∆FBA−[H(λB)−H(λA)]]/kBT
〉
λA

− 〈H(λA)〉λA

(14.157)

and

T∆SBA = ∆UBA −∆FBA. (14.158)

Program dg ener can be used to obtain free energy differences ∆FλA+∆λ from the time series of the
Hamiltonian in a reference state A′ (molecular topology) and in states A, Bm. It calculates a perturbation
formula free energy difference Eq. 14.9. Because only the difference of the Hamiltonian is included in this
equation, only those terms in the Hamiltonian that are different in states A, Bm from state A’ need to be
re-evaluated from a molecular trajectory (e.g. using program ener, or by performing an analysis running
over an existing stimulation (block READTRAJ, see Chap. 4-8).

14.8. Umbrella sampling

The TI and perturbation formulae are very powerful when a change in free energy is associated with a
change of chemical composition of the molecular system. In some cases, one wishes to consider the free
energy as a function of a given geometrical parameter Q , the reaction coordinate, e.g. the distance r ij
between reactants i and j in a chemical reaction or a torsional angle ϕn in case of a conformational change.
The free energy as a function of Q , F (Q), is called a potential of mean force or a free energy profile. It is
defined as130

F(Q′) = −kBT ln

[
∫ ∫ δ(Q(rr)−Q′)e−

H
kBT dppdrr

∫ ∫ e−
H

kBT dppdrr

]
(14.159)

= −kBT lnP (Q′) (14.160)

where the function Q(rr) defines the reaction coordinate in terms of the atomic coordinates rr, δ is the Dirac
delta function and the probability to find the system at Q = Q ′ is P (Q′). If during a single simulation the
sampling along the whole range of Q′-values has been sufficient, F (Q′) can be directly calculated from the
probability distribution P (Q′) as obtained from the trajectory. However, if there are free energy barriers

2-174

A A′

B1

B2

BM

.

.

.

Figure 14.2. The free energy differences ∆FBmA between the physical states A and B1, B2,
...Bm are obtained by using an ensemble for the non-physical state A′ (λ = λA′) which should
contain soft-core non-bonded interaction sites for all atoms that have a different non-bonded
interaction between states A and BM (m = 1, 2, ...,M), and applying the perturbation
formula between λ = λA′ and to λ = λA and λ = λBm (m = 1, 2, ...,M), and Eq. 14.156.

much higher than kBT along Q ′, these may inhibit a proper sampling along Q ′. In that case, the sampling
may be improved by applying a biasing function.

In the so-called umbrella-sampling technique (US)88 an auxiliary potential energy term V(spec)(Q(rr)) is
added to the Hamiltonian of the system, which biases the sampling. Simulation including the umbrella
potential energy term then yields the biased probability distribution P bias(Q′), from which the unbiased
probability distribution P (Q′) can be obtained through the relation130

P (Q′) = P bias(Q′)
e
+V(spec)(Q′)

kBT

< e
+V(spec)(Q′)

kBT >

(14.161)

where < ... > denotes an average over the simulations. The umbrella sampling technique can in principle

be applied with any kind of biasing potential energy term V(spec)(Q′, however mainly two types of umbrella
potential energy functions are used.

1. Umbrella potential energy functions constructed to obtain uniform or quasi-uniform sampling. These
functions typically will have to be created through an adaptive procedure, e.g. LE and LEUS. This
is further explained in (Sec. 9.13.1).

2. Windowing umbrella potential energy functions, where the umbrella potential energy function is
constructed to sample a specific range of Q .

In the windowing umbrella sampling method a restraining potential energy function is added V(spec) =

V(res)(Q0) which restrains the sampling to within a given range of the reaction coordinate Q′ around a given
value Q′ = Q0. For the free energy profile F(Q′;Q0) around Q0 we then find

F(Q′;Q0) = −kBT lnP bias(Q′;Q0)− V(res)(Q′;Q0)

+kBT ln < e
+

V(res)(Q;Q0)
kBT >Q0 −kBT lnZ

= −kBT lnP restr(Q′;Q0)− V(res)(Q′;Q0) + C(Q0) (14.162)

where the (unknown) partition function of the molecular system is indicated by Z. Since the last two terms
in the first part of Eq. 14.162 do not depend on Q′, they can be written as a constant depending only on Q0,
C(Q0). So using Eq. 14.162 the free energy profile within a given range around Q0 can be determined up to
a constant. The overall free energy profile F(Q′) can then be obtained by a series of umbrella simulations
restrained around the values Q0,Q1,Q2, . . . and by adding different constants C(Qi) to the local free energy
profiles F(Q′;Qi) so that the resulting free energy profile F(Q′) is a continuous function of the reaction
coordinate Q′61,62,132,146.

2-175

The atom-atom distance restraining function Eq. 9.3, V(dr), discussed in Sec. 9.3 or the dihedral-angle

restraining function Eq. 9.60, V(tr), discussed in Sec. 9.6 are suitable for use as umbrella potential energy
terms. The force constants k(pr) in Eq. 9.4 or k(tr) in Eq. 9.60 should be chosen sufficiently large to focus
the sampling around rm or ϕn, but not too big in order to avoid too narrow probability distributions around
the points Qi = rm or Qi = ϕn, in which case many simulations would be required to cover the whole range
of Q -values.61,132

Alternatively, the free energy difference between two conformations, separated by high energy barriers
may be elegantly calculated using hidden, perturbed distance restraints or hidden, perturbed dihedral angle
restraints, as explained in Sec. 14.2.10 and Sec. 14.2.11.

14.9. Enveloping Distribution Sampling

Enveloping distribution sampling (EDS) is an alternative approach to calculating the free energy difference
between various pairs of states A and B

∆FBA = FB −FA = −β−1 ln

(ZB

ZA

)
. (14.163)

This free energy difference can be calculated from the energy difference distributions

ρA (∆V ; ∆VBA) = 〈δ [∆V − (VB − VA)]〉A
ρB (∆V ; ∆VBA) = 〈δ [∆V − (VB − VA)]〉B , (14.164)

where 〈...〉X indicates an average over an ensemble sampled at state X , VX (rr) is the potential energy part
of the Hamiltonian HX (pp, rr) = KX (pp) + VX (rr), and ∆VBA(rr) = VB(rr) − VA(rr). In the following the
kinetic part of the Hamiltonian KX (pp) is omitted for simplicity. The free energy difference can be expressed
as147–149

ρB (∆V ; ∆VBA) e
−β∆FBA = ρA (∆V ; ∆VBA) e

−β∆V , (14.165)

indicating that the free energy difference ∆FBA is the energy difference ∆V where the two energy difference
distributions intersect. Sampling of both ρA (∆V ; ∆VBA) and ρB (∆V; ∆VBA) in a single simulation can be
achieved by construction of a reference state R that envelopes the two states of interest. The free energy
difference is then estimated as

∆FBA = −β−1 ln

〈
e−β(VB−VR)

〉
R〈

e−β(VA−VR)
〉
R

. (14.166)

A reference state Hamiltonian which allows sampling of both ρA (∆V ; ∆VBA) and ρB (∆V ; ∆VBA) reads
150–152

VR (rr) = −β−1 ln
{
e−β(VA(r)−ER

A) + e−β(VB(r)−ER
B)
}
, (14.167)

where ER
A and ER

B are energy offset parameters. If the important parts of configuration space of A and B
lie far apart, regions of phase space important to A and to B will be separated by a high barrier on the
potential energy surface of the reference state.

14.9.1. EDS with smoothness parameter s. To lower the energy barrier between the states, a
dimensionless smoothness parameter s > 0 can be introduced:153

VR (rr) = − (βs)
−1

ln
{
e−βs(VA(r)−ER

A) + e−βs(VB(r)−ER
B)
}
, (14.168)

In practice, the statistical efficiency154 strongly depends on the chosen smoothness parameter s.155 In
order to ensure efficient sampling of the regions of phase space important to state A and those important to
state B, the barrier can be decreased by lowering s (s > 0).

In order to estimate multiple free energy differences from a single simulation the reference state Hamilton-
ian has to be generalized to multiple EDS states. Currently three different ways of doing this are implemented
in MD++. All presented Hamiltonians reduce to Eq. 14.167 for two EDS states. A generalized reference
state that uses a single smoothness parameter reads150–153

VR (rr) = − (βs)
−1

ln

N (s)∑

i=1

e−βs(Vi(r)−ER
i)

 , (14.169)

2-176

where N (s) is the number of EDS states. The corresponding equations of motion read

ṙrk(t) = m−1ppk(t) (14.170)

ṗpk(t) = ffk(t) =

(
−∂VR(rr)

∂rrk

)

=

N (s)∑

i=1

e−βs(Vi(rr)−ER
i)

∑N (s)

j=1 e−βs(Vj(rr)−ER
j)

(
−∂Vi(rr)

∂rrk

)

=

N (s)∑

i=1

N (s)∑

j=1,j 6=i

e−βs(∆Vji(rr)−∆ER
ji) + 1

−1(

−∂Vi(rr)

∂rrk

)

, (14.171)

with ∆Vji(rr) = Vj(rr) − Vi(rr) and ∆ER
ji = ER

j − ER
i . Employing a single smoothness parameter s can be

problematic if the important parts of phase space of some states lie far apart (requiring a low s parameter)
and that of others are close (allowing a higher s parameter). Therefore, a generalized reference state that
employs N (s)(N (s) − 1)/2 pairwise smoothness parameters sij can be defined156

VR (rr) = − 1

β
ln

N (s)−1∑

i=1

N (s)∑

j>i

(
e−βsij(Vi(rr)−ER

i) + e−βsij(Vj(rr)−ER
j)
) 1

sij

 1

N (s) − 1

 ,

(14.172)

with the corresponding equations of motion

ṙrk(t) = m−1ppk(t) (14.173)

ṗpk(t) = ffk(t) =

(
−∂VR(rr)

∂rrk

)

=
N (s)−1∑

i=1

N (s)∑

j>i

(
e−βsij(Vi(rr)−ER

i) + e−βsij(Vj(rr)−ER
j)
) 1

sij

∑N (s)−1
l=1

∑N (s)

m>l

(
e−βslm(Vl(rr)−ER

l) + e−βslm(Vm(rr)−ER
m)
) 1

slm

·
[

(−∂Vi(rr)/∂rrk)

1 + e−βsij(∆Vji(rr)−∆ER
ji)

+
(−∂Vj(rr)/∂rrk)

1 + e+βsij(∆Vji(rr)−∆ER
ji)

]}
. (14.174)

However, only (N (s) − 1) sij parameters are necessary to connect all states with each other. Imagine that
the “closest path” from A to C is via B. Then it would suffice to adapt sAB and sBC instead of introducing
a (possibly very low) sAC . This idea has been pursued in the third reference state Hamiltonian156

VR (r) = − 1

β
ln

∑

(N (s)−1)
i,j pairs

(
e−βsij(Vi(rr)−ER

i)+ e−βsij(Vj(rr)−ER
j)
) 1

sij

]
N (s)

2(N (s) − 1)

}
,

(14.175)

with the corresponding equations of motion

ṙrk(t) = m−1ppk(t) (14.176)

ṗpk(t) = ffk(t) =

(
−∂VR(rr)

∂rrk

)

=
∑

(N (s)−1)
i,j pairs

(
e−βsij(Vi(rr)−ER

i) + e−βsij(Vj(rr)−ER
i)
) 1

sij

∑
(N (s)−1)
l,m pairs

(
e−βslm(Vl(rr)−ER

l) + e−βslm(Vm(rr)−ER
m)
) 1

slm

2-177

·
[

(−∂Vi(rr)/∂rrk)

1 + e−βsij(∆Vji(rr)−∆ER
ji)

+
(−∂Vj(rr)/∂rrk)

1 + e+βsij(∆Vji(rr)−∆ER
ji)

]}
. (14.177)

Here, the sum is only performed over (N (s)−1) pairs. The (N (s)−1) pairs are chosen from allN (s)(N (s)−1)/2
pairs such that a maximum spanning tree of sij parameters is obtained. That is, only those EDS end states
that show the closest “distance” in phase space (i.e. allow for the largest sij) are directly connected.

Although the three reference state Hamiltonians (Eq. 14.169, Eq. 14.172, Eq. 14.175) are of increasing
complexity, the computational effort in an MD simulation employing these Hamiltonians is comparable. This
is due to the fact that the bottleneck of the computation is not the combination of the end state energies
and forces to obtain the reference state potential energy (Eq. 14.169, Eq. 14.172, Eq. 14.175) and forces
(Eq. 14.171, Eq. 14.174, Eq. 14.177), respectively, but the computation of these end state energies and forces
themselves.

In order to limit the computational effort, the unperturbed interactions are calculated only once at each
time step, i.e. are not unnecessarily recalculated for each of the N (s)EDS Hamiltonian terms. Only the
perturbed interactions are calculated at every time step for each of the N (s)EDS Hamiltonian terms. The
overhead of an EDS calculation compared to a single, standard MD simulation is, therefore, determined
by the size of the perturbed part of the system. If the number of unperturbed interactions is larger than
the number of perturbed interactions, an EDS simulation of N (s) states will take less computing time than
N (s) independent non-EDS molecular dynamics simulations. If the number of perturbed interactions is
very large, the number of states is small, and the conformational changes involved in the perturbations are
big, standard staging methods such as thermodynamic integration (see Sec. 14.6) would be the method of
choice. EDS will work also in these cases but is not likely to be more efficient than standard approaches.
However, often one is interested in perturbations involving many states, with a rather small number of
perturbed interactions, and rather local conformational changes. A prototypical example would be the
binding of many distinct ligands to a common receptor. Here, the number of perturbed interactions is
much smaller than the number of unperturbed interactions and performing an EDS simulation will be
more efficient than performing all simulations independently. Unlike in staging approaches such as TI no
simulations at “unphysical” intermediate states are performed. Although the reference state itself is an
“unphysical” intermediate state, it is constructed such that the sampling is focused on configurations which
are of importance to the end states.

14.9.2. Accelerated EDS. Since modification of VR (rr) with the smoothness parameter s leads to
distortion of the original energy minima with respect to the coordinates,153 a different approach based on
Accelerated MD157,158 can be chosen to lower large potential energy barriers between end-states. The
continuous accelerated EDS Hamiltonian V∗

R (rr) smoothened with a harmonic potential energy function
which preserves local energy minima reads159,160

V∗
R (rr) =

VR (rr)− Emax−Emin

2 , for VR (rr) ≥ Emax

VR (rr)− 1
2(Emax−Emin)

(VR (rr)− Emin)
2
, for Emax > VR (rr) > Emin

VR (rr) , for VR (rr) ≤ Emin

(14.178)

where VR (rr) is the non-accelerated EDS Hamiltonian given by Eq. 14.167, Emax and Emin are the maximum
and minimum borders of the accelerated region of the EDS Hamiltonian, respectively. The accelerated EDS
equations of motion read

ṙrk(t) = m−1ppk(t) (14.179)

ṗpk(t) = ffk(t) =

(
−∂V

∗
R (rr)

∂rrk

)

=

−∂VR(rr)

∂rr
k

(
Emax−VR(rr)
Emax−Emin

)
, for Emax > VR (rr) > Emin

−∂VR(rr)
∂rrk

, for VR (rr) ≥ Emax,VR (rr) ≤ Emin

(14.180)

2-178

where −∂VR(rr)
∂rr

k
is the negative derivative of the non-accelerated EDS Hamiltonian given by Eq. 14.171 with

a smoothness parameter s = 1.

Adequate accelerated EDS parameters Emax, Emin and energy offset parameters ER
i can be determined

simultaneously during a non-equilibrium parameter search simulation in which the EDS Hamiltonian is
explored freely and EDS parameters are adjusted on-the-fly. An end-state is currently sampled by the EDS

Hamiltonian if its energy
(
V i (r)− ER

i

)
is minimal. If an end-state is sampled, its average energy Vi (r)− ER

i

and standard deviaton of the energy σVi(r) are calculated. Moreover, the average of the maximum transition
energy between states within a state-visit period (a state-visit period is defined as having seen all states at
least once), E‡

max, is calculated. The maximum potential energy barrier between any end-states is now given
by

∆Emax = E‡
max −min

(
V i (r)− ER

i

)
. (14.181)

The upper border for the accelerated region of the EDS Hamiltonian is E‡
max

Emax = E‡
max (14.182)

and the lower border for the accelerated region is calculated such that the maximum potential energy barrier
in an accelerated EDS Hamiltonian V∗

R (rr) is reduced to a value ∆E∗
max. This value can be chosen to be

a multiple of the standard deviation σVi(r) of the energy of the end-state with the lowest average energy

min
(
V i (r)− ER

i

)
.160 The lower border Emin reads

Emin = 2
{
min

(
V i (r)− ER

i

)
+∆E∗

max

}
− E‡

max. (14.183)

If Emin calculated according to Eq. 14.183 is smaller than min
(
V i (r) − ER

i

)
, it is given by

Emin =
2E‡

max∆E
∗
max + 2E‡

maxmin
(
V i (r)− ER

i

)
−
(
E‡

max

)2 −min
(
Vi (r)− ER

i .
)2

2∆E∗
max

. (14.184)

The EDS energy offset parameters ER
i are calculated explicitly from the free-energy differences between

the single end-states with accelerated Hamiltonians V∗
i (rr)

160 which read

V∗
i (rr) =

Vi (rr)− Emax−Emin

2 , for V i (rr) ≥ Emax + ER
i

Vi (rr)− 1
2(Emax−Emin)

(
Vi (rr)− Emin − ER

i

)2
, for Emax + ER

i > V i (rr) > Emin + ER
i

Vi (rr) , for V i (rr) ≤ Emin + ER
i

(14.185)

The energy offset of the first state is arbitrarily set to zero (ER
1 = 0) and all other energy offset parameters

ER
i6=1 are calculated by free energy perturbation given in Eq. 14.6

ER
i6=1 = −kBT ln

(〈
e−[V∗

i6=1(rr)−V∗
R(rr)]/kBT

〉
R

)
+ kBT ln

(〈
e−[V∗

1(rr)−V∗
R(rr)]/kBT

〉
R

)
. (14.186)

To allow for faster adjustment of the energy offset parameters during the parameter search simulation, a
memory relaxation time τ∆V58 is implemented for the exponential averages of the potential energy differences
in analogy to the time-averaged distance restraining function described in Eq. 9.14. The exponential potential
energy differences with a characteristic memory decay time τ∆V read

〈e−[V∗
i (rr)−V∗

R(rr)]/kBT 〉t =
(
1− e−∆t/τ∆V

)
e−[V∗

i (rr)−V∗
R(rr)]/kBT (t) (14.187)

+ e−∆t/τ∆V 〈e−[V∗
i (rr)−V∗

R(rr)]/kBT 〉t−∆t,

2-179

where t is the simulation time and ∆t the simulation time-step. In MD++, the memory decay time τ∆V can
be linearly interpolated over time between two values τA∆V at the beginning of the simulation run and τB∆V
at the end of the simulation run:

τ∆V = τA∆V +
(
τB∆V − τA∆V

) t

ttot
. (14.188)

Here, ttot is the total simulation time of the run. This is especially useful for systems in which the energy
offset parameters are very large. In such cases, τA∆V can be set to a small value to allow for rapid adjustment
of the energy offset parameters at the beginning of the parameter search simulation, while more statistics are
used upon convergence of the energy offset parameters towards the end of the parameter search simulation.

14.9.3. Twin-system EDS. A drawback of the thermodynamic cycle shown in Fig. 14.1 is that the
accuracy of ∆∆F43 = ∆∆F21 can be low if two large, almost equal numbers, are subtracted, e.g. due to a
change in charge state or partial charges between I1 and I2. This problem can be avoided by an alternative
choice of the thermodynamic cycle, shown in Fig. 14.3, in which (i) one state combines the free state and
computational box for one ligand with the bound state and computational box for the other ligand, and (ii)
the two processes of changing ligand I1 into I2 in these free and bound states are carried out in opposite
directions.161 This process directly yields ∆∆F21 and may lead to a smaller change of the energy of the
combined state. In Fig. 14.3, the round brackets denote a periodic computational box with a particular
ligand in water (free) or with a particular ligand bound to the protein in water (bound). The rectangular
brackets denote that the two computational boxes are to be combined into one state or Hamiltonian,

HA = H (I2; free) +H (E; I1; bound) (14.189)

HB = H (I1; free) +H (E; I2; bound)

Using EDS this process can be simulated for a pair of states A and B and two computational boxes 1 and
2, employing the reference state Hamiltonian

VR (rr) = − (βs)
−1

ln
{
e[−βs(VA1(r)+VA2(r)−ER

A)] + e[−βs(VB1(r)+VB2(r)−ER
B)]
}
, (14.190)

where VXi (rr) is the potential energy part corresponding to box i of the Hamiltonian HX (pp, rr). The
corresponding equations of motion read

ṙrk(t) = m−1ppk(t) (14.191)

ṗpk(t) = ffk(t) =

(
−∂VR(rr)

∂rrk

)

=
[
e−βs(VB1(r)+VB2(r)−(VA1(r)+VA2(r))−∆ER

BA) + 1
]−1

(
−∂ (VA1(rr) + VA2(rr))

∂rrk

)

+
[
e+βs(VB1(r)+VB2(r)−(VA1(r)+VA2(r))−∆ER

BA) + 1
]−1

(
−∂ (VB1(rr) + VB2(rr))

∂rrk

)
. (14.192)

Because the potential energy of box 1 does not depend on the configurations in box 2 and vice versa,

∂VA2(rr)

∂rrk
=
∂VB2(rr)

∂rrk
= 0 for particles k in system 1 (14.193)

∂VA1(rr)

∂rrk
=
∂VB1(rr)

∂rrk
= 0 for particles k in system 2

Therefore, the coupling of the two boxes only occurs via the prefactors.

14.9.4. Configurational EDS. The EDS method can also be used to obtain the relative free energy
of different conformations or configurational states. Assume we wish to calculate the free enthalpy difference
between two conformations, α and β, of a molecule, and one or both of them is not the most stable one
of the molecule. We may use the EDS technique to obtain the free enthalpy difference by defining the
EDS reference Hamiltonian as follows. Two restraining energy function terms are defined which restrain
the molecular conformations to conformation α or to conformation β, i.e., Vrest

X (rrN ;Krest
X , rrN0,ξ) where X

= A or B and rrN0,ξ is the set of parameters which characterizes the conformation ξ, ξ = α or β, e.g.,

2-180

❄

E+[(I2)free+(E:I1)bound]

E+[(I1)free+(E:I2)bound]

∆∆F21

Figure 14.3. Alternative thermodynamic cycle with respect to the relative binding of two
inhibitors I1 and I2 to an enzyme E. The symbol ’:’ indicates complexation.

through particular hydrogen-bond distance ranges or torsional-angle ranges, and Krest
X is the restraining

force constant. Thus, the resulting Hamiltonian for the end state X is

VX(rrN) = Vrest
X (rrN ; krestX , rrN0ξ) + V(phys)(rrN) (14.194)

where V(phys)(rrN) is the interaction function of a particular force field. Then, we may construct an EDS
reference-state Hamiltonian:

VR(rr
N ; s, ER

BA) = −β−1s
−1

ln
{
e−βs(Vrest

A (rrN)−ER
A) + e−βs(Vrest

B (rrN)−ER
B)
}
+ V(phys)(rrN)(14.195)

= VEDS,rest(rrN ; s, ER
BA) + V(phys)(rrN)

where s is a smoothness parameter and ER
B − ER

A = ER
BA is an energy offset parameter difference, which

are chosen such as to optimize the sampling of both end states A and B. In the original EDS implementation,
the configurations rrN that are sampled by the reference Hamiltonian HR, i.e., VR, are not assigned to any
conformational states. They are considered90 to belong to state A if

Vrest
A (rrN)− ER

A) < (Vrest
B (rrN)− ER

B) (14.196)

In the case considered here, configurations must be separated into different sets, i.e., different conforma-
tional states: they belong to set α if

Vrest
A (rrN) ≤ Ethres

α and Vrest
B (rrN) > Ethres

β (14.197)

they belong to set β if

Vrest
A (rrN) > Ethres

α and Vrest
B (rrN) ≤ Ethres

β (14.198)

or they may belong to neither of them, called sets γ and δ with set γ defined by

Vrest
A (rrN) > Ethres

α and Vrest
B (rrN) > Ethres

β (14.199)

and set δ defined by

Vrest
A (rrN) ≤ Ethres

α and Vrest
B (rrN) ≤ Ethres

β (14.200)

Generally, set δ should contain no or only a few configurations in order to make a meaningful distinction
between sets α and β. Here, the configurations that belong to sets α and β are defined via an energy
threshold criterion Ethres

ξ , which maps configurations rrN onto an energy Vrest
X (rrN) using the same function

Vrest
X (rrN) that is used in the reference Hamiltonian. This means that the configurations that belong to

sets α and β are defined through Eqs. 14.197 and 14.198, respectively. We note that these sets α and β
differ from the conformational ensembles A and B that are through the end-state Hamiltonians defined by
Eq. 14.194. Alternatively, the conformational sets α and β could be defined using a geometric measure such
as an atom-positional root-mean-square deviation (RMSD) from a given configuration, either in Cartesian

2-181

or in internal torsional coordinates, instead of using the restraining functions Vrest
X and threshold energies

Ethres
ξ . Configurations then belong to set α if

RMSD(rrN , rrNα) ≤ RMSDthres
α and RMSD(rrN , rrNβ) > RMSDthres

β (14.201)

they belong to set β if

RMSD(rrN , rrNα) > RMSDthres
α and RMSD(rrN , rrNβ) ≤ RMSDthres

β (14.202)

or they belong to neither of them, called sets γ and δ:

γ : RMSD(rrN , rrNα) > RMSDthres
α and RMSD(rrN , rrNβ) > RMSDthres

β (14.203)

δ : RMSD(rrN , rrNα) ≤ RMSDthres
α and RMSD(rrN , rrNβ) ≤ RMSDthres

β (14.204)

Again, the thresholds RMSDthres
ξ should be chosen such that set δ contains no or only a few configurations.

In the procedure and expressions used in the optimization of the parameters s and ER
B = ER

BA (ER
A is

standardly set to zero in two-state EDS), configurations that belong to sets γ and δ can be ignored. Thus,
we get for updating the energy offset ER

B (corresponds to eq 13 of ref155):

ER
B (new) = − 1

β
ln

〈{
e−β(Vrest

A −Vrest
B +ER

B(old)) + 1
}−1

〉

R,notγ,notδ

+ ER
B (old) (14.205)

where configurations of sets γ and δ are excluded when calculating the ensemble average over the ensemble
of the reference state R. For updating or rather choosing a new s parameter, we calculate

sA = −
{
ln
〈
e−β(|Vrest

B −Vrest
A |−ER

BA)
〉
A

}−1

(14.206)

and

sB = −
{
ln
〈
e−β(|Vrest

A −Vrest
B |+ER

BA)
〉
B

}−1

(14.207)

and take the lowest s value as the new s

s = min(sA, sB) (14.208)

which corresponds to eq 14 of ref155. Ensembles A and B are obtained by reweighting the configurations
generated using the reference state R to the corresponding end state A or B. For a quantity Q(rrN), which
is a function of the coordinates rrN , we have

〈Q〉X =

∫
Q(rrN)e−βVX(rrN)drrN∫

e−βVX (rrN)drrN
(14.209)

or using the ensemble R

〈Q〉X =

〈
Qe−β(VX−VR)

〉
R〈

e−β(VX−VR)
〉
R

(14.210)

Subsequently, the ensemble averaging in Eq. 14.210 could be restricted to the sets α and β. In that case,
these restricted ensemble averages can be written as

〈Q〉A =

〈
Qe−β(VA−VR)

〉
R,notγ,notδ〈

e−β(VA−VR)
〉
R,notγ,notδ

(14.211)

2-182

=

〈
Qe−β(Vrest

A −VEDS,rest(s,ER
BA))

〉
R,notγ,notδ〈

e−β(Vrest
A −VEDS,rest(s,ER

BA))
〉
R,notγ,notδ

and

〈Q〉B =

〈
Qe−β(VB−VR)

〉
R,notγ,notδ〈

e−β(VB−VR)
〉
R,notγ,notδ

(14.212)

=

〈
Qe−β(Vrest

B −VEDS,rest(s,ER
BA))

〉
R,notγ,notδ〈

e−β(Vrest
B −VEDS,rest(s,ER

BA))
〉
R,notγ,notδ

In this way, erratic irrelevant energy values due to irrelevant configurations not belonging to sets α and
β are excluded from influencing the parameter optimization for sampling of sets α and β. Furthermore,
configurations which belong to set δ that have low Vrest

X values are excluded too. The free enthalpy difference
between two end-state Hamiltonians B and A in the EDS simulation is evaluated through155

∆GBA = GB −GA = ∆GBR −∆GAR = − 1

β
ln

〈
e−β(HB−HR)

〉
R〈

e−β(HA−HR)
〉
R

(14.213)

The expression used to obtain the free enthalpy difference between conformational sets β and α from an
ensemble generated using the reference-state Hamiltonian VR(rr

N ; s, ER
BA) reads

∆Gβα = Gβ −Gα == − 1

β
ln

{
Nβ(V(phys))

Nα(V(phys))

}
(14.214)

where Nξ(V(phys)) is the number of configurations belonging to set ξ in an ensemble generated using

V(phys) . In terms of the ensemble R generated using the reference-state potential energy VR, we get

∆Gβα = − 1

β
ln

〈
e+βVEDS,rest

〉
R,setβ〈

e+βVEDS,rest
〉
R,setα

× Nβ(VR)

Nα(VR)

(14.215)

In other words, the ensemble R that was generated using the biasing potential energy function VEDS,rest

is reweighted using Eq. 14.215, and the configurations of the sets α and β are used in the averaging via their
relative populations in the ensemble R, i.e., Nα(VR) and Nβ(VR)

Nβ(VR)

Nα(VR)
=

〈
δ(rrN − rrNβ)

〉
R

〈δ(rrN − rrNα)〉R
(14.216)

Eq. 14.215 can be simply rewritten as

∆Gβα = − 1

β
ln
Nβ(VR)

Nα(VR)
− 1

β
ln
〈
e+βVEDS,rest

〉
R,setβ

+
1

β
ln
〈
e+βVEDS,rest

〉
R,setα

(14.217)

Eq. 14.217 is equivalent to the expression used in conformational state-specific one-step perturbation.162 In
other words, the EDS reference-state Hamiltonian can be used as the reference state in one-step perturbation,
ensuring sufficient sampling of the conformational end states, which is reached by optimizing the parameters
s and ER

BA . If simulations based on the end state potential energy functions VX(rrN), see Eq. 14.194, are

2-183

available, these ensembles X = A and X = B can also be used to obtain the free enthalpy difference between
conformational sets β and α:163

∆Gβα = − 1

β
ln

〈
e+βVrest

B

〉
B,setβ〈

e+βVrest
A

〉
A,setα

×
〈1〉B,setβ

〈1〉A,setα

×
〈
e−β(VM−VA)

〉
A〈

e−β(VM−VB)
〉
B

(14.218)

in which VM is an intermediate state connecting two end states. If we use the EDS reference-state
Hamiltonian as the intermediate state, the ensemble averages in the last factor of Eq. 14.218 can be written
as

〈
e−β(VM−VX)

〉
X

=
〈
e−β(VEDS,rest(s,ER

BA)−Vrest
X)

〉
X

(14.219)

In164 it is shown that this type of EDS can be efficiently used to obtain the relative free energy of a rather
unstable conformation or fold.

2-184

CHAPTER 15

QM/MM simulation

15.1. Introduction

In the combined quantum-mechanical/molecular-mechanical (QM/MM) methodology, the simulated sys-
tem is divided spatially into a region that is treated quantum-chemically, e.g. the reactive center of a protein,
and a region that is described by a molecular-mechanical force field, e.g. the remaining residues of the protein
and the solvent.

In this chapter, the following notation is used: a subscript denotes the subsystem or region, QM or MM,
that is described while a superscript indicates the type of the Hamiltonian, quantum-mechanical (QM) or
classial-mechanical (CM).

15.2. Hamiltonian

The Hamiltonian, Ĥ, of the simulated system can be written as the sum of the Hamiltonians of the
individual QM and MM subsystems and an additional term, V̂QM/MM describing the interactions between
them,

Ĥ = ĤQM +HMM + V̂QM/MM , (15.1)

where Ĥ = K̂+ V̂ , with K̂ the kinetic energy and V̂ the potential energy term. Here, the quantum operator
ĤMM which contains a function HMM and the unity operator will be simply denoted as HMM .

The Hamiltonian of the quantum subsystem can be expressed as the sum of a quantum term ĤQM

QM and a

classical term HCM
QM ,

ĤQM = ĤQM

QM +HCM
QM . (15.2)

Accordingly, the coupling term, V̂QM/MM , can be written as

V̂QM/MM = V̂QM

QM/MM + VCM
QM/MM . (15.3)

It typically takes into account bonded as well as nonbonded interactions between the QM and MM sub-
systems. However, the current implementation165 only holds for noncovalent interactions at the QM/MM

boundary. To evaluate the electrostatic interactions between the QM and MM regions, V̂QM

QM/MM , the MM

atoms a are included in the QM Hamiltonian as positionally fixed external point charges (electrostatic em-
bedding scheme). When applying the Born–Oppenheimer approximation, the resulting QM Hamiltonian (in
atomic units) of the system reads

ĤQM
= ĤQM

QM + V̂QM

QM/MM

=
(∑

e− 1
2∇2

e +
∑

e

∑
e′>e

1
|ree′ |

−∑n

∑
e

Zn

|re−Rn|

+
∑

n

∑
n′>n

ZnZn′

|Rnn′ |

)

+
(∑

n

∑
a

ZnZa

|Rna| −
∑

e

∑
a

Za

|re−Ra|

)
,

(15.4)

where e and e′ run over QM treated electrons, n and n′ run over QM nuclei, Z is the charge of the QM
nuclei and MM atoms, respectively and a runs over all MM atoms within a given cutoff RQM/MM around
the QM region or solute. This Hamiltonian is expressed using the standard (non-SI) units commonly used

2-185

in the quantum chemistry community. Van der Waals interactions between the QM nuclei and MM atoms,
VCM
QM/MM or VvdW

QM/MM , are treated on the basis of classical mechanics.

The classical potential energy term of the system is given by

VCM (rn, ra) = VCM
MM (ra) + VvdW

QM/MM (rn, ra) + VvdW
QM (rn)

=
(∑

bonds i
1
2K

b
i [bi − b0i]

2 +
∑

bond angles i
1
2K

θ
i [θi − θ0i]

2

+
∑

torsions iK
ϕ
i [1 + cos[miϕi − δi]] +

∑
improper torsions i

1
2K

ζ
i [ζi − ζ0i]

2

+
∑

a

∑
a′>a 4ǫaa′

[(
σaa′

raa′

)12
−
(

σaa′

raa′

)6]
+
∑

a

∑
a′>a

1
4πǫ0ǫcs

qaq
′
a

raa′

+
∑

a

∑
a′>a

qaqa′

4πǫ0ǫcs

(− 1
2Crf r

2
aa′)

R3
rf

+
∑

a

∑
a′>a

qaqa′

4πǫ0ǫcs

(1
2Crf−1)

Rrf

)

+

(∑
n

∑
a 4ǫna

[(
σna

rna

)12
−
(

σna

rna

)6])

+

(∑
n

∑
n′ 4ǫnn′

[(
σnn′

rnn′

)12
−
(

σnn′

rnn′

)6])
,

(15.5)

where the first four terms describe covalent, bonded interactions with K denoting the particular force
constant and the index 0 indicating an ideal bond length, angle or torsional angle value166,167. The next
four terms describe the classical nonbonded interactions within the MM region, namely the van der Waals
interactions in the form of a Lennard-Jones term, the electrostatic Coulomb interactions between (partial)
atomic charges q, and the distance-dependent and distance-independent interaction terms for the reaction
field with Rrf being the reaction field cutoff radius. The ninth term accounts for the aforementioned van
der Waals interactions between the nuclei of the QM region and the atoms of the MM region and the last
term specifies the van der Waals interactions between the nuclei of the QM region.

For the integration of Newton’s equations of motion in molecular dynamics simulations, the force on each
particle, i, is determined from the gradient of the total potential energy of the system at the position of
particle i, where i can be either a QM nucleus or a MM atom,

fi = − ∂

∂ri
V(rn, ra). (15.6)

Using Eq. 15.4 and Eq. 15.5, the total force on particle i can be written as the sum of the different contri-
butions from the QM and CM Hamiltonians, respectively,

fi = − ∂

∂ri
VQM (rn, ra)− ∂

∂ri
VCM (rn, ra), (15.7)

where VQM is given by

VQM =

〈
Ψ|ĤQM

QM + V̂QM

QM/MM |Ψ
〉

〈Ψ|Ψ〉 . (15.8)

The implementation of the GROMOS QM/MM scheme165 is based on direct communication between
GROMOS and the particular quantum-chemical program via code-integrated interfaces that execute system
calls to the particular QM executable of MNDO168 or TURBOMOLE169, respectively. A general description
of the object-oriented C++ architecture of the GROMOS software can be found in170. The QM/MM
functionality of GROMOS was implemented in the new class, QMMM Interaction, within the namespace
interaction. At every MD step, single-point full-SCF calculations are carried out by the specified QM
program, MNDO or TURBOMOLE. The GROMOS software automatically generates the program specific
input files for the QM calculation including information about the type and position of the QM atoms as
well as the position and charges of the MM atoms to be included in the QM Hamiltonian as external point
charges. If periodic boundary conditions are applied, the system is gathered beforehand, with respect to the
first atom of the list of QM atoms, in order to determine the MM atoms within the specified QM/MM cutoff
radius for evaluation of the electrostatic interactions. The charge group based QM/MM cutoff radius is a
variable input parameter (RCUTQ). Subsequent to the QM calculation, the QM energies and gradients are

2-186

extracted from the corresponding output files and converted to SI-like units which are generally used in the
GROMOS data files.

15.3. Initialization, simulation and analysis

Preliminary to a GROMOS QM/MM simulation the following change with respect to a conventional
GROMOS topology is needed: explicit hydrogen atoms are to be added for the part of the system to be
treated quantum-mechanically (no united atoms). During the course of a GROMOS QM/MM simulation
GROMOS topological information considering bonded and electrostatic interactions of atoms that are part
of the defined QM region will not be used (see Eq. 15.5).

To apply the GROMOS QM/MM functionality the switchNTQMMM has to be set to 1 with NTQMSW
being either 0 (MNDO) or 1 (TURBOMOLE). In QM/MM simulation the timestep should be chosen smaller
(e.g. 0.5 fs) than in classical MD simulation. If NTQMMM = 1, an additional QMMM specification file
has to be provided. This file has to contain the specific input parameters for the quantum-chemical program
package to be used as well as the paths to their executables.

Analysis of the GROMOS QM/MM trajectories can be performed straightforward using the GROMOS++
program package.

2-187

CHAPTER 16

Replica Exchange (RE) Molecular Dynamics

16.1. Introduction

Replica exchange method (REMD)171–174,175 is developed to enhance sampling of the conformational
space. With this technique, a number of replicas of a system that do not interact with each other are
simulated simultaneously. These replicas may represent different thermodynamic state points (T -REMD) or
different Hamiltonians (H-REMD).

For a system of Na atoms of mass mk (k = 1,...,Na) with coordinate qq ≡ {qq1, ..., qqNa} and momentum
vectors ppqq ≡ {p1, ...,pNa}, the HamiltonianH(qq, ppqq) is the sum of the kinetic energy K(ppqq) and the potential

energy V (qq):

H(qq, ppqq) = K(ppqq) + V(qq) (16.1)

where

K(ppqq) =

Na∑

k=1

p2
k

2mk
(16.2)

In the canonical ensemble of a REMD simulation, the state is specified as

X = {..., xim, ..., xjn, ...} (16.3)

where x ≡ (qq, ppqq), x
i
m the ith replica simulated at the mth condition. The average kinetic energy at

temperature T is given by

< K(ppqq) >T =<

Na∑

k=1

p2
k

2mk
>=

3

2
NakBT (16.4)

The weight factors for this state is given by the product of Boltzmann factor for individual non-interacting
replicas,

WRE(X) = exp{−
M∑

i=1

βm(i)Hm(qq[i], ppqq
[i])} (16.5)

During the simulations, after a predefined time interval, a Monte Carlo exchange between two replicas s′

and s′′ is attempted with exchange probability

P (s′ ↔ s′′) =
W(S′′)
W(S′)

=
w(S′ ↔ S′′)
w(S′′ ↔ S′)

= exp(−∆) (16.6)

where ∆ is defined as:

T -REMD:

∆ = ((kBT s′)
−1 − (kBT s′′)

−1)(U(x) − U(x)) (16.7)

H-REMD:

∆ = [(U(xs′′ ;λs′)− U(xs′ ;λs
′))− (U(xs′′ ;λs′′)− U(xs′ ;λs

′′))]/(kBT) (16.8)

2-189

16.2. Temperature replica exchange MD

Using T -REMD, N independent copies (replicas) of the systems are propagated simultaneously at different
fixed temperatures. At regular time intervals, pairs of replicas at successive temperatures are exchanged
according to a Metropolis criterion allowing individual replicas to sample a range of temperatures. At higher
temperatures the increased thermal energy facilitates the exploration of conformational space and allows the
system to cross barriers that are difficult to cross at the temperature of interest on a given time scale.

Of the M non-interacting copies (or replicas) of the original system in the canonical ensemble (NVT) at
M different temperatures Tm (m=1,...,M), there is a one-to-one correspondence between replicas (i=1,...,M)
and temperatures (m=1,...,M),

X = (x
[i(1)]
1 , ..., x

[i(M)]
M) = (x

[1]
m(1), ..., x

[M]
m(M)) (16.9)

where X stands for a ”state” in this generalized ensemble, and x
[i]
m the replica i at the temperature Tm, and

x[i]m ≡ (qq[i], ppqq
[i])m (16.10)

We can write a permutation function to show the one-to-one correspondence:{
i = i(m) ≡ f(m);

m = m(i) ≡ f−1(i)
(16.11)

Since the replicas are non-interacting, the weight factor for the state X is given by the product of Boltzmann
factors for each replica (or at each temperature):

WRE(X) = exp{−
M∑

m=1

βm(i)H(qq[i], ppqq
[i])} = exp{−

M∑

i=1

βmH(qq[i(m)], ppqq
[i(m)])} (16.12)

For the exchange of a pair of replicas i (at Tm) and j (at T n),

X = (..., x[i]m , ..., x
[j]
n , ...) → X′ = (..., x[j]

′

m , ..., x[i]
′

n , ...) (16.13)

The new permutation function f ′ is:{
i = f(m) → j = f ′(m);

j = f(n) → i = f ′(n)
(16.14)

In detail, the two exchanged replicas are
{
x
[i]
m ≡ (qq[i], ppqq

[i])m → x
[j]′

m ≡ (qq[j], ppqq
[j]′)m

x
[j]
n ≡ (qq[j], ppqq

[j])n → x
[i]′

n ≡ (qq[i], ppqq
[i]′)n

(16.15)

This is equal to the exchange of a pair of temperatures Tm and T n for the corresponding replicas i and j:
{

x
[i]
m ≡ (qq[i], ppqq

[i])m → x
[i]′

n ≡ (qq[i], ppqq
[i]′)n

x
[j]
n ≡ (qq[j], ppqq

[j])n → x
[j]′

m ≡ (qq[j], ppqq
[j]′)m

(16.16)

where

ppqq
[i]′ ≡

√
Tn

Tm
ppqq

[i])

ppqq
[j]′ ≡

√
Tm

Tn
ppqq

[j])
(16.17)

This means that the velocities of all atoms in the replicas will be uniformly rescaled by a factor defined by
the square root of the ratio of the two temperatures.

To ensure the convergence of this exchange process towards an equilibrium distribution, a detailed balance
condition is imposed on the transition probability w(X → X′) :

WRE(X) w(X → X′) = WRE(X
′) w(X′ → X) (16.18)

then
w(X→X′)
w(X′→X) = exp{−βm[K(ppqq

[j]′) + V(qq[j])]− βn[K(ppqq
[i]′) + V(qq[i])]

+βm[K(ppqq
[i]) + V(qq[i])] + βn[K(ppqq

[j]) + V(qq[j])]}
= exp[−(βn − βm)(V i − Vj)]

= exp(−∆)

(16.19)

2-190

and i, j,m, n are related by the permutation function before the exchange

i = f(m), j = f(n) (16.20)

This can be satisfied by the usual Metropolis criterion:

w(X → X′) ≡ w(x
[i]
m | x[j]n) =

{
1,

exp(−∆)

for∆ ≤ 0

for∆ > 0
(16.21)

By driving replicas to explore temperature space, T -REMD allows the system to cross energetic barriers
and access regions of the conformational space difficult to reach at low temperatures.

In order to ensure a uniform exchange probability the temperatures were chosen according to the relation:

T i = T 0 exp(i c) (16.22)

where T 0 and c can be varied to give a desired exchange ratio.

Assuming β1 < β2 < ... < βM , a T -REMD simulation is then done by alternately performing the two
steps:

1. each replica in canonical ensemble of the fixed temperature Tm is simulated simultaneously and
independently for a certain number of MC or MD steps;

2. a pair of replicas at neighboring temperatures, say x
[i]
m and x

[j]
m+1, are exchanged with the probability

w(x
[i]
m | x[j]n).

For optimal performance of T -REMD, it is necessary to choose an appropriate temperature distribution.
This can be done through an iterative procedure.

For the average at any intermediate temperature of R independent simulations, one can use the multiple-
histogram reweighting techniques (WHAM), and the average of a physical quantity A at any intermediate
temperature T = 1/kBβ is given by

< A >=

∑
V
A(V)P (V ;β)
∑
V
P (V ;β) (16.23)

where

P (V ;β) =

R∑
m=1

g−1
m Nm(V)e−βV

R∑
m=1

nmg
−1
m efm−βmV

(16.24)

and

e−fm =
∑

E

P (V ;βm) (16.25)

Here gm = 1+2τm, and τm is the integrated autocorrelation time at temperature Tm. Nm(V) and nm are
the energy histogram and the total number of samples obtained in the mth run, respectively. In T -REMD
nm = Nsim. P (V ;β) in Eqs. 16.24 and 16.25 are solved self-consistently by iteration.

16.2.1. Simulation checks. To examine whether a replica-exchange simulation indeed performed
properly, there are three points to check:171

- whether the temperatures are optimally distributed;
the optimal temperature distributions imply that all the acceptance ratios are the same, resulting
in a free random walk in the replica temperature space.

- whether the number of replica temperatures is sufficient;
the number of replica temperatures is sufficient if the acceptance ratios are not too small, say, greater
than 0.1.

- whether the highest temperature is sufficiently high so that no trapping in a local energy-minimum
occurs;

2-191

16.2.2. Factors determining the efficiency. T -REMD has been shown to be efficient at the lowest
temperature, and meanwhile it provides converged distributions over the range of temperatures used in T -
REMD simulations.175 The efficiency and convergence are determined by the mixing/sorting of the replicas,
which is the source of the main gain of this method, and can also bring false precision and be misinterpreted
as true convergence or increased sampling efficiency.176.

A sensible choice of intervals between exchange trials, ideally equal to the correlation time of the potential
energy following an exchange, strongly depends on the size of the system. For small systems, the exchanges
were mainly determined by the fluctuations within the solvent rather than the conformation of the solute,
which is not the case for large systems, and for large systems, the conformation of the solute may require
much longer time to reach the convergence.127

16.3. Hamiltonian replica exchange MD

Hamiltonian replica exchange MD can be realized by means of perturbation of the force field. Hamiltoni-
ans can be perturbed in different ways, see Sec. 14.2. In GROMOS, Hamiltonian replica exchange MD is
performed by assigning different values of the coupling parameter λ to the different replicas. Note that the
use of individual λ-values (Sec. 14.4) offers additional flexibility in this definition. For example, simulations
may be set in which the replicas differ only in the softness of specific interactions, but not in the nonbonded
interaction parameters.174

Use of H-REMD in free-energy calculations using e.g. thermodynamic integration can improve the con-
vergence, in particular when slow relaxation of some degrees of freedom is to be expected.177 A condition
for improved convergence is that the barriers leading to slow relaxation are absent in at least one replica. By
using individual λ-values, such a replica may be explicitly designed. Furthermore, to improve the chances of
relaxation in this replica, multiple replicas at the same value of λ may be included.174

While in T -REMD the optimal distribution of temperatures may be derived using the iterative procedures
outlined above, this may be more cumbersome for H-REMD. Using some preliminary simulations, one may
design a mimicking approach from which the optimal sampling efficiency may be obtained.178

16.4. Initialization, simulation and analysis

In GROMOS, REMD is implemented through the program repex mpi. This will start the replicas as
separate MPI processes and control all the file handling and exchanges.

16.4.1. Set up of a RE simulation. The time between replica-exchange switches is set by the switch
NSTLIM in the STEP block. Specific settings for the REMD simulation are defined in the REPLICA block.
To do a T -REMD, the total number of temperatures is defined by the switch NRET and the temperature
of each replica by RET:

NRET number of replica exchange temperatures

RET(1..NRET) temperature for each replica

and the scaling of temperature can be achieved by the switch LRESCALE:

LRESCALE 0: don’t scale temperatures after exchange trial
1: scale temperatures after exchange trial

To do H-REMD, one needs to define the number of λ-values by NRELAM, and the λ-value of each replica
by RELAM. In addition, the timestep for each λ-replica can be specified separately, to allow for changes in
the grain-level between the replicas:51

NRELAM number of replica exchange lambda values

RELAM(1..NRELAM) lambda value for each lambda-replica

RETS(1..NRELAM) timestep of every λ-replica

2-192

Furthermore, the following switches in the REPLICA block control the REMD simulation

NRETRIAL number of overall exchange trials

NREQUIL number of exchange periods to equilibrate; no switches are performed in the first
NREQUIL exchange periods

CONT specifies if the simulation is a continuation from a previous REMD simulation.
0: input coordinates for all replicas are read from a single file
1: input coordinates for all replicas are read from separate files (see below)

Replica exchanges are attempted every NSTLIM steps. In repex mpi, switches are only attempted be-
tween neighbouring replicas (in T for T -REMD, or in λ for H-REMD). At odd trial attempts (i.e. after
NSTLIM, 3xNSTLIM, 5xNSTLIM, ... timesteps), switches are attempted between replica pairs (1,2), (3,4),
etc. At even trial attempts (i.e. after 2xNSTLIM, 4xNSTLIM, ... timesteps) switches are attempted between
replica pairs (2,3), (4,5), etc.

The simulation may start with a single structure as the starting coordinates for all replicas, or each replica
with a specified structure individually. If CONT = 0 in the REPLICA block, repex mpi will read a single
coordinate file as starting structure for all replicas. If CONT = 1 in the REPLICA block, repex mpi will
take the input parameter specified for the @conf flag, add the replica number to the filename and try to
read the structure for every replica individually.

16.4.2. Analysis of a RE trajectory. For all output files, repex mpi takes the filename as specified
by the appropriate option and adds the replica number to the specified filename. Standard output for the
individual replicas is written to files, specified by the @repout option. Furthermore, through the @repdata

option an additional output-file is specified, which gives an overview of the switching attempts, the relevant
energies, switching probabilities and switching acceptances.

The configurations generated in a REMD simulation of M replicas can be analyzed to obtain equilibrium
averages for a target distribution P , where we can further derive an equilibrium property with eq. Eq. 16.23.
Note that the trajectory files written out by repex mpi contain the data pertaining to a single state of the
simulation (temperature or λ-value), i.e. the coordinates and velocities are not continuous in time.

It is also possible to obtain kinetic information from a REMD simulation.179 Due to the discontinuous
feature of REMD simulations, it is necessary to use short-time propagators for the analysis, concerning that
it is possible to calculate short-time correlation functions accurately with REMD. For a replica in T−REMD
or H−REMD, the maximum time scale is given by the simulation time between two accepted exchanges. In
the sense of conformational transitions, a master equation may be constructed by dividing the whole space
into N states,

dPi(t)

dt
=

N∑

j=1

[kijPj(t)− kjiPi(t)] (16.26)

where Pi(t) the population of state i, kij ≥ 0 the transition rate from states j to i.

The Eq. 16.26 may be rewriten as

dP(t)

dt
= KP(t) (16.27)

where K is the transition rate matrix, and its diagonal elements are

kii = −
∑

j 6=i

kji < 0 (16.28)

The propagators are defined as the probability of being in state i at time 0 and j at time t and have the
form

p(j, t|i, 0) = [exp(Kt)]ji (16.29)

The elements of the matrix K may be estimated from a maximum-likelihood procedure. First the number
of transitions Nji from state i to j is determined within a time interval ∆t, then the coefficients of the master

2-193

equation may estimated from the likelihood maximization,180 where the logarithm of likelihood is defined
as

lnΛ =
N∑

i=1

N∑

j=1

Njiln p(j,∆t|i, 0) (16.30)

The above approach has been used to study the transition rates of a helical peptide in water between its
microscopic conformational states or between folding and unfolding.179

2-194

CHAPTER 17

Derivatives of the force-field terms

17.1. Bond stretching force-field term

Quartic case: the forces on atoms i and j due to formula (Eq. 5.5) are

f i = −∂V
bond,q
n

∂b2n

∂b2n
∂ri

= −Kbn [b2n −b20n]rij

(17.1)

and

f j = −f i . (17.2)

Harmonic case: the forces on atoms i and j due to formula (Eq. 5.6) are

f i = −∂V
bond
n

∂bn

∂bn
∂ri

= −Kharm
bn

[bn −b0n] rijrij

(17.3)

and

f j = −f i. (17.4)

17.2. Bond-angle bending force-field term

Cosine-harmonic form:

The forces on atoms i, j and k due to the n-th term in Eq. 5.11 are

f i = − ∂V (θ,c)

∂ cos θn

∂ cos θn
∂ri

= −k(θ,c)n [cos θn − cos θ0n]
[

rkj

rkj
− rij

rij
cos θn

] 1

r ij

(17.5)

and

fk = − ∂V (θ,c)

∂ cos θn

∂ cos θn
∂rk

= −k(θ,c)n [cos θn − cos θ0n]
[

rij
rij

− rkj

rkj
cos θn

] 1

rkj

(17.6)

and

f j = −f i −fk (17.7)

Angle-harmonic form:

For harmonic bond angles the forces on atoms i, j and k due to the n-th term in Eq. 5.12 are

f i = k(θ,h)n · θ − θ0
sin θ

· 1

rij

(
rkj
rkj

− rij
rij

cos θ

)
(17.8)

and

fk = k(θ,h)n · θ − θ0
sin θ

· 1

rkj

(
rij
rij

− rkj
rkj

cos θ

)
(17.9)

2-195

and

f j = −f i − fk (17.10)

17.3. Improper dihedral-angle bending force-field term

The forces on atoms i, j, k and l due to the n-th term in formula (Eq. 5.17)

f i = −∂V
(ξ)

∂ξn

∂ξn
∂ri

= −k(ξ)n [ξn −ξ0n]
rkj
r2mj

rmj

(17.11)

f l = −∂V
(ξ)

∂ξn

∂ξn
∂rl

= +k
(ξ)
n [ξn −ξ0n]

rkj
r2nk

rnk

(17.12)

f j = −∂V
(ξ)

∂ξn

∂ξn
∂rj

=

[
(rij · rkj)

r2kj
−1

]
f i −

(rkl · rkj)

r2kj
f l

(17.13)

and

fk = −f i −f j −f l (17.14)

17.4. Proper dihedral-angle torsion force-field term

The cosine expansions in terms of derivatives (∂cos(mϕ)/∂cosϕ):

∂ cos(0ϕ)/∂ cosϕ = 0

∂ cos(1ϕ)/∂ cosϕ = 1

∂ cos(2ϕ)/∂ cosϕ = 4 cosϕ

∂ cos(3ϕ)/∂ cosϕ = 12cos2ϕ− 3

∂ cos(4ϕ)/∂ cosϕ = 32cos3ϕ− 16 cosϕ

∂ cos(5ϕ)/∂ cosϕ = 80cos4ϕ− 60cos2ϕ+ 5

∂ cos(6ϕ)/∂ cosϕ = 192cos5ϕ− 192cos3ϕ+ 36 cosϕ

(17.15)

Symmetric form:

The forces on atoms i, j, k and l due to the n-th term in formula (Eq. 5.22 are

f i = − ∂V (ϕ,s)

∂ cos (mn ϕn)

∂ cos (mn ϕn)

∂ cosϕn

∂ cosϕn

∂ri
(17.16)

= −k(ϕ,s)
n cos (δn)

∂ cos (mn ϕn)

∂ cosϕn

[
rln′

rln′

− rim′

rim′

cosϕn

]
1

rim′

(17.17)

f l = −k(ϕ,s)
n cos (δn)

∂ cos (mn ϕn)

∂ cosϕn

[
rim′

rim′

−rln′

rln′

cosϕn

]
1

rln′

(17.18)

f j =

[
(rij · rkj)

r2kj
−1

]
f i −

(rkl · rkj)

r2kj
f l (17.19)

and

fk = −f i −f j −f l (17.20)

2-196

Generalized form:

When doing so, the forces on atoms i, j, k and l due to the n-th term in (Eq. 5.23) are

f i = −∂V
(ϕ,g)

∂ϕn

∂ϕn

∂ri
(17.21)

= k(ϕ,g)
n mnsin(mnϕn − δn)

rkj
r2mj

rmj (17.22)

f l = −∂V
(ϕ,g)

∂ϕn

∂ϕn

∂rl
(17.23)

= −k(ϕ,g)
n mnsin(mnϕn − δn)

rkj
r2nk

rnk (17.24)

f j = −∂V
(ϕ,g)

∂ϕn

∂ϕn

∂rj
(17.25)

=

[
(rij · rkj)

r2kj
−1

]
fi −

(rkl · rkj)

r2kj
f l

and

fk = −f i −f j −f ll (17.26)

with rmj and rnk calculated according to Eq. 5.15, and

sin(mnϕn − δn) = sign
√
1− cos2(mnϕn − δn) (17.27)

17.5. LJ interaction terms

The forces on atoms i and j due to van der Waals interactions are

fLJ
i =

[
2C12(i, j)

r6ij
− C6(i, j)

]
· 6rij
r8ij

(17.28)

and

f j = −f i . (17.29)

17.6. Electrostatic interaction terms: Coulomb plus reactive field

The forces on atoms i and j due to Coulomb and reaction field are

fCRF
i =

qiqj
4πǫ0ǫcs

[
1

r3ij
+

Crf

Rrf
3

]
rij (17.30)

and

f j = −f i . (17.31)

17.7. Electrostatic interaction terms: lattice sum

The force on atom i corresponding to Eq. 7.44 is given by

Fη,i = (4πǫ0)
−1

Nq∑

j=1 , j 6=i , rij<Rp , j /∈Exc(i)

qi qj [r
−1
ij η(a−1rij)− a−1η′(a−1rij)]r

−2
ij rij (17.32)

+(4πǫ0)
−1

Nq∑

i=1

Nq∑

j=1 , j>i , j∈Exc(i)

qi qj {r−1
ij [η(a−1rij)− 1]− a−1η′(a−1rij)}r−2

ij rij .

The derivatives η′ of the switch functions corresponding to the charge-shaping functions implemented are
listed in Tab. 7.3.

2-197

The force on atom i corresponding to Eq. 7.45 is given by

Fγ,i = (ǫ0V)−1 qi
∑

l∈W , l 6=0

k−2 γ̂(ak)k [C(k) sink · ri − S(k) cosk · ri] . (17.33)

Eq. 17.33 is rewritten

Fγ,i = 8(ǫ0V)−1 qi
∑

l∈W′ , l 6=0

k−2 γ̂(ak)σk Dk (17.34)

where D is a diagonal matrix with elements

Dxx = −cx,i,lxcy,i,ly [Sx(k)cz,i,lz + Cy(k)sz,i,lz] + sx,i,lxsy,i,ly [Sy(k)cz,i,lz + Cx(k)sz,i,lz] (17.35)

−cx,i,lxsy,i,ly [Cz(k)cz,i,lz + So(k)sz,i,lz] + sx,i,lxcy,i,ly [Co(k)cz,i,lz + Sz(k)sz,i,lz] ,

Dyy = −cx,i,lxcy,i,ly [Sy(k)cz,i,lz + Cx(k)sz,i,lz] + sx,i,lxsy,i,ly [Sx(k)cz,i,lz + Cy(k)sz,i,lz] (17.36)

+cx,i,lxsy,i,ly [Co(k)cz,i,lz + Sz(k)sz,i,lz]− sx,i,lxcy,i,ly [Cz(k)cz,i,lz + So(k)sz,i,lz] ,

and

Dzz = −cx,i,lxcy,i,ly [Sz(k)cz,i,lz − Co(k)sz,i,lz]− sx,i,lxsy,i,ly [So(k)cz,i,lz − Cz(k)sz,i,lz] (17.37)

−cx,i,lxsy,i,ly [Cx(k)cz,i,lz − Sy(k)sz,i,lz]− sx,i,lxcy,i,ly [Cy(k)cz,i,lz − Sx(k)sz,i,lz] .

The reciprocal-space Ewald contribution to the atomic virial Wµ (corresponding to the energy term Eγ

defined by Eqs. 7.26 and evaluated as Eq. 7.45) reads118

Wew,µ = −(4ǫ0ǫlsV)−1
∑

l∈W , l 6=0

Γ̂µ(k) [C
2(k) + S2(k)] , (17.38)

where the C(k) and S(k) functions are given by Eq. 7.46, and

Γ̂µ(k) =
(k2 − 2k2µ)γ̂(ak) + akk2µγ̂

′(ak)

k4
, (17.39)

with γ̂′(κ) = ∂γ̂(κ)/∂κ (Tab. 7.5). As discussed in Sec. 7.4.3, an increase in computational efficiency can
be obtained by restricting the summation to a half-space and doubling the result, or even, summing over an
octant and multiplying the result by eight.

The virial associated with the energy contribution Eγ (Eq. 7.72) can be calculated as

Wγ =
1

2

∂Eγ

∂L
tL . (17.40)

Inserting Eq. 7.72 into Eq. 17.40, noting that ŝg is independent of L when the particle coordinates are scaled
together with the box dimensions, and making use of Eq. 4.47, one obtains

Wγ = −(4ǫ0 V)−1
∑

l∈G, l 6=0

[Ĝ†
g(kl)1+ Γ̂Γ

o

g(kl)] | ŝg(kl) |2 (17.41)

where Ĝ†
g(kl) and Γ̂Γ

o

g(kl) are defined as in Eqs. 7.69 and 7.70.

2-198

CHAPTER 18

Appendices

18.1. Conversion of force constants: bond-stretching and bond-angle bending interactions

In GROMOS the bond-stretching interaction may be chosen harmonic,

V (b,h)
n (bn, k

(b,h)
n , b0n) =

1

2
k(b,h)n (bn − b0n)

2 (18.1)

or quartic,

V (b,q)
n (bn, k

(b,q)
n , b0n) =

1

4
k(b,q)n (bn

2 − b0n
2)2 =

1

4
k(b,q)n (bn + b0n)

2(bn − b0n)
2 . (18.2)

Comparison of the two forms leads to the conversion formula

k(b,h)n = 2b0n
2k(b,q)n (18.3)

because generally bn ≃ b0n, and

k(b,q)n =
k
(b,h)
n

2b0n
2

(18.4)

In GROMOS the bond-angle bending interaction may be chosen harmonic,

V (θ,h)
n (θn; k

(θ,h)
n ; θ0n) =

1

2
k(θ,h)n (θn − θ0n)

2 (18.5)

or cosine-harmonic,

V (θ,c)
n (θn; k

(θ,c)
n ; θ0n) =

1

2
k(θ,c)n (cos θn − cos θ0n)

2 . (18.6)

The force constants of the two forms can be related by the requirement that for the two angles θn for which

V (θ,h)
n (θn; k

(θ,h)
n ; θ0n) = V (θ,c)

n (θn; k
(θ,c)
n ; θ0n) (18.7)

the average of the energies (Eq. 18.7) for the two angles θn should be equal to 1
2kBT .

Eq. 18.5 yields for the two θn angles

θn = θ0n ±
(
kBT

k
(θ,h)
n

) 1
2

(18.8)

which after insertion into Eq. 18.6 and averaging over the two angles θn yields

k(θ,c)n =
2kBT[

cos

(
θ0n +

(
kBT

k
(θ,h)
n

) 1
2

)
− cos θ0n

]2
+

[
cos

(
θ0n −

(
kBT

k
(θ,h)
n

) 1
2

)
− cos θ0n

]2 (18.9)

2-199

Of course if k
(θ,h)
n = 0, then k

(θ,c)
n = 0 and Eq. 18.9 should not be used. An inverse relation can be derived

analogously. Eq. 18.6 yields for the two θn angles

θn =

arccos

(
cos θ0n ±

(
kBT

k
(θ,c)
n

) 1
2

)
if −1 ≤ cos θ0n ±

(
kBT

k
(θ,c)
n

) 1
2 ≤ 1

arccos

(
cos θ0n +

(
kBT

k
(θ,c)
n

) 1
2

)

2θ0n − arccos

(
cos θ0n +

(
kBT

k
(θ,c)
n

) 1
2

) if −1 ≤ cos θ0n +
(

kBT

k
(θ,c)
n

) 1
2 ≤ 1

arccos

(
cos θ0n −

(
kBT

k
(θ,c)
n

) 1
2

)

2θ0n − arccos

(
cos θ0n −

(
kBT

k
(θ,c)
n

) 1
2

) if −1 ≤ cos θ0n −
(

kBT

k
(θ,c)
n

) 1
2 ≤ 1

not defined else

(18.10)

which after insertion into Eq. 18.5 and averaging over the two angles θn yields

k(θ,h)n =
2kBT[

arccos

(
cos θ0n +

(
kBT

k
(θ,c)
n

) 1
2

)
− θ0n

]2
+

[
arccos

(
cos θ0n −

(
kBT

k
(θ,c)
n

) 1
2

)
− θ0n

]2 (18.11)

Again if k
(θ,c)
n = 0, k

(θ,h)
n = 0 and Eq. 18.11 should not be used.

Eq. 18.11 is the physical inverse of Eq. 18.9, not the mathematical one.

For kBT one can chose the values kB = 8.3144110−3 kJmol−1K−1 and T = 300K, leading to 2.494323 kJmol−1

or 0.5961575 kcalmol−1.

2-200

Bibliography

[1] W.F. van Gunsteren and H.J.C. Berendsen. Computer Simulation of Molecular Dynamics: Methodology, Applications
and Perspectives in Chemistry. Angew. Chem. Int. Ed., 29:992–1023, 1990.

[2] W.F. van Gunsteren, D. Bakowies, R. Baron, I. Chandrasekhar, M. Christen, X. Daura, P. Gee, D.P. Geerke, A. Glättli,
P.H. Hünenberger, M.A. Kastenholz, C. Oostenbrink, M. Schenk, D. Trzesniak, N.F.A. van der Vegt, and H.B. Yu.
Biomolecular modelling: goals, problems, perspectives Angew. Chem ¡strong¿118¡/strong¿ (2006) 4168-4198. Angew.
Chem. Int. Ed., 45:4064–4092, 2006.

[3] K. Meier, A. Choutko, J. Dolenc, A.P. Eichenberger, S. Riniker, and W.F. van Gunsteren. Multi-resolution simulation of
biomolecular systems: a review of methodological issues. Angew. Chem. Int. Ed., 52:2820–2834, 2013.

[4] H. J. C. Berendsen. Simulating the Physical World, Hierarchical Modeling from Quantum Mechanics to Fluid Dynamics.
Cambridge University Press, 2007.

[5] W.F. van Gunsteren, T. Huber, and A.E. Torda. Biomolecular Modelling: Overview of Types of Methods to Search and
Sample Conformational Space. European Conference on Computational Chemistry (E.C.C.C 1), American Institute of
Physics, Conference Proceedings, 330:253–268, 1995.

[6] M. Christen and W.F. van Gunsteren. On searching in, sampling of, and dynamically moving through conformational
space of biomolecular systems: a review. J. Comput. Chem., 29:157–166, 2007.

[7] P.H. Hünenberger. Thermostat Algorithms for Molecular-Dynamics Simulations. Adv. Polym. Sci., 173:105–149, 2005.
[8] M. Parrinello R. Car. Unified Approach for Molecular Dynamics and Density-Functional Theory. Phys. Rev. Lett., 55:2471–

2474, 1985.
[9] H. Yu and W.F. van Gunsteren. Accounting for polarization in molecular simulation. Comput. Phys. Commun., 172:69–85,

2005.
[10] S.R. Billeter, P.M. King, and W.F. van Gunsteren. Can the density maximum of water be found by computer simulation?

J. Chem. Phys., 100:6692–6699, 1994.
[11] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak. Molecular dynamics with coupling to

an external bath. J. Chem. Phys., 81:3684–3690, 1984.
[12] W.F. van Gunsteren, P.M. King, and A.E. Mark. Fundamentals of drug design from a biophysical viewpoint. Quart. Rev.

Biophysics, 27:435–481, 1994.
[13] T. Huber, A.E. Torda, and W.F. van Gunsteren. Optimization Methods for Conformational Sampling Using a Boltzmann-

Weighted Mean Field Approach. Biopolymers, 39:103–114, 1996.
[14] W.F. van Gunsteren, H.J.C. Berendsen, F. Colonna, D. Perahia, J.P. Hollenberg, and D. Lellouch. On Searching Neigh-

bours in Computer Simulations of Macromolecular Systems. J. Comput. Chem., 5:272–279, 1984.
[15] H.J.C. Berendsen. Treatment of Long-Range Forces in Molecular Dynamics. In J. Hermans, editor, Molecular Dynamics

and Protein Structure, pages 18–22. Polycrystal Book Service, Western Springs, Ill, USA, 1985.
[16] J. L. Finney. Long-range forces in molecular dynamics calculations on water. J. Comput. Chem., 28:92–102, 1978.
[17] W. B. Streett; D. J. Tildesley; G. Saville. Multiple time-step methods in molecular dynamics Molecular Physics: An

International Journal at the Interface Between Chemistry and Physics. Mol. Phys., 35:639–648, 1978.
[18] P. G. Debenedetti A. A. Chialvo. An automated Verlet neighbor list algorithm with a multiple time-step approach for

the simulation of large systems. Comput. Phys. Commun., 70:467–477, 1992.
[19] T. Heinz and P.H. Hünenberger. A fast pairlist construction algorithm for molecular simulations under periodic boundary

conditions. J. Comput. Chem., 25:1474, 2004.
[20] H. Bekker, H.J.C. Berendsen, E.J. Dijkstra, S. Achterop, R. v. Drunen, D. v.d. Spoel, A. Sijbers, H. Keegstra, B. Reitsma,

and M.K.R. Renardus. GROMACS Method of Virial Calculation Using a Single Sum. In R.A. de Groot and J. Nadrchal,
editors, Proceedings of the 4th Intl. Conference Physics Computing ’92, pages 257–261. World Scientific Publishing
Company, Singapore, 1993.

[21] W.F. van Gunsteren and M. Karplus. Protein Dynamics in Solution and in a Crystalline Environment: A Molecular
Dynamics Study. Biochemistry, 21:2259–2274, 1982.

[22] F. Fraternali and W.F. van Gunsteren. An Efficient Mean Solvation Force Model for Use in Molecular Dynamics Simula-
tions of Proteins in Aqueous Solution. J. Mol. Biol., 256:939–948, 1996.

[23] H. Bekker. Unification of box shapes in molecular simulations. J. Comput. Chem., 18:1930–1942, 1997.
[24] C. Oostenbrink, A. Villa, A.E. Mark, and W.F. van Gunsteren. A biomolecular force field based on the free enthalpy of

hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 25:1656, 2004.
[25] IUPAC-IUB commission on biochemical nomenclature. Abbreviations and symbols for the description of the conformation

of polypeptide chains. Tentative rules (1969). Biochemistry, 9:3471–3479, 1970.
[26] T.C. Beutler, A.E. Mark, R.C. van Schaik, P.R. Gerber, and W.F. van Gunsteren. Avoiding singularities and numerical

instabilities in free energy calculations based on molecular simulations. Chem. Phys. Lett., 222:529–539, 1994.
[27] W. H. Press; S. A. Teukolsky; W. T. Vetterling; B. P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific

Computing. Cambridge University Press, 2007.

2-i

[28] P.H. Hünenberger. Simulation and theory of electrostatic interactions in solution: Computational chemistry, biophysics,
and aqueous solution, chapter Lattice-sum methods for computing electrostatic interactions in molecular simulations.
American Institute of Physics, New York, U.S.A., 1999.

[29] P.P. Ewald. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. Phys., 369:253–287, 1921.
[30] R.W. Hockney and J.W. Eastwood. Computer simulation using particles. McGraw-Hill, New York, U.S.A., 1981.
[31] E. Wigner. Effect of the electron interaction on the energy levels of electrons in metals. Trans. Faraday Soc., 34:678–685,

1938.
[32] B.U. Felderhof. Wigner solids and diffusion controlled reactions in a regular array of spheres. Physica A, 130:34–56, 1985.
[33] B.R.A. Nijboer and T.W. Ruijgrok. On the energy per particle in three- and two-dimensional Wigner lattices. J. Stat.

Phys., 53:361–382, 1988.
[34] M. Deserno and C. Holm. How to mesh up Ewald sums. I. A theoretical and numerical comparison of various particle

mesh routines. J. Chem. Phys., 109:7678–7693, 1998.
[35] M. Deserno and C. Holm. How to mesh up Ewald sums. II. An accurate error estimate for the particle-particle-particle-

mesh algorithm. J. Chem. Phys., 109:7694–7701, 1998.
[36] T. P. Straatsma; J. A. McCammon. Molecular Dynamics Simulations with Interaction Potentials Including Polarization

Development of a Noniterative Method and Application to Water. Mol. Simul., 5:181–192, 1990.
[37] P. Drude. The Theory of Optics. New York [etc.] Longmans, Green, and Co., 1901.
[38] M. Born K. Huang. Dynamic Theory of Crystal Lattices. Oxford University Press , Oxford, UK, 1954.
[39] D.P. Geerke and W.F. van Gunsteren. Calculation of the free energy of polarization: quantifying the effect of explicitly

treating electronic polarization on the transferability of force-field parameters. J. Phys. Chem. B, 111:6425–6436, 2007.
[40] S. Riniker, A.P.E. Kunz, and W.F. van Gunsteren. On the calculation of the dielectric permittivity of molecular models

in the liquid phase. J. Chem. Theory Comput., 7:1469–1475, 2011.
[41] H. Yu, T Hansson, and W.F. van Gunsteren. Development of a Simple, Self-Consistent Polarizable Model for Liquid

Water. J. Chem. Phys., 118:221–234, 2003.
[42] Z. Lin, S.J. Bachmann, and W.F. van Gunsteren. GROMOS polarisable charge-on-spring models for liquid urea: COS/U

and COS/U2. J. Chem. Phys., 142:094117, 2015.
[43] H. Yu and W.F. van Gunsteren. Charge-on-spring polarizable water models revisited: From water clusters to liquid water

to ice. J. Chem. Phys., 121:9549–9564, 2004.
[44] A.P. Kunz and W.F. van Gunsteren. Development of a non-linear classical polarisation model for liquid water and aqueous

solutions: COS/D. J. Phys. Chem. A, 113:11570–11579, 2009.
[45] S.J. Bachmann and W.F. van Gunsteren. On the compatibility of polarisable and non-polarisable models for liquid water.

Mol. Phys., 112:2761–2780, 2014.
[46] A. Glättli, X. Daura, and W.F. van Gunsteren. Derivation of an improved SPC model for liquid water: SPC/A and

SPC/L. J. Chem. Phys., 116:9811–9828, 2002.
[47] W.F. van Gunsteren and H.J.C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Mol.

Phys., 34:1311–1327, 1977.
[48] S. Riniker and W.F. van Gunsteren. A simple, efficient polarisable coarse-grained water model for molecular dynamics

simulations. J. Chem. Phys., 134:084110, 2011.
[49] W. Huang and W.F. van Gunsteren. Challenge of representing entropy at different levels of resolution in molecular

simulation. J. Phys. Chem. B, 119:753–763, 2015.
[50] S.Riniker, J.R. Allison, and W.F. van Gunsteren. On developing coarse-grained models for biomolecular simulation: a

review:. Phys. Chem. Chem. Phys., 14:12423–12430, 2012.
[51] M. Christen and W.F. van Gunsteren. Multigraining: an algorithm for simultaneous fine-grained and coarse-grained

simulation of molecular systems. J. Chem. Phys., 124:7, 2006.
[52] S. Riniker and W.F. van Gunsteren. Mixing coarse-grained and fine-grained water in molecular dynamics simulations of

a single system. J. Chem. Phys., 137:044120, 2012.
[53] S. Riniker, A.P. Eichenberger, and W.F. van Gunsteren. Structural effects of an atomic-level layer of water molecules

around proteins solvated in supra-molecular coarse-grained water. J. Phys. Chem. B, 116:8873–8879, 2012.
[54] R. Kaptein, E.R.P. Zuiderweg, R.M. Scheek, R. Boelens, and W.F. van Gunsteren. A Protein Structure from Nuclear

Magnetic Resonance Data lac Repressor Headpiece. J. Mol. Biol., 182:179–182, 1985.
[55] W.F. van Gunsteren, R. Boelens, R. Kaptein, R.M. Scheek, and E.R.P. Zuiderweg. An Improved Restrained Molecular

Dynamics Technique to Obtain Protein Tertiary Structure from Nuclear Magnetic Resonance Data. In J. Hermans, editor,
Molecular Dynamics and Protein Structure, pages 92–99. Polycrystal Book Service, Western Springs, Ill, USA, 1985.

[56] A.E. Torda and W.F. van Gunsteren. Molecular Modeling Using Nuclear Magnetic Resonance Data. In K.B. Lipkowitz
and D.B. Boyd, editors, Reviews in Computational Chemistry, volume III, pages 143–172. VCH Publishers, Inc. New
York, 1992.

[57] W.F. van Gunsteren, R.M. Brunne, P. Gros, R.C. van Schaik, C.A. Schiffer, and A.E. Torda. Accounting for Molecular
Mobility in Structure Determination Based on Nuclear Magnetic Resonance Spectroscopic and X-Ray Diffraction Data. In
T.L. James and N.J. Oppenheimer, editors, Nuclear Magnetic Resonance, volume 239 of Methods in Enzymology, pages
619–654. Academic Press, New York, 1994.

[58] A.E. Torda, R.M. Scheek, and W.F. van Gunsteren. Time-dependent distance restraints in molecular dynamics simula-
tions. Chem. Phys. Lett., 157:289–294, 1989.

[59] A.E. Torda, R.M. Scheek, and W.F. van Gunsteren. Time-averaged Nuclear Overhauser Effect Distance Restraints Applied
to Tendamistat. J. Mol. Biol., 214:223–235, 1990.

[60] A.P. Nanzer, W.F. van Gunsteren, and A.E. Torda. Parametrisation of time-averaged distance restraints in MD simula-
tions. J. Biomol. NMR, 6:313–320, 1995.

[61] F. Fraternali and W.F. van Gunsteren. Conformational Transitions of a Dipeptide in Water: Effects of Imposed Pathways
Using Umbrella Sampling Techniques. Biopolymers, 34:347–355, 1994.

2-ii

[62] T.C. Beutler, T. Bremi, R.R. Ernst, and W.F. van Gunsteren. Motion and Conformation of Side Chains in Peptides. A
Comparison of 2D Umbrella-Sampling Molecular Dynamics and NMR Results. J. Phys. Chem., 100:2637–2645, 1996.

[63] W.R.P. Scott, A.E. Mark, and W.F. van Gunsteren. On using time-averaging restraints in molecular dynamics simulation.
J. Biomol. NMR, 12:501–508, 1998.

[64] A.E. Torda, R.M. Brunne, T. Huber, H. Kessler, and W.F. van Gunsteren. Structure refinement using time-averaged
J-coupling constant restraints. J. Biomol. NMR, 3:55–66, 1993.

[65] A.P. Nanzer, A.E. Torda, C. Bisang, C. Weber, J.A. Robinson, and W.F. van Gunsteren. Dynamical Studies of Peptide
Motifs in the Plasmodium falciparum Circumsporozoite Surface Protein by Restrained and Unrestrained MD Simulations.
J. Mol. Biol., 267:1012–1025, 1997.

[66] B. Keller, M. Christen, C. Oostenbrink, and W.F. van Gunsteren. On using oscillating time-dependent restraints in MD
simulation. J. Biomol. NMR, 37:1–14, 2007.

[67] A. Pardi, M. Billeter, and K. Wüthrich. Calibration of the angular dependence of the amide proton-Cα proton coupling
constants, 3JHNα, in a globular protein. Use of 3JHNα for identification of helical secondary structure. J. Mol. Biol.,
180:741–751, 1984.

[68] A. DeMarco, M. Llinás, and K. Wüthrich. Analysis of the 1H-NMR spectra of ferrichrome peptides. I. The non-amide
protons. Biopolymers, 17:617–636, 1978.

[69] A. DeMarco, M. Llinás, and K. Wüthrich. 1H-15N spin-spin couplings in alumichrome. Biopolymers, 17:2727–2742, 1978.
[70] V. F. Bystrov. Spin-spin coupling and the conformational states of peptide systems. Prog. NMR Spectr., 10:41–81, 1976.
[71] M. Christen, B. Keller, and W.F. van Gunsteren. Biomolecular structure refinement based on adaptive restraints using

local-elevation simulation. J. Biomol. NMR, 39:265–273, 2007.
[72] N. Hansen, F. Heller, N Schmid, and W.F. van Gunsteren. Time-averaged order parameter restraints in molecular dy-

namics simulations. J. Biomol. NMR, 60:169–187, 2014.
[73] E.R. Henry and A. Szabo. Influence of vibrational motion on solid state line shapes and NMR relaxation. J. Chem. Phys.,

82:4753 – 4761, 1985.
[74] D. Waasmaier and A. Kirfel. New analytical scattering-factor functions for free atoms and ions. Acta Crystallogr., A51:416–

431, 1995.
[75] P. Gros, W.F. van Gunsteren, and W.G.J. Hol. Inclusion of Thermal Motion in Crystallographic Structures by Restrained

Molecular Dynamics. Science, 249:1149–1152, 1990.
[76] T. A. Jones, J. Y. Zuo, S. W. Cowan, and M. Kjeldgaard. Improved methods for building protein models in electron

density maps and the location of errors in these models. Acta Crystallogr., 47A:110–119, 1991.
[77] M. S. Chapman. Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-

density function. Acta Crystallogr., A51:69–80, 1995.
[78] A. de Ruiter and C. Oostenbrink. Protein-ligand binding from distancefield distances and Hamiltonian replica exchange

simulations. J. Chem. Theor. Comput., 9:883 – 892, 2012.
[79] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269–271, 1959.
[80] B. Tidor. Simulated annealing on free energy surfaces by a combined molecular dynamics and Monte Carlo approach. J.

Phys. Chem., 97:1069–1073, 1993.
[81] Z. Liu and B.J. Berne. Method for accelerating chain folding and mixing. J. Chem. Phys., 99:6071–6077, 1993.
[82] X. Kong and C.L. Brooks III. λ-dynamics: A new approach to free energy calculations. J. Chem. Phys., 105:2414–2423,

1996.
[83] H. Hansen and P.H. Hünenberger. Ball-and-stick local elevation umbrella sampling: molecular simulations involving

enhanced sampling within conformational or alchemical subspaces of low internal dimensionalities, minimal irrelevant
volumes and problem-adapted geometries. J. Chem. Theory Comput., 6:2622–2646, 2010.

[84] H. Hansen, X. Daura, and P.H. Hünenberger. Enhanced conformational sampling in molecular dynamics simulations of
solvated peptides: Fragment-based local elevation umbrella sampling. J. Chem. Theory Comput., 6:2598–2621, 2010.

[85] T. Huber, A.E. Torda, and W.F. van Gunsteren. Local elevation: A method for improving the searching properties of
molecular dynamics simulation. J. Comput. Aided Mol. Des., 8:695–708, 1994.

[86] O. Engkvist and G. Karlström. A method to calculate the probability distribution for systems with large energy barriers.
Chem. Phys., 213:63–76, 1996.

[87] A. Laio and M. Parrinello. Escaping free-energy minima. Proc. Natl. Acad. Sci. USA, 99:12562–12566, 2002.
[88] G.M. Torrie and J.P. Valleau. Nonphysical sampling distributions in Monte Carlo free-energy estimation: Umbrella

sampling. J. Comput. Phys., 23:187–199, 1977.
[89] H.S. Hansen and P.H. Hünenberger. Using the local elevation method to construct optimized umbrella sampling potentials:

calculation of the relative free energies and interconversion barriers of glucopyranose ring conformers in water. J. Comput.
Chem., 31:1–23, 2010.

[90] C.D. Christ and W.F. van Gunsteren. Enveloping Distribution Sampling: A method to calculate free energy differences
from a single simulation. J. Chem. Phys., 126:184110, 2007.

[91] A. Barducci, G. Bussi, and M. Parrinello. Well-tempered metadynamics: A smoothly converging and tunable free-energy
method. Phys. Rev. Lett., 100:020603/1–020603/4, 2008.

[92] I.G. Tironi, R.M. Brunne, and W.F. van Gunsteren. On the relative merits of flexible versus rigid models for use in
computer simulations of molecular liquids. Chem. Phys. Lett., 250:19–24, 1996.

[93] W.F. van Gunsteren and M. Karplus. Effect of Constraints on the Dynamics of Macromolecules. Macromolecules, 15:1528–
1544, 1982.

[94] W.F. van Gunsteren. Constrained dynamics of flexible molecules. Mol. Phys., 40:1015–1019, 1980.
[95] J.-P. Ryckaert, G. Ciccotti, and H.J.C. Berendsen. Numerical Integration of the Cartesian Equations of Motion of a

System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys., 23:327–341, 1977.
[96] S. Miyamoto and P. A. Kollman. SETTLE: An Analytical Version of the SHAKE and RATTLE Algorithm for Rigid

Water Models. J. Comput. Chem., 13(8):952–962, 1992.

2-iii

[97] V. Kräutler, W.F. van Gunsteren, and P.H. Hünenberger. A Fast SHAKE Algorithm to Solve Distance Constraint
Equations for Small Molecules in Molecular Dynamics Simulations. J. Comput. Chem., 22:501–508, 2001.

[98] B. Hess, H. Bekker, H.J.C. Berendsen, and J.G.E.M. Fraaije. LINCS: A Linear Contstraint Solver for Molecular Simula-
tions. J. Comput. Chem., 18:1463–1472, 1997.

[99] M. Christen and W.F. van Gunsteren. An approximate but fast method to impose flexible distance constraints in molecular
dynamics simulations. J. Chem. Phys., 122:144106, 2005.

[100] M. Christen, A.-P.E. Kunz, and W.F. van Gunsteren. Sampling of rare events using hidden restraints. J. Phys. Chem. B,
110:8488–8498, 2006.

[101] R.C. van Schaik, H.J.C. Berendsen, A.E. Torda, and W.F. van Gunsteren. A Structure Refinement Method Based on
Molecular Dynamics in Four Spatial Dimensions. J. Mol. Biol., 234:751–762, 1993.

[102] H. Bekker, H.J.C. Berendsen, and W.F. van Gunsteren. Force and virial of torsional-angle dependent potentials. J.
Comput. Chem., 16:527–533, 1995.

[103] W.F. van Gunsteren, S.R. Billeter, A.A. Eising, P.H. Hünenberger, P. Krüger, A.E. Mark, W.R.P. Scott, and I.G. Tironi.
Biomolecular Simulation: The GROMOS96 Manual and User Guide. Vdf Hochschulverlag AG an der ETH Zürich,
Zürich, Switzerland, 1996.

[104] C. L. Brooks III D. J. Tobias. Molecular-dynamics with internal coordinate constraints. J. Chem. Phys., 89:5115–5127,
1988.

[105] A. Amadei, G. Chillemi, M. A. Ceruso, A. Grottesi, and A. Di Nola. Molecular dynamics simulations with constrained
roto-translational motions: Theoretical basis and statistical mechanical consistency. J. Chem. Phys., 112:9–23, 2000.

[106] R. Fletcher and C.M. Reeves. Function minimization by conjugate gradients. Comput. J., 7:149–154, 1964.
[107] W.F. van Gunsteren and M. Karplus. A Method for Constrained Energy Minimization of Macromolecules. J. Comput.

Chem., 1:266–274, 1980.
[108] W.F. van Gunsteren and H.J.C. Berendsen. Computer Simulation as a Tool for Tracing the Conformational Differences

between Proteins in Solution and in the Crystalline State. J. Mol. Biol., 176:559–564, 1984.
[109] J. Lautz, H. Kessler, R. Kaptein, and W.F. van Gunsteren. Molecular dynamics simulations of cyclosporin A: The crystal

structure and dynamic modelling of a structure in apolar solution based on NMR data. J. Comput. Aided Mol. Des.,
1:219–241, 1987.

[110] Polak E. and G. Ribiére. Note sur la convergence de méthodes de directions conjuguées. Rev. Fr. Inform. Rech. O.,
3(R1):35–43, 1969.

[111] W.F. van Gunsteren, A.P. Nanzer, and A.E. Torda. Molecular simulation methods for generating ensembles or trajectories
consistent with experimental data. In K. Binder and G. Ciccotti, editors, Monte Carlo and Molecular Dynamics of
Condensed Matter Systems, volume 49 of Proceedings of the Euroconference, pages 777–788. SIF, Bologna, Italy, 1996.

[112] L.V. Woodcock. Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett., 10:257–261, 1971.
[113] M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Oxford University Press, New York, USA, 1987.
[114] S. Nosé. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys., 52:255–268, 1984.
[115] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys., 81:511–519,

1984.
[116] W.G. Hoover. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A, 31:1695–1697, 1985.
[117] G.J. Martyna, M.L. Klein, and M. Tuckerman. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J.

Chem. Phys., 97:2635–2643, 1992.
[118] P.H. Hünenberger. Calculation of the group-based pressure in molecular simulations: I. A general formulation including

Ewald and particle-particle-particle-mesh electrostatics. J. Chem. Phys., 116:6880–6897, 2002.
[119] B. Oliva and P.H. Hünenberger. Calculation of the group-based pressure in molecular simulations: II. Numerical tests

and application to liquid water. J. Chem. Phys., 116:6898–6909, 2002.
[120] H. Bekker and P. Ahlström. The Virial of Angle Dependent Potentials in Molecular Dynamics Simulations. Mol. Simul.,

13:367–374, 1994.
[121] E. Paci and M. Marchi. Constant-pressure molecular dynamics techniques applied to complex molecular systems and

solvated proteins. J. Phys. Chem., 100:4314–4322, 1996.
[122] G. S. Kell. Precise representation of volume properties of water at 1 atmosphere. J. Chem. Eng. Data, 12:66–69, 1967.
[123] B. Gavish, E. Gratton, and C. J. Hardy. Adiabatic compressibility of globular proteins. PNAS, 80:750–754, 1983.
[124] M.A. Cuendet and W.F. van Gunsteren. On the calculation of velocity-dependent properties in molecular dynamics

simulations using the leap-frog integration algorithm. J. Chem. Phys., 127:184102, 2007.
[125] W.F. van Gunsteren, P.H. Hünenberger, A.E. Mark, P.E. Smith, and I.G. Tironi. Computer simulation of protein motion.

Comput. Phys. Commun., 91:305–319, 1995.
[126] P.H. Hünenberger, A.E. Mark, and W.F. van Gunsteren. Fluctuation and Cross-Correlation Analysis of Protein Motions

Observed in Nanosecond Molecular Dynamics Simulations. J. Mol. Biol., 252:492–503, 1995.
[127] Z. Lin and W.F. van Gunsteren. On the use of a weak-coupling thermostat in replica-exchange molecular dynamics

simulations. J. Chem. Phys., 143:034110, 2015.
[128] W.F. van Gunsteren and H.J.C. Berendsen. A leap-frog algorithm for stochastic dynamics. Mol. Simul., 1:173–185, 1988.
[129] Shi Yun-yu, Wang Lu, and W.F. van Gunsteren. On the approximation of solvent effects on the conformation and

dynamics of cyclosporin A by stochastic dynamics simulation techniques. Mol. Simul., 1:369–383, 1988.
[130] W.F. van Gunsteren, T.C. Beutler, F. Fraternali, P.M. King, A.E. Mark, and P.E. Smith. Computation of free energy

in practice: choice of approximations and accuracy limiting factors. In W.F. van Gunsteren, P.K. Weiner, and A.J.
Wilkinson, editors, Computer Simulation of Biomolecular Systems, Theoretical and Experimental Applications, volume 2,
pages 315–348. Escom Science Publishers, Leiden, The Netherlands, 1993.

[131] W.F. van Gunsteren. The role of computer simulation techniques in protein engineering. Protein Eng., 2:5–13, 1988.
[132] T.C. Beutler and W.F. van Gunsteren. The computation of a potential of mean force: Choice of the biasing potential in

the umbrella sampling technique. J. Chem. Phys., 100:1492–1497, 1994.

2-iv

[133] W.F. van Gunsteren. Methods for calculation of free energies and binding constants: Successes and problems. In W.F.
van Gunsteren and P.K. Weiner, editors, Computer Simulation of Biomolecular Systems, Theoretical and Experimental
Applications, pages 27–59. Escom Science Publishers, Leiden, The Netherlands, 1989.

[134] L. Wang, Y. Deng, Y. Wu, B. Kim, D.N. LeBard, D. Wandschneider, M. Beachy, R.A. Friesner, and R. Abel. Accurate
Modeling of Scaffold Hopping Transformations in Drug Discovery. J. Chem. Theory Comput., 13(1):42–54, 2017.

[135] A.E. Mark and W.F. van Gunsteren. Free Energy Calculations in Drug Design: A Practical Guide. In P.M. Dean, G. Jolles,
and C.G. Newton, editors, New Perspectives in Drug Design, Proceedings of the 9th Intl. Roundtable, pages 185–200.
Academic Press Ltd., 1995.

[136] A.E. Mark, W.F. van Gunsteren, and H.J.C. Berendsen. Calculation of Relative Free Energy via Indirect Pathways. J.
Chem. Phys., 94:3808–3816, 1991.

[137] Z. Lin and W.F. van Gunsteren. A comparison of pathway independent and pathway dependent methods in the calculation
of conformational free enthalpy differences. Protein Sci., 2015.

[138] J. A. Tembe, B. L.; McCammon. A simple theoretical approach is outlined for calculating differences in the free energy
of binding of related ligand-receptor pairs. Computers & Chemistry, 8:281–283, 1984.

[139] X. Daura, P.H. Hünenberger, A.E. Mark, E. Querol, F.X. Avilés, and W.F. van Gunsteren. Free Energies of Transfer
of Trp Analogs from Chloroform to Water: Comparison of Theory and Experiment and the Importance of Adequate
Treatment of Electrostatic and Internal Interactions. J. Am. Chem. Soc., 118:6285–6294, 1996.

[140] A.E. Mark, S.P. van Helden, P.E. Smith, L.H.M. Janssen, and W.F. van Gunsteren. Convergence Properties of Free
Energy Calculations: Alpha-Cyclodextrin Complexes as a Case Study. J. Am. Chem. Soc., 116:6293–6302, 1994.

[141] T.C. Beutler, D.R. Béguelin, and W.F. van Gunsteren. Free energy of cavity formation in solvent: Computational,
methodological and physical aspects. J. Chem. Phys., 102:3787–3793, 1995.

[142] Shi Yun-yu, A.E. Mark, Wang Cun-xin, Huang Fuhua, H.J.C. Berendsen, and W.F. van Gunsteren. Can the stability of
protein mutants be predicted by free energy calculations? Protein Eng., 6:289–295, 1993.

[143] H. Liu, A.E. Mark, and W.F. van Gunsteren. Estimating the Relative Free Energy of Different Molecular States with
Respect to a Single Reference State. J. Phys. Chem., 100:9485–9494, 1996.

[144] A.E. Mark, Y. Xu, H. Liu, and W.F. van Gunsteren. Rapid non-empirical approaches for estimating relative binding free
energies. Acta Biochim. Polonica, 42:525–536, 1995.

[145] C. Peter, C. Oostenbrink, A. van Dorp, and W.F. van Gunsteren. Estimating entropies from molecular dynamics simula-
tions. J. Chem. Phys., 120:2652–2661, 2004.

[146] T.C. Beutler and W.F. van Gunsteren. Umbrella sampling along linear combinations of generalized coordinates Theory
and application to a glycine dipeptide. Chem. Phys. Lett., 237:308–316, 1995.

[147] K. S. Shing and K. E. Gubbins. The Chemical-Potential In Dense Fluids And Fluid Mixtures Via Computer-Simulation.
Mol. Phys., 46(5):1109–1128, 1982.

[148] J. G. Powles, W. A. B. Evans, and N. Quirke. Non-Destructive Molecular-Dynamics Simulation Of The Chemical-Potential
Of A Fluid. Mol. Phys., 46(6):1347–1370, 1982.

[149] G. Jacucci and N. Quirke. Free-Energy Calculations For Crystals. Lect. Notes Phys., 166:38–57, 1982.
[150] K. K. Han. A New Monte-Carlo Method For Estimating Free-Energy And Chemical-Potential. Phys. Lett. A, 165(1):28–

32, 1992.
[151] K. K. Han. Multiensemble sampling: An alternative efficient Monte Carlo technique. Phys. Rev. E, 54(6):6906–6910,

1996.
[152] Y. G. Chen and G. Hummer. Slow conformational dynamics and unfolding of the calmodulin C-terminal domain. J. Am.

Chem. Soc., 129(9):2414–2415, 2007.
[153] C. D. Christ and W. F. van Gunsteren. Multiple free energies from a single simulation: Extending enveloping distribution

sampling to nonoverlapping phase-space distributions. J. Chem. Phys., 128(17):174112, 2008.
[154] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted histogram analysis method for

the analysis of simulated and parallel tempering simulations. J. Chem. Theory Comput., 3(1):26–41, 2007.
[155] C.D. Christ and W.F. van Gunsteren. Simple, efficient, and reliable computation of multiple free energy differences from

a single simulation: a reference Hamiltonian parameter update scheme for enveloping distribution sampling (EDS). J.
Chem. Theory Comput., 5:276–286, 2009.

[156] C.D. Christ and W.F. van Gunsteren. Comparison of three enveloping distribution sampling Hamiltonians for the esti-
mation of multiple free energy differences from a single simulation. J. Comput. Chem., 30:1664–1679, 2009.

[157] D. Hamelberg, J. Mongan, and J.A. McCammon. Accelerated molecular dynamics: A promising and efficient simulation
method for biomolecules. J. Chem. Phys., 120:11919 – 11929, 2004.

[158] Y. Miao, V.A. Feher, and J.A. McCammon. Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling
and free energy calculation. J. Chem. Theory Comput., 11:3584 – 3595, 2015.

[159] J.W. Perthold and C. Oostenbrink. Accelerated enveloping distribution sampling: Enabling sampling of multiple end
states while preserving local energy minima. J. Phys. Chem. B, 122:5030 – 5037, 2018.

[160] D. Petrov J.W. Perthold and C. Oostenbrink. Toward automated free energy calculation with accelerated enveloping
distribution sampling (a-eds). J. Chem. Inf. Model., XXX:XXX – XXX, 2020.

[161] N. Hansen, P.H. Hünenberger, and W.F. van Gunsteren. Efficient combination of environment change and alchemical
perturbation within the enveloping distribution sampling (EDS) scheme: twin system EDS and application to the deter-
mination of octanol-water partition coefficients. J. Chem. Theory Comput., 9:1334–1346, 2013.

[162] Z. Lin, J.Kornfeld, M. Mächler, and W.F. van Gunsteren. Prediction of folding equilibria of differently substituted peptides
using one-step perturbation. J. Am. Chem. Soc., 132:7226–7278, 2010.

[163] Z. Lin, H. Liu, S. Riniker, and W.F. van Gunsteren. On the use of enveloping distribution sampling (EDS) to compute
free enthalpy differences between different conformational states of molecules: application to 310-, α, and π helices. J.
Chem. Theory. Comput., 7:3884–3897, 2011.

2-v

[164] Z. Lin, C. Necula, and W.F. van Gunsteren. Using enveloping distribution sampling to compute the folding free enthalpy
of a β-peptide with a very unstable folded conformation in solution: The advantage of focused sampling using EDS.
Chem. Phys., 428:156–163, 2014.

[165] K. Meier, N. Schmid, and W.F. van Gunsteren. Interfacing the GROMOS (bio)molecular simulation software to quantum-
chemical program packages. J. Comput. Chem., 2012, DOI: 10.1002/jcc.23047.

[166] M. Christen, P. H. Hünenberger, D. Bakowies, R. Baron, R. Bürgi, D. P. Geerke, T. N. Heinz, M. A. Kastenholz,
V. Kräutler, C. Oostenbrink, C. Peter, D. Trzesniak, and W. F. van Gunsteren. The GROMOS software for biomolecular
simulation: GROMOS05. J. Comput. Chem., 26:1719–1751, 2005.

[167] W. F. van Gunsteren et al. http://www.gromos.net.
[168] W. Thiel. MNDO99 v. 6.1 ed., Max-Planck-Institut für Kohlenforschung: Mülheim an der Ruhr, Germany, 2003.
[169] R. Ahlrichs et. al. http://www.cosmologic.de/turbomole.html.
[170] N. Schmid, C.D. Christ, M.Christen, A.P. Eichenberger, and W.F. van Gunsteren. Architecture and implementation and

parallelization of the GROMOS software for biomolecular simulation. Comput. Phys. Commun., 183:890–903, 2012.
[171] Y. Sugita and Y. Okamoto. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett., 314:141–

151, 1999.
[172] Y. Okamoto. Generalized-ensemble algorithms: enhanced sampling techniques for Monte Carlo and molecular dynamics

simulations. J. Mol. Graph. Mod., 22:425–439, 2004.
[173] D.; Meng Y. Sindhikara and A. E. Roitberg. Exchange frequency in replica exchange molecular dynamics. J. Chem. Phys.,

128:024103, 2008.
[174] J. Hritz and C. Oostenbrink. Hamiltonian replica exchange molecular dynamics using soft-core interactions. J. Chem.

Phys., 128:144121, 2008.
[175] X. Periole and A.E. Mark. Convergence and sampling efficiency in replica exchange simulations of peptide folding in

explicit solvent. J. Chem. Phys., 126:10, 2007.
[176] A.P.E. Kunz and W.F. van Gunsteren. Enhancing the configurational sampling of ions in aqueous solution using adiabatic

decoupling with translational temperature scaling. J. Phys. Chem. B, 115:2931–2936, 2011.
[177] D. Steiner, C. Oostenbrink, F. Diederich, M. Zürcher, and W.F van Gunsteren. Calculation of Binding Free Energies of

Inhibitors to Plasmepsin II. J. Comput. Chem., 32:1801–1812, 2011.
[178] J. Hritz and C. Oostenbrink. Optimization of replica exchange molecular dynamics by fast mimicking. J. Chem. Phys.,

127:204104, 2007.

[179] N.-V. Buchete and G. Hummer. Peptide folding kinetics from replica exchange molecular dynamics. Phys. Rev. E,
77:030902(R), 2008.

[180] N.-V. Buchete and G. Hummer. Coarse Master Equations for Peptide Folding Dynamics. J. Phys. Chem. B, 112:6057–
6069, 2008.

2-vi

Symbols

Symbol Meaning

Common names and abbreviations

GROMOS The GROMOS software package

MD++ The MD++ simulation engine in C++

GROMOS++ The GROMOS++ analysis package in C++

GROMOS96 The GROMOS96 simulation package (1996)

3D abbreviation for three dimensions

AA Atomistic (All Atom) models

BD Brownian Dynamics simulation

B&S− LEUS Ball and stick local elevation umbrella sampling

CG Coarse Grained models

CGEM Conjugate gradient method for energy minimization

FRCG Fletcher-Reeves conjugate gradient method for energy minimization

PRCG Polak-Ribiére conjugate gradient method for energy minimization

COG Center of geometry

COS Charge On Spring approach

CP Car Parrinello approach

DF Distancefield

DOF Degrees of freedom (abbreviation)

DPD Diffusive Particle Dynamics simulation

doxygen Documentation platform

EM Energy minimisation

EDS Enveloping distribution sampling

FBC Fixed boundary conditions

HBC Hyper-spherical boundary conditions

LE Local elevation

LEUS Local elevation umbrella sampling

LS Lattice-sum method

MC Monte Carlo sampling

MD Molecular Dynamics simulation

NOE Nuclear Overhauser Effect

PBC Periodic boundary conditions

PPPM Particle-particle–particle-mesh (P3M) method

QM Quantum Mechanical models

QMD Quantum Molecular Dynamics simulation

RDF Radial distribution function

RE Replica Exchange

REMD Replica Exchange Molecular Dynamics simulation

RF Reaction-field method

RMSD Root-mean-square difference

RMSF Root-mean-square fluctuation

SD Stochastic Dynamics simulation

SDEM Steepest descent method for energy minimization

TI Thermodynamic integration

US Umbrella sampling

2-vii

Symbol Meaning

VBC Vacuum boundary conditions

Physical constants

h Planck’s constant [0.3990313 kJ mol−1 ps]

~ Planck’s constant divided by 2π [0.06350780 kJ mol−1 ps]

NAv Avogadro’s number [6.02214 ×1023]

kB Boltzmann’s constant [1.380662 ×10−26 kJ K−1)]

R Ideal gas constant (NAv × kB)

c Speed of light [2.99792458 ×105 nm ps−1]

Degrees of freedom and system configuration

Nd Number of degrees of freedom of a system

Na Number of particles in a system of particles (Nd =3Na)

N solu
a Number of particles the solute consists of

qq 3Na-dimensional generalized coordinate vector of a system of particles

ppqq 3Na-dimensional generalized momentum vector of a system of particles

rr 3Na-dimensional Cartesian coordinate vector of a system of particles

pp 3Na-dimensional Cartesian momentum vector of a system of particles

ff 3Na-dimensional Cartesian force vector of a system of particles

ff 3Na-dimensional Cartesian mean force vector of a system of particles

ff st 3Na-dimensional Cartesian stochastic force vector of a system of particles

fsti 3Na-dimensional Cartesian stochastic force vector of a system of particles

vv 3Na-dimensional Cartesian velocity vector of a system of particles

r 3-dimensional Cartesian coordinate vector of a particle

p 3-dimensional Cartesian momentum vector of a particle

f 3-dimensional Cartesian force vector of a particle

v 3-dimensional Cartesian velocity vector of a particle

Ψ [Ψ(rr)] Wavefunction (position representation; configuration of a quantum-
mechanical system of Na particles)

{ rr ,pp } Phase-space point (Cartesian coordinates; configuration of a classical system
of Na particles)

(Statistical) thermodynamics

F Free energy

G Gibbs free energy

H Enthalpy

U Energy of a system

S Entropy of a system

Z Partition function

T Instantaneous temperature

To Reference temperature

K Instantaneous kinetic energy of a system

Ktr Instantaneous translational kinetic energy

Kir Instantaneous internal+rotational kinetic energy

U Instantaneous total potential energy of a system

W Instantaneous virial of a system

P Instantaneous pressure of a system

V Instantaneous volume of a system

ρJ Number particle density of particles J

Miscellaneous

2-viii

Symbol Meaning

t Time

∆t discrete time step

Nt Number of MD steps

P Probability

m Mass of a particle

M Mass of the whole system

m Diagonal mass matrix of a system of Na particles

γ Friction coefficient of a particle

γ Diagonal friction coefficient matrix of a system of Na particles

T Absolute temperature

β prefactor: 1/kBT

τT relaxation time for the coupling to a temperature bath

s Vector denoting the collection of all force-field parameters

λ Coupling parameter Lambda for a lambda dependent Hamiltonian

Nλ Number of λ-values in a TI simulation

H Heaviside function defined as H(x) = 0 ∀ x < 0 and H(x) = 1 ∀ x > 0

sign Sign function: sign(x) = 1 ∀ x > 0 and sign(x) = −1 ∀ x < 0

i imaginary number, i2 = −1

δij general Kronecker delta

σ Standard deviation

σ2 Variance

Nconf Number of configurations in an ensemble

D Diffusion constant

Rgyr radius of gyration

η the viscosity of a system

g(r) radial distribution function

s Smoothness parameter in EDS simulations

ER Energy offset parameter in EDS simulations

N (s) Number of states in EDS simulations

Spatial boundary conditions

B 3×3-matrix of the box-edge vectors (columns) in the reference Cartesian
coordinate system (PBC)

ê Unit vector

a First edge vector of a (triclinic) box (in the reference coordinate system)

b Second edge vector of a (triclinic) box (in the reference coordinate system)

c Third edge vector of a (triclinic) box (in the reference coordinate system)

a length of first edge of a (triclinic) box

b length of second edge of a (triclinic) box

c length of third edge of a (triclinic) box

T Position vector of the reference corner of a triclinic box (components in the
reference coordinate system and vector relative to the origin of this system)

L Computational box matrix (columns defined by the components of edge
vectors a, b and c in the reference coordinate system)

B Edge length matrix (diagonal, elements a, b and c)

α First edge angle a triclinic box (between b and c)

β Second edge angle a triclinic box (between a and c)

γ Third edge angle a triclinic box (between a and b)

φ First Euler angle of a triclinic box

2-ix

Symbol Meaning

θ Second Euler angle of a triclinic box

ψ Third Euler angle of a triclinic box

r̆ Oblique coordinates of a real-space vector (with reference to the box-edge
vectors)

ř Oblique fractional coordinates of a real-space vector (with reference to the
box-edge vectors)

k̆ Oblique coordinates of a reciprocal-space vector

ǩ Oblique fractional coordinates of a reciprocal-space vector

l Lattice vector (three-dimensional vector with integer components)

k Reciprocal-lattice vector (k = 2πL−1l)

S Transformation matrix

R Transformation matrix

T Transformation matrix

Representation of the interaction

Ĥ Hamiltonian operator describing the interaction for quantum-mechanical de-
grees of freedom

K̂ Kinetic energy operator (kinetic energy contribution to the quantum-
mechanical Hamiltonian operator)

V̂ Potential energy operator (potential energy contribution to the quantum-
mechanical Hamiltonian operator)

H [H(rr, pp)] Hamiltonian function describing the interaction for classical degrees of free-
dom

K [K(pp)] Kinetic energy contribution to the classical Hamiltonian function

V [V(rr)] Potential energy contribution to the classical Hamiltonian function

V [V(rr)] Potential of mean force contribution to the classical Hamiltonian function

Physical interactions

ϕ [Proper dihedral-angle term]

V(phys) [V(phys) (rr;B; s)] Physical potential energy contribution to V
V(cov) [V(cov) (rr ;B; s)] Covalent potential energy contribution to V(phys)

V(nbd) [V(nbd) (rr ;B; s)] Non-bonded potential energy contribution to V(phys)

V(b) [V(b) (rr ;B; s)] Bond stretching potential energy contribution to V(cov)

V(θ) [V(θ) (rr ;B; s)] Bond-angle bending potential energy contribution to V(cov)

V(ξ) [V(ξ) (rr ;B; s)] Improper dihedral-angle bending potential energy contribution to V(cov)

V(ϕ) [V(ϕ) (rr;B; s)] Proper dihedral-angle torsion potential energy contribution to V(cov)

V(vdw) [V(vdw) (rr ;B; s)] Van der Waals potential energy contribution to V(nbd)

V(ele) [V(ele) (rr ;B; s)] Electrostatic potential energy contribution to V(nbd)

V(LJCRF) Sum of the non-bonded potentials V(vdw) and V(ele)

Physical force-field terms

V (b) [V (b)(b; k(b), b0)] Potential energy function associated with the stretching of a single covalent
bond (quartic: V (b,q) ; harmonic: V (b,h) ; soft harmonic: V (bs,h))

V
(b)
n [V (b)(bn; k

(b)
n , b0n)] Potential energy function associated with the stretching of the nth single

covalent bond (quartic: V
(b,q)
n ; harmonic: V

(b,h)
n ; soft harmonic: V

(bs,h)
n)

f (b,q) Force due to the bond stretching potential (quartic)

f (b,h) Force due to the bond stretching potential (harmonic)

f (bs,h) Force due to the bond stretching potential (soft harmonic)

N (b) Number of covalent bonds in the molecular system

N (bs) Number of soft covalent bonds in the molecular system

M
(b)
n Bond type code associated with covalent bond term n

2-x

Symbol Meaning

bn [bn(rr,B)] Length of covalent bond n in the considered configuration

b0n [b0(M
(b)
n , s)] Reference length of covalent bond term n

k
(b,q)
n Force constant of stretching for covalent bond term n (quartic potential)

k
(b,h)
n Force constant of stretching for covalent bond term n (harmonic potential)

V (θ) [V (θ)(θ; k(θ), θ0)] Potential energy function associated with the bending of a single covalent
bond angle (cosine-harmonic: V (θ,c) ; soft cosine-harmonic: V (θs,c) ; angle-
harmonic: V (θ,h))

V
(θ)
n [V

(θ)
n (θn; k

(θ)
n , θ0n)] Potential energy function associated with the bending of the nth covalent

bond angle (cosine-harmonic: V
(θ,c)
n ; soft cosine-harmonic: V

(θs,c)
n ; angle-

harmonic: V
(θ,h)
n)

f (θ,c) Force due to the bond angle potential (cosine-harmonic)

f (θs,c) Force due to the bond angle potential (soft cosine-harmonic)

f (θ,h) Force due to the bond angle potential (angle-harmonic)

N (θ) Number of covalent bond angles in the molecular system

M
(θ)
n Bond-angle type code associated with covalent bond-angle term n

θn [θn(rr,B)] Value of covalent bond angle n in the considered configuration

θ0n [θ0(M
(θ)
n , s)] Reference angle of covalent bond-angle term n

k
(θ,c)
n Force constant of bending for covalent bond-angle term n (cosine-harmonic

potential)

k
(θs,c)
n Force constant of bending for covalent bond-angle term n (soft cosine-

harmonic potential)

k
(θ,h)
n Force constant of bending for covalent bond-angle term n (angle-harmonic

potential)

V (ξ) [V (ξ)(ξ; k(ξ), ξ0)] Potential energy function associated with the bending of a single covalent
improper dihedral angle

V (ξs) [V (ξs)(ξ; k(ξ), ξ0)] Potential energy function associated with the bending of a single covalent
improper dihedral angle

f (ξ) Force due to the improper dihedral-angle potential

f (ξs) Force due to the soft improper dihedral-angle potential

N (ξ) Number of covalent improper dihedral angles in the molecular system

N (ξs) Number of covalent improper dihedral angles in the molecular system

M
(ξ)
n Improper dihedral-angle type code associated with covalent improper

dihedral-angle term n

ξn [ξn(rr,B)] Value of covalent improper dihedral angle n in the considered configuration

ξ0n [ξ0(M
(ξ)
n , s)] Reference angle of covalent improper dihedral-angle term n

k
(ξ)
n Force constant of bending for covalent improper dihedral-angle term n

V (ϕ) [V (ϕ)(ϕ; k(ϕ), ϕ0)] Potential energy function associated with the torsion of a single covalent
proper dihedral angle (symmetric potential: V (ϕ,s) ; generalized: V (ϕ,g))

f (ϕ,s) Force due to the symmetric proper dihedral-angle potential

f (ϕ,g) Force due to the generalized proper dihedral-angle potential

N (ϕ) Number of covalent proper dihedral angles in the molecular system

M
(ϕ)
n Proper dihedral-angle type code associated with covalent proper dihedral-

angle term n

ϕn [ϕn(rr,B)] Value of covalent proper dihedral angle n in the considered configuration

ϕ0
n [ϕ0(M

(ϕ)
n , s)] Reference angle (phase shift) of covalent proper dihedral-angle term n

m
(ϕ)
n [m

(ϕ)
n (M

(ϕ)
n , s)] Multiplicity of covalent proper dihedral-angle term n

k
(ϕ,s)
n Force constant of torsion for covalent proper dihedral-angle term n (sym-

metric potential; ϕ0
n = 0, π; m

(ϕ)
n ≤ 6)

2-xi

Symbol Meaning

k
(ϕ,g)
n Force constant of torsion for covalent proper dihedral-angle term n (gener-

alized potential; ϕ0
n ∈ [0, 2π[)

q Partial charge of an atom or site

C12 Van der Waals (Pauli) repulsion coefficient of an atom or site (Lennard-Jones
function)

C6 Van der Waals (London) dispersion coefficient of an atom or site (Lennard-
Jones function)

C126 Ratio of Van der Waals coefficients C12

C6
(Lennard-Jones function)

αLJ Lennard-Jones soft-core switching parameter

αC Coulomb soft-core switching parameter

V(ele,pws) [V(ele,pws) (rr ;B; s)] Pairwise potential energy contribution to V(ele)

V(ele,slf) [V(ele,slf) (B;s)] Self potential energy contribution to V(ele)

V(ele,srf) [V(ele,srf) (rr ;B; s)] Surface potential energy contribution to V(ele)

f (nbd) Force due to the non-bonded forces

Ψ
(ele)
ij [Ψ

(ele)
ij (rr ;B; s)] Electrostatic influence function associated with the particle pair i− j

δ
(exc)
ij [δ

(exc)
ij (s)] Indicator of non-bonded exclusion for the particle pair i− j

Ψ(ele,slf) [Ψ(ele,slf) (B)] Electrostatic self influence function

ψ(RF) [ψ(RF) (x)] Influence function at distance x of a particle in RF electrostatics

H [H (x)] Heaviside step function (one if x is positive, zero otherwise)

RC Cutoff distance (truncation)

Rcp Short-range cut-off

Rcl Long-range cut-off

Rcg radius of a charge group

Ncg number of atoms belonging to a charge group

RRF Cutoff distance (onset of the RF continuum; usually set equal to RC)

ǫRF Relative dielectric permittivity of the RF continuum (usually set equal to
that of the solvent)

κRF Inverse Debye screening length of the RF continuum (usually set to zero)

CRF Constant characterizing the effect of the RF continuum

Rij [Rij (rr)] Vector (FBC) or minimum-image vector (PBC) connecting the center of the
CG containing particle j to the center of the CG containing particle i (norm
Rij)

V(ele,pws,RF−CB)

[V(ele,pws,RF−CB) (rr ;B; s)]
Coulombic pairwise potential energy contribution to V(ele,pws) (RF electro-
statics)

V(ele,pws,RF−RF)

[V(ele,pws,RF−RF) (rr ;B; s)]
Distance-dependent pairwise potential energy contribution to V(ele,pws) (RF
electrostatics)

V(ele,pws,RF−RC)

[V(ele,pws,RF−RC) (rr;B; s)]
Distance-independent pairwise potential energy contribution to V(ele,pws)

(RF electrostatics)

Ψ
(ele,LS−RS)
ij [Ψ

(ele,LS−RS)
ij

(rr ;B; s)]

Real-space component of electrostatic influence function Ψ
(ele)
ij (LS electro-

statics)

Ψ
(ele,LS−KS)
ij [Ψ

(ele,LS−KS)
ij

(rr ;B; s)]

Reciprocal-space component of the electrostatic influence function Ψ
(ele)
ij (LS

electrostatics)

V(ele,pws,LS−RS)

[V(ele,pws,LS−RS) (rr ;B; s)]
Real-space pairwise potential energy contribution to V(ele,pws) (LS electro-
statics)

V(ele,pws,LS−KS)

[V(ele,pws,LS−KS) (rr ;B; s)]
Reciprocal-space pairwise potential energy contribution to V(ele,pws) (LS
electrostatics)

ψ(LS) [ψ(LS) (x)] Influence function at position x relative to a particle in LS electrostatics

a Width of the charge-shaping function

γ [γ (x)] Charge-shaping function

2-xii

Symbol Meaning

γ̂ [γ̂ (x)] Fourier transformed charge-shaping function

E Electric field

µ Dipole

JJ

α Electronic polarisability

P Polarisation

ǫ Dielectric permittivity

γpol γ to calculate position of off site charge

kho harmonic force constant in the COS model

φ Electrostatic potential

Unphysical force-field terms

V(spec) Unphysical potential energy

V(res) Restraint energy

V(pr) Position restraining potential energy contribution to V(phys)

f (c) Force due to the position constraints

k(pr) Force constant of an unphysical position-restraining term

N (pr) number of positionally restrained atoms

l Lagrange multiplier for position constraints

V(dr) Distance restraining potential energy contribution to V(phys)

f (dir) Force due to the atom-atom distance restraints

k(dr) Force constant of an unphysical distance-restraining term

r0 Equilibrium distance of distance restraint

N (dir) Number of atom-atom distance restraints

dCH carbon-hydrogen distance

dCC carbon-carbon distance

τdr decay time for time-averaged distance restraining

V(tr) Dihedral-angle restraining potential energy contribution to V(phys)

k(tr) Force constant of an unphysical dihedral-angle restraining term

N (tr) number of restrained dihedral angles

V(Jr) 3J-restraining potential energy contribution to V(phys)

k(Jr) Force constant of an unphysical 3J-value restraining term
3J J-value or J-coupling constant
3J0 experimental J-value

J general representation of a J-value

J0 experimental J-value

∆J0 width of flat-bottom for J-value restraining

a a in Karplus relation

b b in Karplus relation

c c in Karplus relation

τsJr period of scaling in periodically-scaled J-value restraining

∆tω time period for which scaling is suspended in periodically-scaled J-value
restraining

Nle number of bins in J-value local elevation biasing

wζni weight of gaussian in J-value LE

V(Fxr) | F |-restraining potential energy contribution to V(phys)

V(exr) ρ-restraining potential energy contribution to V(phys)

V(sxr) symmetry restraining potential energy contribution to V(phys)

2-xiii

Symbol Meaning

kxr (harmonic) force constant for the crystallographic restraining

ksym harmonic force constant for the crystallographic symmetry restraining

F Structure factor amplitude

ρ Electron density

S space group of a crystal

Nsym Number of symmetry operations of a space group

S Symmetry operator S = Rr+ t

R Rotation matrix of a symmetry operator

t Translation vector of a symmetry operator

V(Sr) S2-restraining potential energy contribution to V(phys)

k(Sr) Force constant of an unphysical S2-value restraining term

S2 S2-order parameter

S2,0 experimental S2-value

S general representation of a S2-value

S0 experimental S2-value

V(df) Distancefield restraining potential energy contribution to V(phys)

f (df) Force due to the atom-atom distance restraints

k(df) Force constant of an unphysical distance-restraining term

l0 Equilibrium distance of distance restraint

gs Distancefield grid distance

V(le) Local elevation (LE) energy

V(bias) bias energy

γ LE basis function

k(le) LE force constant

ruc unconstrained atomic positions

Nc Number of constraints

Nsh number of iterations of the SHAKE algorithm

d0 constraint length

fuc unconstrained atomic forces

2-xiv

The GROMOS Software for (Bio)Molecular

Simulation

Volume 3: Force Field and Topology Data Set

January 9, 2021

Contents

Chapter 1. Introduction 3-1
1.1. GROMOS force fields 3-1
1.2. Development of the GROMOS force field 3-2

Chapter 2. Physical forces: GROMOS force field 3-5
2.1. Introduction 3-5
2.2. Bond stretching force-field terms 3-5
2.3. Bond-angle bending force-field terms 3-6
2.4. Improper dihedral-angle bending force-field term 3-6
2.5. Proper dihedral-angle torsion force-field term 3-7
2.6. Non-bonded interactions 3-9
2.6.1. van der Waals parameters 3-9
2.6.2. Atomic charges and charge groups 3-10

Chapter 3. GROMOS interaction function parameters 3-13

Chapter 4. GROMOS molecular topology building blocks 3-55
4.1. Introduction 3-55
4.2. Definition of molecular topology building block pictures 3-67
4.3. α-amino acids and analogues 3-67
4.4. β-amino acids 3-199
4.5. Nucleotides 3-344
4.6. Carbohydrates 3-429
4.7. Other molecules 3-481

Chapter 5. GROMOS standard configurations 3-529
5.1. Water 3-529
5.2. Chloroform 3-529
5.3. DMSO 3-529
5.4. Methanol 3-529
5.5. Carbontetrachloride 3-529

Bibliography 3-i

3-I

CHAPTER 1

Introduction

In this volume the molecular model and the force field used in GROMOS are described. The GROMOS
package comes with a number of standard data files. The ones involving the definition of a force field param-
eter set fall into two categories: interaction function parameter files (∗.ifp) and molecular topology building
block files (∗.mtb). At least one of each of these types of files are required to build a molecular topology.
This chapter continues with a short overview of the history of the GROMOS force field and a description of
the background for its various versions. Chap. 2 summarizes the physical potential energy terms used in the
GROMOS force fields. A detailed description of the Hamiltonian can be found in Vol. 2. The parameters
contained in the interaction function parameter files of the 45A4 (45B4)1–4 and 54A7 (54B7)5–8 versions of
the GROMOS force field are presented in Chap. 3. The corresponding molecular topology building blocks
for the 54A7 force field are described in Chap. 4. Standard configurations of molecules or molecular systems
are listed in Chap. 5.

1.1. GROMOS force fields

The GROMOS force field is continuously being tested and, if necessary, improved. From time to time a
new version is brought out. The historic sequence of GROMOS force fields is the following:

- the 26C1 force field of June 1981
- the 37C2 (and 37D2) force field(s) of January 1983 (extended in November 1983)
- the 37C4 (and 37D4) force field(s) of November 1983 (revised in December 1985)
- the 43A1 (and 43B1) force field(s) of July 1996
- the 43A2 force field of October 2000
- the 45A3 (and 45B3) force field(s) of January 2001
- the 45A4 (and 45B4) force field(s) of July 2003
- the 53A5 (and 53B5) force field of July 2003
- the 53A6 (and 53B6) force field of July 2003
- the 54A7 (and 54B7) force field of April 2011
- the 54A8 force field of June 2012

The A-version of a force field is the basic force field designed for molecules in solution or in crystalline
form. The B-version is derived from the A-version in order to be used for simulating molecules in vacuo,
where the dielectric screening effect of the environment is neglected. The atomic charges and van der Waals
parameters are changed such that atom charge groups with a non-zero total charge are neutralized while
maintaining the hydrogen-bonding capacity of the individual atoms.

Since the functional form of the 43A1 and 43B1 force fields differs from that of the previous versions and
the GROMOS file structure and formats were substantially changed in 1996, the force field versions older
than 1996 have not been converted and have not been kept in the GROMOS package. For every force-field
version, the complete set of interaction function parameters can be found in the corresponding file ∗.ifp.
Building blocks of the 43A1 and 43A2, and the 43B1 and 43B2 force fields are given in the files 43a1.mtb
and 43b1.mtb, respectively, and 45a3.mtb and 45b3.mtb present building blocks for the 45A3 and 45B3 force
fields. In the newer versions of the GROMOS force field, building blocks are supplied via more than one
file. These files contain building blocks that are categorized according to the kind of (sub)molecule they
represent. For example, 45A4 building blocks can be found in: 45a4.mtb (α-amino acids, lipids, nucleotides
and solvents), 45a4 carbo.mtb (carbohydrates and sugars), 45a4 beta.mtb (β-amino acids) and 45a4 cof.mtb
(cofactors and other types of molecules).

3-1

Since the introduction of the 43A1 and 43B1 versions, the basic functional form of the GROMOS force
field has been kept constant. It is described in Chap. 2-5 to Chap. 2-9 of Vol. 2. Chap. 3 and Chap. 4 of this
Volume present the force field parameters and building blocks of the 54A7 force field. In the remaining of
the current chapter, the events leading up to these force fields are sketched.

1.2. Development of the GROMOS force field

In the first GROMOS force field, 26C1, only 26 atom types were defined9,10. The molecular topology
building block file contained only amino acid residues and a heme group. It was meant for simulation of
proteins in aqueous solution or crystalline form.

The 37C2 force field was an extension of the 26C1 force field in order to allow for simulation of nucleotides,
sugars, etc. Eleven new atom types were added. Some interaction function parameters were slightly changed,
which made the version number change from 1 to 2. The molecular topology building block file contained
many more building blocks. It was meant for simulation of proteins, DNA, sugars in aqueous solution or
crystalline form.

The 37D2 force field was the one corresponding to the 37C2 one, but adapted in order to be used for
simulations of molecules in vacuo.

In the previous force fields the repulsive part of the van der Waals interaction between third neighbour
atoms (1-4 interaction) was too large, in case one or both of the atoms involved was an extended (CH1,
CH2, CH3, CR1) carbon atom and the torsion angle 1-2-3-4 was in a cis-conformation. This effect was
redressed by changing the programs such that for 1-4 or third-neighbour interactions, van der Waals pa-
rameters can be used which are different from the normal ones. These extra 1-4 van der Waals parameters
had to be given on the interaction function parameter file. This change made the force field version number
change from 2 to 4. It was meant for simulation of proteins, DNA, sugars, etc. in solution or crystalline form.

The 37D4 force field was the one corresponding to the 37C4 one, but adapted in order to be used for
simulations of molecules in vacuo.

The 43A1 force field constitutes a significant change with respect to the 37C4 one, and differs from it in
a number of aspects.

1. The non-polar solute atoms appeared to be slightly too hydrophilic11. Therefore, the C12(I,J) van
der Waals parameter, where I denotes a non-polar atom type and J denotes a water oxygen, was
enlarged.

2. The description of aromatic rings which was based on the use of united atoms, was improved by
introducing explicit hydrogen atoms on some aromatic rings11.

3. In order to reduce the rotational motion of the peptide plane, the dihedral angle torsional force
constants for the ϕ, ψ dihedrals were slightly increased.

4. The force field parameters in the heme-group were slightly changed.
5. The functional forms of the covalent bond-stretching interaction and bond-angle bending interaction

were changed in order to improve computational efficiency and to avoid singularities in the forces
for (ideal) bond angles of 180◦ (see section Sec. 2.3).

6. The nomenclature (definition of improper dihedral angles) of the Leu and Val side chains was changed
such that it corresponds to the IUPAC-IUB convention.

7. Due to the introduction of the distinction between mass atom types and non-bonded van der Waals
atom types and by relinquishing the use of non-bonded atom types for the definition of bond, bond-
angle and (improper) dihedral- angle types, the number of different (van der Waals) atom types
could be reduced from 37 to 22.

8. New van der Waals atom types were added, especially to allow for the use of different solvents (apart
from water). This brought the number of non-bonded (van der Waals) atom types to 43.

Shortly after the release of the 43A1 and 43B1 force fields, some small changes in the torsional-angle
parameters and the third-neighbour-van der Waals interaction were introduced, in order to better reproduce
the distribution of the torsional-angle values in short aliphatic chains. This modification resulted in the

3-2

43A2 parameter set.12. As it was then shown that the density for the longer alkanes was too high, a
reparametrisation of the aliphatic united atoms followed, introducing two additional atom types for branched
and cyclic alkanes. This resulted in the 45A3 and 45B3 set of parameters1.
Several parametrisation efforts on different classes of molecular systems were subsequently collected in the
45A4 and 45B4 set of parameters. The most important changes involved

- Charges and torsional dihedral angles in nucleotides and common co-factors3

- Charges and torsional dihedral angles in carbohydrates4

- Charges and torsional dihedral angles in lipids2

- Modifications in the choice of polar/nonpolar C12 interaction parameters for atom type 6 (NT)
- Correction to the van der Waals interaction parameters for atom type 31 (BR)
- Modifications to the heme group covalent interactions
- A new definition of the molecular topology building block at the end of polypeptide, polynucleotide
or polysaccharide chains

The 53A5 and 53A6 force fields5 are the result of a complete reparametrisation of the non-bonded inter-
action parameters for condensed phase simulations of pure liquids of small molecules (53A5) and solutions
of molecular systems in water or apolar solvents (53A6). All interaction types have been redefined in these
force fields, which also include parameters for additional solvents. In addition, bond types, bond-angle types,
dihedral-angle types and atom-types have been renumbered in 53A5 and 53A6.

In the 54A7 force field6–8

- The 53A6 helical propensities are corrected through new phi/psi torsional angle terms and a modi-
fication of the N-H, C=O repulsion.

- A new atom type for a charged -CH3 in the choline moiety is added.
- The Na+ and Cl- ions are modified to reproduce the free energy of hydration.
- Additional improper torsional angle types for free energy calculations involving a chirality change
are introduced.

- For the cofactors the files 54c7 cof.mtb and 54d7 cof.mtb were introduced in which the partial charges
were updated according to analogy of functional groups. Files 54a7 cof.mtb and 54b7 cof.mtb still
contain the original charge distributions.

The 54A8 force field13 involves a recalibration of the nonbonded interaction parameters for the charged
amino-acid side chains, based on ionic side chain analogs. After a thorough analysis of the available ex-
perimental data, conventional hydration free energies for the ammonium; mono-, di-, tri-, and tetramethyl-
ammonium; formate; acetate; propanoate; imidazolium; and guanidinium ions were combined with a stan-
dard absolute intrinsic proton hydration free energy to yield absolute intrinsic single-ion hydration free
energies serving as experimental target data. The raw hydration free energies calculated from atomistic sim-
ulations are affected by electrostatic and finite-size artifacts, and corrections were applied to reach method-
ological independence prior to comparison with these experimental values.

Solvent models that are consistent with the GROMOS biomolecular force fields are available for much
used (co)-solvents14:

- water15,16

- methanol17

- DMSO18

- chloroform19

- carbontetrachloride20

- urea21

- acetonitrile22

- dimethylsulfone23

Polarisable (solvent) models consistent with the GROMOS biomolecular force field are available for:

- water24

- methanol25

- DMSO26

3-3

- chloroform27

- carbontetrachloride28

- urea29

- acetone30

- n-alkanes31

Supra-molecular polarisable coarse-grained solvent models compatible with the GROMOS biomolecular
force fields are available for:

- water32

- methanol33,34

- DMSO33

- chloroform33

Supra-atomic polarisable coarse-grained models compatible with the GROMOS biomolecular force field
are available for n-alkanes35 and cyclohexane.36

3-4

CHAPTER 2

Physical forces: GROMOS force field

2.1. Introduction

This chapter summarizes the functional form of the GROMOS force field terms, which are described in
detail in the following chapters of Vol. 2: The bonded interaction force-field terms are described in Chap. 2-5;
van der Waals interactions are described in Chap. 2-6; electrostatic interactions are described in Chap. 2-7;
forces between coarse-grained particles are described in Chap. 2-8; the special force-field terms are described
in Chap. 2-9.

2.2. Bond stretching force-field terms

The potential energy (force-field) term associated with bond stretching interactions is the term V(b)(rr ; s)
in Eq. 2.1. It is given by

V(b)(rr ; s) =

N(b)
∑

n=1

V (b)(bn; k
(b)
n , b0n) , (2.1)

where N (b) is generally equal to the total number of all covalent bonds present in the system, i.e. each
covalent bond is associated with one and only one stretching term in the GROMOS force-field, and V (b) is
the function describing the potential energy associated with the stretching of a single bond. The quantity
bn

.
= bn(rr) represents the length of bond n in the given system configuration, i.e. the distance between the

two atoms i
.
= i(n) and j

.
= j(n) connected by the covalent bond n (minimum-image distance if PBC is

applied). The quantities k
(b)
n and b0n represent force-field parameters, force constant and reference length,

respectively characteristic for the specific bond n, as encoded by a corresponding bond type code M
(b)
n , i.e.

one may write k
(b)
n

.
= k(b)(M

(b)
n , s) and b0n

.
= b0(M

(b)
n , s). Two different expression can be used for the func-

tion V (b) in GROMOS (see Sec. 2-5.1), a quartic function with force constant k(b) and a harmonic function
with force constant k(b,h) . The coarse-grained (CG) model exploits yet another (quartic) interaction term
for the bond between the central particle and the dipole particle of a CG bead.32

For reasons of ease of analysis, the list of N (b) covalent bonds is split into two lists, one of bonds involving
hydrogen atoms (defined as having mass atom type code 1, see Tab. 3.1), and one involving the other bonds.
These lists are kept in the molecular topology file (see Vol. 4). The first list contains NBONH bonds involving
hydrogen atoms. Three items are stored: IBH, JBH[1..NBONH] are the atom sequence numbers of the atoms
forming bond i-j as a function of the bond sequence number n, and ICBH[1..NBONH] is the bond-type code,

denoting the parameters k
(b)
n , k

(b,h)
n and b0n , as a function of the bond sequence number n. The list for the

bonds involving no hydrogen atoms contains corresponding items denoted by IB, JB, ICB[1..NBON]. The

force field parameters k
(b)
n , k

(b,h)
n and b0n for the various types of covalent bonds are stored in CB[1..NBTY],

HB[1..NBTY] and B0[1..NBTY], as a function of the bond-type code (ICBH or ICB). They can be found in
the interaction function parameter files ∗.ifp. For the GROMOS force fields 45A4 and 45B4 they are listed
in Tab. 3.2, for force fields 54A7 and 54B7 they are listed in Tab. 3.17.

ProgramMD++ reads values for k
(b)
n , k

(b,h)
n and b0n from the BONDSTRETCHTYPE block in the molec-

ular topology file (∗.top). It can also read k
(b)
n and b0n from the BONDTYPE block and k

(b,h)
n and b0n from

the HARMBONDTYPE block. If only BONDTYPE block or HARMBONDTYPEBLOCK are given, the
missing force constant is calculated using equations Eq. 2-18.3 and Eq. 2-18.4.

3-5

2.3. Bond-angle bending force-field terms

The potential energy (force-field) term associated with bond-angle bending interactions is the term V(θ)(rr; s)
in Eq. 2.2. It is given by

V(θ)(rr ; s) =
N(θ)
∑

n=1

V (θ)(θn; k
(θ)
n , θ0n) , (2.2)

where N (θ) is generally equal to the total number of all covalent bond-angles present in the system, i.e.
each definable covalent bond-angle is associated with one and only one bending term in the GROMOS force
field, and V (θ) is the function describing the potential energy associated with the bending of a single bond
angle. The quantity θn

.
= θn(rr) represents the value of bond angle n in the given system configuration,

i.e. the angle formed by the three atoms i
.
= i(n), j

.
= j(n) and k

.
= k(n) defining the covalent bond angle

n (minimum-image triplet if PBC is applied). The quantities k
(θ)
n and θ0n represent force-field parameters,

force constant and reference bond angle, respectively, characteristic for the specific bond angle n, as encoded

by a corresponding bond-angle type code M
(θ)
n i.e. one may write k

(θ)
n

.
= k(θ)(M

(θ)
n , s) and θ0n

.
= θ0(M

(θ)
n , s).

Two different expression can be used for the function V (θ) in GROMOS (see Sec. 2-5.2), a cosine-harmonic
function with force constant k(θ) and a harmonic function with force constant k(θ,h) .

For reasons of ease of analysis, the list of N (θ) bond angles is split into two lists, one of bond angles
involving hydrogen atoms (defined as having mass atom type code 1, see Tab. 3.1), and one involving the
other bond angles. These lists are kept in the molecular topology file (Volume 4). The first list contains
NTHEH bond angles involving hydrogen atoms. Four items are stored: ITH, JTH, KTH[1...NTHEH] are
the atom sequence numbers of the atoms forming bond angle i-j-k as a function of the bond-angle sequence

number n, and ICTH [1...NTHEH] is the bond-angle type code, denoting the parameters k
(θ)
n , k

(θ,h)
n and

θ0n as a function of the bond-angle sequence number n. The list for the bond angles involving no hydrogen

atoms contains corresponding items denoted by IT, JT, KT, ICT[1...NTHE]. The force field parameters k
(θ)
n

, k
(θ,h)
n and θ0n for the various types of bond angles are stored in CT[1...NTTY], CHT[1...NTTY] and T0[1

... NTTY] as a function of the bond-angle type code (ICTH or ICT). They can be found in the interaction
parameter files ∗.ifp. For the GROMOS force fields 45A4 and 45B4, they are listed in Tab. 3.3, for force
fields 54A7 and 54B7 they are listed in Tab. 3.18.

Program MD++ reads values for k
(θ)
n , k

(θ,h)
n and θ0n from the BONDANGLEBENDTYPE block in the

molecular topology file (∗.top). If no BONDANGLEBENDTYPE is present k
(θ)
n can be read from the BON-

DANGLETYPE block and k
(θ,h)
n can be read from the HARMBONDANGLETYPE block.

2.4. Improper dihedral-angle bending force-field term

The potential energy (force-field) term associated with improper dihedral-angle bending interactions, i.e.

typically controlling out-of-plane or out-of-tetrahedron distortions, is the term V(ξ)(rr; s) in Eq. 2.3. It is
given by

V(ξ)(rr ; s) =

N(ξ)
∑

n=1

V (ξ)(ξn; k
(ξ)
n , ξ0n) , (2.3)

where N (ξ) generally corresponds to a subset of all possibly definable improper dihedral angles in the system
(see below; note, however, each definable covalent improper dihedral angle is associated with at most one
bending term in theGROMOS force field), and V (ξ) is the function describing the potential energy associated
with the bending of a single improper dihedral angle. The quantity ξn

.
= ξn(rr) represents the value of

improper dihedral angle n in the given system configuration, i.e. the dihedral angle formed by the four atoms
i
.
= i(n), j

.
= j(n), k

.
= k(n) and l

.
= l(n) defining the covalent improper dihedral angle n (minimum-image

quadruplet if PBC is applied). The quantities k
(ξ)
n and ξ0n represent force-field parameters, force constant

and reference improper dihedral-angle, respectively, characteristic for the specific improper dihedral angle n,

as encoded by a corresponding improper dihedral-angle type codeM
(ξ)
n i.e. one may write k

(ξ)
n

.
= k(ξ)(M

(ξ)
n , s)

and ξ0n
.
= ξ0(M

(ξ)
n , s). The function V (ξ) is always a harmonic function in GROMOS.

The improper dihedral angle definitions can be found in the molecular topology building block files ∗.mtb.

3-6

For reasons of ease of analysis, the list of N (ξ) improper dihedral angles is split into two lists, one of im-
proper dihedrals involving hydrogen atoms (defined as having mass atom type code 1, see Tab. 3.1), and one
involving the other one involving the other improper dihedrals. These lists are kept in the molecular topology
file (Volume 4). The first list contains NQHIH improper dihedral angles involving hydrogen atoms. Five
items are stored: IQH, JQH, KQH, LQH[1...NQHIH] are the atom sequence numbers of the atoms forming
improper dihedral i-j-k-l as a function of the improper dihedral sequence number n, and ICQH[1...NQHIH]

is the improper dihedral type code, denoting the parameters k
(ξ)
n and ξ0n , as a function of the improper

dihedral sequence number n. The list for the improper dihedral angles involving no hydrogen atoms contains

corresponding items denoted by IQ, JQ, KQ, LQ, ICQ[1...NQHI]. The force field parameters k
(ξ)
n and ξ0n for

the various types of improper dihedrals are stored in CQ[1...NQTY] and Q0[1...NQTY] as a function of the
improper dihedral type code (ICQH or ICQ). They can be found in the interaction parameter files ∗.ifp. For
the GROMOS force fields 45A4, 45B4, 54A7 and 54B7 they are listed in Tab. 3.4 (and Tab. 3.19).

Program MD++ reads values for k
(ξ)
n , and ξ0n from the IMPDIHEDRALTYPE block in the molecular

topology file (∗.top).

2.5. Proper dihedral-angle torsion force-field term

The potential energy (force-field) term associated with proper dihedral-angle bending interactions, i.e.

typically controlling, in balance with non-bonded interactions, the rotational barriers around covalent bonds,

is the term V(ϕ)(rr ; s) in Eq. 2.4. It is given by

V(ϕ)(rr ; s) =

N(ϕ)
∑

n=1

V (ϕ)(ϕn; k
(ϕ)
n , ϕ0

n,m
(ϕ)
n) , (2.4)

where N (ϕ) generally corresponds to a subset of all possibly definable proper dihedral angles in the system
and V (ϕ) is the function describing the potential energy contribution of the term to the torsion of the
corresponding proper dihedral angle. The quantity ϕn

.
= ϕn(rr) represents the value of proper dihedral

angle n in the given system configuration, i.e. the dihedral angle formed by the four atoms i
.
= i(n),

j
.
= j(n), k

.
= k(n) and l

.
= l(n) defining the covalent proper dihedral angle n (minimum-image quadruplet

if PBC is applied). Note that the sign of the dihedral angle as defined by Eq. 2-5.19 follows the IUPAC-IUB
convention37, and that the proper dihedral angle is undefined if either rim′ = 0 or rin′ = 0. The quantities

k
(ϕ)
n , ϕ0

n andm
(ϕ)
n represent force-field parameters (force constant, reference dihedral-angle, and multiplicity,

respectively; the reference dihedral angle is also called the phase shift; the multiplicity is a positive non-zero
integer) characteristic for the specific proper dihedral angle term n, as encoded by a corresponding proper

dihedral-angle type codeM
(ϕ)
n . Two different expression can be used for the function V (ϕ) in GROMOS (see

Sec. 2-5.4).

The torsional dihedral angle definitions can be found in the molecular topology building block files ∗.mtb
(see Vol. 4). Examples of the special definitions involving sugar or phosphor atoms can be found in the
building blocks DADE or NADPH.

Program MD++ reads values for k
(ϕ)
n , ϕ0

n and m
(ϕ)
n from the TORSDIHEDRALTYPE block in the

molecular topology file (∗.top), also if the DIHEDRALTYPE block is given as well. If the DIHEDRAL-
TYPE is given in the topology instead of the TORSDIHEDRALTYPE, only cos ϕn values (instead of ϕn

values) are read.

For reasons of ease of analysis, the list of N (ϕ) torsional dihedral angles is split into two lists, one of
dihedrals involving hydrogen atoms (defined as having mass atom type code 1, see Table Tab. 3.1), and
one involving the other dihedrals. These lists are kept in the molecular topology file (Vol. 4). The first
list contains NPHIH dihedral angles involving hydrogen atoms. Five items are stored: IPH, JPH, KPH,
LPH[1..NPHIH] are the atom sequence numbers of the atoms forming dihedral i-j-k-l as a function of the di-

hedral sequence number n, and ICPH[1..NPHIH] is the dihedral type code, denoting the parameters k
(ϕ)
n , ϕ0

n

and m
(ϕ)
n , as a function of the dihedral sequence number n. The list for the dihedrals involving no hydrogen

atoms contains corresponding items denoted by IP, JP, KP, LP, ICP[1..NPHI]. The force field parameters

k
(ϕ)
n , ϕ0

n and m
(ϕ)
n for the various types of torsional dihedrals are stored in CP[1..NPTY], NP[1..NPTY] and

PD[1..NPTY] as a function of the torsional dihedral type code (ICPH or ICP). They can be found in the

3-7

interaction parameter files ∗.ifp. For the GROMOS force fields 45A4 and 45B4, they are listed in Tab. 3.5,
for the GROMOS force fields 54A7 and 54B7, they are listed in Tab. 3.20.

As an additional feature, the specification at so-called cross-dihedral terms is supported. The correspond-
ing expression for this type of interaction reads

V trig,cross(r; s) =
Nc
∑

n=1
V trig,cross
n (ϕn;ψn;Kcn ;δn;mn)

=
Nc
∑

n=1
Kcn [1+ cos (mn(ϕn + ψn)− δn)]

(2.5)

The summation runs over the set of n = 1, ... , Nc of coupled dihedral angles ϕn and ψn, as specified by
atoms a-b-c-d and e-f-g-h, respectively, which are specified in the CROSSDIHEDRALH and CROSSDIHE-
DRAL blocks in the molecular topology file (∗.top). These blocks specify coupled dihedral angles that do
involve hydrogens and do not involve hydrogens, respectively. In addition, the type of cross-dihedral term
n is specified in the same blocks in the topology file, defining the force constant Kcn , phase-shift δn and
multiplicity m, as read from the TORSDIHEDRALTYPE block in the molecular topology file. Accordingly,
the specification of cross-dihedral terms is only possible if the TORSDIHEDRALTYPE block is specified.

The forces on atoms a, b, c, d of dihedral ϕn and atoms e, f, g, h of dihedral ψn due to the n-th in (Eq. 2.5)
are

fa = −
∂V trig,cross

∂ϕn

∂ϕn

∂ra
(2.6)

= Kcnmnsin(mn(ϕn + ψn)− δn)
rcb
r2mb

rmj

fd = −
∂V trig,cross

∂ϕn

∂ϕn

∂rd
(2.7)

= −Kcnmnsin(mn(ϕn + ψn)− δn)
rcb
r2mb

rnc

fb = −
∂V trig,cross

∂ϕn

∂ϕn

∂rb
(2.8)

=

[

(rab · rcb)

r2cb
−1

]

fi −
rcd · rcb

r2cb
fd

fc = −fa −fb −fd

(2.9)

fe = −
∂V trig,cross

∂ψn

∂ψn

∂re
(2.10)

= Kcnmnsin(mn(ϕn + ψn)− δn)
rgf
r2mf

rmf

fh = −
∂V trig,cross

∂ψn

∂ψn

∂rh
(2.11)

= −Kcnmnsin(mn(ϕn + ψn)− δn)
rgf
r2ng

rng

3-8

ff = −
∂V trig,cross

∂ψn

∂ψn

∂rf
(2.12)

=

[

(ref · rgf)

r2gf
−1

]

fe −
(rgh · rgf)

r2gf
fh

fg = −fe −ff −fh

(2.13)

where

rmb = rab × rcb (2.14)

rnc = rcb × rcd (2.15)

rmf = ref × rgf (2.16)

rng = rgf × rgh (2.17)

and

sin(mn(ϕn + ψn)− δn) =
√

1− cos2(mn(ϕn + ψn)− δn) (2.18)

2.6. Non-bonded interactions

The term in the interaction function that represents the non-bonded interaction is a sum of contributions
from van der Waals and electrostatic interactions,

V nonb(rN; s) =
∑

nonbonded
pairs(i,j)

{

V LJ(rij ;C12(i, j), C6(i, j), Rcp, Rcl)

+V CRF (rij ; qi, qj , Rcp, Rcl, Rrf , ε1, ε2, κ)
}

(2.19)

with

V LJ =

[

C12(i, j)

(rij)6
− C6(i, j)

]

1

(rij)6
(2.20)

and

V CRF =
qiqj

4πε0εcs

[

1

rij
−

1
2Crf (rij)

2

R3
rf

−
1− 1

2Crf

Rrf

]

(2.21)

The van der Waals interactions are discussed in Chap. 2-6 and the electrostatic interactions are discussed
in Chap. 2-7.

2.6.1. van der Waals parameters. The non-bonded interaction van der Waals parameters C12(i,j)
and C6(i,j) in formula (Eq. 2.19) depend on the atom type or more specifically the integer atom codes I =
IAC[i] and J = IAC[j] of the atoms with atom sequence numbers i and j. The integer atom codes of the
various types of atoms in the GROMOS force fields 45A5 and 45B4 are listed in Tab. 3.6, for GROMOS
force fields 54A7 and 54B7, they are listed in Tab. 3.21.

Lists of integer atom codes are kept in the molecular topology file (Volume 4). For the NRP atoms of the
“solute” part of the molecular topology the integer atom codes are stored in IAC[1..NRP]. The integer atom
codes of the NRAM solvent atoms are stored in IACS[1..NRAM]. The van der Waals parameters are kept in
the molecular topology file (see Volume 4). For the NRATT atom types, C12[1 .. NRATT∗(NRATT+1)/2]
contains the coefficient C12 in (Eq. 2.19) as a function of the occurring pair codes; the sequence of atom
pairs with integer atom codes ranging from 1 to NRATT is:

3-9

1-1, 1-2, 2-2, ..., 1-NRATT, 2-NRATT, ..., NRATT-NRATT.

The coefficients C6 in (Eq. 2.19) are kept likewise in C6[1 .. NRATT∗(NRATT+1)/2]. In this way it is
possible to change the van der Waals interaction between each pair of atom types independently. Basically,
the GROMOS van der Waals parameters for an atom pair with integer atom codes I and J are derived from
single atom van der Waals parameters using the relations

C6(I, J) =

√

C
1
2
6 (I, I)C

1
2
6 (J, J) (2.22)

and

C12(I, J) =

√

C
1
2
12(I, I)C

1
2
12(J, J) (2.23)

For the GROMOS force fields 45A4 and 45B4, the single atom van der Waals parameters (C6(I,I))
1/2 and

(C12(I,I))
1/2 are given in the third and fourth column of Tables Tab. 3.7 and Tab. 3.8 as a function of integer

atom code or non-bonded atom type. For the GROMOS force fields 54A7 and 54B7, they are given in the
third and fourth column of Tables Tab. 3.22 and Tab. 3.23.

GROMOS also offers a possibility to specify the van der Waals parameters for a specific atom pair,
thereby overruling the interaction parameters as derived from the normal (or third-neighbour) interaction
parameters. This can be done by introducing a LJEXCEPTIONS block in the molecular topology file (see
Vol. 4).

2.6.2. Atomic charges and charge groups. Lists of atomic charges are kept in the molecular topol-
ogy file (see Volume 4). For the NRP atoms in the “solute” part of the molecular topology atomic charges

are stored in CG[1..NRP] (multiplied by (4πε0)
−1/2). The atomic charges of the NRAM solvent atoms are

stored in CGS[1..NRAM] (multiplied by (4πε0)
−1/2).

When the (partial) atomic charges of a group of atoms add up to exactly zero, the leading term of the
electrostatic interaction between two such groups of atoms is of dipolar (1/r3) character. The sum of the
1/r monopole contributions of the various atom pairs to the group-group interaction will be zero. Therefore,
the range of the electrostatic interaction can be considerably reduced when atoms are assembled in so-called
charge groups, which have a zero net charge, and for which the electrostatic interaction with other (groups
of) atoms is either calculated for all atoms of the charge group or for none.

The GROMOS force fields make use of this concept of charge groups. The atoms that belong to a charge
group are chosen such that their partial atomic charges add up to zero. For groups of atoms with a total
charge of +e or −e, like the sidechain atoms of Arg or Asp, the partial atomic charges of the charge group
may add up to +e or −e. In GROMOS, the non-bonded interactions are calculated between charge groups
only. When a cut-off radius is used, the distance between two charge groups must be defined. The position

of a charge group is defined differently for a charge group belonging to the “solute” part of the molecular
topology and one in the “solvent” part of the molecular topology.

- The position of a “solute” charge group is taken to be its centre of geometry:

Rcg =

Ncg
∑

i=1

ri /Ncg (2.24)

where the number of atoms belonging to the charge group is denoted by Ncg.

- The position of a “solvent” charge group is taken to be the position of the first atom of a solvent
molecule. A “solvent” molecule may only contain one charge group.

Since each solvent molecule consists of one charge group, the “solvent” part of the molecular topology
file does not need to contain information on “solvent” charge groups. In the “solute” part of the molecular
topology file the charge group information is kept in the following way. It is assumed that atoms belonging
to one charge group have sequential atom sequence numbers. The last atom of any charge group is denoted
by a charge group code value of 1. All other atoms have a charge group code value of 0. This requirement of

3-10

atoms of a charge group to have sequential atom sequence numbers is a less elegant restriction to choosing
the atom sequence when defining molecular topology building blocks or molecular topologies (see Vol. 4).

The atomic charges and charge group definitions for the GROMOS force fields are given in the molec-
ular topology building block files ∗.mtb (Chap. 3). The atomic charges and charge group definitions for
amino acid residues, various solvents and nucleotides of the 45A4 and 45B4 GROMOS force fields are listed
in Tables Tab. 3.12-Tab. 3.16. For the GROMOS force fields 54A7 and 54B7 they are listed in Tables
Tab. 3.27-Tab. 3.31.

The charges for the B-versions of the force field are given between parentheses. The atoms for which no
changes are listed have zero partial charge and form single atom or multiple atom charge groups.

3-11

CHAPTER 3

GROMOS interaction function parameters

mass atom type code mass in a.m.u. mass atom name

1 1.008 H

3 13.019 CH1

4 14.027 CH2

5 15.035 CH3

6 16.043 CH4

12 12.011 C

14 14.0067 N

16 15.9994 O

19 18.9984 F

23 22.9898 NA

24 24.305 MG

28 28.08 SI

31 30.9738 P

32 32.06 S

35 35.453 CL

39 39.948 AR

40 40.08 CA

56 55.847 FE

63 63.546 CU

65 65.37 ZN

80 79.904 BR

Table 3.1. GROMOS mass atom type codes, masses and names.

3-13

Bond-type
code

Force constant Ideal bond length Examples of usage in terms of
non-bonded atom types

M
(b)
n k

(b,q)
n b0n k

(b,h)
n

[106 kJ·mol−1·nm−4] [nm] [106 kJ·mol−1·nm−2]

ICBH[N]
ICB[N]

CB[N] B0[N]

1 15.7 0.100 H - OA 0.314

2 18.7 0.100 H - N (all) 0.374

3 12.3 0.109 HC - C 0.292

4 16.6 0.123 C - O 0.502

5 13.4 0.125 C - OM 0.419

6 12.0 0.132 CR1 - NR (6-ring) 0.418

7 8.87 0.133 H - S 0.314

8 10.6 0.133 C - NT, NL 0.375

9 11.8 0.133 C, CR1 - N, NR, CR1, C (pep-
tide, 5-ring)

0.417

10 10.5 0.134 C - N, NZ, NE 0.377

11 11.7 0.134 C - NR (no H) (6-ring) 0.420

12 10.2 0.136 C - OA 0.377

13 11.0 0.138 C - NR (heme) 0.419

14 8.66 0.139 CH2 - C, CR1 (6-ring) 0.335

15 10.8 0.139 C, CR1 - CH2, C, CR1 (6-ring) 0.417

16 8.54 0.140 C, CR1, CH2 - NR (6-ring) 0.335

17 8.18 0.143 CHn - OA 0.335

18 9.21 0.143 CHn - OM 0.377

19 6.10 0.1435 CHn - OA (sugar) 0.251

20 8.71 0.147 CHn - N, NT, NL, NZ, NE 0.376

21 5.73 0.148 CHn - NR (5-ring) 0.251

22 7.64 0.148 CHn - NR (6-ring) 0.335

23 8.60 0.148 O, OM - P 0.377

24 8.37 0.150 O - S 0.377

25 5.43 0.152 CHn - CHn (sugar) 0.251

26 7.15 0.153 C, CHn - C, CHn 0.335

27 4.84 0.161 OA - P 0.251

28 4.72 0.163 OA - SI 0.251

29 5.94 0.178 CH3 - S 0.376

30 5.62 0.183 CH2 - S 0.376

31 3.59 0.187 CH1 - SI 0.251

32 0.640 0.198 NR - FE 0.0502

33 5.03 0.204 S - S 0.419

34 0.628 0.200 NR (heme) - FE 0.0502

35 23.2 0.100 HWat - OWat 0.464

36 12.1 0.110 HChl - CChl 0.293

37 8.12 0.1758 CChl - CLChl 0.502

38 8.04 0.153 ODmso - SDmso 0.376

39 4.95 0.195 SDmso - CDmso 0.376

40 8.10 0.176 CCl4 - CLCl4 0.502

Table 3.2: continues on next page.

3-14

Bond-type
code

Force constant Ideal bond length Examples of usage in terms of
non-bonded atom types

M
(b)
n k

(b,q)
n b0n k

(b,h)
n

[106 kJ·mol−1·nm−4] [nm] [106 kJ·mol−1·nm−2]

ICBH[N]
ICB[N]

CB[N] B0[N]

41 8.71 0.163299 HWat - HWat 0.465

42 2.68 0.233839 HChl - CLChl 0.293

43 2.98 0.290283 CLChl - CLChl 0.502

44 2.39 0.280412 ODmso - CDmso 0.376

45 2.19 0.292993 CDmso - CDmso 0.376

46 3.97 0.198842 HMet - CMet 0.314

47 3.04 0.287407 CLCl4 - CLCl4 0.502

48 0.540 0.221 NR (His) - FE 0.0527

49 2.72 0.178 FE - C (CO bound to heme) 0.172

50 37.0 0.112 C - O (CO bound to heme) 0.928

Table 3.2: GROMOS 45A4 and 45B4 bond-stretching parameters (k
(b,q)
n = k

(b,h)
n /(2b0n

2)).

3-15

Bond-
angle type
code

Force constant Ideal bond angle Example of usage in terms of
non-bonded atom types

M
(θ)
n k

(θ,c)
n θ0n k

(θ,h)
n

[kJ·mol−1] [deg] [kJ·mol−1·deg−2]

ICTH[N]
ICT[N]

CT[N] (T0[N])

1 420 90.0 NR(heme) - FE - NR(heme) 0.128

2 405 96.0 H - S - CH2 0.122

3 475 100.0 CH2 - S - CH3 0.140

4 420 103.0 OA - P - OA 0.121

5 490 104.0 CH2 - S - S 0.140

6 465 108.0 NR, C, CR1(5-ring) 0.128

7 285 109.5 CHn - CHn - CHn, NR(6-ring)
(sugar)

0.0769

8 320 109.5 CHn, OA - CHn - OA, NR(ring)
(sugar)

0.0864

9 380 109.5 H - NL, NT - H, CHn - OA -
CHn(sugar)

0.103

10 425 109.5 H - NL - C, CHn H - NT - CHn 0.115

11 450 109.5 X - OA, SI - X 0.122

12 520 109.5 CHn,C - CHn - C, CHn, OA,
OM, N, NE

0.141

13 450 109.6 OM - P - OA 0.121

14 530 111.0 CHn - CHn - C, CHn, OA, NR,
NT, NL

0.140

15 545 113.0 CHn - CH2 - S 0.140

16 50 115.0 NR(heme) - FE - NR 0.0123

17 460 115.0 H - N - CHn 0.115

18 610 115.0 CHn, C - C - OA, N, NT, NL 0.152

19 465 116.0 H - NE - CH2 0.114

20 620 116.0 CH2 - N - CH1 0.152

21 635 117.0 CH3 - N - C, CHn - C - OM 0.153

22 390 120.0 H - NT, NZ, NE - C 0.0889

23 445 120.0 H - NT, NZ - H 0.101

24 505 120.0 H - N - CH3, H, HC - 6-ring, H
- NT - CHn

0.115

25 530 120.0 P, SI - OA - CHn, P 0.121

26 560 120.0 N, C, CR1 (6-ring, no H) 0.128

27 670 120.0 NZ - C - NZ, NE 0.153

28 780 120.0 OM - P - OM 0.178

29 685 121.0 O - C - CHn, C; CH3 - N - CHn 0.153

30 700 122.0 CH1, CH2 - N - C 0.153

31 415 123.0 H - N - C 0.0887

32 730 124.0 O - C - OA, N, NT, NL C - NE
- CH2

0.153

33 375 125.0 FE - NR - CR1 (5-ring) 0.0765

34 750 125.0 - 0.153

Table 3.3: continues on next page.

3-16

Bond-
angle type
code

Force constant Ideal bond angle Example of usage in terms of
non-bonded atom types

M
(θ)
n k

(θ,c)
n θ0n k

(θ,h)
n

[kJ·mol−1] [deg] [kJ·mol−1·deg−2]

ICTH[N]
ICT[N]

CT[N] (T0[N])

35 575 126.0 H, HC - 5-ring 0.114

36 640 126.0 X(noH) - 5-ring 0.127

37 770 126.0 OM - C - OM 0.153

38 760 132.0 5, 6 ring connnection 0.128

39 2215 155.0 SI - OA - SI 0.121

40 434 109.5 HWat - OWat - HWat 0.117

41 484 107.57 HChl - CChl - CLChl 0.134

42 632 111.30 CLChl - CChl - CLChl 0.167

43 469 97.4 CDmso - SDmso - CDmso 0.140

44 503 106.75 CDmso - SDmso - ODmso 0.140

45 443 108.53 HMet - OMet - CMet 0.121

46 618 109.5 CLCl4 - CCl4 - CLCl4 0.167

47 380 90.0 NR (heme) - FE - C
(CO bound to heme)

0.116

48 91350 180.0 Fe - C - O
(CO bound to heme)

0.0726

Table 3.3: GROMOS 45A4 and 45B4 bond-angle bending parameters (k
(θ,c)
n = g(k

(θ,h)
n , θ0n, EkBT).

3-17

Improper
dihedral-
angle type
code

Force constant Ideal improper
dihedral angle

Example
of usage

k
(ξ)
n ξ0n k

(ξ)
n

[kJmol−1degree−2] [degree] [kcalmol−1rad−2]

ICQH[N]
ICQ[N]

CQ[N] (Q0[N])

1 0.0510 0.0 planar
groups

40

2 0.102 35.26439 tetrahedral
centres

80

3 0.204 0.0 heme iron 160

Table 3.4. GROMOS 45A4 and 45B4 improper (harmonic) dihedral angle parameters.

3-18

Dihedral-
angle type
code

Force con-
stant

Phase
shift

Multiplicity Example of usage in terms of non-bonded atom types

k
(ϕ,s)
n cos(ϕ0

n) m
(ϕ)
n k

(ϕ,s)
n

[kJmol−1] [kcalmol−1]

ICPH[N]
ICP[N]

CP[N] PD[N] NP[N]

1 5.86 -1.0 2 -C-C- 1.4

2 7.11 -1.0 2 -C-OA- (at ring) 1.7

3 16.7 -1.0 2 -C-OA- (carboxyl) 4.0

4 33.5 -1.0 2 -C-N, NT, NE, NZ,NR- 8.0

5 41.8 -1.0 2 -C-CR1- (6-ring) 10.0

6 0.0 +1.0 2 -CH1 (sugar)-NR(base)- 0.0

7 0.418 +1.0 2 O-CH1-CHn-no O 0.1

8 2.09 +1.0 2 O-CH1-CHn-O 0.5

9 3.14 +1.0 2 -OA-P- 0.75

10 16.7 +1.0 2 -S-S- 4.0

11 1.05 +1.0 3 -OA-P-; -P - O5* - C5* - C4* (dna) 0.25

12 1.26 +1.0 3 -CHn-OA(no sugar)- 0.3

13 2.93 +1.0 3 -CH2-S- 0.7

14 3.77 +1.0 3 -C,CHn,SI-NT,NL,OA(sugar)- 0.9

15 4.18 +1.0 3 HC-C-S- 1.0

16 5.44 +1.0 3 HC-C-C- 1.3

17 5.86 +1.0 3 -CHn,SI-CHn- 1.4

18 0.0 +1.0 4 -NR-FE- 0.0

19 1.0 -1.0 6 -CHn-N,NE- 0.24

20 1.0 +1.0 6 -CHn-C,NR (ring), CR1- 0.24

21 3.77 +1.0 6 -CHn-NT- 0.9

22 5.35 +1.0 1 O5* - C5* - C4* - O4* (dna) 1.3

23 2.53 +1.0 3 O5* - C5* - C4* - O4* (dna) 0.60

24 5.09 +1.0 2 CHn - O - P - O (dna, phosphodiester) 1.2

25 3.19 +1.0 3 CHn - O - P - O (dna, phosphodiester) 0.76

26 2.79 +1.0 1 P - O5* - C5* - C4* (dna) 0.67

27 5.86 -1.0 1 N - CHn - CHn - OA (lipid) 1.4

28 8.62 +1.0 3 N - CHn - CHn - OA (lipid) 2.1

29 24.0 -1.0 2 CHn - OA - C - CHn (ester lipid) 5.7

30 3.90 +1.0 3 CHn - CHn - OA - H (sugar) 0.93

31 9.35 -1.0 1 OA - CHn - CHn - OA (sugar) O5 - C5 - C6 - O6b 2.2

32 9.50 +1.0 3 OA - CHn - CHn - OA (sugar) O5 - C5 - C6 - O6b 2.3

33 9.45 -1.0 1 OA - CHn - OA - CHn,H (αsugar) O5 - C1 - O1 -
C1′,H1

2.3

34 3.41 -1.0 1 OA - CHn - OA - CHn,H (βsugar) O5 - C1 - O1 -
C1’,H1

0.81

35 4.69 +1.0 3 OA - CHn - OA - CHn,H (βsugar) O5 - C1 - O1 -
C1’,H1

1.1

36 3.65 +1.0 3 OA - CHn - OA - CHn,H (αsugar) O5 - C1 - O1 -
C1’,H1

0.87

Table 3.5: continues on next page.

3-19

Dihedral-
angle type
code

Force con-
stant

Phase
shift

Multiplicity Example of usage in terms of non-bonded atom types

k
(ϕ,s)
n cos(ϕ0

n) m
(ϕ)
n k

(ϕ,s)
n

[kJmol−1] [kcalmol−1]

ICPH[N]
ICP[N]

CP[N] PD[N] NP[N]

37 6.66 -1.0 1 OA - CHn - CHn - OA (sugar) O5 - C5 - C6 - O6a 1.2

38 7.69 +1.0 3 OA - CHn - CHn - OA (sugar) O5 - C5 - C6 - O6a 1.8

39 2.67 -1.0 1 CHn - CHn - CHn - OA (sugar) O5 - C5 - C6 - O6a 0.64

40 1.53 -1.0 2 C1 - C2 - CAB - CBB (heme) 0.37

Table 3.5: GROMOS 45A4 and 45B4 (trigonometric) dihedral torsional angle parameters. a) To be used
if - C5 - C6 - O6 and adjacent - C4 - O4 - are axial and the other equatorial, as in galactose; b) To be used
if - C5 - C6 - O6 and adjacent - Cn - On - Hn are both simultaneously axial or equatorial, as in glucose.

3-20

integer atom code atom type description

IAC[N] TYPE[N]

1 O carbonyl oxygen (C=O)

2 OM carboxyl oxygen (CO−)

3 OA hydroxyl, sugar or ester oxygen

4 OW water oxygen

5 N peptide nitrogen (NH)

6 NT terminal nitrogen (NH2)

7 NL terminal nitrogen (NH3)

8 NR aromatic nitrogen

9 NZ Arg NH (NH2)

10 NE Arg NE (NH)

11 C bare carbon

12 CH1 aliphatic or sugar CH-group

13 CH2 aliphatic or sugar CH2-group

14 CH3 aliphatic CH3-group

15 CH4 methane

16 CR1 aromatic CH-group

17 HC hydrogen bound to carbon

18 H hydrogen not bound to carbon

19 DUM dummy atom

20 S sulphur

21 CU1+ copper (charge 1+)

22 CU2+ copper (charge 2+)

23 FE iron (heme)

24 ZN2+ zinc (charge 2+)

25 MG2+ magnesium (charge 2+)

26 CA2+ calcium (charge 2+)

27 P, SI phosphor or silicon

28 AR argon

29 F fluor (non-ionic)

30 CL chlorine (non-ionic)

31 BR bromine (non-ionic)

32 CMet CH3-group in methanol (solvent)

33 OMet oxygen in methanol (solvent)

34 NA+ sodium (charge 1+)

35 CL- chloride (charge 1-)

36 CChl carbon in chloroform (solvent)

37 CLChl chloride in chloroform (solvent)

38 HChl hydrogen in chloroform (solvent)

39 SDmso sulphur in DMSO (solvent)

40 CDmso CH3-group in DMSO (solvent)

41 ODmso oxygen in DMSO (solvent)

42 CCl4 carbon in carbontetrachloride (solvent)

43 CLCl4 chloride in carbontetrachloride (solvent)

44 CH2r aliphatic or sugar CH2 group in ring

Table 3.6: continues on next page.

3-21

integer atom code atom type description

IAC[N] TYPE[N]

45 CH0 bare sp3 carbon, 4 bound heavy atoms

Table 3.6: GROMOS 45A4 and 45B4 non-bonded atom types and integer atom codes.

3-22

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

1 O 0.04756 0.8611 1.125 -

2 OM 0.04756 0.8611 1.841 3.068

3 OA 0.04756 1.125 1.227 -

4 OW 0.05116 1.544 1.623 -

5 N 0.04936 1.301 1.943 -

6 NT 0.04936 1.301 2.250 -

7 NL 0.04936 1.301 3.068 -

8 NR 0.04936 1.301 1.841 -

9 NZ 0.04936 1.301 2.148 -

10 NE 0.04936 1.301 1.984 -

11 C 0.04838 1.837 - -

12 CH1 0.07790 9.850 - -

13 CH2 0.08642 5.828 - -

14 CH3 0.09805 5.162 - -

15 CH4 0.1148 5.862 - -

16 CR1 0.07425 3.888 - -

17 HC 0.0092 0.123 - -

18 H 0.0 0.0 - -

19 DUM 0.0 0.0 - -

20 S 0.09992 3.616 - -

21 CU1+ 0.02045 0.07159 0.2250 -

22 CU2+ 0.02045 0.07159 0.4091 -

23 FE 0.0 0.0 0.0 -

24 ZN2+ 0.02045 0.09716 0.09716 -

25 MG2+ 0.008080 0.05838 0.05838 -

26 CA2+ 0.03170 0.7057 0.7057 -

27 P, SI 0.1214 4.711 - -

28 AR 0.07915 3.138 - -

29 F 0.03432 0.8722 1.227 -

30 CL 0.09362 3.911 - -

31 BR 0.03434 8.092 - -

32 CMet 0.09421 4.5665 - -

33 OMet 0.04756 1.125 1.227 -

34 NA+ 0.008489 0.1450 0.1450 -

35 CL- 0.1175 10.340 10.340 10.340

36 CChl 0.051292 2.0160 - -

37 CLChl 0.091141 3.7101 - -

38 HChl 0.0061400 0.065574 - -

39 SDmso 0.10277 4.6366 - -

40 CDmso 0.095139 4.6645 - -

41 ODmso 0.047652 0.86686 1.125 -

42 CCl4 0.051292 2.7568

Table 3.7: continues on next page.

3-23

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

43 CLCl4 0.087201 3.5732

44 CH2r 0.08564 5.297 - -

45 CH0 0.04896 14.33 - -

Table 3.7: GROMOS 45A4 normal van der Waals parameters.

3-24

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

2 OM 0.04756 0.8611 1.125 1.125

7 NL 0.04936 1.301 1.943 -

Table 3.8. GROMOS 45B4 (vacuo) normal van der Waals parameters.

integer
atom code

atom type integer
atom code

atom type C6 (I,J) C12 (I,J)

I J 10−3kJmol−1nm6 10−6kJmol−1nm12

36 CChl 37 CLChl 4.6754 7.4813

36 CChl 38 HChl 0.3622 0.1745

37 CLChl 38 HChl 0.6493 0.3266

39 SDmso 40 CDmso 9.7827 21.6523

39 SDmso 41 ODmso 5.2442 4.6094

40 CDmso 41 ODmso 4.9187 4.7597

Table 3.9. GROMOS 45A4 normal van der Waals parameters for mixed atom type pairs (I,J).

3-25

J 1 2 3 4 5 6 7 8 9 10 21 22 23 24 25 26 27 29 30 31 33 34 35 41

I O OM OA OW N NT NL NR NZ NE CU1+ CU2+ FE ZN2+ MG2+ CA2+ P,SI F CL BR OMet NA+ CL- ODmso

1 O 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1

2 OM 1 1 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 1 1 1 2 3 1 1

3 OA 2

4 OW 2

5 N 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

6 NT 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2

7 NL 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

8 NR 2

9 NZ 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

10 NE 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

21 CU1+ 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

22 CU2+ 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

23 FE 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

24 ZN2+ 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

25 MG2+ 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

26 CA2+ 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

27 P,SI 1

29 F 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1

30 CL 1

31 BR 1

33 OMet 2

34 NA+ 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2

35 CL- 1 1 2 2 2 2 3 2 3 3 3 3 3 3 3 3 3 1 1 1 2 3 1 1

41 ODmso 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1

Table 3.10. Selection of van der Waals (repulsive) C
1/2
12 (I, I) parameters (GROMOS 45A4 and 45B4).

3
-2
6

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

12 CH1 0.05396 1.933 - -

13 CH2 0.06873 2.178 - -

14 CH3 0.08278 2.456 - -

16 CR1 0.07435 2.886 - -

44 CH2r 0.06873 2.178 - -

45 CH0 0.04838 1.837 - -

Table 3.11. GROMOS 45A4 and 45B4 third-neighbour van der Waals parameters.

3-27

atom name charge in e occurring in

N -0.280 all residues

H 0.280

C 0.380 all residues

O -0.380

CD 0.090 (0.0) Arg (charge +1)

NE -0.110 (-0.240)

HE 0.240 (0.240)

CZ 0.340 (0.0)

NH1/2 -0.260 (-0.480)

HH11/12/21/22 0.240 (0.240)

NE -0.280 Argn (neutral)

HE 0.280

CZ 0.150 Argn (neutral)

NH1 -0.548

HH1 0.398

NH2 -0.830 Argn (neutral)

HH21/22 0.415

CG, CD 0.380 Asn, Gln

OD1, OE1 -0.380

ND2, NE2, NZ -0.830 Asn, Gln, Lys

HD21/22, HE21/22, HZ1/2 0.415

CG, CD 0.270 (0.720) Asp, Glu (charge -1)

OD1/2, OE1/2 -0.635 (-0.360)

CG, CD 0.530 Asph, Gluh

OD1, OE1 -0.380

OD2, OE2 -0.548

HD2, HE2 0.398

CB -0.100 (0.200) Cys (charge -.5)

SG -0.400 (-0.200)

SG -0.064 Cysh

HG 0.064

CG 0.0 Hisa (proton at D1)

ND1 0.0

HD1 0.190

CD2 0.130

CE1 0.260

NE2 -0.580

CG 0.130 Hisb (proton at E2)

ND1 -0.580

CD2 0.0

CE1 0.260

NE2 0.0

HE2 0.190

CG -0.050 (0.0) Hish (charge +1)

ND1 0.380 (-0.300)

Table 3.12: continues on next page.

3-28

atom name charge in e occurring in

HD1 0.300 (0.300)

CD2 0.0 (0.0)

CE1 -0.240 (0.0)

NE2 0.310 (-0.300)

HE2 0.300 (0.300)

CG, CB, CB, CZ 0.150 Hypr, Ser, Thr, Tyr

OD1, OG, OG1, OH -0.548

HD1, HG, HG1, HH 0.398

CE 0.127 (0.0) Lysh (charge +1)

NZ 0.129 (-0.744)

HZ1/2/3 0.248 (0.248)

CG -0.140 Trp

CD1 -0.100

HD1 0.100

CD2 0.0

NE1 -0.050

HE1 0.190

CE2 0.0

C -0.100 all aromatic C-H groups in
Phe, Tyr, Trp

H 0.100

Table 3.12: GROMOS 45A4 (45B4) atomic charges and charge group definitions for amino acid residues.
The charges for the 45B4 force field are given between parentheses. The atoms that are not listed have zero
partial charge and form single atom or multiple atom charge groups.

3-29

atom name charge in e occurring in

OW -0.8200 H2O (SPC model)

HW1/2 0.4100

OW -0.8476 H2O (SPC/E model)

HW1/2 0.4238

CChl 0.1790 Chloroform

CLChl -0.0870

HChl 0.0820

SDmso 0.1390 DMSO

CDmso 0.1600

ODmso -0.4590

CMet 0.1760 Methanol

OMet -0.5740

HMet 0.3980

CCl4 0.0 Carbontetrachloride

CLCl4 0.0

Table 3.13. GROMOS 45A4 atomic charges for various solvents.

3-30

atom name charge in e occurring in

O3/5* -0.360 (-0.360) all nucleotides

P 0.990 (1.440)

O1/2P -0.635 (-0.360)

C4* 0.160 all nucleotides

O4* -0.360

C1* 0.200

N9, N9, N1, N1, N1 -0.200 dAde, dGua, dCyt, dThy, Ura

C4, C4 0.200 dAde, dGua

C6, C6, C6 0.100 dCyt, dThy, Ura

H6, H6, H6 0.100 dCyt, dThy, Ura

N1, N3, N7, N3, N7, N3 -0.540 dAde, dAde, dAde, dGua, dGua,
dGua, dCyt

C2, C8, C8 0.440 dAde, dAde, dGua

H2, H8, H8 0.100 dAde, dAde, dGua

C6, C2, C4 0.540 dAde, dGua, dCyt

N6, N2, N4 -0.830 dAde, dGua, dCyt

H61/62, H21/22, H41/42 0.415 dAde, dGua, dCyt

N1, N3, N3 -0.310 dGua, dThy, Ura

H1, H3, H3 0.310 dGua, dThy, Ura

C6, C2, C2, C4, C2, C4 0.450 dGua, dCyt, dThy, dThy, Ura, Ura

O6, O2, O2, O4, O2, O4 -0.450 dGua, dCyt, dThy, dThy, Ura, Ura

C5, C5 -0.100 dCyt, Ura

H5, H5 0.100 dCyt, Ura

Table 3.14. GROMOS 45A4 (45B4) atomic charges and charge group definitions for nu-
cleotides. The charges for the 45B4 force field are given between parentheses. The atoms
that are not listed have zero partial charge and form single atom or multiple atom charge
groups.

3-31

atom name charge in e occurring
in

C32, C33, C34, C35 0.250 (0.0) dppc

N 0.0 dppc

C31 0.0 dppc

O31, O32 -0.360 (-0.360) dppc

O33, O34 -0.635 (-0.360) dppc

P 0.990 (1.440) dppc

C3 0.0 dppc

C1, C2 0.160 dppc

O11, O21 -0.360 dppc

O12, O22 -0.380 dppc

C11, C21 0.580 dppc

C12, ..., C22, ... 0.0 dppc

Table 3.15. GROMOS 45A4 (45B4) atomic charges and charge group definitions for lipids.
The charges for the 45B4 force field are given between parentheses. The atoms that are not
listed have zero partial charge and form single atom or multiple atom charge groups.

3-32

atom name charge in e occurring in

C1, C2, C3, C4, C6 0.232 hexopyranose, uronate

O2, O3, O4, O6 -0.642 hexopyranose, uronate

HO2, HO3, HO4, HO6 0.410 hexopyranose, uronate

C5 0.376 hexopyranose, uronate

O5 -0.480 hexopyranose, uronate

O1 -0.360 hexopyranose, uronate

C6 0.360 (0.720) uronate

O61, O62 -0.680 (-0.360) uronate

C1 0.232 terminal C1 - O1 - HO1 group

O1 -0.538 terminal C1 - O1 - HO1 group

HO1 0.410 terminal C1 - O1 - HO1 group

C1 0.232 terminal C1 - O1 - CM group

O1 -0.360 terminal C1 - O1 - CM group

CM (methyl) 0.232 terminal C1 - O1 - CM group

C5, C5’ 0.378 terminal C1 - O1 - C1’(sugar) group

O5, O5’ -0.450 terminal C1 - O1 - C1’(sugar) group

C1, C1’ 0.242 terminal C1 - O1 - C1’(sugar) group

O1 -0.340 terminal C1 - O1 - C1’(sugar) group

Table 3.16. GROMOS 45A4 (45B4) atomic charges and charge group definitions for car-
bohydrates.

3-33

Bond-type
code

Force constant Ideal bond
length

Examples of usage in terms of non-bonded
atom types

M
(b)
n k

(b,q)
n b0n k

(b,h)
n

[106 kJ·mol−1·nm−4] [nm] [106 kJ·mol−1·nm−2]

ICBH[N]
ICB[N]

CB[N] B0[N]

1 15.7 0.100 H - OA 0.314

2 18.7 0.100 H - N (all) 0.374

3 12.3 0.109 HC - C 0.292

4 37.0 0.112 C - O (CO bound to heme) 0.928

5 16.6 0.123 C - O 0.502

6 13.4 0.125 C - OM 0.419

7 12.0 0.132 CR1 - NR (6-ring) 0.418

8 8.87 0.133 H - S 0.314

9 10.6 0.133 C - NT, NL 0.375

10 11.8 0.133 C, CR1 - N, NR, CR1, C (peptide, 5-ring) 0.417

11 10.5 0.134 C - N, NZ, NE 0.377

12 11.7 0.134 C - NR (no H)
(6-ring)

0.420

13 10.2 0.136 C - OA, FTfe - CTfe 0.377

14 11.0 0.138 C - NR (heme) 0.419

15 8.66 0.139 CH2 - C, CR1 (6-ring) 0.335

16 10.8 0.139 C, CR1 - CH2, C, CR1 (6-ring) 0.417

17 8.54 0.140 C, CR1, CH2 - NR (6-ring) 0.335

18 8.18 0.143 CHn - OA 0.335

19 9.21 0.143 CHn - OM 0.377

20 6.10 0.1435 CHn - OA (sugar) 0.251

21 8.71 0.147 CHn - N, NT, NL, NZ, NE 0.376

22 5.73 0.148 CHn - NR (5-ring) 0.251

23 7.64 0.148 CHn - NR (6-ring) 0.335

24 8.60 0.148 O, OM - P 0.377

25 8.37 0.150 O - S 0.377

26 5.43 0.152 CHn - CHn (sugar) 0.251

27 7.15 0.153 C, CHn - C, CHn 0.335

28 4.84 0.161 OA - P 0.251

29 4.72 0.163 OA - SI 0.251

30 2.72 0.178 FE - C (CO bound to heme) 0.172

31 5.94 0.178 CH3 - S 0.376

32 5.62 0.183 CH2 - S 0.376

33 3.59 0.187 CH1 - SI 0.251

34 0.640 0.198 NR (His) - FE (43A1) 0.0502

35 0.628 0.200 NR (heme) - FE 0.0502

36 5.03 0.204 S - S 0.419

37 0.540 0.221 NR (His) - FE 0.0527

38 23.2 0.100 HWat - OWat 0.464

39 12.1 0.110 HChl - CChl 0.293

40 8.12 0.1758 CChl - CLChl 0.502

Table 3.17: continues on next page.

3-34

Bond-type
code

Force constant Ideal bond
length

Examples of usage in terms of non-bonded
atom types

M
(b)
n k

(b,q)
n b0n k

(b,h)
n

[106 kJ·mol−1·nm−4] [nm] [106 kJ·mol−1·nm−2]

ICBH[N]
ICB[N]

CB[N] B0[N]

41 8.04 0.153 ODmso - SDmso 0.376

42 4.95 0.193799 SDmso - CDmso 0.372

43 8.10 0.176 CCl4 - CLCl4 0.502

44 13.1 0.1265 CUrea - OUrea 0.419

45 10.3 0.135 CUrea - NUrea 0. 375

46 8.71 0.163299 HWat - HWat 0.465

47 2.68 0.233839 HChl - CLChl 0.293

48 2.98 0.290283 CLChl - CLChl 0.502

49 2.39 0.279388 ODmso - CDmso 0.373

50 2.19 0.291189 CDmso - CDmso 0.371

51 3.97 0.2077 HMet - CMet 0.343

52 3.04 0.287407 CLCl4 - CLCl4 0.502

Table 3.17: GROMOS 54A7 and 54B7 bond-stretching parameters (k
(b,q)
n = k

(b,h)
n /(2b0n

2)).

3-35

Bond-
angle type
code

Force constant Ideal bond angle Example of usage in terms of
non-bonded atom types

M
(θ)
n k

(θ,c)
n θ0n k

(θ,h)
n

[kJ·mol−1] [deg] [kJ·mol−1·deg−2]

ICTH[N]
ICT[N]

CT[N] (T0[N])

1 380 90.0 NR (heme) - FE - C
(CO bound to heme)

0.116

2 420 90.0 NR(heme) - FE - NR(heme), NR
(His)

0.128

3 405 96.0 H - S - CH2 0.122

4 475 100.0 CH2 - S - CH3 0.140

5 420 103.0 OA - P - OA 0.121

6 490 104.0 CH2 - S - S 0.140

7 465 108.0 NR, C, CR1(5-ring) 0.128

8 285 109.5 CHn - CHn - CHn, NR(6-ring)
(sugar)

0.0769

9 320 109.5 CHn, OA - CHn - OA, NR(ring)
(sugar)

0.0864

10 380 109.5 H - NL, NT - H; CHn - OA -
CHn(sugar)

0.103

11 425 109.5 H - NL - C, CHn; H - NT - CHn 0.115

12 450 109.5 X - OA, SI - X 0.122

13 520 109.5 CH,C - CHn - C, CHn, OA, OM,
N, NE

0.141

14 450 109.6 OM - P - OA 0.121

15 530 111.0 CHn - CHn - C, CHn, OA, NR,
NT, NL

0.140

16 545 113.0 CHn - CH2 - S 0.140

17 50.0 115.0 NR(heme) - FE - NR (His)
(43A1)

0.0123

18 460 115.0 H - N - CHn 0.115

19 610 115.0 CHn, C - C - OA, N, NT, NL 0.152

20 465 116.0 H - NE - CH2 0.114

21 620 116.0 CH2 - N - CH1 0.152

22 635 117.0 CH3 - N - C; CHn - C - OM 0.153

23 390 120.0 H - NT, NZ, NE - C 0.0889

24 445 120.0 H - NT, NZ - H 0.101

25 505 120.0 H - N - CH3, H; HC - 6-ring,; H
- NT - CHn

0.115

26 530 120.0 P, SI - OA - CHn, P 0.121

27 560 120.0 N, C, CR1 (6-ring, no H) 0.128

28 670 120.0 NZ - C - NZ, NE 0.153

29 780 120.0 OM - P - OM 0.178

30 685 121.0 O - C - CHn, C; CH3 - N - CHn 0.153

31 700 122.0 CH1, CH2 - N - C 0.153

32 415 123.0 H - N - C 0.0887

Table 3.18: continues on next page.

3-36

Bond-
angle type
code

Force constant Ideal bond angle Example of usage in terms of
non-bonded atom types

M
(θ)
n k

(θ,c)
n θ0n k

(θ,h)
n

[kJ·mol−1] [deg] [kJ·mol−1·deg−2]

ICTH[N]
ICT[N]

CT[N] (T0[N])

33 730 124.0 O - C - OA, N, NT, NL C - NE
- CH2

0.153

34 375 125.0 FE - NR - CR1 (5-ring) 0.0765

35 750 125.0 - 0.153

36 575 126.0 H, HC - 5-ring 0.114

37 640 126.0 X(noH) - 5-ring 0.127

38 770 126.0 OM - C - OM 0.153

39 760 132.0 5, 6 ring connnection 0.128

40 2215 155.0 SI - OA - SI 0.121

41 91350 180.0 Fe - C - O
(CO bound to heme)

0.0726

42 434 109.5 HWat - OWat - HWat 0.117

43 484 107.57 HChl - CChl - CLChl 0.134

44 632 111.30 CLChl - CChl - CLChl 0.167

45 469 97.4 CDmso - SDmso - CDmso 0.140

46 503 106.75 CDmso - SDmso - ODmso 0.140

47 443 108.53 HMet - OMet - CMet 0.121

48 618 109.5 CLCl4 - CCl4 - CLCl4 0.167

49 507 107.6 FTfe - CTfe - FTfe 0.140

50 448 109.5 HTfe - OTfe - CHTfe 0.121

51 524 110.3 OTfe - CHTfe - CTfe 0.140

52 532 111.4 CHTfe - CTfe - FTfe 0.140

53 636 117.2 NUrea - CUrea - NUrea 0.153

54 690 121.4 OUrea - CUrea - NUrea 0.153

Table 3.18: GROMOS 54A7 and 54B7 bond-angle bending parameters (k
(θ,c)
n = g(k

(θ,h)
n , θ0n, EkBT)).

3-37

Improper
dihedral-
angle type
code

Force constant Ideal improper
dihedral angle

Example of us-
age

k
(ξ)
n ξ0n k

(ξ)
n

[kJmol−1degree−2] [degree] [kcalmol−1rad−2]

ICQH[N]
ICQ[N]

CQ[N] (Q0[N])

1 0.0510 0.0 planar groups 40

2 0.102 35.26439 tetrahedral cen-
tres

80

3 0.204 0.0 heme iron 160

4 0.0510 180.0 planar groups 40

5 0.102 -35.26439 tetrahedral cen-
tres

80

Table 3.19. GROMOS 54A7 and 54B7 improper (harmonic) dihedral angle parameters.

3-38

Dihedral-
angle type
code

Force con-
stant

Phase
shift

Multiplicity Example of usage in terms of non-bonded atom types

k
(ϕ,s)
n cos(ϕ0

n) m
(ϕ)
n k

(ϕ,s)
n

[kJmol−1] [kcalmol−1]

ICPH[N]
ICP[N]

CP[N] PD[N] NP[N]

1 2.67 -1.0 1 CHn-CHn-CHn-OA (sugar) C4-C5-C6-O6a 0.6

2 3.41 -1.0 1 OA-CHn-OA-CHn,H (βsugar) O5-C1-O1-C1’,H1 0.8

3 4.97 -1.0 1 OA-CHn-CHn-OA (sugar) O5-C5-C6-O6a 1.2

4 5.86 -1.0 1 N-CHn-CHn-OA(lipid) 1.4

5 9.35 -1.0 1 OA-CHn-CHn-OA(sugar) O5-C5-C6-O6b 2.2

6 9.45 -1.0 1 OA-CHn-OA-CHn,H (α sugar) O5-C1-O1-C1′,H1 2.3

7 2.79 +1.0 1 P-O5*-C5*-C4* (dna) 0.7

8 5.35 +1.0 1 O5*-C5*-C4*-O4* (dna) 1.3

9 1.53 -1.0 2 C1-C2-CAB-CBB (heme) 0.4

10 5.86 -1.0 2 -C-C- 1.4

11 7.11 -1.0 2 -C-OA- (at ring) 1.7

12 16.7 -1.0 2 -C-OA- (carboxyl) 4.0

13 24.0 -1.0 2 CHn-OA-C-CHn (ester lipid) 5.7

14 33.5 -1.0 2 -C-N,NT,NE,NZ,NR- 8.0

15 41.8 -1.0 2 -C-CR1- (6-ring) 10.0

16 0.0 +1.0 2 -CH1(sugar)-NR(base)- 0.0

17 0.418 +1.0 2 O-CH1-CHn-no O 0.1

18 2.09 +1.0 2 O-CH1-CHn-O 0.5

19 3.14 +1.0 2 -OA-P- 0.75

20 5.09 +1.0 2 CHn-O-P-O (dna, phosphodiester) 1.2

21 16.7 +1.0 2 -S-S- 4.0

22 1.05 +1.0 3 -OA-P- 0.25

23 1.26 +1.0 3 -CHn-OA(no sugar)- 0.3

24 1.30 +1.0 3 HTfe-OTfe-CHTfe-CTfe 0.3

25 2.53 +1.0 3 O5*-C5*-C4*-O4* (dna) 0.6

26 2.93 +1.0 3 -CH2-S- 0.7

27 3.19 +1.0 3 CHn-O-P-O (dna, phosphodiester) 0.8

28 3.65 +1.0 3 OA-CHn-OA-CHn,H (α sugar) O5 - C1 - O1 - C1’,H1 0.9

29 3.77 +1.0 3 -C,CHn,SI-NT,NL,OA(sugar)- 0.9

30 3.90 +1.0 3 CHn-CHn-OA-H (sugar) 0.9

31 4.18 +1.0 3 HC-C-S- 1.0

32 4.69 +1.0 3 OA-CHn-OA-CHn,H (β sugar) O5 - C1 - O1 - C1’,H1 1.1

33 5.44 +1.0 3 HC-C-C- 1.3

34 5.92 +1.0 3 -CHn,SI-CHn- 1.4

35 7.69 +1.0 3 OA-CHn-CHn-OA (sugar) O5 - C5 - C6 - O6a 1.8

36 8.62 +1.0 3 N-CHn-CHn-OA (lipid) 2.1

37 9.50 +1.0 3 OA-CHn-CHn-OA (sugar) O5-C5-C6-O6b 2.3

38 0.0 +1.0 4 -NR-FE- 0.0

39 1.0 -1.0 6 -CHn-N,NE- 0.24

40 1.0 +1.0 6 -CHn-C,NR(ring),CR1- 0.24

Table 3.20: continues on next page.

3-39

Dihedral-
angle type
code

Force con-
stant

Phase
shift

Multiplicity Example of usage in terms of non-bonded atom types

k
(ϕ,s)
n cos(ϕ0

n) m
(ϕ)
n k

(ϕ,s)
n

[kJmol−1] [kcalmol−1]

ICPH[N]
ICP[N]

CP[N] PD[N] NP[N]

41 3.77 +1.0 6 -CHn-NT- 0.9

42 3.50 -1.0 2 -CHn-C- 0.84

43 2.80 +1.0 3 -CHn-N- 0.64

44 0.70 -1.0 6 -CHn-N- 0.17

45 0.49 +1.0 6 -CHn-C- 0.10

Table 3.20: GROMOS 54A7 and 54B7 (trigonometric) dihedral torsional angle parameters. a) To be used
if – C5 – C6 – O6 and adjacent – C4 – O4 – are axial and the other equatorial, as in galactose; b) To be used
if – C5 – C6 – O6 and adjacent – Cn – On – Hn are both simultaneously axial or equatorial, as in glucose.

3-40

integer atom code atom type description

IAC[N] TYPE[N]

1 O carbonyl oxygen (C=O)

2 OM carboxyl oxygen (CO−)

3 OA hydroxyl or sugar oxygen

4 OE ether or ester oxygen

5 OW water oxygen

6 N peptide nitrogen (NH)

7 NT terminal nitrogen (NH2)

8 NL terminal nitrogen (NH3)

9 NR aromatic nitrogen

10 NZ Arg NH (NH2)

11 NE Arg NE (NH)

12 C bare carbon

13 CH0 bare sp3 carbon, 4 bound heavy atoms

14 CH1 aliphatic or sugar CH-group

15 CH2 aliphatic or sugar CH2-group

16 CH3 aliphatic CH3-group

17 CH4 methane

18 CH2r aliphatic or sugar CH2 group in ring

19 CR1 aromatic CH-group

20 HC hydrogen bound to carbon

21 H hydrogen not bound to carbon

22 DUM dummy atom

23 S sulphur

24 CU1+ copper (charge 1+)

25 CU2+ copper (charge 2+)

26 FE iron (heme)

27 ZN2+ zinc (charge 2+)

28 MG2+ magnesium (charge 2+)

29 CA2+ calcium (charge 2+)

30 P, SI phosphor or silicon

31 AR argon

32 F fluor (non-ionic)

33 CL chlorine (non-ionic)

34 BR bromine (non-ionic)

35 CMet CH3-group in methanol (solvent)

36 OMet oxygen in methanol (solvent)

37 NA+ sodium (charge 1+)

38 CL- chloride (charge 1-)

39 CChl carbon in chloroform (solvent)

40 CLChl chloride in chloroform (solvent)

41 HChl hydrogen in chloroform (solvent)

42 SDmso sulphur in DMSO (solvent)

43 CDmso CH3-group in DMSO (solvent)

44 ODmso oxygen in DMSO (solvent)

Table 3.21: continues on next page.

3-41

integer atom code atom type description

IAC[N] TYPE[N]

45 CCl4 carbon in carbontetrachloride (solvent)

46 CLCl4 chloride in carbontetrachloride (solvent)

47 FTfe fluor in trifluorethanol

48 CTfe carbon in trifluorethanol

49 CHTfe CH2-group in trifluorethanol

50 OTfe oxygen in trifluorethanol

51 CUrea carbon in urea

52 OUrea oxygen in urea

53 NUrea nitrogen in urea

54 CH3p positively charged methyl

Table 3.21: GROMOS 54A7 and 54B7 non-bonded atom types and integer atom codes.

3-42

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

1 O 0.04756 1.000 1.130 -

2 OM 0.04756 0.8611 1.841 3.068

3 OA 0.04756 1.100 1.227 -

4 OE 0.04756 1.100 1.227 -

5 OW 0.05116 1.623 1.623 -

6 N 0.04936 1.523 1.943 -

7 NT 0.04936 1.523 2.250 -

8 NL 0.04936 1.523 3.068 -

9 NR 0.04936 1.523 1.841 -

10 NZ 0.04936 1.523 2.148 -

11 NE 0.04936 1.523 1.984 -

12 C 0.04838 2.222 - -

13 CH0 0.04896 14.33 - -

14 CH1 0.07790 9.850 - -

15 CH2 0.08642 5.828 - -

16 CH3 0.09805 5.162 - -

17 CH4 0.1148 5.862 - -

18 CH2r 0.08564 5.297 - -

19 CR1 0.07425 3.888 - -

20 HC 0.0092 0.123 - -

21 H 0.0 0.0 - -

22 DUM 0.0 0.0 - -

23 S 0.09992 3.616 - -

24 CU1+ 0.02045 0.07159 0.2250 -

25 CU2+ 0.02045 0.07159 0.4091 -

26 FE 0.0 0.0 0.0 -

27 ZN2+ 0.02045 0.09716 0.09716 -

28 MG2+ 0.008080 0.05838 0.05838 -

29 CA2+ 0.03170 0.7057 0.7057 -

30 P, SI 0.1214 4.711 4.711 -

31 AR 0.07915 3.138 - -

32 F 0.03432 0.8722 1.227 -

33 CL 0.09362 3.911 - -

34 BR 0.1663 8.092 - -

35 CMet 0.09421 4.400 - -

36 OMet 0.04756 1.525 1.525 -

37 NA+ 0.0088792 0.2700 0.2700 -

38 CL- 0.11318 7.776 7.776 7.776

39 CChl 0.051292 2.0160 - -

40 CLChl 0.091141 3.7101 - -

41 HChl 0.006140 0.065574 - -

42 SDmso 0.10277 4.6366 - -

Table 3.22: continues on next page.

3-43

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

43 CDmso 0.098050 5.1620 - -

44 ODmso 0.047652 0.86686 1.1250 -

45 CCl4 0.051292 2.7568 - -

46 CLCl4 0.087201 3.5732 - -

47 FTfe 0.034320 1.0000 1.0000 -

48 CTfe 0.048380 1.8370 - -

49 CHTfe 0.084290 5.0770 - -

50 OTfe 0.047560 1.2270 1.2270 -

51 CUrea 0.069906 3.6864 - -

52 OUrea 0.048620 1.2609 1.2609 -

53 NUrea 0.057903 1.9877 1.9877 -

54 CH3p 0.09805 5.162 - -

Table 3.22: GROMOS 54A7 normal van der Waals parameters.

3-44

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

2 OM 0.04756 0.8611 1.125 1.125

8 NL 0.04936 1.523 1.943 -

Table 3.23. GROMOS 54B7 (vacuo) normal van der Waals parameters. Only the changes
relative to Tab. 3.22 are listed.

3-45

J 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 32 33 34 36 37 38 44 47 50 52 53 54

I O OM OA OE OW N NT NL NR NZ NE CU1+ CU2+ FE ZN2+ MG2+ CA2+ P,SI F CL BR OMet NA+ CL- ODmso FTfe OTfe OUrea NUrea CH3p

1 O 1 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1 2 1

2 OM 1 1 2 1 2 2 2 3 2 3 3 3 3 3 3 3 3 3 1 1 1 2 3 1 1 1 1 1 2 3

3 OA 2 1

4 OE 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1 2 1

5 OW 2 1

6 N 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1

7 NT 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1

8 NL 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1

9 NR 2 1

10 NZ 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1

11 NE 2 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 2 1

24 CU1+ 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

25 CU2+ 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

26 FE 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

27 ZN2+ 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

28 MG2+ 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

29 CA2+ 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

30 P,SI 1

32 F 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1 2 1

33 CL 1

34 BR 1

36 OMet 2 1

37 NA+ 2 2 2 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 1 2 1 1

38 CL- 1 1 2 1 2 2 2 3 2 3 3 3 3 3 3 3 3 3 1 1 1 2 3 1 1 1 1 1 2 1

44 ODmso 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 2 1 2 1

47 FTfe 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1 1 2 1

50 OTfe 1 1 2 1 2 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 2 2 2 1

52 OUrea 1 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 2 1 2 1

53 NUrea 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 2 2 2 1 2 2 2 2 2 2 1

54 CH3p 1

Table 3.24. Selection of van der Waals (repulsive) C
1/2
12 (I, I) parameters (GROMOS 54A7 and 54B7)

3
-4
6

integer
atom code

atom type integer
atom code

atom type C6 (I,J) C12 (I,J)

I J 10−3kJmol−1nm6 10−6kJmol−1nm12

39 CChl 40 CLChl 4.6754 7.4813

39 CChl 41 HChl 0.3622 0.1745

40 CLChl 41 HChl 0.6493 0.3266

Table 3.25. GROMOS 54A7 normal van der Waals parameters for mixed atom type pairs (I,J)

3-47

integer
atom code

atom type C
1/2
6 (I,I) C

1/2
12 (I,I)

[kJmol−1 nm6]1/2 10−3[kJmol−1 nm12]1/2

I=IAC[N] TYPE[N] 1 2 3

1 O 0.04756 0.8611 - -

3 OA 0.04756 1.125 - -

4 OE 0.04756 1.125 - -

6 N 0.04936 1.301 - -

7 NT 0.04936 1.301 - -

8 NL 0.04936 1.301 - -

9 NR 0.04936 1.301 - -

10 NZ 0.04936 1.301 - -

11 NE 0.04936 1.301 - -

12 C 0.04838 1.837 - -

13 CH0 0.04838 1.837 - -

14 CH1 0.05396 1.933 - -

15 CH2 0.06873 2.178 - -

16 CH3 0.08278 2.456 - -

18 CH2r 0.06873 2.178 - -

19 CR1 0.07435 2.886 - -

54 CH3p 0.08278 2.456 - -

Table 3.26. GROMOS 54A7 and 54B7 third-neighbour van der Waals parameters

3-48

atom name charge in e occurring in

N -0.310 all residues

H 0.310

C 0.450 all residues

O -0.450

CD 0.090 (0.0) Arg (charge +1)

NE -0.110 (-0.240)

HE 0.240 (0.240)

CZ 0.340 (0.0)

NH1/2 -0.260 (-0.480)

HH11/12/21/22 0.240 (0.240)

NE -0.310 Argn (neutral)

HE 0.310

CZ 0.266 Argn (neutral)

NH1 -0.674

HH1 0.408

NH2 -0.880 Argn (neutral)

HH21/22 0.440

CG, CD 0.290 Asn, Gln

OD1, OE1 -0.450

ND2, NE2, NZ -0.720 Asn, Gln

HD21/22, HE21/22, HZ1/2 0.440

CG, CD 0.270 (0.720) Asp, Glu (charge -1)

OD1/2, OE1/2 -0.635 (-0.360)

CG, CD 0.330 Asph, Gluh

OD1, OE1 -0.450

OD2, OE2 -0.288

HD2, HE2 0.408

CB -0.100 (0.200) Cys (charge -.5)

SG -0.400 (-0.200)

CB 0.150 Cysh

SG -0.370

HG 0.220

CG 0.0 Hisa (proton at D1)

ND1 -0.050

HD1 0.310

CD2 0.0

HD2 0.140

CE1 0.0

HE1 0.140

NE2 -0.540

CG 0.0 Hisb (proton at E2)

ND1 -0.540

CD2 0.0

HD2 0.140

CE1 0.0

Table 3.27: continues on next page.

3-49

atom name charge in e occurring in

HE1 0.140

NE2 -0.050

HE2 0.310

CG -0.050 (0.0) Hish (charge +1)

ND1 0.380 (-0.300)

HD1 0.300 (0.300)

CD2 -0.100 (-0.100)

HD2 0.100 (0.100)

CE1 -0.340 (-0.100)

HE1 0.100 (0.100)

NE2 0.310 (-0.300)

HE2 0.300 (0.300)

CG, CB, CB 0.266 Hypr, Ser, Thr

OD1, OG, OG1 -0.674

HD1, HG, HG1 0.408

CE 0.127 (0.0) Lysh (charge +1)

NZ 0.129 (-0.744)

HZ1/2/3 0.248 (0.248)

CE -0.240 Lys (neutral)

NZ -0.640

HZ1/2 0.440

CG /CE 0.241 Met

SD -0.482

CG -0.210 Trp

CD1 -0.140

HD1 0.140

CD2 0.0

NE1 -0.100

HE1 0.310

CE2 0.0

CZ 0.203 Tyr

OH -0.611

HH 0.408

C -0.140 all aromatic C-H groups in
Phe, Tyr, Trp

H 0.140

C 0.0 aromatic C connected to an
aliphatic CHn in Phe, Tyr

CH2 0.0 aliphatic CHn connected to
aromatic C in Phe, Tyr

Table 3.27: GROMOS 54A7 (54B7) atomic charges and charge group definitions for amino acid residues.
The charges for the 54B7 force field are given between parentheses. The atoms that are not listed have zero
partial charge and form single atom or multiple atom charge groups.

3-50

atom name charge in e occurring in

OW -0.82000 H2O (SPC model)

HW1/2 0.41000

OW -0.84760 H2O (SPC/E model)

HW1/2 0.42380

OW -0.68850 H2O (SPC/L model)

HW1/2 0.34425

CChl 0.17900 Chloroform

CLChl -0.08700

HChl 0.08200

SDmso 0.12753 DMSO

CDmso 0.16000

ODmso -0.44753

CMet 0.26600 Methanol

OMet -0.67400

HMet 0.40800

CCl4 0.0 Carbontetrachloride

CLCl4 0.0

FTfe -0.17000 2,2,2-
Trifluoroethanol

CTfe 0.45200

CHTfe 0.27300

OTfe -0.62500

HTfe 0.41000

CUrea 0.14200 Urea

OUrea -0.39000

NUrea -0.54200

HUrea 0.33300

Table 3.28. GROMOS 54A7 atomic charges for various (co)solvents.

3-51

atom name charge in e occurring in

O3/5* -0.360 (-0.360) all nucleotides

P 0.990 (1.440)

O1/2P -0.635 (-0.360)

C4* 0.160 all nucleotides

O4* -0.360

C1* 0.200

N9, N9, N1, N1, N1 -0.200 dAde, dGua, dCyt, dThy, Ura

C4, C4 0.200 dAde, dGua

C6, C6, C6 0.100 dCyt, dThy, Ura

H6, H6, H6 0.100 dCyt, dThy, Ura

N1, N3, N7, N3, N7, N3 -0.540 dAde, dAde, dAde, dGua, dGua,
dCyt

C2, C8, C8 0.440 dAde, dAde, dGua

H2, H8, H8 0.100 dAde, dAde, dGua

C6, C2, C4 0.540 dAde, dGua, dCyt

N6, N2, N4 -0.830 dAde, dGua, dCyt

H61/62, H21/22, H41/42 0.415 dAde, dGua, dCyt

N1, N3, N3 -0.310 dGua, dThy, Ura

H1, H3, H3 0.310 dGua, dThy, Ura

C6, C2, C2, C4, C2, C4 0.450 dGua, dCyt, dThy, dThy, Ura, Ura

O6, O2, O2, O4, O2, O4 -0.450 dGua, dCyt, dThy, dThy, Ura, Ura

C5, C5 -0.100 dCyt, Ura

H5, H5 0.100 dCyt, Ura

Table 3.29. GROMOS 54A7 (54B7) atomic charges and charge group definitions for nu-
cleotides. The charges for the 54B7 force field are given between parentheses. The atoms
that are not listed have zero partial charge and form single atom or multiple atom charge
groups.

3-52

atom name charge in e occurring
in

C31, C33, C34, C35 0.400 dppc

N -0.500 dppc

C32 0.300 dppc

O31 -0.700 dppc

O32, O33, O34 -0.800 dppc

P 1.700 dppc

C3 0.400 dppc

C2 0.300 dppc

C1 0.500 dppc

O11, O21, O22 -0.700 dppc

O12 -0.600 dppc

C11 0.800 dppc

C21 0.700 dppc

C12, ..., C22, ... 0.000 dppc

Table 3.30. GROMOS 54A7 (54B7) atomic charges and charge group definitions for lipids.
The charges for the 54B7 force field are given between parentheses. The atoms that are not
listed have zero partial charge and form single atom or multiple atom charge groups.

3-53

atom name charge in e occurring in

C1, C2, C3, C4, C6 0.232 hexopyranose, uronate

O2, O3, O4, O6 -0.642 hexopyranose, uronate

HO2, HO3, HO4, HO6 0.410 hexopyranose, uronate

C5 0.376 hexopyranose, uronate

O5 -0.480 hexopyranose, uronate

O1 -0.360 hexopyranose, uronate

C6 0.360 (0.720) uronate

O61, O62 -0.680 (-0.360) uronate

C1 0.232 terminal C1 - O1 - HO1 group

O1 -0.538 terminal C1 - O1 - HO1 group

HO1 0.410 terminal C1 - O1 - HO1 group

C1 0.232 terminal C1 - O1 - CM group

O1 -0.360 terminal C1 - O1 - CM group

CM (methyl) 0.232 terminal C1 - O1 - CM group

C5, C5’ 0.378 terminal C1 - O1 - C1’(sugar) group

O5, O5’ -0.450 terminal C1 - O1 - C1’(sugar) group

C1, C1’ 0.242 terminal C1 - O1 - C1’(sugar) group

O1 -0.340 terminal C1 - O1 - C1’(sugar) group

Table 3.31. GROMOS 54A7 (54B7) atomic charges and charge group definitions for car-
bohydrates.

3-54

CHAPTER 4

GROMOS molecular topology building blocks

4.1. Introduction

The GROMOS molecular topology building block files ∗.mtb contain the building blocks for a number of
important types of molecules, such as proteins, DNA, RNA, sugars, etc. We note that three types of building
blocks exist in the molecular topology building block file:

A. Solute building blocks with blockname MTBUILDBLSOLUTE
B. Solvent building blocks with blockname MTBUILDBLSOLVENT
C. Solute end-group building blocks with blockname MTBUILDBLEND

A solvent molecule may occur under the same name in types A and B of blocks, which contain partially
different information. The solute block contains data on interaction function parameters for internal degrees
of freedom and charge group information not present in the solvent block. The solvent block contains data
on geometric constraints not present in the solute block. Examples of molecules that can be treated as
solute molecule as well as solvent molecule are water (H2O, H2OE), chloroform (CHCL3), DMSO (DMSO),
methanol (CH3OH) and carbontetrachloride (CCL4).

Below we list for each building block of the file 54a7.mtb (α-amino acids, lipids, nucleotides and solvents),
54a7 beta.mtb (β-amino acids), 54a7 cof.mtb (cofactors and other types of molecules) and 54a7 carbo.mtb
(carbohydrates and sugars) the building block name and a description of the residue, nucleotide, glucose
unit or molecule it is representing. The building blocks that are marked with a dagger are specified in the
molecular topology building block files but are not presented in graphical and tabular form in this chapter.
In the pictures of the building blocks the charged state is indicated for the simulation in solution. In the
force field for in vacuo simulations (file 54b7.mtb), groups of atoms bear a total charge of zero, which is not
indicated here. We note that the IUPAC-IUB nomenclature has been used throughout. When no IUPAC-
IUB rules were defined (HEME group) Brookhaven protein data bank nomenclature has been used.

A. Solute Building Blocks (Blockname: MTBUILDBLSOLUTE)

Name Description (charges in e)

α-Amino Acids and Analogues (L if not indicated otherwise)

ALA Alanine

ARG Arginine (protonated; charge +e)

ARGN Arginine (deprotonated; neutral)

ASN Asparagine

ASN1 Asparagine (coordinated with ZN)

ASP Aspartic acid (deprotonated; charge -e)

ASPH Aspartic acid (protonated; neutral)

CYS Cysteine (deprotonated; charge -1/2e)

3-55

CYSH Cysteine (protonated; neutral)

CYS1 Cysteine (1st member of S-S bridge)

CYS2 Cysteine (2nd member of S-S bridge)

GLN Glutamine

GLU Glutamic acid (deprotonated; charge -e)

GLUH Glutamic acid (protonated; neutral)

GLY Glycine

HISA Histidine (protonated at ND1; neutral)

HISB Histidine (protonated at NE2; neutral)

HISH Histidine (protonated at ND1 and NE2; charge +e)

HIS1 Histidine (coupled to HEME at NE2; neutral)

HIS2 Histidine (coupled to HEMC at NE2: neutral)

HYPR Hydroxyproline (R-configuration at CG)

†HYPS Hydroxyproline (S-configuration at CG)

ILE Isoleucine

LEU Leucine

LYS Lysine (deprotonated; neutral)

LYSH Lysine (protonated; charge +e)

MET Methionine

PHE Phenylalanine

PRO Proline

SER Serine

THR Threonine

TRP Tryptophan

TYR Tyrosine

VAL Valine

DALA D-Alanine

ABU L-2-amino-butanoic acid

AIB 2-aminoisobutyric acid

MEBMT (4R)-4-[(E)-2-butanyl]-4, N-dimethyl-L-threonine

MELEU N-methyl-L-leucine

MEVAL N-methyl-L-valine

SAR Sarcosine or N-methylglycine

3-56

β-Amino Acids

RAF (R)-β2-Phenylalanine

RAV (R)-β2-Valine

RBCH (R)-β3-Cysteine (protonated; neutral)

RBI (R)-β3-Isoleucine

RBKH (R)-β3-Lysine (protonated; charge +e)

RBM (R)-β3-Methionine

RBN (R)-β3-Asparagine

RBS (R)-β3-Serine

RBSP (R)-β3-Serine(propylated)

RBT (R)-β3-Threonine

RBV (R)-β3-Valine

SAA (S)-β2-Alanine

SAF (S)-β2-Phenylalanine

SAFF (S)-β2-Phenylalanine(Cα fluorinated)

SAL (S)-β2-Leucine

SAM (S)-β2-Methionine

SAV (S)-β2-Valine

SBA (S)-β3-Alanine

SBCH (S)-β3-Cysteine (protonated)

SBD (S)-β3-Aspartic acid (deprotonated; charge -e)

SBDH (S)-β3-Aspartic acid (protonated; neutral)

SBE (S)-β3-Glutamic acid (deprotonated; charge -e)

SBEH (S)-β3-Glutamic acid (protonated; neutral)

SBQ (S)-β3-Glutamine

SBF (S)-β3-Phenylalanine

BGL β-Glycine

SBHA (S)-β3-Histidine (protonated at NE1; neutral)

SBHH (S)-β3-Histidine(protonated at NE1 and NZ2; charge +e)

SBI (S)-β3-Isoleucine

SBKH (S)-β3-Lysine (protonated; charge +e)

SBL (S)-β3-Leucine

SBM (S)-β3-Methionine

3-57

SBP (S)-β3-Proline

SBR (S)-β3-Arginine (protonated; charge +e)

SBS (S)-β3-Serine

SBT (S)-β3-Threonine

SBV (S)-β3-Valine

SBY (S)-β3-Tyrosine

SBW (S)-β3-Tryptophan

SRAM (R,S)-β(2, 3)-Alanine(αMe)

SRLM (R,S)-β(2, 3)-Leucine(αMe)

SRVM (R,S)-β(2, 3)-Valine(αMe)

SSAM (S,S)-β(2, 3)-Alanine(αMe)

Nucleotides

DADE 2’-deoxyadenosine 5’-phosphoric acid (DNA, charge -e)

DGUA 2’-deoxyguanosine 5’-phosphoric acid (DNA, charge -e)

DCYT 2’-deoxycitidine 5’-phosphoric acid (DNA, charge -e)

DTHY 2’-deoxythymidine 5’-phosphoric acid (DNA, charge -e)

ADE adenosine 5’-phosphoric acid (RNA, charge -e)

GUA guanosine 5’-phosphoric acid (RNA, charge -e)

CYT cytidine 5’-phosphoric acid (RNA, charge -e)

URA uridine 5’-phosphoric acid (RNA, charge -e)

FMNO flavin mononucleotide (oxydized, deprotonated at FN5 and FN1; charge -e, OPOHO−
2)

†FMNS flavin mononucleotide (semi-reduced, protonated at FN5; charge -e, OPOHO−
2)

†FMNR flavin mononucleotide (reduced, protonated at FN5 and FN1; charge -e, OPOHO−
2)

PFN proflavin (protonated at FN5; charge +e)

NADP nicotinamide adenine dinucleotide (NAD+; charge -e)

†NADH nicotinamide adenine dinucleotide (NADH; charge -2e)

NDPH nicotinamide adenine dinucleotide phosphate (NADPH; charge -3e, OPOHO−
2)

†NDPP nicotinamide adenine dinucleotide phosphate (NADP+; charge -2e, OPOHO−
2)

†NDPHN nicotinamide adenine dinucleotide phosphate (NADPH; neutral, OPO(OH)2)

Carbohydrates

†NA2P -2-D-allopyranose-α-1-

3-58

†NA3P -3-D-allopyranose-α-1-

†NA4P -4-D-allopyranose-α-1-

†NA6P -6-D-allopyranose-α-1-

†NB2P -2-D-allopyranose-β-1-

†NB3P -3-D-allopyranose-β-1-

†NB4P -4-D-allopyranose-β-1-

†NB6P -6-D-allopyranose-β-1-

†EA2P -2-D-altropyranose-α-1-

†EA3P -3-D-altropyranose-α-1-

†EA4P -4-D-altropyranose-α-1-

†EA6P -6-D-altropyranose-α-1-

†EB2P -2-D-altropyranose-β-1-

†EB3P -3-D-altropyranose-β-1-

†EB4P -4-D-altropyranose-β-1-

†EB6P -6-D-altropyranose-β-1-

†GA2P -2-D-glucopyranose-α-1-

†GA3P -3-D-glucopyranose-α-1-

GA4P -4-D-glucopyranose-α-1-

†GA6P -6-D-glucopyranose-α-1-

GB2P -2-D-glucopyranose-β-1-

GB3P -3-D-glucopyranose-β-1-

GB4P -4-D-glucopyranose-β-1-

GB6P -6-D-glucopyranose-β-1-

†MA2P -2-D-mannopyranose-α-1-

†MA3P -3-D-mannopyranose-α-1-

†MA4P -4-D-mannopyranose-α-1-

†MA6P -6-D-mannopyranose-α-1-

†MB2P -2-D-mannopyranose-β-1-

†MB3P -3-D-mannopyranose-β-1-

†MB4P -4-D-mannopyranose-β-1-

†MB6P -6-D-mannopyranose-β-1-

†KA2P -2-D-gulopyranose-α-1-

†KA3P -3-D-gulopyranose-α-1-

3-59

†KA4P -4-D-gulopyranose-α-1-

†KA6P -6-D-gulopyranose-α-1-

†KB2P -2-D-gulopyranose-β-1-

†KB3P -3-D-gulopyranose-β-1-

†KB4P -4-D-gulopyranose-β-1-

†KB6P -6-D-gulopyranose-β-1-

†IA2P -2-D-idopyranose-α-1-

†IA3P -3-D-idopyranose-α-1-

†IA4P -4-D-idopyranose-α-1-

†IA6P -6-D-idopyranose-α-1-

†IB2P -2-D-idopyranose-β-1-

†IB3P -3-D-idopyranose-β-1-

†IB4P -4-D-idopyranose-β-1-

†IB6P -6-D-idopyranose-β-1-

†LA2P -2-D-galactopyranose-α-1-

†LA3P -3-D-galactopyranose-α-1-

†LA4P -4-D-galactopyranose-α-1-

†LA6P -6-D-galactopyranose-α-1-

†LB2P -2-D-galactopyranose-β-1-

†LB3P -3-D-galactopyranose-β-1-

LB4P -4-D-galactopyranose-β-1-

†LB6P -6-D-galactopyranose-β-1-

†TA2P -2-D-talopyranose-α-1-

†TA3P -3-D-talopyranose-α-1-

†TA4P -4-D-talopyranose-α-1-

†TA6P -6-D-talopyranose-α-1-

†TB2P -2-D-talopyranose-β-1-

†TB3P -3-D-talopyranose-β-1-

†TB4P -4-D-talopyranose-β-1-

†TB6P -6-D-talopyranose-β-1-

†nA2P -2-L-allopyranose-α-1-

†nA3P -3-L-allopyranose-α-1-

†nA4P -4-L-allopyranose-α-1-

3-60

†nA6P -6-L-allopyranose-α-1-

†nB2P -2-L-allopyranose-β-1-

†nB3P -3-L-allopyranose-β-1-

†nB4P -4-L-allopyranose-β-1-

†nB6P -6-L-allopyranose-β-1-

†eA2P -2-L-altropyranose-α-1-

†eA3P -3-L-altropyranose-α-1-

†eA4P -4-L-altropyranose-α-1-

†eA6P -6-L-altropyranose-α-1-

†eB2P -2-L-altropyranose-β-1-

†eB3P -3-L-altropyranose-β-1-

†eB4P -4-L-altropyranose-β-1-

†eB6P -6-L-altropyranose-β-1-

†gA2P -2-L-glucopyranose-α-1-

†gA3P -3-L-glucopyranose-α-1-

†gA4P -4-L-glucopyranose-α-1-

†gA6P -6-L-glucopyranose-α-1-

†gB2P -2-L-glucopyranose-β-1-

†gB3P -3-L-glucopyranose-β-1-

gB4P -4-L-glucopyranose-β-1-

†gB6P -6-L-glucopyranose-β-1-

†mA2P -2-L-mannopyranose-α-1-

†mA3P -3-L-mannopyranose-α-1-

†mA4P -4-L-mannopyranose-α-1-

†mA6P -6-L-mannopyranose-α-1-

†mB2P -2-L-mannopyranose-β-1-

†mB3P -3-L-mannopyranose-β-1-

†mB4P -4-L-mannopyranose-β-1-

†mB6P -6-L-mannopyranose-β-1-

†kA2P -2-L-gulopyranose-α-1-

†kA3P -3-L-gulopyranose-α-1-

†kA4P -4-L-gulopyranose-α-1-

†kA6P -6-L-gulopyranose-α-1-

3-61

†kB2P -2-L-gulopyranose-β-1-

†kB3P -3-L-gulopyranose-β-1-

†kB4P -4-L-gulopyranose-β-1-

†kB6P -6-L-gulopyranose-β-1-

†iA2P -2-L-idopyranose-α-1-

†iA3P -3-L-idopyranose-α-1-

†iA4P -4-L-idopyranose-α-1-

†iA6P -6-L-idopyranose-α-1-

†iB2P -2-L-galactopyranose-β-1-

†iB3P -3-L-galactopyranose-β-1-

†iB4P -4-L-galactopyranose-β-1-

†iB6P -6-L-galactopyranose-β-1-

†lA2P -2-L-galactopyranose-α-1-

†lA3P -3-L-galactopyranose-α-1-

†lA4P -4-L-galactopyranose-α-1-

†lA6P -6-L-galactopyranose-α-1-

†lB2P -2-L-galactopyranose-β-1-

†lB3P -3-L-galactopyranose-β-1-

†lB4P -4-L-galactopyranose-β-1-

†lB6P -6-L-galactopyranose-β-1-

†tA2P -2-L-talopyranose-α-1-

†tA3P -3-L-talopyranose-α-1-

†tA4P -4-L-talopyranose-α-1-

†tA6P -6-L-talopyranose-α-1-

†tB2P -2-L-talopyranose-β-1-

†tB3P -3-L-talopyranose-β-1-

†tB4P -4-L-talopyranose-β-1-

†tB6P -6-L-talopyranose-β-1-

GB4U -4-D-glucuronate-β-1-

LA4U -4-D-galacturonate-α-1-

MB4U -4-D-mannuronate-β-1-

kA4U -4-L-guluronate-α-1-

iA4U -4-L-iduronate-α-1-

3-62

Other Molecules

†DPPC dipalmitoylphosphatidylcholine

HEME heme group (charge -2e, acidic groups deprotonated)

†HEMC heme group (charge -2e, acidic groups deprotonated, CO coordinated)

†CYT* 3’,5’-O-(tetra isopropyl-1,3-disiloxanediyl)cytidine (neutral)

†MTXH methotrexate (protonated at N1; charge -2e)

FOL folate (charge -2e)

†DHF 7,8-dihydrofolate (charge -2e)

†THF 5,6,7,8-tetrahydrofolate (charge -2e)

TMP trimethoprim (deprotonated at N1; neutral)

†TMPH trimethoprim (protonated at N1; neutral)

†TMPHP trimethoprim (protonated at N1; charge +e)

PDG 3-phosopho-D-glycerate (charge -2e)

ATP adenosine 5’-triphosphate (ATP; charge -3e)

PMB p-methylbenzyl alcoholate (charge -e)

†PMBH p-methylbenzyl alcohol (neutral)

BA benzoic acid

RTOL retinol (neutral)

†TEMP tetramethyl pyrrolinyl (nitroxide spin label; neutral)

†CH4 methane (united atom)

†AR argon

†ETH ethanolate (obsolete: removed from 45A4 onward)

†ETHH ethanol (obsolete: removed from 45A4 onward)

†GALB β-galactose (obsolete: removed from 45A4 onward)

†GLCA α-glucose (obsolete: removed from 45A4 onward)

†GLCB β-glucose (obsolete: removed from 45A4 onward)

Ions

†SO42- SO−2
4 ion (charge -2e)

†ZN2+ zinc ion (charge +2e)

†NA+ sodium ion (charge +e)

†CL- chlorine ion (charge -e)

†CA2+ calcium ion (charge +2e)

3-63

†MG2+ magnesium ion (charge +2e)

†CU1+ copper ion (charge +e)

†CU2+ copper ion (charge +2e)

Solvents

(equivalent to the corresponding solvent building blocks)

†TFE 2,2,2-trifluoroethanol

†UREA urea

†H2O water (SPC model, rigid)15

†H2OE water (SPC/E model, rigid)38

†CHCL3 chloroform (rigid)19

†DMSO dimethylsulfoxide (rigid)39

†CH3OH methanol (rigid)17

†CCL4 carbontetrachloride (rigid)20

B. Solvent Building Blocks(Blockname: MTBUILDBLSOLVENT)

Name Description

†H2O water (SPC model)15

†H2OE water (SPC/E model)38

†CHCL3 chloroform19

†DMSO dimethylsulfoxide39

†CH3OH methanol17

†CCL4 carbontetrachloride20

C. Solute End-Group Building Blocks (Blockname: MTBUILDBLEND)

Name Description

†NH3+ N-terminal α-peptide end-group (protonated, charge +e)

†NH2 N-terminal α-peptide end-group (deprotonated, neutral)

†NPRO N-terminal α-peptide end-group for proline or hydroxy proline (protonated, charge +e)

†COO- C-terminal α-peptide end-group (deprotonated, charge -e)

†COOH C-terminal α-peptide end-group (protonated, neutral)

†BH3+ N-terminal β-peptide end-group (protonated, charge +e)

†BH2 N-terminal β-peptide end-group (deprotonated, neutral)

†BOO- C-terminal β-peptide end-group (deprotonated, charge -e)

3-64

†BOOH C-terminal β-peptide end-group (protonated, neutral)

†D5OH 5’-terminal DNA end-group

†D3OH 3’-terminal DNA end-group

†5OH 5’-terminal RNA end-group

†3OH 3’-terminal RNA end-group

†CNAP terminal group for carbohydrates: -1-α-D-allopyranose

†CNBP terminal group for carbohydrates: -1-β-D-allopyranose

†CEAP terminal group for carbohydrates: -1-α-D-altropyranose

†CEBP terminal group for carbohydrates: -1-β-D-altropyranose

†CGAP terminal group for carbohydrates: -1-α-D-glucopyranose

CGBP terminal group for carbohydrates: -1-β-D-glucopyranose

†CMAP terminal group for carbohydrates: -1-α-D-mannopyranose

†CMBP terminal group for carbohydrates: -1-β-D-mannopyranose

†CKAP terminal group for carbohydrates: -1-α-D-gulopyranose

†CKBP terminal group for carbohydrates: -1-β-D-gulopyranose

†CIAP terminal group for carbohydrates: -1-α-D-idopyranose

†CIBP terminal group for carbohydrates: -1-β-D-idopyranose

†CLAP terminal group for carbohydrates: -1-α-D-galactopyranose

†CLBP terminal group for carbohydrates: -1-β-D-galactopyranose

†CTAP terminal group for carbohydrates: -1-α-D-talopyranose

†CTBP terminal group for carbohydrates: -1-β-D-talopyranose

†CnAP terminal group for carbohydrates: -1-α-L-allopyranose

†CnBP terminal group for carbohydrates: -1-β-L-allopyranose

†CeAP terminal group for carbohydrates: -1-α-L-altropyranose

†CeBP terminal group for carbohydrates: -1-β-L-altropyranose

†CgAP terminal group for carbohydrates: -1-α-L-glucopyranose

†CgBP terminal group for carbohydrates: -1-β-L-glucopyranose

†CmAP terminal group for carbohydrates: -1-α-L-mannopyranose

†CmBP terminal group for carbohydrates: -1-β-L-mannopyranose

†CkAP terminal group for carbohydrates: -1-α-L-gulopyranose

†CkBP terminal group for carbohydrates: -1-β-L-gulopyranose

†CiAP terminal group for carbohydrates: -1-α-L-idopyranose

†CiAP terminal group for carbohydrates: -1-β-L-idopyranose

3-65

†ClAP terminal group for carbohydrates: -1-α-L-galactopyranose

†ClBP terminal group for carbohydrates: -1-β-L-galactopyranose

†CtAP terminal group for carbohydrates: -1-α-L-talopyranose

†CtBP terminal group for carbohydrates: -1-β-L-talopyranose

†CGBU terminal group for carbohydrates: -1-β-D-glucuronate

†CLAU terminal group for carbohydrates: -1-α-D-galacturonate

†CMBU terminal group for carbohydrates: -1-β-D-mannuronate

†CkAU terminal group for carbohydrates: -1-α-L-guluronate

†CiAU terminal group for carbohydrates: -1-α-L-iduronate

†C1OC terminal group for carbohydrates: -C1-O1-CH3

†C1OH terminal group for carbohydrates: -C1-O1-HO1

†HO2C initial group for carbohydrates: HO2-O2-C2-

†HO3C initial group for carbohydrates: HO3-O3-C3-

†HO4C initial group for carbohydrates: HO4-O4-C4-

†HO6C initial group for carbohydrates: HO6-O6-C6-

3-66

4.2. Definition of molecular topology building block pictures

a. Figure 1, atoms

- names: X
- numbering nX
- integer atom code XIAC

- charge: Xcharge

- charge groups: color boundaries between different charge groups

b. Figure 2, bonds and bond angles

- bond type codes: thin, underlined
- bond-angle type codes: bold, italics

In both building block figures the stereochemical configuration is represented such that the solid wedges
indicate bonds that project above the plane of the paper and hashed wedges indicate bonds that project
below the plane of the paper. The wedges are always oriented with the narrow end at the stereogenic center.

4.3. α-amino acids and analogues

Solute building block: Alanine
Name: ALA

Figure 4.1. ALA non-bonded parameters.

Figure 4.2. ALA bonded parameters.

3-67

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 5

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7

4 CB 16 5 0.00000 5

5 C 12 12 0.45000

6 O 1 16 -0.45000

Table 4.1. Atoms of building block ALA.

I J Type

1 2 2

1 3 21

3 4 27

3 5 27

5 6 5

5 7 10

Table 4.2. Bonds of building block ALA.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 5 13

4 3 5 13

3 5 6 30

3 5 7 19

6 5 7 33

Table 4.3. Bond angles of building block ALA.

3-68

I J K L Type

-2 -1 1 3 14

-1 1 3 5 43

-1 1 3 5 44

1 3 5 7 42

1 3 5 7 45

Table 4.4. Dihedral angles of building block ALA.

I J K L Type

1 -1 3 2 1

3 1 5 4 2

5 3 7 6 1

Table 4.5. Improper dihedral angles of building block ALA.

3-69

Solute building block: Arginine (protonated; charge +e)
Name: ARG

Figure 4.3. ARG non-bonded parameters.

Figure 4.4. ARG bonded parameters.

3-70

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 16

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 16 17 18

4 CB 15 4 0.00000 5 6 16

5 CG 15 4 0.00000 6 7

6 CD 15 4 0.09000 7 8 9

7 NE 11 14 -0.11000 8 9 10 13

8 HE 21 1 0.24000 9

9 CZ 12 12 0.34000 10 11 12 13 14 15

10 NH1 10 14 -0.26000 11 12 13

11 HH11 21 1 0.24000 12

12 HH12 21 1 0.24000

13 NH2 10 14 -0.26000 14 15

14 HH21 21 1 0.24000 15

15 HH22 21 1 0.24000

16 C 12 12 0.45000

17 O 1 16 -0.45000

Table 4.6. Atoms of building block ARG.

I J Type

1 2 2

1 3 21

3 4 27

3 16 27

4 5 27

5 6 27

6 7 21

7 8 2

7 9 11

9 10 11

9 13 11

10 11 2

10 12 2

13 14 2

13 15 2

16 17 5

16 18 10

Table 4.7. Bonds of building block ARG.

3-71

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 16 13

4 3 16 13

3 4 5 15

4 5 6 15

5 6 7 13

6 7 8 20

6 7 9 33

8 7 9 23

7 9 10 28

7 9 13 28

10 9 13 28

9 10 11 23

9 10 12 23

11 10 12 24

9 13 14 23

9 13 15 23

14 13 15 24

3 16 17 30

3 16 18 19

17 16 18 33

Table 4.8. Bond angles of building block ARG.

I J K L Type

-2 -1 1 3 14

-1 1 3 16 43

-1 1 3 16 44

1 3 4 5 34

1 3 16 18 42

1 3 16 18 45

3 4 5 6 34

4 5 6 7 34

5 6 7 9 39

6 7 9 10 14

7 9 10 11 14

7 9 13 14 14

Table 4.9. Dihedral angles of building block ARG.

3-72

I J K L Type

1 -1 3 2 1

3 1 16 4 2

7 6 9 8 1

9 10 13 7 1

10 11 12 9 1

13 14 15 9 1

16 3 18 17 1

Table 4.10. Improper dihedral angles of building block ARG.

3-73

Solute building block: Arginine (deprotonated; neutral)
Name: ARGN

Figure 4.5. ARGN non-bonded parameters.

Figure 4.6. ARGN bonded parameters.

3-74

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 15

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 15 16 17

4 CB 15 4 0.00000 5 6 15

5 CG 15 4 0.00000 6 7

6 CD 15 4 0.00000 7 8 9

7 NE 11 14 -0.31000 8 9 10 12

8 HE 21 1 0.31000 9

9 CZ 12 12 0.26600 10 11 12 13 14

10 NH1 11 14 -0.67400 11 12

11 HH1 21 1 0.40800

12 NH2 10 14 -0.88000 13 14

13 HH21 21 1 0.44000 14

14 HH22 21 1 0.44000

15 C 12 12 0.45000

16 O 1 16 -0.45000

Table 4.11. Atoms of building block ARGN.

I J Type

1 2 2

1 3 21

3 4 27

3 15 27

4 5 27

5 6 27

6 7 21

7 8 2

7 9 11

9 10 11

9 12 11

10 11 2

12 13 2

12 14 2

15 16 5

15 17 10

Table 4.12. Bonds of building block ARGN.

3-75

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 15 13

4 3 15 13

3 4 5 15

4 5 6 15

5 6 7 13

6 7 8 20

6 7 9 33

8 7 9 23

7 9 10 28

7 9 12 28

10 9 12 28

9 10 11 23

9 12 13 23

9 12 14 23

13 12 14 24

3 15 16 30

3 15 17 19

16 15 17 33

Table 4.13. Bond angles of building block ARGN.

I J K L Type

-2 -1 1 3 14

-1 1 3 15 43

-1 1 3 15 44

1 3 4 5 34

1 3 15 17 42

1 3 15 17 45

3 4 5 6 34

4 5 6 7 34

5 6 7 9 39

6 7 9 10 14

7 9 10 11 14

7 9 12 13 14

Table 4.14. Dihedral angles of building block ARGN.

3-76

I J K L Type

1 -1 3 2 1

3 1 15 4 2

7 6 9 8 1

9 10 12 7 1

12 13 14 9 1

15 3 17 16 1

Table 4.15. Improper dihedral angles of building block ARGN.

3-77

Solute building block: Asparagine
Name: ASN

Figure 4.7. ASN non-bonded parameters.

Figure 4.8. ASN bonded parameters.

3-78

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 10

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 10 11 12

4 CB 15 4 0.00000 5 6 7 10

5 CG 12 12 0.29000 6 7 8 9

6 OD1 1 16 -0.45000 7

7 ND2 7 14 -0.72000 8 9

8 HD21 21 1 0.44000 9

9 HD22 21 1 0.44000

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.16. Atoms of building block ASN.

I J Type

1 2 2

1 3 21

3 4 27

3 10 27

4 5 27

5 6 5

5 7 9

7 8 2

7 9 2

10 11 5

10 12 10

Table 4.17. Bonds of building block ASN.

3-79

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 10 13

4 3 10 13

3 4 5 15

4 5 6 30

4 5 7 19

6 5 7 33

5 7 8 23

5 7 9 23

8 7 9 24

3 10 11 30

3 10 12 19

11 10 12 33

Table 4.18. Bond angles of building block ASN.

I J K L Type

-2 -1 1 3 14

-1 1 3 10 43

-1 1 3 10 44

1 3 4 5 34

1 3 10 12 42

1 3 10 12 45

3 4 5 7 40

4 5 7 8 14

Table 4.19. Dihedral angles of building block ASN.

I J K L Type

1 -1 3 2 1

3 1 10 4 2

5 6 7 4 1

7 8 9 5 1

10 3 12 11 1

Table 4.20. Improper dihedral angles of building block ASN.

3-80

Solute building block: Asparagine (coordinated with ZN)
Name: ASN1

Figure 4.9. ASN1 non-bonded parameters.

Figure 4.10. ASN1 bonded parameters.

3-81

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 10

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 10 11 12

4 CB 15 4 0.00000 5 6 7 10

5 CG 12 12 0.29000 6 7 8 9

6 OD1 1 16 -0.45000 7

7 ND2 8 14 -0.72000 8 9

8 HD21 21 1 0.44000 9

9 HD22 21 1 0.44000

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.21. Atoms of building block ASN1.

I J Type

1 2 2

1 3 21

3 4 27

3 10 27

4 5 27

5 6 5

5 7 9

7 8 2

7 9 2

10 11 5

10 12 10

Table 4.22. Bonds of building block ASN1.

3-82

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 10 13

4 3 10 13

3 4 5 15

4 5 6 30

4 5 7 19

6 5 7 33

5 7 8 23

5 7 9 23

8 7 9 24

3 10 11 30

3 10 12 19

11 10 12 33

Table 4.23. Bond angles of building block ASN1.

I J K L Type

-2 -1 1 3 14

-1 1 3 10 43

-1 1 3 10 44

1 3 4 5 34

1 3 10 12 42

1 3 10 12 45

3 4 5 7 40

4 5 7 8 14

Table 4.24. Dihedral angles of building block ASN1.

I J K L Type

1 -1 3 2 1

3 1 10 4 2

5 6 7 4 1

7 8 9 5 1

10 3 12 11 1

Table 4.25. Improper dihedral angles of building block ASN1.

3-83

Solute building block: Aspartic acid (deprotonated; charge -e)
Name: ASP

Figure 4.11. ASP non-bonded parameters.

Figure 4.12. ASP bonded parameters.

3-84

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 8 9 10

4 CB 15 4 0.00000 5 6 7 8

5 CG 12 12 0.27000 6 7

6 OD1 2 16 -0.63500 7

7 OD2 2 16 -0.63500

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.26. Atoms of building block ASP.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 6

5 7 6

8 9 5

8 10 10

Table 4.27. Bonds of building block ASP.

3-85

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 22

4 5 7 22

6 5 7 38

3 8 9 30

3 8 10 19

9 8 10 33

Table 4.28. Bond angles of building block ASP.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 42

1 3 8 10 45

3 4 5 6 40

Table 4.29. Dihedral angles of building block ASP.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

5 6 7 4 1

8 3 10 9 1

Table 4.30. Improper dihedral angles of building block ASP.

3-86

Solute building block: Aspartic acid (protonated; neutral)
Name: ASPH

Figure 4.13. ASPH non-bonded parameters.

Figure 4.14. ASPH bonded parameters.

3-87

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 9

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 9 10 11

4 CB 15 4 0.00000 5 6 7 9

5 CG 12 12 0.33000 6 7 8

6 OD1 1 16 -0.45000 7

7 OD2 3 16 -0.28800 8

8 HD2 21 1 0.40800

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.31. Atoms of building block ASPH.

I J Type

1 2 2

1 3 21

3 4 27

3 9 27

4 5 27

5 6 5

5 7 13

7 8 1

9 10 5

9 11 10

Table 4.32. Bonds of building block ASPH.

3-88

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 9 13

4 3 9 13

3 4 5 15

4 5 6 30

4 5 7 19

6 5 7 33

5 7 8 12

3 9 10 30

3 9 11 19

10 9 11 33

Table 4.33. Bond angles of building block ASPH.

I J K L Type

-2 -1 1 3 14

-1 1 3 9 43

-1 1 3 9 44

1 3 4 5 34

1 3 9 11 42

1 3 9 11 45

3 4 5 7 40

4 5 7 8 12

Table 4.34. Dihedral angles of building block ASPH.

I J K L Type

1 -1 3 2 1

3 1 9 4 2

5 6 7 4 1

9 3 11 10 1

Table 4.35. Improper dihedral angles of building block ASPH.

3-89

Solute building block: Cysteine (deprotonated; charge -1/2e)
Name: CYS

Figure 4.15. CYS non-bonded parameters.

Figure 4.16. CYS bonded parameters.

3-90

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 6

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7 8

4 CB 15 4 -0.10000 5 6

5 SG 23 32 -0.40000

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.36. Atoms of building block CYS.

I J Type

1 2 2

1 3 21

3 4 27

3 6 27

4 5 32

6 7 5

6 8 10

Table 4.37. Bonds of building block CYS.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 6 13

4 3 6 13

3 4 5 16

3 6 7 30

3 6 8 19

7 6 8 33

Table 4.38. Bond angles of building block CYS.

3-91

I J K L Type

-2 -1 1 3 14

-1 1 3 6 43

-1 1 3 6 44

1 3 4 5 34

1 3 6 8 42

1 3 6 8 45

Table 4.39. Dihedral angles of building block CYS.

I J K L Type

1 -1 3 2 1

3 1 6 4 2

6 3 8 7 1

Table 4.40. Improper dihedral angles of building block CYS.

3-92

Solute building block: Cysteine (protonated; neutral)
Name: CYSH

Figure 4.17. CYSH non-bonded parameters.

Figure 4.18. CYSH bonded parameters.

3-93

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 7 8 9

4 CB 15 4 0.15000 5 6 7

5 SG 23 32 -0.37000 6

6 HG 21 1 0.22000

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.41. Atoms of building block CYSH.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 32

5 6 8

7 8 5

7 9 10

Table 4.42. Bonds of building block CYSH.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 16

4 5 6 3

3 7 8 30

3 7 9 19

8 7 9 33

Table 4.43. Bond angles of building block CYSH.

3-94

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 9 42

1 3 7 9 45

3 4 5 6 26

Table 4.44. Dihedral angles of building block CYSH.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

7 3 9 8 1

Table 4.45. Improper dihedral angles of building block CYSH.

3-95

Solute building block: Cysteine (1st member of S-S bridge)
Name: CYS1

Figure 4.19. CYS1 non-bonded parameters.

Figure 4.20. CYS1 bonded parameters.

3-96

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 6

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7 8

4 CB 15 4 0.00000 -5 5 6

5 SG 23 32 0.00000 -5 -4

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.46. Atoms of building block CYS1.

I J Type

-5 5 36

1 2 2

1 3 21

3 4 27

3 6 27

4 5 32

6 7 5

6 8 10

Table 4.47. Bonds of building block CYS1.

I J K Type

-4 -5 5 6

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 6 13

4 3 6 13

3 4 5 16

-5 5 4 6

3 6 7 30

3 6 8 19

7 6 8 33

Table 4.48. Bond angles of building block CYS1.

3-97

I J K L Type

5 -5 -4 -3 26

-4 -5 5 4 21

-2 -1 1 3 14

-1 1 3 6 43

-1 1 3 6 44

1 3 4 5 34

1 3 6 8 42

1 3 6 8 45

3 4 5 -5 26

Table 4.49. Dihedral angles of building block CYS1.

I J K L Type

1 -1 3 2 1

3 1 6 4 2

6 3 8 7 1

Table 4.50. Improper dihedral angles of building block CYS1.

3-98

Solute building block: Cysteine (2nd member of S-S bridge)
Name: CYS2

Figure 4.21. CYS2 non-bonded parameters.

Figure 4.22. CYS2 bonded parameters.

3-99

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 6

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7 8

4 CB 15 4 0.00000 5 6

5 SG 23 32 0.00000

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.51. Atoms of building block CYS2.

I J Type

1 2 2

1 3 21

3 4 27

3 6 27

4 5 32

6 7 5

6 8 10

Table 4.52. Bonds of building block CYS2.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 6 13

4 3 6 13

3 4 5 16

3 6 7 30

3 6 8 19

7 6 8 33

Table 4.53. Bond angles of building block CYS2.

3-100

I J K L Type

-2 -1 1 3 14

-1 1 3 6 43

-1 1 3 6 44

1 3 4 5 34

1 3 6 8 42

1 3 6 8 45

Table 4.54. Dihedral angles of building block CYS2.

I J K L Type

1 -1 3 2 1

3 1 6 4 2

6 3 8 7 1

Table 4.55. Improper dihedral angles of building block CYS2.

3-101

Solute building block: Glutamine
Name: GLN

Figure 4.23. GLN non-bonded parameters.

Figure 4.24. GLN bonded parameters.

3-102

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 11

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 11 12 13

4 CB 15 4 0.00000 5 6 11

5 CG 15 4 0.00000 6 7 8

6 CD 12 12 0.29000 7 8 9 10

7 OE1 1 16 -0.45000 8

8 NE2 7 14 -0.72000 9 10

9 HE21 21 1 0.44000 10

10 HE22 21 1 0.44000

11 C 12 12 0.45000

12 O 1 16 -0.45000

Table 4.56. Atoms of building block GLN.

I J Type

1 2 2

1 3 21

3 4 27

3 11 27

4 5 27

5 6 27

6 7 5

6 8 9

8 9 2

8 10 2

11 12 5

11 13 10

Table 4.57. Bonds of building block GLN.

3-103

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 11 13

4 3 11 13

3 4 5 15

4 5 6 15

5 6 7 30

5 6 8 19

7 6 8 33

6 8 9 23

6 8 10 23

9 8 10 24

3 11 12 30

3 11 13 19

12 11 13 33

Table 4.58. Bond angles of building block GLN.

I J K L Type

-2 -1 1 3 14

-1 1 3 11 43

-1 1 3 11 44

1 3 4 5 34

1 3 11 13 42

1 3 11 13 45

3 4 5 6 34

4 5 6 8 40

5 6 8 9 14

Table 4.59. Dihedral angles of building block GLN.

I J K L Type

1 -1 3 2 1

3 1 11 4 2

6 7 8 5 1

8 9 10 6 1

11 3 13 12 1

Table 4.60. Improper dihedral angles of building block GLN.

3-104

Solute building block: Glutamic acid (deprotonated; charge -e)
Name: GLU

Figure 4.25. GLU non-bonded parameters.

Figure 4.26. GLU bonded parameters.

3-105

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 9

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 9 10 11

4 CB 15 4 0.00000 5 6 9

5 CG 15 4 0.00000 6 7 8

6 CD 12 12 0.27000 7 8

7 OE1 2 16 -0.63500 8

8 OE2 2 16 -0.63500

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.61. Atoms of building block GLU.

I J Type

1 2 2

1 3 21

3 4 27

3 9 27

4 5 27

5 6 27

6 7 6

6 8 6

9 10 5

9 11 10

Table 4.62. Bonds of building block GLU.

3-106

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 9 13

4 3 9 13

3 4 5 15

4 5 6 15

5 6 7 22

5 6 8 22

7 6 8 38

3 9 10 30

3 9 11 19

10 9 11 33

Table 4.63. Bond angles of building block GLU.

I J K L Type

-2 -1 1 3 14

-1 1 3 9 43

-1 1 3 9 44

1 3 4 5 34

1 3 9 11 42

1 3 9 11 45

3 4 5 6 34

4 5 6 8 40

Table 4.64. Dihedral angles of building block GLU.

I J K L Type

1 -1 3 2 1

3 1 9 4 2

6 7 8 5 1

9 3 11 10 1

Table 4.65. Improper dihedral angles of building block GLU.

3-107

Solute building block: Glutamic acid (protonated; neutral)
Name: GLUH

Figure 4.27. GLUH non-bonded parameters.

Figure 4.28. GLUH bonded parameters.

3-108

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 10

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 10 11 12

4 CB 15 4 0.00000 5 6 10

5 CG 15 4 0.00000 6 7 8

6 CD 12 12 0.33000 7 8 9

7 OE1 1 16 -0.45000 8

8 OE2 3 16 -0.28800 9

9 HE2 21 1 0.40800

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.66. Atoms of building block GLUH.

I J Type

1 2 2

1 3 21

3 4 27

3 10 27

4 5 27

5 6 27

6 7 5

6 8 13

8 9 1

10 11 5

10 12 10

Table 4.67. Bonds of building block GLUH.

3-109

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 10 13

4 3 10 13

3 4 5 15

4 5 6 15

5 6 7 30

5 6 8 19

7 6 8 33

6 8 9 12

3 10 11 30

3 10 12 19

11 10 12 33

Table 4.68. Bond angles of building block GLUH.

I J K L Type

-2 -1 1 3 14

-1 1 3 10 43

-1 1 3 10 44

1 3 4 5 34

1 3 10 12 42

1 3 10 12 45

3 4 5 6 34

4 5 6 8 40

5 6 8 9 12

Table 4.69. Dihedral angles of building block GLUH.

I J K L Type

1 -1 3 2 1

3 1 10 4 2

6 7 8 5 1

10 3 12 11 1

Table 4.70. Improper dihedral angles of building block GLUH.

3-110

Solute building block: Glycine
Name: GLY

Figure 4.29. GLY non-bonded parameters.

Figure 4.30. GLY bonded parameters.

3-111

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CA 15 4 0.00000 4 5 6

4 C 12 12 0.45000

5 O 1 16 -0.45000

Table 4.71. Atoms of building block GLY.

I J Type

1 2 2

1 3 21

3 4 27

4 5 5

4 6 10

Table 4.72. Bonds of building block GLY.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 30

3 4 6 19

5 4 6 33

Table 4.73. Bond angles of building block GLY.

3-112

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 6 42

1 3 4 6 45

Table 4.74. Dihedral angles of building block GLY.

I J K L Type

1 -1 3 2 1

4 3 6 5 1

Table 4.75. Improper dihedral angles of building block GLY.

3-113

Solute building block: Histidine (protonated at ND1; neutral)
Name: HISA

Figure 4.31. HISA non-bonded parameters.

Figure 4.32. HISA bonded parameters.

3-114

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 13

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 13 14 15

4 CB 15 4 0.00000 5 6 7 8 9 10 12 13

5 CG 12 12 0.00000 6 7 8 9 10 11 12

6 ND1 9 14 -0.05000 7 8 9 10 11 12

7 HD1 21 1 0.31000 8 10 11 12

8 CD2 12 12 0.00000 9 10 11 12

9 HD2 20 1 0.14000 10 12

10 CE1 12 12 0.00000 11 12

11 HE1 20 1 0.14000 12

12 NE2 9 14 -0.54000

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.76. Atoms of building block HISA.

I J Type

1 2 2

1 3 21

3 4 27

3 13 27

4 5 27

5 6 10

5 8 10

6 7 2

6 10 10

8 9 3

8 12 10

10 11 3

10 12 10

13 14 5

13 15 10

Table 4.77. Bonds of building block HISA.

3-115

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 13 13

4 3 13 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 10 7

7 6 10 36

5 8 9 36

5 8 12 7

9 8 12 36

6 10 11 36

6 10 12 7

11 10 12 36

8 12 10 7

3 13 14 30

3 13 15 19

14 13 15 33

Table 4.78. Bond angles of building block HISA.

I J K L Type

-2 -1 1 3 14

-1 1 3 13 43

-1 1 3 13 44

1 3 4 5 34

1 3 13 15 42

1 3 13 15 45

3 4 5 6 40

Table 4.79. Dihedral angles of building block HISA.

3-116

I J K L Type

1 -1 3 2 1

3 1 13 4 2

5 6 8 4 1

5 6 10 12 1

5 8 12 10 1

6 5 8 12 1

6 5 10 7 1

6 10 12 8 1

8 5 6 10 1

8 5 12 9 1

10 6 12 11 1

13 3 15 14 1

Table 4.80. Improper dihedral angles of building block HISA.

3-117

Solute building block: Histidine (protonated at NE2; neutral)
Name: HISB

Figure 4.33. HISB non-bonded parameters.

Figure 4.34. HISB bonded parameters.

3-118

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 13

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 13 14 15

4 CB 15 4 0.00000 5 6 7 8 9 11 13

5 CG 12 12 0.00000 6 7 8 9 10 11 12

6 ND1 9 14 -0.54000 7 8 9 10 11 12

7 CD2 12 12 0.00000 8 9 10 11 12

8 HD2 20 1 0.14000 9 11 12

9 CE1 12 12 0.00000 10 11 12

10 HE1 20 1 0.14000 11 12

11 NE2 9 14 -0.05000 12

12 HE2 21 1 0.31000

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.81. Atoms of building block HISB.

I J Type

1 2 2

1 3 21

3 4 27

3 13 27

4 5 27

5 6 10

5 7 10

6 9 10

7 8 3

7 11 10

9 10 3

9 11 10

11 12 2

13 14 5

13 15 10

Table 4.82. Bonds of building block HISB.

3-119

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 13 13

4 3 13 13

3 4 5 15

4 5 6 37

4 5 7 37

6 5 7 7

5 6 9 7

5 7 8 36

5 7 11 7

8 7 11 36

6 9 10 36

6 9 11 7

10 9 11 36

7 11 9 7

7 11 12 36

9 11 12 36

3 13 14 30

3 13 15 19

14 13 15 33

Table 4.83. Bond angles of building block HISB.

I J K L Type

-2 -1 1 3 14

-1 1 3 13 43

-1 1 3 13 44

1 3 4 5 34

1 3 13 15 42

1 3 13 15 45

3 4 5 6 40

Table 4.84. Dihedral angles of building block HISB.

3-120

I J K L Type

1 -1 3 2 1

3 1 13 4 2

5 6 7 4 1

5 6 9 11 1

5 7 11 9 1

6 5 7 11 1

6 9 11 7 1

7 5 6 9 1

7 5 11 8 1

9 6 11 10 1

11 7 9 12 1

13 3 15 14 1

Table 4.85. Improper dihedral angles of building block HISB.

3-121

Solute building block: Histidine (protonated at ND1 and NE2; charge +e)
Name: HISH

Figure 4.35. HISH non-bonded parameters.

Figure 4.36. HISH bonded parameters.

3-122

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 14

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 14 15 16

4 CB 15 4 0.00000 5 6 7 8 9 10 12 14

5 CG 12 12 -0.05000 6 7 8 9 10 11 12 13

6 ND1 9 14 0.38000 7 8 9 10 11 12 13

7 HD1 21 1 0.30000 8 10 11 12

8 CD2 12 12 -0.10000 9 10 11 12 13

9 HD2 20 1 0.10000 10 12 13

10 CE1 12 12 -0.34000 11 12 13

11 HE1 20 1 0.10000 12 13

12 NE2 9 14 0.31000 13

13 HE2 21 1 0.30000

14 C 12 12 0.45000

15 O 1 16 -0.45000

Table 4.86. Atoms of building block HISH.

I J Type

1 2 2

1 3 21

3 4 27

3 14 27

4 5 27

5 6 10

5 8 10

6 7 2

6 10 10

8 9 3

8 12 10

10 11 3

10 12 10

12 13 2

14 15 5

14 16 10

Table 4.87. Bonds of building block HISH.

3-123

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 14 13

4 3 14 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 10 7

7 6 10 36

5 8 9 36

5 8 12 7

9 8 12 36

6 10 11 36

6 10 12 7

11 10 12 36

8 12 10 7

8 12 13 36

10 12 13 36

3 14 15 30

3 14 16 19

15 14 16 33

Table 4.88. Bond angles of building block HISH.

I J K L Type

-2 -1 1 3 14

-1 1 3 14 43

-1 1 3 14 44

1 3 4 5 34

1 3 14 16 42

1 3 14 16 45

3 4 5 6 40

Table 4.89. Dihedral angles of building block HISH.

3-124

I J K L Type

1 -1 3 2 1

3 1 14 4 2

5 6 8 4 1

5 6 10 12 1

5 8 12 10 1

6 5 8 12 1

6 5 10 7 1

6 10 12 8 1

8 5 6 10 1

8 5 12 9 1

10 6 12 11 1

12 8 10 13 1

14 3 16 15 1

Table 4.90. Improper dihedral angles of building block HISH.

3-125

Solute building block: Histidine (coupled to HEME at NE2; neutral)
Name: HIS1

Figure 4.37. HIS1 non-bonded parameters.

Figure 4.38. HIS1 bonded parameters.

3-126

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 13

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 13 14 15

4 CB 15 4 0.00000 5 6 7 8 9 10 12 13

5 CG 12 12 0.00000 -1 6 7 8 9 10 11 12

6 ND1 9 14 -0.05000 -1 7 8 9 10 11 12

7 HD1 21 1 0.31000 8 10 11 12

8 CD2 12 12 0.00000 -1 9 10 11 12

9 HD2 20 1 0.14000 -1 10 12

10 CE1 12 12 0.00000 -1 11 12

11 HE1 20 1 0.14000 -1 12

12 NE2 9 14 -0.54000 -5 -4 -3 -2 -1

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.91. Atoms of building block HIS1.

I J Type

-1 12 37

1 2 2

1 3 21

3 4 27

3 13 27

4 5 27

5 6 10

5 8 10

6 7 2

6 10 10

8 9 3

8 12 10

10 11 3

10 12 10

13 14 5

13 15 10

Table 4.92. Bonds of building block HIS1.

3-127

I J K Type

-5 -1 12 2

-4 -1 12 2

-3 -1 12 2

-2 -1 12 2

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 13 13

4 3 13 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 10 7

7 6 10 36

5 8 9 36

5 8 12 7

9 8 12 36

6 10 11 36

6 10 12 7

11 10 12 36

-1 12 8 34

-1 12 10 34

8 12 10 7

3 13 14 30

3 13 15 19

14 13 15 33

Table 4.93. Bond angles of building block HIS1.

I J K L Type

-2 -1 1 3 14

-2 -1 12 8 38

-1 1 3 13 43

-1 1 3 13 44

1 3 4 5 34

1 3 13 15 42

1 3 13 15 45

3 4 5 6 40

Table 4.94. Dihedral angles of building block HIS1.

3-128

I J K L Type

1 -1 3 2 1

3 1 13 4 2

5 6 8 4 1

5 6 10 12 1

5 8 12 10 1

6 5 8 12 1

6 5 10 7 1

6 10 12 8 1

8 5 6 10 1

8 5 12 9 1

10 6 12 11 1

13 3 15 14 1

Table 4.95. Improper dihedral angles of building block HIS1.

3-129

Solute building block: Histidine (coupled to HEMC at NE2: neutral)
Name: HIS2

Figure 4.39. HIS2 non-bonded parameters.

Figure 4.40. HIS2 bonded parameters.

3-130

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 13

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 13 14 15

4 CB 15 4 0.00000 5 6 7 8 9 10 12 13

5 CG 12 12 0.00000 -1 6 7 8 9 10 11 12

6 ND1 9 14 -0.05000 -1 7 8 9 10 11 12

7 HD1 21 1 0.31000 8 10 11 12

8 CD2 12 12 0.00000 -1 9 10 11 12

9 HD2 20 1 0.14000 -1 10 12

10 CE1 12 12 0.00000 -1 11 12

11 HE1 20 1 0.14000 -1 12

12 NE2 9 14 -0.54000 -48 -5 -4 -3 -2 -1

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.96. Atoms of building block HIS2.

I J Type

-1 12 37

1 2 2

1 3 21

3 4 27

3 13 27

4 5 27

5 6 10

5 8 10

6 7 2

6 10 10

8 9 3

8 12 10

10 11 3

10 12 10

13 14 5

13 15 10

Table 4.97. Bonds of building block HIS2.

3-131

I J K Type

-5 -1 12 2

-4 -1 12 2

-3 -1 12 2

-2 -1 12 2

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 13 13

4 3 13 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 10 7

7 6 10 36

5 8 9 36

5 8 12 7

9 8 12 36

6 10 11 36

6 10 12 7

11 10 12 36

-1 12 8 34

-1 12 10 34

8 12 10 7

3 13 14 30

3 13 15 19

14 13 15 33

Table 4.98. Bond angles of building block HIS2.

I J K L Type

-2 -1 1 3 14

-2 -1 12 8 38

-1 1 3 13 43

-1 1 3 13 44

1 3 4 5 34

1 3 13 15 42

1 3 13 15 45

3 4 5 6 40

Table 4.99. Dihedral angles of building block HIS2.

3-132

I J K L Type

1 -1 3 2 1

3 1 13 4 2

5 6 8 4 1

5 6 10 12 1

5 8 12 10 1

6 5 8 12 1

6 5 10 7 1

6 10 12 8 1

8 5 6 10 1

8 5 12 9 1

10 6 12 11 1

13 3 15 14 1

Table 4.100. Improper dihedral angles of building block HIS2.

3-133

Solute building block: Hydroxyproline (R-configuration at CG)
Name: HYPR

Figure 4.41. HYPR non-bonded parameters.

Figure 4.42. HYPR bonded parameters.

3-134

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 7

0 1

1 N 6 14 0.00000 2 3 4 7 8

2 CA 14 3 0.00000 3 4 7 8 9 10

3 CB 18 4 0.00000 4 5 7 8

4 CG 14 3 0.26600 5 6 7

5 OD1 3 16 -0.67400 6 7

6 HD1 21 1 0.40800

7 CD2 18 4 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.101. Atoms of building block HYPR.

I J Type

1 2 21

1 7 21

2 3 27

2 8 27

3 4 27

4 5 18

4 7 27

5 6 1

8 9 5

8 10 10

Table 4.102. Bonds of building block HYPR.

3-135

I J K Type

-1 1 2 31

-1 1 7 31

2 1 7 21

1 2 3 13

1 2 8 13

3 2 8 13

2 3 4 13

3 4 5 13

3 4 7 13

5 4 7 13

4 5 6 12

1 7 4 13

2 8 9 30

2 8 10 19

9 8 10 33

Table 4.103. Bond angles of building block HYPR.

I J K L Type

-2 -1 1 2 14

-1 1 2 8 43

-1 1 2 8 44

2 1 7 4 39

1 2 3 4 34

1 2 8 10 42

1 2 8 10 45

2 3 4 7 34

3 4 5 6 23

3 4 7 1 34

Table 4.104. Dihedral angles of building block HYPR.

I J K L Type

1 -1 2 7 1

2 1 8 3 2

4 3 7 5 2

8 2 10 9 1

Table 4.105. Improper dihedral angles of building block HYPR.

3-136

Solute building block: Isoleucine
Name: ILE

Figure 4.43. ILE non-bonded parameters.

Figure 4.44. ILE bonded parameters.

3-137

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 8 9 10

4 CB 14 3 0.00000 5 6 7 8

5 CG1 15 4 0.00000 6 7

6 CG2 16 5 0.00000

7 CD 16 5 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.106. Atoms of building block ILE.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

4 6 27

5 7 27

8 9 5

8 10 10

Table 4.107. Bonds of building block ILE.

3-138

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

3 4 6 15

5 4 6 15

4 5 7 15

3 8 9 30

3 8 10 19

9 8 10 33

Table 4.108. Bond angles of building block ILE.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 42

1 3 8 10 45

3 4 5 7 34

Table 4.109. Dihedral angles of building block ILE.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 5 6 3 2

8 3 10 9 1

Table 4.110. Improper dihedral angles of building block ILE.

3-139

Solute building block: Leucine
Name: LEU

Figure 4.45. LEU non-bonded parameters.

Figure 4.46. LEU bonded parameters.

3-140

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 8 9 10

4 CB 15 4 0.00000 5 6 7 8

5 CG 14 3 0.00000 6 7

6 CD1 16 5 0.00000 7

7 CD2 16 5 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.111. Atoms of building block LEU.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 27

5 7 27

8 9 5

8 10 10

Table 4.112. Bonds of building block LEU.

3-141

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 15

4 5 7 15

6 5 7 15

3 8 9 30

3 8 10 19

9 8 10 33

Table 4.113. Bond angles of building block LEU.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 42

1 3 8 10 45

3 4 5 6 34

Table 4.114. Dihedral angles of building block LEU.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 6 7 5 2

8 3 10 9 1

Table 4.115. Improper dihedral angles of building block LEU.

3-142

Solute building block: Lysine (deprotonated; neutral)
Name: LYS

Figure 4.47. LYS non-bonded parameters.

Figure 4.48. LYS bonded parameters.

3-143

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 11

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 11 12 13

4 CB 15 4 0.00000 5 6 11

5 CG 15 4 0.00000 6 7

6 CD 15 4 0.00000 7 8

7 CE 15 4 -0.24000 8 9 10

8 NZ 7 14 -0.64000 9 10

9 HZ1 21 1 0.44000 10

10 HZ2 21 1 0.44000

11 C 12 12 0.45000

12 O 1 16 -0.45000

Table 4.116. Atoms of building block LYS.

I J Type

1 2 2

1 3 21

3 4 27

3 11 27

4 5 27

5 6 27

6 7 27

7 8 21

8 9 2

8 10 2

11 12 5

11 13 10

Table 4.117. Bonds of building block LYS.

3-144

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 11 13

4 3 11 13

3 4 5 15

4 5 6 15

5 6 7 15

6 7 8 15

7 8 9 11

7 8 10 11

9 8 10 10

3 11 12 30

3 11 13 19

12 11 13 33

Table 4.118. Bond angles of building block LYS.

I J K L Type

-2 -1 1 3 14

-1 1 3 11 43

-1 1 3 11 44

1 3 4 5 34

1 3 11 13 42

1 3 11 13 45

3 4 5 6 34

4 5 6 7 34

5 6 7 8 34

6 7 8 9 29

Table 4.119. Dihedral angles of building block LYS.

I J K L Type

1 -1 3 2 1

3 1 11 4 2

11 3 13 12 1

Table 4.120. Improper dihedral angles of building block LYS.

3-145

Solute building block: Lysine (protonated; charge +e)
Name: LYSH

Figure 4.49. LYSH non-bonded parameters.

Figure 4.50. LYSH bonded parameters.

3-146

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 12

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 12 13 14

4 CB 15 4 0.00000 5 6 12

5 CG 15 4 0.00000 6 7

6 CD 15 4 0.00000 7 8

7 CE 15 4 0.12700 8 9 10 11

8 NZ 8 14 0.12900 9 10 11

9 HZ1 21 1 0.24800 10 11

10 HZ2 21 1 0.24800 11

11 HZ3 21 1 0.24800

12 C 12 12 0.45000

13 O 1 16 -0.45000

Table 4.121. Atoms of building block LYSH.

I J Type

1 2 2

1 3 21

3 4 27

3 12 27

4 5 27

5 6 27

6 7 27

7 8 21

8 9 2

8 10 2

8 11 2

12 13 5

12 14 10

Table 4.122. Bonds of building block LYSH.

3-147

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 12 13

4 3 12 13

3 4 5 15

4 5 6 15

5 6 7 15

6 7 8 15

7 8 9 11

7 8 10 11

7 8 11 11

9 8 10 10

9 8 11 10

10 8 11 10

3 12 13 30

3 12 14 19

13 12 14 33

Table 4.123. Bond angles of building block LYSH.

I J K L Type

-2 -1 1 3 14

-1 1 3 12 43

-1 1 3 12 44

1 3 4 5 34

1 3 12 14 42

1 3 12 14 45

3 4 5 6 34

4 5 6 7 34

5 6 7 8 34

6 7 8 9 29

Table 4.124. Dihedral angles of building block LYSH.

I J K L Type

1 -1 3 2 1

3 1 12 4 2

12 3 14 13 1

Table 4.125. Improper dihedral angles of building block LYSH.

3-148

Solute building block: Methionine
Name: MET

Figure 4.51. MET non-bonded parameters.

Figure 4.52. MET bonded parameters.

3-149

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 8 9 10

4 CB 15 4 0.00000 5 6 8

5 CG 15 4 0.24100 6 7

6 SD 23 32 -0.48200 7

7 CE 16 5 0.24100

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.126. Atoms of building block MET.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 32

6 7 31

8 9 5

8 10 10

Table 4.127. Bonds of building block MET.

3-150

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 16

5 6 7 4

3 8 9 30

3 8 10 19

9 8 10 33

Table 4.128. Bond angles of building block MET.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 42

1 3 8 10 45

3 4 5 6 34

4 5 6 7 26

Table 4.129. Dihedral angles of building block MET.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

8 3 10 9 1

Table 4.130. Improper dihedral angles of building block MET.

3-151

Solute building block: Phenylalanine
Name: PHE

Figure 4.53. PHE non-bonded parameters.

Figure 4.54. PHE bonded parameters.

3-152

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 16

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 16 17 18

4 CB 15 4 0.00000 5 6 7 8 9 10 12 16

5 CG 12 12 0.00000 6 7 8 9 10 11 12 13 14

6 CD1 12 12 -0.14000 7 8 9 10 11 12 14 15

7 HD1 20 1 0.14000 8 10 11 14

8 CD2 12 12 -0.14000 9 10 12 13 14 15

9 HD2 20 1 0.14000 12 13 14

10 CE1 12 12 -0.14000 11 12 13 14 15

11 HE1 20 1 0.14000 12 14 15

12 CE2 12 12 -0.14000 13 14 15

13 HE2 20 1 0.14000 14 15

14 CZ 12 12 -0.14000 15

15 HZ 20 1 0.14000

16 C 12 12 0.45000

17 O 1 16 -0.45000

Table 4.131. Atoms of building block PHE.

I J Type

1 2 2

1 3 21

3 4 27

3 16 27

4 5 27

5 6 16

5 8 16

6 7 3

6 10 16

8 9 3

8 12 16

10 11 3

10 14 16

12 13 3

12 14 16

14 15 3

16 17 5

16 18 10

Table 4.132. Bonds of building block PHE.

3-153

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 16 13

4 3 16 13

3 4 5 15

4 5 6 27

4 5 8 27

6 5 8 27

5 6 7 25

5 6 10 27

7 6 10 25

5 8 9 25

5 8 12 27

9 8 12 25

6 10 11 25

6 10 14 27

11 10 14 25

8 12 13 25

8 12 14 27

13 12 14 25

10 14 12 27

10 14 15 25

12 14 15 25

3 16 17 30

3 16 18 19

17 16 18 33

Table 4.133. Bond angles of building block PHE.

I J K L Type

-2 -1 1 3 14

-1 1 3 16 43

-1 1 3 16 44

1 3 4 5 34

1 3 16 18 42

1 3 16 18 45

3 4 5 6 40

Table 4.134. Dihedral angles of building block PHE.

3-154

I J K L Type

1 -1 3 2 1

3 1 16 4 2

5 6 8 4 1

5 6 10 14 1

5 8 12 14 1

6 5 8 12 1

6 5 10 7 1

6 10 14 12 1

8 5 6 10 1

8 5 12 9 1

8 12 14 10 1

11 6 14 10 1

13 8 14 12 1

14 10 12 15 1

16 3 18 17 1

Table 4.135. Improper dihedral angles of building block PHE.

3-155

Solute building block: Proline
Name: PRO

Figure 4.55. PRO non-bonded parameters.

Figure 4.56. PRO bonded parameters.

3-156

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 5

0 1

1 N 6 14 0.00000 2 3 4 5 6

2 CA 14 3 0.00000 3 4 5 6 7 8

3 CB 18 4 0.00000 4 5 6

4 CG 18 4 0.00000 5

5 CD 18 4 0.00000

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.136. Atoms of building block PRO.

I J Type

1 2 21

1 5 21

2 3 27

2 6 27

3 4 27

4 5 27

6 7 5

6 8 10

Table 4.137. Bonds of building block PRO.

I J K Type

-1 1 2 31

-1 1 5 31

2 1 5 21

1 2 3 13

1 2 6 13

3 2 6 13

2 3 4 13

3 4 5 13

1 5 4 13

2 6 7 30

2 6 8 19

7 6 8 33

Table 4.138. Bond angles of building block PRO.

3-157

I J K L Type

-2 -1 1 2 14

-1 1 2 6 43

-1 1 2 6 44

2 1 5 4 39

1 2 3 4 34

1 2 6 8 42

1 2 6 8 45

2 3 4 5 34

3 4 5 1 34

Table 4.139. Dihedral angles of building block PRO.

I J K L Type

1 -1 2 5 1

2 1 6 3 2

6 2 8 7 1

Table 4.140. Improper dihedral angles of building block PRO.

3-158

Solute building block: Serine
Name: SER

Figure 4.57. SER non-bonded parameters.

Figure 4.58. SER bonded parameters.

3-159

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 7 8 9

4 CB 15 4 0.26600 5 6 7

5 OG 3 16 -0.67400 6

6 HG 21 1 0.40800

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.141. Atoms of building block SER.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 18

5 6 1

7 8 5

7 9 10

Table 4.142. Bonds of building block SER.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 13

4 5 6 12

3 7 8 30

3 7 9 19

8 7 9 33

Table 4.143. Bond angles of building block SER.

3-160

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 9 42

1 3 7 9 45

3 4 5 6 23

Table 4.144. Dihedral angles of building block SER.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

7 3 9 8 1

Table 4.145. Improper dihedral angles of building block SER.

3-161

Solute building block: Threonine
Name: THR

Figure 4.59. THR non-bonded parameters.

Figure 4.60. THR bonded parameters.

3-162

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 7 8 9 10

4 CB 14 3 0.26600 5 6 7 8

5 OG1 3 16 -0.67400 6 7

6 HG1 21 1 0.40800

7 CG2 16 5 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.146. Atoms of building block THR.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 18

4 7 27

5 6 1

8 9 5

8 10 10

Table 4.147. Bonds of building block THR.

3-163

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 13

3 4 7 15

5 4 7 15

4 5 6 12

3 8 9 30

3 8 10 19

9 8 10 33

Table 4.148. Bond angles of building block THR.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 42

1 3 8 10 45

3 4 5 6 23

Table 4.149. Dihedral angles of building block THR.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 5 7 3 2

8 3 10 9 1

Table 4.150. Improper dihedral angles of building block THR.

3-164

Solute building block: Tryptophan
Name: TRP

Figure 4.61. TRP non-bonded parameters.

Figure 4.62. TRP bonded parameters.

3-165

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 20

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 20 21 22

4 CB 15 4 0.00000 5 6 7 8 9 11 12 20

5 CG 12 12 -0.21000 6 7 8 9 10 11 12 13 14 16

6 CD1 12 12 -0.14000 7 8 9 10 11 12 14

7 HD1 20 1 0.14000 8 9 10 11

8 CD2 12 12 0.00000 9 10 11 12 13 14 15 16 17 18

9 NE1 9 14 -0.10000 10 11 12 14 15 18

10 HE1 21 1 0.31000 11 14

11 CE2 12 12 0.00000 12 13 14 15 16 18 19

12 CE3 12 12 -0.14000 13 14 16 17 18 19

13 HE3 20 1 0.14000 16 17 18

14 CZ2 12 12 -0.14000 15 16 17 18 19

15 HZ2 20 1 0.14000 16 18 19

16 CZ3 12 12 -0.14000 17 18 19

17 HZ3 20 1 0.14000 18 19

18 CH2 12 12 -0.14000 19

19 HH2 20 1 0.14000

20 C 12 12 0.45000

21 O 1 16 -0.45000

Table 4.151. Atoms of building block TRP.

3-166

I J Type

1 2 2

1 3 21

3 4 27

3 20 27

4 5 27

5 6 10

5 8 16

6 7 3

6 9 10

8 11 16

8 12 16

9 10 2

9 11 10

11 14 16

12 13 3

12 16 16

14 15 3

14 18 16

16 17 3

16 18 16

18 19 3

20 21 5

20 22 10

Table 4.152. Bonds of building block TRP.

3-167

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 20 13

4 3 20 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 9 7

7 6 9 36

5 8 11 7

5 8 12 39

11 8 12 27

6 9 10 36

6 9 11 7

10 9 11 36

8 11 9 7

8 11 14 27

9 11 14 39

8 12 13 25

8 12 16 27

13 12 16 25

11 14 15 25

11 14 18 27

15 14 18 25

12 16 17 25

12 16 18 27

17 16 18 25

14 18 16 27

14 18 19 25

16 18 19 25

3 20 21 30

3 20 22 19

21 20 22 33

Table 4.153. Bond angles of building block TRP.

3-168

I J K L Type

-2 -1 1 3 14

-1 1 3 20 43

-1 1 3 20 44

1 3 4 5 34

1 3 20 22 42

1 3 20 22 45

3 4 5 8 40

Table 4.154. Dihedral angles of building block TRP.

I J K L Type

1 -1 3 2 1

3 1 20 4 2

5 6 8 4 1

5 6 9 11 1

5 8 11 9 1

6 5 8 11 1

6 5 9 7 1

6 9 11 8 1

8 5 6 9 1

8 11 12 5 1

8 11 14 18 1

8 12 16 18 1

9 6 11 10 1

11 8 12 16 1

11 8 14 9 1

11 14 18 16 1

12 8 11 14 1

12 8 16 13 1

12 16 18 14 1

14 11 18 15 1

16 12 18 17 1

18 14 16 19 1

20 3 22 21 1

Table 4.155. Improper dihedral angles of building block TRP.

3-169

Solute building block: Tyrosine
Name: TYR

Figure 4.63. TYR non-bonded parameters.

Figure 4.64. TYR bonded parameters.

3-170

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 17

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 17 18 19

4 CB 15 4 0.00000 5 6 7 8 9 10 12 17

5 CG 12 12 0.00000 6 7 8 9 10 11 12 13 14

6 CD1 12 12 -0.14000 7 8 9 10 11 12 14 15

7 HD1 20 1 0.14000 8 10 11 14

8 CD2 12 12 -0.14000 9 10 12 13 14 15

9 HD2 20 1 0.14000 12 13 14

10 CE1 12 12 -0.14000 11 12 13 14 15

11 HE1 20 1 0.14000 12 14 15

12 CE2 12 12 -0.14000 13 14 15

13 HE2 20 1 0.14000 14 15

14 CZ 12 12 0.20300 15 16

15 OH 3 16 -0.61100 16

16 HH 21 1 0.40800

17 C 12 12 0.45000

18 O 1 16 -0.45000

Table 4.156. Atoms of building block TYR.

3-171

I J Type

1 2 2

1 3 21

3 4 27

3 17 27

4 5 27

5 6 16

5 8 16

6 7 3

6 10 16

8 9 3

8 12 16

10 11 3

10 14 16

12 13 3

12 14 16

14 15 13

15 16 1

17 18 5

17 19 10

Table 4.157. Bonds of building block TYR.

3-172

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 17 13

4 3 17 13

3 4 5 15

4 5 6 27

4 5 8 27

6 5 8 27

5 6 7 25

5 6 10 27

7 6 10 25

5 8 9 25

5 8 12 27

9 8 12 25

6 10 11 25

6 10 14 27

11 10 14 25

8 12 13 25

8 12 14 27

13 12 14 25

10 14 12 27

10 14 15 27

12 14 15 27

14 15 16 12

3 17 18 30

3 17 19 19

18 17 19 33

Table 4.158. Bond angles of building block TYR.

I J K L Type

-2 -1 1 3 14

-1 1 3 17 43

-1 1 3 17 44

1 3 4 5 34

1 3 17 19 42

1 3 17 19 45

3 4 5 6 40

10 14 15 16 11

Table 4.159. Dihedral angles of building block TYR.

3-173

I J K L Type

1 -1 3 2 1

3 1 17 4 2

5 6 8 4 1

5 6 10 14 1

5 8 12 14 1

6 5 8 12 1

6 5 10 7 1

6 10 14 12 1

8 5 6 10 1

8 5 12 9 1

8 12 14 10 1

11 6 14 10 1

13 8 14 12 1

14 10 12 15 1

17 3 19 18 1

Table 4.160. Improper dihedral angles of building block TYR.

3-174

Solute building block: Valine
Name: VAL

Figure 4.65. VAL non-bonded parameters.

Figure 4.66. VAL bonded parameters.

3-175

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7 8 9

4 CB 14 3 0.00000 5 6 7

5 CG1 16 5 0.00000 6

6 CG2 16 5 0.00000

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.161. Atoms of building block VAL.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 27

4 6 27

7 8 5

7 9 10

Table 4.162. Bonds of building block VAL.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 15

3 4 6 15

5 4 6 15

3 7 8 30

3 7 9 19

8 7 9 33

Table 4.163. Bond angles of building block VAL.

3-176

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 9 42

1 3 7 9 45

Table 4.164. Dihedral angles of building block VAL.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

3 5 6 4 2

7 3 9 8 1

Table 4.165. Improper dihedral angles of building block VAL.

3-177

Solute building block: D-ALanine
Name: DALA

Figure 4.67. DALA non-bonded parameters.

Figure 4.68. DALA bonded parameters.

3-178

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 5

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7

4 CB 16 5 0.00000 5

5 C 12 12 0.45000

6 O 1 16 -0.45000

Table 4.166. Atoms of building block DALA.

I J Type

1 2 2

1 3 21

3 4 27

3 5 27

5 6 5

5 7 10

Table 4.167. Bonds of building block DALA.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 5 13

4 3 5 13

3 5 6 30

3 5 7 19

6 5 7 33

Table 4.168. Bond angles of building block DALA.

3-179

I J K L Type

-2 -1 1 3 14

-1 1 3 5 43

-1 1 3 5 44

1 3 5 7 42

1 3 5 7 45

Table 4.169. Dihedral angles of building block DALA.

I J K L Type

1 -1 3 2 1

4 1 5 3 2

5 3 7 6 1

Table 4.170. Improper dihedral angles of building block DALA.

3-180

Solute building block: L-2-amino-butanoic acid
Name: ABU

Figure 4.69. ABU non-bonded parameters.

Figure 4.70. ABU bonded parameters.

3-181

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 6

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7 8

4 CB 15 4 0.00000 5 6

5 CG 16 5 0.00000

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.171. Atoms of building block ABU.

I J Type

1 2 2

1 3 21

3 4 27

3 6 27

4 5 27

6 7 5

6 8 10

Table 4.172. Bonds of building block ABU.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 6 13

4 3 6 13

3 4 5 15

3 6 7 30

3 6 8 19

7 6 8 33

Table 4.173. Bond angles of building block ABU.

3-182

I J K L Type

-2 -1 1 3 14

-1 1 3 6 43

-1 1 3 6 44

1 3 4 5 34

1 3 6 8 42

1 3 6 8 45

Table 4.174. Dihedral angles of building block ABU.

I J K L Type

1 -1 3 2 1

3 1 6 4 2

6 3 8 7 1

Table 4.175. Improper dihedral angles of building block ABU.

3-183

Solute building block: 2-aminoisobutyric acid
Name: AIB

Figure 4.71. AIB non-bonded parameters.

Figure 4.72. AIB bonded parameters.

3-184

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 5 6

2 H 21 1 0.31000 3

3 CA 14 3 0.00000 4 5 6 7 8

4 CB 16 5 0.00000 5 6

5 CG 16 5 0.00000 6

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.176. Atoms of building block AIB.

I J Type

1 2 2

1 3 21

3 4 27

3 5 27

3 6 27

6 7 5

6 8 10

Table 4.177. Bonds of building block AIB.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 5 13

1 3 6 13

4 3 5 13

4 3 6 13

5 3 6 13

3 6 7 30

3 6 8 19

7 6 8 33

Table 4.178. Bond angles of building block AIB.

3-185

I J K L Type

-2 -1 1 3 14

-1 1 3 6 43

-1 1 3 6 44

1 3 6 8 42

1 3 6 8 45

Table 4.179. Dihedral angles of building block AIB.

I J K L Type

1 -1 3 2 1

6 3 8 7 1

Table 4.180. Improper dihedral angles of building block AIB.

3-186

Solute building block: (4R)-4-[(E)-2-butanyl]-4, N-dimethyl-L-threonine
Name: MEBMT

Figure 4.73. MEBMT non-bonded parameters.

Figure 4.74. MEBMT bonded parameters.

3-187

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 0.00000 2 3 4 13

2 CN 16 5 0.00000 3

3 CA 14 3 0.00000 4 5 7 13 14 15

4 CB 14 3 0.26600 5 6 7 8 9 13

5 OG1 3 16 -0.67400 6 7

6 HG1 21 1 0.40800

7 CG2 14 3 0.00000 8 9 10

8 CD1 16 5 0.00000 9

9 CD2 15 4 0.00000 10 11

10 CE 19 3 0.00000 11 12

11 CZ 19 3 0.00000 12

12 CH 16 5 0.00000

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.181. Atoms of building block MEBMT.

I J Type

1 2 21

1 3 21

3 4 27

3 13 27

4 5 18

4 7 27

5 6 1

7 8 27

7 9 27

9 10 27

10 11 10

11 12 27

13 14 5

13 15 10

Table 4.182. Bonds of building block MEBMT.

3-188

I J K Type

-1 1 2 22

-1 1 3 31

2 1 3 30

1 3 4 13

1 3 13 13

4 3 13 13

3 4 5 13

3 4 7 15

5 4 7 15

4 5 6 12

4 7 8 15

4 7 9 15

8 7 9 15

7 9 10 15

9 10 11 27

10 11 12 27

3 13 14 30

3 13 15 19

14 13 15 33

Table 4.183. Bond angles of building block MEBMT.

I J K L Type

-2 -1 1 3 14

-1 1 3 13 43

-1 1 3 13 44

1 3 4 7 34

1 3 13 15 42

1 3 13 15 45

3 4 5 6 23

3 4 7 9 34

4 7 9 10 34

7 9 10 11 40

9 10 11 12 14

Table 4.184. Dihedral angles of building block MEBMT.

I J K L Type

1 -1 3 2 1

3 1 13 4 2

4 5 7 3 2

7 8 9 4 2

13 3 15 14 1

Table 4.185. Improper dihedral angles of building block MEBMT.

3-189

Solute building block: N-methyl-L-leucine
Name: MELEU

Figure 4.75. MELEU non-bonded parameters.

Figure 4.76. MELEU bonded parameters.

3-190

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 0.00000 2 3 4 8

2 CN 16 5 0.00000 3

3 CA 14 3 0.00000 4 5 8 9 10

4 CB 15 4 0.00000 5 6 7 8

5 CG 14 3 0.00000 6 7

6 CD1 16 5 0.00000 7

7 CD2 16 5 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.186. Atoms of building block MELEU.

I J Type

1 2 21

1 3 21

3 4 27

3 8 27

4 5 27

5 6 27

5 7 27

8 9 5

8 10 10

Table 4.187. Bonds of building block MELEU.

3-191

I J K Type

-1 1 2 22

-1 1 3 31

2 1 3 30

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 15

4 5 7 15

6 5 7 15

3 8 9 30

3 8 10 19

9 8 10 33

Table 4.188. Bond angles of building block MELEU.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 42

1 3 8 10 45

3 4 5 6 34

Table 4.189. Dihedral angles of building block MELEU.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 6 7 5 2

8 3 10 9 1

Table 4.190. Improper dihedral angles of building block MELEU.

3-192

Solute building block: N-methyl-L-valine
Name: MEVAL

Figure 4.77. MEVAL non-bonded parameters.

Figure 4.78. MEVAL bonded parameters.

3-193

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 0.00000 2 3 4 7

2 CN 16 5 0.00000 3

3 CA 14 3 0.00000 4 5 6 7 8 9

4 CB 14 3 0.00000 5 6 7

5 CG1 16 5 0.00000 6

6 CG2 16 5 0.00000

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.191. Atoms of building block MEVAL.

I J Type

1 2 21

1 3 21

3 4 27

3 7 27

4 5 27

4 6 27

7 8 5

7 9 10

Table 4.192. Bonds of building block MEVAL.

I J K Type

-1 1 2 22

-1 1 3 31

2 1 3 30

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 15

3 4 6 15

5 4 6 15

3 7 8 30

3 7 9 19

8 7 9 33

Table 4.193. Bond angles of building block MEVAL.

3-194

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 9 42

1 3 7 9 45

Table 4.194. Dihedral angles of building block MEVAL.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

3 5 6 4 2

7 3 9 8 1

Table 4.195. Improper dihedral angles of building block MEVAL.

3-195

Solute building block: Sarcosine or N-methylglycine
Name: SAR

Figure 4.79. SAR non-bonded parameters.

Figure 4.80. SAR bonded parameters.

3-196

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 0.00000 2 3 4

2 CN 16 5 0.00000 3

3 CA 15 4 0.00000 4 5 6

4 C 12 12 0.45000

5 O 1 16 -0.45000

Table 4.196. Atoms of building block SAR.

I J Type

1 2 21

1 3 21

3 4 27

4 5 5

4 6 10

Table 4.197. Bonds of building block SAR.

I J K Type

-1 1 2 22

-1 1 3 31

2 1 3 30

1 3 4 13

3 4 5 30

3 4 6 19

5 4 6 33

Table 4.198. Bond angles of building block SAR.

3-197

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 6 42

1 3 4 6 45

Table 4.199. Dihedral angles of building block SAR.

I J K L Type

1 -1 3 2 1

4 3 6 5 1

Table 4.200. Improper dihedral angles of building block SAR.

3-198

4.4. β-amino acids

Solute building block: (R)-β2-Phenylalanine
Name: RAF

Figure 4.81. RAF non-bonded parameters.

Figure 4.82. RAF bonded parameters.

3-199

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 17

4 CA 14 3 0.00000 5 6 17 18 19

5 CG 15 4 0.00000 6 7 8 9 10 11 13 17

6 CD 12 12 0.00000 7 8 9 10 11 12 13 14 15

7 CE1 12 12 -0.14000 8 9 10 11 12 13 15 16

8 HE1 20 1 0.14000 9 11 12 15

9 CE2 12 12 -0.14000 10 11 13 14 15 16

10 HE2 20 1 0.14000 13 14 15

11 CZ1 12 12 -0.14000 12 13 14 15 16

12 HZ1 20 1 0.14000 13 15 16

13 CZ2 12 12 -0.14000 14 15 16

14 HZ2 20 1 0.14000 15 16

15 CH 12 12 -0.14000 16

16 HH 20 1 0.14000

17 C 12 12 0.45000

18 O 1 16 -0.45000

Table 4.201. Atoms of building block RAF.

3-200

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 17 27

5 6 27

6 7 16

6 9 16

7 8 3

7 11 16

9 10 3

9 13 16

11 12 3

11 15 16

13 14 3

13 15 16

15 16 3

17 18 5

17 19 10

Table 4.202. Bonds of building block RAF.

3-201

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 13

3 4 17 15

5 4 17 13

4 5 6 15

5 6 7 27

5 6 9 27

7 6 9 27

6 7 8 25

6 7 11 27

8 7 11 25

6 9 10 25

6 9 13 27

10 9 13 25

7 11 12 25

7 11 15 27

12 11 15 25

9 13 14 25

9 13 15 27

14 13 15 25

11 15 13 27

11 15 16 25

13 15 16 25

4 17 18 30

4 17 19 19

18 17 19 33

Table 4.203. Bond angles of building block RAF.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 17 34

3 4 5 6 34

3 4 17 19 42

3 4 17 19 45

4 5 6 7 40

Table 4.204. Dihedral angles of building block RAF.

3-202

I J K L Type

1 -1 3 2 1

4 3 17 5 2

6 7 9 5 1

6 7 11 15 1

6 9 13 15 1

7 6 9 13 1

7 6 11 8 1

7 11 15 13 1

9 6 7 11 1

9 6 13 10 1

9 13 15 11 1

12 7 15 11 1

14 9 15 13 1

15 11 13 16 1

17 4 19 18 1

Table 4.205. Improper dihedral angles of building block RAF.

3-203

Solute building block: (R)-β2-Valine
Name: RAV

Figure 4.83. RAV non-bonded parameters.

Figure 4.84. RAV bonded parameters.

3-204

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 8

4 CA 14 3 0.00000 5 6 7 8 9 10

5 CG 14 3 0.00000 6 7 8

6 CD1 16 5 0.00000 7

7 CD2 16 5 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.206. Atoms of building block RAV.

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 8 27

5 6 27

5 7 27

8 9 5

8 10 10

Table 4.207. Bonds of building block RAV.

3-205

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

3 4 8 15

5 4 8 15

4 5 6 15

4 5 7 15

6 5 7 15

4 8 9 30

4 8 10 19

9 8 10 33

Table 4.208. Bond angles of building block RAV.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 8 34

3 4 5 6 34

3 4 8 10 42

3 4 8 10 45

Table 4.209. Dihedral angles of building block RAV.

I J K L Type

1 -1 3 2 1

4 3 8 5 2

4 6 7 5 2

8 4 10 9 1

Table 4.210. Improper dihedral angles of building block RAV.

3-206

Solute building block: (R)-β3-Cysteine (protonated; neutral)
Name: RBCH

Figure 4.85. RBCH non-bonded parameters.

Figure 4.86. RBCH bonded parameters.

3-207

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 7 8

4 CG 15 4 0.15000 5 6 7

5 SD 23 32 -0.37000 6

6 HD 21 1 0.22000

7 CA 15 4 0.00000 8 9 10

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.211. Atoms of building block RBCH.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 32

5 6 8

7 8 27

8 9 5

8 10 10

Table 4.212. Bonds of building block RBCH.

3-208

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 16

4 5 6 3

3 7 8 15

7 8 9 30

7 8 10 19

9 8 10 33

Table 4.213. Bond angles of building block RBCH.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 8 34

3 4 5 6 26

3 7 8 10 42

3 7 8 10 45

Table 4.214. Dihedral angles of building block RBCH.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

8 7 10 9 1

Table 4.215. Improper dihedral angles of building block RBCH.

3-209

Solute building block: (R)-β3-Isoleucine
Name: RBI

Figure 4.87. RBI non-bonded parameters.

Figure 4.88. RBI bonded parameters.

3-210

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 8 9

4 CG 14 3 0.00000 5 6 7 8

5 CD1 15 4 0.00000 6 7

6 CD2 16 5 0.00000

7 CE 16 5 0.00000

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.216. Atoms of building block RBI.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

4 6 27

5 7 27

8 9 27

9 10 5

9 11 10

Table 4.217. Bonds of building block RBI.

3-211

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

3 4 6 15

5 4 6 15

4 5 7 15

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.218. Bond angles of building block RBI.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 7 34

3 8 9 11 42

3 8 9 11 45

Table 4.219. Dihedral angles of building block RBI.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 5 6 3 2

9 8 11 10 1

Table 4.220. Improper dihedral angles of building block RBI.

3-212

Solute building block: (R)-β3-Lysine (protonated; charge +e)
Name: RBKH

Figure 4.89. RBKH non-bonded parameters.

Figure 4.90. RBKH bonded parameters.

3-213

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 12

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 12 13

4 CG 15 4 0.00000 5 6 12

5 CD 15 4 0.00000 6 7

6 CE 15 4 0.00000 7 8

7 CZ 15 4 0.12700 8 9 10 11

8 NH 8 14 0.12900 9 10 11

9 HH1 21 1 0.24800 10 11

10 HH2 21 1 0.24800 11

11 HH3 21 1 0.24800

12 CA 15 4 0.00000 13 14 15

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.221. Atoms of building block RBKH.

I J Type

1 2 2

1 3 21

3 4 27

3 12 27

4 5 27

5 6 27

6 7 27

7 8 21

8 9 2

8 10 2

8 11 2

12 13 27

13 14 5

13 15 10

Table 4.222. Bonds of building block RBKH.

3-214

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 12 13

4 3 12 15

3 4 5 15

4 5 6 15

5 6 7 15

6 7 8 15

7 8 9 11

7 8 10 11

7 8 11 11

9 8 10 10

9 8 11 10

10 8 11 10

3 12 13 15

12 13 14 30

12 13 15 19

14 13 15 33

Table 4.223. Bond angles of building block RBKH.

I J K L Type

-2 -1 1 3 14

-1 1 3 12 43

-1 1 3 12 44

1 3 4 5 34

1 3 12 13 34

3 4 5 6 34

4 5 6 7 34

5 6 7 8 34

6 7 8 9 29

3 12 13 15 42

3 12 13 15 45

Table 4.224. Dihedral angles of building block RBKH.

I J K L Type

1 -1 3 2 1

4 1 12 3 2

13 12 15 14 1

Table 4.225. Improper dihedral angles of building block RBKH.

3-215

Solute building block: (R)-β3-Methionine
Name: RBM

Figure 4.91. RBM non-bonded parameters.

Figure 4.92. RBM bonded parameters.

3-216

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 8 9

4 CG 15 4 0.00000 5 6 8

5 CD 15 4 0.24100 6 7

6 SE 23 32 -0.48200 7

7 CZ 16 5 0.24100

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.226. Atoms of building block RBM.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 32

6 7 31

8 9 27

9 10 5

9 11 10

Table 4.227. Bonds of building block RBM.

3-217

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 16

5 6 7 4

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.228. Bond angles of building block RBM.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 6 34

4 5 6 7 26

3 8 9 11 42

3 8 9 11 45

Table 4.229. Dihedral angles of building block RBM.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

9 8 11 10 1

Table 4.230. Improper dihedral angles of building block RBM.

3-218

Solute building block: (R)-β3-Asparagine
Name: RBN

Figure 4.93. RBN non-bonded parameters.

Figure 4.94. RBN bonded parameters.

3-219

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 10

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 10 11

4 CG 15 4 0.00000 5 6 7 10

5 CD 12 12 0.29000 6 7 8 9

6 OE1 1 16 -0.45000 7

7 NE2 7 14 -0.72000 8 9

8 HE21 21 1 0.44000 9

9 HE22 21 1 0.44000

10 CA 15 4 0.00000 11 12 13

11 C 12 12 0.45000

12 O 1 16 -0.45000

Table 4.231. Atoms of building block RBN.

I J Type

1 2 2

1 3 21

3 4 27

3 10 27

4 5 27

5 6 5

5 7 9

7 8 2

7 9 2

10 11 27

11 12 5

11 13 10

Table 4.232. Bonds of building block RBN.

3-220

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 10 13

4 3 10 13

3 4 5 15

4 5 6 30

4 5 7 19

6 5 7 33

5 7 8 23

5 7 9 23

8 7 9 24

3 10 11 15

10 11 12 30

10 11 13 19

12 11 13 33

Table 4.233. Bond angles of building block RBN.

I J K L Type

-2 -1 1 3 14

-1 1 3 10 43

-1 1 3 10 44

1 3 4 5 34

1 3 10 11 34

3 4 5 7 40

4 5 7 8 14

3 10 11 13 42

3 10 11 13 45

Table 4.234. Dihedral angles of building block RBN.

I J K L Type

1 -1 3 2 1

4 1 10 3 2

5 6 7 4 1

7 8 9 5 1

11 10 13 12 1

Table 4.235. Improper dihedral angles of building block RBN.

3-221

Solute building block: (R)-β3-Serine
Name: RBS

Figure 4.95. RBS non-bonded parameters.

Figure 4.96. RBS bonded parameters.

3-222

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 7 8

4 CG 15 4 0.26600 5 6 7

5 OD 3 16 -0.67400 6

6 HD 21 1 0.40800

7 CA 15 4 0.00000 8 9 10

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.236. Atoms of building block RBS.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 18

5 6 1

7 8 27

8 9 5

8 10 10

Table 4.237. Bonds of building block RBS.

3-223

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 13

4 5 6 12

3 7 8 15

7 8 9 30

7 8 10 19

9 8 10 33

Table 4.238. Bond angles of building block RBS.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 8 34

3 4 5 6 23

3 7 8 10 42

3 7 8 10 45

Table 4.239. Dihedral angles of building block RBS.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

8 7 10 9 1

Table 4.240. Improper dihedral angles of building block RBS.

3-224

Solute building block: (R)-β3-Serine(propylated)
Name: RBSP

Figure 4.97. RBSP non-bonded parameters.

Figure 4.98. RBSP bonded parameters.

3-225

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 9

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 9 10

4 CG 15 4 0.16200 5 6 9

5 OD 4 16 -0.32400 6 7

6 CE 15 4 0.16200 7 8

7 CZ 14 3 0.00000 8

8 CH 15 4 0.00000

9 CA 15 4 0.00000 10 11 12

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.241. Atoms of building block RBSP.

I J Type

1 2 2

1 3 21

3 4 27

3 9 27

4 5 18

5 6 18

6 7 27

7 8 10

9 10 27

10 11 5

10 12 10

Table 4.242. Bonds of building block RBSP.

3-226

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 9 13

4 3 9 15

3 4 5 15

4 5 6 12

5 6 7 15

6 7 8 30

3 9 10 15

9 10 11 30

9 10 12 19

11 10 12 33

Table 4.243. Bond angles of building block RBSP.

I J K L Type

-2 -1 1 3 14

-1 1 3 9 43

-1 1 3 9 44

1 3 4 5 34

1 3 9 10 34

3 4 5 6 23

4 5 6 7 23

5 6 7 8 40

3 9 10 12 42

3 9 10 12 45

Table 4.244. Dihedral angles of building block RBSP.

I J K L Type

1 -1 3 2 1

3 1 9 4 2

10 9 12 11 1

Table 4.245. Improper dihedral angles of building block RBSP.

3-227

Solute building block: (R)-β3-Threonine
Name: RBT

Figure 4.99. RBT non-bonded parameters.

Figure 4.100. RBT bonded parameters.

3-228

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 7 8 9

4 CG 14 3 0.26600 5 6 7 8

5 OD1 3 16 -0.67400 6 7

6 HD1 21 1 0.40800

7 CD2 16 5 0.00000

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.246. Atoms of building block RBT.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 18

4 7 27

5 6 1

8 9 27

9 10 5

9 11 10

Table 4.247. Bonds of building block RBT.

3-229

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 13

3 4 7 15

5 4 7 15

4 5 6 12

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.248. Bond angles of building block RBT.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 6 23

3 8 9 11 42

3 8 9 11 45

Table 4.249. Dihedral angles of building block RBT.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 5 7 3 2

9 8 11 10 1

Table 4.250. Improper dihedral angles of building block RBT.

3-230

Solute building block: (R)-β3-Valine
Name: RBV

Figure 4.101. RBV non-bonded parameters.

Figure 4.102. RBV bonded parameters.

3-231

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 7 8

4 CG 14 3 0.00000 5 6 7

5 CD1 16 5 0.00000 6

6 CD2 16 5 0.00000

7 CA 15 4 0.00000 8 9 10

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.251. Atoms of building block RBV.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 27

4 6 27

7 8 27

8 9 5

8 10 10

Table 4.252. Bonds of building block RBV.

3-232

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 15

3 4 5 15

3 4 6 15

5 4 6 15

3 7 8 15

7 8 9 30

7 8 10 19

9 8 10 33

Table 4.253. Bond angles of building block RBV.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 8 34

3 7 8 10 42

3 7 8 10 45

Table 4.254. Dihedral angles of building block RBV.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

3 5 6 4 2

8 7 10 9 1

Table 4.255. Improper dihedral angles of building block RBV.

3-233

Solute building block: (S)-β2-Alanine
Name: SAA

Figure 4.103. SAA non-bonded parameters.

Figure 4.104. SAA bonded parameters.

3-234

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 6

4 CA 14 3 0.00000 5 6 7 8

5 CG 16 5 0.00000 6

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.256. Atoms of building block SAA.

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 6 27

6 7 5

6 8 10

Table 4.257. Bonds of building block SAA.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

3 4 6 15

5 4 6 15

4 6 7 30

4 6 8 19

7 6 8 33

Table 4.258. Bond angles of building block SAA.

3-235

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 6 34

3 4 6 8 42

3 4 6 8 45

Table 4.259. Dihedral angles of building block SAA.

I J K L Type

1 -1 3 2 1

5 3 6 4 2

6 4 8 7 1

Table 4.260. Improper dihedral angles of building block SAA.

3-236

Solute building block: (S)-β2-Phenylalanine
Name: SAF

Figure 4.105. SAF non-bonded parameters.

Figure 4.106. SAF bonded parameters.

3-237

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 17

4 CA 14 3 0.00000 5 6 17 18 19

5 CG 15 4 0.00000 6 7 8 9 10 11 13 17

6 CD 12 12 0.00000 7 8 9 10 11 12 13 14 15

7 CE1 12 12 -0.14000 8 9 10 11 12 13 15 16

8 HE1 20 1 0.14000 9 11 12 15

9 CE2 12 12 -0.14000 10 11 13 14 15 16

10 HE2 20 1 0.14000 13 14 15

11 CZ1 12 12 -0.14000 12 13 14 15 16

12 HZ1 20 1 0.14000 13 15 16

13 CZ2 12 12 -0.14000 14 15 16

14 HZ2 20 1 0.14000 15 16

15 CH 12 12 -0.14000 16

16 HH 20 1 0.14000

17 C 12 12 0.45000

18 O 1 16 -0.45000

Table 4.261. Atoms of building block SAF.

3-238

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 17 27

5 6 27

6 7 16

6 9 16

7 8 3

7 11 16

9 10 3

9 13 16

11 12 3

11 15 16

13 14 3

13 15 16

15 16 3

17 18 5

17 19 10

Table 4.262. Bonds of building block SAF.

3-239

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 13

3 4 17 15

5 4 17 13

4 5 6 15

5 6 7 27

5 6 9 27

7 6 9 27

6 7 8 25

6 7 11 27

8 7 11 25

6 9 10 25

6 9 13 27

10 9 13 25

7 11 12 25

7 11 15 27

12 11 15 25

9 13 14 25

9 13 15 27

14 13 15 25

11 15 13 27

11 15 16 25

13 15 16 25

4 17 18 30

4 17 19 19

18 17 19 33

Table 4.263. Bond angles of building block SAF.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 17 34

3 4 5 6 34

3 4 17 19 42

3 4 17 19 45

4 5 6 7 40

Table 4.264. Dihedral angles of building block SAF.

3-240

I J K L Type

1 -1 3 2 1

5 3 17 4 2

6 7 9 5 1

6 7 11 15 1

6 9 13 15 1

7 6 9 13 1

7 6 11 8 1

7 11 15 13 1

9 6 7 11 1

9 6 13 10 1

9 13 15 11 1

12 7 15 11 1

14 9 15 13 1

15 11 13 16 1

17 4 19 18 1

Table 4.265. Improper dihedral angles of building block SAF.

3-241

Solute building block: (S)-β2-Phenylalanine(Cα fluorinated)
Name: SAFF

Figure 4.107. SAFF non-bonded parameters.

Figure 4.108. SAFF bonded parameters.

3-242

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 18

4 CA 15 4 0.20000 5 6 7 18 19 20

5 F 32 19 -0.20000 6 18 19 20

6 CG 15 4 0.00000 7 8 9 10 11 12 14 18

7 CD 12 12 0.00000 8 9 10 11 12 13 14 15 16

8 CE1 12 12 -0.14000 9 10 11 12 13 14 16 17

9 HE1 20 1 0.14000 10 12 13 16

10 CE2 12 12 -0.14000 11 12 14 15 16 17

11 HE2 20 1 0.14000 14 15 16

12 CZ1 12 12 -0.14000 13 14 15 16 17

13 HZ1 20 1 0.14000 14 16 17

14 CZ2 12 12 -0.14000 15 16 17

15 HZ2 20 1 0.14000 16 17

16 CH 12 12 -0.14000 17

17 HH 20 1 0.14000

18 C 12 12 0.45000

19 O 1 16 -0.45000

Table 4.266. Atoms of building block SAFF.

3-243

I J Type

1 2 2

1 3 21

3 4 27

4 5 13

4 6 27

4 18 27

6 7 27

7 8 16

7 10 16

8 9 3

8 12 16

10 11 3

10 14 16

12 13 3

12 16 16

14 15 3

14 16 16

16 17 3

18 19 5

18 20 10

Table 4.267. Bonds of building block SAFF.

3-244

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

3 4 6 13

3 4 18 15

5 4 6 15

5 4 18 15

6 4 18 13

4 6 7 15

6 7 8 27

6 7 10 27

8 7 10 27

7 8 9 25

7 8 12 27

9 8 12 25

7 10 11 25

7 10 14 27

11 10 14 25

8 12 13 25

8 12 16 27

13 12 16 25

10 14 15 25

10 14 16 27

15 14 16 25

12 16 14 27

12 16 17 25

14 16 17 25

4 18 19 30

4 18 20 19

19 18 20 33

Table 4.268. Bond angles of building block SAFF.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 18 34

3 4 6 7 34

3 4 18 20 42

3 4 18 20 45

4 6 7 8 40

Table 4.269. Dihedral angles of building block SAFF.

3-245

I J K L Type

1 -1 3 2 1

4 3 18 6 2

7 8 10 6 1

7 8 12 16 1

7 10 14 16 1

8 7 10 14 1

8 7 12 9 1

8 12 16 14 1

10 7 8 12 1

10 7 14 11 1

10 14 16 12 1

13 8 16 12 1

15 10 16 14 1

16 12 14 17 1

18 4 20 19 1

Table 4.270. Improper dihedral angles of building block SAFF.

3-246

Solute building block: (S)-β2-Leucine
Name: SAL

Figure 4.109. SAL non-bonded parameters.

Figure 4.110. SAL bonded parameters.

3-247

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 9

4 CA 14 3 0.00000 5 6 9 10 11

5 CG 15 4 0.00000 6 7 8 9

6 CD 14 3 0.00000 7 8

7 CE1 16 5 0.00000 8

8 CE2 16 5 0.00000

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.271. Atoms of building block SAL.

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 9 27

5 6 27

6 7 27

6 8 27

9 10 5

9 11 10

Table 4.272. Bonds of building block SAL.

3-248

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

3 4 9 15

5 4 9 15

4 5 6 15

5 6 7 15

5 6 8 15

7 6 8 15

4 9 10 30

4 9 11 19

10 9 11 33

Table 4.273. Bond angles of building block SAL.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 9 34

3 4 5 6 34

3 4 9 11 42

3 4 9 11 45

4 5 6 7 34

Table 4.274. Dihedral angles of building block SAL.

I J K L Type

1 -1 3 2 1

5 3 9 4 2

5 7 8 6 2

9 4 11 10 1

Table 4.275. Improper dihedral angles of building block SAL.

3-249

Solute building block: (S)-β2-Methionine
Name: SAM

Figure 4.111. SAM non-bonded parameters.

Figure 4.112. SAM bonded parameters.

3-250

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 9

4 CA 14 3 0.00000 5 6 9 10 11

5 CG 15 4 0.00000 6 7 9

6 CD 15 4 0.24100 7 8

7 SE 23 32 -0.48200 8

8 CZ 16 5 0.24100

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.276. Atoms of building block SAM.

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 9 27

5 6 27

6 7 32

7 8 31

9 10 5

9 11 10

Table 4.277. Bonds of building block SAM.

3-251

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

3 4 9 15

5 4 9 15

4 5 6 15

5 6 7 16

6 7 8 4

4 9 10 30

4 9 11 19

10 9 11 33

Table 4.278. Bond angles of building block SAM.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 9 34

3 4 5 6 34

3 4 9 11 42

3 4 9 11 45

4 5 6 7 34

5 6 7 8 26

Table 4.279. Dihedral angles of building block SAM.

I J K L Type

1 -1 3 2 1

5 3 9 4 2

9 4 11 10 1

Table 4.280. Improper dihedral angles of building block SAM.

3-252

Solute building block: (S)-β2-Valine
Name: SAV

Figure 4.113. SAV non-bonded parameters.

Figure 4.114. SAV bonded parameters.

3-253

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5 8

4 CA 14 3 0.00000 5 6 7 8 9 10

5 CG 14 3 0.00000 6 7 8

6 CD1 16 5 0.00000 7

7 CD2 16 5 0.00000

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.281. Atoms of building block SAV.

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

4 8 27

5 6 27

5 7 27

8 9 5

8 10 10

Table 4.282. Bonds of building block SAV.

3-254

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

3 4 8 15

5 4 8 15

4 5 6 15

4 5 7 15

6 5 7 15

4 8 9 30

4 8 10 19

9 8 10 33

Table 4.283. Bond angles of building block SAV.

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 8 34

3 4 5 6 34

3 4 8 10 42

3 4 8 10 45

Table 4.284. Dihedral angles of building block SAV.

I J K L Type

1 -1 3 2 1

4 6 7 5 2

5 3 8 4 2

8 4 10 9 1

Table 4.285. Improper dihedral angles of building block SAV.

3-255

Solute building block: (S)-β3-Alanine
Name: SBA

Figure 4.115. SBA non-bonded parameters.

Figure 4.116. SBA bonded parameters.

3-256

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 5

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6

4 CG 16 5 0.00000 5

5 CA 15 4 0.00000 6 7 8

6 C 12 12 0.45000

7 O 1 16 -0.45000

Table 4.286. Atoms of building block SBA.

I J Type

1 2 2

1 3 21

3 4 27

3 5 27

5 6 27

6 7 5

6 8 10

Table 4.287. Bonds of building block SBA.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 5 13

4 3 5 15

3 5 6 15

5 6 7 30

5 6 8 19

7 6 8 33

Table 4.288. Bond angles of building block SBA.

3-257

I J K L Type

-2 -1 1 3 14

-1 1 3 5 43

-1 1 3 5 44

1 3 5 6 34

3 5 6 8 42

3 5 6 8 45

Table 4.289. Dihedral angles of building block SBA.

I J K L Type

1 -1 3 2 1

3 1 5 4 2

6 5 8 7 1

Table 4.290. Improper dihedral angles of building block SBA.

3-258

Solute building block: (S)-β3-Cysteine (protonated)
Name: SBCH

Figure 4.117. SBCH non-bonded parameters.

Figure 4.118. SBCH bonded parameters.

3-259

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 7 8

4 CG 15 4 0.15000 5 6 7

5 SD 23 32 -0.37000 6

6 HD 21 1 0.22000

7 CA 15 4 0.00000 8 9 10

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.291. Atoms of building block SBCH.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 32

5 6 8

7 8 27

8 9 5

8 10 10

Table 4.292. Bonds of building block SBCH.

3-260

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 16

4 5 6 3

3 7 8 15

7 8 9 30

7 8 10 19

9 8 10 33

Table 4.293. Bond angles of building block SBCH.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 8 34

3 4 5 6 26

3 7 8 10 42

3 7 8 10 45

Table 4.294. Dihedral angles of building block SBCH.

I J K L Type

1 -1 3 2 1

4 1 7 3 2

8 7 10 9 1

Table 4.295. Improper dihedral angles of building block SBCH.

3-261

Solute building block: (S)-β3-Aspartic acid (deprotonated; charge -e)
Name: SBD

Figure 4.119. SBD non-bonded parameters.

Figure 4.120. SBD bonded parameters.

3-262

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 8 9

4 CG 15 4 0.00000 5 6 7 8

5 CD 12 12 0.27000 6 7

6 OE1 2 16 -0.63500 7

7 OE2 2 16 -0.63500

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.296. Atoms of building block SBD.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 6

5 7 6

8 9 27

9 10 5

9 11 10

Table 4.297. Bonds of building block SBD.

3-263

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 22

4 5 7 22

6 5 7 38

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.298. Bond angles of building block SBD.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 6 40

3 8 9 11 42

3 8 9 11 45

Table 4.299. Dihedral angles of building block SBD.

I J K L Type

1 -1 3 2 1

4 1 8 3 2

5 6 7 4 1

9 8 11 10 1

Table 4.300. Improper dihedral angles of building block SBD.

3-264

Solute building block: (S)-β3-Aspartic acid (protonated; neutral)
Name: SBDH

Figure 4.121. SBDH non-bonded parameters.

Figure 4.122. SBDH bonded parameters.

3-265

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 9

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 9 10

4 CG 15 4 0.00000 5 6 7 9

5 CD 12 12 0.33000 6 7 8

6 OE1 1 16 -0.45000 7

7 OE2 3 16 -0.28800 8

8 HE2 21 1 0.40800

9 CA 15 4 0.00000 10 11 12

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.301. Atoms of building block SBDH.

I J Type

1 2 2

1 3 21

3 4 27

3 9 27

4 5 27

5 6 5

5 7 13

7 8 1

9 10 27

10 11 5

10 12 10

Table 4.302. Bonds of building block SBDH.

3-266

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 9 13

4 3 9 13

3 4 5 15

4 5 6 30

4 5 7 19

6 5 7 33

5 7 8 12

3 9 10 15

9 10 11 30

9 10 12 19

11 10 12 33

Table 4.303. Bond angles of building block SBDH.

I J K L Type

-2 -1 1 3 14

-1 1 3 9 43

-1 1 3 9 44

1 3 4 5 34

1 3 9 10 34

3 4 5 7 40

4 5 7 8 12

3 9 10 12 42

3 9 10 12 45

Table 4.304. Dihedral angles of building block SBDH.

I J K L Type

1 -1 3 2 1

4 1 9 3 2

5 6 7 4 1

10 9 12 11 1

Table 4.305. Improper dihedral angles of building block SBDH.

3-267

Solute building block: (S)-β3-Glutamic acid (deprotonated; charge -e)
Name: SBE

Figure 4.123. SBE non-bonded parameters.

Figure 4.124. SBE bonded parameters.

3-268

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 9

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 9 10

4 CG 15 4 0.00000 5 6 9

5 CD 15 4 0.00000 6 7 8

6 CE 12 12 0.27000 7 8

7 OZ1 2 16 -0.63500 8

8 OZ2 2 16 -0.63500

9 CA 15 4 0.00000 10 11 12

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.306. Atoms of building block SBE.

I J Type

1 2 2

1 3 21

3 4 27

3 9 27

4 5 27

5 6 27

6 7 6

6 8 6

9 10 27

10 11 5

10 12 10

Table 4.307. Bonds of building block SBE.

3-269

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 9 13

4 3 9 15

3 4 5 15

4 5 6 15

5 6 7 22

5 6 8 22

7 6 8 38

3 9 10 15

9 10 11 30

9 10 12 19

11 10 12 33

Table 4.308. Bond angles of building block SBE.

I J K L Type

-2 -1 1 3 14

-1 1 3 9 43

-1 1 3 9 44

1 3 4 5 34

1 3 9 10 34

3 4 5 6 34

4 5 6 8 40

3 9 10 12 42

3 9 10 12 45

Table 4.309. Dihedral angles of building block SBE.

I J K L Type

1 -1 3 2 1

3 1 9 4 2

6 7 8 5 1

10 9 12 11 1

Table 4.310. Improper dihedral angles of building block SBE.

3-270

Solute building block: (S)-β3-Glutamic acid (protonated; neutral)
Name: SBEH

Figure 4.125. SBEH non-bonded parameters.

Figure 4.126. SBEH bonded parameters.

3-271

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 10

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 10 11

4 CG 15 4 0.00000 5 6 10

5 CD 15 4 0.00000 6 7 8

6 CE 12 12 0.33000 7 8 9

7 OZ1 1 16 -0.45000 8

8 OZ2 3 16 -0.28800 9

9 HZ2 21 1 0.40800

10 CA 15 4 0.00000 11 12 13

11 C 12 12 0.45000

12 O 1 16 -0.45000

Table 4.311. Atoms of building block SBEH.

I J Type

1 2 2

1 3 21

3 4 27

3 10 27

4 5 27

5 6 27

6 7 5

6 8 13

8 9 1

10 11 27

11 12 5

11 13 10

Table 4.312. Bonds of building block SBEH.

3-272

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 10 13

4 3 10 13

3 4 5 15

4 5 6 15

5 6 7 30

5 6 8 19

7 6 8 33

6 8 9 12

3 10 11 15

10 11 12 30

10 11 13 19

12 11 13 33

Table 4.313. Bond angles of building block SBEH.

I J K L Type

-2 -1 1 3 14

-1 1 3 10 43

-1 1 3 10 44

1 3 4 5 34

1 3 10 11 34

3 4 5 6 34

4 5 6 8 40

5 6 8 9 12

3 10 11 13 42

3 10 11 13 45

Table 4.314. Dihedral angles of building block SBEH.

I J K L Type

1 -1 3 2 1

3 1 10 4 2

6 7 8 5 1

11 10 13 12 1

Table 4.315. Improper dihedral angles of building block SBEH.

3-273

Solute building block: (S)-β3-Glutamine
Name: SBQ

Figure 4.127. SBQ non-bonded parameters.

Figure 4.128. SBQ bonded parameters.

3-274

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 11

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 11 12

4 CG 15 4 0.00000 5 6 11

5 CD 15 4 0.00000 6 7 8

6 CE 12 12 0.29000 7 8 9 10

7 OZ1 1 16 -0.45000 8

8 NZ2 7 14 -0.72000 9 10

9 HZ21 21 1 0.44000 10

10 HZ22 21 1 0.44000

11 CA 15 4 0.00000 12 13 14

12 C 12 12 0.45000

13 O 1 16 -0.45000

Table 4.316. Atoms of building block SBQ.

I J Type

1 2 2

1 3 21

3 4 27

3 11 27

4 5 27

5 6 27

6 7 5

6 8 9

8 9 2

8 10 2

11 12 27

12 13 5

12 14 10

Table 4.317. Bonds of building block SBQ.

3-275

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 11 13

4 3 11 13

3 4 5 15

4 5 6 15

5 6 7 30

5 6 8 19

7 6 8 33

6 8 9 23

6 8 10 23

9 8 10 24

3 11 12 15

11 12 13 30

11 12 14 19

13 12 14 33

Table 4.318. Bond angles of building block SBQ.

I J K L Type

-2 -1 1 3 14

-1 1 3 11 43

-1 1 3 11 44

1 3 4 5 34

1 3 11 12 34

3 4 5 6 34

4 5 6 8 40

5 6 8 9 14

3 11 12 14 42

3 11 12 14 45

Table 4.319. Dihedral angles of building block SBQ.

I J K L Type

1 -1 3 2 1

3 1 11 4 2

6 7 8 5 1

8 9 10 6 1

12 11 14 13 1

Table 4.320. Improper dihedral angles of building block SBQ.

3-276

Solute building block: (S)-β3-Phenylalanine
Name: SBF

Figure 4.129. SBF non-bonded parameters.

Figure 4.130. SBF bonded parameters.

3-277

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 16

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 16 17

4 CG 15 4 0.00000 5 6 7 8 9 10 12 16

5 CD 12 12 0.00000 6 7 8 9 10 11 12 13 14

6 CE1 12 12 -0.14000 7 8 9 10 11 12 14 15

7 HE1 20 1 0.14000 8 10 11 14

8 CE2 12 12 -0.14000 9 10 12 13 14 15

9 HE2 20 1 0.14000 12 13 14

10 CZ1 12 12 -0.14000 11 12 13 14 15

11 HZ1 20 1 0.14000 12 14 15

12 CZ2 12 12 -0.14000 13 14 15

13 HZ2 20 1 0.14000 14 15

14 CH 12 12 -0.14000 15

15 HH 20 1 0.14000

16 CA 15 4 0.00000 17 18 19

17 C 12 12 0.45000

18 O 1 16 -0.45000

Table 4.321. Atoms of building block SBF.

3-278

I J Type

1 2 2

1 3 21

3 4 27

3 16 27

4 5 27

5 6 16

5 8 16

6 7 3

6 10 16

8 9 3

8 12 16

10 11 3

10 14 16

12 13 3

12 14 16

14 15 3

16 17 27

17 18 5

17 19 10

Table 4.322. Bonds of building block SBF.

3-279

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 16 13

4 3 16 13

3 4 5 15

4 5 6 27

4 5 8 27

6 5 8 27

5 6 7 25

5 6 10 27

7 6 10 25

5 8 9 25

5 8 12 27

9 8 12 25

6 10 11 25

6 10 14 27

11 10 14 25

8 12 13 25

8 12 14 27

13 12 14 25

10 14 12 27

10 14 15 25

12 14 15 25

3 16 17 15

16 17 18 30

16 17 19 19

18 17 19 33

Table 4.323. Bond angles of building block SBF.

I J K L Type

-2 -1 1 3 14

-1 1 3 16 43

-1 1 3 16 44

1 3 4 5 34

1 3 16 17 34

3 4 5 6 40

3 16 17 19 42

3 16 17 19 45

Table 4.324. Dihedral angles of building block SBF.

3-280

I J K L Type

1 -1 3 2 1

3 1 16 4 2

5 6 8 4 1

5 6 10 14 1

5 8 12 14 1

6 5 8 12 1

6 5 10 7 1

6 10 14 12 1

8 5 6 10 1

8 5 12 9 1

8 12 14 10 1

11 6 14 10 1

13 8 14 12 1

14 10 12 15 1

17 16 19 18 1

Table 4.325. Improper dihedral angles of building block SBF.

3-281

Solute building block: β-Glycine
Name: BGL

Figure 4.131. BGL non-bonded parameters.

Figure 4.132. BGL bonded parameters.

3-282

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4

2 H 21 1 0.31000 3

3 CB 15 4 0.00000 4 5

4 CA 15 4 0.00000 5 6 7

5 C 12 12 0.45000

6 O 1 16 -0.45000

Table 4.326. Atoms of building block BGL.

I J Type

1 2 2

1 3 21

3 4 27

4 5 27

5 6 5

5 7 10

Table 4.327. Bonds of building block BGL.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

3 4 5 15

4 5 6 30

4 5 7 19

6 5 7 33

Table 4.328. Bond angles of building block BGL.

3-283

I J K L Type

-2 -1 1 3 14

-1 1 3 4 43

-1 1 3 4 44

1 3 4 5 34

3 4 5 7 42

3 4 5 7 45

Table 4.329. Dihedral angles of building block BGL.

I J K L Type

1 -1 3 2 1

5 4 7 6 1

Table 4.330. Improper dihedral angles of building block BGL.

3-284

Solute building block: (S)-β3-Histidine (protonated at NE1; neutral)
Name: SBHA

Figure 4.133. SBHA non-bonded parameters.

Figure 4.134. SBHA bonded parameters.

3-285

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 13

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 13 14

4 CG 15 4 0.00000 5 6 7 8 9 10 12 13

5 CD 12 12 0.00000 6 7 8 9 10 11 12

6 NE1 9 14 -0.05000 7 8 9 10 11 12

7 HE1 21 1 0.31000 8 10 11 12

8 CE2 12 12 0.00000 9 10 11 12

9 HE2 20 1 0.14000 10 12

10 CZ1 12 12 0.00000 11 12

11 HZ1 20 1 0.14000 12

12 NZ2 9 14 -0.54000

13 CA 15 4 0.00000 14 15 16

14 C 12 12 0.45000

15 O 1 16 -0.45000

Table 4.331. Atoms of building block SBHA.

I J Type

1 2 2

1 3 21

3 4 27

3 13 27

4 5 27

5 6 10

5 8 10

6 7 2

6 10 10

8 9 3

8 12 10

10 11 3

10 12 10

13 14 27

14 15 5

14 16 10

Table 4.332. Bonds of building block SBHA.

3-286

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 13 13

4 3 13 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 10 7

7 6 10 36

5 8 9 36

5 8 12 7

9 8 12 36

6 10 11 36

6 10 12 7

11 10 12 36

8 12 10 7

3 13 14 15

13 14 15 30

13 14 16 19

15 14 16 33

Table 4.333. Bond angles of building block SBHA.

I J K L Type

-2 -1 1 3 14

-1 1 3 13 43

-1 1 3 13 44

1 3 4 5 34

1 3 13 14 34

3 4 5 6 40

3 13 14 16 42

3 13 14 16 45

Table 4.334. Dihedral angles of building block SBHA.

3-287

I J K L Type

1 -1 3 2 1

3 1 13 4 2

5 6 8 4 1

5 6 10 12 1

5 8 12 10 1

6 5 8 12 1

6 5 10 7 1

6 10 12 8 1

8 5 6 10 1

8 5 12 9 1

10 6 12 11 1

14 13 16 15 1

Table 4.335. Improper dihedral angles of building block SBHA.

3-288

Solute building block: (S)-β3-Histidine(protonated at NE1 and NZ2; charge +e)
Name: SBHH

Figure 4.135. SBHH non-bonded parameters.

Figure 4.136. SBHH bonded parameters.

3-289

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 14

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 14 15

4 CG 15 4 0.00000 5 6 7 8 9 10 12 14

5 CD 12 12 -0.05000 6 7 8 9 10 11 12 13

6 NE1 9 14 0.38000 7 8 9 10 11 12 13

7 HE1 21 1 0.30000 8 10 11 12

8 CE2 12 12 -0.10000 9 10 11 12 13

9 HE2 20 1 0.10000 10 12 13

10 CZ1 12 12 -0.34000 11 12 13

11 HZ1 20 1 0.10000 12 13

12 NZ2 9 14 0.31000 13

13 HZ2 21 1 0.30000

14 CA 15 4 0.00000 15 16 17

15 C 12 12 0.45000

16 O 1 16 -0.45000

Table 4.336. Atoms of building block SBHH.

I J Type

1 2 2

1 3 21

3 4 27

3 14 27

4 5 27

5 6 10

5 8 10

6 7 2

6 10 10

8 9 3

8 12 10

10 11 3

10 12 10

12 13 2

14 15 27

15 16 5

15 17 10

Table 4.337. Bonds of building block SBHH.

3-290

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 14 13

4 3 14 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 10 7

7 6 10 36

5 8 9 36

5 8 12 7

9 8 12 36

6 10 11 36

6 10 12 7

11 10 12 36

8 12 10 7

8 12 13 36

10 12 13 36

3 14 15 15

14 15 16 30

14 15 17 19

16 15 17 33

Table 4.338. Bond angles of building block SBHH.

I J K L Type

-2 -1 1 3 14

-1 1 3 14 43

-1 1 3 14 44

1 3 4 5 34

1 3 14 15 34

3 4 5 6 40

3 14 15 17 42

3 14 15 17 45

Table 4.339. Dihedral angles of building block SBHH.

3-291

I J K L Type

1 -1 3 2 1

3 1 14 4 2

5 6 8 4 1

5 6 10 12 1

5 8 12 10 1

6 5 8 12 1

6 5 10 7 1

6 10 12 8 1

8 5 6 10 1

8 5 12 9 1

10 6 12 11 1

12 8 10 13 1

15 14 17 16 1

Table 4.340. Improper dihedral angles of building block SBHH.

3-292

Solute building block: (S)-β3-Isoleucine
Name: SBI

Figure 4.137. SBI non-bonded parameters.

Figure 4.138. SBI bonded parameters.

3-293

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 8 9

4 CG 14 3 0.00000 5 6 7 8

5 CD1 15 4 0.00000 6 7

6 CD2 16 5 0.00000

7 CE 16 5 0.00000

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.341. Atoms of building block SBI.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

4 6 27

5 7 27

8 9 27

9 10 5

9 11 10

Table 4.342. Bonds of building block SBI.

3-294

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

3 4 6 15

5 4 6 15

4 5 7 15

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.343. Bond angles of building block SBI.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 7 34

3 8 9 11 42

3 8 9 11 45

Table 4.344. Dihedral angles of building block SBI.

I J K L Type

1 -1 3 2 1

4 1 8 3 2

4 5 6 3 2

9 8 11 10 1

Table 4.345. Improper dihedral angles of building block SBI.

3-295

Solute building block: (S)-β3-Lysine (protonated; charge +e)
Name: SBKH

Figure 4.139. SBKH non-bonded parameters.

Figure 4.140. SBKH bonded parameters.

3-296

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 12

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 12 13

4 CG 15 4 0.00000 5 6 12

5 CD 15 4 0.00000 6 7

6 CE 15 4 0.00000 7 8

7 CZ 15 4 0.12700 8 9 10 11

8 NH 8 14 0.12900 9 10 11

9 HH1 21 1 0.24800 10 11

10 HH2 21 1 0.24800 11

11 HH3 21 1 0.24800

12 CA 15 4 0.00000 13 14 15

13 C 12 12 0.45000

14 O 1 16 -0.45000

Table 4.346. Atoms of building block SBKH.

I J Type

1 2 2

1 3 21

3 4 27

3 12 27

4 5 27

5 6 27

6 7 27

7 8 21

8 9 2

8 10 2

8 11 2

12 13 27

13 14 5

13 15 10

Table 4.347. Bonds of building block SBKH.

3-297

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 12 13

4 3 12 15

3 4 5 15

4 5 6 15

5 6 7 15

6 7 8 15

7 8 9 11

7 8 10 11

7 8 11 11

9 8 10 10

9 8 11 10

10 8 11 10

3 12 13 15

12 13 14 30

12 13 15 19

14 13 15 33

Table 4.348. Bond angles of building block SBKH.

I J K L Type

-2 -1 1 3 14

-1 1 3 12 43

-1 1 3 12 44

1 3 4 5 34

1 3 12 13 34

3 4 5 6 34

4 5 6 7 34

5 6 7 8 34

6 7 8 9 29

3 12 13 15 42

3 12 13 15 45

Table 4.349. Dihedral angles of building block SBKH.

I J K L Type

1 -1 3 2 1

3 1 12 4 2

13 12 15 14 1

Table 4.350. Improper dihedral angles of building block SBKH.

3-298

Solute building block: (S)-β3-Leucine
Name: SBL

Figure 4.141. SBL non-bonded parameters.

Figure 4.142. SBL bonded parameters.

3-299

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 8 9

4 CG 15 4 0.00000 5 6 7 8

5 CD 14 3 0.00000 6 7

6 CE1 16 5 0.00000 7

7 CE2 16 5 0.00000

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.351. Atoms of building block SBL.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 27

5 7 27

8 9 27

9 10 5

9 11 10

Table 4.352. Bonds of building block SBL.

3-300

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 15

3 4 5 15

4 5 6 15

4 5 7 15

6 5 7 15

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.353. Bond angles of building block SBL.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 6 34

3 8 9 11 42

3 8 9 11 45

Table 4.354. Dihedral angles of building block SBL.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 6 7 5 2

9 8 11 10 1

Table 4.355. Improper dihedral angles of building block SBL.

3-301

Solute building block: (S)-β3-Methionine
Name: SBM

Figure 4.143. SBM non-bonded parameters.

Figure 4.144. SBM bonded parameters.

3-302

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 8 9

4 CG 15 4 0.00000 5 6 8

5 CD 15 4 0.24100 6 7

6 SE 23 32 -0.48200 7

7 CZ 16 5 0.24100

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.356. Atoms of building block SBM.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 32

6 7 31

8 9 27

9 10 5

9 11 10

Table 4.357. Bonds of building block SBM.

3-303

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 15

4 5 6 16

5 6 7 4

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.358. Bond angles of building block SBM.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 6 34

4 5 6 7 26

3 8 9 11 42

3 8 9 11 45

Table 4.359. Dihedral angles of building block SBM.

I J K L Type

1 -1 3 2 1

4 1 8 3 2

9 8 11 10 1

Table 4.360. Improper dihedral angles of building block SBM.

3-304

Solute building block: (S)-β3-Proline
Name: SBP

Figure 4.145. SBP non-bonded parameters.

Figure 4.146. SBP bonded parameters.

3-305

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 5

0 1

1 N 6 14 0.00000 2 3 4 5 6

2 CB 14 3 0.00000 3 4 5 6 7

3 CG 18 4 0.00000 4 5 6

4 CD 18 4 0.00000 5

5 CE 18 4 0.00000

6 CA 15 4 0.00000 7 8 9

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.361. Atoms of building block SBP.

I J Type

1 2 21

1 5 21

2 3 27

2 6 27

3 4 27

4 5 27

6 7 27

7 8 5

7 9 10

Table 4.362. Bonds of building block SBP.

3-306

I J K Type

-1 1 2 31

-1 1 5 31

2 1 5 21

1 2 3 13

1 2 6 13

3 2 6 13

2 3 4 13

3 4 5 13

1 5 4 13

2 6 7 15

6 7 8 30

6 7 9 19

8 7 9 33

Table 4.363. Bond angles of building block SBP.

I J K L Type

-2 -1 1 2 14

-1 1 2 6 43

-1 1 2 6 44

2 1 5 4 39

1 2 3 4 34

1 2 6 7 34

2 3 4 5 34

3 4 5 1 34

2 6 7 9 42

2 6 7 9 45

Table 4.364. Dihedral angles of building block SBP.

I J K L Type

1 -1 2 5 1

2 1 6 3 2

7 6 9 8 1

Table 4.365. Improper dihedral angles of building block SBP.

3-307

Solute building block: (S)-β3-Arginine (protonated; charge +e)
Name: SBR

Figure 4.147. SBR non-bonded parameters.

Figure 4.148. SBR bonded parameters.

3-308

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 16

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 16 17

4 CG 15 4 0.00000 5 6 16

5 CD 15 4 0.00000 6 7

6 CE 15 4 0.09000 7 8 9

7 NZ 11 14 -0.11000 8 9 10 13

8 HZ 21 1 0.24000 9

9 CH 12 12 0.34000 10 11 12 13 14 15

10 NI1 10 14 -0.26000 11 12 13

11 HI11 21 1 0.24000 12

12 HI12 21 1 0.24000

13 NI2 10 14 -0.26000 14 15

14 HI21 21 1 0.24000 15

15 HI22 21 1 0.24000

16 CA 15 4 0.00000 17 18 19

17 C 12 12 0.45000

18 O 1 16 -0.45000

Table 4.366. Atoms of building block SBR.

3-309

I J Type

1 2 2

1 3 21

3 4 27

3 16 27

4 5 27

5 6 27

6 7 21

7 8 2

7 9 11

9 10 11

9 13 11

10 11 2

10 12 2

13 14 2

13 15 2

16 17 27

17 18 5

17 19 10

Table 4.367. Bonds of building block SBR.

3-310

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 16 13

4 3 16 13

3 4 5 15

4 5 6 15

5 6 7 13

6 7 8 20

6 7 9 33

8 7 9 23

7 9 10 28

7 9 13 28

10 9 13 28

9 10 11 23

9 10 12 23

11 10 12 24

9 13 14 23

9 13 15 23

14 13 15 24

3 16 17 15

16 17 18 30

16 17 19 19

18 17 19 33

Table 4.368. Bond angles of building block SBR.

I J K L Type

-2 -1 1 3 14

-1 1 3 16 43

-1 1 3 16 44

1 3 4 5 34

1 3 16 17 34

3 4 5 6 34

4 5 6 7 34

5 6 7 9 39

6 7 9 10 14

7 9 10 11 14

7 9 13 14 14

3 16 17 19 42

3 16 17 19 45

Table 4.369. Dihedral angles of building block SBR.

3-311

I J K L Type

1 -1 3 2 1

3 1 16 4 2

7 6 9 8 1

9 10 13 7 1

10 11 12 9 1

13 14 15 9 1

17 16 19 18 1

Table 4.370. Improper dihedral angles of building block SBR.

3-312

Solute building block: (S)-β3-Serine
Name: SBS

Figure 4.149. SBS non-bonded parameters.

Figure 4.150. SBS bonded parameters.

3-313

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 7 8

4 CG 15 4 0.26600 5 6 7

5 OD 3 16 -0.67400 6

6 HD 21 1 0.40800

7 CA 15 4 0.00000 8 9 10

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.371. Atoms of building block SBS.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 18

5 6 1

7 8 27

8 9 5

8 10 10

Table 4.372. Bonds of building block SBS.

3-314

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 13

3 4 5 13

4 5 6 12

3 7 8 15

7 8 9 30

7 8 10 19

9 8 10 33

Table 4.373. Bond angles of building block SBS.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 8 34

3 4 5 6 23

3 7 8 10 42

3 7 8 10 45

Table 4.374. Dihedral angles of building block SBS.

I J K L Type

1 -1 3 2 1

4 1 7 3 2

8 7 10 9 1

Table 4.375. Improper dihedral angles of building block SBS.

3-315

Solute building block: (S)-β3-Threonine
Name: SBT

Figure 4.151. SBT non-bonded parameters.

Figure 4.152. SBT bonded parameters.

3-316

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 7 8 9

4 CG 14 3 0.26600 5 6 7 8

5 OD1 3 16 -0.67400 6 7

6 HD1 21 1 0.40800

7 CD2 16 5 0.00000

8 CA 15 4 0.00000 9 10 11

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.376. Atoms of building block SBT.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 18

4 7 27

5 6 1

8 9 27

9 10 5

9 11 10

Table 4.377. Bonds of building block SBT.

3-317

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 13

3 4 5 13

3 4 7 15

5 4 7 15

4 5 6 12

3 8 9 15

8 9 10 30

8 9 11 19

10 9 11 33

Table 4.378. Bond angles of building block SBT.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 9 34

3 4 5 6 23

3 8 9 11 42

3 8 9 11 45

Table 4.379. Dihedral angles of building block SBT.

I J K L Type

1 -1 3 2 1

4 1 8 3 2

4 5 7 3 2

9 8 11 10 1

Table 4.380. Improper dihedral angles of building block SBT.

3-318

Solute building block: (S)-β3-Valine
Name: SBV

Figure 4.153. SBV non-bonded parameters.

Figure 4.154. SBV bonded parameters.

3-319

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 7 8

4 CG 14 3 0.00000 5 6 7

5 CD1 16 5 0.00000 6

6 CD2 16 5 0.00000

7 CA 15 4 0.00000 8 9 10

8 C 12 12 0.45000

9 O 1 16 -0.45000

Table 4.381. Atoms of building block SBV.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 27

4 6 27

7 8 27

8 9 5

8 10 10

Table 4.382. Bonds of building block SBV.

3-320

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 15

3 4 5 15

3 4 6 15

5 4 6 15

3 7 8 15

7 8 9 30

7 8 10 19

9 8 10 33

Table 4.383. Bond angles of building block SBV.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 8 34

3 7 8 10 42

3 7 8 10 45

Table 4.384. Dihedral angles of building block SBV.

I J K L Type

1 -1 3 2 1

3 5 6 4 2

4 1 7 3 2

8 7 10 9 1

Table 4.385. Improper dihedral angles of building block SBV.

3-321

Solute building block: (S)-β3-Tyrosine
Name: SBY

Figure 4.155. SBY non-bonded parameters.

Figure 4.156. SBY bonded parameters.

3-322

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 17

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 17 18

4 CG 15 4 0.00000 5 6 7 8 9 10 12 17

5 CD 12 12 0.00000 6 7 8 9 10 11 12 13 14

6 CE1 12 12 -0.14000 7 8 9 10 11 12 14 15

7 HE1 20 1 0.14000 8 10 11 14

8 CE2 12 12 -0.14000 9 10 12 13 14 15

9 HE2 20 1 0.14000 12 13 14

10 CZ1 12 12 -0.14000 11 12 13 14 15

11 HZ1 20 1 0.14000 12 14 15

12 CZ2 12 12 -0.14000 13 14 15

13 HZ2 20 1 0.14000 14 15

14 CH 12 12 0.20300 15 16

15 OI 3 16 -0.61100 16

16 HI 21 1 0.40800

17 CA 15 4 0.00000 18 19 20

18 C 12 12 0.45000

19 O 1 16 -0.45000

Table 4.386. Atoms of building block SBY.

3-323

I J Type

1 2 2

1 3 21

3 4 27

3 17 27

4 5 27

5 6 16

5 8 16

6 7 3

6 10 16

8 9 3

8 12 16

10 11 3

10 14 16

12 13 3

12 14 16

14 15 13

15 16 1

17 18 27

18 19 5

18 20 10

Table 4.387. Bonds of building block SBY.

3-324

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 17 13

4 3 17 13

3 4 5 15

4 5 6 27

4 5 8 27

6 5 8 27

5 6 7 25

5 6 10 27

7 6 10 25

5 8 9 25

5 8 12 27

9 8 12 25

6 10 11 25

6 10 14 27

11 10 14 25

8 12 13 25

8 12 14 27

13 12 14 25

10 14 12 27

10 14 15 27

12 14 15 27

14 15 16 12

3 17 18 15

17 18 19 30

17 18 20 19

19 18 20 33

Table 4.388. Bond angles of building block SBY.

I J K L Type

-2 -1 1 3 14

-1 1 3 17 43

-1 1 3 17 44

1 3 4 5 34

1 3 17 18 34

3 4 5 6 40

10 14 15 16 11

3 17 18 20 42

3 17 18 20 45

Table 4.389. Dihedral angles of building block SBY.

3-325

I J K L Type

1 -1 3 2 1

3 1 17 4 2

5 6 8 4 1

5 6 10 14 1

5 8 12 14 1

6 5 8 12 1

6 5 10 7 1

6 10 14 12 1

8 5 6 10 1

8 5 12 9 1

8 12 14 10 1

11 6 14 10 1

13 8 14 12 1

14 10 12 15 1

18 17 20 19 1

Table 4.390. Improper dihedral angles of building block SBY.

3-326

Solute building block: (S)-β3-Tryptophan
Name: SBW

Figure 4.157. SBW non-bonded parameters.

Figure 4.158. SBW bonded parameters.

3-327

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 20

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 20 21

4 CG 15 4 0.00000 5 6 7 8 9 11 12 20

5 CD 12 12 -0.21000 6 7 8 9 10 11 12 13 14 16

6 CE1 12 12 -0.14000 7 8 9 10 11 12 14

7 HE1 20 1 0.14000 8 9 10 11

8 CE2 12 12 0.00000 9 10 11 12 13 14 15 16 17 18

9 NZ1 9 14 -0.10000 10 11 12 14 15 18

10 HZ1 21 1 0.31000 11 14

11 CZ2 12 12 0.00000 12 13 14 15 16 18 19

12 CZ3 12 12 -0.14000 13 14 16 17 18 19

13 HZ3 20 1 0.14000 16 17 18

14 CH2 12 12 -0.14000 15 16 17 18 19

15 HH2 20 1 0.14000 16 18 19

16 CH3 12 12 -0.14000 17 18 19

17 HH3 20 1 0.14000 18 19

18 CI2 12 12 -0.14000 19

19 HI2 20 1 0.14000

20 CA 15 4 0.00000 21 22 23

21 C 12 12 0.45000

22 O 1 16 -0.45000

Table 4.391. Atoms of building block SBW.

3-328

I J Type

1 2 2

1 3 21

3 4 27

3 20 27

4 5 27

5 6 10

5 8 16

6 7 3

6 9 10

8 11 16

8 12 16

9 10 2

9 11 10

11 14 16

12 13 3

12 16 16

14 15 3

14 18 16

16 17 3

16 18 16

18 19 3

20 21 27

21 22 5

21 23 10

Table 4.392. Bonds of building block SBW.

3-329

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 20 13

4 3 20 13

3 4 5 15

4 5 6 37

4 5 8 37

6 5 8 7

5 6 7 36

5 6 9 7

7 6 9 36

5 8 11 7

5 8 12 39

11 8 12 27

6 9 10 36

6 9 11 7

10 9 11 36

8 11 9 7

8 11 14 27

9 11 14 39

8 12 13 25

8 12 16 27

13 12 16 25

11 14 15 25

11 14 18 27

15 14 18 25

12 16 17 25

12 16 18 27

17 16 18 25

14 18 16 27

14 18 19 25

16 18 19 25

3 20 21 15

20 21 22 30

20 21 23 19

22 21 23 33

Table 4.393. Bond angles of building block SBW.

3-330

I J K L Type

-2 -1 1 3 14

-1 1 3 20 43

-1 1 3 20 44

1 3 4 5 34

1 3 20 21 34

3 4 5 8 40

3 20 21 22 42

3 20 21 22 45

Table 4.394. Dihedral angles of building block SBW.

I J K L Type

1 -1 3 2 1

3 1 20 4 2

5 6 8 4 1

5 6 9 11 1

5 8 11 9 1

6 5 8 11 1

6 5 9 7 1

6 9 11 8 1

8 5 6 9 1

8 11 12 5 1

8 11 14 18 1

8 12 16 18 1

9 6 11 10 1

11 8 12 16 1

11 8 14 9 1

11 14 18 16 1

12 8 11 14 1

12 8 16 13 1

12 16 18 14 1

14 11 18 15 1

16 12 18 17 1

18 14 16 19 1

21 20 23 22 1

Table 4.395. Improper dihedral angles of building block SBW.

3-331

Solute building block: (R,S)-β(2, 3)-Alanine(αMe)
Name: SRAM

Figure 4.159. SRAM non-bonded parameters.

Figure 4.160. SRAM bonded parameters.

3-332

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 5

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 7

4 CG 16 5 0.00000 5

5 CA 14 3 0.00000 6 7 8 9

6 CD 16 5 0.00000 7

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.396. Atoms of building block SRAM.

I J Type

1 2 2

1 3 21

3 4 27

3 5 27

5 6 27

5 7 27

7 8 5

7 9 10

Table 4.397. Bonds of building block SRAM.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 5 13

4 3 5 15

3 5 6 15

3 5 7 13

6 5 7 15

5 7 8 30

5 7 9 19

8 7 9 33

Table 4.398. Bond angles of building block SRAM.

3-333

I J K L Type

-2 -1 1 3 14

-1 1 3 5 43

-1 1 3 5 44

1 3 5 7 34

3 5 7 9 42

3 5 7 9 45

Table 4.399. Dihedral angles of building block SRAM.

I J K L Type

1 -1 3 2 1

3 1 5 4 2

5 3 7 6 2

7 5 9 8 1

Table 4.400. Improper dihedral angles of building block SRAM.

3-334

Solute building block: (R,S)-β(2, 3)-Leucine(αMe)
Name: SRLM

Figure 4.161. SRLM non-bonded parameters.

Figure 4.162. SRLM bonded parameters.

3-335

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 8

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 8 9 10

4 CG 15 4 0.00000 5 6 7 8

5 CD 14 3 0.00000 6 7

6 CE1 16 5 0.00000 7

7 CE2 16 5 0.00000

8 CA 14 3 0.00000 9 10 11 12

9 CZ 16 5 0.00000 10

10 C 12 12 0.45000

11 O 1 16 -0.45000

Table 4.401. Atoms of building block SRLM.

I J Type

1 2 2

1 3 21

3 4 27

3 8 27

4 5 27

5 6 27

5 7 27

8 9 27

8 10 27

10 11 5

10 12 10

Table 4.402. Bonds of building block SRLM.

3-336

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 8 13

4 3 8 15

3 4 5 15

4 5 6 15

4 5 7 15

6 5 7 15

3 8 9 15

3 8 10 13

9 8 10 15

8 10 11 30

8 10 12 19

11 10 12 33

Table 4.403. Bond angles of building block SRLM.

I J K L Type

-2 -1 1 3 14

-1 1 3 8 43

-1 1 3 8 44

1 3 4 5 34

1 3 8 10 34

3 4 5 6 34

3 8 10 12 42

3 8 10 12 45

Table 4.404. Dihedral angles of building block SRLM.

I J K L Type

1 -1 3 2 1

3 1 8 4 2

4 6 7 5 2

8 3 10 9 2

10 8 12 11 1

Table 4.405. Improper dihedral angles of building block SRLM.

3-337

Solute building block: (R,S)-β(2, 3)-Valine(αMe)
Name: SRVM

Figure 4.163. SRVM non-bonded parameters.

Figure 4.164. SRVM bonded parameters.

3-338

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 7

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 7 8 9

4 CG 14 3 0.00000 5 6 7

5 CD1 16 5 0.00000 6

6 CD2 16 5 0.00000

7 CA 14 3 0.00000 8 9 10 11

8 CE 16 5 0.00000 9

9 C 12 12 0.45000

10 O 1 16 -0.45000

Table 4.406. Atoms of building block SRVM.

I J Type

1 2 2

1 3 21

3 4 27

3 7 27

4 5 27

4 6 27

7 8 27

7 9 27

9 10 5

9 11 10

Table 4.407. Bonds of building block SRVM.

3-339

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 7 13

4 3 7 15

3 4 5 15

3 4 6 15

5 4 6 15

3 7 8 15

3 7 9 13

8 7 9 15

7 9 10 30

7 9 11 19

10 9 11 33

Table 4.408. Bond angles of building block SRVM.

I J K L Type

-2 -1 1 3 14

-1 1 3 7 43

-1 1 3 7 44

1 3 4 5 34

1 3 7 9 34

3 7 9 11 42

3 7 9 11 45

Table 4.409. Dihedral angles of building block SRVM.

I J K L Type

1 -1 3 2 1

3 1 7 4 2

3 5 6 4 2

7 3 9 8 2

9 7 11 10 1

Table 4.410. Improper dihedral angles of building block SRVM.

3-340

Solute building block: (S,S)-β(2, 3)-Alanine(αMe)
Name: SSAM

Figure 4.165. SSAM non-bonded parameters.

Figure 4.166. SSAM bonded parameters.

3-341

Seq. Name IAC Mass Charge Exclusions

-1 0 1 2 3

0 1

1 N 6 14 -0.31000 2 3 4 5

2 H 21 1 0.31000 3

3 CB 14 3 0.00000 4 5 6 7

4 CG 16 5 0.00000 5

5 CA 14 3 0.00000 6 7 8 9

6 CD 16 5 0.00000 7

7 C 12 12 0.45000

8 O 1 16 -0.45000

Table 4.411. Atoms of building block SSAM.

I J Type

1 2 2

1 3 21

3 4 27

3 5 27

5 6 27

5 7 27

7 8 5

7 9 10

Table 4.412. Bonds of building block SSAM.

I J K Type

-1 1 2 32

-1 1 3 31

2 1 3 18

1 3 4 13

1 3 5 13

4 3 5 15

3 5 6 15

3 5 7 13

6 5 7 15

5 7 8 30

5 7 9 19

8 7 9 33

Table 4.413. Bond angles of building block SSAM.

3-342

I J K L Type

-2 -1 1 3 14

-1 1 3 5 43

-1 1 3 5 44

1 3 5 7 34

3 5 7 9 42

3 5 7 9 45

Table 4.414. Dihedral angles of building block SSAM.

I J K L Type

1 -1 3 2 1

3 1 5 4 2

6 3 7 5 2

7 5 9 8 1

Table 4.415. Improper dihedral angles of building block SSAM.

3-343

4.5. Nucleotides

Solute building block: 2’-deoxyadenosine 5’-phosphoric acid (DNA, charge -e)
Name: DADE

Figure 4.167. DADE non-bonded parameters.

Figure 4.168. DADE bonded parameters.

3-344

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 24

6 C4* 14 3 0.16000 7 8 23 24 25

7 O4* 3 16 -0.36000 8 9 23 24

8 C1* 14 3 0.20000 9 10 11 19 20 21 22 23 24

9 N9 9 14 -0.20000 10 11 12 15 19 20 21 22 23

10 C4 12 12 0.20000 11 12 13 14 15 16 19 20 21 22

11 N3 9 14 -0.54000 12 13 14 15 19 20 21

12 C2 12 12 0.44000 13 14 15 16 19

13 H2 20 1 0.10000 14 15

14 N1 9 14 -0.54000 15 16 19 20

15 C6 12 12 0.54000 16 17 18 19 20 21

16 N6 7 14 -0.83000 17 18 19 20

17 H61 21 1 0.41500 18 20

18 H62 21 1 0.41500 20

19 C5 12 12 0.00000 20 21 22

20 N7 9 14 -0.54000 21 22

21 C8 12 12 0.44000 22

22 H8 20 1 0.10000

23 C2* 18 4 0.00000 24 25

24 C3* 14 3 0.00000

25 O3* 3 16 -0.36000

Table 4.416. Atoms of building block DADE.

3-345

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 24 26

7 8 20

8 9 22

8 23 26

9 10 10

9 21 10

10 11 12

10 19 16

11 12 7

12 13 3

12 14 7

14 15 12

15 16 9

15 19 16

16 17 2

16 18 2

19 20 10

20 21 10

21 22 3

23 24 26

24 25 20

25 26 28

Table 4.417. Bonds of building block DADE.

3-346

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 24 8

7 6 24 9

6 7 8 10

7 8 9 9

7 8 23 9

9 8 23 9

8 9 10 37

8 9 21 37

10 9 21 7

9 10 11 39

9 10 19 7

11 10 19 27

10 11 12 27

11 12 13 25

11 12 14 27

13 12 14 25

12 14 15 27

14 15 16 27

14 15 19 27

16 15 19 27

15 16 17 23

15 16 18 23

17 16 18 24

10 19 15 27

10 19 20 7

15 19 20 39

19 20 21 7

9 21 20 7

9 21 22 36

20 21 22 36

8 23 24 8

6 24 23 8

6 24 25 9

23 24 25 9

24 25 26 26

Table 4.418. Bond angles of building block DADE.

3-347

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 24 17

4 5 6 24 34

24 6 7 8 29

5 6 24 23 34

5 6 24 25 17

7 6 24 23 17

7 6 24 25 18

6 7 8 23 29

7 8 9 10 16

7 8 23 24 17

7 8 23 24 34

19 15 16 17 14

8 23 24 6 34

8 23 24 25 17

6 24 25 26 29

Table 4.419. Dihedral angles of building block DADE.

3-348

I J K L Type

8 10 21 9 1

9 10 19 20 1

10 9 11 19 1

10 9 21 20 1

10 11 12 14 1

10 19 20 21 1

11 10 19 15 1

11 12 14 15 1

12 11 13 14 1

12 14 15 19 1

14 15 19 10 1

16 14 19 15 1

16 17 18 15 1

19 10 11 12 1

19 15 20 10 1

19 20 21 9 1

21 9 10 19 1

21 9 20 22 1

23 7 9 8 2

24 5 7 6 2

24 23 25 6 2

Table 4.420. Improper dihedral angles of building block DADE.

3-349

Solute building block: 2’-deoxyguanosine 5’-phosphoric acid (DNA, charge -e)
Name: DGUA

Figure 4.169. DGUA non-bonded parameters.

Figure 4.170. DGUA bonded parameters.

3-350

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 25

6 C4* 14 3 0.16000 7 8 24 25 26

7 O4* 3 16 -0.36000 8 9 24 25

8 C1* 14 3 0.20000 9 10 11 20 21 22 23 24 25

9 N9 9 14 -0.20000 10 11 12 18 20 21 22 23 24

10 C4 12 12 0.20000 11 12 13 16 18 19 20 21 22 23

11 N3 9 14 -0.54000 12 13 16 17 18 20 21 22

12 C2 12 12 0.54000 13 14 15 16 17 18 19 20

13 N2 7 14 -0.83000 14 15 16 17 18

14 H21 21 1 0.41500 15

15 H22 21 1 0.41500

16 N1 9 14 -0.31000 17 18 19 20 21

17 H1 21 1 0.31000 18 19 20

18 C6 12 12 0.45000 19 20 21 22

19 O6 1 16 -0.45000 20 21

20 C5 12 12 0.00000 21 22 23

21 N7 9 14 -0.54000 22 23

22 C8 12 12 0.44000 23

23 H8 20 1 0.10000

24 C2* 18 4 0.00000 25 26

25 C3* 14 3 0.00000

26 O3* 3 16 -0.36000

Table 4.421. Atoms of building block DGUA.

3-351

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 25 26

7 8 20

8 9 22

8 24 26

9 10 10

9 22 10

10 11 12

10 20 16

11 12 12

12 13 9

12 16 17

13 14 2

13 15 2

16 17 2

16 18 17

18 19 5

18 20 16

20 21 10

21 22 10

22 23 3

24 25 26

25 26 20

26 27 28

Table 4.422. Bonds of building block DGUA.

3-352

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 25 8

7 6 25 9

6 7 8 10

7 8 9 9

7 8 24 9

9 8 24 9

8 9 10 37

8 9 22 37

10 9 22 7

9 10 11 39

9 10 20 7

11 10 20 27

10 11 12 27

11 12 13 27

11 12 16 27

13 12 16 27

12 13 14 23

12 13 15 23

14 13 15 24

12 16 17 25

12 16 18 27

17 16 18 25

16 18 19 27

16 18 20 27

19 18 20 27

10 20 18 27

10 20 21 7

18 20 21 39

20 21 22 7

9 22 21 7

9 22 23 36

21 22 23 36

8 24 25 8

6 25 24 8

6 25 26 9

24 25 26 9

25 26 27 26

Table 4.423. Bond angles of building block DGUA.

3-353

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 25 17

4 5 6 25 34

25 6 7 8 29

5 6 25 24 34

5 6 25 26 17

7 6 25 24 17

7 6 25 26 18

6 7 8 24 29

7 8 9 10 16

7 8 24 25 17

7 8 24 25 34

11 12 13 14 14

8 24 25 6 34

8 24 25 26 17

6 25 26 27 29

Table 4.424. Dihedral angles of building block DGUA.

3-354

I J K L Type

8 10 22 9 1

9 10 20 21 1

10 9 11 20 1

10 9 22 21 1

10 11 12 16 1

10 20 21 22 1

11 10 20 18 1

11 12 16 18 1

12 16 18 20 1

13 11 16 12 1

13 14 15 12 1

16 18 20 10 1

17 12 18 16 1

19 16 20 18 1

20 10 11 12 1

20 18 21 10 1

20 21 22 9 1

22 9 10 20 1

22 9 21 23 1

24 7 9 8 2

25 5 7 6 2

25 24 26 6 2

Table 4.425. Improper dihedral angles of building block DGUA.

3-355

Solute building block: 2’-deoxycytidine 5’-phosphoric acid (DNA, charge -e)
Name: DCYT

Figure 4.171. DCYT non-bonded parameters.

Figure 4.172. DCYT bonded parameters.

3-356

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 22

6 C4* 14 3 0.16000 7 8 21 22 23

7 O4* 3 16 -0.36000 8 9 21 22

8 C1* 14 3 0.20000 9 10 11 12 13 14 19 21 22

9 N1 9 14 -0.20000 10 11 12 13 14 15 19 20 21

10 C6 12 12 0.10000 11 12 13 14 15 16 19 20

11 H6 20 1 0.10000 12 15 19 20

12 C2 12 12 0.45000 13 14 15 16 19

13 O2 1 16 -0.45000 14 15

14 N3 9 14 -0.54000 15 16 19 20

15 C4 12 12 0.54000 16 17 18 19 20

16 N4 7 14 -0.83000 17 18 19 20

17 H41 21 1 0.41500 18

18 H42 21 1 0.41500

19 C5 12 12 -0.10000 20

20 H5 20 1 0.10000

21 C2* 18 4 0.00000 22 23

22 C3* 14 3 0.00000

23 O3* 3 16 -0.36000

Table 4.426. Atoms of building block DCYT.

3-357

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 22 26

7 8 20

8 9 23

8 21 26

9 10 17

9 12 17

10 11 3

10 19 16

12 13 5

12 14 12

14 15 12

15 16 9

15 19 16

16 17 2

16 18 2

19 20 3

21 22 26

22 23 20

23 24 28

Table 4.427. Bonds of building block DCYT.

3-358

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 22 8

7 6 22 9

6 7 8 10

7 8 9 9

7 8 21 9

9 8 21 8

8 9 10 27

8 9 12 27

10 9 12 27

9 10 11 25

9 10 19 27

11 10 19 25

9 12 13 27

9 12 14 27

13 12 14 27

12 14 15 27

14 15 16 27

14 15 19 27

16 15 19 27

15 16 17 23

15 16 18 23

17 16 18 24

10 19 15 27

10 19 20 25

15 19 20 25

8 21 22 8

6 22 21 8

6 22 23 9

21 22 23 9

22 23 24 26

Table 4.428. Bond angles of building block DCYT.

3-359

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 22 17

4 5 6 22 34

22 6 7 8 29

5 6 22 21 34

5 6 22 23 17

7 6 22 21 17

7 6 22 23 18

6 7 8 21 29

7 8 9 12 16

7 8 21 22 17

7 8 21 22 34

14 15 16 17 14

8 21 22 6 34

8 21 22 23 17

6 22 23 24 29

Table 4.429. Dihedral angles of building block DCYT.

I J K L Type

9 10 12 8 1

9 10 19 15 1

9 12 14 15 1

10 9 12 14 1

10 9 19 11 1

12 9 10 19 1

12 14 15 19 1

13 9 14 12 1

14 15 19 10 1

16 14 19 15 1

16 17 18 15 1

19 10 15 20 1

21 7 9 8 2

22 5 7 6 2

22 21 23 6 2

Table 4.430. Improper dihedral angles of building block DCYT.

3-360

Solute building block: 2’-deoxythymidine 5’-phosphoric acid (DNA, charge -e)
Name: DTHY

Figure 4.173. DTHY non-bonded parameters.

Figure 4.174. DTHY bonded parameters.

3-361

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 21

6 C4* 14 3 0.16000 7 8 20 21 22

7 O4* 3 16 -0.36000 8 9 20 21

8 C1* 14 3 0.20000 9 10 11 12 13 14 18 20 21

9 N1 9 14 -0.20000 10 11 12 13 14 15 16 18 19 20

10 C6 12 12 0.10000 11 12 13 14 16 17 18 19

11 H6 20 1 0.10000 12 16 18 19

12 C2 12 12 0.45000 13 14 15 16 17 18

13 O2 1 16 -0.45000 14 15 16

14 N3 9 14 -0.31000 15 16 17 18 19

15 H3 21 1 0.31000 16 17 18

16 C4 12 12 0.45000 17 18 19

17 O4 1 16 -0.45000 18 19

18 C5 12 12 0.00000 19

19 C5M 16 5 0.00000

20 C2* 18 4 0.00000 21 22

21 C3* 14 3 0.00000

22 O3* 3 16 -0.36000

Table 4.431. Atoms of building block DTHY.

3-362

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 21 26

7 8 20

8 9 23

8 20 26

9 10 17

9 12 17

10 11 3

10 18 16

12 13 5

12 14 17

14 15 2

14 16 17

16 17 5

16 18 16

18 19 27

20 21 26

21 22 20

22 23 28

Table 4.432. Bonds of building block DTHY.

3-363

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 21 8

7 6 21 9

6 7 8 10

7 8 9 9

7 8 20 9

9 8 20 8

8 9 10 27

8 9 12 27

10 9 12 27

9 10 11 25

9 10 18 27

11 10 18 25

9 12 13 27

9 12 14 27

13 12 14 27

12 14 15 25

12 14 16 27

15 14 16 25

14 16 17 27

14 16 18 27

17 16 18 27

10 18 16 27

10 18 19 27

16 18 19 27

8 20 21 8

6 21 20 8

6 21 22 9

20 21 22 9

21 22 23 26

Table 4.433. Bond angles of building block DTHY.

3-364

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 21 17

4 5 6 21 34

21 6 7 8 29

5 6 21 20 34

5 6 21 22 17

7 6 21 20 17

7 6 21 22 18

6 7 8 20 29

7 8 9 12 16

7 8 20 21 17

7 8 20 21 34

8 20 21 6 34

8 20 21 22 17

6 21 22 23 29

Table 4.434. Dihedral angles of building block DTHY.

I J K L Type

9 10 12 8 1

9 10 18 16 1

9 12 14 16 1

10 9 12 14 1

10 9 18 11 1

12 9 10 18 1

12 14 16 18 1

13 9 14 12 1

14 16 18 10 1

15 12 16 14 1

17 14 18 16 1

18 10 16 19 1

20 7 9 8 2

21 5 7 6 2

21 20 22 6 2

Table 4.435. Improper dihedral angles of building block DTHY.

3-365

Solute building block: adenosine 5’-phosphoric acid (RNA, charge -e)
Name: ADE

Figure 4.175. ADE non-bonded parameters.

Figure 4.176. ADE bonded parameters.

3-366

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 26

6 C4* 14 3 0.16000 7 8 23 26 27

7 O4* 3 16 -0.36000 8 9 23 26

8 C1* 14 3 0.20000 9 10 11 19 20 21 22 23 24 26

9 N9 9 14 -0.20000 10 11 12 15 19 20 21 22 23

10 C4 12 12 0.20000 11 12 13 14 15 16 19 20 21 22

11 N3 9 14 -0.54000 12 13 14 15 19 20 21

12 C2 12 12 0.44000 13 14 15 16 19

13 H2 20 1 0.10000 14 15

14 N1 9 14 -0.54000 15 16 19 20

15 C6 12 12 0.54000 16 17 18 19 20 21

16 N6 7 14 -0.83000 17 18 19 20

17 H61 21 1 0.41500 18 20

18 H62 21 1 0.41500 20

19 C5 12 12 0.00000 20 21 22

20 N7 9 14 -0.54000 21 22

21 C8 12 12 0.44000 22

22 H8 20 1 0.10000

23 C2* 14 3 0.15000 24 25 26 27

24 O2* 3 16 -0.54800 25 26

25 H2* 21 1 0.39800

26 C3* 14 3 0.00000

27 O3* 3 16 -0.36000

Table 4.436. Atoms of building block ADE.

3-367

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 26 26

7 8 20

8 9 22

8 23 26

9 10 10

9 21 10

10 11 12

10 19 16

11 12 7

12 13 3

12 14 7

14 15 12

15 16 9

15 19 16

16 17 2

16 18 2

19 20 10

20 21 10

21 22 3

23 24 20

23 26 26

24 25 1

26 27 20

27 28 28

Table 4.437. Bonds of building block ADE.

3-368

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 26 8

7 6 26 9

6 7 8 10

7 8 9 9

7 8 23 9

9 8 23 9

8 9 10 37

8 9 21 37

10 9 21 7

9 10 11 39

9 10 19 7

11 10 19 27

10 11 12 27

11 12 13 25

11 12 14 27

13 12 14 25

12 14 15 27

14 15 16 27

14 15 19 27

16 15 19 27

15 16 17 23

15 16 18 23

17 16 18 24

10 19 15 27

10 19 20 7

15 19 20 39

19 20 21 7

9 21 20 7

9 21 22 36

20 21 22 36

8 23 24 9

8 23 26 8

24 23 26 9

23 24 25 12

6 26 23 8

6 26 27 9

23 26 27 9

26 27 28 26

Table 4.438. Bond angles of building block ADE.
3-369

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 26 17

4 5 6 26 34

26 6 7 8 29

5 6 26 23 34

5 6 26 27 17

7 6 26 23 17

7 6 26 27 18

6 7 8 23 29

7 8 9 10 16

7 8 23 24 18

7 8 23 26 17

7 8 23 26 34

9 8 23 24 17

19 15 16 17 14

8 23 24 25 23

8 23 26 6 34

8 23 26 27 17

24 23 26 6 17

24 23 26 27 18

6 26 27 28 29

Table 4.439. Dihedral angles of building block ADE.

3-370

I J K L Type

8 10 21 9 1

9 10 19 20 1

10 9 11 19 1

10 9 21 20 1

10 11 12 14 1

10 19 20 21 1

11 10 19 15 1

11 12 14 15 1

12 11 13 14 1

12 14 15 19 1

14 15 19 10 1

16 14 19 15 1

16 17 18 15 1

19 10 11 12 1

19 15 20 10 1

19 20 21 9 1

21 9 10 19 1

21 9 20 22 1

23 7 9 8 2

23 24 26 8 2

26 5 7 6 2

26 23 27 6 2

Table 4.440. Improper dihedral angles of building block ADE.

3-371

Solute building block: guanosine 5’-phosphoric acid (RNA, charge -e)
Name: GUA

Figure 4.177. GUA non-bonded parameters.

Figure 4.178. GUA bonded parameters.

3-372

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 27

6 C4* 14 3 0.16000 7 8 24 27 28

7 O4* 3 16 -0.36000 8 9 24 27

8 C1* 14 3 0.20000 9 10 11 20 21 22 23 24 25 27

9 N9 9 14 -0.20000 10 11 12 18 20 21 22 23 24

10 C4 12 12 0.20000 11 12 13 16 18 19 20 21 22 23

11 N3 9 14 -0.54000 12 13 16 17 18 20 21 22

12 C2 12 12 0.54000 13 14 15 16 17 18 19 20

13 N2 7 14 -0.83000 14 15 16 17 18

14 H21 21 1 0.41500 15

15 H22 21 1 0.41500

16 N1 9 14 -0.31000 17 18 19 20 21

17 H1 21 1 0.31000 18 19 20

18 C6 12 12 0.45000 19 20 21 22

19 O6 1 16 -0.45000 20 21

20 C5 12 12 0.00000 21 22 23

21 N7 9 14 -0.54000 22 23

22 C8 12 12 0.44000 23

23 H8 20 1 0.10000

24 C2* 14 3 0.15000 25 26 27 28

25 O2* 3 16 -0.54800 26 27

26 H2* 21 1 0.39800

27 C3* 14 3 0.00000

28 O3* 3 16 -0.36000

Table 4.441. Atoms of building block GUA.

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

Table 4.443: continues on next page.

3-373

I J K Type

4 5 6 9

5 6 7 9

5 6 27 8

7 6 27 9

6 7 8 10

7 8 9 9

7 8 24 9

9 8 24 9

8 9 10 37

8 9 22 37

10 9 22 7

9 10 11 39

9 10 20 7

11 10 20 27

10 11 12 27

11 12 13 27

11 12 16 27

13 12 16 27

12 13 14 23

12 13 15 23

14 13 15 24

12 16 17 25

12 16 18 27

17 16 18 25

16 18 19 27

16 18 20 27

19 18 20 27

10 20 18 27

10 20 21 7

18 20 21 39

20 21 22 7

9 22 21 7

9 22 23 36

21 22 23 36

8 24 25 9

8 24 27 8

25 24 27 9

24 25 26 12

6 27 24 8

6 27 28 9

24 27 28 9

27 28 29 26

Table 4.443: Bond angles of building block GUA.

3-374

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 27 26

7 8 20

8 9 22

8 24 26

9 10 10

9 22 10

10 11 12

10 20 16

11 12 12

12 13 9

12 16 17

13 14 2

13 15 2

16 17 2

16 18 17

18 19 5

18 20 16

20 21 10

21 22 10

22 23 3

24 25 20

24 27 26

25 26 1

27 28 20

28 29 28

Table 4.442. Bonds of building block GUA.

3-375

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 27 17

4 5 6 27 34

27 6 7 8 29

5 6 27 24 34

5 6 27 28 17

7 6 27 24 17

7 6 27 28 18

6 7 8 24 29

7 8 9 10 16

7 8 24 25 18

7 8 24 27 17

7 8 24 27 34

9 8 24 25 17

11 12 13 14 14

8 24 25 26 23

8 24 27 6 34

8 24 27 28 17

25 24 27 6 17

25 24 27 28 18

6 27 28 29 29

Table 4.444. Dihedral angles of building block GUA.

3-376

I J K L Type

8 10 22 9 1

9 10 20 21 1

10 9 11 20 1

10 9 22 21 1

10 11 12 16 1

10 20 21 22 1

11 10 20 18 1

11 12 16 18 1

12 16 18 20 1

13 11 16 12 1

13 14 15 12 1

16 18 20 10 1

17 12 18 16 1

19 16 20 18 1

20 10 11 12 1

20 18 21 10 1

20 21 22 9 1

22 9 10 20 1

22 9 21 23 1

24 7 9 8 2

24 25 27 8 2

27 5 7 6 2

27 24 28 6 2

Table 4.445. Improper dihedral angles of building block GUA.

3-377

Solute building block: cytidine 5’-phosphoric acid (RNA, charge -e)
Name: CYT

Figure 4.179. CYT non-bonded parameters.

Figure 4.180. CYT bonded parameters.

3-378

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 24

6 C4* 14 3 0.16000 7 8 21 24 25

7 O4* 3 16 -0.36000 8 9 21 24

8 C1* 14 3 0.20000 9 10 11 12 13 14 19 21 22 24

9 N1 9 14 -0.20000 10 11 12 13 14 15 19 20 21

10 C6 12 12 0.10000 11 12 13 14 15 16 19 20

11 H6 20 1 0.10000 12 15 19 20

12 C2 12 12 0.45000 13 14 15 16 19

13 O2 1 16 -0.45000 14 15

14 N3 9 14 -0.54000 15 16 19 20

15 C4 12 12 0.54000 16 17 18 19 20

16 N4 7 14 -0.83000 17 18 19 20

17 H41 21 1 0.41500 18

18 H42 21 1 0.41500

19 C5 12 12 -0.10000 20

20 H5 20 1 0.10000

21 C2* 14 3 0.15000 22 23 24 25

22 O2* 3 16 -0.54800 23 24

23 H2* 21 1 0.39800

24 C3* 14 3 0.00000

25 O3* 3 16 -0.36000

Table 4.446. Atoms of building block CYT.

3-379

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 24 26

7 8 20

8 9 23

8 21 26

9 10 17

9 12 17

10 11 3

10 19 16

12 13 5

12 14 12

14 15 12

15 16 9

15 19 16

16 17 2

16 18 2

19 20 3

21 22 20

21 24 26

22 23 1

24 25 20

25 26 28

Table 4.447. Bonds of building block CYT.

3-380

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 24 8

7 6 24 9

6 7 8 10

7 8 9 9

7 8 21 9

9 8 21 8

8 9 10 27

8 9 12 27

10 9 12 27

9 10 11 25

9 10 19 27

11 10 19 25

9 12 13 27

9 12 14 27

13 12 14 27

12 14 15 27

14 15 16 27

14 15 19 27

16 15 19 27

15 16 17 23

15 16 18 23

17 16 18 24

10 19 15 27

10 19 20 25

15 19 20 25

8 21 22 9

8 21 24 8

22 21 24 9

21 22 23 12

6 24 21 8

6 24 25 9

21 24 25 9

24 25 26 26

Table 4.448. Bond angles of building block CYT.

3-381

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 24 17

4 5 6 24 34

24 6 7 8 29

5 6 24 21 34

5 6 24 25 17

7 6 24 21 17

7 6 24 25 18

6 7 8 21 29

7 8 9 12 16

7 8 21 22 18

7 8 21 24 17

7 8 21 24 34

9 8 21 22 17

14 15 16 17 14

8 21 22 23 23

8 21 24 6 34

8 21 24 25 17

22 21 24 6 17

22 21 24 25 18

6 24 25 26 29

Table 4.449. Dihedral angles of building block CYT.

3-382

I J K L Type

9 10 12 8 1

9 10 19 15 1

9 12 14 15 1

10 9 12 14 1

10 9 19 11 1

12 9 10 19 1

12 14 15 19 1

13 9 14 12 1

14 15 19 10 1

16 14 19 15 1

16 17 18 15 1

19 10 15 20 1

21 7 9 8 2

21 22 24 8 2

24 5 7 6 2

24 21 25 6 2

Table 4.450. Improper dihedral angles of building block CYT.

3-383

Solute building block: uridine 5’-phosphoric acid (RNA, charge -e)
Name: URA

Figure 4.181. URA non-bonded parameters.

Figure 4.182. URA bonded parameters.

3-384

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 3 4

1 P 30 31 0.99000 2 3 4 5

2 O1P 2 16 -0.63500 3 4

3 O2P 2 16 -0.63500 4

4 O5* 3 16 -0.36000 5 6

5 C5* 15 4 0.00000 6 7 23

6 C4* 14 3 0.16000 7 8 20 23 24

7 O4* 3 16 -0.36000 8 9 20 23

8 C1* 14 3 0.20000 9 10 11 12 13 14 18 20 21 23

9 N1 9 14 -0.20000 10 11 12 13 14 15 16 18 19 20

10 C6 12 12 0.10000 11 12 13 14 16 17 18 19

11 H6 20 1 0.10000 12 16 18 19

12 C2 12 12 0.45000 13 14 15 16 17 18

13 O2 1 16 -0.45000 14 15 16

14 N3 9 14 -0.31000 15 16 17 18 19

15 H3 21 1 0.31000 16 17 18

16 C4 12 12 0.45000 17 18 19

17 O4 1 16 -0.45000 18 19

18 C5 12 12 -0.10000 19

19 H5 20 1 0.10000

20 C2* 14 3 0.15000 21 22 23 24

21 O2* 3 16 -0.54800 22 23

22 H2* 21 1 0.39800

23 C3* 14 3 0.00000

24 O3* 3 16 -0.36000

Table 4.451. Atoms of building block URA.

3-385

I J Type

1 2 24

1 3 24

1 4 28

4 5 20

5 6 26

6 7 20

6 23 26

7 8 20

8 9 23

8 20 26

9 10 17

9 12 17

10 11 3

10 18 16

12 13 5

12 14 17

14 15 2

14 16 17

16 17 5

16 18 16

18 19 3

20 21 20

20 23 26

21 22 1

23 24 20

24 25 28

Table 4.452. Bonds of building block URA.

3-386

I J K Type

0 1 2 14

0 1 3 14

0 1 4 5

2 1 3 29

2 1 4 14

3 1 4 14

1 4 5 26

4 5 6 9

5 6 7 9

5 6 23 8

7 6 23 9

6 7 8 10

7 8 9 9

7 8 20 9

9 8 20 8

8 9 10 27

8 9 12 27

10 9 12 27

9 10 11 25

9 10 18 27

11 10 18 25

9 12 13 27

9 12 14 27

13 12 14 27

12 14 15 25

12 14 16 27

15 14 16 25

14 16 17 27

14 16 18 27

17 16 18 27

10 18 16 27

10 18 19 25

16 18 19 25

8 20 21 9

8 20 23 8

21 20 23 9

20 21 22 12

6 23 20 8

6 23 24 9

20 23 24 9

23 24 25 26

Table 4.453. Bond angles of building block URA.

3-387

I J K L Type

-1 0 1 4 20

-1 0 1 4 27

0 1 4 5 20

0 1 4 5 27

1 4 5 6 7

1 4 5 6 22

4 5 6 7 8

4 5 6 7 25

4 5 6 23 17

4 5 6 23 34

23 6 7 8 29

5 6 23 20 34

5 6 23 24 17

7 6 23 20 17

7 6 23 24 18

6 7 8 20 29

7 8 9 12 16

7 8 20 21 18

7 8 20 23 17

7 8 20 23 34

9 8 20 21 17

8 20 21 22 23

8 20 23 6 34

8 20 23 24 17

21 20 23 6 17

21 20 23 24 18

6 23 24 25 29

Table 4.454. Dihedral angles of building block URA.

3-388

I J K L Type

9 10 12 8 1

9 10 18 16 1

9 12 14 16 1

10 9 12 14 1

10 9 18 11 1

12 9 10 18 1

12 14 16 18 1

13 9 14 12 1

14 16 18 10 1

15 12 16 14 1

17 14 18 16 1

18 10 16 19 1

20 7 9 8 2

20 21 23 8 2

23 5 7 6 2

23 20 24 6 2

Table 4.455. Improper dihedral angles of building block URA.

3-389

Solute building block: flavin mononucleotide (oxydized,deprotonated at FN5 and FN1;charge -e, OPOHO−
2)

Name: FMNO

Figure 4.183. FMNO non-bonded parameters.

3-390

Figure 4.184. FMNO bonded parameters.

3-391

Seq. Name IAC Mass Charge Exclusions

1 FC9A 12 12 0.20000 2 3 4 11 12 13 14 15 16 18 19 20 21 22

2 FN10 9 14 -0.20000 3 4 5 9 11 12 13 14 18 20 21 22 23

3 FC10A 12 12 0.36000 4 5 6 7 9 10 11 12 13 20 22

4 FN1 9 14 -0.36000 5 6 7 8 9 11 12 22

5 FC2 12 12 0.38000 6 7 8 9 10 11

6 FO2 1 16 -0.38000 7 8 9

7 FN3 9 14 -0.28000 8 9 10 11 12

8 FH3 21 1 0.28000 9 10 11

9 FC4 12 12 0.38000 10 11 12 13

10 FO4 1 16 -0.38000 11 12

11 FC4A 12 12 0.18000 12 13 14 22

12 FN5 9 14 -0.28000 13 14 15 16 20

13 FC5A 12 12 0.10000 14 15 16 17 18 20 21 22

14 FC6 12 12 -0.10000 15 16 17 18 19 20

15 FHC6 20 1 0.10000 16 17 18

16 FC7 12 12 0.00000 17 18 19 20 21

17 FCM7 16 5 0.00000 18 19 20

18 FC8 12 12 0.00000 19 20 21

19 FCM8 16 5 0.00000 20 21

20 FC9 12 12 -0.10000 21 22

21 FHC9 20 1 0.10000

22 FCA 15 4 0.00000 23 24 26

23 FCB 14 3 0.15000 24 25 26 27 29

24 FOB 3 16 -0.54800 25 26

25 FHB 21 1 0.39800

26 FCG 14 3 0.15000 27 28 29 30 32

27 FOG 3 16 -0.54800 28 29

28 FHG 21 1 0.39800

29 FCD 14 3 0.15000 30 31 32 33

30 FOD 3 16 -0.54800 31 32

31 FHD 21 1 0.39800

32 FCE 15 4 0.15000 33 34

33 FOZ 3 16 -0.36000 34 35 36 37 38

34 FPH 30 31 0.63000 35 36 37 38

35 FOH 3 16 -0.54800 36 37 38

36 FHH 21 1 0.39800 37 38

37 FOT1 2 16 -0.63500 38

38 FOT2 2 16 -0.63500

Table 4.456: Atoms of building block FMNO.

3-392

I J Type

1 2 17

1 13 16

1 20 16

2 3 17

2 22 23

3 4 12

3 11 16

4 5 12

5 6 5

5 7 17

7 8 2

7 9 17

9 10 5

9 11 16

11 12 12

12 13 12

13 14 16

14 15 3

14 16 16

16 17 27

16 18 16

18 19 27

18 20 16

20 21 3

22 23 27

23 24 18

23 26 27

24 25 1

26 27 18

26 29 27

27 28 1

29 30 18

29 32 27

30 31 1

32 33 18

33 34 28

34 35 28

34 37 24

34 38 24

35 36 1

Table 4.457: Bonds of building block FMNO.

3-393

I J K Type

2 1 13 27

2 1 20 27

13 1 20 27

1 2 3 27

1 2 22 27

3 2 22 27

2 3 4 27

2 3 11 27

4 3 11 27

3 4 5 27

4 5 6 27

4 5 7 27

6 5 7 27

5 7 8 25

5 7 9 27

8 7 9 25

7 9 10 27

7 9 11 27

10 9 11 27

3 11 9 27

3 11 12 27

9 11 12 27

11 12 13 27

1 13 12 27

1 13 14 27

12 13 14 27

13 14 15 25

13 14 16 27

15 14 16 25

14 16 17 27

14 16 18 27

17 16 18 27

16 18 19 27

16 18 20 27

19 18 20 27

1 20 18 27

1 20 21 25

18 20 21 25

2 22 23 15

22 23 24 15

22 23 26 15

24 23 26 13

23 24 25 12

23 26 27 13

23 26 29 15

27 26 29 13

Table 4.458: continues on next page.

3-394

I J K Type

26 27 28 12

26 29 30 13

26 29 32 15

30 29 32 15

29 30 31 12

29 32 33 15

32 33 34 26

33 34 35 5

33 34 37 14

33 34 38 14

35 34 37 14

35 34 38 14

37 34 38 29

34 35 36 12

Table 4.458: Bond angles of building block FMNO.

3-395

I J K L Type

13 1 2 3 14

1 2 3 11 14

1 2 22 23 40

3 11 12 13 14

11 12 13 1 14

2 22 23 26 34

22 23 24 25 23

22 23 26 29 34

23 26 27 28 23

23 26 29 32 34

26 29 30 31 23

26 29 32 33 34

29 32 33 34 7

29 32 33 34 22

32 33 34 35 20

32 33 34 35 27

33 34 35 36 20

33 34 35 36 27

Table 4.459: Dihedral angles of building block FMNO.

3-396

I J K L Type

1 2 20 13 1

1 13 14 16 1

2 1 13 12 1

2 3 11 12 1

3 4 5 7 1

4 3 11 9 1

4 5 7 9 1

5 4 7 6 1

5 7 9 11 1

7 5 9 8 1

7 9 11 3 1

9 7 11 10 1

11 2 4 3 1

11 3 4 5 1

11 9 12 3 1

13 1 20 18 1

13 12 14 1 1

13 14 16 18 1

14 16 18 20 1

15 13 16 14 1

16 14 18 17 1

16 18 20 1 1

18 16 20 19 1

20 1 13 14 1

20 1 18 21 1

23 24 26 22 2

26 27 29 23 2

29 30 32 26 2

Table 4.460: Improper dihedral angles of building block FMNO.

3-397

Solute building block: proflavin (protonated at FN5; charge +e)
Name: PFN

Figure 4.185. PFN non-bonded parameters.

Figure 4.186. PFN bonded parameters.

3-398

Seq. Name IAC Mass Charge Exclusions

1 FC9A 12 12 0.00000 2 3 4 5 15 16 17 18 19 20 21 25 26 27 28

2 FC10 12 12 -0.10000 3 4 5 6 7 13 15 16 18 19 25 27 28

3 FHC0 20 1 0.10000 4 5 15 18 27

4 FC10A 12 12 0.00000 5 6 7 8 9 13 14 15 16 17 18 27

5 FC1 12 12 -0.10000 6 7 8 9 10 13 15 16

6 FHC1 20 1 0.10000 7 8 9 15

7 FC2 12 12 -0.10000 8 9 10 13 14 15

8 FHC2 20 1 0.10000 9 10 13

9 FC3 12 12 0.00000 10 11 12 13 14 15 16

10 FN3 7 14 -0.83000 11 12 13 14 15

11 FH31 21 1 0.41500 12

12 FH32 21 1 0.41500

13 FC4 12 12 -0.10000 14 15 16 17 18

14 FHC4 20 1 0.10000 15 16

15 FC4A 12 12 0.15000 16 17 18 19

16 FN5 9 14 0.28500 17 18 19 20 21 27

17 FH5 21 1 0.41500 18 19

18 FC5A 12 12 0.15000 19 20 21 22 25 27 28

19 FC6 12 12 -0.10000 20 21 22 25 26 27

20 FHC6 20 1 0.10000 21 22 25

21 FC7 12 12 0.00000 22 23 24 25 26 27 28

22 FN7 7 14 -0.83000 23 24 25 26 27

23 FH71 21 1 0.41500 24

24 FH72 21 1 0.41500

25 FC8 12 12 -0.10000 26 27 28

26 FHC8 20 1 0.10000 27 28

27 FC9 12 12 -0.10000 28

28 FHC9 20 1 0.10000

Table 4.461: Atoms of building block PFN.

3-399

I J Type

1 2 16

1 18 16

1 27 16

2 3 3

2 4 16

4 5 16

4 15 16

5 6 3

5 7 16

7 8 3

7 9 16

9 10 9

9 13 16

10 11 2

10 12 2

13 14 3

13 15 16

15 16 17

16 17 2

16 18 17

18 19 16

19 20 3

19 21 16

21 22 9

21 25 16

22 23 2

22 24 2

25 26 3

25 27 16

27 28 3

Table 4.462: Bonds of building block PFN.

3-400

I J K Type

2 1 18 27

2 1 27 27

18 1 27 27

1 2 3 25

1 2 4 27

3 2 4 25

2 4 5 27

2 4 15 27

5 4 15 27

4 5 6 25

4 5 7 27

6 5 7 25

5 7 8 25

5 7 9 27

8 7 9 25

7 9 10 27

7 9 13 27

10 9 13 27

9 10 11 23

9 10 12 23

11 10 12 24

9 13 14 25

9 13 15 27

14 13 15 25

4 15 13 27

4 15 16 27

13 15 16 27

15 16 17 25

15 16 18 27

17 16 18 25

1 18 16 27

1 18 19 27

16 18 19 27

18 19 20 25

18 19 21 27

20 19 21 25

19 21 22 27

19 21 25 27

22 21 25 27

21 22 23 23

21 22 24 23

23 22 24 24

21 25 26 25

21 25 27 27

26 25 27 25

1 27 25 27

Table 4.463: continues on next page.

3-401

I J K Type

1 27 28 25

25 27 28 25

Table 4.463: Bond angles of building block PFN.

3-402

I J K L Type

7 9 10 11 14

25 21 22 23 14

Table 4.464: Dihedral angles of building block PFN.

3-403

I J K L Type

1 2 4 15 1

1 2 27 18 1

1 18 19 21 1

2 1 4 3 1

2 1 18 16 1

2 4 15 16 1

4 5 7 9 1

4 15 16 18 1

5 4 7 6 1

5 4 15 13 1

5 7 9 13 1

7 5 9 8 1

7 9 13 15 1

9 7 13 10 1

9 13 15 4 1

10 11 12 9 1

13 9 15 14 1

15 2 5 4 1

15 4 5 7 1

15 13 16 4 1

15 16 18 1 1

16 15 18 17 1

18 1 2 4 1

18 1 27 25 1

18 16 19 1 1

18 19 21 25 1

19 18 21 20 1

19 21 25 27 1

21 25 27 1 1

22 19 25 21 1

22 23 24 21 1

25 21 27 26 1

27 1 18 19 1

27 1 25 28 1

Table 4.465: Improper dihedral angles of building block PFN.

3-404

Solute building block: nicotinamide adenine dinucleotide (NAD+; charge -e)
Name: NADP

Figure 4.187. NADP non-bonded parameters.

3-405

Figure 4.188. NADP bonded parameters.

3-406

Seq. Name IAC Mass Charge Exclusions

1 AP 30 31 0.76000 2 3 4 5 6 10

2 AO1P 2 16 -0.63500 3 4 5

3 AO2P 2 16 -0.63500 4 5

4 AO5* 3 16 -0.36000 5 10 11

5 O3P 3 16 -0.26000 6 7 8 9

6 NP 30 31 0.76000 7 8 9 34

7 NO1P 2 16 -0.63500 8 9

8 NO2P 2 16 -0.63500 9

9 NO5* 3 16 -0.36000 34 35

10 AC5* 15 4 0.00000 11 12 31

11 AC4* 14 3 0.16000 12 13 28 31 32

12 AO4* 3 16 -0.36000 13 14 28 31

13 AC1* 14 3 0.20000 14 15 16 24 25 26 27 28 29 31

14 AN9 9 14 -0.20000 15 16 17 20 24 25 26 27 28

15 AC4 12 12 0.20000 16 17 18 19 20 21 24 25 26 27

16 AN3 9 14 -0.54000 17 18 19 20 24 25 26

17 AC2 12 12 0.44000 18 19 20 21 24

18 AH2 20 1 0.10000 19 20

19 AN1 9 14 -0.54000 20 21 24 25

20 AC6 12 12 0.54000 21 22 23 24 25 26

21 AN6 7 14 -0.83000 22 23 24 25

22 AH61 21 1 0.41500 23 25

23 AH62 21 1 0.41500 25

24 AC5 12 12 0.00000 25 26 27

25 AN7 9 14 -0.54000 26 27

26 AC8 12 12 0.44000 27

27 AH8 20 1 0.10000

28 AC2* 14 3 0.15000 29 30 31 32

29 AO2* 3 16 -0.54800 30 31

30 AH2* 21 1 0.39800

31 AC3* 14 3 0.15000 32 33

32 AO3* 3 16 -0.54800 33

33 AH3* 21 1 0.39800

34 NC5* 15 4 0.00000 35 36 56

35 NC4* 14 3 0.16000 36 37 53 56 57

36 NO4* 3 16 -0.36000 37 38 53 56

37 NC1* 14 3 0.20000 38 39 40 41 42 43 46 53 54 56

38 NN1 9 14 0.10000 39 40 41 42 43 44 46 47 48 53

39 NC6 12 12 0.20000 40 41 42 43 44 45 46 47

40 NH6 20 1 0.10000 41 44 46 47

41 NC2 12 12 0.15000 42 43 44 45 46 48

42 NH2 20 1 0.10000 43 44 48

43 NC3 12 12 0.00000 44 45 46 47 48 49 50

44 NC4 12 12 0.15000 45 46 47 48

45 NH4 20 1 0.10000 46 47 48

46 NC5 12 12 0.00000 47 48

Table 4.466: continues on next page.

3-407

Seq. Name IAC Mass Charge Exclusions

47 HC5 20 1 0.10000

48 NC7 12 12 0.38000 49 50 51 52

49 NO7 1 16 -0.38000 50

50 NN7 7 14 -0.83000 51 52

51 NH71 21 1 0.41500 52

52 NH72 21 1 0.41500

53 NC2* 14 3 0.15000 54 55 56 57

54 NO2* 3 16 -0.54800 55 56

55 NH2* 21 1 0.39800

56 NC3* 14 3 0.15000 57 58

57 NO3* 3 16 -0.54800 58

58 NH3* 21 1 0.39800

Table 4.466: Atoms of building block NADP.

3-408

I J Type

1 2 24

1 3 24

1 4 28

1 5 28

4 10 20

5 6 28

6 7 24

6 8 24

6 9 28

9 34 20

10 11 26

11 12 20

11 31 26

12 13 20

13 14 22

13 28 26

14 15 10

14 26 10

15 16 12

15 24 16

16 17 7

17 18 3

17 19 7

19 20 12

20 21 9

20 24 16

21 22 2

21 23 2

24 25 10

25 26 10

26 27 3

28 29 20

28 31 26

29 30 1

31 32 20

32 33 1

34 35 26

35 36 20

35 56 26

36 37 20

37 38 23

37 53 26

38 39 17

38 41 17

39 40 3

39 46 16

Table 4.467: continues on next page.

3-409

I J Type

41 42 3

41 43 16

43 44 16

43 48 27

44 45 3

44 46 16

46 47 3

48 49 5

48 50 9

50 51 2

50 52 2

53 54 20

53 56 26

54 55 1

56 57 20

57 58 1

Table 4.467: Bonds of building block NADP.

3-410

I J K Type

2 1 3 29

2 1 4 14

2 1 5 14

3 1 4 14

3 1 5 14

4 1 5 5

1 4 10 26

1 5 6 26

5 6 7 14

5 6 8 14

5 6 9 5

7 6 8 29

7 6 9 14

8 6 9 14

6 9 34 26

4 10 11 9

10 11 12 9

10 11 31 8

12 11 31 9

11 12 13 10

12 13 14 9

12 13 28 9

14 13 28 9

13 14 15 37

13 14 26 37

15 14 26 7

14 15 16 39

14 15 24 7

16 15 24 27

15 16 17 27

16 17 18 25

16 17 19 27

18 17 19 25

17 19 20 27

19 20 21 27

19 20 24 27

21 20 24 27

20 21 22 23

20 21 23 23

22 21 23 24

15 24 20 27

15 24 25 7

20 24 25 39

24 25 26 7

14 26 25 7

14 26 27 36

Table 4.468: continues on next page.

3-411

I J K Type

25 26 27 36

13 28 29 9

13 28 31 8

29 28 31 9

28 29 30 12

11 31 28 8

11 31 32 9

28 31 32 9

31 32 33 12

9 34 35 9

34 35 36 9

34 35 56 8

36 35 56 9

35 36 37 10

36 37 38 9

36 37 53 9

38 37 53 8

37 38 39 27

37 38 41 27

39 38 41 27

38 39 40 25

38 39 46 27

40 39 46 25

38 41 42 25

38 41 43 27

42 41 43 25

41 43 44 27

41 43 48 27

44 43 48 27

43 44 45 25

43 44 46 27

45 44 46 25

39 46 44 27

39 46 47 25

44 46 47 25

43 48 49 30

43 48 50 19

49 48 50 33

48 50 51 23

48 50 52 23

51 50 52 24

37 53 54 9

37 53 56 8

54 53 56 9

53 54 55 12

35 56 53 8

35 56 57 9

Table 4.468: continues on next page.

3-412

I J K Type

53 56 57 9

56 57 58 12

Table 4.468: Bond angles of building block NADP.

3-413

I J K L Type

5 1 4 10 20

5 1 4 10 27

4 1 5 6 20

4 1 5 6 27

1 4 10 11 7

1 4 10 11 22

1 5 6 9 20

1 5 6 9 27

5 6 9 34 20

5 6 9 34 27

6 9 34 35 7

6 9 34 35 22

4 10 11 12 8

4 10 11 12 25

4 10 11 31 17

4 10 11 31 34

31 11 12 13 29

10 11 31 28 34

10 11 31 32 17

12 11 31 28 17

12 11 31 32 18

11 12 13 28 29

12 13 14 15 16

12 13 28 29 18

12 13 28 31 17

12 13 28 31 34

14 13 28 29 17

24 20 21 22 14

13 28 29 30 23

13 28 31 11 34

13 28 31 32 17

29 28 31 11 17

29 28 31 32 18

11 31 32 33 23

9 34 35 36 8

9 34 35 36 25

9 34 35 56 17

9 34 35 56 34

56 35 36 37 29

34 35 56 53 34

34 35 56 57 17

36 35 56 53 17

36 35 56 57 18

35 36 37 53 29

36 37 38 41 16

36 37 53 54 18

Table 4.469: continues on next page.

3-414

I J K L Type

36 37 53 56 17

36 37 53 56 34

38 37 53 54 17

41 43 48 50 10

43 48 50 51 14

37 53 54 55 23

37 53 56 35 34

37 53 56 57 17

54 53 56 35 17

54 53 56 57 18

35 56 57 58 23

Table 4.469: Dihedral angles of building block NADP.

3-415

I J K L Type

14 13 15 26 1

14 15 24 25 1

15 14 16 24 1

15 14 26 25 1

15 16 17 19 1

15 24 25 26 1

16 15 24 20 1

16 17 19 20 1

17 16 18 19 1

17 19 20 24 1

19 20 24 15 1

20 19 21 24 1

21 20 22 23 1

24 15 16 17 1

24 15 20 25 1

24 25 26 14 1

26 14 15 24 1

26 14 25 27 1

28 12 14 13 2

28 29 31 13 2

31 10 12 11 2

31 28 32 11 2

38 37 39 41 1

38 39 46 44 1

38 41 43 44 1

39 38 40 46 1

39 38 41 43 1

41 38 39 46 1

41 38 42 43 1

41 43 44 46 1

43 41 44 48 1

43 44 46 39 1

44 43 46 45 1

46 39 44 47 1

48 43 49 50 1

50 48 51 52 1

53 36 38 37 2

53 54 56 37 2

56 34 36 35 2

56 53 57 35 2

Table 4.470: Improper dihedral angles of building block NADP.

3-416

Solute building block: nicotinamide adenine dinucleotide phosphate(NADPH;charge -3e, OPOHO−
2)

Name: NDPH

Figure 4.189. NDPH non-bonded parameters.

3-417

Figure 4.190. NDPH bonded parameters.

3-418

Seq. Name IAC Mass Charge Exclusions

1 AP 30 31 0.76000 2 3 4 5 6 10

2 AO1P 2 16 -0.63500 3 4 5

3 AO2P 2 16 -0.63500 4 5

4 AO5* 3 16 -0.36000 5 10 11

5 O3P 3 16 -0.26000 6 7 8 9

6 NP 30 31 0.76000 7 8 9 38

7 NO1P 2 16 -0.63500 8 9

8 NO2P 2 16 -0.63500 9

9 NO5* 3 16 -0.36000 38 39

10 AC5* 15 4 0.00000 11 12 35

11 AC4* 14 3 0.16000 12 13 28 35 36

12 AO4* 3 16 -0.36000 13 14 28 35

13 AC1* 14 3 0.20000 14 15 16 24 25 26 27 28 29 35

14 AN9 9 14 -0.20000 15 16 17 20 24 25 26 27 28

15 AC4 12 12 0.20000 16 17 18 19 20 21 24 25 26 27

16 AN3 9 14 -0.54000 17 18 19 20 24 25 26

17 AC2 12 12 0.44000 18 19 20 21 24

18 AH2 20 1 0.10000 19 20

19 AN1 9 14 -0.54000 20 21 24 25

20 AC6 12 12 0.54000 21 22 23 24 25 26

21 AN6 7 14 -0.83000 22 23 24 25

22 AH61 21 1 0.41500 23 25

23 AH62 21 1 0.41500 25

24 AC5 12 12 0.00000 25 26 27

25 AN7 9 14 -0.54000 26 27

26 AC8 12 12 0.44000 27

27 AH8 20 1 0.10000

28 AC2* 14 3 0.15000 29 30 35 36

29 AO2* 3 16 -0.36000 30 31 32 33 34 35

30 AP2* 30 31 0.63000 31 32 33 34

31 AO6* 2 16 -0.63500 32 33 34

32 AO7* 2 16 -0.63500 33 34

33 AO8* 3 16 -0.54800 34

34 AH8* 21 1 0.39800

35 AC3* 14 3 0.15000 36 37

36 AO3* 3 16 -0.54800 37

37 AH3* 21 1 0.39800

38 NC5* 15 4 0.00000 39 40 59

39 NC4* 14 3 0.16000 40 41 56 59 60

40 NO4* 3 16 -0.36000 41 42 56 59

41 NC1* 14 3 0.20000 42 43 44 45 46 47 49 56 57 59

42 NN1 9 14 -0.20000 43 44 45 46 47 48 49 50 51 56

43 NC6 12 12 0.10000 44 45 46 47 48 49 50

44 NH6 20 1 0.10000 45 48 49 50

45 NC2 12 12 -0.10000 46 47 48 49 51

46 NH2 20 1 0.10000 47 48 51

Table 4.471: continues on next page.

3-419

Seq. Name IAC Mass Charge Exclusions

47 NC3 12 12 0.00000 48 49 50 51 52 53

48 NC4 18 4 0.00000 49 50 51

49 NC5 12 12 -0.10000 50 51

50 NH5 20 1 0.10000

51 NC7 12 12 0.38000 52 53 54 55

52 NO7 1 16 -0.38000 53

53 NN7 7 14 -0.83000 54 55

54 NH71 21 1 0.41500 55

55 NH72 21 1 0.41500

56 NC2* 14 3 0.15000 57 58 59 60

57 NO2* 3 16 -0.54800 58 59

58 NH2* 21 1 0.39800

59 NC3* 14 3 0.15000 60 61

60 NO3* 3 16 -0.54800 61

61 NH3* 21 1 0.39800

Table 4.471: Atoms of building block NDPH.

3-420

I J Type

1 2 24

1 3 24

1 4 28

1 5 28

4 10 20

5 6 28

6 7 24

6 8 24

6 9 28

9 38 20

10 11 26

11 12 20

11 35 26

12 13 20

13 14 22

13 28 26

14 15 10

14 26 10

15 16 12

15 24 16

16 17 7

17 18 3

17 19 7

19 20 12

20 21 9

20 24 16

21 22 2

21 23 2

24 25 10

25 26 10

26 27 3

28 29 20

28 35 26

29 30 28

30 31 24

30 32 24

30 33 28

33 34 1

35 36 20

36 37 1

38 39 26

39 40 20

39 59 26

40 41 20

41 42 23

41 56 26

Table 4.472: continues on next page.

3-421

I J Type

42 43 17

42 45 17

43 44 3

43 49 16

45 46 3

45 47 16

47 48 15

47 51 27

48 49 15

49 50 3

51 52 5

51 53 9

53 54 2

53 55 2

56 57 20

56 59 26

57 58 1

59 60 20

60 61 1

Table 4.472: Bonds of building block NDPH.

3-422

I J K Type

2 1 3 29

2 1 4 14

2 1 5 14

3 1 4 14

3 1 5 14

4 1 5 5

1 4 10 26

1 5 6 26

5 6 7 14

5 6 8 14

5 6 9 5

7 6 8 29

7 6 9 14

8 6 9 14

6 9 38 26

4 10 11 9

10 11 12 9

10 11 35 8

12 11 35 9

11 12 13 10

12 13 14 9

12 13 28 9

14 13 28 9

13 14 15 37

13 14 26 37

15 14 26 7

14 15 16 39

14 15 24 7

16 15 24 27

15 16 17 27

16 17 18 25

16 17 19 27

18 17 19 25

17 19 20 27

19 20 21 27

19 20 24 27

21 20 24 27

20 21 22 23

20 21 23 23

22 21 23 24

15 24 20 27

15 24 25 7

20 24 25 39

24 25 26 7

14 26 25 7

14 26 27 36

Table 4.473: continues on next page.

3-423

I J K Type

25 26 27 36

13 28 29 9

13 28 35 8

29 28 35 9

28 29 30 26

29 30 31 14

29 30 32 14

29 30 33 5

31 30 32 29

31 30 33 14

32 30 33 14

30 33 34 12

11 35 28 8

11 35 36 9

28 35 36 9

35 36 37 12

9 38 39 9

38 39 40 9

38 39 59 8

40 39 59 9

39 40 41 10

40 41 42 9

40 41 56 9

42 41 56 8

41 42 43 27

41 42 45 27

43 42 45 27

42 43 44 25

42 43 49 27

44 43 49 25

42 45 46 25

42 45 47 27

46 45 47 25

45 47 48 27

45 47 51 27

48 47 51 27

47 48 49 27

43 49 48 27

43 49 50 25

48 49 50 25

47 51 52 30

47 51 53 19

52 51 53 33

51 53 54 23

51 53 55 23

54 53 55 24

41 56 57 9

Table 4.473: continues on next page.

3-424

I J K Type

41 56 59 8

57 56 59 9

56 57 58 12

39 59 56 8

39 59 60 9

56 59 60 9

59 60 61 12

Table 4.473: Bond angles of building block NDPH.

3-425

I J K L Type

5 1 4 10 20

5 1 4 10 27

4 1 5 6 20

4 1 5 6 27

1 4 10 11 7

1 4 10 11 22

1 5 6 9 20

1 5 6 9 27

5 6 9 38 20

5 6 9 38 27

6 9 38 39 7

6 9 38 39 22

4 10 11 12 8

4 10 11 12 25

4 10 11 35 17

4 10 11 35 34

35 11 12 13 29

10 11 35 28 34

10 11 35 36 17

12 11 35 28 17

12 11 35 36 18

11 12 13 28 29

12 13 14 15 16

12 13 28 29 18

12 13 28 35 17

12 13 28 35 34

14 13 28 29 17

24 20 21 22 14

13 28 29 30 23

13 28 35 11 34

13 28 35 36 17

29 28 35 11 17

29 28 35 36 18

28 29 30 33 20

28 29 30 33 27

29 30 33 34 20

29 30 33 34 27

11 35 36 37 23

9 38 39 40 8

9 38 39 40 25

9 38 39 59 17

9 38 39 59 34

59 39 40 41 29

38 39 59 56 34

38 39 59 60 17

40 39 59 56 17

Table 4.474: continues on next page.

3-426

I J K L Type

40 39 59 60 18

39 40 41 56 29

40 41 42 45 16

40 41 56 57 18

40 41 56 59 17

40 41 56 59 34

42 41 56 57 17

45 47 51 53 10

47 51 53 54 14

41 56 57 58 23

41 56 59 39 34

41 56 59 60 17

57 56 59 39 17

57 56 59 60 18

39 59 60 61 23

Table 4.474: Dihedral angles of building block NDPH.

3-427

I J K L Type

14 13 15 26 1

14 15 24 25 1

15 14 16 24 1

15 14 26 25 1

15 16 17 19 1

15 24 25 26 1

16 15 24 20 1

16 17 19 20 1

17 16 18 19 1

17 19 20 24 1

19 20 24 15 1

20 19 21 24 1

21 20 22 23 1

24 15 16 17 1

24 15 20 25 1

24 25 26 14 1

26 14 15 24 1

26 14 25 27 1

28 12 14 13 2

28 29 35 13 2

35 10 12 11 2

35 28 36 11 2

42 41 43 45 1

42 43 49 48 1

42 45 47 48 1

43 42 44 49 1

43 42 45 47 1

45 42 43 49 1

45 42 46 47 1

45 47 48 49 1

47 45 48 51 1

47 48 49 43 1

49 43 48 50 1

51 47 52 53 1

53 51 54 55 1

56 40 42 41 2

56 57 59 41 2

59 38 40 39 2

59 56 60 39 2

Table 4.475: Improper dihedral angles of building block NDPH.

3-428

4.6. Carbohydrates

Solute building block: -2-D-glucopyranose-β-1-
Name: GB2P

Figure 4.191. GB2P non-bonded parameters.

Figure 4.192. GB2P bonded parameters.

3-429

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 5 13

1 C2 14 3 0.23200 2 5 6 12 13 14

2 C4 14 3 0.23200 3 4 5 6 8 11 12

3 O4 3 16 -0.64200 4 5 11

4 HO4 21 1 0.41000

5 C3 14 3 0.23200 6 7 11 13

6 O3 3 16 -0.64200 7

7 HO3 21 1 0.41000

8 C6 15 4 0.23200 9 10 11 12

9 O6 3 16 -0.64200 10 11

10 HO6 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.476. Atoms of building block GB2P.

I J Type

1 5 26

1 13 26

2 3 20

2 5 26

2 11 26

3 4 1

5 6 20

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.477. Bonds of building block GB2P.

3-430

I J K Type

0 1 5 9

0 1 13 9

5 1 13 8

3 2 5 9

3 2 11 9

5 2 11 8

2 3 4 12

1 5 2 8

1 5 6 9

2 5 6 9

5 6 7 12

9 8 11 9

8 9 10 12

2 11 8 8

2 11 12 9

8 11 12 9

11 12 13 10

1 13 12 9

1 13 14 9

12 13 14 9

13 14 15 10

Table 4.478. Bond angles of building block GB2P.

3-431

I J K L Type

-1 0 1 13 30

0 1 5 2 17

0 1 5 6 18

13 1 5 2 34

13 1 5 6 17

0 1 13 14 18

5 1 13 12 17

5 1 13 12 34

5 1 13 14 17

5 2 3 4 30

3 2 5 1 17

3 2 5 6 18

11 2 5 1 34

11 2 5 6 17

3 2 11 8 17

5 2 11 12 17

5 2 11 12 34

1 5 6 7 30

11 8 9 10 30

9 8 11 12 5

9 8 11 12 37

2 11 12 13 29

11 12 13 1 29

12 13 14 15 2

12 13 14 15 32

Table 4.479. Dihedral angles of building block GB2P.

I J K L Type

1 0 5 13 2

1 12 14 13 2

2 1 6 5 2

2 8 12 11 2

11 3 5 2 2

Table 4.480. Improper dihedral angles of building block GB2P.

3-432

Solute building block: -3-D-glucopyranose-β-1-
Name: GB3P

Figure 4.193. GB3P non-bonded parameters.

Figure 4.194. GB3P bonded parameters.

3-433

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 5

1 C3 14 3 0.23200 2 3 5 6 11 13

2 C4 14 3 0.23200 3 4 5 8 11 12

3 O4 3 16 -0.64200 4 11

4 HO4 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 15 4 0.23200 9 10 11 12

9 O6 3 16 -0.64200 10 11

10 HO6 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.481. Atoms of building block GB3P.

I J Type

1 2 26

1 5 26

2 3 20

2 11 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.482. Bonds of building block GB3P.

3-434

I J K Type

0 1 2 9

0 1 5 9

2 1 5 8

1 2 3 9

1 2 11 8

3 2 11 9

2 3 4 12

1 5 6 9

1 5 13 8

6 5 13 9

5 6 7 12

9 8 11 9

8 9 10 12

2 11 8 8

2 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.483. Bond angles of building block GB3P.

3-435

I J K L Type

-1 0 1 5 30

0 1 2 3 18

0 1 2 11 17

5 1 2 3 17

5 1 2 11 34

0 1 5 6 18

0 1 5 13 17

2 1 5 6 17

2 1 5 13 34

1 2 3 4 30

1 2 11 12 17

1 2 11 12 34

3 2 11 8 17

13 5 6 7 30

1 5 13 12 17

1 5 13 12 34

1 5 13 14 17

6 5 13 14 18

11 8 9 10 30

9 8 11 12 5

9 8 11 12 37

2 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.484. Dihedral angles of building block GB3P.

I J K L Type

1 0 5 2 2

2 1 3 11 2

2 8 12 11 2

5 12 14 13 2

13 1 6 5 2

Table 4.485. Improper dihedral angles of building block GB3P.

3-436

Solute building block: -6-D-glucopyranose-β-1-
Name: GB6P

Figure 4.195. GB6P non-bonded parameters.

Figure 4.196. GB6P bonded parameters.

3-437

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 11

1 C6 15 4 0.23200 8 11 12

2 C3 14 3 0.23200 3 4 5 6 8 9 11 13

3 O3 3 16 -0.64200 4 5 8

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 8 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C4 14 3 0.23200 9 10 11 12

9 O4 3 16 -0.64200 10 11

10 HO4 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.486. Atoms of building block GB6P.

I J Type

1 11 26

2 3 20

2 5 26

2 8 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.487. Bonds of building block GB6P.

3-438

I J K Type

0 1 11 9

3 2 5 9

3 2 8 9

5 2 8 8

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

2 8 9 9

2 8 11 8

9 8 11 9

8 9 10 12

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.488. Bond angles of building block GB6P.

3-439

I J K L Type

-1 0 1 11 30

0 1 11 12 5

0 1 11 12 37

5 2 3 4 30

3 2 5 6 18

3 2 5 13 17

8 2 5 6 17

8 2 5 13 34

3 2 8 9 18

3 2 8 11 17

5 2 8 9 17

5 2 8 11 34

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

2 8 9 10 30

2 8 11 12 17

2 8 11 12 34

9 8 11 1 17

8 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.489. Dihedral angles of building block GB6P.

I J K L Type

2 3 5 8 2

5 12 14 13 2

8 1 12 11 2

8 2 9 11 2

13 2 6 5 2

Table 4.490. Improper dihedral angles of building block GB6P.

3-440

Solute building block: -4-D-glucopyranose-β-1-
Name: GB4P

Figure 4.197. GB4P non-bonded parameters.

Figure 4.198. GB4P bonded parameters.

3-441

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 15 4 0.23200 9 10 11 12

9 O6 3 16 -0.64200 10 11

10 HO6 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.491. Atoms of building block GB4P.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.492. Bonds of building block GB4P.

3-442

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 11 9

8 9 10 12

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.493. Bond angles of building block GB4P.

3-443

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

11 8 9 10 30

9 8 11 12 5

9 8 11 12 37

1 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.494. Dihedral angles of building block GB4P.

I J K L Type

1 8 12 11 2

2 3 5 1 2

5 12 14 13 2

11 0 2 1 2

13 2 6 5 2

Table 4.495. Improper dihedral angles of building block GB4P.

3-444

Solute building block: -4-D-glucopyranose-α-1-
Name: GA4P

Figure 4.199. GA4P non-bonded parameters.

Figure 4.200. GA4P bonded parameters.

3-445

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 15 4 0.23200 9 10 11 12

9 O6 3 16 -0.64200 10 11

10 HO6 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.496. Atoms of building block GA4P.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.497. Bonds of building block GA4P.

3-446

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 11 9

8 9 10 12

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.498. Bond angles of building block GA4P.

3-447

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

11 8 9 10 30

9 8 11 12 5

9 8 11 12 37

1 11 12 13 29

11 12 13 5 29

12 13 14 15 6

12 13 14 15 28

Table 4.499. Dihedral angles of building block GA4P.

I J K L Type

1 8 12 11 2

2 3 5 1 2

11 0 2 1 2

13 2 6 5 2

13 12 14 5 2

Table 4.500. Improper dihedral angles of building block GA4P.

3-448

Solute building block: -4-L-glucopyranose-β-1-
Name: gB4P

Figure 4.201. gB4P non-bonded parameters.

Figure 4.202. gB4P bonded parameters.

3-449

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 15 4 0.23200 9 10 11 12

9 O6 3 16 -0.64200 10 11

10 HO6 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.501. Atoms of building block gB4P.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.502. Bonds of building block gB4P.

3-450

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 11 9

8 9 10 12

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.503. Bond angles of building block gB4P.

3-451

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

11 8 9 10 30

9 8 11 12 5

9 8 11 12 37

1 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.504. Dihedral angles of building block gB4P.

I J K L Type

1 0 2 11 2

1 3 5 2 2

5 2 6 13 2

11 8 12 1 2

13 12 14 5 2

Table 4.505. Improper dihedral angles of building block gB4P.

3-452

Solute building block: -4-D-galactopyranose-β-1-
Name: LB4P

Figure 4.203. LB4P non-bonded parameters.

Figure 4.204. LB4P bonded parameters.

3-453

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 15 4 0.23200 9 10 11 12

9 O6 3 16 -0.64200 10 11

10 HO6 21 1 0.41000

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.506. Atoms of building block LB4P.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 20

8 11 26

9 10 1

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.507. Bonds of building block LB4P.

3-454

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 11 9

8 9 10 12

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.508. Bond angles of building block LB4P.

3-455

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

11 8 9 10 30

9 8 11 1 1

9 8 11 12 3

9 8 11 12 35

1 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.509. Dihedral angles of building block LB4P.

I J K L Type

1 0 2 11 2

1 8 12 11 2

2 3 5 1 2

5 12 14 13 2

13 2 6 5 2

Table 4.510. Improper dihedral angles of building block LB4P.

3-456

Solute building block: -4-D-glucuronate-β-1-
Name: GB4U

Figure 4.205. GB4U non-bonded parameters.

Figure 4.206. GB4U bonded parameters.

3-457

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 12 12 0.36000 9 10 11 12

9 O61 2 16 -0.68000 10 11

10 O62 2 16 -0.68000 11

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.511. Atoms of building block GB4U.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 6

8 10 6

8 11 27

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.512. Bonds of building block GB4U.

3-458

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 10 38

9 8 11 22

10 8 11 22

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.513. Bond angles of building block GB4U.

3-459

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

9 8 11 12 40

1 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.514. Dihedral angles of building block GB4U.

I J K L Type

1 8 12 11 2

2 3 5 1 2

5 12 14 13 2

8 9 10 11 1

11 0 2 1 2

13 2 6 5 2

Table 4.515. Improper dihedral angles of building block GB4U.

3-460

Solute building block: -4-D-mannuronate-β-1-
Name: MB4U

Figure 4.207. MB4U non-bonded parameters.

Figure 4.208. MB4U bonded parameters.

3-461

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 12 12 0.36000 9 10 11 12

9 O61 2 16 -0.68000 10 11

10 O62 2 16 -0.68000 11

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.516. Atoms of building block MB4U.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 6

8 10 6

8 11 27

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.517. Bonds of building block MB4U.

3-462

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 10 38

9 8 11 22

10 8 11 22

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.518. Bond angles of building block MB4U.

3-463

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

9 8 11 12 40

1 11 12 13 29

11 12 13 5 29

12 13 14 15 2

12 13 14 15 32

Table 4.519. Dihedral angles of building block MB4U.

I J K L Type

1 8 12 11 2

2 3 5 1 2

5 2 6 13 2

5 12 14 13 2

8 9 10 11 1

11 0 2 1 2

Table 4.520. Improper dihedral angles of building block MB4U.

3-464

Solute building block: -4-D-galacturonate-α-1-
Name: LA4U

Figure 4.209. LA4U non-bonded parameters.

Figure 4.210. LA4U bonded parameters.

3-465

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 12 12 0.36000 9 10 11 12

9 O61 2 16 -0.68000 10 11

10 O62 2 16 -0.68000 11

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.521. Atoms of building block LA4U.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 6

8 10 6

8 11 27

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.522. Bonds of building block LA4U.

3-466

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 10 38

9 8 11 22

10 8 11 22

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.523. Bond angles of building block LA4U.

3-467

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

9 8 11 12 40

1 11 12 13 29

11 12 13 5 29

12 13 14 15 6

12 13 14 15 28

Table 4.524. Dihedral angles of building block LA4U.

I J K L Type

1 0 2 11 2

1 8 12 11 2

2 3 5 1 2

8 9 10 11 1

13 2 6 5 2

13 12 14 5 2

Table 4.525. Improper dihedral angles of building block LA4U.

3-468

Solute building block: -4-L-guluronate-α-1-
Name: kA4U

Figure 4.211. kA4U non-bonded parameters.

Figure 4.212. kA4U bonded parameters.

3-469

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 12 12 0.36000 9 10 11 12

9 O61 2 16 -0.68000 10 11

10 O62 2 16 -0.68000 11

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.526. Atoms of building block kA4U.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 6

8 10 6

8 11 27

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.527. Bonds of building block kA4U.

3-470

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 10 38

9 8 11 22

10 8 11 22

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.528. Bond angles of building block kA4U.

3-471

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

9 8 11 12 40

1 11 12 13 29

11 12 13 5 29

12 13 14 15 6

12 13 14 15 28

Table 4.529. Dihedral angles of building block kA4U.

I J K L Type

2 3 5 1 2

5 2 6 13 2

5 12 14 13 2

8 9 10 11 1

11 0 2 1 2

11 8 12 1 2

Table 4.530. Improper dihedral angles of building block kA4U.

3-472

Solute building block: -4-L-iduronate-α-1-
Name: iA4U

Figure 4.213. iA4U non-bonded parameters.

Figure 4.214. iA4U bonded parameters.

3-473

Seq. Name IAC Mass Charge Exclusions

-1 0 1

0 1 2 11

1 C4 14 3 0.23200 2 3 5 8 11 12

2 C3 14 3 0.23200 3 4 5 6 11 13

3 O3 3 16 -0.64200 4 5

4 HO3 21 1 0.41000

5 C2 14 3 0.23200 6 7 12 13 14

6 O2 3 16 -0.64200 7 13

7 HO2 21 1 0.41000

8 C6 12 12 0.36000 9 10 11 12

9 O61 2 16 -0.68000 10 11

10 O62 2 16 -0.68000 11

11 C5 14 3 0.37600 12 13

12 O5 3 16 -0.48000 13 14

13 C1 14 3 0.23200

14 O1 3 16 -0.36000

Table 4.531. Atoms of building block iA4U.

I J Type

1 2 26

1 11 26

2 3 20

2 5 26

3 4 1

5 6 20

5 13 26

6 7 1

8 9 6

8 10 6

8 11 27

11 12 20

12 13 20

13 14 20

14 15 20

Table 4.532. Bonds of building block iA4U.

3-474

I J K Type

0 1 2 9

0 1 11 9

2 1 11 8

1 2 3 9

1 2 5 8

3 2 5 9

2 3 4 12

2 5 6 9

2 5 13 8

6 5 13 9

5 6 7 12

9 8 10 38

9 8 11 22

10 8 11 22

1 11 8 8

1 11 12 9

8 11 12 9

11 12 13 10

5 13 12 9

5 13 14 9

12 13 14 9

13 14 15 10

Table 4.533. Bond angles of building block iA4U.

3-475

I J K L Type

-1 0 1 2 30

0 1 2 3 18

0 1 2 5 17

11 1 2 3 17

11 1 2 5 34

0 1 11 8 17

2 1 11 12 17

2 1 11 12 34

5 2 3 4 30

1 2 5 6 17

1 2 5 13 34

3 2 5 6 18

3 2 5 13 17

13 5 6 7 30

2 5 13 12 17

2 5 13 12 34

2 5 13 14 17

6 5 13 14 18

9 8 11 12 40

1 11 12 13 29

11 12 13 5 29

12 13 14 15 6

12 13 14 15 28

Table 4.534. Dihedral angles of building block iA4U.

I J K L Type

2 3 5 1 2

5 12 14 13 2

8 9 10 11 1

11 0 2 1 2

11 8 12 1 2

13 2 6 5 2

Table 4.535. Improper dihedral angles of building block iA4U.

3-476

Solute building block: -1-β-D-glucopyranose
Name: CGBP

Figure 4.215. CGBP non-bonded parameters.

Figure 4.216. CGBP bonded parameters.

3-477

Seq. Name IAC Mass Charge Exclusions

1 C5 14 3 0.37800 2 3

2 O5 3 16 -0.45000 3 4

3 C1 14 3 0.24200 4 5

4 O1 3 16 -0.34000 5 6 14

5 C1’ 14 3 0.24200 6 7 11 14 15

6 O5’ 3 16 -0.45000 7 8 14 17

7 C5’ 14 3 0.37800 8 9 11 17 18

8 C4’ 14 3 0.23200 9 10 11 12 14 17

9 O4’ 3 16 -0.64200 10 11

10 HO4’ 21 1 0.41000

11 C3’ 14 3 0.23200 12 13 14 15

12 O3’ 3 16 -0.64200 13 14

13 HO3’ 21 1 0.41000

14 C2’ 14 3 0.23200 15 16

15 O2’ 3 16 -0.64200 16

16 HO2’ 21 1 0.41000

17 C6’ 15 4 0.23200 18 19

18 O6’ 3 16 -0.64200 19

19 HO6’ 21 1 0.41000

Table 4.536. Atoms of building block CGBP.

I J Type

5 6 20

5 14 26

6 7 20

7 8 26

7 17 26

8 9 20

8 11 26

9 10 1

11 12 20

11 14 26

12 13 1

14 15 20

15 16 1

17 18 20

18 19 1

Table 4.537. Bonds of building block CGBP.

3-478

I J K Type

4 5 6 9

4 5 14 9

6 5 14 9

5 6 7 10

6 7 8 9

6 7 17 9

8 7 17 8

7 8 9 9

7 8 11 8

9 8 11 9

8 9 10 12

8 11 12 9

8 11 14 8

12 11 14 9

11 12 13 12

5 14 11 8

5 14 15 9

11 14 15 9

14 15 16 12

7 17 18 9

17 18 19 12

Table 4.538. Bond angles of building block CGBP.

3-479

I J K L Type

3 4 5 6 2

3 4 5 6 32

14 5 6 7 29

4 5 14 11 17

4 5 14 15 18

6 5 14 11 17

6 5 14 11 34

5 6 7 8 29

6 7 8 11 17

6 7 8 11 34

17 7 8 9 17

6 7 17 18 5

6 7 17 18 37

11 8 9 10 30

7 8 11 12 17

7 8 11 14 34

9 8 11 12 18

9 8 11 14 17

14 11 12 13 30

8 11 14 5 34

8 11 14 15 17

12 11 14 5 17

12 11 14 15 18

5 14 15 16 30

7 17 18 19 30

Table 4.539. Dihedral angles of building block CGBP.

I J K L Type

5 4 6 14 2

5 11 15 14 2

7 6 17 8 2

7 9 11 8 2

11 12 14 8 2

Table 4.540. Improper dihedral angles of building block CGBP.

3-480

4.7. Other molecules

Solute building block: heme group (charge -2, acidic groups deprotonated)
Name: HEME

Figure 4.217. HEME non-bonded parameters.

3-481

Figure 4.218. HEME bonded parameters.

3-482

Seq. Name IAC Mass Charge Exclusions

1 FE 26 56 0.40000 2 3 4 5 6 8 9 10 11 18 20 21 22 23 27 29 30 31 32 36 38 39 40 41

2 NA 9 14 -0.10000 3 4 5 6 7 8 9 10 11 12 13 18 19 20 23 29 32 38 41

3 NB 9 14 -0.10000 4 5 8 11 18 19 20 21 22 23 24 25 27 28 29 32 38 41

4 NC 9 14 -0.10000 5 8 11 20 23 27 28 29 30 31 32 33 34 36 37 38 41

5 ND 9 14 -0.10000 6 7 8 11 20 23 29 32 36 37 38 39 40 41 42 43

6 CHA 12 12 -0.10000 7 8 9 10 11 13 38 39 40 41 43

7 HHA 20 1 0.10000 8 9 40 41

8 C1A 12 12 0.00000 9 10 11 12 13 18 40 41

9 C2A 12 12 0.00000 10 11 12 13 14 18 41

10 C3A 12 12 0.00000 11 12 13 18 19 20

11 C4A 12 12 0.00000 12 13 18 19 20 21

12 CMA 16 5 0.00000 13 18

13 CAA 15 4 0.00000 14 15

14 CBA 15 4 0.00000 15 16 17

15 CGA 12 12 0.27000 16 17

16 O1A 2 16 -0.63500 17

17 O2A 2 16 -0.63500

18 CHB 12 12 -0.10000 19 20 21 22 23 24

19 HHB 20 1 0.10000 20 21

20 C1B 12 12 0.00000 21 22 23 24 25 27

21 C2B 12 12 0.00000 22 23 24 25 27

22 C3B 12 12 0.00000 23 24 25 26 27 28 29

23 C4B 12 12 0.00000 24 25 27 28 29 30

24 CMB 16 5 0.00000 25

25 CAB 19 3 0.00000 26 27

26 CBB 15 4 0.00000

27 CHC 12 12 -0.10000 28 29 30 31 32 33

28 HHC 20 1 0.10000 29 30

29 C1C 12 12 0.00000 30 31 32 33 34 36

30 C2C 12 12 0.00000 31 32 33 34 36

31 C3C 12 12 0.00000 32 33 34 35 36 37 38

32 C4C 12 12 0.00000 33 34 36 37 38 39

33 CMC 16 5 0.00000 34

34 CAC 19 3 0.00000 35 36

35 CBC 15 4 0.00000

36 CHD 12 12 -0.10000 37 38 39 40 41 42

37 HHD 20 1 0.10000 38 39

38 C1D 12 12 0.00000 39 40 41 42 43

39 C2D 12 12 0.00000 40 41 42 43

40 C3D 12 12 0.00000 41 42 43 44

41 C4D 12 12 0.00000 42 43

42 CMD 16 5 0.00000 43

43 CAD 15 4 0.00000 44 45

44 CBD 15 4 0.00000 45 46 47

45 CGD 12 12 0.27000 46 47

46 O1D 2 16 -0.63500 47

Table 4.541: continues on next page.

3-483

Seq. Name IAC Mass Charge Exclusions

47 O2D 2 16 -0.63500

Table 4.541: Atoms of building block HEME.

3-484

I J Type

1 2 35

1 3 35

1 4 35

1 5 35

2 8 14

2 11 14

3 20 14

3 23 14

4 29 14

4 32 14

5 38 14

5 41 14

6 7 3

6 8 17

6 41 17

8 9 17

9 10 17

9 13 27

10 11 17

10 12 27

11 18 17

13 14 27

14 15 27

15 16 6

15 17 6

18 19 3

18 20 17

20 21 17

21 22 17

21 24 27

22 23 17

22 25 27

23 27 17

25 26 12

27 28 3

27 29 17

29 30 17

30 31 17

30 33 27

31 32 17

31 34 27

32 36 17

34 35 12

36 37 3

36 38 17

38 39 17

Table 4.542: continues on next page.

3-485

I J Type

39 40 17

39 42 27

40 41 17

40 43 27

43 44 27

44 45 27

45 46 6

45 47 6

Table 4.542: Bonds of building block HEME.

3-486

I J K Type

2 1 3 2

2 1 5 2

3 1 4 2

4 1 5 2

1 2 8 36

1 2 11 36

8 2 11 6

1 3 20 36

1 3 23 36

20 3 23 6

1 4 29 36

1 4 32 36

29 4 32 6

1 5 38 36

1 5 41 36

38 5 41 6

7 6 8 20

7 6 41 20

8 6 41 37

2 8 6 33

2 8 9 15

6 8 9 38

8 9 10 7

8 9 13 37

10 9 13 37

9 10 11 7

9 10 12 37

11 10 12 37

2 11 10 15

2 11 18 33

10 11 18 38

9 13 14 15

13 14 15 15

14 15 16 22

14 15 17 22

16 15 17 38

11 18 19 20

11 18 20 37

19 18 20 20

3 20 18 33

3 20 21 15

18 20 21 38

20 21 22 7

20 21 24 37

22 21 24 37

21 22 23 7

Table 4.543: continues on next page.

3-487

I J K Type

21 22 25 37

23 22 25 37

3 23 22 15

3 23 27 33

22 23 27 38

22 25 26 37

23 27 28 20

23 27 29 37

28 27 29 20

4 29 27 33

4 29 30 15

27 29 30 38

29 30 31 7

29 30 33 37

31 30 33 37

30 31 32 7

30 31 34 37

32 31 34 37

4 32 31 15

4 32 36 33

31 32 36 38

31 34 35 37

32 36 37 20

32 36 38 37

37 36 38 20

5 38 36 33

5 38 39 15

36 38 39 38

38 39 40 7

38 39 42 37

40 39 42 37

39 40 41 7

39 40 43 37

41 40 43 37

5 41 6 33

5 41 40 15

6 41 40 38

40 43 44 15

43 44 45 15

44 45 46 22

44 45 47 22

46 45 47 38

Table 4.543: Bond angles of building block HEME.

3-488

I J K L Type

41 6 8 2 15

8 6 41 5 15

8 9 13 14 40

2 11 18 20 15

9 13 14 15 34

13 14 15 16 40

11 18 20 3 15

21 22 25 26 9

3 23 27 29 15

23 27 29 4 15

30 31 34 35 9

4 32 36 38 15

32 36 38 5 15

39 40 43 44 40

40 43 44 45 34

43 44 45 46 40

Table 4.544: Dihedral angles of building block HEME.

3-489

I J K L Type

1 8 11 2 3

1 20 23 3 3

1 29 32 4 3

1 38 41 5 3

2 8 9 10 1

3 20 21 22 1

4 29 30 31 1

5 38 39 40 1

6 2 9 8 1

6 5 40 41 1

7 8 41 6 1

8 2 11 10 1

8 9 10 11 1

9 8 10 13 1

9 10 11 2 1

10 9 11 12 1

11 2 8 9 1

14 16 17 15 1

18 2 10 11 1

18 3 21 20 1

18 11 20 19 1

20 3 23 22 1

20 21 22 23 1

21 20 22 24 1

21 22 23 3 1

22 21 23 25 1

23 3 20 21 1

27 3 22 23 1

27 4 30 29 1

27 23 29 28 1

29 4 32 31 1

29 30 31 32 1

30 29 31 33 1

30 31 32 4 1

31 30 32 34 1

32 4 29 30 1

36 4 31 32 1

36 5 39 38 1

36 32 38 37 1

38 5 41 40 1

38 39 40 41 1

39 38 40 42 1

39 40 41 5 1

40 39 41 43 1

41 5 38 39 1

44 46 47 45 1

Table 4.545: Improper dihedral angles of building block HEME.

3-490

Solute building block: folate (charge -2e)
Name: FOL

Figure 4.219. FOL non-bonded parameters.

3-491

Figure 4.220. FOL bonded parameters.

3-492

Seq. Name IAC Mass Charge Exclusions

1 N1 9 14 -0.36000 2 3 6 7 8 10 11 13 15 16

2 C2 12 12 0.36000 3 4 5 6 7 8 9 10 15 16

3 NA2 7 14 -0.83000 4 5 6 7 8 16

4 HA21 21 1 0.41500 5

5 HA22 21 1 0.41500

6 N3 9 14 -0.28000 7 8 9 10 11 16

7 HA3 21 1 0.28000 8 9 10

8 C4 12 12 0.38000 9 10 11 12 15 16

9 OA4 1 16 -0.38000 10 11 16

10 C4A 12 12 0.00000 11 12 13 15 16 17

11 N5 9 14 -0.36000 12 13 14 15 16 17

12 C6 12 12 0.36000 13 14 15 16 17 18

13 C7 12 12 0.26000 14 15 16 17

14 HC7 20 1 0.10000 15 16 17

15 N8 9 14 -0.36000 16 17

16 C8A 12 12 0.00000

17 C9 15 4 0.00000 18 19 20

18 N10 11 14 -0.28000 19 20 21 22 23 24 25 27

19 H10 21 1 0.28000 20

20 C14 12 12 0.00000 21 22 23 24 25 26 27 28 29

21 C13 12 12 -0.10000 22 23 24 25 26 27 29 30

22 HC13 20 1 0.10000 23 25 26 29

23 C15 12 12 -0.10000 24 25 27 28 29 30

24 HC15 20 1 0.10000 27 28 29

25 C12 12 12 -0.10000 26 27 28 29 30

26 HC12 20 1 0.10000 27 29 30

27 C16 12 12 -0.10000 28 29 30

28 HC16 20 1 0.10000 29 30

29 C11 12 12 0.00000 30 31 32

30 C 12 12 0.38000 31 32 33 34

31 O 1 16 -0.38000 32

32 N 6 14 -0.28000 33 34 35 40

33 H 21 1 0.28000 34

34 CA 14 3 0.00000 35 36 40 41 42

35 CB 15 4 0.00000 36 37 40

36 CG 15 4 0.00000 37 38 39

37 CD 12 12 0.27000 38 39

38 OE1 2 16 -0.63500 39

39 OE2 2 16 -0.63500

40 CT 12 12 0.27000 41 42

41 O1 2 16 -0.63500 42

42 O2 2 16 -0.63500

Table 4.546: Atoms of building block FOL.

3-493

I J Type

1 2 12

1 16 12

2 3 9

2 6 17

3 4 2

3 5 2

6 7 2

6 8 17

8 9 5

8 10 16

10 11 12

10 16 16

11 12 12

12 13 16

12 17 27

13 14 3

13 15 7

15 16 12

17 18 21

18 19 2

18 20 11

20 21 16

20 23 16

21 22 3

21 25 16

23 24 3

23 27 16

25 26 3

25 29 16

27 28 3

27 29 16

29 30 27

30 31 5

30 32 10

32 33 2

32 34 21

34 35 27

34 40 27

35 36 27

36 37 27

37 38 6

37 39 6

40 41 6

40 42 6

Table 4.547: Bonds of building block FOL.

3-494

I J K Type

2 1 16 27

1 2 3 27

1 2 6 27

3 2 6 27

2 3 4 23

2 3 5 23

4 3 5 24

2 6 7 25

2 6 8 27

7 6 8 25

6 8 9 27

6 8 10 27

9 8 10 27

8 10 11 27

8 10 16 27

11 10 16 27

10 11 12 27

11 12 13 27

11 12 17 27

13 12 17 27

12 13 14 25

12 13 15 27

14 13 15 25

13 15 16 27

1 16 10 27

1 16 15 27

10 16 15 27

12 17 18 15

17 18 19 20

17 18 20 33

19 18 20 23

18 20 21 27

18 20 23 27

21 20 23 27

20 21 22 25

20 21 25 27

22 21 25 25

20 23 24 25

20 23 27 27

24 23 27 25

21 25 26 25

21 25 29 27

26 25 29 25

23 27 28 25

23 27 29 27

28 27 29 25

Table 4.548: continues on next page.

3-495

I J K Type

25 29 27 27

25 29 30 27

27 29 30 27

29 30 31 30

29 30 32 19

31 30 32 33

30 32 33 32

30 32 34 31

33 32 34 18

32 34 35 13

32 34 40 13

35 34 40 13

34 35 36 15

35 36 37 15

36 37 38 22

36 37 39 22

38 37 39 38

34 40 41 22

34 40 42 22

41 40 42 38

Table 4.548: Bond angles of building block FOL.

3-496

I J K L Type

1 2 3 4 14

11 12 17 18 40

12 17 18 20 39

17 18 20 21 14

25 29 30 32 10

29 30 32 34 14

30 32 34 40 39

32 34 35 36 34

32 34 40 41 40

34 35 36 37 34

35 36 37 38 40

Table 4.549: Dihedral angles of building block FOL.

3-497

I J K L Type

1 2 6 8 1

2 1 6 3 1

2 1 16 10 1

2 6 8 10 1

3 4 5 2 1

6 2 8 7 1

6 8 10 16 1

8 6 10 9 1

8 10 16 1 1

10 8 11 16 1

10 11 12 13 1

11 10 16 15 1

11 12 13 15 1

12 11 13 17 1

12 13 15 16 1

13 12 15 14 1

13 15 16 10 1

16 1 2 6 1

16 1 15 10 1

16 10 11 12 1

18 17 20 19 1

20 21 23 18 1

20 21 25 29 1

20 23 27 29 1

21 20 23 27 1

21 20 25 22 1

21 25 29 27 1

23 20 21 25 1

23 20 27 24 1

23 27 29 25 1

25 21 29 26 1

27 23 29 28 1

29 25 27 30 1

30 29 32 31 1

32 30 34 33 1

34 32 40 35 2

37 38 39 36 1

40 34 42 41 1

Table 4.550: Improper dihedral angles of building block FOL.

3-498

Solute building block: trimethoprim (deprotonated at N1; neutral)
Name: TMP

Figure 4.221. TMP non-bonded parameters.

3-499

Figure 4.222. TMP bonded parameters.

3-500

Seq. Name IAC Mass Charge Exclusions

1 N1 9 14 -0.36000 2 3 6 7 11 12 13 14

2 C2 12 12 0.36000 3 4 5 6 7 8 11 12 13

3 NA2 7 14 -0.83000 4 5 6 7 12

4 HA21 21 1 0.41500 5

5 HA22 21 1 0.41500

6 N3 9 14 -0.36000 7 8 11 12 14

7 C4 12 12 0.36000 8 9 10 11 12 13 14

8 NA4 7 14 -0.83000 9 10 11 12 14

9 HA41 21 1 0.41500 10

10 HA42 21 1 0.41500

11 C5 12 12 0.00000 12 13 14 15

12 C6 12 12 -0.10000 13 14

13 HC6 20 1 0.10000 14

14 C7 15 4 0.00000 15 16 17 18 19 20 23

15 C11 12 12 0.00000 16 17 18 19 20 21 23 24 26

16 C12 12 12 -0.10000 17 18 19 20 21 23 26 27

17 HC12 20 1 0.10000 18 20 21 26

18 C16 12 12 -0.10000 19 20 23 24 26 27

19 HC16 20 1 0.10000 23 24 26

20 C13 12 12 0.18000 21 22 23 24 26 27

21 O13 3 16 -0.36000 22 23 26 27

22 CM13 16 5 0.18000

23 C15 12 12 0.18000 24 25 26 27

24 O15 3 16 -0.36000 25 26 27

25 CM15 16 5 0.18000

26 C14 12 12 0.18000 27 28

27 O14 3 16 -0.36000 28

28 CM14 16 5 0.18000

Table 4.551. Atoms of building block TMP.

3-501

I J Type

1 2 12

1 12 7

2 3 9

2 6 12

3 4 2

3 5 2

6 7 12

7 8 9

7 11 16

8 9 2

8 10 2

11 12 16

11 14 27

12 13 3

14 15 27

15 16 16

15 18 16

16 17 3

16 20 16

18 19 3

18 23 16

20 21 13

20 26 16

21 22 18

23 24 13

23 26 16

24 25 18

26 27 13

27 28 18

Table 4.552. Bonds of building block TMP.

3-502

I J K Type

2 1 12 27

1 2 3 27

1 2 6 27

3 2 6 27

2 3 4 23

2 3 5 23

4 3 5 24

2 6 7 27

6 7 8 27

6 7 11 27

8 7 11 27

7 8 9 23

7 8 10 23

9 8 10 24

7 11 12 27

7 11 14 27

12 11 14 27

1 12 11 27

1 12 13 25

11 12 13 25

11 14 15 15

14 15 16 27

14 15 18 27

16 15 18 27

15 16 17 25

15 16 20 27

17 16 20 25

15 18 19 25

15 18 23 27

19 18 23 25

16 20 21 27

16 20 26 27

21 20 26 27

20 21 22 20

18 23 24 27

18 23 26 27

24 23 26 27

23 24 25 20

20 26 23 27

20 26 27 27

23 26 27 27

26 27 28 20

Table 4.553. Bond angles of building block TMP.

3-503

I J K L Type

1 2 3 4 14

11 7 8 9 14

7 11 14 15 40

11 14 15 16 40

16 20 21 22 11

16 20 21 22 12

18 23 24 25 11

18 23 24 25 12

20 26 27 28 11

Table 4.554. Dihedral angles of building block TMP.

I J K L Type

1 2 6 7 1

2 1 6 3 1

2 1 12 11 1

2 6 7 11 1

3 4 5 2 1

6 7 11 12 1

7 6 11 8 1

7 11 12 1 1

8 9 10 7 1

11 7 12 14 1

12 1 2 6 1

12 1 11 13 1

15 16 18 14 1

15 16 20 26 1

15 18 23 26 1

16 15 18 23 1

16 15 20 17 1

16 20 26 23 1

18 15 16 20 1

18 15 23 19 1

18 23 26 20 1

20 16 21 26 1

23 18 24 26 1

26 20 27 23 1

Table 4.555. Improper dihedral angles of building block TMP.

3-504

Solute building block: 3-phospho-D-glycerate (charge -2e)
Name: PDG

Figure 4.223. PDG non-bonded parameters.

Figure 4.224. PDG bonded parameters.

3-505

Seq. Name IAC Mass Charge Exclusions

1 P 30 31 0.63000 2 3 4 5 6 7

2 O1P 2 16 -0.63500 3 4 5 6

3 O2P 2 16 -0.63500 4 5 6

4 O3P 3 16 -0.54800 5 6

5 H3P 21 1 0.39800 6

6 O4P 3 16 -0.36000 7 8

7 C1 15 4 0.15000 8 9 11

8 C2 14 3 0.15000 9 10 11 12 13

9 O2 3 16 -0.54800 10 11

10 H2 21 1 0.39800

11 C3 12 12 0.27000 12 13

12 OT1 2 16 -0.63500 13

13 OT2 2 16 -0.63500

Table 4.556. Atoms of building block PDG.

I J Type

1 2 24

1 3 24

1 4 28

1 6 28

4 5 1

6 7 18

7 8 27

8 9 18

8 11 27

9 10 1

11 12 6

11 13 6

Table 4.557. Bonds of building block PDG.

3-506

I J K Type

2 1 3 29

2 1 4 14

2 1 6 14

3 1 4 14

3 1 6 14

4 1 6 5

1 4 5 12

1 6 7 26

6 7 8 15

7 8 9 15

7 8 11 13

9 8 11 13

8 9 10 12

8 11 12 22

8 11 13 22

12 11 13 38

Table 4.558. Bond angles of building block PDG.

I J K L Type

6 1 4 5 20

6 1 4 5 27

4 1 6 7 20

4 1 6 7 27

1 6 7 8 7

1 6 7 8 22

6 7 8 11 34

7 8 9 10 23

7 8 11 12 40

Table 4.559. Dihedral angles of building block PDG.

I J K L Type

8 7 11 9 2

11 8 13 12 1

Table 4.560. Improper dihedral angles of building block PDG.

3-507

Solute building block: adenosine-5’-triphosphate (ATP; charge -3e)
Name: ATP

Figure 4.225. ATP non-bonded parameters.

3-508

Figure 4.226. ATP bonded parameters.

3-509

Seq. Name IAC Mass Charge Exclusions

1 AN9 9 14 -0.20000 2 3 4 7 11 12 13 14 15 16 18

2 AC4 12 12 0.20000 3 4 5 6 7 8 11 12 13 14 15

3 AN3 9 14 -0.54000 4 5 6 7 11 12 13 15

4 AC2 12 12 0.44000 5 6 7 8 11

5 AH2 20 1 0.10000 6 7

6 AN1 9 14 -0.54000 7 8 11 12

7 AC6 12 12 0.54000 8 9 10 11 12 13

8 AN6 7 14 -0.83000 9 10 11 12

9 AH61 21 1 0.41500 10 12

10 AH62 21 1 0.41500 12

11 AC5 12 12 0.00000 12 13 14 15

12 AN7 9 14 -0.54000 13 14 15

13 AC8 12 12 0.44000 14 15

14 AH8 20 1 0.10000 15

15 AC1* 14 3 0.20000 16 17 18 19 21

16 AO4* 3 16 -0.36000 17 18 21 24

17 AC4* 14 3 0.16000 18 21 22 24 25

18 AC2* 14 3 0.15000 19 20 21 22

19 AO2* 3 16 -0.54800 20 21

20 AH2* 21 1 0.39800

21 AC3* 14 3 0.15000 22 23 24

22 AO3* 3 16 -0.54800 23

23 AH3* 21 1 0.39800

24 AC5* 15 4 0.00000 25 26

25 AO5* 3 16 -0.36000 26 27 28 29

26 APA 30 31 0.70500 27 28 29 30

27 AO1PA 2 16 -0.63500 28 29

28 AO2PA 2 16 -0.63500 29

29 AO3PA 3 16 -0.36000 30 31 32 33

30 APB 30 31 0.70500 31 32 33 34

31 AO1PB 2 16 -0.63500 32 33

32 AO2PB 2 16 -0.63500 33

33 AO3PB 3 16 -0.36000 34 35 36 37

34 APG 30 31 0.63000 35 36 37 38

35 AO1PG 2 16 -0.63500 36 37 38

36 AO2PG 2 16 -0.63500 37 38

37 AO3PG 3 16 -0.54800 38

38 AH3PG 21 1 0.39800

Table 4.561: Atoms of building block ATP.

3-510

I J Type

1 2 10

1 13 10

1 15 22

2 3 12

2 11 16

3 4 7

4 5 3

4 6 7

6 7 12

7 8 9

7 11 16

8 9 2

8 10 2

11 12 10

12 13 10

13 14 3

15 16 20

15 18 26

16 17 20

17 21 26

17 24 26

18 19 20

18 21 26

19 20 1

21 22 20

22 23 1

24 25 20

25 26 28

26 27 24

26 28 24

26 29 28

29 30 28

30 31 24

30 32 24

30 33 28

33 34 28

34 35 24

34 36 24

34 37 28

37 38 1

Table 4.562: Bonds of building block ATP.

3-511

I J K Type

2 1 13 7

2 1 15 37

13 1 15 37

1 2 3 39

1 2 11 7

3 2 11 27

2 3 4 27

3 4 5 25

3 4 6 27

5 4 6 25

4 6 7 27

6 7 8 27

6 7 11 27

8 7 11 27

7 8 9 23

7 8 10 23

9 8 10 24

2 11 7 27

2 11 12 7

7 11 12 39

11 12 13 7

1 13 12 7

1 13 14 36

12 13 14 36

1 15 16 9

1 15 18 9

16 15 18 9

15 16 17 10

16 17 21 9

16 17 24 9

21 17 24 8

15 18 19 9

15 18 21 8

19 18 21 9

18 19 20 12

17 21 18 8

17 21 22 9

18 21 22 9

21 22 23 12

17 24 25 9

24 25 26 26

25 26 27 14

25 26 28 14

25 26 29 5

27 26 28 29

27 26 29 14

Table 4.563: continues on next page.

3-512

I J K Type

28 26 29 14

26 29 30 26

29 30 31 14

29 30 32 14

29 30 33 5

31 30 32 29

31 30 33 14

32 30 33 14

30 33 34 26

33 34 35 14

33 34 36 14

33 34 37 5

35 34 36 29

35 34 37 14

36 34 37 14

34 37 38 12

Table 4.563: Bond angles of building block ATP.

3-513

I J K L Type

2 1 15 16 16

11 7 8 9 14

18 15 16 17 29

1 15 18 19 17

16 15 18 19 18

16 15 18 21 17

16 15 18 21 34

15 16 17 21 29

16 17 21 18 17

16 17 21 22 18

24 17 21 18 34

24 17 21 22 17

16 17 24 25 8

16 17 24 25 25

21 17 24 25 17

21 17 24 25 34

15 18 19 20 23

15 18 21 17 34

15 18 21 22 17

19 18 21 17 17

19 18 21 22 18

17 21 22 23 23

17 24 25 26 7

17 24 25 26 22

24 25 26 29 20

24 25 26 29 27

25 26 29 30 20

25 26 29 30 27

26 29 30 33 20

26 29 30 33 27

29 30 33 34 20

29 30 33 34 27

30 33 34 37 20

30 33 34 37 27

33 34 37 38 20

33 34 37 38 27

Table 4.564: Dihedral angles of building block ATP.

3-514

I J K L Type

1 2 11 12 1

1 2 13 15 1

2 1 3 11 1

2 1 13 12 1

2 3 4 6 1

2 11 12 13 1

3 2 11 7 1

3 4 6 7 1

4 3 5 6 1

4 6 7 11 1

6 7 11 2 1

7 6 8 11 1

8 7 9 10 1

11 2 3 4 1

11 2 7 12 1

11 12 13 1 1

13 1 2 11 1

13 1 12 14 1

15 1 16 18 2

17 16 24 21 2

18 19 21 15 2

21 18 22 17 2

Table 4.565: Improper dihedral angles of building block ATP.

3-515

Solute building block: p-methylbenzyl alcoholate (charge -e)
Name: PMB

Figure 4.227. PMB non-bonded parameters.

Figure 4.228. PMB bonded parameters.

3-516

Seq. Name IAC Mass Charge Exclusions

1 PC8 16 5 0.00000 2 3 4 5 6 7 9

2 PC5 12 12 0.00000 3 4 5 6 7 8 9 10 11

3 PC4 12 12 -0.10000 4 5 6 7 8 9 11 12

4 PHC4 20 1 0.10000 5 7 8 11

5 PC6 12 12 -0.10000 6 7 9 10 11 12

6 PHC6 20 1 0.10000 9 10 11

7 PC3 12 12 -0.10000 8 9 10 11 12

8 PHC3 20 1 0.10000 9 11 12

9 PC7 12 12 -0.10000 10 11 12

10 PHC7 20 1 0.10000 11 12

11 PC2 12 12 0.00000 12 13 14 15

12 PC1 13 12 0.00000 13 14 15

13 PO 2 16 -0.60000 14 15

14 PHC1 20 1 -0.20000 15

15 PHC2 20 1 -0.20000

Table 4.566. Atoms of building block PMB.

I J Type

1 2 27

2 3 16

2 5 16

3 4 3

3 7 16

5 6 3

5 9 16

7 8 3

7 11 16

9 10 3

9 11 16

11 12 27

12 13 19

12 14 3

12 15 3

Table 4.567. Bonds of building block PMB.

3-517

I J K Type

1 2 3 27

1 2 5 27

3 2 5 27

2 3 4 25

2 3 7 27

4 3 7 25

2 5 6 25

2 5 9 27

6 5 9 25

3 7 8 25

3 7 11 27

8 7 11 25

5 9 10 25

5 9 11 27

10 9 11 25

7 11 9 27

7 11 12 27

9 11 12 27

11 12 13 13

11 12 14 11

11 12 15 11

13 12 14 11

13 12 15 11

14 12 15 10

Table 4.568. Bond angles of building block PMB.

I J K L Type

7 11 12 13 40

Table 4.569. Dihedral angles of building block PMB.

I J K L Type

2 3 5 1 1

2 3 7 11 1

2 5 9 11 1

3 2 5 9 1

3 2 7 4 1

3 7 11 9 1

5 2 3 7 1

5 2 9 6 1

5 9 11 7 1

7 3 11 8 1

9 5 11 10 1

11 7 9 12 1

Table 4.570. Improper dihedral angles of building block PMB.

3-518

Solute building block: benzoic acid
Name: BA

Figure 4.229. BA non-bonded parameters.

Figure 4.230. BA bonded parameters.

3-519

Seq. Name IAC Mass Charge Exclusions

1 C3 12 12 -0.10000 2 3 4 5 6 7 8 9 10 11

2 H3 20 1 0.10000 3 4 5 6 7 9

3 C2 12 12 -0.10000 4 5 6 7 8 9 11 12

4 H2 20 1 0.10000 5 7 8 11

5 C4 12 12 -0.10000 6 7 9 10 11 12

6 H4 20 1 0.10000 9 10 11

7 C1 12 12 -0.10000 8 9 10 11 12

8 H1 20 1 0.10000 9 11 12

9 C5 12 12 -0.10000 10 11 12

10 H5 20 1 0.10000 11 12

11 C6 12 12 0.00000 12 13 14

12 C7 12 12 0.53000 13 14 15

13 O8 1 16 -0.38000 14

14 O9 3 16 -0.54800 15

15 H9 21 1 0.39800

Table 4.571. Atoms of building block BA.

I J Type

1 2 3

1 3 16

1 5 16

3 4 3

3 7 16

5 6 3

5 9 16

7 8 3

7 11 16

9 10 3

9 11 16

11 12 23

12 13 5

12 14 13

14 15 1

Table 4.572. Bonds of building block BA.

3-520

I J K Type

2 1 3 25

2 1 5 25

3 1 5 27

1 3 4 25

1 3 7 27

4 3 7 25

1 5 6 25

1 5 9 27

6 5 9 25

3 7 8 25

3 7 11 27

8 7 11 25

5 9 10 25

5 9 11 27

10 9 11 25

7 11 9 27

7 11 12 27

9 11 12 27

11 12 13 30

11 12 14 19

13 12 14 33

12 14 15 12

Table 4.573. Bond angles of building block BA.

I J K L Type

7 11 12 14 10

11 12 14 15 12

Table 4.574. Dihedral angles of building block BA.

I J K L Type

1 3 5 2 1

1 3 7 11 1

1 5 9 11 1

3 1 5 9 1

3 7 11 9 1

4 1 7 3 1

5 1 3 7 1

5 9 11 7 1

6 1 9 5 1

7 3 11 8 1

9 5 11 10 1

11 7 9 12 1

12 13 14 11 1

Table 4.575. Improper dihedral angles of building block BA.

3-521

Solute building block: retinol(neutral)
Name: RTOL

Figure 4.231. RTOL non-bonded parameters.

3-522

Figure 4.232. RTOL bonded parameters.

3-523

Seq. Name IAC Mass Charge Exclusions

1 C18 16 5 0.00000 2 3 4 9

2 C17 16 5 0.00000 3 4 9

3 C1 13 12 0.00000 4 5 7 9 10

4 C2 18 4 0.00000 5 6 9

5 C3 18 4 0.00000 6 7

6 C4 18 4 0.00000 7 8 9

7 C5 12 12 0.00000 8 9 10

8 C16 16 5 0.00000 9

9 C6 12 12 0.00000 10 11

10 C7 19 3 0.00000 11 12

11 C8 19 3 0.00000 12 13 14

12 C9 12 12 0.00000 13 14 15

13 C19 16 5 0.00000 14

14 C10 19 3 0.00000 15 16

15 C11 19 3 0.00000 16 17

16 C12 19 3 0.00000 17 18 19

17 C13 12 12 0.00000 18 19 20

18 C20 16 5 0.00000 19

19 C14 19 3 0.00000 20 21

20 C15 15 4 0.15000 21 22

21 O21 3 16 -0.54800 22

22 H21 21 1 0.39800

Table 4.576. Atoms of building block RTOL.

3-524

I J Type

1 3 27

2 3 27

3 4 27

3 9 27

4 5 27

5 6 27

6 7 27

7 8 27

7 9 10

9 10 23

10 11 13

11 12 23

12 13 27

12 14 13

14 15 23

15 16 13

16 17 23

17 18 27

17 19 13

19 20 23

20 21 18

21 22 1

Table 4.577. Bonds of building block RTOL.

3-525

I J K Type

1 3 2 13

1 3 4 13

1 3 9 13

2 3 4 13

2 3 9 13

4 3 9 13

3 4 5 13

4 5 6 13

5 6 7 13

6 7 8 27

6 7 9 27

8 7 9 27

3 9 7 27

3 9 10 27

7 9 10 27

9 10 11 27

10 11 12 27

11 12 13 27

11 12 14 27

13 12 14 27

12 14 15 27

14 15 16 27

15 16 17 27

16 17 18 27

16 17 19 27

18 17 19 27

17 19 20 27

19 20 21 13

20 21 22 12

Table 4.578. Bond angles of building block RTOL.

3-526

I J K L Type

9 3 4 5 34

4 3 9 7 34

3 4 5 6 34

4 5 6 7 34

5 6 7 9 34

6 7 9 3 14

7 9 10 11 34

9 10 11 12 14

10 11 12 14 12

11 12 14 15 14

12 14 15 16 12

14 15 16 17 14

15 16 17 19 12

16 17 19 20 14

17 19 20 21 40

19 20 21 22 23

Table 4.579. Dihedral angles of building block RTOL.

I J K L Type

7 6 9 8 1

9 3 10 7 1

12 11 14 13 1

17 16 19 18 1

Table 4.580. Improper dihedral angles of building block RTOL.

3-527

CHAPTER 5

GROMOS standard configurations

When simulating a molecule in solution or in crystalline form, the initial positions of solvent molecules
surrounding it are to be generated in some way. The GROMOS package comes with files with standard

configurations of a box with solvent molecules. This can be done using the GROMOS++ program sim box,
which requires a standard GROMOS atomic coordinate file containing a number of solvent molecules. Data
on the solvent configuration files are given in Tab. 5.1. The configurations are taken from MD simulations
at the indicated temperature at constant volume. The atomic coordinates are in nm.

5.1. Water

See Tab. 5.1.

5.2. Chloroform

See Tab. 5.1.

5.3. DMSO

See Tab. 5.1.

5.4. Methanol

See Tab. 5.1.

5.5. Carbontetrachloride

See Tab. 5.1.

solvent number of
molecules

temperature periodic
box type

length of
box edge

cut-off radius file name

(K) (nm) (nm)

water 5384 300 cubic 5.4937 1.4 spc.cnf

chloroform 1000 293 cubic 5.0816 1.4 chcl3.cnf

DMSO 1024 298 cubic 4.9505 1.4 dmso.cnf

methanol 1000 300 cubic 4.0669 1.4 ch3oh.cnf

CCl4 1000 293 cubic 5.4260 1.4 ccl4.cnf

Table 5.1. Standard Solvent Configuration Files.

3-529

Bibliography

[1] L.D. Schuler, X. Daura, and W.F. van Gunsteren. An Improved GROMOS96 Force Field for Aliphatic Hydrocarbons in
the Condensed Phase. J. Comput. Chem., 22:1205–1218, 2001.

[2] I. Chandrasekhar, M. Kastenholz, R.D. Lins, C. Oostenbrink, L.D. Schuler, D.P. Tieleman, and W.F. van Gunsteren. A
consistent potential energy parameter set for lipids: Dipalmitoylphosphatidylcholine as a benchmark of the GROMOS96
45A3 force field. Eur. Biophys. J., 32:67–77, 2003.

[3] T.A. Soares, P.H. Hünenberger, M.A. Kastenholz, V. Kräutler, T. Lenz, R.D. Lins, C. Oostenbrink, and W.F. van Gun-
steren. An Improved Nucleic-Acid Parameter Set for the GROMOS Force Field. J. Comput. Chem., 26:725–737, 2005.

[4] R.D. Lins and P.H. Hünenberger. A new GROMOS force field for hexopyranose-based cardohydrates. J. Comput. Chem.,
26:1400–1412, 2005.

[5] C. Oostenbrink, A. Villa, A.E. Mark, and W.F. van Gunsteren. A biomolecular force field based on the free enthalpy of
hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem., 25:1656, 2004.

[6] D. Poger, W.F. van Gunsteren, and A.E. Mark. A new force field for simulating phosphatidylcholine bilayers. J. Comput.

Chem., 31:1117–1125, 2010.
[7] H. Hansen and P.H. Hünenberger. A reoptimized GROMOS force field for hexopyranose-based carbohydrates accounting for

the relative free energies of ring conformers, anomers, epimers, hydroxymethyl rotamers and glycosidic linkage conformers.
J. Comput. Chem., 32:998–1032, 2011.

[8] N. Schmid, A. P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A.E.. Mark, and W.F. van Gunsteren. Definition and
testing of the GROMOS force-field versions: 54A7 and 54B7. Eur. Biophys. J., 40:843–856, 2011.

[9] W.F. van Gunsteren and M. Karplus. Effect of Constraints on the Dynamics of Macromolecules. Macromolecules, 15:1528–
1544, 1982.

[10] J. Hermans, H.J.C. Berendsen, W.F. van Gunsteren, and J.P.M. Postma. A Consistent Empirical Potential for Water-
Protein Interactions. Biopolymers, 23:1513–1518, 1984.

[11] L.J. Smith, A.E. Mark, C.M. Dobson, and W.F. van Gunsteren. Comparison of MD simulations and NMR experiments
for hen lysozyme: Analysis of local fluctuations, cooperative motions and global changes. Biochemistry, 34:10918–10931,
1995.

[12] L.D. Schuler and W.F. van Gunsteren. On the Choice of Dihedral Angle Potential Energy Functions for n-Alkanes. Mol.

Simul., 25:301–319, 2000.
[13] M.M. Reif, P.H. Hünenberger, and C. Oostenbrink. New interaction parameters for charged amino acid side chains in the

GROMOS force field. J. Chem. Theory Comput., 8:3705–3723, 2012.
[14] D.P. Geerke and W.F. van Gunsteren. Force Field Evaluation for Biomolecular Simulation: Free Enthalpies of Solvation

of Polar and Apolar Compounds in Various Solvents. ChemPhysChem, 7:671–678, 2006.
[15] H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, and J. Hermans. Interaction models for water in relation to protein

hydration. In B. Pullman, editor, Intermolecular Forces, pages 331–342. Reidel, Dordrecht, 1981.
[16] A. Glättli, X. Daura, and W.F. van Gunsteren. Derivation of an improved SPC model for liquid water: SPC/A and SPC/L.

J. Chem. Phys., 116:9811–9828, 2002.
[17] R. Walser, A.E. Mark, W.F. van Gunsteren, M. Lauterbach, and G. Wipff. The effect of force-field parameters on properties

of liquids: Parametrization of a simple three-site model for methanol. J. Chem. Phys., 112:10450–10459, 2000.
[18] D.P. Geerke, C. Oostenbrink, N.F.A. van der Vegt, and W.F. van Gunsteren. An Effective Force Field for Molecular

Dynamics Simulations of Dimethyl Sulfoxide and Dimethyl Sulfoxide-Water Mixtures. J. Phys. Chem. B, 108:1436, 2004.
[19] I.G. Tironi and W.F. van Gunsteren. A molecular dynamics simulation study of chloroform. Mol. Phys., 83:381–403, 1994.
[20] I.G. Tironi, P. Fontana, and W.F. van Gunsteren. A molecular dynamics simulation study of liquid carbon tetrachloride.

Mol. Simul., 18:1–11, 1996.
[21] L.J. Smith, H.J.C. Berendsen, and W.F. van Gunsteren. Computer Simulation of Urea-Water Mixtures: A Test of Force

Field Parameters for Use in Biomolecular Simulations. J. Phys. Chem. B, 108:1065–1071, 2004.
[22] P.J. Gee and W.F. van Gunsteren. Acetonitrile revisited: a molecular dynamics study of the liquid phase. Mol. Phys.,

104:477–483, 2006.
[23] N. Hansen, P. Kraus, H. Sassmannshausen, T. Timmerscheidt, and W.F. van Gunsteren. An effective force field for

molecular dynamics simulations of dimethyl sulfone. Mol. Phys., 109:2593–2605, 2011.
[24] S.J. Bachmann and W.F. van Gunsteren. An improved polarisable water model for use in biomolecular simulation. J.

Chem. Phys., 141:22D515, 2014.
[25] H. Yu, D.P. Geerke, H. Liu, and W.F. van Gunsteren. Molecular dynamics simulations of liquid methanol and methanol-

water mixtures with polarizable models. J. Comput. Chem., 27:1494–1504, 2006.
[26] S.J. Bachmann and W.F. van Gunsteren. Polarisable model for DMSO and DMSO-water mixtures. J. Phys. Chem. B,

118:10175–10186, 2014.
[27] Z. Lin, A.P. Kunz, and W.F. van Gunsteren. A one-site polarizable model for liquid chloroform: COS/C. Mol. Phys.,

108:1749–1757, 2010.

3-i

[28] A.P.E. Kunz, A.P. Eichenberger, and W.F. van Gunsteren. A simple, efficient polarisable molecular model for liquid carbon
tetrachloride. Mol. Phys., 109:365–372, 2011.

[29] Z. Lin, S.J. Bachmann, and W.F. van Gunsteren. GROMOS polarisable charge-on-spring models for liquid urea: COS/U
and COS/U2. J. Chem. Phys., 142:094117, 2015.

[30] V.H. Rusu, S.J. Bachmann, and W.F. van Gunsteren. GROMOS polarisable model for acetone. Mol. Phys., 114:845–854,
2016.

[31] O.M. Szklarczyk, S.J. Bachmann, and W.F. van Gunsteren. A polarisable empirical force field for molecular dynamics
simulation of liquid hydrocarbons. J. Comput. Chem., 35:789–801, 2014.

[32] S. Riniker and W.F. van Gunsteren. A simple, efficient polarisable coarse-grained water model for molecular dynamics
simulations. J. Chem. Phys., 134:084110, 2011.

[33] J.R. Allison, S. Riniker, and W.F. van Gunsteren. Coarse-grained models for the solvents dimethyl sulfoxide, chloroform
and methanol. J. Chem. Phys., 136:054505, 2012.

[34] W. Huang, S. Riniker, and W.F. van Gunsteren. Rapid sampling of folding equilibria of β-peptides in methanol using a
supramolecular solvent model. J. Chem. Theory Comput., 10:2213–2223, 2014.

[35] A.P. Eichenberger, W. Huang, S. Riniker, and W.F. van Gunsteren. A supra-atomic coarse-grained GROMOS force field
for aliphatic hydrocarbons in the liquid phase. J. Chem. Theory Comput., 11:2925–2937, 2015.

[36] O. Szklarczyk, E. Arvaniti, and W.F. van Gunsteren. Polarisable coarse-grained models for molecular dynamics simulation
of liquid cyclohexane. J. Comput. Chem., 36:1311–1321, 2015.

[37] IUPAC-IUB commission on biochemical nomenclature. Abbreviations and symbols for the description of the conformation
of polypeptide chains. Tentative rules (1969). Biochemistry, 9:3471–3479, 1970.

[38] H.J.C. Berendsen, J.R. Grigera, and T.P. Straatsma. The Missing Term in Effective Pair Potentials. J. Phys. Chem.,
91:6269–6271, 1987.

[39] H. Liu, F. Müller-Plathe, and W.F. van Gunsteren. A Force Field for Liquid Dimethyl Sulfoxide and Physical Properties
of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation. J. Am. Chem. Soc., 117:4363–4366, 1995.

3-ii

Symbols

Symbol Meaning

Common names and abbreviations

GROMOS The GROMOS software package

MD++ The MD++ simulation engine in C++

GROMOS++ The GROMOS++ analysis package in C++

GROMOS96 The GROMOS96 simulation package (1996)

3D abbreviation for three dimensions

AA Atomistic (All Atom) models

BD Brownian Dynamics simulation

B&S− LEUS Ball and stick local elevation umbrella sampling

CG Coarse Grained models

CGEM Conjugate gradient method for energy minimization

FRCG Fletcher-Reeves conjugate gradient method for energy minimization

PRCG Polak-Ribiére conjugate gradient method for energy minimization

COG Center of geometry

COS Charge On Spring approach

CP Car Parrinello approach

DF Distancefield

DOF Degrees of freedom (abbreviation)

DPD Diffusive Particle Dynamics simulation

doxygen Documentation platform

EM Energy minimisation

EDS Enveloping distribution sampling

FBC Fixed boundary conditions

HBC Hyper-spherical boundary conditions

LE Local elevation

LEUS Local elevation umbrella sampling

LS Lattice-sum method

MC Monte Carlo sampling

MD Molecular Dynamics simulation

NOE Nuclear Overhauser Effect

PBC Periodic boundary conditions

PPPM Particle-particle–particle-mesh (P3M) method

QM Quantum Mechanical models

QMD Quantum Molecular Dynamics simulation

RDF Radial distribution function

RE Replica Exchange

REMD Replica Exchange Molecular Dynamics simulation

RF Reaction-field method

RMSD Root-mean-square difference

RMSF Root-mean-square fluctuation

SD Stochastic Dynamics simulation

SDEM Steepest descent method for energy minimization

TI Thermodynamic integration

US Umbrella sampling

3-iii

Symbol Meaning

VBC Vacuum boundary conditions

Physical constants

h Planck’s constant [0.3990313 kJ mol−1 ps]

~ Planck’s constant divided by 2π [0.06350780 kJ mol−1 ps]

NAv Avogadro’s number [6.02214 ×1023]

kB Boltzmann’s constant [1.380662 ×10−26 kJ K−1)]

R Ideal gas constant (NAv × kB)

c Speed of light [2.99792458 ×105 nm ps−1]

Degrees of freedom and system configuration

Nd Number of degrees of freedom of a system

Na Number of particles in a system of particles (Nd =3Na)

N solu
a Number of particles the solute consists of

qq 3Na-dimensional generalized coordinate vector of a system of particles

ppqq 3Na-dimensional generalized momentum vector of a system of particles

rr 3Na-dimensional Cartesian coordinate vector of a system of particles

pp 3Na-dimensional Cartesian momentum vector of a system of particles

ff 3Na-dimensional Cartesian force vector of a system of particles

ff 3Na-dimensional Cartesian mean force vector of a system of particles

ff st 3Na-dimensional Cartesian stochastic force vector of a system of particles

fsti 3Na-dimensional Cartesian stochastic force vector of a system of particles

vv 3Na-dimensional Cartesian velocity vector of a system of particles

r 3-dimensional Cartesian coordinate vector of a particle

p 3-dimensional Cartesian momentum vector of a particle

f 3-dimensional Cartesian force vector of a particle

v 3-dimensional Cartesian velocity vector of a particle

Ψ [Ψ(rr)] Wavefunction (position representation; configuration of a quantum-
mechanical system of Na particles)

{ rr ,pp } Phase-space point (Cartesian coordinates; configuration of a classical system
of Na particles)

(Statistical) thermodynamics

F Free energy

G Gibbs free energy

H Enthalpy

U Energy of a system

S Entropy of a system

Z Partition function

T Instantaneous temperature

To Reference temperature

K Instantaneous kinetic energy of a system

Ktr Instantaneous translational kinetic energy

Kir Instantaneous internal+rotational kinetic energy

U Instantaneous total potential energy of a system

W Instantaneous virial of a system

P Instantaneous pressure of a system

V Instantaneous volume of a system

ρJ Number particle density of particles J

Miscellaneous

3-iv

Symbol Meaning

t Time

∆t discrete time step

Nt Number of MD steps

P Probability

m Mass of a particle

M Mass of the whole system

m Diagonal mass matrix of a system of Na particles

γ Friction coefficient of a particle

γ Diagonal friction coefficient matrix of a system of Na particles

T Absolute temperature

β prefactor: 1/kBT

τT relaxation time for the coupling to a temperature bath

s Vector denoting the collection of all force-field parameters

λ Coupling parameter Lambda for a lambda dependent Hamiltonian

Nλ Number of λ-values in a TI simulation

H Heaviside function defined as H(x) = 0 ∀ x < 0 and H(x) = 1 ∀ x > 0

sign Sign function: sign(x) = 1 ∀ x > 0 and sign(x) = −1 ∀ x < 0

i imaginary number, i2 = −1

δij general Kronecker delta

σ Standard deviation

σ2 Variance

Nconf Number of configurations in an ensemble

D Diffusion constant

Rgyr radius of gyration

η the viscosity of a system

g(r) radial distribution function

s Smoothness parameter in EDS simulations

ER Energy offset parameter in EDS simulations

N (s) Number of states in EDS simulations

Spatial boundary conditions

B 3×3-matrix of the box-edge vectors (columns) in the reference Cartesian
coordinate system (PBC)

ê Unit vector

a First edge vector of a (triclinic) box (in the reference coordinate system)

b Second edge vector of a (triclinic) box (in the reference coordinate system)

c Third edge vector of a (triclinic) box (in the reference coordinate system)

a length of first edge of a (triclinic) box

b length of second edge of a (triclinic) box

c length of third edge of a (triclinic) box

T Position vector of the reference corner of a triclinic box (components in the
reference coordinate system and vector relative to the origin of this system)

L Computational box matrix (columns defined by the components of edge
vectors a, b and c in the reference coordinate system)

B Edge length matrix (diagonal, elements a, b and c)

α First edge angle a triclinic box (between b and c)

β Second edge angle a triclinic box (between a and c)

γ Third edge angle a triclinic box (between a and b)

φ First Euler angle of a triclinic box

3-v

Symbol Meaning

θ Second Euler angle of a triclinic box

ψ Third Euler angle of a triclinic box

r̆ Oblique coordinates of a real-space vector (with reference to the box-edge
vectors)

ř Oblique fractional coordinates of a real-space vector (with reference to the
box-edge vectors)

k̆ Oblique coordinates of a reciprocal-space vector

ǩ Oblique fractional coordinates of a reciprocal-space vector

l Lattice vector (three-dimensional vector with integer components)

k Reciprocal-lattice vector (k = 2πL−1l)

S Transformation matrix

R Transformation matrix

T Transformation matrix

Representation of the interaction

Ĥ Hamiltonian operator describing the interaction for quantum-mechanical de-
grees of freedom

K̂ Kinetic energy operator (kinetic energy contribution to the quantum-
mechanical Hamiltonian operator)

V̂ Potential energy operator (potential energy contribution to the quantum-
mechanical Hamiltonian operator)

H [H(rr, pp)] Hamiltonian function describing the interaction for classical degrees of free-
dom

K [K(pp)] Kinetic energy contribution to the classical Hamiltonian function

V [V(rr)] Potential energy contribution to the classical Hamiltonian function

V [V(rr)] Potential of mean force contribution to the classical Hamiltonian function

Physical interactions

ϕ [Proper dihedral-angle term]

V(phys) [V(phys) (rr;B; s)] Physical potential energy contribution to V

V(cov) [V(cov) (rr ;B; s)] Covalent potential energy contribution to V(phys)

V(nbd) [V(nbd) (rr ;B; s)] Non-bonded potential energy contribution to V(phys)

V(b) [V(b) (rr ;B; s)] Bond stretching potential energy contribution to V(cov)

V(θ) [V(θ) (rr ;B; s)] Bond-angle bending potential energy contribution to V(cov)

V(ξ) [V(ξ) (rr ;B; s)] Improper dihedral-angle bending potential energy contribution to V(cov)

V(ϕ) [V(ϕ) (rr;B; s)] Proper dihedral-angle torsion potential energy contribution to V(cov)

V(vdw) [V(vdw) (rr ;B; s)] Van der Waals potential energy contribution to V(nbd)

V(ele) [V(ele) (rr ;B; s)] Electrostatic potential energy contribution to V(nbd)

V(LJCRF) Sum of the non-bonded potentials V(vdw) and V(ele)

Physical force-field terms

V (b) [V (b)(b; k(b), b0)] Potential energy function associated with the stretching of a single covalent
bond (quartic: V (b,q) ; harmonic: V (b,h) ; soft harmonic: V (bs,h))

V
(b)
n [V (b)(bn; k

(b)
n , b0n)] Potential energy function associated with the stretching of the nth single

covalent bond (quartic: V
(b,q)
n ; harmonic: V

(b,h)
n ; soft harmonic: V

(bs,h)
n)

f (b,q) Force due to the bond stretching potential (quartic)

f (b,h) Force due to the bond stretching potential (harmonic)

f (bs,h) Force due to the bond stretching potential (soft harmonic)

N (b) Number of covalent bonds in the molecular system

N (bs) Number of soft covalent bonds in the molecular system

M
(b)
n Bond type code associated with covalent bond term n

3-vi

Symbol Meaning

bn [bn(rr,B)] Length of covalent bond n in the considered configuration

b0n [b0(M
(b)
n , s)] Reference length of covalent bond term n

k
(b,q)
n Force constant of stretching for covalent bond term n (quartic potential)

k
(b,h)
n Force constant of stretching for covalent bond term n (harmonic potential)

V (θ) [V (θ)(θ; k(θ), θ0)] Potential energy function associated with the bending of a single covalent
bond angle (cosine-harmonic: V (θ,c) ; soft cosine-harmonic: V (θs,c) ; angle-
harmonic: V (θ,h))

V
(θ)
n [V

(θ)
n (θn; k

(θ)
n , θ0n)] Potential energy function associated with the bending of the nth covalent

bond angle (cosine-harmonic: V
(θ,c)
n ; soft cosine-harmonic: V

(θs,c)
n ; angle-

harmonic: V
(θ,h)
n)

f (θ,c) Force due to the bond angle potential (cosine-harmonic)

f (θs,c) Force due to the bond angle potential (soft cosine-harmonic)

f (θ,h) Force due to the bond angle potential (angle-harmonic)

N (θ) Number of covalent bond angles in the molecular system

M
(θ)
n Bond-angle type code associated with covalent bond-angle term n

θn [θn(rr,B)] Value of covalent bond angle n in the considered configuration

θ0n [θ0(M
(θ)
n , s)] Reference angle of covalent bond-angle term n

k
(θ,c)
n Force constant of bending for covalent bond-angle term n (cosine-harmonic

potential)

k
(θs,c)
n Force constant of bending for covalent bond-angle term n (soft cosine-

harmonic potential)

k
(θ,h)
n Force constant of bending for covalent bond-angle term n (angle-harmonic

potential)

V (ξ) [V (ξ)(ξ; k(ξ), ξ0)] Potential energy function associated with the bending of a single covalent
improper dihedral angle

V (ξs) [V (ξs)(ξ; k(ξ), ξ0)] Potential energy function associated with the bending of a single covalent
improper dihedral angle

f (ξ) Force due to the improper dihedral-angle potential

f (ξs) Force due to the soft improper dihedral-angle potential

N (ξ) Number of covalent improper dihedral angles in the molecular system

N (ξs) Number of covalent improper dihedral angles in the molecular system

M
(ξ)
n Improper dihedral-angle type code associated with covalent improper

dihedral-angle term n

ξn [ξn(rr,B)] Value of covalent improper dihedral angle n in the considered configuration

ξ0n [ξ0(M
(ξ)
n , s)] Reference angle of covalent improper dihedral-angle term n

k
(ξ)
n Force constant of bending for covalent improper dihedral-angle term n

V (ϕ) [V (ϕ)(ϕ; k(ϕ), ϕ0)] Potential energy function associated with the torsion of a single covalent
proper dihedral angle (symmetric potential: V (ϕ,s) ; generalized: V (ϕ,g))

f (ϕ,s) Force due to the symmetric proper dihedral-angle potential

f (ϕ,g) Force due to the generalized proper dihedral-angle potential

N (ϕ) Number of covalent proper dihedral angles in the molecular system

M
(ϕ)
n Proper dihedral-angle type code associated with covalent proper dihedral-

angle term n

ϕn [ϕn(rr,B)] Value of covalent proper dihedral angle n in the considered configuration

ϕ0
n [ϕ0(M

(ϕ)
n , s)] Reference angle (phase shift) of covalent proper dihedral-angle term n

m
(ϕ)
n [m

(ϕ)
n (M

(ϕ)
n , s)] Multiplicity of covalent proper dihedral-angle term n

k
(ϕ,s)
n Force constant of torsion for covalent proper dihedral-angle term n (sym-

metric potential; ϕ0
n = 0, π; m

(ϕ)
n ≤ 6)

3-vii

Symbol Meaning

k
(ϕ,g)
n Force constant of torsion for covalent proper dihedral-angle term n (gener-

alized potential; ϕ0
n ∈ [0, 2π[)

q Partial charge of an atom or site

C12 Van der Waals (Pauli) repulsion coefficient of an atom or site (Lennard-Jones
function)

C6 Van der Waals (London) dispersion coefficient of an atom or site (Lennard-
Jones function)

C126 Ratio of Van der Waals coefficients C12

C6
(Lennard-Jones function)

αLJ Lennard-Jones soft-core switching parameter

αC Coulomb soft-core switching parameter

V(ele,pws) [V(ele,pws) (rr ;B; s)] Pairwise potential energy contribution to V(ele)

V(ele,slf) [V(ele,slf) (B;s)] Self potential energy contribution to V(ele)

V(ele,srf) [V(ele,srf) (rr ;B; s)] Surface potential energy contribution to V(ele)

f (nbd) Force due to the non-bonded forces

Ψ
(ele)
ij [Ψ

(ele)
ij (rr ;B; s)] Electrostatic influence function associated with the particle pair i− j

δ
(exc)
ij [δ

(exc)
ij (s)] Indicator of non-bonded exclusion for the particle pair i− j

Ψ(ele,slf) [Ψ(ele,slf) (B)] Electrostatic self influence function

ψ(RF) [ψ(RF) (x)] Influence function at distance x of a particle in RF electrostatics

H [H (x)] Heaviside step function (one if x is positive, zero otherwise)

RC Cutoff distance (truncation)

Rcp Short-range cut-off

Rcl Long-range cut-off

Rcg radius of a charge group

Ncg number of atoms belonging to a charge group

RRF Cutoff distance (onset of the RF continuum; usually set equal to RC)

ǫRF Relative dielectric permittivity of the RF continuum (usually set equal to
that of the solvent)

κRF Inverse Debye screening length of the RF continuum (usually set to zero)

CRF Constant characterizing the effect of the RF continuum

Rij [Rij (rr)] Vector (FBC) or minimum-image vector (PBC) connecting the center of the
CG containing particle j to the center of the CG containing particle i (norm
Rij)

V(ele,pws,RF−CB)

[V(ele,pws,RF−CB) (rr ;B; s)]
Coulombic pairwise potential energy contribution to V(ele,pws) (RF electro-
statics)

V(ele,pws,RF−RF)

[V(ele,pws,RF−RF) (rr ;B; s)]
Distance-dependent pairwise potential energy contribution to V(ele,pws) (RF
electrostatics)

V(ele,pws,RF−RC)

[V(ele,pws,RF−RC) (rr;B; s)]
Distance-independent pairwise potential energy contribution to V(ele,pws)

(RF electrostatics)

Ψ
(ele,LS−RS)
ij [Ψ

(ele,LS−RS)
ij

(rr ;B; s)]

Real-space component of electrostatic influence function Ψ
(ele)
ij (LS electro-

statics)

Ψ
(ele,LS−KS)
ij [Ψ

(ele,LS−KS)
ij

(rr ;B; s)]

Reciprocal-space component of the electrostatic influence function Ψ
(ele)
ij (LS

electrostatics)

V(ele,pws,LS−RS)

[V(ele,pws,LS−RS) (rr ;B; s)]
Real-space pairwise potential energy contribution to V(ele,pws) (LS electro-
statics)

V(ele,pws,LS−KS)

[V(ele,pws,LS−KS) (rr ;B; s)]
Reciprocal-space pairwise potential energy contribution to V(ele,pws) (LS
electrostatics)

ψ(LS) [ψ(LS) (x)] Influence function at position x relative to a particle in LS electrostatics

a Width of the charge-shaping function

γ [γ (x)] Charge-shaping function

3-viii

Symbol Meaning

γ̂ [γ̂ (x)] Fourier transformed charge-shaping function

E Electric field

µ Dipole

JJ

α Electronic polarisability

P Polarisation

ǫ Dielectric permittivity

γpol γ to calculate position of off site charge

kho harmonic force constant in the COS model

φ Electrostatic potential

Unphysical force-field terms

V(spec) Unphysical potential energy

V(res) Restraint energy

V(pr) Position restraining potential energy contribution to V(phys)

f (c) Force due to the position constraints

k(pr) Force constant of an unphysical position-restraining term

N (pr) number of positionally restrained atoms

l Lagrange multiplier for position constraints

V(dr) Distance restraining potential energy contribution to V(phys)

f (dir) Force due to the atom-atom distance restraints

k(dr) Force constant of an unphysical distance-restraining term

r0 Equilibrium distance of distance restraint

N (dir) Number of atom-atom distance restraints

dCH carbon-hydrogen distance

dCC carbon-carbon distance

τdr decay time for time-averaged distance restraining

V(tr) Dihedral-angle restraining potential energy contribution to V(phys)

k(tr) Force constant of an unphysical dihedral-angle restraining term

N (tr) number of restrained dihedral angles

V(Jr) 3J-restraining potential energy contribution to V(phys)

k(Jr) Force constant of an unphysical 3J-value restraining term
3J J-value or J-coupling constant
3J0 experimental J-value

J general representation of a J-value

J0 experimental J-value

∆J0 width of flat-bottom for J-value restraining

a a in Karplus relation

b b in Karplus relation

c c in Karplus relation

τsJr period of scaling in periodically-scaled J-value restraining

∆tω time period for which scaling is suspended in periodically-scaled J-value
restraining

Nle number of bins in J-value local elevation biasing

wζni weight of gaussian in J-value LE

V(Fxr) | F |-restraining potential energy contribution to V(phys)

V(exr) ρ-restraining potential energy contribution to V(phys)

V(sxr) symmetry restraining potential energy contribution to V(phys)

3-ix

Symbol Meaning

kxr (harmonic) force constant for the crystallographic restraining

ksym harmonic force constant for the crystallographic symmetry restraining

F Structure factor amplitude

ρ Electron density

S space group of a crystal

Nsym Number of symmetry operations of a space group

S Symmetry operator S = Rr+ t

R Rotation matrix of a symmetry operator

t Translation vector of a symmetry operator

V(Sr) S2-restraining potential energy contribution to V(phys)

k(Sr) Force constant of an unphysical S2-value restraining term

S2 S2-order parameter

S2,0 experimental S2-value

S general representation of a S2-value

S0 experimental S2-value

V(df) Distancefield restraining potential energy contribution to V(phys)

f (df) Force due to the atom-atom distance restraints

k(df) Force constant of an unphysical distance-restraining term

l0 Equilibrium distance of distance restraint

gs Distancefield grid distance

V(le) Local elevation (LE) energy

V(bias) bias energy

γ LE basis function

k(le) LE force constant

ruc unconstrained atomic positions

Nc Number of constraints

Nsh number of iterations of the SHAKE algorithm

d0 constraint length

fuc unconstrained atomic forces

3-x

The GROMOS Software for (Bio)Molecular

Simulation

Volume 4: Data Structures and Formats

January 9, 2021

Contents

Chapter 1. Introduction 4-1

Chapter 2. Block structure and title record of GROMOS files 4-3

Chapter 3. Topological information 4-5
3.1. Introduction 4-5
3.2. Molecular topology 4-6
3.3. Perturbation molecular topology 4-16
3.4. Atom-atom and distance-field distance restraints 4-23
3.5. Dihedral-angle restraints or constraints 4-27
3.6. 3J-coupling constant restraints 4-28
3.7. S2-order parameter restraining 4-29
3.8. Local-elevation coordinates 4-31
3.9. Local elevation umbrella sampling database file 4-32
3.10. Atomic friction coefficients 4-32
3.11. Position restraining or constraining atom specification list 4-33
3.12. B-factor restraining 4-33
3.13. Backwards compatibility with GROMOS96 4-34

Chapter 4. Configurational information 4-37
4.1. Introduction 4-37
4.2. Atomic coordinates 4-38
4.3. Atomic velocities 4-39
4.4. Atomic forces 4-40
4.5. Atomic stochastic integrals 4-40
4.6. Periodic box 4-41
4.7. Nose-Hoover chain thermostat variables 4-42
4.8. Roto-translational constraints reference variables 4-42
4.9. Perturbation data 4-42
4.10. Atom-atom distance restraints 4-43
4.11. 3J-coupling constant restraints 4-43
4.12. S2-order parameter restraints 4-44
4.13. Crystallographic restraints 4-45
4.14. Local-elevation data 4-45
4.15. Ball and stick local-elevation data 4-46
4.16. Time or step number data 4-49
4.17. Energies, pressure, volume and free-energy data 4-49
4.18. Atomic B-factors and positional fluctuations 4-54
4.19. Accelerated EDS parameter search data 4-55
4.20. Backwards compatibility with GROMOS96 4-56

Chapter 5. Molecular topology building blocks 4-57
5.1. Introduction 4-57
5.2. Separate molecules 4-57
5.3. Linking of building blocks 4-65
5.4. Other building blocks 4-66
5.5. End groups 4-67
5.6. Contents of the MTB file 4-67

4-I

Chapter 6. Interaction function parameters 4-69
6.1. Introduction 4-69
6.2. Mass atom types 4-69
6.3. Covalent bond-stretching interaction parameters 4-70
6.4. Covalent bond-angle bending interaction parameters 4-70
6.5. Improper dihedral-angle interaction parameters 4-70
6.6. Dihedral-angle torsional interaction parameters 4-71
6.7. Van der Waals interaction parameters and integer atom codes 4-71
6.8. Atomic charges and charge group codes 4-73
6.9. Excluded neighbours 4-73
6.10. Contents of the IFP file 4-73

Chapter 7. Library files for GROMOS++ 4-75
7.1. Introduction 4-75
7.2. Interaction function parameter renumbering 4-75
7.3. Atomic naming conventions 4-76
7.4. Definition of file-names and joblists 4-77
7.5. Energy trajectory block definition 4-79
7.6. Hydrogen-bond donors and acceptors 4-79
7.7. Crystallographic transformations 4-80
7.8. NOE analysis 4-81
7.9. SASA implicit solvent model 4-83
7.10. DISICL angle, region and segment definitions 4-84

Chapter 8. Input file for MD++ 4-87

Chapter 9. Output files for MD++ 4-107

Chapter 10. Files accessed by MD++ for reading or writing 4-109

Chapter 11. Other non-GROMOS formats 4-115

Chapter 12. List of GROMOS blocknames 4-117

Chapter 13. Recommendations for standard input and output file names 4-121

Bibliography 4-i

4-II

CHAPTER 1

Introduction

GROMOS knows different types of data and data files, which are described in this volume. Two types of
information concerning a molecular system can be distinguished.

1. Topological information: data on the covalent structure, atomic masses, charges, van der Waals
parameters, atom-atom distance restraints specification, 3J-value restraints specification, local-
elevation coordinate specification, etc.

2. Configurational information: atomic coordinates and atomic coordinate dependent or related quan-
tities, such as velocities and forces, atom-atom distances, dihedral angles, 3J-values, energies, size
of the computational box, etc.

These two types of information are generally stored in separate files, since configurations change continu-
ously during a simulation, whereas molecular topological data generally do not change. Both types of files,
topological files and configurational files, for a specific molecular system are related through the requirement
that in both the sequence of the quantities is the same, e.g.

1. sequence of atoms
2. sequence of atom-atom distance restraints
3. sequence of dihedral angle restraints
4. sequence of 3J-value restraints

This identity of sequence could be checked e.g. by comparing atom names occurring in topological files
with those from the configurational files. However, in order to avoid dependence on naming conventions and
to maintain maximum flexibility, this is not done in the GROMOS programs. When molecular information,
such as residue numbers and names or atom sequence numbers or names, is present both in a topological file
and in a configurational file of a molecular system, the program generally uses the data from the topological
file and ignores the corresponding data on the configurational file.

The units of the quantities contained in the different files are all derived from the basic units: nm (length),
ps (time), atomic mass units and electronic charge, leading in particular to kJ · mol−1 as unit of energies.
The angles are always given in degrees in the files.

GROMOS data files have a block structure, which is defined in Chap. 2. Topological quantities, variables,
blocks and files are described in Chap. 3. Configurational quantities, variables, blocks and files are described
in Chap. 4. Two other types of data, molecular topology building blocks and interaction function parameters
are described in Chap. 5 and Chap. 6. Library files to be used by the analysis programs of GROMOS++

are described in Chap. 7. Chap. 8 describes the MD++ input file.

4-1

CHAPTER 2

Block structure and title record of GROMOS files

GROMOS files are composed of a sequence of blocks, which may be of different type. A block begins
with a line (record) containing the blockname or blockidentifier beginning in the first position. The block
ends with a line (record) containing the character string END beginning in the first position. A blockname
or blockidentifier is a unique string of maximally 25 characters. It may not contain a # symbol in the first
position and may not be an END string. Block names are given in upper case only. The currently defined
blocknames and their functions are listed in Chap. 12.

Each input or output file of the program MD++, which executes a simulation, starts with a Title block
(Blockname: TITLE), which may contain any character type of data and is meant to specify the contents of
the file. When MD++ reads a file, the title record is always printed in order to check whether the wanted
file has been assigned to a specific (reading) unit number. This convention is not followed by GROMOS++,
which relies on file names rather than units, and ignores title blocks.

Generally, blocks may be listed in any order. However, when there are obvious dependences between
data in different blocks, e.g. the definition of bond-angle types and sequence of bond-angles of a molecule, a
specific order is required (the latter after the former).

Data files may contain comment lines, which may occur at any position and in any number. A comment
line is recognized by the # symbol in the first position of the line. GROMOS++ also recognizes as comment
any text following a # symbol anywhere on the line. In GROMOS, files are written using fixed format and
are read using free format.

4-3

CHAPTER 3

Topological information

3.1. Introduction

A molecular topology file contains information about the topology of a molecular system. In its simplest
form it would contain lists of covalent bonds, angles, masses, charges, etc. for all the atoms in the molecular
system. When the system contains topologically identical molecules, like water molecules in an aqueous
solution or corresponding molecules in different asymmetric units in a unit cell in a crystal, these atom lists
would contain redundant information. For MD++ and GROMOS++ the topology has to be specified ex-
plicitly for all identical solute units. Since a solvent generally consists of simple molecules like H2O or CCl4,
it would generally be advantageous to avoid the overhead of handling the possibility of occurrence of internal
dihedral angle degrees of freedom, non-bonded interactions, etc. within a solvent molecule. Therefore, a
distinction is made between a general part (solutes) and a more restricted part (solvent) of a molecular
topology file.

For historical reasons the general part of a molecular topology file is denoted by the notation “solute”
molecular topology, although it may contain any collection of molecules including solvent molecules. The
restricted part of a molecular topology file is denoted by the notation “solvent” molecular topology. In
general, this part contains topological data on a single type of solvent molecule, unless a solvent molecule
does not fit with the following restrictions :

- a solvent molecule must be rigid: no internal interactions like bond-stretching, bond-angle bending,
(improper) dihedral torsion and non-bonded interactions are allowed,

- the internal structure of a solvent molecule is maintained by application of distance constraint forces
between its atoms,

- a solvent molecule consists of one charge group, the position of the first atom of a solvent molecule
is taken to represent the position of this charge group,

- a solvent molecule corresponds to a single ”temperature group” and a single ”pressure (virial) group”,
- the residue or molecule name cannot be specified, it is predefined as SOL,
- position restraining should only be applied to the first atom of a solvent molecule,
- fixed position constraints cannot be applied to solvent atoms,
- solvent parameters cannot be changed using a molecular topology perturbation file for obtaining
free energy differences.

If a solvent molecule does not comply with these rules, its topological data must be included in the general
or solute part of the molecular topology file.

A molecular topology file often contains fewer atoms than a corresponding configuration file. Let us assume
that the former contains a set of molecules forming a “solute” of NRP atoms and a solvent molecule with
NRAM atoms. In order to match this molecular topology file, a configuration file must contain the following
sequence of atoms (for each block of atomic quantities):

1. the atomic coordinates or related quantities of the NRP “solute” atoms,
2. if the molecular system contains NSM solvent molecules, the atomic coordinates or related quantities

of the NSM*NRAM solvent atoms.

Solvent coordinates always appear after solute coordinates in the various blocks of configuration files. All
solute atoms should be included explicitly in the molecular topology file.The solvent parts of the molecular
topology file are to be chosen as the smallest topologically identical units of each type.

4-5

In Sec. 3.2 the content of a molecular topology file is specified. This information is always kept in
formatted form. In some applications of GROMOS, like calculating the free energy difference between two
different states A and B of a system, it is required to change the molecular topology of the system from one
corresponding to state A to another one corresponding to state B. In Sec. 3.3 the way a perturbation (change
from A to B) of a molecular topology is to be specified will be discussed. The topological specification of atom-
atom distance restraints and distance-field restraints is described in Sec. 3.4. The topological specification
of dihedral angle restraints or constraints is described in Sec. 3.5. The topological definition of 3J-value
restraints is described in Sec. 3.6. The topological definition of S2-order parameter restraints is described
in Sec. 3.7. The topological specification of coordinates to be used in the local-elevation search technique is
described in Sec. 3.8. The following three sections contain atomic property specifications: friction coefficients
and position restraining or fixing indicators (Sec. 3.9-Sec. 3.11).

3.2. Molecular topology

A molecular topology is characterized by some or all of the following quantities, which are stored in a
molecular topology file.

FPEPSI (4πε0)
−1, ε0 = permittivity of vacuum

HBAR ~ = h/(2π), h = Planck’s constant

SPDL c = speed of light

BOLTZ kB = Boltzmann’s constant

TPVER real number characterizing the version of the molecular topology

NRATT number of (van der Waals) atom types

TYPE[1..NRATT] names of the different atom types as a function of the integer atom code that defines
an atom type (at most 5 characters)

NRAA2 number of residues in a solute

AANM[1..NRAA2] residue names as a function of the residue sequence number (at most 5 characters)

NRP number of solute atoms

MRES[1..NRP] residue sequence number of solute atoms (0NRAA2)

PANM[1..NRP] atom name of solute atoms

IAC[1..NRP] integer atom code of solute atoms, determining the type of van der Waals interaction
of an atom (0NRATT)

MASS[1..NRP] mass of solute atoms

CG[1..NRP] charge of solute atoms

CGC[1...NRP] Atomic charge group codes. The last atom of a charge group is defined by CGC=1,
the others must have CGC=0

INE[1..NRP] number of neighbour atoms that are excluded from the non-bonded interaction with
a solute atom

JNE[1..NRP][1..INE[]]

excluded neighbours (solute, 0NRP); sequence numbers J of atoms that are excluded
from the non-bonded interaction with the atom with sequence number I; it is assumed
that I<J and that the J’s appear in ascending order

INE14[1..NRP] number of third-neighbour atoms of solute atoms, for which special 1-4 van der Waals
interaction parameters are used when evaluating the non-bonded interaction

4-6

JNE14[1..NRP][1..INE14[]]

third neighbours (solute, 0NRP); sequence numbers J of atoms for which the 1-4
van der Waals parameters are used when calculating the non-bonded interaction with
the atom with sequence number I; it is assumed that I<J and that the J’s appear in
ascending order

NCGB[L] number of coarse-grained regions

NRCGF[1..NCGB] sequence number of the first coarse-grained solute particle in range

NRCGL[1..NCGB] sequence number of the last coarse-grained solute particle in range

MSCAL[1..NCGB] scaling factor for pressure correction of a coarse-grained region

NBTY number of covalent bond types

CB[1..NBTY] force constant of the bond-stretching term of the interaction as a function of the
bond-type code, based on a quartic potential

CHB [1..NBTY] force constant of the bond-stretching term of the interaction as a function of the
bond-type code, based on a harmonic potential

B0[1..NBTY] bond length at minimum energy of the bond-stretching term as a function of the
bond-type code

NBONH number of bonds involving H-atoms in the solute

IBH, JBH[1..NBONH] atom sequence numbers of the atoms forming a bond i-j as a function of the bond
sequence number (0NRP), i is always smaller than j

ICBH[1..NBONH] bond-type code as a function of the bond sequence number (0NBTY)

NBON number of bonds NOT involving H-atoms in the solute

IB, JB[1..NBON] atom sequence numbers of the atoms forming a bond i-j as a function of the bond
sequence number (0NRP), i is always smaller than j

ICB[1..NBON] bond-type code as a function of the bond sequence number (0NBTY)

NBONDP number of bonds involving coarse grained particles in the solute

IBDP, JBDP[1..NBONDP]

sequence numbers of the coarse grained particles forming a bond i-j as a function of
the bond sequence number (0NRP)

ICBC[1..NBON] bond-type code as a function of the bond sequence number (0NBTY)

NTTY number of bond-angle types

CT[1..NTTY] force constant of the bond-angle bending term of the interaction as a function of the
bond-angle type code, based on a potential harmonic in the angle cosine

CHT[1..NTTY] force constant of the bond-angle bending term of the interaction as a function of the
bond-angle type code, based on a potential harmonic in the angle (in energy units
per degree2)

T0[1..NTTY] bond angle (in degrees) at minimum energy of the bond-angle bending term as a
function of the bond-angle type code; upon reading a molecular topology file by
MD++, the bond angle is converted from degrees to radians; this conversion is not
performed in GROMOS++

NTHEH number of bond-angles involving H-atoms in the solute

4-7

ITH,JTH,KTH[1..NTHEH]

atom sequence numbers of the atoms forming a bond-angle i-j-k as a function of the
bond-angle sequence number (0NRP), i is always smaller than k

ICTH[1..NTHEH] bond-angle type code as a function of the bond-angle sequence number (0NTTY)

NTHE number of bond-angles NOT involving H-atoms in the solute

IT,JT,KT[1..NTHE] atom sequence numbers of the atoms forming a bond-angle i-j-k as a function of the
bond-angle sequence number (0NRP), i is always smaller than k

ICT[1..NTHE] bond-angle type code as a function of the bond-angle sequence number (0NTTY)

NQTY number of improper (harmonic) dihedral-angle types

CQ[1..NQTY] force constant of the harmonic improper dihedral term of the interaction as a function
of the improper dihedral-angle type code (in energy units per degree2); upon reading
a molecular topology file by MD++, the force constant is converted to energy per
rad2; this conversion is not performed by GROMOS++

Q0[1..NQTY] improper dihedral (in degrees) at minimum energy of the harmonic improper dihedral
term as a function of the improper dihedral-angle type code; upon reading a molecular
topology file by MD++, the improper dihedral angle is converted from degrees to
radians; this conversion is not performed by GROMOS++

NQHIH number of improper dihedrals involving H-atoms in the solute

IQH,JQH,KQH,LQH[1..NQHIH]

atom sequence numbers of the atoms forming improper dihedral i-j-k-l as a function
of the improper dihedral sequence number (0NRP), j is always smaller than k

ICQH[1..NQHIH] improper dihedral type code as a function of the improper dihedral sequence number
(0NQTY)

NQHI number of improper dihedrals NOT involving H-atoms in the solute

IQ,JQ,KQ,LQ[1..NQHI]

atom sequence numbers of the atoms forming improper dihedral i-j-k-l as a function
of the improper dihedral sequence number (0NRP), j is always smaller than k

ICQ[1..NQHI] improper dihedral type code as a function of the improper dihedral sequence number
(0NQTY)

NPTY number of (trigonometric) dihedral-angle types

CP[1..NPTY] force constant of the trigonometric dihedral term of the interaction as a function of
the dihedral-angle type code

PD[1..NPTY] phase-shift angle (in degrees) of the trigonometric dihedral term as a function of
the dihedral-angle type code; upon reading a molecular topology file by MD++, the
phase-shift angle is converted from degrees to radians; this conversion is not performed
in GROMOS++

NP[1..NPTY] multiplicity of the trigonometric dihedral term as a function of the dihedral-angle
type code (1, 2, 3, 4, 5, or 6)

NPHIH number of dihedrals involving H-atoms in the solute

IPH,JPH,KPH,LPH[1..NPHIH]

atom sequence numbers of the atoms forming dihedral i-j-k-l as a function of the
dihedral sequence number (0NRP), j is always smaller than k

4-8

ICPH[1..NPHIH] dihedral type code as a function of the dihedral sequence number (0NPTY)

NPHI number of dihedrals NOT involving H-atoms in the solute

IP,JP,KP,LP[1..NPHI]

atom sequence numbers of the atoms forming dihedral i-j-k-l as a function of the
dihedral sequence number (0NRP), j is always smaller than k

ICP[1..NPHI] dihedral type code as a function of the dihedral sequence number (0NPTY)

NPPCH number of cross-dihedrals involving H-atoms in the solute

APH,BPH,CPH,DPH,EPH,FPH,GPH,HPH[1..NPPCH]

atom sequence numbers of the atoms forming cross-dihedrals a-b-c-d and e-f-g-h as a
function of the dihedral sequence numbers of the separate dihedrals (0NRP), a,b,c,d
are always smaller or equal to e,f,g,h respectively

ICCH[1..NPPCH] dihedral type code as a function of the cross-dihedral sequence number (0NPTY)

NPPC number of cross-dihedrals NOT involving H-atoms in the solute

AP,BP,CP,DP,EP,FP,GP,HP[1..NPPC]

atom sequence numbers of the atoms forming cross-dihedrals a-b-c-d and e-f-g-h as a
function of the dihedral sequence numbers of the separate dihedrals (0NRP), a,b,c,d
are always smaller or equal to e,f,g,h respectively

ICC[1..NPPC] dihedral type code as a function of the cross-dihedral sequence number (0NPTY)

NRATT2 number of unique pairwise combinations of atom types
(=NRATT*(NRATT +1)/2)

C12[1..NRATT2] coefficient of the 1/r12 term in the non-bonded interaction as a function of the occur-
ring pair codes; so, the sequence of atom pairs with integer atom codes ranging from
1 to NRATT is: 1-1, 1-2, ...,1-NRATT, 2-2, 2-NRATT, ..., NRATT-NRATT

C6[1..NRATT2] coefficient of the -1/r6 term in the non-bonded interaction as a function of the occur-
ring pair codes

CS12[1..NRATT2] coefficient of the 1/r12 term in the 1-4 non-bonded interaction between third-neighbour
atoms as a function of the occurring pair codes

CS6[1..NRATT2] coefficient of the -1/r6 term in the 1-4 non-bonded interaction between third-neighbour
atoms as a function of the occurring pair codes

NPPOL number of polarisable solute atoms (0NRP)

IPOLP[1..NPPOL] atom sequence numbers of the polarisable solute atoms (0NRP)

ALPP[1..NPPOL] polarisabilities of solute atoms IPOLP[1..NPPOL]

QPOLP[1..NPPOL] size of charge-on-spring connected to polarisable solute atoms IPOLP[1..NPPOL]

ENOTP[1..NPPOL] damping level for polarisation of solute atoms IPOLP[1..NPPOL]

EPP[1..NPPOL] damping parameter for polarisation of solute atoms IPOLP[1..NPPOL]

NSPM number of all separate (covalently linked) molecules within the solute topology (e.g.
separate protein chains, co-solute molecules, counterions, co-solvent molecules)

NSP[1..NSPM] atom sequence number of the last atom of the successive submolecules (0NRP)

4-9

NSTM number of temperature atom groups (used to separate translational from internal-
plus-rotational velocity components for kinetic energy evaluation and thermostatting)
within the solute topology

NST[1..NSTM] atom sequence number of the last atom of the successive temperature atom groups
(0NRP)

NSVM number of pressure (virial) atom groups (used to define a group-based pressure) within
the solute topology

NSV[1..NSVM] atom sequence number of the last atom of the successive pressure (virial) atom groups
(0NRP)

NLJEX number of LJ-exceptions

ILJEX, JLJEX[1..NLJEX]

atom sequence numbers of atoms i and j to interact with special LJ-interactions given
by LJ-exceptions, i is always smaller than j

LJEXC12[1..NLJEX] coefficient of the 1/r12 term in the non-bonded interaction for the corresponding atom
pair

LJEXC6[1..NLJEX] coefficient of the 1/r6 term in the non-bonded interaction for the corresponding atom
pair

NRAM number of atoms per solvent molecule

ANMS[1..NRAM] atom name of solvent atoms

IACS[1..NRAM] integer atom code of solvent atoms determining the type of van der Waals interaction
of an atom (0NRATT)

WMASS[1..NRAM] mass of solvent atoms

CGS[1..NRAM] charge of solvent atoms

NCONS number of distance constraints within a solvent molecule

ICONS,JCONS[1..NCONS]

atom sequence numbers of the atoms forming the constraint i-j as a function of the
constraint sequence number (0NRAM), i is always smaller than j

CONS[1..NCONS] constraint length as a function of the constraint sequence number

NVPOL number of polarisable solvent atoms (0NRAM)

IPOLV[1..NVPOL] atom sequence number of the polarisable solvent atoms (0NRAM)

ALPV[1..NVPOL] polarisabilities of solvent atoms IPOLV[1..NVPOL]

QPOLV[1..NVPOL] size of charge-on-spring connected to polarisable solvent atoms IPOLV[1..NVPOL]

ENOTV[1..NVPOL] damping level for polarisation of solvent atoms IPOLV[1..NVPOL]

EPV[1..NVPOL] damping parameter for polarisation of solvent atoms IPOLV[1..NVPOL]

NRSASAA number of atoms to be considered for SASA implicit solvent interaction function

ISASA[1..NRSASAA] atom sequence numbers of the atoms to be included in the SASA implicit solvent
interaction function

RADI[1..NRSASAA] atomic radii of the SASA atoms

PI[1..NRSASAA] atom type-specific parameters P in SASA calculation

4-10

SIGMAI[1..NRSASAA] atom type-specific scaling parameters for SASA energy term

The blocks of a molecular topology file are (apart from the Title block) the following:

Physical constants block
Blockname: PHYSICALCONSTANTS

WRITE (unit,12) FPEPSI

WRITE (unit,12) HBAR

WRITE (unit,12) SPDL

WRITE (unit,12) BOLTZ

12 FORMAT (E15.7)

This block replaces the TOPPHYSCON block of GROMOS96.

Version block
Blockname: TOPVERSION

WRITE (unit,13) TPVER

13 FORMAT (F3.1)

The version number expected by GROMOS is 2.0.

Van der Waals atom type sequence and name block
Blockname: ATOMTYPENAME

WRITE (unit,14) NRATT

DO 10 K=1, NRATT

10 WRITE (unit,15) TYPE[K]

14 FORMAT (5I5)

15 FORMAT (A5)

Solute residue sequence and name block
Blockname: RESNAME

WRITE (unit,14) NRAA2

DO 10 K=1, NRAA2

10 WRITE (unit,15) AANM[K]

Solute atom information block
Blockname: SOLUTEATOM

WRITE (unit,14) NRP

DO 10 I=1, NRP

WRITE (unit,17) I, MRES[I], PANM[I], IAC[I], MASS[I], CG[I],

CGC[I], INE[I], JNE[I][K], K=1, INE[I])

10 WRITE (unit,18) INE14[I],(JNE14[I][K], K=1, INE14[I])

17 FORMAT (2I5,1X,A5,I4,2F11.5,2I4,6I5)

18 FORMAT (46X,I4,6I5)

If INE[I] > 6, then the remaining JNE values are written on the next line using 16I5 as format. Likewise for
the JSNE14 values if INE14[I] > 6.

4-11

Coarse grained solute information block
Blockname: CGSOLUTE

WRITE (unit,14) NCGB

DO 10 K=1, NCGB

10 WRITE (unit,15) NRCGF[K], NRCGL[K], MSCAL[K]

Lennard-Jones interaction exception block
Blockname: LJEXCEPTIONS

WRITE (unit,14) NLJEX

DO 10 N=1, NLJEX

10 WRITE (unit,19) ILJEX[N], JLJEX[N], LJEXC12[N], LJEXC6[N]

19 FORMAT (2I5,2F15.7)

Bond interaction type block
Blockname: BONDSTRETCHTYPE

WRITE (unit,14) NBTY

DO 10 N=1, NBTY

10 WRITE (unit,19) CB[N], CHB[N], B0[N]

19 FORMAT (3F15.7)

The GROMOS96 BONDTYPE block is still accepted, it only contains force constants for the quartic in-
teraction form, the HARMBONDTYPE block contains only force constants for the harmonic form. If the
BONDSTRETCHTYPE block is present, the other two are not allowed.

Solute bonds involving H-atoms block
Blockname: BONDH

WRITE (unit,14) NBONH

DO 10 N=1, NBONH

10 WRITE (unit,14) IBH[N], JBH[N], ICBH[N]

Solute bonds NOT involving H-atoms block
Blockname: BOND

WRITE (unit,14) NBON

DO 10 N=1, NBON

10 WRITE (unit,14) IB[N], JB[N], ICB[N]

Coarse grained solute bonds block
Blockname: BONDDP

WRITE (unit,14) NBONCG

DO 10 N=1, NBONCG

10 WRITE (unit,14) IBCG[N], JBCG[N], ICBCG[N]

Solute distance constraints
Blockname: CONSTRAINT

WRITE (unit,14) NCON

4-12

DO 10 N=1, NCON

10 WRITE (unit,14) IC[N], JC[N], ICC[N]

Bond angle interaction type block
Blockname: BONDANGLEBENDTYPE

WRITE (unit,14) NTTY

DO 10 N=1, NTTY

10 WRITE (unit,19) CT[N], CHT[N], T0[N]

19 FORMAT (3F15.7)

The GROMOS96 BONDANGLETYPE block is still accepted, it only contains force constants for the co-
sine harmonic interaction form, the HARMBONDANGLETYPE block contains only force constants for the
harmonic form. If the BONDANGLEBENDTYPE block is present, the other two are not allowed.

Solute bond angles involving H-atoms block
Blockname: BONDANGLEH

WRITE (unit,14) NTHEH

DO 10 N=1, NTHEH

10 WRITE (unit,14) ITH[N], JTH[N], KTH[N], ICTH[N]

Solute bond angles NOT involving H-atoms block
Blockname: BONDANGLE

WRITE (unit,14) NTHE

DO 10 N=1, NTHE

10 WRITE (unit,14) IT[N], JT[N], KT[N], ICT[N]

Improper (harmonic) dihedral angle interaction type block
Blockname: IMPDIHEDRALTYPE

WRITE (unit,14) NQTY

DO 10 N=1, NQTY

10 WRITE (unit,19) CQ[N], Q0[N]

19 FORMAT (3F15.7)

Solute improper dihedrals involving H-atoms block
Blockname: IMPDIHEDRALH

WRITE (unit,14) NQHIH

DO 10 N=1, NQHIH

10 WRITE (unit,14) IQH[N], JQH[N], KQH[N], LQH[N], ICQH[N]

Solute improper dihedrals NOT involving H-atoms block
Blockname: IMPDIHEDRAL

WRITE (unit,14) NQHI

DO 10 N=1, NQHI

10 WRITE (unit,14) IQ[N], JQ[N], KQ[N], LQ[N], ICQ[N]

4-13

Proper (trigonometric) dihedral angle interaction type block
Blockname: TORSDIHEDRALTYPE

WRITE (unit,14) NPTY

DO 10 N=1, NPTY

10 WRITE (unit,20) CP[N], PDL[N], NP[N]

20 FORMAT (2F10.5,I5)

The GROMOS96 DIHEDRALTYPE block is still accepted, it expects cosine values for the phase shifts
allowing only values of -1 and 1 (0 or 180◦). If both blocks are specified, only the TORSDIHEDRALTYPE
block is read in.

Solute dihedrals involving H-atoms block
Blockname: DIHEDRALH

WRITE (unit,14) NPHIH

DO 10 N=1, NPHIH

10 WRITE (unit,14) IPH[N], JPH[N], KPH[N], LPH[N], ICPH[N]

Solute dihedrals NOT involving H-atoms block
Blockname: DIHEDRAL

WRITE (unit,14) NPHI

DO 10 N=1, NPHI

10 WRITE (unit,14) IP[N], JP[N], KP[N], LP[N], ICP[N]

Solute cross-dihedrals involving H-atoms block
Blockname: CROSSDIHEDRALH

WRITE (unit,14) NPPCH

DO 10 N=1, NPPCH

10 WRITE (unit,14) APH[N], BPH[N], CPH[N], DPH[N], EPH[N],

FPH[N], GPH[N], HPH[N], ICCH[N]

Solute cross-dihedrals NOT involving H-atoms block
Blockname: CROSSDIHEDRAL

WRITE (unit,14) NPPC

DO 10 N=1, NPPC

10 WRITE (unit,14) AP[N], BP[N], CP[N], DP[N], EP[N],

FP[N], GP[N], HP[N], ICC[N]

Van der Waals (Lennard-Jones) interaction block
Blockname: LJPARAMETERS

NRATT2 = NRATT*(NRATT+1)/2

WRITE (unit,14) NRATT2

DO 10 J=1, NRATT

DO 9 I=1, J

9 WRITE (unit,16) I, J, C12[I,J], C6[I,J], CS12[I,J], CS6[I,J]

10 CONTINUE

16 FORMAT (2I5,4E15.7)

4-14

Coarse grain (Lennard-Jones) interaction block
Blockname: CGPARAMETERS

NRATT2 = NRATT*(NRATT+1)/2

WRITE (unit,14) NRATT2

DO 10 J=1, NRATT

DO 9 I=1, J

9 WRITE (unit,16) I, J, C12[I,J], C6[I,J]

10 CONTINUE

16 FORMAT (2I5,2E15.7)

Solute polarisation specification block (md++ only, optional)
Blockname: SOLUTEPOLARISATION

WRITE (unit,14) NPPOL

DO 10 N=1, NPPOL

10 WRITE (unit,99) IPOLP[N], ALPP[N], QPOLP[N], ENOTP[N], EPP[N]

99 FORMAT (I5,4F15.7)

Separate solute molecules specification block
Blockname: SOLUTEMOLECULES

WRITE (unit,14) NSPM

DO 10 N=1, NSPM

10 WRITE (unit,14) NSP[N]

Temperature atom groups specification block
Blockname: TEMPERATUREGROUPS

WRITE (unit,14) NSTM

DO 10 N=1, NSTM

10 WRITE (unit,14) NST[N]

Pressure groups specification block
Blockname: PRESSUREGROUPS

WRITE (unit,14) NSVM

DO 10 N=1, NSVM

10 WRITE (unit,14) NSV[N]

Solvent atom information block
Blockname: SOLVENTATOM

WRITE (unit,14) NRAM

DO 10 I=1, NRAM

10 WRITE (unit,21) I, ANMS[I], IACS[I], WMASS[I], CGS[I]

21 FORMAT (I5,1X,A5,I4,2F11.5)

Solvent distance constraint block
Blockname: SOLVENTCONSTR

WRITE (unit,14) NCONS

4-15

DO 10 K=1, NCONS

10 WRITE (unit,22) ICONS[K], JCONS[K], CONS[K]

22 FORMAT (2I5,F15.7)

Solvent polarisation specification block (optional)
Blockname: SOLVENTPOLARISATION

WRITE (unit,14) NVPOL

DO 10 N=1, NVPOL

10 WRITE (unit,99) IPOLV[N], ALPV[N], QPOLV[N], ENOTV[N], EPV[N]

SASA implicit solvent model parameter block
Blockname: SASAPARAMETERS

WRITE (unit,20) NRSASAA

DO 10 I=1, NRSASAA

10 WRITE (unit,21) ISASA[I], RADI[I], PI[I], SIGMAI[I]

20 FORMAT (I5)

21 FORMAT (I6,3X,F5.3,3X,F5.3,3X,F8.3)

Examples of molecular topology files are named:

*.top

3.3. Perturbation molecular topology

When simulating a molecular system or when analyzing a set of conformations of a molecule, the molec-
ular topology file of the system remains unchanged. This is the rationale for separating topological and
force field information resident in a molecular topology file from conformational information resident in
configurational files. If a change of topological data or force field parameters is required, a new changed
molecular topology file has to be generated by one of the molecular topology building or conversion programs.

However, when applying the thermodynamic integration formalism based on the coupling parameter (λ)
approach in order to determine the difference in free energy between two states A and B of a molecular
system, the molecular topology (Hamiltonian) of the system becomes a function of the coupling parameter λ
such that it may change in a continuous way from the one corresponding to state A to the one corresponding
to state B or vice versa. In general the difference between state B and state A is limited to a restricted
part of the system, that is, a few tens of atoms. Therefore, this difference is represented by a perturbation
molecular topology, which contains information on how to change or perturb the molecular topology of state
A in order to obtain the one of state B.

The implementation of the parametrisation of the Hamiltonian of a molecular system in terms of a param-
eter λ has been described in Sec. 2-14.2. It has been implemented in MD++. Note that the GROMOS++

program pt top can be used to merge a topology (A) and a perturbation topology (B-A) into a new topology
(B). Similarly, GROMOS++ program make pt top can be used to create the perturbation topology (B-A)
from the specified topologies (A) and (B). The contents of the file containing the perturbation Hamiltonian
or molecular topology is described below. Here, a few comments are given:

1. The molecular topology that is read, the unperturbed one, corresponds to state A.
2. The value λ = RLAM = 0 corresponds to state A of the system (unperturbed molecular topology);

the value λ = RLAM = 1 corresponds to state B of the system (perturbed molecular topology).
3. Since atoms cannot be created or destroyed, only their interaction with other atoms can be modified

or perturbed. Thus, the unperturbed topology corresponding to state A must contain all atoms
involved in the perturbation as either real or dummy (i.e. non-interacting) atoms. So, state B has
the same number of atoms as state A.

4-16

4. The perturbation of non-bonded interaction is specified by giving the NJLA atom sequence number
of the perturbed atoms (JLA) and the integer atom codes (IAC(A), IAC(B)), masses (MASS(A),
MASS(B) and charges (CHARGE(A), CHARGE(B)) in both states A and B. The force field pa-
rameters for state A given in the perturbation molecular topology must not necessarily match those
given in the (unperturbed) molecular topology. In the perturbation calculation, interactions in state
A will be described according to state A given in the perturbation topology and a warning will be
printed if state A in the perturbed topology does not match state A in the unperturbed topology.

5. The change from state A to state B may involve the breaking or formation of a covalent bond between
two atoms. In that case, the excluded neighbours and the third neighbours of these atoms will be
different in state A and in state B. The type of interaction, i.e. normal interaction, 1-4 or third-
neighbour interaction, must be changeable. The standard non-bonded interaction subroutines only
allow for a continuous change from one integer atom code (IAC(A)) to another (IAC(B)), but not
for a change of type in the sense of normal, third-neighbour or excluded-neighbour interaction. A
change of type is implemented by specifying the NEB pairs of atoms (IEB, JEB) for which the type
is to be changed when moving from state A to state B. The perturbation molecular topology file
contains the variables IETA and IETB for each pair, denoting which of the three types of interaction
is applicable in state A and in state B. The interaction for these specified atom pairs is evaluated in
special subroutines in MD++. In order to avoid double counting, all these specified pairs must be
excluded atom pairs in the unperturbed molecular topology (state A).

6. In the most common case, all interactions within the molecular system are made λ-dependent. How-
ever, in special cases, one may wish to restrict the λ-dependence to a specified subset of interactions.
This can be done by defining individual λ values per interaction which can be different for interac-
tions within or between every energy group. The individual λ values are defined as a polynomial
function of order 4 of the overall λ value (see Sec. 2-14.4).

7. In a number of applications (e.g. creation or annihilation of atoms by conversion from or into a
dummy, or free-energy extrapolation from an unphysical reference state) it is useful to make per-
turbed interactions soft. This is achieved by a modification of the λ-dependent Lennard-Jones and
electrostatic interaction functions through the introduction of two corresponding soft-core param-
eters αLJ(I, J) and αEL(I, J). These parameters are calculated from atomic soft-core parameters
αLJ(I, I) and αEL(I, I) using the combination rules described in Sec. 2-14.2.8.

8. The perturbation of the bond-stretching, bond-angle bending, improper dihedral or dihedral inter-
action terms is specified by giving the sequence numbers of the atoms involved and the type codes
determining force field parameters in state A as well as in state B. The force field parameters for
state A given in the perturbation molecular topology must not necessarily match those given in the
(unperturbed) molecular topology. In the perturbation calculation, interactions in state A will be
described according to state A given in perturbation topology and a warning will be printed if state
A in the perturbed topology does not mach the unperturbed topology. The occurrence of multiple
force field terms involving the same atoms and the same type code in the unperturbed topology is
not allowed in this case.

9. For bond stretching, bond-angle bending and improper dihedrals a soft potential energy function
can be chosen to reduce numerical instabilities when force constants are being reduced to 0. Apart
from the regular type codes, determining the force field parameters for states A and B, a type code
of 0 can be given for either state A or state B, indicating an interaction with a force constant of
0. An additional softness parameter (αb, αθ or αξ, respectively) is added to the definition of the
perturbed interaction (see Sec. 2-14.2.2).

10. Note that the units of the perturbation molecular topology file must match the units of the unper-
turbed molecular topology file.

11. For some GROMOS++ programs and for enveloping distribution sampling (EDS) in MD++, it is
convenient to handle multiple perturbation topologies simultaneously. For the non-bonded interac-
tions this is implemented in a special MPERTATOMS block in which only the interaction parameters
IACB and charges CGB for state B are specified for different perturbations. The GROMOS++ pro-
gram pt top can convert a multiple perturbation topology file into a perturbation topology file.

A perturbation molecular topology file is characterized by the following quantities:

NJLA number of perturbed atoms

4-17

NPTB number of listed perturbations in MPERTATOM block

PTNAME[1..NPTB] name to identify a perturbation in MPERTATOM block

NR[1..NJLA] atom sequence numbers of the perturbed atoms (0 NRP)

RES[1..NJLA] residue sequence number of atom (only read, not used)

NAME[1..NJLA] atom name of atom (only read, not used)

IAC(A)[1..NJLA] integer atom code of perturbed atoms in state A, determining the type of van der
Waals interaction(0 NRATT)

IAC(B)[1..NPTB,1..NJLA]

integer atom code of perturbed atoms in state B, determining the type of van der
Waals interaction (0NRATT)

MASS(A)[1..NJLA] mass of the perturbed atoms in state A

MASS(B)[1..NJLA] mass of the perturbed atoms in state B

CHARGE(A)[1..NJLA] charge of the perturbed atoms in state A

CHARGE(B)[1..NPTB,1..NJLA]

charge of the perturbed atoms in state B

ALJ[1..NJLA] atomic soft-core parameter for the Lennard-Jones interaction

ACRF[1..NJLA] atomic soft-core parameters for the Coulomb-Reaction field interaction

NEB number of atom pairs for which the non-bonded interaction changes the exclusion
state; these pairs must be excluded pairs in the molecular topology file

IEB, JEB[1..NEB] atom sequence numbers of the two atoms forming the pairs (0NRP)

IETA[1..NEB] determines type of non-bonded interaction in state A for the pairs; zero for no non-
bonded interaction; one for non-bonded interaction of normal type; two for non-
bonded interaction of 1-4 (van der Waals) type

IETB[1..NEB] likewise, but for state B

NBONHG number of perturbed bonds involving H-atoms (0NBONH)

IBHG, JBHG[1..NBONHG]

atom sequence numbers of the atoms forming the perturbed bond i-j (0NRP)

ICBHA[1..NBONHG] bond-type code corresponding to bond-stretching interaction term in state A (0NBTY)

ICBHB[1..NBONHG] as ICBHA, but for state B (0NBTY)

NBONG number of perturbed bonds NOT involving H-atoms (0NBON)

IBG, JBG[1..NBONG] atom sequence numbers of the atoms forming the perturbed bonds i-j (0NRP)

ICBA[1..NBONG] bond-type code corresponding to bond-stretching interaction term in state A (0NBTY)

ICBB[1..NBONG] as ICBA, but for state B (0NBTY)

NBONSG number of perturbed bonds with a soft potential energy function (0NBON)

4-18

IBSG, JBSG[1..NBONSG]

atom sequence numbers of the atoms forming the perturbed bonds i-j (0NRP)

ICBSA[1..NBONSG] bond-type code corresponding to bond-stretching interaction term in state A (0NBTY)

ICBSB[1..NBONSG] as ICBSA, but for state B (0NBTY)

ALB[1..NBONSG] softness parameter for soft harmonic bond

NTHEHG number of perturbed bond angles involving H-atoms (0NTHEH)

ITHG, JTHG, KTHG[1..NTHEHG]

atom sequence numbers of the atoms forming the perturbed bond angle i-j-k (0NRP)

ICTHA[1..NTHEHG] bond-angle type code corresponding to bond-angle bending interaction term in state
A (0NTTY)

ICTHB[1..NTHEHG] as ICTHA, but for state B (0NTTY)

NTHEG number of perturbed bond angles NOT involving H-atoms (0NTHE)

ITG, JTG, KTG[1..NTHEG]

atom sequence numbers of the atoms forming the perturbed bond angle i-j-k (0NRP)

ICTA[1..NTHEG] bond-angle type code corresponding to bond-angle bending interaction term in state
A (0NTTY)

ICTB[1..NTHEG] as ICTA, but for state B (0NTTY)

NTHESG number of perturbed bond angles with a soft potential energy function (0NTHE)

ITSG, JTSG, KTSG[1..NTHESG]

atom sequence numbers of the atoms forming the perturbed bond angle i-j-k (0NRP)

ICTSA[1..NTHESG] bond-angle type code corresponding to bond-angle bending interaction term in state
A (0NTTY)

ICTSB[1..NTHESG] as ICTSA, but for state B (0NTTY)

ALA[1..NTHESG] softness parameter for soft bond angle

NQHIHG number of perturbed improper (harmonic) dihedrals involving H-atoms (0NQHIH)

IQHG, JQHG, KQHG, LQHG[1..NQHIHG]

atom sequence numbers of the atoms forming the perturbed improper (harmonic)
dihedral i-j-k-l (0NRP)

ICQHA[1..NQHIHG] improper dihedral type code corresponding to improper-dihedral interaction term in
state A (0NQTY)

ICQHB[1..NQHIHG] as ICQHA, but for state B (0NQTY)

NQHIG number of perturbed improper (harmonic) dihedrals NOT involving H-atoms (0NQHI)

IQG, JQG, KQG, LQG[1..NQHIG]

atom sequence numbers of the atoms forming the perturbed improper (harmonic)
dihedral i-j-k-l (0NRP)

ICQA[1..NQHIG] improper-dihedral type code corresponding to improper-dihedral interaction term in
state A (0NQTY)

4-19

ICQB[1..NQHIG] as ICQA, but for state B (0NQTY)

NQHISG number of perturbed improper (harmonic) dihedrals with a soft potential energy
function (0NQHI)

IQSG, JQSG, KQSG, LQSG[1..NQHISG]

atom sequence numbers of the atoms forming the perturbed improper (harmonic)
dihedral i-j-k-l (0NRP)

ICQSA[1..NQHISG] improper-dihedral type code corresponding to improper-dihedral interaction term in
state A (0NQTY)

ICQSB[1..NQHISG] as ICQSA, but for state B (0NQTY)

ALI[1..NQHISG] softness parameter for improper dihedral

NPHIHG number of perturbed (trigonometric) dihedrals involving H-atoms (0NPHIH)

IPHG, JPHG, KPHG, LPHG[1..NPHIHG]

atom sequence numbers of the atoms forming the perturbed (trigonometric) dihedral
i-j-k-l (0NRP)

ICPHA[1..NPHIHG] dihedral-type code corresponding to trigonometric dihedral interaction term in state
A (0NPTY)

ICPHB[1..NPHIHG] as ICPHA, but for state B (0NPTY)

NPHIG number of perturbed (trigonometric) dihedrals NOT involving H-atoms (0NPHI)

IPG, JPG, KPG,LPG[1..NPHIG]

atom sequence numbers of the atoms forming the perturbed (trigonometric) dihedral
i-j-k-l (0NRP)

ICPA[1..NPHIG] dihedral-type code corresponding to trigonometric dihedral interaction term in state
A (0NPTY)

ICPB[1..NPHIG] as ICPA, but for state B (0NPTY)

NPOLG number of perturbed polarisabilities of perturbed atoms with atom sequence number
JLA (NPOLG6NJLA)

ALPA[1..NPOLG] polarisability of perturbed atoms in state A

ENOTA[1..NPOLG] damping level for polarisation of perturbed atoms in state B

ALPB[1..NPOLG] polarisability of perturbed atoms in state A

ENOTB[1..NPOLG] damping level for polarisation of perturbed atoms in state B

The blocks of a perturbation molecular topology file are (apart from the Title block) the following:

Perturbed atom information block
Blockname: PERTATOMPARAM

WRITE (unit,14) NJLA

DO 10 N=1, NJLA

10 WRITE (unit,23) NR[N],RES[N],NAME[N],IAC(A)[N],MASS(A)[N],CHARGE(A)[N],

4-20

IAC(B)[N],MASS(B)[N],CHARGE(B)[N],ALJ[N],ACRF[N]

23 FORMAT (2I5,1X,A5,2F11.5,I4,4F11.5)

Multiple perturbed atom information block (for use in GROMOS++ only)
Blockname: MPERTATOM

WRITE (unit,14) NJLA, NPTB

WRITE (unit 21) (PTNAME[I],I=1,NPTB)

DO 10 N=1, NJLA

10 WRITE (unit,22) NR[N],NAME[N],((IAC(B)[I,N],CHARGE(B)[I,N]),I=1,NPTB),ALJ[N],ACRF[N]

21 FORMAT (16A5)

22 FORMAT (I5,1X,A5,16(I4,F11.5))

Perturbed NONBPL atom pair block
Blockname: PERTATOMPAIR

WRITE (unit,14) NEB

DO 10 N=1, NEB

10 WRITE (unit,14) IEB[N], JEB[N], IETA[N], IETB[N]

Perturbed bonds involving H-atoms block
Blockname: PERTBONDSTRETCHH

WRITE (unit,14) NBONHG

DO 10 N=1, NBONHG

10 WRITE (unit,14) IBHG[N], JBHG[N], ICBHA[N], ICBHB[N]

Perturbed bonds NOT involving H-atoms block
Blockname: PERTBONDSTRETCH

WRITE (unit,14) NBONG

DO 10 N=1, NBONG

10 WRITE (unit,14) IBG[N], JBG[N], ICBA[N],ICBB[N]

Perturbed bonds with a soft potential
Blockname: PERTBONDSOFT

WRITE (unit,14) NBONSG

DO 10 N=1, NBONSG

10 WRITE (unit,14) IBSG[N], JBSG[N], ICBSA[N],ICBSB[N], ALB[N]

Perturbed bond angles involving H-atoms block
Blockname: PERTBONDANGLEH

WRITE (unit,14) NTHEHG

DO 10 N=1, NTHEHG

10 WRITE (unit,14) ITHG[N], JTHG[N], KTHG[N], ICTHA[N], ICTHB[N]

Perturbed bond angles NOT involving H-atoms block
Blockname: PERTBONDANGLE

4-21

WRITE (unit,14) NTHEG

DO 10 N=1, NTHEG

10 WRITE (unit,14) ITG[N], JTG[N], KTG[N], ICTA[N], ICTB[N]

Perturbed bond angles with a soft potential
Blockname: PERTANGLESOFT

WRITE (unit,14) NTHESG

DO 10 N=1, NTHESG

10 WRITE (unit,14) ITSG[N], JTSG[N], KTSG[N], ICTSA[N], ICTSB[N], ALA[N]

Perturbed improper (harmonic) dihedrals involving H-atoms block
Blockname: PERTIMPROPERDIHH

WRITE (unit,14) NQHIHG

DO 10 N=1, NQHIHG

10 WRITE (unit,26) IQHG[N], JQHG[N], KQHG[N], LQHG[N], ICQHA[N],

ICQHB[N]

26 FORMAT (6I5)

Perturbed improper (harmonic) dihedrals NOT involving H-atoms block
Blockname: PERTIMPROPERDIH

WRITE (unit,14) NQHIG

DO 10 N=1, NQHIG

10 WRITE (unit,26) IQG[N], JQG[N], KQG[N], LQG[N], ICQA[N], ICQB[N]

Perturbed improper (harmonic) dihedrals with a soft potential
Blockname: PERTIMPROPERDIHSOFT

WRITE (unit,14) NQHISG

DO 10 N=1, NQHISG

10 WRITE (unit,26) IQG[N], JQG[N], KQG[N], LQG[N], ICQA[N], ICQB[N], ALI[N]

Perturbed (trigonometric) dihedrals involving H-atoms block
Blockname: PERTPROPERDIHH

WRITE (unit,14) NPHIHG

DO 10 N=1, NPHIHG

10 WRITE (unit,26) IPHG[N], JPHG[N], KPHG[N], LPHG[N], ICPHA[N],

ICPHB[N]

Perturbed (trigonometric) dihedrals NOT involving H-atoms block
Blockname: PERTPROPERDIH

WRITE (unit,14) NPHIG

DO 10 N=1, NPHIG

10 WRITE (unit,26) IPG[N], JPG[N], KPG[N], LPG[N], ICPA[N], ICPB[N]

Perturbed atomic polarisabilities block
Blockname: PERTPOLPARAM

4-22

WRITE (unit,14) NPOLG

DO 10 N=1, NPOLG

10 WRITE (unit,99) JLA[N], RESNR[N], ATNAME[N], ALPA[N], ENOTA[N],

ALPB[N], ENOTB[N]

Examples of perturbation molecular topology files are named:

*.ptp

3.4. Atom-atom and distance-field distance restraints

When performing a simulation or energy minimization, a special interaction function term that restrains
atom-atom distances can be added to the interaction function, see Sec. 2-9.3 and Sec. 2-9.12. Such a term
may be used to make a molecule satisfy a given set of atom-atom distance upper or lower bounds, or to direct
a molecule into the active site of a protein. A slight complication is that an atom involved in an atom-atom
distance restraint pair may be a virtual or a pseudo atom (Sec. 2-9.4). In terms of a molecular topology or
a molecular configuration such an atom is non-existing. As discussed in Sec. 2-9.4, its geometric position is
defined in terms of the positions of its non-virtual neighbour atoms. For a virtual or pseudo atom the atom-
atom distance restraint specification will contain the atom sequence numbers of the real atoms that define
the virtual or pseudo atom position together with a geometry code denoting the specific geometric definition.

A set of atom-atom distance restraints in an atom-atom distance restraints file is characterized by the
following quantities:

NDR number of distance restraint atom pairs per “solute” molecule

I1, J1, K1, L1[1..NDR]

atom sequence numbers of the real atoms defining the geometric position of the first
atom of a distance restraint pair (0NRP)

TYPE1[1..NDR] geometric code defining the position of the first atom of a distance restraint pair [-2,
-1, ..., 7]

I2, J2, K2, L2[1..NDR]

atom sequence numbers of the real atoms defining the geometric position of the second
atom of a distance restraint pair (0NRP)

TYPE2[1..NDR] geometric code defining the position of the second atom of a distance restraint pair
[-2, -1, ..., 7]

R0[1..NDR] in case of a full-harmonic distance restraint (RAH = 0), R0 is the minimum-energy
distance; in case of an attractive or repulsive half-harmonic restraint (RAH = ±1), R0
is the upper or lower bound, respectively, beyond which the restraining forces become
non-zero. When using distance restraints for NMR-NOE distance restraining, pseudo-
atom corrections should already be included in R0 (see Sec. 2-9.4)

W0[1..NDR] individual distance restraint weight factor, by which the distance restraint interaction
term may be multiplied.

DIM dimensionality-code for distance restraints. See below for allowed options. The value
of DIM is determined from the value of RAH and is not stored separately.

RAH[1..NDR] type of distance restraint; this parameter sets both the dimensions in which the
restraint is applied as well as the shape of the functional form. if RAH = DIM - 1, a
half-harmonic repulsive distance restraint is applied; if RAH = DIM, a full harmonic
distance restraint is applied; if RAH = DIM + 1, a half-harmonic attractive distance
restraint is applied.

4-23

DISH carbon-hydrogen distance, used for geometries TYPE = 1-6

DISC carbon-carbon distance, used for geometry TYPE = 6

In MD++ a distance restraint can also be modified in the course of a free energy perturbation. The perturbed
distance restraints make use of the additional parameters

NDRP number of perturbed distance restraint atom pairs

M[1..NDRP] hidden restraint parameter: exponent of λ in state superposition prefactor

N[1..NDRP] hidden restraint parameter: exponent of (1-λ) in state superposition prefactor

A R0[1..NDRP] upper or lower bound beyond which the restraining forces become non-zero for state
A

A W0[1..NDRP] individual distance restraint weight factor by which the distance restraint interaction
term may be multiplied for state A

B R0[1..NDRP] as A R0, but for state B

B W0[1..NDRP] as A W0, but for state B

As discussed in Sec. 2-9.4, the allowed geometries are the following ones. The notation is given in terms of
hydrogen atoms.

TYPE = 0 real atom; its atom sequence number is given by IDR

TYPE = 1 virtual H-atom, aliphatic CH; it is bound to real atom I (carbon, atom sequence
number IDR) and the three covalently-bound real neighbours of atom I are the real
atoms J, K and L (atom sequence numbers JDR, KDR and LDR)

TYPE = 2 virtual H-atom, aromatic CH; it is bound to real atom I (carbon) and the two
covalently-bound real neighbours of atom I are the real atoms J and K (LDR is
not used)

TYPE = 3 pseudo H-atom, geometric mean of the two H-atoms of an aliphatic CH2; it is (pseudo)
bound to real atom I (carbon) and the two covalently-bound real neighbours of atom
I are the real atoms J and K (LDR is not used)

TYPE = 4 virtual H-atom, one of the two H-atoms of an aliphatic CH2; it is bound to real atom I
(carbon) and the two covalently-bound real neighbours of atom I are the real atoms J
and K (LDR is not used); the definition is the following: looking along covalent bond
vector J-I from atom J to the central (carbon) atom I, the direction of the virtual bond
I-H is obtained from the direction of the bond I-K by a counter-clockwise rotation
over 120◦ around bond J-I; the other virtual H-atom can be obtained by interchanging
the sequence numbers JDR and KDR

TYPE = 5 pseudo H-atom, geometric mean of the three H-atoms of a CH3 group; it is (pseudo)
bound to real atom I (carbon) and the one covalently-bound real neighbour of atom
I is the real atom J (KDR and LDR are not used)

TYPE = 6 pseudo H-atom, geometric mean of the six H-atoms of two CH3 groups that are both
bound to a common third carbon atom; it is (pseudo) bound to this real third carbon
atom I and the carbon atoms of the two CH3 groups are the real atoms J and K (LDR
is not used)

TYPE = 7 pseudo H-atom, geometric mean of the nine H-atoms of three CH3 groups that are
all three bound to a common fourth carbon atom I; it is (pseudo) bound to I and the
fifth atom J is the real atom that is bound to I as well (KDR and LDR not used)

4-24

TYPE = -1 virtual atom, centre of geometry of the atoms I,J,K and L if their specifications are
non-zero. (Example: the two (δ or ǫ) H-atoms I and J of an aromatic ring, or the two
H-atoms I and J of a planar NH2-group.)

TYPE = -2 virtual atom, centre of mass of the atoms I,J,K and L if their specifications are non-
zero.

Atom-atom distance restraints may be applied in selected dimensions only. This is specified by the parameter
RAH, from which the nearest integer code DIM is deduced. The following values of DIM are implemented
in MD++:

DIM = 0 dimensions to apply distance restraint: X, Y, Z.

DIM = 10 dimensions to apply distance restraint: X, Y.

DIM = 20 dimensions to apply distance restraint: X, Z.

DIM = 30 dimensions to apply distance restraint: Y, Z.

DIM = 40 dimension to apply distance restraint: X.

DIM = 50 dimension to apply distance restraint: Y.

DIM = 60 dimension to apply distance restraint: Z.

Atom-atom distance restraint specification block
Blockname: DISTANCERESSPEC

WRITE (unit,11) DISH, DISC

DO 10 N=1, NDR

10 WRITE (unit,12) I1[N], J1[N], K1[N], L1[N], TYPE1[N],

I2[N], J2[N], K2[N], L2[N], TYPE2[N],

R0[N], W0[N], RAH[N]

11 FORMAT (2F10.5)

12 FORMAT (5I5,5X,5I5,3F10.5)

Perturbed atom-atom distance restraint specification block
Blockname:PERTDISRESSPEC

WRITE (unit,11) DISH, DISC

DO 10 N=1, NDRP

10 WRITE (unit,13) I1[N], J1[N], K1[N], L1[N], TYPE1[N],

I2[N], J2[N], K2[N], L2[N], TYPE2[N], M[N], N[N]

A R0[N], A W0[N], B R0[N], B W0[N], RAH[N]

13 FORMAT (5I5,5X,7I5,5F10.5)

For enveloping distribution sampling (EDS) it is convenient to define multiple perturbed distances. For
this the MDISRESSPEC block may be used.

Multiple atom-atom distance restraint specification block
Blockname:MDISRESSPEC

WRITE (unit,11) DISH, DISC

DO 10 N=1, NDRP

10 WRITE (unit,13) I1[N], J1[N], K1[N], L1[N], TYPE1[N],

I2[N], J2[N], K2[N], L2[N], TYPE2[N],

4-25

(R0[N,M],M=1,NEDS), (W0[N,M],M=1,NEDS), RAH[N]

13 FORMAT (5I5,5X,5I5,NEDS(F10.5),NEDS(F10.5),I5)

A distance-field distance restraint in an atom-atom distance restraints file is characterized by the following
additional quantities:

PROTEINATOMS last atom of the set of atoms to be defined as being part of the protein (0NRP)

K force constant for the harmonic distance-field distance restraint

R0 minimum-energy distance on the distance-field grid

TYPE I geometric code defining the position of the first atom of the distance-field distance
restraint, typically the protein [-2, -1, ..., 7]

NUM I number of atoms used to define the virtual atom I

ATOM I[1..NUM I] atom sequence numbers of the atoms used to define the virutal atom I

TYPE J geometric code defining the position of the first atom of the distance-field distance
restraint, typically the ligand [-2, -1, ..., 7]

NUM J number of atoms used to define the virtual atom I

ATOM J[1..NUM J] atom sequence numbers of the atoms used to define the virutal atom I

In MD++ a distance-field distance restraint can also be modified in the course of a free energy perturbation.
The perturbed distance-field distance restraint makes use of the additional parameters

K A force constant for the harmonic distance-field distance restraint in state A

K B force constant for the harmonic distance-field distance restraint in state B

A R0 minimum-energy distance on the distance-field grid in state A

B R0 minimum-energy distance on the distance-field grid in state B

Distance-field distance restraint specification block
Blockname: DFRESSPEC

WRITE (unit,11) DISH, DISC

WRITE (unit,12) PROTEINATOMS, K, R0

WRITE (unit,13) TYPE I, NUM I, (ATOM I[K],K=1,NUM I)

WRITE (unit,13) TYPE J, NUM J, (ATOM J[K],K=1,NUM J)

11 FORMAT (2F10.5)

12 FORMAT (I5,2F10.5)

13 FORMAT (16I5)

Perturbed distance-field distance restraint specification block
Blockname: PERTDFRESSPEC

WRITE (unit,11) DISH, DISC

WRITE (unit,12) PROTEINATOMS, A R0, K A, B R0, K B, M, N

WRITE (unit,13) TYPE I, NUM I, (ATOM I[K],K=1,NUM I)

WRITE (unit,13) TYPE J, NUM J, (ATOM J[K],K=1,NUM I)

11 FORMAT (2F10.5)

12 FORMAT (I5,4F10.5, 2I5)

13 FORMAT (16I5)

4-26

Examples of atom-atom distance restrained files are named:

*.dsr

Program prep noe can produce an atom-atom distance restrained file for virtual and pseudo atoms from
a list of proton-proton distances and a library file. See also Sec. 7.8.

3.5. Dihedral-angle restraints or constraints

When performing a simulation or energy minimization, a special interaction function term that restrains
dihedral angles can be added to the interaction function. Dihedral angles can also be constraint, see Chap. 2.
This approach may be used to make a molecule satisfy a given set of dihedral angle values.

A set of dihedral-angle restraints or constraints in a dihedral-angle restraints file is characterized by the
following quantities:

NDLR number of dihedral-angle restraints

IPLR, JPLR, KPLR, LPLR [1..NDLR]

atom sequence numbers of the atoms defining the restrained dihedral i-j-k-l (0NPM*NRP),
j is always smaller than k

WDLR[1..NDLR] individual dihedral restraint weight factor by which the harmonic dihedral restraining
term may be multiplied.

PDLR[1..NDLR] dihedral angle value (in degrees) at minimum energy of the harmonic dihedral re-
straining term; upon reading a dihedral angle restraints file, the dihedral angle is
converted from degrees to radians and stored in PDLR

DELTA[1..NDLR] dihedral angle value (in degrees) defining the periodic dihedral angle interval. The
current dihedral angle value is shifted to the interval [PDLR[I] + DELTA[I] - 360.0
,PDLR[I] + DELTA[I]] before force calculation

In MD++ a dihedral angle restraint can also be modified in the course of a free energy perturbation. The
perturbed dihedral angle restraints make use of the additional parameters

NDLRP number of perturbated dihedral-angle restraints

MLR[1..NDLRP] hidden restraint parameter: exponent of λ in state superposition prefactor

NLR[1..NDLRP] hidden restraint parameter: exponent of (1-λ) in state superposition prefactor

APDLR[1..NDLRP] dihedral angle value (in degrees) at minimum energy of the harmonic dihedral re-
straining term in state A

AWDLR[1..NDLRP] Individual dihedral restraint weight factor by which the harmonic dihedral restraining
term may be multiplied in state A

BPDLR[1..NDLRP] as APDLR, but for state B

BWDLR[1..NDLRP] as AWDLR, but for state B

Dihedral angle restraint specification block
Blockname: DIHEDRALRESSPEC

DO 10 N=1, NDLR

10 WRITE (unit,11) IPLR[N], JPLR[N], KPLR[N], LPLR[N], WDLR[N],

PDLR[N], DELTA[N]

11 FORMAT (4I5,2F15.7)

4-27

Perturbed dihedral angle restraint specification block
Blockname: PERTDIHRESSPEC

DO 10 N=1, NDLRP

10 WRITE (unit,11) IPLR[N], JPLR[N], KPLR[N], LPLR[N], MLR[N], NLR[N], DELTA[N],

APDLR[N], AWDLR[N], BPDLR[N], BWDLR[N]

11 FORMAT (4I5,5F15.7)

Examples of dihedral angle restraint files are named:

*.dhr

3.6. 3J-coupling constant restraints

When performing a simulation or energy minimization, a special interaction function term that restrains
NMR 3J-coupling constants can be added to the interaction function, see Sec. 2-9.7. Such a term may be
used to make a molecule satisfy a given set of 3J-values.

A set of 3J-coupling constant restraints in a 3J-coupling constant restraints file is characterized by the
following quantities:

NDJV number of 3J-coupling constant restraints.

IPJV, JPJV, KPJV, LPJV [1..NDJV]

atom sequence numbers of the real atoms present in the simulation that define the
dihedral angle related to the restrained 3J-value (0NRP).

WJVR[1..NDJV] individual 3J-value restraint weight factor by which the restraining term for each
3J-value may be multiplied.

PJR0[1..NDJV] experimental or reference 3J-value, J0 (≥ 0). In the case of a full-harmonic 3J-
value restraint (NHJV = 0), PJR0 is the minimum-energy 3J-value; in the case of an
attractive or repulsive half-harmonic 3J-value restraint (NHJV = ±1), it is the upper
or lower bound, respectively, beyond which the restraining force becomes non-zero.

PSJR[1..NDJV] phase shift or difference δ = θ − φ between the dihedral angle θ formed by the
possibly non-existant atoms defining the experimental 3J-coupling and the dihedral
angle φ(i− j− k− l) formed by the real atoms present in the simulation (in degrees);
upon reading a 3J-coupling constant restraints file, the phase shift is converted from
degrees to radians and stored in PSJR.

AJV, BJV, CJV[1..NDJV]

Karplus parameters a, b and c for the 3J-coupling constant expressed as function of
the dihedral angle θ

NHJV[1..NDJV] the type of 3J-value restraint; if H = -1, a half-harmonic repulsive 3J-value restraint
is applied; if H = 0, a full harmonic 3J-value restraint is applied; if H = 1, a half-
harmonic attractive 3J-value is applied. Note that the half-harmonic forms of the
potential are only implemented in analogy to distance restraining and make little
sense for restraining 3J-values, which depend on a periodic structural parameter.

3J-coupling constant restraint specification block
Blockname: JVALRESSPEC

4-28

DO 10 N=1, NDJV

10 WRITE (unit,11) IPJV[N], JPJV[N], KPJV[N], LPJV[N], WJVR[N],

PJR0[N], PSJR [N], AJV[N], BJV[N], CJV[N], NHJV[N]

11 FORMAT (4I5,7F10.5)

Examples of 3J-coupling constant restraint files are named:

*.jvr

3.7. S2-order parameter restraining

When performing a simulation or energy minimization, a special interaction function term that restrains
NMR S2-order parameters can be added to the interaction function, see Sec. 2-9.8. Such a term may be
used to make a molecule satisfy a given set of S2-values.

A set of S2-order parameter restraints in a S2-order parameter restraints file is characterized by the fol-
lowing quantities:

NOPR number of S2-order parameter restraints.

I1, J1, K1, L1 [1..NOPR]

atom sequence numbers of the real atoms defining the geometric position of the first
atom of the order parameter restraint pair (0NRP).

TYPE1 [1..NOPR] geometric code defining the position of the first atom of a order parameter restraint
pair [-2, -1, ..., 7]

I2, J2, K2, L2 [1..NOPR]

atom sequence numbers of the real atoms defining the geometric position of the second
atom of the order parameter restraint pair (0NRP).

TYPE2 [1..NOPR] geometric code defining the position of the second atom of a order parameter restraint
pair [-2, -1, ..., 7]

RN [1..NOPR] effective distance used to make the order parameter dimensionless.

S0 [1..NOPR] experimental or reference S2-value

DS0 [1..NOPR] size of flat bottom region in one direction

WOPR [1..NOPR] individual order parameter restraint weight factor, by which the order parameter
restraint term may be multiplied

DISH carbon-hydrogen distance, used for geometries ICOPR = 1-6

DISC carbon-carbon distance, used for geometry ICOPR = 6

S2-order parameter restraint specification block
Blockname: ORDERPARAMRESSPEC

WRITE (unit,11) DISH, DISC

DO 10 N=1, NOPR

10 WRITE (unit,12) IOPR1[N], JOPR1[N], KOPR1[N], LOPR1[N], ICOPR1[N],

IOPR2[N], JOPR2[N], KOPR2[N], LOPR2[N], ICOPR2[N],

RN[N], S0[N], DS0[N], WOPR[N]

11 FORMAT (2F10.5)

12 FORMAT (5I5,5X,5I5,3F10.5)

4-29

Examples of S2-order parameter restraint files are named:

*.opr

Symmetry restraining block If the symmetry within a unit cell is to be restrained additional parameters, a
description of the asymmetric unit and the atoms to be restrained have to be given.

NTSYM A switch to determine the method of symmetry restraining. 0: no symmetry restrain-
ing, 1: harmonic symmetry restraining, 2: symmetry constraining

CSYM The force constant for the symmetry restraints

SYMSPGR The space group in Hermann-Mauguin format

SYMNUMSYM The number of asymmetric units combined to form the unit cell

ASUDEF[1..SYMNUMSYM]

The index of the first atom of each asymmetric unit

NSYMATOMS The number of atoms to be symmetry restrained

SYMATOMS[1..NSYMATOMS]

The index of the atom to be symmetry restrained. Only the atoms in the first asym-
metric unit are to be specified. The indices of the atoms of the other asymmetric
units are determined automatically.

Blockname: XRAYSYMRESSPEC

8 WRITE (unit,9) NTSYM, CSYM

9 FORMAT (I5,F10.5)

10 WRITE (unit,11) SYMSPGR

11 FORMAT (A20)

12 WRITE (unit,13) ASUDEF[N], N = 1, SYMNUMSYM

13 FORMAT (100I5)

DO 10 N=1, NSYMATOMS

14 WRITE (unit,15) SYMATOMS[N]

15 FORMAT (17X, I5)

B-factor optimisation blocks
For the optimisation of atomic B-factors additional parameters can be specified. In addition, groups of equal
atoms can be specified.

BFOPTS Optimise B-factos every BFOPTSth step

BFOPTTI Terminate after BFOPTTI minimisation iterations

BFOPTTG Terminate if the gradient is smaller than BFOPTTG

BFOPTMN The minimal B-factor

BFOPTMX The maximal B-factor

BFOPTNG The number of B-factor groups

BFOPTGS[1..BFOPTNG]

The size of a B-factor group

BFOPTGM[1..BFOPTNG][1..BFOPTGS]

The index of the atom being member in this group

Blockname: XRAYBFACTOROPTIMISATION

1 WRITE (unit, 2) BFOPTS, BFOPTTI, BFOPTTG, BFOPTMN, BFOPTMX

2 FORMAT (2I5, 3F10.5)

4-30

3 WRITE (unit, 4) BFOPTNG

4 FORMAT (I5)

DO 5 N=1, BFOPTNG

5 WRITE (unit, 6) BFOPTGS[N], BFOPTGM[N][K], K=1, BFOPTGS[N]

6 FORMAT (1001I5)

Structure factor computation As the computation of structure factors is computationally demanding, it can
be either carried out every selected step or whenever an atom has moved by some distance.

SFCTOL The distance an atom is allowed to move before the structure factors are recalculated

SFCST recalculate the structure factors every SFCST steps

Blockname: XRAYSFCALC

1 WRITE (unit, 2) SFCTOL, SFCST

2 FORMAT (2I5)

Replica exchange properties block This block is used to couple the crystallographic restraints with lambda
for Hamiltonian replica-exchange simulations.

NTXRRE Determines the coupling method to be used. 0: do not couple the X-ray restraints
with lambda, 1: couple the force constant, 2: couple the resolution

CXREEMN The RLAM= 0 value of CXR or RESO

CXREEMX The RLAM= 1 value of CXR or RESO

Blockname: XRAYREPLICAEXCHANGE

1 WRITE (unit, 2) NTXRRE, CXREEMN, CXREEMX

2 FORMAT (I5, 2F10.5)

Examples of crystallographic restraint files are named:

*.xrs

3.8. Local-elevation coordinates

When performing a simulation, a special (changing) interaction function term that memorizes the values
adopted during the simulation by a specified set of so-called local-elevation (LE) coordinates and increas-
ingly penalizes readopting of these values, can be added to the interaction function, see Chap. 2. Such a
local-elevation term may be used to drive a molecule out of a low energy conformation (LE searching).

The biasing potential energy term may also be frozen at some point and used to perform umbrella sam-
pling (LEUS).

A set of local-elevation coordinates in a local-elevation coordinates file is characterized by the following
quantities:

NPHILE number of local-elevation (LE) coordinates

NLEPID ID of LE potential-energy functions which will be associated to this dihedral. For
n-dimensional potentials, the n dihedrals will have to be listed sequentially, using the
same ID. Multiple sets of dihedrals may be associated with the same potential-energy
function (thus multiple sets of dihedrals may build on the same potential-energy
function).

VARTYPE Integer defining the variable type.

NVARAT Number of atoms needed to define the local elevation coordinate

4-31

AI[1..NVARAT,1..NPHILE]

atom sequence numbers of the atoms defining the local-elevation coordinate (0NRP)

The variable VARTYPE can take the following values

VARTYPE = 1 Dihedral angle, NVARAT = 4

VARTYPE = 2 Distance, NVARAT = 2

VARTYPE = 6 Distance-field distance, according to specification in distance restraint file, NVARAT
= 0

local-elevation coordinate specification block
Blockname: LOCALELEVSPEC

DO 10 N=1, NPHILE

10 WRITE (unit,11) NLEPID[N], IPLE[N], JPLE[N], KPLE[N], LPLE[N]

11 FORMAT (6I5)

Note that also if NVARAT 6= 4, four values are read from the file.

Examples of local-elevation coordinate files are named:

*.led

3.9. Local elevation umbrella sampling database file

The LEUS database file contains a set of biasing potential energy functions that can be applied to specific
subsets of collective variables so as to improve sampling (LEUS sampling).This file contains a title block and
a LEUSBIAS and/or LEUSBIASBAS block (see page 4-46 and/or 4-48)

Samples of LEUS database files are named:

*.lud

3.10. Atomic friction coefficients

When performing stochastic dynamics simulations, atomic friction coefficients γi must be specified or
calculated in some way, see Chap. 2. They may either be calculated in subroutine FRIC or specified in an
atomic friction coefficient block or file.

A set of atomic friction coefficients is specified as follows:

NR number of atoms (=NATTOT)

GAM[1..NR] atomic friction coefficients

Atomic friction coefficient block
Blockname: FRICTIONSPEC

DO 10 J=1, NR

10 WRITE (unit,12) GAM[J]

12 FORMAT (24X,F15.9)

4-32

The first 24 positions are reserved for atom identification information.

Examples of atomic friction coefficient files are named:

*.frc

3.11. Position restraining or constraining atom specification list

When performing a simulation or energy minimization, a special interaction function term that restrains
atomic positions can be added to the interaction function, see Chap. 2. Such a term may be used to keep
parts of a molecular system relatively rigid. Another possibility is to keep atom positions fixed (constrained
positions).

A set of atoms that are to be positionally restrained or constrained is specified as follows:

NRC number of position restrained or constrained atoms (0NRP +NSM*NRAM)

JRC[1..NRC] atom sequence numbers of the position-restrained or constrained atoms(0NRP+NSM*NRAM
for restraining)

Position restraining or constrained atom specification block
Blockname: POSRESSPEC

DO 10 N=1, NRC

10 WRITE (unit,12) JRC[N]

12 FORMAT (17X,I7)

The first 17 positions are reserved for residue number, residue name and atom name.

Examples of position restraining (or constraining) atom specification files are named:

*.por

3.12. B-factor restraining

Atomic mobilities or positional fluctuations can be stored in the form of isotropic B-factors

Bi = (8π2/3) < (ri− < ri >)2 >

The quantities characterising fluctuations or coordinate distributions are the following:

NR number of atoms (= NATTOT)

X[1..3, 1..NR] atomic Cartesian coordinates

BFAC[1..NR] atomic isotropic B-factors

DXY[1..3, 1..3, 1..NR] atomic positional fluctuation tensors (6 components)

The B-factor of fluctuation blocks are the following:

Isotropic B-factor block
Blockname: BFACTOR

4-33

Formatted form

DO 10 J=1, NR

WRITE (unit,25) MRES[J], AANMA[J], PANM[J], J, BFAC[J]

25 FORMAT (I5,2(1X,A5),I7,6F9.5)

Anisotropic B-factor block
Blockname: BFACTORANISO

Formatted form

DO 10 J=1, NR

WRITE (unit,25) MRES[J], AANMA[J], PANM[J], J,

((8*pye**2*DXY[K1,K2,J], K1=1,K2), K2=1,3)

3.13. Backwards compatibility with GROMOS96

The file formats used by MD++ for topological information differ in a number of respects from those of
GROMOS96:

- Molecular Topology (section Sec. 3.2)

– the TOPVERSION block is expected to contain the version number 2.0

– the GROMOS 96 TOPPHYSCON block must be replaced by a GROMOS05 PHYSICALCON-
STANTS block (including the value of Boltzmann’s constant in addition)

– the GROMOS96 BONDTYPE block may be replaced by a BONDSTRETCHTYPE block (in-
cluding force constants for a harmonic interaction form in addition to the quartic one). The two
types of blocks cannot be present simultaneously. A HARMBONDTYPE block, containing only
force constants for the harmonic interaction form can be used with the BONDTYPE block.

– the GROMOS96 BONDANGLETYPE block may be replaced by a BONDANGLEBENDTYPE
block (including force constants for an interaction form harmonic in the bond angle, in addition
to those for the form harmonic in the angle cosine. The two types of blocks cannot be present
simultaneously. A HARMBONDANGLETYPE block, containing only force constants for the
harmonic interaction form can be used with the BONDANGLETYPE block.

– the GROMOS96 DIHEDRALTYPE block may be replaced by a TORSDIHEDRALTYPE block
(including arbitrary phase-shift angles in degrees within the range 0 to 360◦, rather than phase-
shift cosines restricted to the values -1 or +1). The two types of blocks cannot be present
simultaneously.

– a SOLUTEMOLECULES block must be included that defines all separate (covalently-linked)
solute molecules (per solute unit)

– a TEMPERATUREGROUP block must be included that defines groups of solute atoms (per
solute unit) used to separate translational from internal-plus-rotational velocity components for
the application of thermostatting and/or roto-translational constraints

– a PRESSUREGROUPS block must be included that defines groups of solute atoms (per solute
unit) used for the definition of a group-based virial

- Perturbation Molecular Topology (section Sec. 3.3)

4-34

– the GROMOS96 PERTATOM block must be replaced by a PERTATOMPARAM block contain-
ing in addition parameters for state A (for consistency checking).

– the GROMOS96 blocks
PERTBONDH, PERTBOND, PERTANGLEH, PERTANGLE, PERTIMPDIHEDRALH, PERTIM-
PDIHEDRAL, PERTDIHEDRALH and PERTDIHEDRAL
must be replaced by
PERTBONDSTRETCHH, PERTBONDSTRETCH, PERTBONDANGLEH, PERTBONDAN-
GLE, PERTIMPROPERDIHH, PERTIMPROPERDIH, PERTPROPERDIHH and PERTPROP-
ERDIH
respectively, containing the corresponding information in the form of type codes rather than
interaction parameters.

The other types of topological information are essentially unaltered with respect to GROMOS96.

4-35

CHAPTER 4

Configurational information

4.1. Introduction

Here, it is described in which form configurational quantities, atomic coordinates and atomic coordinate
dependent (e.g. energies, internal coordinates) or related (e.g. velocities, forces, atomic stochastic integrals)
quantities are stored on file.

Generally, the blocks on a file are written in formatted form. A number of quantities can be written in
two ways (different blocktypes):

1. standard formatted form
2. reduced-information formatted form

The former form is used when writing a file containing data concerning a single configuration or time
frame of a molecular system. When performing MD, a whole time series of configurations or a trajectory
of a molecular system is produced. Since trajectories require much more storage capacity, they are stored
using the reduced-information formatted form, in which redundant information has been omitted. The extra
information in the standard formatted form block is helpful for interpretation, but is redundant, since it is
also present in the topologicaql files for the molecular system.

There is no structural difference between single configuration and trajectory files. On the latter, a specific
block will occur more than once.

We note that the sequence of data (atoms, distance restraints, etc.) within a block on a configurational
file must match the sequence of the same data in the corresponding topological file (molecular topology,
distance restraint specification, etc.) for the molecular system, see Chap. 1.

Quantities are generally stored with one atom or quantity per line, thereby repeating the atom or quantity
identification information in different blocks in order to allow for easy identification of atoms or quanti-
ties. When a program has read a topological file, it takes the topological information, such as MRES[J],
AANMA[J], PANM[J], J from there and it ignores these quantities on the configurational file.

A molecular configuration may not only be characterized by atom coordinates, and atom sequence num-
bers, but also by other quantities such as crystallographic B-factors.

In MD or SD simulations quantities such as velocities, stochastic integrals and random number generator
seed need to be stored with a final configuration in order to be able to later continue the simulation. When
the volume of the system varies with time, i.e. when pressure coupling is applied, the dimensions of the
periodic box need to be stored, as well as the (possibly changing) reference positions if position restraining
is also applied.

For simulations under periodic boundary conditions (where particles diffuse in an infinite periodic system)
lattice-shift vectors are stored along with the atomic coordinates translated into the reference box (these
are used for the calculation of a group-based pressure). Application of Nosé-Hoover chains for thermostat-
ting and barostatting require the storage of the thermostat variables. Note that MD++ only supports
Nosé-Hoover chains for thermostatting. Application of roto-translational constraints require the storage of
parameters defining the position and orientation of specific atom groups.

4-37

Free energy calculations using the slow-growth or continuous λ-change technique require the storage of
the actual λ-value and the cumulative derivatives of the Hamiltonian terms with respect to λ. When using
time-averaging in atom-atom distance restraining or in 3J-value restraining, the current averaged distances
or 3J-values need to be stored. When applying local-elevation search, the information with respect to parts
of the energy hypersurface that have been elevated so far need to be stored in order to use it when continuing
the simulation.

In the next sections the various quantities and their mode of storage is described.

4.2. Atomic coordinates

The atomic Cartesian coordinates of a molecular configuration can be stored as follows:

NR number of atoms

NDIM dimensionality of the Cartesian space

X[1..3, 1..NR] atomic Cartesian coordinates (MD: trajectory at time t, final configuration at time
t+∆t)

MRES[1..NR] residue number

AANMA[1..NR] residue name

PANM[1..NR] atom name

J atom sequence number

XC[1..3, 1..NR] atomic Cartesian reference positions for position restraining (MD: final configuration
at time t+∆t)

NLSHFT[1..3,1..NR] lattice-shift vectors defining the position of particles in the infinite periodic system
relative to their position in the reference box (in units of the box edge vectors for rect-
angular and triclinic boxes; in units of half the box edge for a truncated-octahedron
box)

RPOL[1..3, 1..NR] displacement of charge-on-spring from atomic centres

The atomic coordinate blocks are the following:

3-dimensional coordinate block
Blockname: POSITION

DO 10 J=1, NR

10 WRITE (unit,12) MRES[J], AANMA[J], PANM[J], J, (X[M,J], M=1,3)

12 FORMAT (I5,2(1X,A5),I7,3F15.9)

Blockname: POSITIONRED

Reduced-information form

DO 10 J=1, NR

10 WRITE (unit,13) (X[M,J], M=1,3)

13 FORMAT (3F15.9)

Reference coordinate block

Blockname: REFPOSITION

4-38

DO 10 J=1, NR

10 WRITE (unit,12) MRES[J], AANMA[J], PANM[J], J, (XC[M,J], M=1,3)

12 FORMAT (I5,2(1X,A5),I7,3F15.9)

Coordinates after SHAKE failure

Blockname: SHAKEFAILPOSITION

same format as POSITION (other quantities are written to the final coordinate file in the usual blocks)

Coordinates just before SHAKE failure (i.e. before the coordinate resetting was attempted)

Blockname: SHAKEFAILPREVPOSITION

same format as POSITION (other quantities are written to the final coordinate file in the usual blocks)

Blockname: LATTICESHIFTS

DO 10 J=1, NR

10 WRITE (unit,30) (NLSHFT[M,J], M=1,3)

30 FORMAT (3I10)

Displacement of charge-on-spring from polarizable centres
Blockname: COSDISPLACEMENTS

DO 10 J=1, NR

10 WRITE (unit,13) RPOL[M,J], M=1,3)

4.3. Atomic velocities

The atomic velocities (at time t-∆t/2) belonging to a molecular configuration (at time t) can be stored as
follows:

V[1..NDIM, 1..NR] atomic velocities (trajectory at time t-∆t/2, final velocities at t+∆t/2)

3-dimensional velocity block
Blockname: VELOCITY

DO 10 J=1, NR

10 WRITE (unit,12) MRES[J], AANMA[J], PANM[J], J, (V[M,J], M=1,3)

12 FORMAT (I5,2(1X,A5),I7,3F15.9)

Blockname: VELOCITYRED

Reduced-information form

DO 10 J=1, NR

10 WRITE (unit,13) (V[M,J], M=1,3)

13 FORMAT (3F15.9)

4-39

4.4. Atomic forces

The atomic forces (at time t) belonging to a molecular configuration (at time t) can be stored as follows:

FF[1..NDIM, 1..NR] atomic free-flight forces (trajectory at time t); these are the raw atomic forces (physical
forces and possibly including special forces) prior to the application of any constraint

FC[1..NDIM,1..NR] atomic constraint forces (trajectory at time t); these are the atomic forces induced by
the application of all constraints on the system (typically SHAKE, but also possibly
including special constraints)

The sum of the two contributions represents the actual total force used to propagate the system via the
integration scheme.

3-dimensional free-flight force block
Blockname: FREEFORCE

DO 10 J=1, NR

10 WRITE (unit,12) MRES[J], AANMA[J], PANM[J], J, (FF[M,J], M=1,3)

12 FORMAT (I5,2(1X,A5),I7,3F15.9)

Blockname: FREEFORCERED

Reduced-information form

DO 10 J=1, NR

10 WRITE (unit,14) (FF[M,J], M=1,3)

14 FORMAT (3F 20.9)

3-dimensional constraint force block
Blockname: CONSFORCE

DO 10 J=1, NR

10 WRITE (unit,12) MRES[J], AANMA[J], PANM[J], J, (FC[M,J], M=1,3)

12 FORMAT (I5,2(1X,A5),I7,3F15.9)

Blockname: CONSFORCERED

Reduced-information form

DO 10 J=1, NR

10 WRITE (unit,13) (FC[M,J], M=1,3)

13 FORMAT (3F15.9)

4.5. Atomic stochastic integrals

When performing stochastic dynamics (SD) using the leap frog algorithm, the integrals of the stochastic
forces over time are correlated between successive time steps. Therefore, the stochastic integrals SX[1..NDIM,
1..NR] over the time interval (t+∆t/2, t+∆t) are stored to allow for continuation runs. For the same purpose
the random number generator seed needs to be stored.

SX[1..NDIM, 1..NR] atomic stochastic integrals (interval t+∆t/2 to t+∆t)

4-40

IG random number generator seed (at time t+∆t)

3-dimensional stochastic integral block
Blockname: STOCHINT

DO 10 J=1, NR

10 WRITE (unit,15) MRES[J], AANMA[J], PANM[J], J, (SX[M,J], M=1,3)

WRITE (unit,16) IG

15 FORMAT (I5,2(1X,A5),I7,3E15.7)

16 FORMAT (I10)

4.6. Periodic box

When using pressure coupling in a MD simulation, the parameters characterizing the size and shape of
the periodic box that contains the molecular system as well as its orientation in space are a function of time,
so these parameters need to be stored.

NTB type of boundary conditions; truncated-octahedron (-1), vacuum (0), rectangular (1),
or triclinic (2)

BOX[1..3] lengths of the a-, b- and c-edges of the periodic box (trajectory at time t, final
configuration at time t+∆t)

ALPHA angle between the b and c axes in degrees

BETA angle between the a and c axes in degrees

GAMMA angle between the a and b axes in degrees

PHI Euler yaw angle of the box (z-axis rotation) in degrees

THETA Euler pitch angle of the box (y-axis rotation) in degrees

PSI Euler roll angle of the box (x-axis rotation) in degrees

OX (Cartesian) x-coordinate of origin of triclinic box

OY (Cartesian) y-coordinate of origin of triclinic box

OZ (Cartesian) z-coordinate of origin of triclinic box

Boxsize block
Blockname: GENBOX

WRITE (unit,17) NTB

WRITE (unit,18) (BOX[M], M=1,3)

WRITE (unit,18) ALPHA, BETA, GAMMA

WRITE (unit,18) PHI, THETA, PSI

WRITE (unit,18) OX, OY, OZ

17 FORMAT (I5)

18 FORMAT (3F15.9)

4-41

4.7. Nose-Hoover chain thermostat variables

When using temperature coupling in an MD simulation based on the Nosé-Hoover chain thermostat, the
values of the thermostat variables need to be stored.

NUM NHC TMP BTH number of heat baths employing Nosé-Hoover chain thermostat coupling

NUM VAR NHC TMP BTH[1..NUM NHC TMP BTH]

number of variables used for each bath

VAL VAR NHC TMP BTH[I=1..NUM NHC TMP BTH,1..NUM VAR NHC TMP BTH[I]]

values of the corresponding thermostat variables

Nosé-Hoover chain thermostat variables block
Blockname: NHCVARIABLES

DO 10 I=1, NUM NHC TMP BTH

10 WRITE (unit,41) (VAL VAR NHC TMP BTH[I,J], J=1..NUM VAR NHC TMP BTH[I])

41 FORMAT (2I5,5F15.9)

4.8. Roto-translational constraints reference variables

When using translational or/and rotational constraining in an MD simulation, the values of the variables
defining the reference position or/and orientation of all constrained atoms need to be stored. In MD++

roto-translational constraints are always applied on the first specified number of atoms. Therefore, only the
translation and rotation matrices and reference positions of the first atoms are written.

RTCLAST The first RTCLAST atoms are roto-translationally contrained.

RTCTM[1..3,1..3] The translation matrix.

RTCRM[1..3,1..3] The rotation matrix.

RTCREF[1..3,1..NUMRTC]

The reference atomic coordinates.

Rototranslational reference matrices and positions block
Blockname: ROTTRANSREFPOS

DO 10 J=1, 3

10 WRITE (unit,13) (RTCTM[M,J], M=1,3)

DO 11 J=1, 3

11 WRITE (unit,13) (RTCRM[M,J], M=1,3)

13 FORMAT (9F15.9)

DO 20 I=1, RTCLAST

20 WRITE (unit,40) (RTCREF[M,I], M=1,3)

40 FORMAT (3F15.9)

4.9. Perturbation data

When applying a perturbation to the Hamiltonian in a simulation in order to determine a free energy
difference between two states of a molecular system using the so-called slow-growth or continuous λ-change
technique, the value for the thermodynamic integration coupling parameter λ at time t+∆t needs to be
stored to allow for a continuation run. This value is stored in the PERTDATA block of the molecular con-
figuration file.

4-42

RLAM thermodynamic integration coupling parameter λ (at time t+∆t)

Perturbation data block
Blockname: PERTDATA

WRITE (unit,19) RLAM

19 FORMAT (E15.7)

4.10. Atom-atom distance restraints

When applying time-averaging in atom-atom distance restraining in a simulation, the exponentially
weighted average of r−3

ij for the restrained atom-atom distance rij needs to be stored in order to allow
for continuation runs.

NDR number of distance restraint atom pairs

RIIAVE[1..NDR] minus 1
3 power of the exponentially weighted average of r−3

ij for the restrained atom-

atom distances rij (at time t)

Exponentially averaged distance restraint block
Blockname: DISRESEXPAVE

DO 10 N=1, NDR

10 WRITE (unit,19) RIIAVE[N]

19 FORMAT (E15.7)

4.11. 3J-coupling constant restraints

When applying time-averaging in 3J-coupling constant restraining in a simulation, the exponentially
weighted time-average of the 3J-coupling value(s) need to be stored in order to allow for continuation runs.

NJR number of 3J-coupling constant restraints.

JVALAV[1..NJR] exponentially weighted average of each 3J-coupling value (at time t).

Exponentially averaged 3J-value restraint block
Blockname: JVALUERESEXPAVE

DO 10 N=1, NJR

10 WRITE (unit,19) JVALAV[N]

19 FORMAT (E15.7)

In MD++, a local-elevation interaction term can be applied (along with time-averaging) to perform 3J-
coupling constant restraining. In this case, the time-averaged, weighted heights at time t of the Gaussians
describing the potential-energy penalty function at grid points [1..NJLEGR] need to be stored in order to
allow for continuation runs.

NJLEGR number of grid points.

4-43

HJLEG[1..NJRJ, 1..NJLEGR]

time-averaged, weighted height of the local-elevation Gaussian at grid point M=[1..NJLEGR]
for the 3J-coupling-related dihedral angle θ (at time t).

Time-average weighted height of the local elevation penalty functions used in combination with 3J-coupling
constant restraining
Blockname: JVALUERESEPS

DO 10 N=1, NJR

DO 11 M=1, NJLEGR

11 WRITE (unit,19) HJLEG[N][M]

10 CONTINUE

19 FORMAT (E15.7)

In MD++, the force constant can be periodically scaled. In this case the scaling constant and time need
to be stored in order to allow for continuation runs.

JVALSC[1..NJR] integer (0 or 1) which indicates whether the 3J-value’s force constant is scaled.

JVALT[1..NJR] current time in scaling period.

Periodoc scaling 3J-value restraint block
Blockname: JVALUEPERSCALE

DO 10 N=1, NJR

10 WRITE (unit,19) JVALSC[N], JVALT[N]

19 FORMAT (I10, F15.9)

4.12. S2-order parameter restraints

When applying S2-order paramter restraining in a simulation, the exponentially weighted time averages
of Qαβ and D need to be stored in order to allow for continuation runs.

NOPR number of order parameter restraints

QABAVE[1..NOPR,A,B]

exponentially weighted average of matrix elements Qαβ (9 elements) (at time t)

DAVE[1..NOPR] exponentially weighted average D (at time t)

Exponentially averaged S2-order parameter restraint block
Blockname: ORDERPARAMRESEXPAVE

DO 9 N=1, NOPR

WRITE (unit,19) QABAVE[N,1,1],QABAVE[N,1,2],QABAVE[N,1,3],QABAVE[N,2,1],QABAVE[N,2,2]

WRITE (unit,19) QABAVE[N,2,3],QABAVE[N,3,1],QABAVE[N,3,2],QABAVE[N,3,3],DAVE[N]

9 CONTINUE

19 FORMAT (E15.7)

4-44

4.13. Crystallographic restraints

When applying time-averaging in structure-factor amplitude or electron density restraining in a simula-
tion, the exponentially weighted average of the complex structure factor needs to be stored in order to allow
for continuation runs.

NFXR number of structure-factor amplitudes

FXRAVE[1..NFXR] time-averaged structure-factor amplitude

PHXRAVE[1..NFXR] time-averaged structure-factor phase

Exponentially averaged structure factor block
Blockname: XRAYRESEXPAVE

DO 10 N=1, NFXR

10 WRITE (unit,19) FXRAVE[N], PHXRAVE[1..NFXR]

19 FORMAT (E15.7, E15.7)

When refining the atomic B-factors they are written to the configuration as well (XRAYBFOCCSPEC
block).

4.14. Local-elevation data

When performing a simulation in which the local-elevation interaction term is switched on and the memory
progressively builds up (LE searching), data on the local-elevation conformations that have been visited so
far during the simulation needs to be stored in order to allow for continuation runs.

NUMB number of umbrella potential energy functions contained in the block

NLEPID[1..NUMB] potential energy function ID

NLEDIM[1..NUMB] dimensionality of the potential energy function

CLES[1..NUMB] force constant associated with the local functions

VARTYPE[1..NUMB,1..NLEDIM]

type of variable (1: Dihedral angle, 2: Distance, 6: Distance-field distance)

NTLEFU[1..NUMB,1..NLEDIM]

functional form of the local functions (0: truncated polynomials; 1: Gaussian)

WLES[1..NUMB,1..NLEDIM]

width of the local functions in units of the grid spacing

RLES[1..NUMB,1..NLEDIM]

cutoff applied to the range of action of the local functions in units of grid spacing

NGRID[1..NUMB,1..NLEDIM]

number of grid points used along each dimension

4-45

GRIDMIN[1..NUMB,1..NLEDIM]

minimum grid point used along each dimension

GRIDMAX[1..NUMB,1..NLEDIM]

maximum grid point used along each dimension. If GRIDMAX[N]==GRIDMIN[N]
a cyclic variable is assumed, applying NLEGRD[N] unidistant grid points over the
whole variable range, with first grid point at GRIDMIN[N]

NCONLE[1..NUMB] number of LE conformations visited and stored so far in memory (at time t)

ICONF[1..NUMB,1..NLEDIM, 1..NCONLE]

integer coded representation of LE conformations. Position of grid point in di-
mension N for potential K is given as POS = GRIDMIN[N] + (ICONF[N,K] −
1)GRIDSPACING[N]

NVISLE[1..NUMB,1..NCONLE]

number of times LE conformations have been visited so far (at time t)

local-elevation memory block
Blockname: LEUSBIAS

WRITE (unit,20) NUMB

DO 9 I=1, NUMB

WRITE (unit,21) NLEPID[I], NDIM[I], CLES[I]

DO 10 N=1, NDIM[I]

10 WRITE (unit,22) VARTYPE[I,N],NTLEFU[I,N],WLES[I,N],RLES[I,N], &

NGRID[I,N],GRIDMIN[I,N],GRIDMAX[I,N]

WRITE (unit,20) NCONLE[I]

DO 11 N=1, NCONLE[I]

11 WRITE (unit,23) (NVISLE[I,N], (ICONF[I,M,N], M=1, NDIM[I])

9 CONTINUE

20 FORMAT (1I8)

21 FORMAT (2I8, 1E18.10)

22 FORMAT (2I8, 2E18.10,I8,2E18.10)

23 FORMAT (8I8)

4.15. Ball and stick local-elevation data

When performing a simulation in which the Ball and Stick local-elevation interaction term is switched on
and the memory progressively builds up (LE searching), data on the local-elevation conformations that have
been visited so far during the simulation needs to be stored in order to allow for continuation runs.

NUMB number of umbrella potential energy functions contained in the block

NLEPID[1..NUMB] potential energy function ID

NLEDIM[1..NUMB] dimensionality of the potential energy function

ACTPOT[1..NUMB] the ID of the active potential energy function (not used when EDS combination is
applied)

4-46

BETA[1..NUMB] the factor sβ used for EDS combination of bias potential energy functions

VARTYPE[1..NUMB,1..NLEDIM]

type of variable (1: Dihedral angle, 2: Distance, 6: Distance-field distance)

DIMSCALE[1..NUMB,1..NLEDIM]

by which factor should the respective variable be divided

SHIFTTYPE[1..NUMB,1..NLEDIM]

0: Do not shift; 1: Shift to nearest image; 2: Apply shift vectors

REFSHIFT[1..NUMB,1..NLEDIM]

Value of coordinate at last time step, used for updating shift vectors (only used for
SHIFTTYPE=2)

NSPHERES[1..NUMB] Number of defined spherical potentials

SID[1..NUMB,1..NSPHERES]

ID of defined sphere

NPRAD[1..NUMB,1..NSPHERES]

Number of radial grid points of defined sphere

DR[1..NUMB,1..NSPHERES]

Radial distance between grid points

IBUILD[1..NUMB,1..NSPHERES]

0: Do not build; 1: Build proportional to EDS weight w; 3: Build proportional to
EDS weight and grid index to the power of SCALEVAL

SCALEVAL[1..NUMB,1..NSPHERES]

Value for scaling the build-up as function of grid index

CLES[1..NUMB,1..NSPHERES]

(Current) build-up force constant [kJ/mol]

REDFAC[1..NUMB,1..NSPHERES]

Factor for reduction of build-up force constant

CRES[1..NUMB,1..NSPHERES]

Force constant [kJ/mol] for restraint

VADD[1..NUMB,1..NSPHERES]

Potential energy [kJ/mol] added to the energy of sphere (grid-point independent)

CENTRE[1..NUMB,1..NSPHERES,1..NDIM]

Value of LE coordinates defining centre of the sphere

VSPHERE[1..NUMB,1..NSPHERES,1..NPRAD]

Value of LE potential energy function at radial grid point [kJ/mol]

VISSPHERE[1..NUMB,1..NSPHERES,1..NPRAD]

Number of visits at grid point

NLINES[1..NUMB] Number of defined lines

LID[1..NUMB,1..NLINES]

ID of defined line

4-47

NPLINE[1..NUMB,1..NLINES]

Number of grid points on line

IBUILD[1..NUMB,1..NLINES]

0: Do not build 1: Build

CLES[1..NUMB,1..NLINES]

LE force constant [kJ/mol]

REDFAC[1..NUMB,1..NLINES]

Factor to reduce the LE force constant

VADD[1..NUMB,1..NLINES]

Potential energy [kJ/mol] added to the energy of line (grid-point independent)

PSTART[1..NUMB,1..NLINES,1..NDIM]

LE coordinates defining starting point of line

PEND[1..NUMB,1..NLINES,1..NDIM]

LE coordinates defining end point of line

NDIS[1..NUMB,1..NLINES]

Number of displacement vectors

DISVEC[1..NUMB,1..NLINES,1..NDIS,1..NDIM]

Vector components of displacement vectors

VLINE[1..NUMB,1..NLINES,1..NPLINE]

Potential energy [kJ/mol] at grid point

VISLINE[1..NUMB,1..NLINES,1..NPLINE]

Number of visits at grid point

WIDTH[1..NUMB,1..NLINES,1..NPLINE]

Width orthogonal to the line before start of restraining potential energy function

CRES[1..NUMB,1..NLINES,1..NPLINE]

Restraining force constant

LAM[1..NUMB,1..NLINES,1..NPLINE]

Value of λ for fixed λ simulations (currently unused)

DIS[1..NUMB,1..NLINES,1..NPLINE,1..NDIS]

Displacememt of current grid point along respective (orthonormalised) displacement
vectors

local-elevation ball and stick memory block
Blockname: LEUSBIASBAS

WRITE (unit,21) NUMB

DO 9 I=1, NUMB

WRITE (unit,22) NLEPID[I], NDIM[I], ACTPOT[I], BETA[I]

DO 11 N=1, NDIM[I]

11 WRITE (unit,23) VARTYPE[I,N],DIMSCALE[I,N],SHIFTTYPE[I,N],REFSHIFT[I,N]

WRITE (unit,21) NSPHERES[I]

DO 12 N=1, NSPHERES[I]

WRITE (unit,24) ID[I,N], NPRAD[I,N], DR[I,N], IBUILD[I,N], RBUILD[I,N], CLES[I,N], &

REDFAC[I,N], CRES[I,N], VADD[I,N], (CENTRE[I,N,M], M=1, NDIM[I])

WRITE (unit,25) (VSPHERE[I,M], M=1,NPRAD[I,N])

WRITE (unit,25) (VISSPHERE[I,M], M=1,NPRAD[I,N])

12 CONTINUE

4-48

WRITE (unit,21) NLINES[I]

DO 13 N=1, NLINES[I]

WRITE (unit,26) ID[I,N], NPLINE[I,N], IBUILD[I,N], CLES[I,N], REDFAC[I,N], VADD[I,N]

WRITE (unit,25) (PSTART[I,N,M], M=1,NDIM[I])

WRITE (unit,25) (PEND[I,N,M], M=1,NDIM[I])

WRITE (unit,21) NDIS[I,N]

DO 14 K=1, NDIS[I,N]

WRITE (unit,25) (DISVEC[I,N,K,M], M=1,NDIM[I])

14 CONTINUE

DO 15 M=1, NPLINE[I,N]

WRITE (unit,25) VLINE[I,N,M], VISLINE[I,N,M], WIDTH[I,N,M], CRES[I,N,M], LAM[I,N,M], &

(DIS[I,N,M,K], K=1,NDIS[I,N])

15 CONTINUE

13 CONTINUE

WRITE (unit,27) NSTATES[I], NCHECK[I], NCHECKCUR[I]

DO 16 N=1, NSTATES[I]

WRITE (unit,28/29)I TYPE[I,N], NVISITS[I,N], (PARAMS[I,N,M], NPAR)

16 CONTINUE

9 CONTINUE

21 FORMAT (1I8)

22 FORMAT (3I8,1E18.10)

23 FORMAT (1I8,1E18.10,I8,5E18.10)

24 FORMAT (2I8,1E18.10,I8,50E18.10)

25 FORMAT (50E18.10)

26 FORMAT (3I8,5E18.10)

27 FORMAT (3I8)

28 FORMAT (3I8,50E18.10)

29 FORMAT (3I8,E18.10,I8)

4.16. Time or step number data

Generally, trajectory files are written such that the time frames are equidistant in time, i.e. correspond
to a multiple of a specified number of simulation steps. So, time or step number of a block are known in
that case. When selecting configurations to be stored using a criterion such as low potential energy, the
configurations will not be equidistant in time. In that case time or step number information should be added
to a configuration.

T time in the simulation (t = tn)

NSTEP step number since the beginning of the current runs (n)

Time and step number data block
Blockname: TIMESTEP

WRITE (unit,21) NSTEP, T

21 FORMAT (I15,F20.9)

4.17. Energies, pressure, volume and free-energy data

Program MD++ writes out the following arrays:

ENER[1] total energy of the molecular system (at time t)

ENER[2] total kinetic energy of the molecular system (at time t)

ENER[3] total potential energy of the molecular system (at time t)

4-49

ENER[4] total energy of covalent terms (solutes, at time t)

ENER[5] total energy of bond-stretching terms (solutes, at time t)

ENER[6] total energy of bond-angle bending terms (solutes, at time t)

ENER[7] total energy of improper (harmonic) dihedral angle terms (solutes, at time t)

ENER[8] total energy of (trigonometric) dihedral angle terms (solutes, at time t)

ENER[9] total energy of crossdihedral angle terms (solutes, at time t)

ENER[10] total energy of nonbonded terms (solutes, at time t)

ENER[11] total energy of van der Waals interaction terms (at time t)

ENER[12] total energy of electrostatic interaction terms (at time t)

ENER[13] total energy of lattice sum terms (at time t)

ENER[14] total energy of lattice sum pair term (at time t)

ENER[15] total energy of lattice sum real space term (at time t)

ENER[16] total energy of lattice sum reciprocal space term (at time t)

ENER[17] total energy of lattice sum A term (at time t)

ENER[18] total energy of lattice sum self term (at time t)

ENER[19] total energy of lattice sum surface term (at time t)

ENER[20] total energy of polarisation self term (at time t)

ENER[21] total energy of special terms (at time t)

ENER[22] total energy of SASA term (at time t)

ENER[23] total energy of SASA volume term (at time t)

ENER[24] total energy due to constraints in the molecular system (at time t)

ENER[25] total energy of atom-atom distance restraint terms (at time t)

ENER[26] total energy of distance-field restraining terms (at time t)

ENER[27] total energy of dihedral angle restraining terms (at time t)

ENER[28] total energy of atom position restraining terms (at time t)

ENER[29] total energy of 3J-value restraining terms (at time t)

ENER[30] total energy of X-ray restraining terms (at time t)

ENER[31] total energy of local-elevation terms (at time t)

ENER[32] total energy of S2 order parameter restraining terms (at time t)

ENER[33] total energy of symmetry restraining terms (at time t)

ENER[34] total energy of non-accelerated EDS reference state in accelerated EDS (at time t)

ENER[35] total energy of EDS reference state (at time t)

ENER[36] accelerated EDS parameter Emax (at time t)

4-50

ENER[37] accelerated EDS parameter Emin (at time t)

ENER[38] average energy of the end-state with the lowest energy in accelerated EDS parameter
search (at time t)

ENER[39] standard deviation of the energy of the end-state with the lowest energy in accelerated
EDS parameter search (at time t)

ENER[40] total entropy term (at time t)

ENER[41] total energy QM

ENER[42] total energy of ball and stick local elevation (at time t)

ENER[43] total energy of RDC restraining terms (at time t)

NBATHS number of temperature baths defined for constant temperature simulations

KINENER[1,1..NBATHS]

total kinetic energy of individual temperature baths (at time t)

KINENER[2,1..NBATHS]

total translational kinetic energy of the centres of mass of the molecules coupled to
the individual baths (at time t)

KINENER[3,1..NBATHS]

total internal-rotational kinetic energy of the individual temperature baths (at time
t)

NEGR number of groups Gi of atoms for which the energy terms are separately stored

BONDED[1,1..NEGR] total energy of bond-stretching terms of which the first atom belongs to the energy
group G

BONDED[2,1..NEGR] total energy of bond-angle bending terms of which the first atom belongs to the energy
group G

BONDED[3,1..NEGR] total energy of improper (harmonic) dihedral angle terms of which the first atom
belongs to the energy group G

BONDED[4,1..NEGR] total energy of dihedral (trigonometric) angle terms of which the first atom belongs
to the energy group G

BONDED[5,1..NEGR] total energy of crossdihedral angle terms of which the first atom belongs to the energy
group G

NONBONDED[1,1..NEGR*(NEGR+1)/2]

total Van der Waals interaction energies between atoms belonging to the different
groups Gi (at time t); the order of the group-group energies is 1-1, 1-2, 2-2, ...,
1-NEGR, 2-NEGR, ..., NEGR-NEGR

NONBONDED[2,1..NEGR*(NEGR+1)/2]

idem, but for the total electrostatic interaction

NONBONDED[3,1..NEGR*(NEGR+1)/2]

idem, but for the total lattice sum real space energy

NONBONDED[4,1..NEGR*(NEGR+1)/2]

idem, but for the total lattice sum reciprocal space energy

SPECIAL[1,1..NEGR] total constraint energy per energy group G

SPECIAL[2,1..NEGR] total energy of position restraining terms per energy group G

4-51

SPECIAL[3,1..NEGR] total energy of distance restraints per energy group G

SPECIAL[4,1..NEGR] total energy of distance-field restraints per energy group G

SPECIAL[5,1..NEGR] total energy of dihedral restraints per energy group G

SPECIAL[6,1..NEGR] total energy of SASA term per energy group G

SPECIAL[7,1..NEGR] total energy of SASA volume term per energy group G

SPECIAL[8,1..NEGR] total energy of 3J-value restraints per energy group G (= 0; the 3J-value restraints
are not split up per energy group)

SPECIAL[9,1..NEGR] total energy of RDC restraints per energy group G

SPECIAL[10,1..NEGR]

total energy of local-elevation terms per energy group G (= 0; the local-elevation
terms are not split up per energy group)

SPECIAL[11,1..NEGR]

total energy of X-ray restraining terms per energy group G (= 0; the X-ray restraining
terms are not split up per energy group)

NEDS number of EDS states

EDSENER[1,1..NEDS] total potential energy per EDS state

EDSENER[2,1..NEDS] total nonbonded energy per EDS state

EDSENER[3,1..NEDS] total special energy functions per EDS state

EDSENER[4,1..NEDS] energy offset parameter per EDS state in accelerated EDS

MASS total mass of all particles in the system

TEMPERATURE[1,1..NBATHS

temperature of the part of the system that is coupled to every temperature bath

TEMPERATURE[2,1..NBATHS

temperature associated with the centre of mass translational degrees of freedom of
the submolecules that are coupled to every temperature bath

TEMPERATURE[3,1..NBATHS

temperature associated with the internal and rotational degrees of freedom of the part
of the system that that is coupled to every temperature bath

TEMPERATURE[4,1..NBATHS

scaling factor for scaling the corresponding degrees of freedom for every temperature
bath (used at time t t+∆t/2)

VOLUME total volume of the computational box.

BOX[1..3,1..3] triclinic unit vectors K, L, M

PRESSURE[1] total pressure of the system

PRESSURE[2] total virial of the system

PRESSURE[3] total translational kinetic energy matrix for centre of mass for all submolecules

PRES[1..3,1..3] pressure tensor

VIRIAL[1..3,1..3] virial matrix

4-52

KINETIC[1..3,1..3] translational kinetic energy matrix for centre of mass for all submolecules

RLAM perturbation parameter λ (at time t)

FREEENER[1..38] derivatives of the various terms of the Hamiltonian with respect to λ; the energy
terms are the same as in ENER[1..38]

FREEKINENER[1..3,1..NBATHS]

derivatives of the kinetic energy terms with respect to λ; the energy terms are the
same as in KINENER[1..3,1..NBATHS]

FREEBONDED[1..5,1..NEGR]

derivatives of the bonded energy terms with respect to λ; the energy terms are the
same as in BONDED[1..5,1..NBATHS]

FREENONBONDED[1..4,1..NEGR*(NEGR+1)2]

derivatives of the various terms of the Hamiltonian with respect to λ; the energy
terms are the same as in NONBONDED[1..4,1..NEGR*(NEGR+1)2]

FREESPECIAL[1..11,1..NEGR]

derivatives of the special interaction energy terms with respect to λ; the energy terms
are the same as in SPECIAL[1..11, 1..NEGR]

FREEEDSENER[1..3,1..NEDS]

derivatives of the EDS energies with respect to λ; the energy terms are the same as
in EDSENER[1..3,1..NEDS]

Energy block
Blockname: ENERGY03

DO 10 N=1,43

10 WRITE (unit,23) ENER[N]

WRITE (unit,22) NBATHS

DO 11 N=1,NBATHS

11 WRITE (unit,23) KINENER[1,N],KINENER[2,N],KINENER[3,N]

WRITE (unit,22) NEGR

DO 12 N=1, NEGR

12 WRITE (unit,23) BONDED[1,N],BONDED[2,N],BONDED[3,N],

BONDED[4,N],BONDED[5,N]

DO 13 N=1, NEGR*(NEGR+1)/2

13 WRITE (unit,23) NONBONDED[1,N], NONBONDED[2,N],

NONBONDED[3,N], NONBONDED[4,N]

DO 14 N=1, NEGR

14 WRITE (unit,23) SPECIAL[1,N],SPECIAL[2,N],SPECIAL[3,N],SPECIAL[4,N],

SPECIAL[5,N],SPECIAL[6,N],SPECIAL[7,N],SPECIAL[8,N]

SPECIAL[9,N],SPECIAL[10,N],SPECIAL[11,N]

WRITE (unit,22) NEDS

DO 15 N=1,NEDS

15 WRITE (unit,23) EDSENER[1,N],EDSENER[2,N],EDSENER[3,N],EDSENER[4,N]

22 FORMAT (I5)

23 FORMAT (11E17.9)

Volume, pressure block
Blockname: VOLUMEPRESSURE03

WRITE (unit,23) MASS

4-53

WRITE (unit,22) NBATHS

DO 10 N=1, NBATHS

10 WRITE (unit,23) TEMPERATURE[1,N], TEMPERATURE[2,N], TEMPERATURE

[3,N], TEMPERATURE[4,N]

WRITE (unit,23) VOLUME

DO 11 N=1, 3

11 WRITE (unit,23) BOX[1,N], BOX[2,N], BOX[3,N]]

DO 12 N=1, 3

12 WRITE (unit,23) PRESSURE[N]

DO 13 N=1, 3

13 WRITE (unit,23) PRESS[1,N], PRESS[2,N], PRESS[3,N]

DO 14 N=1, 3

14 WRITE (unit,23) VIRIAL[1,N], VIRIAL[2,N], VIRIAL[3,N]

DO 15 N=1, 3

15 WRITE (unit,23) KINETIC[1,N], KINETIC[2,N], KINETIC[3,N]

Free energy derivative lambda block
Blockname: FREEENERGYDERIVS03

WRITE (unit, 23)RLAM

DO 10 N=1,38

10 WRITE (unit,23) FREEENER[N]

WRITE (unit,22) NBATHS

DO 11 N=1,NBATHS

11 WRITE (unit,23) FREEKINENER[1,N], FREEKINENER[2,N], FREEKINENER

[3,N]

WRITE (unit,22) NEGR

DO 12 N=1, NEGR

12 WRITE (unit,23) FREEBONDED[1,N],FREEBONDED[2,N],FREEBONDED[3,N],

FREEBONDED[4,N],FREEBONDED[5,N]

DO 13 N=1, NEGR*(NEGR+1)/2

13 WRITE (unit23) FREENONBONDED[1,N],FREENONBONDED[2,N],

FREENONBONDED[3,N],FREENONBONDED[4,N]

DO 14 N=1, NEGR

14 WRITE (unit, 23)FREESPECIAL[1,N], FREESPECIAL[2,N], FREESPECIAL[3,N]

FREESPECIAL[4,N],FREESPECIAL[5,N],FREESPECIAL[6,N]

FREESPECIAL[7,N],FREESPECIAL[8,N],FREESPECIAL[9,N]

FREESPECIAL[10,N],FREESPECIAL[11,N]

DO 15 N=1,NEDS

15 WRITE (unit,23) FREEEDSENER[1,N],EDSENER[2,N],EDSENER[3,N]

22 FORMAT (I5)

23 FORMAT (11E17.9)

4.18. Atomic B-factors and positional fluctuations

Atomic mobilities or positional fluctuations can be stored in the form of isotropic B-factors

Bi = (8 π2 /3) < (ri − < ri >)2 > .

The quantities characterizing fluctuations of coordinate distributions are the following:

NR number of atoms

X[1..3, 1..NR] atomic Cartesian coordinates

4-54

BFAC[1..NR] atomic isotropic B-factors

The B-factor or fluctuation blocks are the following:

Isotropic B-factor block
Blockname: BFACTOR

Formatted form

DO 10 J=1, NR

10 WRITE (unit,25) MRES[J], AANMA[J], PANM[J], J, BFAC[J]

25 FORMAT (I5,2(1X,A5),I7,6F9.5)

4.19. Accelerated EDS parameter search data

For accelerated EDS parameter search simulations, several data are stored to allow for continuation of the
search in a new run. The quantities are:

AEDSS[1] accelerated EDS parameter Emax

AEDSS[2] accelerated EDS parameter Emin

AEDSS[3] current maximum transition energy within this state-visit period

AEDSS[4] number of found maximum transitions energies (i.e. number of completed state-visit
periods)

AEDSS[5] number of the end-state sampled in the last simulation step

AEDSS[6] should Emin be allowed to be smaller than the average energy of the end-state with
the lowest energy?

NEDS number of EDS end-states

AEDSS[7,1..NEDS] energy offset parameter per EDS state

AEDSS[8,1..NEDS] natural logarithm of the exponentially averaged energy difference between the accel-
erated EDS reference state and this accelerated end-state

AEDSS[9,1..NEDS] free-energy difference between the accelerated EDS reference state and this accelerated
end-state

AEDSS[10,1..NEDS] has this state already been visited within the current state-visit period?

AEDSS[11,1..NEDS] number of visits of this end-state

AEDSS[12,1..NEDS] average energy of this end-state

AEDSS[13,1..NEDS] average of the energy of this end-state minus the energy offset parameter of this
end-state

AEDSS[14,1..NEDS] helper variable for the calculation of the standard deviation of the energy of this
end-state

AEDSS[15,1..NEDS] standard deviation of the energy of this end-state

The accelerated EDS parameter search block is the following:

4-55

Accelerated EDS parameter search block
Blockname: AEDSS

Formatted form

DO 10 N=1,6

10 WRITE (unit,24) AEDSS[N]

DO 11 N=1,NEDS

11 WRITE (unit,42) AEDSS[7,N],AEDSS[8,N],AEDSS[9,N],AEDSS[10,N],AEDSS[11,N],

AEDSS[12,N],AEDSS[13,N],AEDSS[14,N],AEDSS[15,N]

24 FORMAT (3F15.9,3I15)

42 FORMAT (3F15.9,2I15,4F15.9)

4.20. Backwards compatibility with GROMOS96

The changes with respect to GROMOS96 have been detailed above. They consist of alterations in a
number of blocks, introduction of a number of new blocks, and the deletion of a number of blocks.

For the alterations:

the GROMOS96 blocks

BOX,
ENERGY,
VOLUMEPRESSURE,
FREEENERGYLAMBDA
and
FREENERGY3D4

have been replaced by

GENBOX,TRICLINICBOX
ENERGIES,ENERY03
RUNDATA,VOLUMEPRESSURE03
FREELAMBDADATA,FREEENERGY-DERIVS03
and
FREE3D4DDATA respectively.

Additional blocks include:

SHAKEFAILPOSITION,
SHAKEFAILPREVPOSITION,
LATTICESHIFTS,
FREEFORCE,
FREEFORCERED,

CONSFORCE,
CONSFORCERED,
NHCVARIABLES.

Deleted blocks include:

BFACTORANISO,
POSITIONSEDONDM,
POSITIONTHIRDM,
POSITIONFOURTHM,
POSITIONSECONDMT,
QUANTITYAVER,
QUANENEAVER,

QUANSUMENEAVER,
QUANTIMESERIES,
QUANDISTRIB,
QUANTIMECORR and
QUANTIMECORRSPE.

4-56

CHAPTER 5

Molecular topology building blocks

5.1. Introduction

Most programs of GROMOS do require a molecular topology file containing the topological and force field
data concerning the molecular system that is considered. Specifying a complete molecular topology for a
large molecule like a protein is a tedious task. Long lists of atomic properties have to be typed. Therefore,
GROMOS contains a program make top that is able to generate a complete molecular topology from molec-
ular topology building blocks, that is, molecules or parts of molecules like amino acid residues, nucleotides,
etc., which are constituting the molecular system that is considered. The building blocks are linked in order
to form the wanted molecular topology.

Linking of building blocks consisting of separate, non-covalently connected, molecules is straightforward.
This will be discussed in Sec. 5.2 together with the content and format of a molecular topology building block
file. The linking of covalently connected building blocks by make top demands a set of rules to be satisfied
by the molecular topology building blocks. These rules will be discussed in Sec. 5.3 to Sec. 5.5.

Reading a molecular topology building block file occurs in programs:

make top, check top.

Examples of molecular topology building block files are named:

*.mtb

5.2. Separate molecules

A molecular topology building block file contains two types of information.

1. information regarding all building blocks:

FPEPSI (4πε0)
−1, ε0 = permittivity of vacuum

HBAR ~ = h/(2π), h = Planck’s constant

SPDL c = speed of light

BOLTZ kB = Boltzmann’s constant

2. information specifying a building block:

L sequence number of the solute building block in the molecular topology build-
ing block file; below, the primary sequence number of the residue or nucleotide
in the protein or polynucleotide is denoted by M

RNME[L] name of residue or nucleotide or molecule (at most 5 characters); these names
are to be used in the input of make top to select building blocks

NMAT[L] number of atoms

4-57

NLIN[L] number of atoms for which the exclusions are given before the exclusions of
the building block atoms themselves:
= 0 for a separate molecule
6= 0 for a residue, nucleotide or monosaccharide unit

ANM[1..NMAT[L], L] atom names (at most 5 characters)

IMCM[1..NMAT[L], L]

integer mass type codes for selection of atomic masses

ATOM[1..NMAT[L], L]

atom sequence number

NREP[L] number of atoms that are replacing existing atoms at the beginning (NREP[L]>0)
or at the end (NREP[L]<0) of a chain of building blocks

IACM[1..NMAT[L], L]

integer atom type codes for selection of van der Waals parameters

CGM[1..NMAT[L], L] atomic charges

ICGM[1..NMAT[L], L]

atomic charge group codes; the atoms forming a charge group must have
sequential sequence numbers; the last atom of a charge group is denoted by
ICGM=1, the others must have ICGM=0

MAE[1..NMAT[L], L] number of neighbours of atom i that are excluded from non-bonded interac-
tion with atom i

MSAE[1..MAE[ATOM],1..NMAT[L], L]

atom sequence numbers j of the excluded neighbours of atom i; it is required
that i<j and that the j’s occur in ascending order. The exclusions of the last
NLIN[L] atoms of the building block are not specified here, but handled in
the next building block of the molecular chain.
Exclusions between different building blocks that do not go over the sys-
tems main chain (e.g. disulfide bridges, covalently bound Heme groups) are
described in section Sec. 5.3.

NCGB[L] number of coarse-grained regions

NRCGF[1..NCGB], NRCGL[1..NCGB]

first and last atom sequence number of a coarse-grained region

MSCAL[1..NCGB] scaling factor for pressure correction of a coarse-grained region

NPPOL[L] number of polarisable solute atoms

IPOLP[1..NPPOL], ALPP[1..NPPOL]

atom sequence number and polarisability of the polarisable solute atom

QPOLP[1..NPPOL] size of charge-on-spring connected to polarisable solute atoms

ENOTP[1..NPPOL], EPP[1..NPPOL]

damping level and power for polarisation

GAMP[1..NPPOL], IP[1..NPPOL], JP[1..NPPOL]

gamma and the first and second atom for off-site polarisable centre construc-
tion

NEX[L] number of LJ-exceptions

4-58

AEX[1..2, 1..NEX[L], L]

atom sequence numbers of the atoms to have special LJ-interactions defined
by LJ-exceptions

AEXTYPE[1..NEX[L], L]

LJ-exception type codes for selection of interaction parameters

NMB[L] number of bonds

MB[1..2, 1..NMB[L], L]

atom sequence numbers of the atoms forming the bonds i-j, i is always smaller
than j

MCBL[1..NMB[L], L] bond-type codes for selection of interaction parameters

NMBDP[L] number of dipole bonds

MBDP[1..2, 1..NMBDP[L], L]

atom sequence numbers of the atoms forming the dipole bonds i-j, i is always
smaller than j

NMBA[L] number of bond angles

MBA[1..3, 1..NMBA[L], L]

atom sequence numbers of the atoms forming the bond angles i-j-k, i is always
smaller than k

MCBA[1..NMBA[L], L]

bond-angle type codes for selection of interaction parameters

NMIDA[L] number of improper dihedral angles

MIDA[1..4, 1..NMIDA[L], L]

atom sequence numbers of the atoms forming the improper dihedrals i-j-k-l,
j is always smaller than k

MCIA[1..NMIDA[L], L]

improper dihedral angle type codes for selection of interaction parameters

NMDA[L] number of dihedral angles

MDA[1..4, 1..NMDA[L], L]

atom sequence numbers of the atoms forming the dihedrals i-j-k-l, j is always
smaller than k

MCDA[1..NMDA[L], L]

dihedral angle type codes for selection of interaction parameters

LL sequence number of the solvent building block in the molecular topology
building block file

RNMES[LL] name of solvent molecule (at most 5 characters): one of these names is used
in the input of make top to select a solvent building block

NMATS[LL] number of atoms

ANMMS[1..NMATS[LL], LL]

atoms names (at most 5 characters)

IMCMS[1..NMATS[LL], LL]

integer mass type codes for selection of atomic masses

4-59

IACMS[1..NMATS[LL], LL]

integer atom type codes for selection of van der Waals parameters

CGMS[1..NMATS[LL], LL]

atomic charges

NVPOL[L] number of polarisable solvent atoms

IPOLV[1..NVPOL], ALPV[1..NVPOL]

atom sequence number and polarisability of the polarisable solvent atom

QPOLV[1..NVPOL] size of charge-on-spring connected to polarisable solvent atoms

ENOTV[1..NPVOL], EPV[1..NVPOL]

damping level and power for polarisation

GAMV[1..NVPOL], IV[1..NVPOL], JV[1..NVPOL]

gamma and the first and second atom for off-site polarisable centre construc-
tion

NCONM[LL] number of distance constraints

ICONM, JCONM[1..NCONM[LL], LL]

atom sequence numbers of the atoms forming the constraint i-j, i is always
smaller than j

CONM[1..NCONM[LL], LL]

constraint length of the constraint i-j

The blocks of a molecular topology building block file are (apart from the Title block) the following:

Physical constants block
Blockname: PHYSICALCONSTANTS

WRITE (unit,12) FPEPSI

WRITE (unit,12) HBAR

WRITE (unit,12) SPDL

WRITE (unit,12) BOLTZ

12 FORMAT (E15.7)

Molecular topology solute building block
Blockname: MTBUILDBLSOLUTE

WRITE (unit,30) RNME[L]

WRITE (unit,33) NMAT[L], NLIN[L]

for every preceding exclusion I:
DO 19 I=1, NLIN[L]

19 WRITE (unit,31) I-NLIN[L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

for atom I < NMATL[L]-NLIN[L]:
D0 20 I=1, NMAT[L]-NLIN[L]

20 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

for every atom I with NMAT[L]-NLIN[L] < I 6 NMAT[L]:
DO 21 I=1, NMAT[L]-NLIN[L] + 1, NMAT[L]

21 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L]

4-60

WRITE (unit,33) NLJEX[L]

for every LJ-exception N:
DO 22 N=1, NLJEX[L]

22 WRITE (unit,33) (AEX[M,N,L], M=1,2), AEXTYPE[N,L]

WRITE (unit,33) NMB[L]

for every bond N:
DO 23 N=1, NMB[L]

23 WRITE (unit,33) (MB[M,N,L], M=1,2), MCBL[N,L]

WRITE (unit,33) NMBA[L]

for every bond angle N:
DO 24 N=1, NMBA[L]

24 WRITE (unit,33) (MBA[M,N,L], M=1,3), MCBA[N,L]

WRITE (unit,33) NMIDA[L]

for every improper dihedral angle N:
DO 25 N=1, NMIDA[L]

25 WRITE (unit,33) (MIDA[M,N,L], M=1,4), MCIA[N,L]

WRITE (unit,33) NMDA[L]

for every proper torsional dihedral N:
DO 26 N=1, NMDA[L]

26 WRITE (unit,33) (MDA[M,N,L], M=1,4), MCDA[N,L]

30 FORMAT (A5)

31 FORMAT (I5,30X,I4,8I5)

32 FORMAT (I5,1X,A5,I4,I5,F11.5,2I4,8I5)

33 FORMAT (16I5)

If MAE[I,L] > 8, then the remaining MSAE values are written on the next line using 16I5 as format.

Molecular topology coarse-grained (CG) solute building block
Blockname: MTBUILDBLCGSOLUTE

WRITE (unit,30) RNME[L]

WRITE (unit,33) NMAT[L], NLIN[L]

for every preceding exclusion I:
DO 19 I=1, NLIN[L]

19 WRITE (unit,31) I-NLIN[L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

for atom I < NMATL[L]-NLIN[L]:
D0 20 I=1, NMAT[L]-NLIN[L]

20 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

for every atom I with NMAT[L]-NLIN[L] < I 6 NMAT[L]:
DO 21 I=1, NMAT[L]-NLIN[L] + 1, NMAT[L]

21 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L]

WRITE (unit,33) NCGB[L]

for every coarse-grained region N:
DO 22 N=1, NCGB[L]

4-61

22 WRITE (unit,34) NRCGF[N], NRCGL[N], MSCAL

WRITE (unit,33) NLJEX[L]

for every LJ-exception N:
DO 23 N=1, NLJEX[L]

23 WRITE (unit,33) (AEX[M,N,L], M=1,2), AEXTYPE[N,L]

WRITE (unit,33) NMB[L]

for every dipole bond N:
DO 24 N=1, NMBDP[L]

24 WRITE (unit,33) (MBDP[M,N,L], M=1,2), MCBL[N,L]

WRITE (unit,33) NMBA[L]

for every bond N:
DO 24 N=1, NMB[L]

24 WRITE (unit,33) (MB[M,N,L], M=1,2), MCBL[N,L]

WRITE (unit,33) NMBA[L]

for every bond angle N:
DO 25 N=1, NMBA[L]

25 WRITE (unit,33) (MBA[M,N,L], M=1,3), MCBA[N,L]

WRITE (unit,33) NMIDA[L]

for every improper dihedral angle N:
DO 26 N=1, NMIDA[L]

26 WRITE (unit,33) (MIDA[M,N,L], M=1,4), MCIA[N,L]

WRITE (unit,33) NMDA[L]

for every proper torsional dihedral N:
DO 27 N=1, NMDA[L]

27 WRITE (unit,33) (MDA[M,N,L], M=1,4), MCDA[N,L]

30 FORMAT (A5)

31 FORMAT (I5,30X,I4,8I5)

32 FORMAT (I5,1X,A5,I4,I5,F11.5,2I4,8I5)

33 FORMAT (16I5)

34 FORMAT (2I5,F15.7)

If MAE[I,L] > 8, then the remaining MSAE values are written on the next line using 16I5 as format.

Molecular topology polarisable solute building block
Blockname: MTBUILDBLPOLSOLUTE

WRITE (unit,30) RNME[L]

WRITE (unit,33) NMAT[L], NLIN[L]

for every preceding exclusion I:
DO 19 I=1, NLIN[L]

19 WRITE (unit,31) I-NLIN[L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

for atom I < NMATL[L]-NLIN[L]:
D0 20 I=1, NMAT[L]-NLIN[L]

20 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

for every atom I with NMAT[L]-NLIN[L] < I 6 NMAT[L]:

4-62

DO 21 I=1, NMAT[L]-NLIN[L] + 1, NMAT[L]

21 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L]

WRITE (unit,33) NCGB[L]

for every polarisable atom I:
DO 22 I=1, NPPOL[L]

22 WRITE (unit,35) IPOLP[I], ALPP[I], QPOLP[I], ENOTP[I], EPP[I], GAMP[I], IP[I], JP[I]

WRITE (unit,33) NLJEX[L]

for every LJ-exception N:
DO 23 N=1, NLJEX[L]

23 WRITE (unit,33) (AEX[M,N,L], M=1,2), AEXTYPE[N,L]

WRITE (unit,33) NMB[L]

for every bond N:
DO 24 N=1, NMB[L]

24 WRITE (unit,33) (MB[M,N,L], M=1,2), MCBL[N,L]

WRITE (unit,33) NMBA[L]

for every bond angle N:
DO 25 N=1, NMBA[L]

25 WRITE (unit,33) (MBA[M,N,L], M=1,3), MCBA[N,L]

WRITE (unit,33) NMIDA[L]

for every improper dihedral angle N:
DO 26 N=1, NMIDA[L]

26 WRITE (unit,33) (MIDA[M,N,L], M=1,4), MCIA[N,L]

WRITE (unit,33) NMDA[L]

for every proper torsional dihedral N:
DO 27 N=1, NMDA[L]

27 WRITE (unit,33) (MDA[M,N,L], M=1,4), MCDA[N,L]

30 FORMAT (A5)

31 FORMAT (I5,30X,I4,8I5)

32 FORMAT (I5,1X,A5,I4,I5,F11.5,2I4,8I5)

33 FORMAT (16I5)

35 FORMAT (I5,5F11.5,2I5)

If MAE[I,L] > 8, then the remaining MSAE values are written on the next line using 16I5 as format.

Molecular topology solute end group building block
Blockname: MTBUILDBLEND

WRITE (unit,30) RNME[L]

WRITE (unit,33) NMAT[L], NREP[L]

if NREP[L] > 0 then
for atom I 6 NMATL[L]-NREP[L]:

DO 20 I=1, NMAT[L]-NREP[L]

20 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

DO 21 I=NMAT[L]-NREP[L]+1, NMAT[L]

21 WRITE (unit,32) I, ANM[I,L], IACM[I,L], ICMCM[I,L], CGM[I,L],

ICGM[I,L]

4-63

if NREP[L] < 0 then
for every atom I

DO 22 I= NMAT[L]-NREP[L]+1, NMAT[L]

22 WRITE (unit,32) I, ANM[I,L], IACM[I,L], IMCM[I,L], CGM[I,L],

ICGM[I,L], MAE[I,L], (MSAE[N,I,L],N=1,MAE[I,L)

WRITE (unit,33) NMB[L]

for every bond N:
DO 23 N=1, NMB[L]

23 WRITE (unit,33) (MB[M,N,L], M=1,2), MCBL[N,L]

WRITE (unit,33) NMBA[L]

for every bond angle N:
DO 24 N=1, NMBA[L]

24 WRITE (unit,33) (MBA[M,N,L], M=1,3), MCBA[N,L]

WRITE (unit,33) NMIDA[L]

for every improper dihedral angle N:
DO 25 N=1, NMIDA[L]

25 WRITE (unit,33) (MIDA[M,N,L], M=1,4), MCIA[N,L]

WRITE (unit,33) NMDA[L]

for every proper torsional dihedral N:
DO 26 N=1, NMDA[L]

26 WRITE (unit,33) (MDA[M,N,L], M=1,4), MCDA[N,L]

30 FORMAT (A5)

31 FORMAT (I5,30X,I4,8I5)

32 FORMAT (I5,1X,A5,I4,I5,F11.5,2I4,8I5)

33 FORMAT (16I5)

If MAE[I,L] > 8, then the remaining MSAE values are written on the next line using 16I5 as format.

Molecular topology solvent building block
Blockname: MTBUILDBLSOLVENT

WRITE (unit,30) RNMES[LL]

WRITE (unit,33) NMATS[LL]

DO 20 J=1, NMATS[LL]

20 WRITE (unit,32) J, ANMMS[J,LL], IACMS[J,LL], IMCMS[J,LL],

CGMS[J,LL]

WRITE (unit,33) NCONM[LL]

DO 21 N=1, NCONM[LL]

21 WRITE (unit,34) ICONM[N,LL], JCONM[N,LL], CONM[N,LL]

30 FORMAT (A5)

32 FORMAT (I5,1X,A5,I4,I5,F11.5,2I4,8I5)

33 FORMAT (16I5)

34 FORMAT (2I5,F15.7)

Molecular topology polarisable solvent building block
Blockname: MTBUILDBLPOLSOLVENT

4-64

WRITE (unit,30) RNMES[LL]

WRITE (unit,33) NMATS[LL]

DO 20 J=1, NMATS[LL]

20 WRITE (unit,32) J, ANMMS[J,LL], IACMS[J,LL], IMCMS[J,LL],

CGMS[J,LL]

WRITE (unit,33) NVPOL[LL]

DO 21 I=1, NVPOL[LL]

21 WRITE (unit,35) IPOLV[J], ALPV[J], QPOLV[J], ENOTV[J], EPV[J], GAMV[J], IV[J], JV[J]

WRITE (unit,33) NCONM[LL]

DO 22 N=1, NCONM[LL]

22 WRITE (unit,34) ICONM[N,LL], JCONM[N,LL], CONM[N,LL]

30 FORMAT (A5)

32 FORMAT (I5,1X,A5,I4,I5,F11.5,2I4,8I5)

33 FORMAT (16I5)

34 FORMAT (2I5,F15.7)

35 FORMAT (I5,5F11.5,2I5)

5.3. Linking of building blocks

When several building blocks need to be covalently linked to obtain the required molecular topology, a
few rules must be satisfied compared to the case of separate molecules. These rules are due to the fact that
in a chain of building blocks the bonds, bond-angles and (improper) dihedral angles involve atoms from
different building blocks. Also excluded neighbours may reside in different building blocks. These rules are
the following:

- When listing a bond (i-j), bond-angle (i-j-k), improper dihedral (i-j-k-l) or dihedral (i-j-k-l) connect-
ing atoms with sequence numbers i, j, k or l in two residues with residue sequence numbers M-1 and
M or M and M+1, through a peptide C-N link, the following rules apply:
– for the bond i-j, neither i nor j may lie in residue M-1 and only j may lie in residue M+1;
– for the bond-angle i-j-k, only i may lie in residue M-1, and only k may lie in residue M+1;
– for the improper dihedral i-j-k-l, only j or k may lie in residue M-1, and only i or j or k or l may

lie in residue M+1;
– for the dihedral i-j-k-l, only i or i and j may lie in residue M-1. When i and j lie in residue M-1,

atom i always refers to the first atom bound to j with i<j, it can be specified by -2. Only l may
lie in residue M+1.

- Cross links such as disulfide bridges or the covalent link between a histidine and the heme group
can be made between different building blocks. For a cross-link between building blocks M and N
(M<N) the rules for listing the bond, bond-angles and dihedrals are the following:
– In M, the atoms of the building block N are identified by a negative sign of atom sequence

numbers
– for the bond i-j, only in M -j may denote atom j in N
– for the bond-angle i-j-k, only in M -k or -j and -k may denote atoms j and k in N
– for the dihedral i-j-k-l, only in M -l, or -h and -l or -j, -k and -l may denote atoms j,k and l in N
– for the improper dihedral i-j-k-l, only in M -i or -l may denote atoms i and l in N
– In M, the excluded neighbours residing in N are denoted by a negative sign of their atom se-

quence numbers

- More general cross links between molecules can be made by post-processing an unlinked topology
using GROMOS++ program link top. The link is defined according to the MTBUILDBLLINK
block outlined below. The rules for creating cross links with link top are the following:
– the atoms are identified in the original toplogy by the residue sequence number indicated in the

input and the name of the atom specified in the MTBUILDBLLINK block

4-65

– all atoms for which the IAC is set to 0 will be removed from the original topology. For all
remaining atoms specified in the MTBUILBLLINK block, the values for the IAC, the MASS,
the CHARGE and the charge group code are updated. Note that the actual MASS is given in
the MTBUILDBLLINK file and not the integer mass type code

– the exlusions of the original topology (without the removed atom) remain, and exclusions that
are specified in the MTBUILDBLLINK block are added

– all covalent interactions that are specified in the MTBUILDBLLINK block are first removed from
the original topology (if present) and subsequently added according to the current definitions.

– for dihedral angles, link top allows the user to refer to the first and/or last atom with an atom
sequence number 0. For these atoms, the program will search in the topology that is bound to
the second or third atom in the dihedral angle definition, respectively, and assign the dihedral
angle to this atom. Any dihedral angles that were already defined for this group is replced.

Molecular topology solute building block
Blockname: MTBUILDBLLINK

WRITE (unit,30) RNME[L]

WRITE (unit,33) NMAT[L]

D0 20 I=1, NMAT[L]

20 WRITE (unit,32) I, RES[I,L], ANM[I,L], IACM[I,L], MASS[I,L],

CGM[I,L],ICGM[I,L], MAE[I,L],(MSAE[N,I,L],N=1,MAE[I,L])

DO 23 N=1, NMB[L]

23 WRITE (unit,33) (MB[M,N,L], M=1,2), MCBL[N,L]

WRITE (unit,33) NMBA[L]

DO 24 N=1, NMBA[L]

24 WRITE (unit,33) (MBA[M,N,L], M=1,3), MCBA[N,L]

WRITE (unit,33) NMIDA[L]

DO 25 N=1, NMIDA[L]

25 WRITE (unit,33) (MIDA[M,N,L], M=1,4), MCIA[N,L]

WRITE (unit,33) NMDA[L]

DO 26 N=1, NMDA[L]

26 WRITE (unit,33) (MDA[M,N,L], M=1,4), MCDA[N,L]

30 FORMAT (A5)

31 FORMAT (I5,30X,I4,8I5)

32 FORMAT (I5,1X,I5,A5,I4,F10.5,F11.5,2I4,8I5)

33 FORMAT (16I5)

An example of a molecular topology building block containing an amino acid residue is the Alanine build-
ing block to be found under the name ALA in the *.mtb files.

An example of a molecular topology building block containing a nucleotide is the Adenosine building block
to be found under the name DADE in the *.mtb files.

An example of a molecular topology building block containing a glucose unit is the sugar building block
to be found under the name GLCA in the *.mtb files.

5.4. Other building blocks

From the previous paragraphs it has become clear that program make top may link any type of molecular
topology building blocks into a linear co-valently connected chain, as long as the characteristics of the link

4-66

satisfy the given rules. A Styrene residue topology building block may serve as an example.

– CA – CB –
|

CG
/ \

HD1 – CD1 CD2 – HD2
| |

HE1 – CE1 CE2 – HE2
\ /
CZ
|

HZ

– 1 – 13 –
|
2

/ \
4 – 3 5 – 6

| |
8 – 7 9 – 10

\ /
11
|
12

By choosing the displayed atom sequence numbers, all the rules for connecting these building blocks into a
polystyrene chain using make top are satisfied.

It should always be checked in the complete molecular topology generated from the building blocks by
program make top whether the linking has been carried out correctly.

5.5. End groups

The linking of molecular topology building blocks has been described in the previous sections. This leaves
open the question of how to treat the head and tail of the molecular chain one is interested in. Often the
bonded and nonbonded parameters at the head and tail of e.g. a protein will be different from the parameters
that are usually describing amino acid interactions. For this reason GROMOS knows the end-group building
blocks, which describe which atoms to change and add or remove at the head and tail of the sequence. The
following rules apply:

- if NREP > 0, the end-group building block describes the head of the chain. The last NREP atoms
will replace the first NREP atoms in the next building block. Only the exclusions that are specified
remain from the next building block, all other parameters are overwritten.

- if NREP < 0, the end-group building block describes the tail of the chain. The first -NREP atoms
will replace the last -NREP atoms in the previous building block.

- in order to remove atoms from the next or previous building block they need to be specified in the
end-group building block as a replacing atom with a negative IAC

- for all covalent interactions that cross between an end-group and a regular building block the same
rules apply as for linking two building blocks.

Examples of protein end-group building blocks can be found under the names NH3+ or COOH in the
*.mtb files.

Examples of nucleotide end-group building blocks can be found under the names D3OH and D5OH in the
*.mtb files.

Examples of saccharide end-group building blocks can be found under the names C1OH and C6OH in the
*.mtb files.

It should always be checked in the complete molecular topology generated from the building blocks by
program make top whether the end-groups have been implemented correctly.

5.6. Contents of the MTB file

MTB file:

4-67

TITLE
LINKEXCLUSIONS
PHYSICALCONSTANTS
MTBUILDBLSOLUTE
MTBUILDBLSOLVENT
MTBUILDBLEND

4-68

CHAPTER 6

Interaction function parameters

6.1. Introduction

The molecular topology file of a molecular system does not only contain topological information about
the system, but also force field parameters. These parameters have been listed in Chap. 3 (Force Field and
Topology Data Set). They are part of a molecular topology as described in Sec. 3.2. The molecular topology
can be generated using the program make top. All the force field parameters that belong to a specific force
field are kept in two different files. The force field parameters that are related to the molecular topology, like
atomic charges and third or excluded nearest neighbour information, are included in the molecular topology
building block file, which has been described in Sec. 5.2. The remaining force field parameters, which are
independent of the molecular topology, are kept in another file, the interaction function parameter file. Both
files are combined by program make top to generate a complete molecular topology file (Sec. 3.2) corre-
sponding to the molecular system that is considered.

The various blocks of an interaction function parameter file are (apart from the Title block) described in
CSec. 6.2 to Sec. 6.7.

Reading an interaction parameter file occurs in programs:

make top, check top, con top

Examples of interaction function parameter files are named:

*.ifp

6.2. Mass atom types

The mass atom type codes, mass values and names are stored as follows:

NRMATY number of defined mass atom types

NMATY largest (integer) mass atom type code

ATMAS[1..NMATY] atomic mass as a function of the (integer) mass atom type code

ATMASN [1..NMATY] (mass) atom names as a function of the (integer) mass atom type code (at most 5
characters)

Mass atom type code block
Blockname: MASSATOMTYPECODE

WRITE (unit,11) NRMATY, NMATY

DO 10 M=1, NRMATY

10 WRITE (unit,12) N, ATMAS[N], ATMASN[N]

11 FORMAT (2I5)

12 FORMAT (I5,F10.5,1X,A5)

4-69

6.3. Covalent bond-stretching interaction parameters

The parameters concerning the bond-stretching interaction are stored as follows:

NRBTY number of defined covalent bond types

NBTY largest (integer) bond-type code

CB[1..NBTY] force constant of the bond-stretching term of the interaction as a function of the
bond-type code, based on a quartic potential energy function

CHB [1..NTBY] force constant of the bond-stretching term of the interaction as a function of the
bond-type code, based on a harmonic potential energy function

B0[1..NBTY] bond length at minimum energy of the bond-stretching term as a function of the
bond-type code

Bond-type code and parameters block
Blockname: BONDSTRETCHTYPECODE

WRITE (unit,11) NRBTY, NBTY

DO 10 M=1, NRBTY

10 WRITE (unit,13) N, CB[N], CHB [N], B0[N]

13 FORMAT (I5,3F15.7)

6.4. Covalent bond-angle bending interaction parameters

The parameters concerning the bond-angle bending interaction are stored as follows:

NRTTY number of defined bond-angle types

NTTY largest (integer) bond-angle type code

CT[1..NTTY] force constant of the bond-angle bending term of the interaction as a function of the
bond-angle type code, based on a potential energy function harmonic in the angle
cosine

CHT[1..NTTY] force constant of the bond-angle bending term of the interaction as a function of the
bond-angle type code, based on a potential energy function harmonic in the angle (in
energy units per degree2)

T0[1..NTTY] bond angle (in degrees) at minimum energy of the bond-angle bending term as a
function of the bond-angle type code

Bond-angle type code and parameters block
Blockname: BONDANGLEBENDTYPECODE

WRITE (unit,11) NRTTY, NTTY

DO 10 M=1, NRTTY

10 WRITE (unit,13) N, CT[N], CHT [N], T0[N]

13 FORMAT (I5,3F15.7)

6.5. Improper dihedral-angle interaction parameters

The parameters concerning the harmonic improper dihedral-angle interaction are stored as follows:

4-70

NRQTY number of defined (harmonic) improper dihedral-angle types

NQTY largest (integer) improper dihedral-angle type code

CQ[1..NQTY] force constant of the harmonic improper dihedral term of the interaction as a function
of the improper dihedral-angle type code (in energy units per degree2)

Q0[1..NQTY] improper dihedral-angle (in degrees) at minimum energy of the harmonic improper
dihedral term as a function of the improper dihedral-angle type code

Improper (harmonic) dihedral-angle type code and parameters block
Blockname: IMPDIHEDRALTYPECODE

WRITE (unit,11) NRQTY, NQTY

DO 10 M=1, NRQTY

10 WRITE (unit,13) N, CQ[N], Q0[N]

13 FORMAT (I5,3F15.7)

6.6. Dihedral-angle torsional interaction parameters

The parameters concerning the trigonometric dihedral-angle interaction are stored as follows:

NRPTY number of defined (trigonometric) dihedral-angle types

NPTY largest (integer) dihedral-angle type code

CP[1..NPTY] force constant of the trigonometric dihedral term of the interaction as a function of
the dihedral-angle type code

PDL [1..NPTY] phase-shift angle (in degrees) of the trigonometric dihedral term as a function of the
dihedral-angle type code

NP[1..NPTY] multiplicity of the trigonometric dihedral term as a function of the dihedral-angle
type code (1,2,3,4,5,6)

Proper (trigonometric) dihedral-angle type code and parameters block
Blockname: TORSDIHEDRALTYPECODE

WRITE (unit,11) NRPTY, NPTY

DO 10 M=1, NRPTY

10 WRITE (unit,14) N, CP[N], PDL[N], NP[N]

14 FORMAT (I5,2F10.5,I5)

6.7. Van der Waals interaction parameters and integer atom codes

The interaction function parameter file contains information on the van der Waals interaction parameters.
These are C12(i,j), the coefficient of the 1/r12 term, and C6(i,j), the coefficient of the -1/r6 term in the non-
bonded interaction. These coefficients depend on the integer atom codes I and J (1..NRATT) of atoms i and
j. In a molecular topology file these parameters are stored in the arrays C12, C6[1..NRATT*(NRATT+1)/2].
The corresponding parameters for the 1-4 or third neighbour non-bonded interaction are stored in arrays
CS12, CS6 [1..NRATT* (NRATT+1)/2].

If NRATT is large, direct specification of all these parameters becomes tedious. Therefore, the information
on the van der Waals parameters is stored in a different manner.

4-71

1. A first block contains single atom type normal van der Waals parameters C
1/2
6 (I,I) and (maximally

3 values) C
1/2
12 (I,I) and third-neighbour parameters C

1/2
6 (I,I) and C

1/2
12 (I,I), from which the van der

Waals parameters for all atom pairs are calculated (in make top) using geometric combination rules.
2. A second block contains van der Waals parameters for a given set of atom pairs, which will replace

the combination rule values (upon reading in make top).

The following variables are used to define the van der Waals interaction parameters:

NRATT number of (van der Waals) atom types

TYPE[1..NRATT] names of the different atom types as a function of the integer atom code that defines
an atom type (at most 5 characters)

C612[1..NRATT] square root of the single atom coefficient of the -1/r6 term in the normal van der
Waals interaction as a function of the integer atom code

C1212[1..NRATT, 1..3]

three values for the square root of the single atom coefficient of the 1/r12 term in the
normal van der Waals interaction as a function of the integer atom code

LPAIR[1..NRATT, 1..NRATT]

pointer matrix for selection of one of the three C1212 values when applying the com-
bination rules: C12 [I,J] = C1212[I, LPAIR[I,J] * C1212[J, LPAIR[J,I]]; LPAIR[I,J]
= 1,2 or 3

CS612[1..NRATT] square root of the single atom coefficient of the -1/r6 term in the third-neighbour van
der Waals interaction as a function of the integer atom code

CS1212[1..NRATT] square root of the single atom coefficient of the 1/r12 term in the third-neighbour van
der Waals interaction as a function of the integer atom code

NRPAIR number of atom type pairs for which the van der Waals parameters are explicitly
given

MPAC[1..NRATT, 1..NRATT]

pair codes for atom pairs as a function of their integer atom codes I and J (0NRATT
* (NRATT+1)/2 = NRATT2), the pair code is defined as I+J*(J-1)/2 when I6J
and as J+I*(I-1)/2 when J6I; these values are not stored in the interaction function
parameter file, since they can be and are calculated upon reading the file

C12[1..NRATT*(NRATT+1)/2]

coefficient of the 1/r12 term in the non-bonded interaction as a function of the occur-
ring pair codes; so, the sequence of atom pairs with integer atom codes ranging from
1 to NRATT is: 1-1, 1-2, 2-2, ...1-NRATT, ...2-NRATT, ... NRATT-NRATT

C6[1..NRATT*(NRATT+1)/2]

coefficient of the -1/r6 term in the non-bonded interaction as a function of the occur-
ring pair codes

CS12[1..NRATT*(NRATT+1)/2]

coefficient of the 1/r12 term in the 1-4 non-bonded interaction between third-neighbour
atoms as a function of the occurring pair codes

CS6[1..NRATT*(NRATT+1)/2]

coefficient of the -1/r6 term in the 1-4 non-bonded interaction between third-neighbour
atoms as a function of the occurring pair codes

Single atom type van der Waals (Lennard-Jones) parameters block
Blockname: SINGLEATOMLJPAIR

4-72

WRITE (unit,11) NRATT

DO 10 M=1, NRATT

WRITE (unit,15) I, TYPE[I], C612[I], (C1212[I,K], K=1,3),

WRITE (unit,16) CS612[I], CS1212[I]

10 WRITE (unit,17) (LPAIR[I,K], K=1, NRATT)

15 FORMAT (I5,1X,A5,4E15.7)

16 FORMAT (11X,2E15.7)

17 FORMAT (20I2)

If NRATT > 20, the LPAIR values are written with 20 entries on each line using 20I2 as format.

Mixed atom type van der Waals (Lennard-Jones) parameters block
Blockname: MIXEDATOMLJPAIR

WRITE (unit,11) NRPAIR

DO 10 M=1, NRPAIR

WRITE (unit,18) I, J, C6[I,J], C12[I,J], CS6[I,J], CS12[I,J]

18 FORMAT (2I5, 4E15.7)

The MIXEDATOMLJPAIR block must occur after the SINGLEATOMLJPAIR block on the interaction
function parameter file.

GROMOS integer atom codes, single atom type van der Waals parameters for normal and third-neighbour
interactions, and mixed atom type van der Waals parameters are given in Vol. 3.

Special atom pair based van der Waals interactions (LJ-exceptions) parameters block
Blockname: LJEXCEPTIONTYPE

WRITE (unit,11) NLJEXTYPE

DO 10 M=1, NLJEXTYPE

WRITE (unit,18) M, LJEXC12[M], LJEXC6[M]

18 FORMAT (1I5, 2E15.7)

6.8. Atomic charges and charge group codes

The atomic charges and the charge group codes are to be specified with the atoms in the molecular topol-
ogy building blocks, in the molecular topology building block file. This is discussed in Sec. 5.2.

6.9. Excluded neighbours

The information about which atoms j will be excluded from non-bonded interaction with atom i based
on the proximity of atom i and j measured along the covalently bound chain (nearest neighbours), is to be
specified with the atomic information in the molecular topology building blocks in the molecular topology
building block file. This is discussed in Sec. 5.2.

6.10. Contents of the IFP file

IFP file:

TITLE
MASSATOMTYPECODE
BONDSTRETCHTYPECODE
BONDANGLEBENDTYPECODE
IMPDIHEDRALTYPEC

4-73

DIHEDRALTYPECODE
SINGLEATOMLJPAIR
MIXEDATOMLJPAIR

4-74

CHAPTER 7

Library files for GROMOS++

7.1. Introduction

The pre- and post-processing programs of GROMOS++ that are described in Chap. 5 make use of differ-
ent additional library files that are described in the following sections.

7.2. Interaction function parameter renumbering

Several parameter sets of the GROMOS force field are available. Program con top (see Sec. 5-2.6) is able
to convert existing topologies to a different parameter set. From parameter set 45A4 to 53A5 all interaction
parameter types have been renumbered. To convert topologies that were generated with a parameter set
older than 53A5 to the new numbering a renumber file needs to be specified.

The renumbering information is stored as follows:

BTFROM bond-stretch parameter type in original topology

BTTO bond-stretch parameter type in resulting topology

ATFROM bond-angle bend parameter type in original topology

ATTO bond-angle bend parameter type in resulting topology

IDTFROM improper (harmonic) dihedral angle parameter type in original topology

IDTTO improper (harmonic) dihedral angle parameter type in resulting topology

DTFROM dihedral (trigonometric) angle parameter type in original topology

DTTO dihedral (trigonometric) angle parameter type in resulting topology

ATOMFROM Lennard-Jones interaction type code (IAC) in original topology

ATOMTO Lennard-Jones interaction type code (IAC) in resulting topology

The renumber-file contains the following blocks (apart from the title):

Bondtype conversion block
Blockname: BONDTYPECONV

DO 10 N=1, NBT

10 WRITE (unit,11) BTFROM, BTTO

11 FORMAT (2I5)

Bond-angle bend conversion block
Blockname: ANGLETYPECONV

DO 10 N=1, NAT

10 WRITE (unit,11) ATFROM, ATTO

4-75

Improper dihedral conversion block
Blockname IMPROPERTYPECONV

DO 10 N=1, NIMP

10 WRITE (unit,11) IDTFROM, IDTTO

Dihedral angle conversion block
Blockname: DIHEDRALTYPECONV

DO 10 N=1, NDIH

10 WRITE (unit,11) DTFROM, DTTO

Atomtype conversion block
Blockname: ATOMTYPECONV

DO 10 N=1, NATOM

10 WRITE (unit,11) ATOMFROM, ATOMTO

An example of a force field renumber file is ren45a4 to 53a5.dat.

7.3. Atomic naming conventions

Program pdb2g96 can be used to convert molecular coordinate files in pdb-format to GROMOS-format
(see Sec. 5-2.19). This program matches residue and atom names in the pdb-file with the names of residues
and atoms specified in the molecular topology of the system. For proteins and nucleotides, the names by
which residues or nucleotides and atoms are denoted will correspond exactly in the two files. However,
some often occurring differences are known. These can be defined in the pdb2g96-library file which is to be
specified when using the pdb2g96 program.

The library file is defined by the following variables:

RESPDB The name of a residue that is encountered in a pdb-file

RESTOPO The name by which the corresponding residue is denoted in the topology RESAT
The name of a residue for which an atom name difference is listed, according to the
topology.

ATMPDB The name of an atom in residue RESAT as it may be encountered in a pdb-file

ATMTOPO The name of the corresponding atom in residue RESAT will be denoted in the topology

Apart from the title block, the pdb2g96 library file contains the following blocks:

Residue name block
Blockname: RESIDUENAMELIB

DO 10 N=1, NRES

10 WRITE (unit,11) RESPDB, RESTOPO

11 FORMAT (3A6)

Atomic name block
Blockname: ATOMNAMELIB

4-76

DO 10 N=1, NATOM

10 WRITE (unit,11) RESAT, ATMPDB, ATMTOPO

An example of this library file is pdb2g96.lib.

7.4. Definition of file-names and joblists

Program mk script can generate jobscripts and input files to run MD++ (see Sec. 5-2.18). Although
there are recommended file-names for the different GROMOS files that are used in a molecular simulation,
there is no requirement to use these names. Program mk script can generate names for files according to
user-defined rules, that use the simulation time or a simulation sequence number. The rules to define these
files are given in a mk script template file. Some additional string constants to be used in the scripts can
also be defined in the template file. The following types are recognized:

script A rule to define the scriptname

qinput A rule to define the name of a MD++ input file

output A rule to define the name of a MD++ output file

coord A rule to define the name of a single structure coordinate file

pttopo A rule to define the name of a perturbation topology

refpos A rule to define the name of a reference position coordinate file

posresspec A rule to define the name of a position restraints specification file

disres A rule to define the name of an atom-atom distance restraint file

dihres A rule to define the name of a dihedral angle restraining file

jvalue A rule to define the name of a 3J-value restraints specification file

ledih A rule to define the name of a local-elevation specification file

outtrx A rule to define the name of a molecular coordinate trajectory file

outtrv A rule to define the name of a molecular velocity trajectory file

outtre A rule to define the name of an energy trajectory file

outbae A rule to define the name of a block-averaged energy trajectory file

outtrg A rule to define the name of a free energy trajectory file

outbag A rule to define the name of a block-averaged free energy trajectory file

workdir A rule to define a directory where the simulation can be run locally

mpicommand A rule to define the command used to run in an MPI parallel environment

firstcommand A rule to define an initial command that needs to be performed before the call to
MD++

lastcommand A rule to define a final command that is to be called when the simulation script finishes

The variables to store the rules are as follows:

FILETYPE The type of a file for which the rule will be specified.

4-77

FILENAME The rule to form the corresponding file name

MISCTYPE The type of another stringconstant that needs to be formed based on the simulation
time or sequence number

MISCNAME The rule to form the corresponding stringconstant

The template file is built up with the following blocks (apart from the title block):

Filename specification block
Blockname: FILENAMES

DO 10 N=1, NSPEC

10 WRITE (unit,11) FILETYPE, FILENAME

11 FORMAT (A20, A60)

Miscellaneous specification block
Blockname: MISCELLANEOUS

DO 10 N=1, NSPEC

10 WRITE (unit,11) MISCTYPE, MISCNAME

An example of a template file is mkscript.lib.

Program mk script can not only write a single script with the appropriate naming conventions for the
files that are involved, but it can also generate a consistent set of simulations that perform a specific task.
This is done by specifying a joblist in which specific variable of the input file can be given different values
from simulation script to simulation script.

A joblist is specified by the following variables:

NVAR The number of variables that are to be modified between scripts

NSCRIPTS The number of scripts and input files that will be written

VARID[1..NVAR+3] An identifying string for every variable. The value of VARID[1] is required to be
“job id”, the value of VARID[NVAR+2] to be “subdir” and the value of VARID[NVAR+3]
to be “run after”.

VARVAL[1..NVAR+3,1..NSCRIPTS]

The value of the specified variables in the input files that are to be generated.
VARVAL[1,1..NSCRIPTS] contains the job-sequence number by which the scripts
can be identified. VARVAL[NVAL+2,1..NSCRIPTS] contains a string constant that
refers to the subdirectory where the simulations will be run and VARVAL[NVAL+3,
1..NSCRIPTS] specifies which script-id should end with a call (or submission) of this
script (defined through variable lastcommand in the template file).

Joblist specification file
Blockname: JOBSCRIPTS

WRITE (unit, 11)(VARID[N], N=1, NVAR)

DO 10 M=1, NSCRIPTS

10 WRITE (unit, 11)VARVAL[M,N], N=1, NVAR)

11 FORMAT (20A10)

4-78

Examples for joblist specification files are joblist.startup and joblist.perturbation.

7.5. Energy trajectory block definition

Energy and free energy data is written at a user specified interval to (free) energy trajectory files. MD++

can also write block averaged trajectory files. Program ene ana can be used to extract time series of prop-
erties derived from variables stored in these trajectory files (see Sec. 5-4.21). ene ana has been written such
that is can read any block-based trajectory file. The block format is specified in a library file that can be
modified by the user. In addition, this library file contains definitions to calculate properties from the values
that are stored in the trajectory files.

The format of the library file depends on the format of the free energy trajectory it is defining. It contains
three blocks, ENERTRJ, FRENERTRJ and VARIABLES. The blocks ENERTRJ and FRENERTRJ define
the format of the energy trajectory and the free energy trajectory respectively. Every line in this block
contains one entry, with a first keyword specifying what kind of entry this is. The following keywords are
recognized:

block followed by a block name. For every configuration that is written to the trajectory
file, program ene ana will try to read these blocks. The entries in the library file that
follow on subsequent lines specify the expected format of the block.

size followed by a variable name. This entry tells ene ana that it should read an integer
number and store this in the specified name. This number can subsequently be used
in the definition of arraysizes

subblock followed by a variable name and two dimensions. This entry tells ene ana to read
a block of data of the specified dimensions and store the data under the specified
name. The dimensions can be either specified by an integer number, by a previously
defined size-variable or by such a variable preceded by the word “matrix ”. For ex-
ample, if the size-variable NEGR was defined previously, the dimension specification
“matrix NEGR” will expand to the value NEGR*(NEGR+1)/2.

In the VARIABLES block properties can be specified based on the data that was read in from the trajec-
tory files. A new property is defined if the second word on a line consists of the character ‘=’. All string
constants read in until the next definition of a property will considered to be part of the same definition. The
raw data read in from the energy trajectory files are referred to by the name of the subblocks followed by
rectangular brackets to indicate the individual elements of the arrays. If the second dimension of a subblock
is one, the second set of brackets may be omitted. Properties can be defined using subblock names, the
characters +, -, *, /, (,) and any properties that were previously defined.

An examples of an energy trajectory specification file is ene ana.md++.lib

7.6. Hydrogen-bond donors and acceptors

Program hbond monitors the presence of hydrogen bonds throughout a simulation (see Sec. 5-4.32). The
explicit hydrogen atoms and H-bond acceptor atoms to be monitored can be specified individually, or can be
obtained by applying a mass-filter on a larger set of specified atoms. The definition of a mass representing a
hydrogen atom and possibly H-bond acceptors is done through a massfile, which is defined by the following
variables

NHMASS Number of masses that represent hydrogen atoms

HMASS[1..NHMASS] Mass representative for hydrogen atoms

4-79

NACCMASS Number of masses that represent H-bond acceptor atoms

ACCMASS[1..NACCMASS]

Mass representative for H-bond acceptor atoms

This information is stored in the following blocks

Hydrogenmass block
Blockname: HYDROGENMASS

DO 10 N=1, NHMASS

10 WRITE (unit,11) HMASS[N]

11 FORMAT (F15.7)

Acceptormass block
Blockname: ACCEPTORMASS

DO 10 N=1, NACCMASS

10 WRITE (unit,11) ACCMASS[N]

An example of a massfile is hbond.massfile.

7.7. Crystallographic transformations

Program cry can construct crystallographic unit cells by applying the appropriate symmetry transfor-
mations on a given molecular structure (see Sec. 5-2.8). The symmetry transformations are specified by a
rotation matrix, M, and a translation vector, V in a specification file. The following variables are required

NSOP Number of symmetry transformations that are defined

M[1..3,1..3,1..NSOP]

Rotation matrix M for every transformation

V[1..3, 1..NSOP] Translation vector V for every transformation

These variables are stored in the following block:

Symmetry transformation block
Blockname: TRANSFORM

WRITE (unit,20) NSOP

DO 10 I=1, NSOP

10 DO 11 J=1,3

11 WRITE (unit,21) M[1,J,I], M[2,J,I], M[3,J,I], V[J,I]

20 FORMAT (I5)

21 FORMAT (3F11.5,4X,F11.5)

An example of a transformation file is cry.spec.

4-80

7.8. NOE analysis

The programs prep noe (Sec. 5-4.45), noe (Sec. 5-4.41) and post noe (Sec. 5-4.42) analyse a trajectory
for atom-atom distances and compare to experimentally determined upper-bounds to such distances. The
NOE’s are specified using virtual and pseudo-atoms as described in section Sec. 3.4. Program prep noe can
generate this NOE specification file from a list of proton-proton distances and a library file. Corrections to
the experimentally determined upper-bounds for pseudo-atoms and multiplicities are defined in a correction
file.

The proton-proton distances can be specified using a XPLOR like NOE specification file, which can be
easily generated from e.g. an XPLOR-format. This format usually uses three distances, from which the
upper- and lower-bounds for the atom-atom distances can be calculated. It uses the following variables:

NNOE Number of NOE distances specified

SEQN Sequential NOE number starting from 1 to NNOE

RESI[1..NNOE] Residue number of atom I of the NOE distance

NAMEI[1..NNOE] Atom name of atom I of the NOE distance

RESJ[1..NNOE] Residue number of atom J of the NOE distance

NAMEJ[1..NNOE] Atom name of atom J of the NOE distance

ANOE[1..NNOE] XPLOR distance 1

BNOE[1..NNOE] XPLOR distance 2

CNOE[1..NNOE] XPLOR distance 3

NUMAMB[1..NNOE] Number of ambiguous NOEs to which this NOE is linked

AMBNOE[1..NOE,1..NUMAMB]

SEQN of NOEs to which this NOE is linked

XPLOR like NOE specification block
Blockname: NOESPEC

DO 10 N=1, NNOE

10 WRITE (unit,11) SEQN[N], RESI[N], NAMEI[N], RESJ[N], NAMEJ[N],

ANOE[N], BNOE[N], CNOE[N], SEQN[N], NUMAMB[N],

AMBNOE[N,1], AMBNOE[N,2], ...

11 FORMAT (2I5,A5,I5,A5,3F8.3,I4,I4,10I4)

An example of a XPLOR like NOE specification file can be found in examples/prep.noe.

For unambiguous NOEs, only the first eight columns of this file are to be specified. For ambiguous re-
straints, the 9th column repeats the number of the NOE (first column), the 10th column contains the number
of NOEs this NOE may be linked to and the remaining columns lists the numbers of the NOEs to which it
is linked.

An NOE library file determines what type of virtual or pseudo-atom needs to be used to represent the
proton-proton distances. The NOE library is defined by the following variables:

NNLIB Number of entries in the library file

RSNM[1..NNLIB] Residue name of for the atom

4-81

PNMIU[1..NNLIB] IUPAC name of the proton (replace * with @)

CANM[1..NNLIB] Name of the central atom of a virtual or pseudo atom description.

PATP[1..NNLIB] Explicit, virtual or pseudo-atom type as described in section Sec. 3.4.

NOE library block
Blockname: NOELIB

DO 10 N=1, NNLIB

10 WRITE (unit,11) RSNM[N], PNMIU[N], CANM[N], PATP[N]

11 FORMAT (3A6,I5)

Examples of NOE library files are noelib.45a3 and noelib.53a6.

Virtual and pseudo atoms may require corrections to the upper bounds due to the position of the atom or
the multiplicity of the signal. Program prep noe can either add or remove such correction from a given set
of distances. The corrections are defined in a NOE correction file, which contains the following variables:

NPAC Number of pseudo-atom corrections in the file

NSPAC NOE suptype to which the pseudo-atom correction applies (set to 0 if no subtype
defined)

NTPAC[1..NPAC] NOE type to which the pseudo-atom correction applies

FTPAC[1..NPAC] Distance of the pseudo-atom correction

NMPC Number of multiplicity corrections in the file

NTMPC[1..NPAC] NOE type to which the multiplicity correction applies

FTMPC[1..NPAC] Factor for the multiplicity correction

This information is written in the following blocks:

Pseudo atom correction block
Blockname: NOECORGROMOS

DO 10 N=1, NPAC

10 WRITE (unit, 11)NTPAC[N], NSPAC[N], FTPAC[N]

11 FORMAT (I5, F15.8)

Multiplicity correction block
Blockname: MULTIPLICITY

DO 10 N=1, NMPC

10 WRITE (unit,11) NTMPC[N], NSPAC[N], FTMPC[N]

Examples of NOE correction files are called noecor.*.

The program prep noe generates the NOE specification file which can be used as input for programs noe
and post noe. A NOE distance in the NOE specification file is characterised by the following quantities:

DISH carbon-hydrogen distance

4-82

DISC carbon-carbon distance

NNOE Number of NOE distances specified

IDR1, JDR1, KDR1, LDR1 [1..NNOE]

atom sequence numbers of the real atoms defining the geometric position of the first
atom of a NOE distance pair

ICDR1 [1..NNOE] geometric code defining the position of the first atom of a distance restraint pair [-2,
-1, ..., 7] (see Sec. 3.4)

VACS1 [1..NNOE] subtype of first virtual atom. Possible subtypes are:
0: no subtype defined (for ICDR1 = -2, 0-7)
1: aromatic flipping ring (for ICDR1 = -1)
2: non-stereospecific NH2 group (for ICDR1 = -1)

IDR2, JDR2, KDR2, LDR2 [1..NNOE]

atom sequence numbers of the real atoms defining the geometric position of the sec-
ond atom of a NOE distance pair

ICDR2 [1..NNOE] geometric code defining the position of the second atom of a distance restraint pair
[-2, -1, ..., 7] (see Sec. 3.4)

VACS2 [1..NNOE] subtype of second virtual atom. Possible subtypes are:
0: no subtype defined (for ICDR2 = -2, 0-7)
1: aromatic flipping ring (for ICDR2 = -1)
2: non-stereospecific NH2 group (for ICDR2 = -1)

R0 [1..NNOE] corrected upper bound for NOE distance.

NOE specification block
Blockname: NOECALCSPEC

WRITE (unit,11) DISH, DISC

DO 10 N=1, NNOE

10 WRITE (unit,12) IDR1[N], JDR1[N], KDR1[N], LDR1[N], ICDR1[N], VACS1[N],

IDR2[N], JDR2[N], KDR2[N], LDR2[N], ICDR2[N], VACS2[N],

R0[N]

11 FORMAT (2F10.5)

12 FORMAT (12I5,1F10.5)

7.9. SASA implicit solvent model

Program make sasa top adds the atom-specific information required to use the SASA implicit solvent
model to the molecular topology file (see Sec. 5-2.16. It reads in an existing molecular topology file created
using make top, along with a SASA specification library file, which contains the atom-specific SASA pa-
rameters. The specification library file must be for the same force field as was used to create the molecular
topology file. The inclusion of hydrogen atoms in the calculation of the SASA during the simulation can
also be specified. The following variables are known

4-83

NRSASAT Number of atom types with a unique set of SASA parameters (not given in file).

RADI[1..NRSASAT] Atomic radius for each SASA atom type.

PI[1..NRSASAT] Atom type-specific parameter for reduction in SASA.

SIGMAI[1..NRSASAT] Scaling parameter for SASA energy term (kJ·mol−1·nm−2)

NRIACI[1..NRSASAT] Number of integer atomic codes corresponding to this SASA atom type.

IAC[1..NRSASAT,1..NRIACI]

Integer atomic code for each atom corresponding to this SASA atom type.

These variables are stored in the following block of the library file:

SASA parameter specification block
Blockname: SASASPEC

DO 10 I=1, NSASAT

10 WRITE (unit,20) RADI[I], PI[I], SIGMAI[I], NRIACI[I], (IAC[I,J], J=1, NRIACI)

20 FORMAT (F5.3,3X,F5.3,4X,5I,3X,2I,3X,5I3)

The 5I3 in format statement 20 is for NIAC ≤ 5; this should be altered if NIAC > 5. Examples of a SASA
specification library file can be found in data/sasa45b3.spec and data/sasa53a6.spec. The values of RADI
and PI in these files were optimised by Hasel et al.1 for RSOLV = 0.14 nm. They should not be changed
without justification. Different values of SIGMAI are required if the SASA implicit solvent model is used
alone (see2) or with the VOLUME correction (see3). The IAC values will depend on the force field that is
used. They are listed in Vol. 3.

7.10. DISICL angle, region and segment definitions

Program disicl classifies protein and nucleic acid secondary structure based on dihedral angles (see
Sec. 5-4.11.4,5 Angle, region and segment definitions are read in from a user-specified library file.

The library file is defined by the following variables:

DIHNAME Name of the dihedral to define.

ATOM[1..4] Atom names defining a dihedral angle, either simply by the name or by an expression
in the following format: D;RES1,RES2:B;RES3:C , where RES1..3 are residue names
for which atom B, B and C, respectively will be used, whereas atom D is the default
which will be used for all other residues. The most common case will be different
atoms for purines and pyrimidines in nucleic acids, e.g. N1;GUA,ADE:N9.

SHIFT[1..4] Relative residue number for each atom.

REGNAME The name of a DISICL region.

REGMIN[1..NDIH] The lower limit of the region.

REGMAX[1..NDIH] The upper limit of the region.

4-84

CLASSNAME The name of a DISICL segment.

SEGDEF1 The region the current residue has to fall into.

SEGDEF2 The region the following residue has to fall into.

CLASSSHORT Shortname of the class.

Apart from the title block, the disicl library file contains the following blocks:

Dihedral angle definition block
Blockname: DSCLANG

DO 10 N=1, NDIH

10 WRITE (unit,11) DIHNAME, (ATOM[N], N=1, 4), (SHIFT[N], N=1, 4)

11 FORMAT (A6, 4A4, 4I4)

Region definition block
Blockname: DSCLREG

DO 10 N=1, NREG

10 WRITE (unit,11) REGNAME ((REGMIN[M], REGMAX[M]), M=1, NDIH)

11 FORMAT (A8, 16F3.1)

Class definition block
Blockname: DSCLCLASS

DO 10 N=1, NSEG

10 WRITE (unit,11) CLASSNAME, SEGDEF1, SEGDEF2, CLASSSHORT

11 FORMAT (A20, 2A8, A6)

An example of this library file is DISICL prot detailed.lib.

4-85

CHAPTER 8

Input file for MD++

The data structure of the input file (input flag @input for MD++) is as follows:

MD++ QUICK REFERENCE SHEET

- Blocks can appear in any order
- Compulsory blocks are marked by a star
- When an optional block is not given all switches will be set to their ”DEFAULT” value.
- Linebreaks in the variable list should match linebreaks in the input file
- Error checking is performed in three phases:
- Phase I: unknown, duplicate or missing compulsory blocks, switches defining array lengths
- Phase II: incorrect switch values or variable ranges within the blocks
- Phase III: incompatible switches within and among the blocks
- EM, MD, SD, or RT denote the energy minimisation, molecular dynamics, stochastic dynamics and
trajectory reading modes of the program

- NRP(> 0): number of atoms of the solute
- NRAM(> 0): number of atoms per solvent molecule
- NATTOT=NRP+NSM*NRAM: total number of atoms in the system

TITLE page
TITLE∗ 4-88
MOLECULAR SYSTEM

SYSTEM∗ 4-105
METHOD EMPLOYED

(default is to do an MD run, when none of the first four blocks below are present or
when the corresponding first switch is set to zero)
ENERGYMIN 4-93
STOCHDYN 4-104
READTRAJ 4-103
REPLICA 4-103
STEP∗ 4-104
SPATIAL BOUNDARY CONDITIONS

BOUNDCOND∗ 4-89
MULTICELL 4-97
THERMODYNAMIC BOUNDARY CONDITIONS

MULTIBATH 4-96
PRESSURESCALE 4-101
MULTIGRADIENT 4-97
INTERACTION EVALUATION

FORCE∗ 4-93
COVALENTFORM 4-90
CONSTRAINT∗ 4-90
POLARISE 4-101
INTEGRATE 4-95
CGRAIN 4-89
ROTTRANS 4-103
INNERLOOP 4-95
MULTISTEP 4-98

4-87

PAIRLIST∗ 4-99
NONBONDED∗ 4-98
INTIALISATION OF THE RUN

INITIALISE 4-94
RANDOMNUMBERS 4-102
CENTRE-OF-MASS MOTION

COMTRANSROT 4-89
SPECIAL FORCES

POSITIONRES 4-101
DISTANCERES 4-91
DIHEDRALRES 4-91
JVALUERES 4-95
ORDERPARAMRES 4-99
DISTANCEFIELD 4-91
QMMM 4-102
LOCALELEV 4-96
PERSCALE 4-100
ELECTRIC 4-92
SASA 4-104
FREE-ENERGY CALCULATION

PERTURBATION 4-100
LAMBDAS 4-96
PRECALCLAM 4-101
EDS 4-92
AEDS 4-88
INPUT-OUTPUT

PRINTOUT 4-102
WRITETRAJ 4-105
EWARN 4-93

TITLE∗

text

• Arbitray text that can be used to identify the simulation.

AEDS

AEDS
ALPHLJ,ALPHC,FORM,NUMSTATES
EMAX,EMIN
EIR(1..NUMSTATES)
NTIAEDSS,RESTREMIN,BMAXTYPE,BMAX,ASTEPS,BSTEPS

AEDS 0,1 controls accelerated enveloping distribution sampling (A-EDS)
0: no accelerated enveloping distribution sampling (EDS) [DEFAULT]
1: accelerated enveloping distribution sampling

ALPHLJ ≥ 0.0 Lennard-Jones soft-core parameter
ALPHC ≥ 0.0 Coulomb soft-core parameter
FORM 1..4 defines type of A-EDS simulation

1: A-EDS with fixed parameters
2: fixed Emax and Emin parameters, search for offset parameters
3: search for Emax and Emin parameters, fixed offset parameters
4: search for Emax, Emin and offset parameters

NUMSTATES ≥ 2 number of (end)states
EMAX A-EDS parameter Emax
EMIN A-EDS parameter Emin
EIR energy offsets for states

4-88

NTIAEDSS 0..1 controls startup of the A-EDS parameter search
0: read A-EDS parameter search configuration from input configuration
1: initialize A-EDS parameter search

RESTREMIN 0..1 controls restriction of parameter Emin during parameter search
0: do not restrict Emin ≥ minimum average end-state energy
1: restrict Emin ≥ minimum average end-state energy before all states have been visited at least once

BMAXTYPE 1..2 controls type of given anticipated maximum energy barrier between the states
1: absolute maximum energy barrier between the states in energy units
2: multiples of the standard deviation of the energy of the end-state with the lowest average energy

BMAX maximum energy barrier parameter
ASTEPS have-life in simulation steps of the exponential averaged energy difference between the end-states

at the begining of the run
BSTEPS have-life in simulation steps of the exponential averaged energy difference between the end-states

at the end of the run

• The parameter Emax must be ≥ Emin
• NBATHS= 0 results in an error, in addition all baths must have the same temperature TEMP0
• A-EDS cannot be applied with replica exchange
• A-EDS cannot be applied to solvent atoms

BOUNDCOND∗

NTB,NDFMIN

NTB -1..2 controls type of boundary conditions
-1: truncated-octahedral periodic boundary conditions
0: vacuum boundary conditions
1: rectangular periodic boundary conditions
2: triclinic periodic boundary conditions

NDFMIN ≥ 0 number of degrees of freedom subtracted for temperature

• NTM6= 0 requires NTB= 1,2
• pressure coupling requires NTB 6= 0
• (semi-)anisotropic pressure coupling (SCALE=2,4) requires NTB=1 or 2
• full anisotropic pressure coupling (SCALE=3) requires NTB=2
• abs(NLRELE)> 1 requires NTB 6= 0,−1
• NTISHI=0 requires NTB 6=0
• NTRD6= 0 and NTRB 6= 0 require NTB 6= 0
• Initial box parameters (GENBOX) are read from @conf

CGRAIN

NTCGRAN,EPS,EPSM

NTCGRAN = 0..3 Coarse grain selection
0: No coarse graining [DEFAULT]
1: Coarse grain simulation using the MARTINI model
2: Coarse grain simulation using the GROMOS model
3: Mixed-grain simulation using the GROMOS model

EPS ≥ 0.0 Dielectric constant for coarse grained - coarse grained coulombic interactions
EPSM ≥ 0.0 Dielectric constant for coarse grained - fine grained coulombic interactions

COMTRANSROT

NSCM

NSCM controls system center-of-mass (com) motion removal
0: no com motion removal [DEFAULT]

< 0: com translation and rotation are removed every abs(NSCM) steps
> 0: com translation is removed every NSCM steps

4-89

• NSCM6=0 should not be used with roto-translational constraints (RTC=1)

CONSTRAINT∗

NTC
NTCP,NTCP0(1),[NTCP0(2),NTCP0(3)]
NTCS,[NTCS0(1),NTCS0(2),NTCS0(3)]

NTC 0,1,2,3,4 controls application of constraints to bonds
1: constraints are applied to solvent only
2: constraints are applied to solvent and solute bonds involving hydrogen

atoms and to bonds specified in the topology CONSTRAINT block
3: constraints are applied to solvent and solute bonds
4: constraints are applied to bonds specified in the CONSTRAINT block

in the topology and to solvent
NTCP shake, lincs, flexshake controls algorithms to apply solute constraints

shake(1) apply shake for solute
lincs(2) apply lincs for solute

flexshake(3) apply flexible shake for solute
NTCP0(1) > 0 option parameters for constraint algorithm Shake: Tolerance,

Lincs: Order
NTCP0(2..3) ≥ 0 option parameters for flexible shake algorithm: readin, mode

[only supply when flexible shake is selected]
NTCS shake, lincs, flexshake, settle, m shake, gpu shake controls algorithm to apply solvent

constraints
shake(1) apply shake for solvent
lincs(2) apply lincs for solvent

flexshake(3) apply flexible shake for solvent
settle(4) apply settle for solvent

m shake(5) apply m shake for solvent
gpu shake(6) apply m shake for solvent using GPU
NTCS0(1) ≥ 0 option parameter for constraint algorithm: (flexible) Shake or M-Shake:

Tolerance; Lincs: order; Settle: do not specify
NTCS0 (2..3)≥ 0 option parameters for flexible shake algorithm: readin, mode

[only supply when flexible shake is selected]
NTCG ≥ 0 number of GPUs

[only supply when GPU shake is selected]
NTCD ≥ −1 device number of the GPU; if -1 given driver will determine

[only supply when GPU shake is selected]

COVALENTFORM

NTBBH,NTBAH,NTBDN

NTBBH 0,1 controls bond-stretching potential energy function
0: quartic potential energy function [DEFAULT]
1: harmonic potential energy function

NTBAH 0,1 controls bond-angle bending potential energy function
0: cosine-harmonic potential energy function [DEFAULT]
1: harmonic potential energy function

NTBDN 0,1 controls torsional dihedral potential energy function
0: arbitrary phase shifts [DEFAULT]
1: phase shifts limited to 0 and 180 degrees

• A topology containing bond types only in the form of a BONDANGLETYPE block and no BONDAN-
GLEBENDTYPE block requires NTBAH= 0, the HARMBONDANGLETYPE block requires NTBAH=
1.

4-90

• A topology containing a DIHEDRALTYPE and no TORSDIHEDRALTYPE block requires NTBDN=1
• NTBDN=1 along with the presence of a topology block TORSDIHEDRALTYPE requires that all phase
shifts are 0 or 180 degrees in this block

DIHEDRALRES

NTDLR,CDLR,PHILIN

NTDLR 0...3 controls dihedral-angle restraining or constraining
0: no dihedral restraining [DEFAULT]
1: dihedral restraining using CDLR (WDLR ignored)
2: dihedral restraining using CDLR×WDLR
3: dihedral constraining

CDLR ≥0.0 force constant for dihedral restraining (multiplied by WDLR)
PHILIN 0...180 absolute deviation (degrees) after which the potential energy function is linearised.

If zero no linearisation performed.

• Dihedral restraints and weights WDLR in DIHEDRALRESSPEC and PERTDIHRESSPEC block read
from @dihrest

DISTANCEFIELD

NTDFR,GRID,PROTEINOFFSET,PROTEINCUTOFF,PROTECT,UPDATE,SMOOTH,RL,NTWDF, PRINT-
GRID

NTDFR 0,1 controls distance-field restraining
0: no distance-field restraining [DEFAULT]
1: apply distance-field restraining

GRID > 0.0 grid size for distance-field
PROTEINOFFSET > 0.0 penalty for distances through the host
PROTEINCUTOFF > 0.0 distance to host atoms to be considered inside
PROTECT ≥ 0 protect grid points within this radius around the zero-distance

point from being flagged as protein
UPDATE > 0 update frequency for grid
RL ≥ 0.0 potential energy function for distances larger than RL
SMOOTH ≥ 0 smoothen the host boundary after grid construction by SMOOTH layers
NTWDF ≥ 0 write distance-field information to special trajectory every NTWDF steps
PRINTGRID 0,1 write grid to final configuration file

• Distance-field specification read from distance restraints specification file (@distrest)
• To use distance-field coordinate in local elevation, turn off the restraining potential energy function
(NTDFR = 0)

• Distance-field restraints require NTB=1.

DISTANCERES

NTDIR,NTDIRA,CDIR,DIR0,TAUDIR,FORCESCALE,VDIR,NTWDIR

NTDIR -2..3 controls distance restraining
-2: time-averaged restraining using force constant CDIR×W0
-1: time-averaged restraining using force constant CDIR (W0 ignored)
0: no distance restraining [DEFAULT]
1: instantaneous restraining using force constant CDIR (W0 ignored)
2: instantaneous restraining using force constant CDIR×W0

NTDIRA 0,1 controls values of initial distance averages
0: zero initial averages [DEFAULT]
1: read current averages from startup file

CDIR ≥ 0.0 force constant for distance restraining

4-91

DIR0 ≥ 0.0 distance offset in restraining function
TAUDIR > 0.0 coupling time for time averaging
FORCESCALE 0..2 controls approximation of force scaling

0: approximate d〈r〉/dr = 1
1: approximate d〈r〉/dr = (1.0− exp(−∆t/τ))
2: use d〈r〉/dr = (1.0− exp(−∆t/τ)) ∗ (〈r〉/r)4

VDIR 0,1 controls contribution to virial
0: no contribution
1: distance restraints contribute to virial

NTWDIR ≥ 0 write every NTWDIRth step distance restraining information to external file

• NTDIRA= 1 requires NTDIR≤ 0
• List of distance restraints and weights W0 (DISTANCERESSPEC) read from @distrest (24)
• Average distances (DISRESEXPAVE) read from @conf if NTDIRA= 1
• NTWDIR> 0 requires the specification of a special trajectory file with @trs

EDS

EDS,ALPHLJ,ALPHC,FORM,NUMSTATES,S,EIR

EDS 0,1 controls enveloping distribution sampling
0: no enveloping distribution sampling (EDS) [DEFAULT]
1: enveloping distribution sampling

ALPHLJ ≥ 0.0 Lennard-Jones soft-core parameter
ALPHC ≥ 0.0 Coulomb soft-core parameter
FORM 1..3 defines functional form of the Hamiltonian

1: Single s Hamiltonian
2: Hamiltonian with NUMSTATES*(NUMSTATES-1)/2 (pairwise) s parameters
3: Hamiltonian with (NUMSTATES-1) s parameters

NUMSTATES ≥ 2 number of (end)states
S > 0.0 smoothness parameter(s) (number according to functional form)
EIR ≥ 0.0 energy offsets for states

• FORM=3 requires the specification of a tree: ”S” becomes ”i j S”, where i and j are the pair of states for
which the S is applied

• NBATHS= 0 results in an error, in addition all baths must have the same temperature TEMP0
• EDS cannot be applied with replica exchange
• EDS cannot be applied to solvent atoms

ELECTRIC

FIELD,DIPOLE,CURRENT
EF x,EF y,EF z
DIPGRP,NTWDIP
NTWCUR,NCURGRP,CURGRP(1..NCURGRP)

FIELD 0..1 controls the use of applied electric field
0: not used [DEFAULT]
1: electric field is applied

DIPOLE 0..1 controls the calculation of the box dipole
0: not used [DEFAULT]
1: box dipole is calculated and written to special trajectory

CURRENT 0..1 controls the calculation of electric (ionic) currents
0: not used [DEFAULT]
1: electric (ionic) current is calculated and written to special trajectory

EF x double x-component of the electric-field vector
EF y double y-component of the electric-field vector
EF z double z-component of the electric-field vector
DIPGRP 0..2 define the groups for which the box dipole is calculated

4-92

0: solute only
1: solvent only
2: all

NTWDIP ≥ 0 write box dipole to special trajectory every NTWDIPth step
NTWCUR ≥ 0 write box currents to special trajectory every NTWCURth step
NCURGRP≥ 0 number of current groups
CURGRP(1..NCURGRP) ≥ 0 last atom of each current group

ENERGYMIN

NTEM,NCYC,DELE,DX0,DXM
NMIN,FLIM,CGIC,CGIM

NTEM 0..3 controls energy minimisation mode
0: do not do energy minimisation [DEFAULT]
1: use steepest-descent minimisation
2: use Fletcher-Reeves conjugate gradient minimisation
3: use Polak-Ribiere conjugate gradient minimisation

NCYC > 0 number of steps before resetting the conjugate-gradient search direction
= 0 reset only if the energy grows in the search direction

DELE > 0.0 energy threshold for convergence
> 0.0 (conjugate-gradient) RMS force threshold for convergence

DX0 > 0.0 initial step size
DXM > 0.0 maximum step size
NMIN > 0 minimum number of minimisation steps
FLIM ≥ 0.0 limit force to maximum value
CGIM > 0 (conjugate-gradient only) maximum number of cubic interpolations per step
CGIC > 0.0 (conjugate-gradient only) RMSD threshold after interpolation

• DX0 ≤ DXM
• NTSD 6= 0 requires NTEM= 0
• NTRD 6= 0 requires NTEM= 0
• pressure or temperature coupling is not allowed with NTEM = 0
• NSCM 6= 0 (center-of-mass motion removal) requires NTEM = 0

EWARN

MAXENER

MAXENER Issues a warning if the total energy is larger than this value

FORCE∗

NTF(1..6)
NEGR
NRE(1..NEGR)

NTF(1..6) 0,1 determines terms used in force calculation
NTF(I)= 0 do not include terms of type I
NTF(I)= 1 include terms of type I
NTF (1) bonds
NTF (2) bond angles
NTF (3) improper dihedrals
NTF (4) dihedrals
NTF (5) nonbonded electrostatic interactions
NTF (6) nonbonded van der Waals interactions
NEGR ≥0 number of energy groups

0: no energy groups

4-93

> 0: number of energy groups
NRE(1..NEGR) ≥1 last atom in each energy group

• If NEGR= 0, the specification of NRE(1..NEGR) is omitted
• NTF(5)=NTF(6)= 0 suppresses non-bonded interactions but does not affect the pairlist making
• NEGR6= 0 requires NRE values in ascending order and NRE(NEGR) = NATTOT

INITIALISE

NTIVEL,NTISHK,NTINHT, NTINHB
NTISHI,NTIRTC,NTICOM
NTISTI
IG,TEMPI

NTIVEL 0,1 controls generation of initial velocities
0: read from startup file (if applicable) [DEFAULT]
1: generate from Maxwell distribution at temperature TEMPI

NTISHK 0..3 controls shaking of initial configuration
0: no initial SHAKE [DEFAULT]
1: initial SHAKE on coordinates only
2: initial SHAKE on velocities only (not allowed)
3: initial SHAKE on coordinates and velocities

NTINHT 0,1 controls generation of initial Nosé-Hoover (chain) thermostat
variables

0: read from startup file (if applicable) [DEFAULT]
1: initialise variables to zero

NTINHB 0,1 controls generation of initial Nosé-Hoover (chain) barostat
variables

0: read from startup file (if applicable) [DEFAULT]
1: reset variables to zero

NTISHI 0,1 controls initial setting of atomic shift vectors across infinite
periodic system

0: read from startup file (if applicable) [DEFAULT]
1: reset shift vectors to zero

NTIRTC 0,1 controls initial setting of positions and orientations for roto-
translational constraints

0: read from startup file (if applicable) [DEFAULT]
1: reset positions and orientations based on the initial configuration of

startup file
NTICOM 0..2 controls initial removal of com motion

0: no initial system com motion removal [DEFAULT]
1: initial com translation is removed
2: initial com translation is removed and initial com rotation is set to con-

straint value
NTISTI 0,1 controls generation of stochastic integrals

0: read stochastic integrals and IG from startup file (if applicable) [DEFAULT]
1: set stochastic integrals to zero and use IG from INITIALISE input block

IG > 0 random number generator seed
TEMPI ≥ 0.0 initial temperature

• NTRD6= 0 requires NTIVEL= 0 and NTISHK= 0, 1
• NTBTYP 6= 3 requires NTINHT= 0
• NTB= 0 requires NTISHI 6=0
• NTSD= 0 requires NTISTI= 0
• initial coordinates (POSITION or POSITIONRED) read from @conf
• initial velocities (VELOCITY or VELOCITYRED) read from @conf if NTEM= 0 and NTIVEL= 0
• initial Nosé-Hoover chain thermostat variables (NHCVARIABLES) read from @conf if NTBTYP = 2 and
NTINHT= 0

4-94

• initial shift vectors (LATTICESHIFTS) read from @conf if NTB 6= 0 and NTISHI= 0
• initial positions and orientations (ROTTRANSREFPOS) read from @conf if RTC=1 and NTIRTC= 0
• stochastic integrals and seed (STOCHINT) read from @conf if NTSD6= 0 and NTISTI= 0
• If NTIVEL= 0 and NTISTI= 0, IG is irrelevant
• If NTIVEL= 0, TEMPI is irrelevant
• NTIVEL 6= 0 results in a warning if VELOCITY block is found in @conf
• NTISTI 6= 0 results in a warning if STOCHINT block is found in @conf
• NTIRTC 6= 0 results in a warning if ROTTRANSREF block is found in @conf

INNERLOOP

NTILM 0..4, acceleration method used
0: use standard solvent loops [DEFAULT]
1: use fast generic solvent loops
2: use solvent loops with hardcoded parameters
3: use solvent loops with tabulated forces and energies
4: use solvent loops with CUDA library

NTILS 0..1, solvent used
0: use topology [DEFAULT]
1: use SPC

NGPUS number of GPUs to use
NDEVG which GPU device number to use; if not given driver will determine

INTEGRATE

NINT

NINT = 0, 1 selects integration method
0: No integration takes place
1: Leap-frog integration scheme is used [DEFAULT]

JVALUERES

NTJVR,NTJVRA,CJVR,TAUJVR,NJVRTARS,
NJVRBIQW,LE,NGRID,DELTA,NTWJV

NTJVR -3...2
-3: biquadratic using CJVR×WJVR
-2: time-averaged using CJVR×WJVR
-1: time-averaged using CJVR (WJVR ignored)
0: no 3J-value restraining [DEFAULT]
1: instantaneous using CJVR (WJVR ignored)
2: instantaneous using CJVR×WJVR

NTJVRA 0,1 controls reading of averages from startup file
0: start from initial values of J0 [DEFAULT]
1: read time-averages from startup file (for continuation of time-averaged run)

CJVR ≥0 3J-value restraining force constant (weighted by individual WJVR)
TAUJVR >0 coupling time for time-averaging
NJVRTARS 0,1 controls scaling of force in time-averaging

0: omit factor [1− exp(∆t/τJr)], i.e. set it to one
1: scale force by [1− exp(∆t/τJr)]

NJVRBIQW 0...2 controls weighting of contributions for biquadratic restraining
0: equal weights of f tavi and f insti

1: multiply f tavi with [1− exp(∆t/τJr)]
2: multiply f tavi with zero

LE 0,1 local-elevation restraining [md++ only]

4-95

0: local-elevation off [DEFAULT]
1: local-elevation on

NGRID >1 number of grid points in local-elevation restraining
DELTA ≥0.0 no elevation of potential if J is within DELTA of J0
NTWJV ≥0 write 3J-value averages and LE grid to special trajectory

=0: do not write [DEFAULT]
>0: write every NTWJV-th step

• NTJVRA6= 0 requires NTJVR< 0
• NTJVRA= 0 and NTJVR< 0 results in a warning

LAMBDAS

NTIL
NTLI(1..),NILG1(1..),NILG2(1..),ALI(1..),BLI(1..),CLI(1..),DLI(1..),ELI(1..)

NTIL off, on, 0, 1
off,0: no special treatment of interactions with individual λ−values
on,1: interactions are treated with special individual λ−values

NTLI(1..) interaction type to treat with individual λ: bond(1), angle(2),
dihedral(3), improper(4), vdw(5), vdw soft(6), crf(7), crf soft(8),
distanceres(9), dihedralres(10), mass(11)

NILG1, NILG2 energy groups of interactions that are treated with individual
λ−values

ALI, BLI, CLI, Polynomial coefficients linking the individual λ−values to the
DLI, ELI overall λ−value

• Input for this block is read linewise, i.e. you need to specify each interaction type within one separate
line.

LOCALELEV

NTLES,NLEPOT,NTLESA,NTWLE,NLEPID,NTLEFR

NTLES 0..2 controls application of local-elevation
0: no local-elevation potential energy function[DEFAULT]
1: local-elevation using linear build up
automatic force-constant update

NLEPOT Number of applied potential energy functions
NTLESA 1..2 controls reading of local-elevation potential energy functions

1: read averages and parameters from startup file [DEFAULT]
2: read averages and parameters from LEUS database file (@lud)

NTWLE ≥ 0 write potential energy to special trajectory
NLEPID(1..) ID of potential energy function to read and apply
NTLEPFR(1..)0,1 controls build up vs freezing of memory

0: do memory build up (time-dependent potential energy function)
1: freeze memory (no build up)

• List of local-elevation dihedrals (LOCALELEVSPEC) read from @led

MULTIBATH

NTBTYP (NUM)
NBATHS
TEMP0 (1..NBATHS) TAU(1..NBATHS)
DOFSET
LAST(1..DOFSET) COM-BATH(1..DOFSET) IR-BATH(1..DOFSET)

4-96

NTBTYP controls temperature coupling algorithm to use
weak-coupling(0) use weak coupling scheme
nose-hoover(1) use Nosé Hoover scheme
nose-hoover-chains(2) use Nosé Hoover chains scheme

NUM ≥ 0 number of chains in Nosé Hoover chains scheme [only speci-
fy when needed]

NBATHS ≥ 0 number of temperature baths to couple to
TEMP0() ≥ 0.0 bath reference temperature per bath
TAU() ≥ 0.0 or -1 coupling time per bath, -1 turns coupling off
DOFSET ≥ 0 number of distinguishable sets of degrees of freedom
LAST() > 0 last atom for set of degrees of freedom

COM-BATH() ≥ 1 temperature bath to couple centre-of-mass motion of this set
of d.o.f. to

IR-BATH() ≥ 1 temperature bath to couple internal and rotational degrees
of freedom of this set to

• LAST should be ≤NATTOT
• COM-BATH and IR-BATH should be between 1 and NBATHS

MULTICELL

NTM,NCELLA,NCELLB,NCELLC,
TOLPX,TOLPV,TOLPF,TOLPFW

NTM 0,1 switch for multiple-unit-cell simulation
0: single-unit-cell simulation [DEFAULT]
1: multiple-unit-cell simulation

NCELLA ≥ 1 number of subdivisions along a-axis
NCELLB ≥ 1 number of subdivisions along b-axis
NCELLC ≥ 1 number of subdivisions along c-axis
TOLPX > 0.0 relative tolerance for coordinate periodicity check (not supported)
TOLPV > 0.0 absolute tolerance for velocity periodicity check (not supported)
TOLPF > 0.0 absolute tolerance for force periodicity check (not supported)
TOLPFW > 0.0 absolute tolerance for force periodicity fix and warning (not supported)

• The indexing of subcells goes along c (fastest index), then b, then a
• Solvent molecules are reset to initial subcell
• Solute molecules may drift across subcells
• NTB 6= 1,2 requires NTM= 0

MULTIGRADIENT

NTMGRE, NTMGRP,
NTMGRN,
MGRVAR(1..NTMGRN), MGRFRM(1..NTMGRN), MGRNCP(1..NTMGRN),
MGRCPT(1..NTMGRN), MGRCPV(1..NTMGRN)

NTMGRE 0, 1 disables/enable multiple gradients
0: disable gradients
1: enable gradients

NTMGRP 0..3 printout of the gradient curves in the output file
0: don’t print
1: plot the curves
2: print the values of the curves
3: plot and print the curves

NTMGRN >=0 number of gradients
MGRVAR() name of the variable to be affected, available are:

TEMP0, CPIR, CDIR, RESO, CXR, COPR
MGRFRM() 0..3 functional form of the gradient

4-97

0: linear interpolation between control points
1: cubic spline interpolation between control points
2: Bezier curve
3: Oscillation: A sin

[

2π
T (d− dt)

]

+ b
Note: MGRNCP is 2, A =MGRCPT[1], T =MGRCPV[1], dt =MGRCPT[2], b =MGRCPV[2]

MGRCP() >=2 number of control points
MGRCPT() >=0 time of the control point
MGRCPV() value of the variable at the control point

MULTISTEP

STEPS,BOOST

STEPS ≥ 0 calculate non-bonded every STEPSth step
BOOST 0,1 switch to control the method:

0: stored forces of STEPSth step are added every step
1: stored forces of STEPSth setp are multiplied by STEPS and added every STEPSth step [DEFAULT]

NONBONDED∗

NLRELE
APPAK,RCRF,EPSRF,NSLFEXCL
NSHAPE,ASHAPE,NA2CLC,TOLA2,EPSLS
NKX,NKY,NKZ,KCUT
NGX,NGY,NGZ,NASORD,NFDORD,NALIAS,NSPORD
NQEVAL,FACCUR,NRDGRD,NWRGRD
NLRLJ,SLVDNS

NLRELE -1..3 method to handle electrostatic interactions
-1: reaction-field method (LSERF compatibility mode)
0: no electrostatic interactions
1: reaction-field method
2: Ewald method
3: P3M method

APPAK ≥ 0.0 reaction-field inverse Debye screening length
RCRF ≥ 0.0 reaction-field radius

0.0: set reaction-field radius to infinity
> 0.0: reaction-field radius

EPSRF = 0.0 or ≥ 1.0 controls reaction-field permittivity
0.0: set reaction-field permittivity to infinity

≥ 1.0: reaction-field permittivity
NSLFEXCL 0,1 contribution of excluded atoms to reaction field

0: contribution turned off
1: contribution considered [DEFAULT]

NSHAPE -1..10 lattice-sum charge-shaping function (-1: Gaussian)
ASHAPE > 0.0 width of the lattice-sum charge-shaping function
NA2CLC 0..4 controls evaluation of the lattice-sum A2 term

0: A2 = Ã2 = 0

1: Ã2 exact, A2 = Ã2

2: A2 numerical, Ã2 = A2

3: Ã2 exact from Ewald or from mesh and atom coords, A2 numerical

4: Ã2 averaged from mesh only, A2 numerical
TOLA2 > 0.0 relative tolerance for numerical A2 evaluation
EPSLS = 0.0 or ≥ 1.0 controls lattice-sum (external) permittivity

0.0: set lattice-sum permittivity to infinity (tinfoil)
≥ 1.0: lattice-sum permittivity

4-98

NKX,NKY,NKZ > 0 maximum absolute Ewald k-vector components
KCUT > 0.0 Ewald k-space cutoff

NGX,NGY,NGZ > 0 P3M number of grid points along the three box axes (even)
NASORD 1..5 order of the mesh charge-assignment function
NFDORD 0..5 order of the mesh finite-difference operator

(0: ik-differentiation)
NALIAS > 0 number of mesh alias vectors considered
NSPORD order of the SPME B-spline function (not available)
NQEVAL ≥ 0 controls accuracy reevaluation

0: do not reevaluate accuracy
>0: reevaluate accuracy every NQEVAL steps

FACCUR > 0.0 rms force error threshold to recompute influence function
NRDGRD 0,1 read initial influence function (and derivatives) from file (not implemented)
NWRGRD 0,1 write final influence function (and derivatives) to file (not implemented)
NLRLJ 0,1 controls long-range Lennard-Jones correction (not implemented)
SLVDNS > 0.0 average solvent density for long-range Lennard-Jones cor-

rection (not implemented)

• Numerical A2: by Ewald summation up to relative tolerance TOLA2
• Exact Ã2: by Ewald(abs(NLRELE)= 2) or based on mesh and exact atom coordinates (abs(NLRELE=
3,4))

• Average Ã2: based on mesh for atom coordinates averaged over box
• For a truncated octahedron box, NGA, NGB and NGC refer to the axes of the transformed triclinic cell.
• Choices for NSHAPE are found in Tab. 2-7.1
• NA2CLC= 1 requires abs(NLRELE)= 2
• NA2CLC= 4 requires abs(NLRELE)= 3,4
• NGX,NGY and NGZ must be even
• NTB= 0 requires NLRELE=-1,0,1
• NLRELE 6= 0,1 and ASHAPE>RCUTP results in a warning
• NA2CLC= 0 and NLRELE= 2,3 results in a warning
• P3M and Ewald require atomistic cutoff scheme
• P3M and Ewald can not be used with multiple energy groups

ORDERPARAMRES

NTOPR,NTOPRA,COPR,TAUJVR,UPDOPR,NTOPW

NTOPR -2...2
-2: time-averaged using COPR×WOPR
-1: time-averaged using COPR (WOPR ignored)
0: no S2-order parameter restraining [DEFAULT]
1: window-averaged using COPR (WOPR ignored)
2: window-averaged using COPR×WOPR

NTOPRA 0,1 controls reading of averages from startup file
0: start from initial values [DEFAULT]
1: read time-averages from startup file (for continuation of time-averaged run)

COPR ≥0 S2-order parameter restraining force constant (weighted by individual WOPR)
TAUOPR ≥0 coupling time for time-averaging, length of averaging window for window averaging
UPDOPR >0 update order parameters only every UPDOPR steps (only relevant for window averaging)
NTWOP ≥0 write S2-value averages to special trajectory

=0: do not write [DEFAULT]
>0: write every NTWOP-th step

PAIRLIST

algorithm NSNB RCUTP RCUTL SIZE TYPE

algorithm standard, grid method for generating pairlist

4-99

standard(0) GROMOS96 like pairlist
grid(1) md++ grid pairlist

grid cell(2) grid-based algorithm using a mask6

NSNB >0 frequency (number of steps) a pairlist is constructed
RCUTP >0.0 cut-off used in pairlist construction
RCUTL >0.0 cut-off used in long range interaction
SIZE >0.0, auto size of grid cell

auto: 0.5*RCUTP
TYPE chargegroup (0), atomic (1) type of cut-off

chargegroup: chargegroup based cut-off
atomic: atom based cut-off

PERSCALE

RESTYPE
KDIH,KJ,T,DIFF,RATIO,READ

RESTYPE Special energy term to which periodic scaling should be applied
0: Do not apply periodic scaling.
1: Apply periodic scaling to 3J-value restraints

KDIH ≥ 0.0 Maximum scaling factor for dihedral angle potential
KJ ≥ 0.0 Maximum scaling factor for 3J-value restraint potential
T > 0 Period of cosine scaling function
DIFF ≥ 0.0 Minimum deviation from target value to start a scaling period
RATIO > 0.0 Minimum fraction of T that needs to be passed before starting

a new scaling period
READ = 0, 1 Read scaling parameters from coordinate file for continuation

simulation

• RESTYPE=1 requires NTBDN=1

PERTURBATION

NTG,NRDGL,RLAM,DLAMT
ALPHLJ,ALPHC,NLAM
NSCALE

NTG 0,1 controls use of free-energy calculation
0: no free-energy calculation is performed [DEFAULT]

1: calculate ∂H(λ,µ)
∂λ

NRDGL 0,1 controls reading of initial values
0: use initial λ parameter from PERTURBATION input block
1: read initial λ value from startup file

RLAM 0.0..1.0 initial value for λ
DLAMT ≥ 0.0 rate of λ increase in time
ALPHLJ ≥ 0.0 Lennard-Jones soft-core parameter
ALPHC ≥ 0.0 Coulomb soft-core parameter
NLAM > 0 power dependence of λ coupling
NSCALE 0,1,2 turn energy group scaling on

0: no scaling [DEFAULT]
1: scaling
2: scaled interactions only

• NTWG6= 0 requires NTG6= 0
• Perturbation topology file read from @pttopo
• λ (PERTDATA) read from @conf if NRDGL=1

4-100

PRECALCLAM

NRLAM, MINLAM, MAXLAM

NRLAM ≥ 0 determines calculation of H and ∂H/∂λ at alternative values of λ
0: off
> 0: precalculating energies and derivatives for NRLAM extra λ values

MINLAM 0.0 .. 1.0: minimum λ value to precalculate energies and derivatives
MAXLAM MINLAM .. 1.0: maximum λ value to precalculate energies and derivatives

POLARISE

COS,EFIELD,MINFIELD,DAMP,WRITE

COS 0,1,2 controls explicit inclusion of electronic polarisation effects
0: do not explicitly include electronic polarisation [DEFAULT]
1: use charge-on-spring model for dipolar polarisation
2: use charge-on-spring model for dipolar polarisation with off atom site

EFIELD 0,1 controls evaluation site for electric field
0: evaluate at atomic position of polarisable centres
1: evaluate at position of charges-on-spring

MINFIELD > 0.0 convergence criterium in iterative procedure to determine positions of charges-on-spring
DAMP 0,1 controls polarisability damping

0: use linear relationship between induced dipole moments and electric field
1: damp polarisability (with parameters from topology)

WRITE ≥0 write COS positions to special trajectory file
0: do not write COS positions
> 0 : write COS positions every WRITEth step

POSITIONRES

NTPOR,NTPORB,NTPORS,CPOR

NTPOR 0..3 controls atom position restraining or constraining
0: no position re(con)straining [DEFAULT]
1: restraining with force constant CPOR (no B-factor weighting)
2: restraining with force constant CPOR weighted by atomic B-factors
3: position constraining

NTPORB 0,1 controls reading of reference positions and B-factors
0: read reference positions from startup file (@conf) [DEFAULT]
1: read reference positions and B-factors (if required) from special file (@refpos)

NTPORS 0,1 controls scaling of reference positions upon pressure scaling
0: do not scale reference positions [DEFAULT]
1: scale reference positions together with box parameters

CPOR ≥ 0.0 position restraining force constant

• NTPOR= 2 requires NTPORB= 1
• List of re(con)strained atoms (POSRESSPEC) read from @posresspec
• Reference positions in REFPOSITION blocks
• Without pressure coupling, NTPORS has to be 0

PRESSURESCALE

COUPLE,SCALE,COMP,TAUP,VIRIAL
SEMI(1..3)
PRES0(1, 3, 1..3)

COUPLE off,calc,scale controls calculation and scaling of pressure
off(0) no pressure calculation or scaling

calc(1) calculate pressure but no scaling

4-101

scale(2) calculate and couple pressure to a pressure bath
SCALE off,iso,aniso,full controls isotropy of pressure scaling

off(0) no pressure scaling
iso(1) isotropic pressure scaling

aniso(2) anisotropic pressure scaling (x-, y-, z-axes, no angle deformation)
full(3) fully anisotropic pressure scaling

semianiso(4) semi-anisotropic pressure scaling
COMP > 0.0 isothermal compressibility
TAUP ≥ 0.0 coupling relaxation time
VIRIAL none,atomic,group controls type of virial for pressure calculation

none(0) no pressure calculation
atomic(1) atomic virial
group(2) group-based virial according to PRESSUREGROUPS

SEMI 0..2,0..2,0..2 (semianisotropic couplings: x-, y-, and z-axes)
PRES0(,) ≥ 0.0 reference pressure in Tensor format

PRINTOUT

NTPR,NTPP

NTPR ≥ 0 controls printing of energies
0: no printing out of energies [DEFAULT]

> 0: print out energies every NTPR steps
NTPP 0,1 controls dihedral angle transition monitoring

0: no dihedral angle transition monitoring [DEFAULT]
1: perform dihedral angle transition monitoring

• Data is printed to standard output.
• Dihedral angle transitions are printed to @trs.

QMMM

NTQMMM,NTQMSW,RCUTQ,NTWQMMM

NTQMMM 0,1 controls application of QM/MM
0: do not apply QM/MM [DEFAULT]
1: perform QM/MM simulation

NTQMSW 0,1 software package to use for QM calculation
0: MNDO
1: TURBOMOLE

RCUTQ ≥ 0.0 cutoff for electrostatic QM/MM interactions, inclusion of MM charge groups in QM Hamiltonian
0.0: include all MM atoms
> 0.0: include only atoms of charge groups closer than RCUTQ

NTWQMMM≥ 0 write QM/MM related data to special trajectory
0: do not write [DEFAULT]
> 0: write every NTWQMMMth step (not yet available)

• Note: QM/MM currently only applicable to systems with non-covalent interactions between QM and MM
region.

RANDOMNUMBERS

NTRNG, NTGSL

NTRNG 0,1 random number generator
0 use GROMOS 96 algorithm
1 use GSL library (DEFAULT)

NTGSL ≥ -1 GSL random number generation algorithm

4-102

-1 use default algorithm (mt 19937)
> = 0 run contrib/rng−gsl for a list of possible arguments

READTRAJ

NTRD,NTSTR,NTRB,NTSHK

NTRD 0,1 controls trajectory-reevaluation mode
0: do not use trajectory-reevaluation mode [DEFAULT]
1: use trajectory-reevaluation mode

NTSTR ¿0 stride: should be the NTWX used to produce the analyzed trajectory
NTRB 1 obsolete option to control reading of box parameters (must be 1)
NTSHK 0..2 controls application of constraints

0: apply constraints with respect to previous coordinates [default]
1: apply constraints with respect to current coordinates
2: do not apply constraints (neither solute nor solvent)

• For consistency, a pairlist should have been made every NTSTR steps (or a divisor thereof) in the gener-
ating run

• Velocities and dependent quantities are zeroed
• NTEM6= 0 requires NTRD= 0
• NTSD6= 0 requires NTRD= 0
• NTB= 0 requires NTRD= 0
• NSCM> 0 and RTC> 0 (centre-of-mass removeal and roto-translational constraints) are ignored when
NTRD= 1.

• Coordinate trajectories (POSITIONRED and GENBOX) are read from @anatrj if NTRD6= 0

REPLICA

NRET
RET(1..NRET)
LRESCALE
NRELAM
RELAM(1..NRELAM)
RETS(1..NRELAM)
NRETRIAL,NREQUIL,CONT

NRET ≥ 1 Number of replica exchange temperatures
RET() ≥ 0.0 Temperature for each replica
LRESCALE = 0, 1 Scale temperatures after exchange trial
NRELAM ≥ 1 Number of replica exchange lambda values
RELAM() ≥ 0.0 Lambda value of each lambda-replica
RETS() ≥ 0.0 Timestep of each lambda-replica
NRETRIAL ≥ 0 Number of overall exchange trials
NREQUIL ≥ 0 Number of exchange periods to equilibrate (disallow switches)
CONT = 0, 1 Continuation run

0 start from one configuration file
1 start from multiple configuration files

• if CONT=1, the name specified for @conf will be split before the last ”.” and replica numbers inserted,
e.g. input.cnf will be expanded to input 1.cnf .. input n.cnf where n is the number of replicas

• NRESCALE 6=0 requires NRET>1

ROTTRANS

RTC,RTCLAST

4-103

RTC = 0, 1 Turn roto-translational constraints on (1)
RTCLAST > 0 Last atom of subset to be roto-translationally constraint

• Use either centre of mass removal or roto-translational constraints but not both!

SASA

NTSASA,NTVOL,P 12,P 13,P 1X,SIGMAV,RSOlV,AS1,AS2

NTSASA 0,1 controls use of SASA implicit solvent model
0: do not use SASA [DEFAULT]
1: use SASA

NTVOL 0,1 controls use of VOLUME correction to SASA implicit solvent model
0: do not use VOLUME correction [DEFAULT]
1: use VOLUME correction (requires NTSASA = 1)

P 12 > 0, < 1 pair parameter for SASA reduction for first neighbours
P 13 > 0, < 1 pair parameter for SASA reduction for second neighbours
P 1X > 0, < 1 pair parameter for SASA reduction for third and higher neighbours
SIGMAV > 0 scaling parameter for volume energy term (kJ.mol−1.nm−3)
RSOLV > 0 radius of solvent molecule for SASA calculation (nm)
AS1 > 0 an atom with SASA below this contributes to the VOLUME correction (nm2)
AS2 > 0 an atom with SASA above this is not considered for the VOLUME correction (nm2)

• NTSASA6=0 requires NTB=0
• NTVOL= 1 requires NTSASA= 1
• Suitable values of P 12, P 13 and P 1X for the SASA and SASA/VOL implicit solvent models are given
in2 and3

• SIGMAV is required if NTVOL= 1. Its parameterisation is discussed in3

• AS1 and AS2 are required if NTVOL= 1. Atoms with AS1<SASA<AS2 have a partial contribution
determined by a switching function, thus AS1 and AS2 should in most cases be close to each other and
close to zero.

STEP∗

NSTLIM,T,DT

NSTLIM > 0 number of steps
T ≥ 0.0 time at beginning of simulation
DT > 0.0 timestep

• Final configuration (POSITION,VELOCITY,GENBOX) written to @fin
• If NTRD6= 0, NSTLIM is the total number of configurations, T the initial time of the first file, and DT
the time interval between successive records on file

• If NTEM6= 0, T and DT are irrelevant

STOCHDYN

NTSD,NTFR,NSFR,NBREF,RCUTF,CFRIC,TEMPSD

NTSD 0,1 controls stochastic dynamics mode
0: do not do stochastic dynamics [DEFAULT]
1: do stochastic dynamics

NTFR 0..3 defines atomic friction coefficients γ
0: set γ to 0.0 [DEFAULT]
1: set γ to CFRIC
2: set γ to CFRIC*GAM0
3: set γ to CFRIC*ωi from Eq. 2-13.30

NSFR > 0 recalculate γ every NSFR steps
NBREF > 0 threshold number of neighbour atoms for a buried atom
RCUTF ≥ 0.0 interatomic distance considered when calculating γ

4-104

CFRIC ≥ 0.0 global weighting for γ
TEMPSD ≥ 0.0 temperature of stochastic bath

• NTEM6= 0 requires NTSD= 0
• NTRD6= 0 requires NTSD= 0
• NTISTI 6= 0 requires NTSD6= 0
• Atomic friction coefficients GAM0 (FRICTIONSPEC) read from @friction if NTSD6= 0 and NTFR= 2
• If NTFR= 0, CFRIC is irrelevant
• If NTFR6= 3, NSFR, NBREF and RCUTF are irrelevant

SYSTEM∗

NPM,NSM
NPM 0,1 number of solute molecules
NSM ≥ 0 number of identical solvent molecules

• NPM= 0 and NSM= 0 are not allowed simultaneously
• Data on the system topology is read from @topo
• Note that MD++ as well as GROMOS++ do not accept NPM > 1 (solute molecules have to be explicitly
replicated in the topology file)

WRITETRAJ

NTWX,NTWSE,NTWV,NTWF,NTWE,NTWG,NTWB

NTWX controls writing of coordinate trajectory
0: no coordinate trajectory is written [DEFAULT]

> 0: write solute and solvent coordinates every NTWX steps
< 0: write solute coordinates every abs(NTWX) steps

NTWSE ≥ 0 selection criteria for coordinate trajectory writing
0: write normal coordinate trajectory [DEFAULT]

> 0: write minimum-energy coordinate and energy trajectory (based on the
energy entry selected by NTWSE and as blocks of length NTWX)

NTWV controls writing of velocity trajectory
0: no velocity trajectory is written [DEFAULT]

> 0: write solute and solvent velocities every NTWV steps
< 0: write solute velocities every abs(NTWV) steps

NTWF controls writing of force trajectory
0: no force trajectory is written [DEFAULT]

> 0: write solute and solvent forces every NTWF steps
< 0: write solute forces every abs(NTWF) steps

NTWE ≥ 0 controls writing of energy trajectory
0: no energy trajectory is written [DEFAULT]

> 0: write energy variables every NTWE steps
NTWG ≥ 0 controls writing of free energy trajectory

0: no free energy trajectory is written [DEFAULT]
> 0: write free energy variables every NTWG steps

NTWB ≥ 0 controls writing of block-averaged energy trajectory
0: no block-averaged energy trajectory is written [DEFAULT]

> 0: write block-averaged energies (and free energies if NTWG>0) every NTWB steps

• NTWSE 6= 0 requires NTWX6= 0, NTWV= 0, NTWF= 0, NTWE= 0 or abs(NTWX), NTWG= 0,
NTWB= 0

• NTWSE denotes a potential energy term (Sec. 4.17)
• NTG= 0 requires NTWG= 0
• NTEM6= 0 requires NTWV= 0
• NTRD6= 0 requires NTWV= 0
• Coordinates (POSITIONRED) written to @trc if NTWX6= 0
• Velocities (VELOCITYRED) written to @trv if NTWV6= 0

4-105

• Forces (FREEFORCERED,CONSFORCERED) written to @trf if NTWF6= 0
• Energies (ENERGY03) written to @tre if NTWE 6= 0
• Volume and pressure quantities (VOLUMEPRESSURE03) written to @tre if NTWE 6= 0
• Free energy quantities (FREEENERDERIVS03) are written to @trg if NTWG6= 0
• Block-averaged energies and fluctuations (BAENERGY03 and BAEFLUCT03) written to @bae if NTWB 6=
0

• Block-averaged volume and pressure quantities (BAVOLUMEPRESSURE03) written to @bae if NTWB 6=0
• X(t),V(t-dt/2), and Fuc(t) are written at the beginning of a timestep, Fc(t) right after SHAKE
• If NTWSE 6= 0, a minimum-energy trajectory is written, i.e. only the configuration and energy corre-
sponding to the lowest NTWSE component within a block of length abs(NTWX) steps is reported

Input data are described in Vol. 5 (Program Library Manual) and Vol. 7 (Tutorials, Benchmarks, Test
Sets).

Examples of MD input files are named:

∗.imd

4-106

CHAPTER 9

Output files for MD++

The data structure of the output file of the (simulation) programs will not be given here.

Output of programs is discussed in Vol. 5 (Program Library Manual) and Vol. 7 (Tutorials, Benchmarks,
Test Sets).

Examples of MD output files are named:

∗.omd

4-107

CHAPTER 10

Files accessed by MD++ for reading or writing

Indicated are: files for reading (R), files for write-up (W) and compulsory blocks (*).

@input Standard input (control) file (R; always)
TITLE∗

SYSTEM∗

ENERGYMIN
STOCHDYN
READTRAJ
STEP∗

REPLICA
BOUNDCOND∗

MULTICELL
MULTIBATH
PRESSURESCALE
MULTIGRADIENT
FORCE∗

COVALENTFORM
CONSTRAINT∗

POLARISE
INTEGRATE
CGRAIN
ROTTRANS
INNERLOOP
MULTISTEP
PAIRLIST∗

NONBONDED∗

INITIALISE
RANDOMNUMBERS
COMTRANSROT
POSITIONRES
DISTANCERES
DIHEDRALRES
JVALUERES
ORDERPARAMRES
DISTANCEFIELD
QMMM
LOCALELEV
PERSCALE
ELECTRIC
SASA
PERTURBATION
LAMBDAS
PRINTOUT
WRITETRAJ
EWARN
EDS

4-109

@out Standard output file (W; always)
MD++ output

@fin Final configuration file (W; if NTRD= 0)
TITLE
POSITION (if no SHAKE failure)
SHAKEFAILPOSITION (if SHAKE failure)
SHAKEFAILPREVPOSITION (if SHAKE failure)
VELOCITY (if NTEM= 0 and NTRD= 0)
STOCHINT (if NTSD6= 0)
GENBOX (BOX; if NTB 6= 0)
LATTICESHIFTS (if NTB= 0)
ROTTRANSREFPOS (if NTT 6= 0 and NTCNS(J)6= 0 for at least one J)
REFPOSITION (if NTPOR6= 0)
DISRESEXPAVE (if NTDIR= −1,−2)
JVALRESEXPAVE (if NTJVR= −1,−2)
ORDERPARAMRESEXPAVE (if NTOPR= −1,−2)
ORDERPARAMRESWINAVE (if NTOPR= 1, 2)
LEMEMORY (if NTLES6= 0)
PERTDATA (if NTG6= 0)

@trc Coordinate trajectory (W; if NTWX6= 0)
TITLE
TIMESTEP
POSITIONRED
GENBOX (if NTB 6= 0)

@trv Velocity trajectory (W; if NTWF6= 0)
TITLE
TIMESTEP
VELOCITYRED

@trf Force trajectory (W; if NTWF6= 0)
TITLE
TIMESTEP
FREEFORCERED
CONSFORCERED

@tre Energy trajectory (W; if NTWE 6= 0)
TITLE
TIMESTEP
ENERGY03
VOLUMEPRESSURE03

@trg IOTRJG Free-energy trajectory (W; if NTWG6= 0 and NTG6= 0)
TITLE
TIMESTEP
FREEENERGYDERIVS03

@bae Energy block-average trajectory (W; if NTWB 6= 0)
TITLE

4-110

TIMESTEP
BAENERGY03
BAEFLUCT03

@topo Topology file (R; always)
TITLE (compulsory, first)
PHYSICALCONSTANTS (compulsory, second)
TOPVERSION (compulsory, third)
ATOMTYPENAME (compulsory)
RESNAME
SOLUTEATOM (compulsory)
CGSOLUTE
BONDSTRETCHTYPE or BONDTYPE or HARMBONDTYPE (one of them is compulsory if
BONDH or BOND)
BONDH
BOND
BONDDP
BONDANGLEBENDTYPE or BONDANGLETYPE or BONDANGLEBENDTYPE (one of them
is compulsory if BONDANGLEH or BONDANGLE)
BONDANGLEH
BONDANGLE
IMPDIHEDRALTYPE
IMPDIHEDRALH
IMPDIHEDRAL
TORSDIHEDRALTYPE or DIHEDRALTYPE (either of the two; compulsory if DIHEDRALH or
DIHEDRAL)
DIHEDRALH
DIHEDRAL
LJPARAMETERS
CGPARAMETERS
SOLUTEMOLECULES
TEMPERATUREGROUPS
PRESSUREGROUPS
SOLVENTATOM (compulsory)
SOLVENTCONSTR
SASAPARAMETERS (if NTSASA= 1)

@conf Initial configuration (startup) file (R; always, except if NTRD= 1 and NTRB= 1)
TITLE (compulsory, first)
TIMESTEP
POSITION or POSITIONRED (either of the two; compulsory)
VELOCITY or VELOCITYRED (either of the two; if NTEM= 0 and NTRD= 0 and NTIVEL= 0)
LATTICESHIFTS (if NTB 6= 0 and NTISHI= 0)
STOCHINT (if NTSD6= 0 and NTISTI= 0)
GENBOX (if NTB 6= 0)
ROTTRANSREFPOS (if NTT 6= 0 and NTCNS(J)6= 0 for at least one J)
REFPOSITION (if NTTPOR6= 0 and NTPORB= 0)
PERTDATA (if NTG6= 0 and NRDGL 6= 0)
DISRESEXPAVE (if NTDIR= −1,−2 and NTDIRA6= 0)
JVALRESEXPAVE(if NTJVR= −1,−2 and NTJVRA6= 0)
ORDERPARAMRESEXPAVE (if NTOPR= −1,−2)
ORDERPARAMRESWINAVE (if NTOPR= 1, 2)
LEMEMORY (if NTLES6= 0 and NTLESA6= 0)

4-111

@refpos Reference coordinates for position re(con)straining (R; if NTPOR6= 0 and NTPORB= 1)
TITLE (compulsory)
REFPOSITION (compulsory)

@posresspec Atom specification for position re(con)straining (R; if NTPOR6= 0)
TITLE (compulsory)
POSRESSPEC (compulsory)

@distrest Distance specification for distance re(con)straining (R; if NTDIR6= 0)
TITLE (compulsory)
DISTANCERESSPEC
PERTDISRESSPEC
MDISRESSPEC
DFRESSPEC
PERTDFRESSPEC

@dihrest Dihedral specification for dihedral-angle re(con)straining (R; if NTDLR6= 0)
TITLE (compulsory)
DIHEDRALRESSPEC
PERTDIHRESSPEC

@jval 3J-value specification for 3J-value restraining (R; if NTJVR6= 0)
TITLE (compulsory)
JVALRESSPEC (compulsory)

@order S2-value specification for S2-order parameter restraining (R; if NTOPR6= 0)
TITLE (compulsory)
ORDERPARAMRESSPEC (compulsory)

@qmmm QM/MM specification file (R; if NTQMMM6= 0)
TITLE (compulsory)
QMZONE (compulsory)
QMUNIT (compulsory)
MNDOFILES (if NTQMSW= 0)
MNDOHEADER (if NTQMSW= 0)
TURBOMOLEFILES (if NTQMSW= 1)
TURBOMOLETOOLCHAIN (if NTQMSW= 1)
TURBOMOLEELEMENTS (if NTQMSW= 1)

@led Coordinate specification for local-elevation (R; if NTLES6= 0)
TITLE (compulsory)
LOCALELEVSPEC (compulsory)

@lud LEUS biasing potential database (R; if NTLES= 2)
TITLE (compulsory)
LEUSGRID (one or more)

4-112

@friction Atomic friction coefficients for stochastic dynamics (R; if NTSD6= 0 and NTFR= 2)
TITLE (compulsory)
FRICTIONSPEC (compulsory)

@pttopo Data determining perturbation (R; if NTG6= 0)
TITLE (compulsory)
PERTATOMPARAM
MPERTATOM PERTATOMPAIR
PERTATOMGROUPS
PERTPOLPARAM
PERTBONDSTRETCHH
PERTBONDSTRETCH
PERTCONSTRAINT03
PERTBONDANGLEH
PERTBONDANGLE
PERTIMPROPERDIHH
PERTIMPROPERDIH
PERTPROPERDIHH
PERTPROPERDIH

@anatrj Input coordinate trajectories (R; if NTRD6= 0)
TITLE
series of
TIME
POSITIONRED
BOX (if variable box)

4-113

CHAPTER 11

Other non-GROMOS formats

Some GROMOS programs can read non-GROMOS data and formats, e.g. protein data bank data and
formats, see Vol. 5 (Program Library Manual).

4-115

CHAPTER 12

List of GROMOS blocknames

Three categories of blocks are distinguished:

- data blocks,
- MD input blocks,
- molecular topology blocks.

The current GROMOS blocknames are listed below. In addition to the following reserved names, no block
may be called ‘END’.

Data blocks

ACCEPTORMASS
ANGLETYPECONV
ATOMNAMELIB
ATOMTYPECONV
BFACTOR
BFACTORANISO
BONDANGLEBENDTYPECODE
BONDSTRETCHTYPECODE
BONDTYPECONV
BOX
CONSFORCE
CONSFORCERED
DIFFSTAT
DIHEDRALTYPECODE
DIHEDRALTYPECONV
DIHRESSPEC
DIPMSTAT
DISRESEXPAVE
DISRESSPEC
DISTANCERESSPEC
ENERGIES
ENERGY
ENERGY03
ENERTRJ
FILENAMES
FORMAT
FOURDIMATOMSPEC
FREE3D4DDATA
FREEENERGY3D4
FREEENERGYDERIVS03
FREEENERGYLAMBDA
FREEFORCE
FREEFORCERED
FREELAMBDADATA
FRENERTRJ
FRICTIONSPEC
GENBOX

HYDROGENMASS
IMPDIHEDRALTYPECODE
IMPROPERTYPECONV
JOBSCRIPTS
JVALUERESEPS
JVALUERESEXPAVE
JVALUERESSPEC
LEDIHSPEC
LEMEMORY
LINKADDITION
MASSATOMTYPECODE
MISCELLANEOUS
MIXEDATOMLJPAIR
MPERTATOM
MTBUILDBLEND
MTBUILDSOLUTE
MTBUILDSOLVENT
MULTIPLICITY
NOECALCSPEC
NOEGORGROMOS
NOELIB
NOESPEC
ORDERPARAMRESEXPAVE
ORDERPARAMRESWINAVE
PERTATOM
PERTATOMPAIR
PERTBONDANGLE
PERTBONDANGLEH
PERTBONDSTRETCH
PERTBONDSTRETCHH
PERTDATA
PERTDIHRESSPEC
PERTDISRESSPEC
PERTIMPROPERDIH
PERTIMPROPERDIHH
PERTPROPERDIH
PERTPROPERDIHH

4-117

POSITION
POSITION4THD
POSITION4THDRED
POSITIONFOURTHM
POSITIONOF
POSITIONRED
POSITIONSECONDM
POSITIONSECONDMT
POSITIONTHIRDM
POSRES
POSRESSPEC
QUANDISTRIB
QUANENERAVER
QUANSUMENERAVER
QUANTIMECORR
QUANTIMECORRSPE
QUANTIMESERIES
QUANTITYAVER
REFPOSITION
RESIDUENAMELIB

RUNDATA
SASASPEC
SHAKEFAILPOSITION
SHAKEFAILPREVPOSITION
SINGLEATOMLJPAIR
SOLVSTAT
STOCHINT
STOCHINT4THD
TIMESTEP
TITLE
TRANSFORM
TRICLINICBOX
VARIABLES
VELOCITY
VELOCITY4THD
VELOCITY4THDRED
VELOCITYRED
VOLUMEPRESSURE
VOLUMEPRESSURE03

MD input blocks

BOUNDCOND
CGRAIN
COMTRANSROT
CONSTRAINT
COVALENTFORM
DIHEDRALRES
DISTANCEFIELD
DISTANCERES
EDS
ELECTRIC
ENERGYMIN
EWARN
FORCE
INITIALISE
INNERLOOP
INTEGRATE
JVALUERES
LAMBDAS
LOCALELEV
MULTIBATH
MULTICELL
MULTIGRADIENT

MULTISTEP
NONBONDED
ORDERPARAMRES
PAIRLIST
PERSCALE
PERTURBATION
POLARISE
POSITIONRES
PRESSURESCALE
PRINTOUT
QMMM
RANDOMNUMBERS
READTRAJ
REPLICA
ROTTRANS
SASA
STEP
STOCHDYN
SYSTEM
WRITETRAJ

Topology blocks

ATOMTYPENAME
BOND
BONDANGLE
BONDANGLEBENDTYPE
BONDANGLEH
BONDANGLETYPE
BONDDP
BONDH

BONDSTRETCHTYPE
BONDTYPE
CGSOLUTE
CONSTRAINT
DIHEDRAL
DIHEDRALH
DIHEDRALTYPE
HARMBONDANGLETYPE

4-118

HARMBONDTYPE
IMPDIHEDRAL
IMPDIHEDRALH
IMPDIHEDRALTYPE
LJPARAMETERS
CGPARAMETERS
PATHINTSPEC
PHYSICALCONSTANTS
RESNAME

SASAPARAMETERS
SOLUTEATOM
SOLVENTATOM
SOLVENTCONSTR
SUBMOLECULES
TITLE
TOPVERSION
TORSDIHEDRALTYPE

4-119

CHAPTER 13

Recommendations for standard input and output file names

molecular building blocks
interaction-function parameters
script to run the program
input file
output file
configuration
topology
perturbation topology
reference positions and possibly B-factors for position
re(con)straining (if in a file separate from .cnf)
position restraints
distance restraints
dihedral restraints
3J-value restraints
S2-order parameter restraints
crystallographic restraints
LEUS database file
local-elevation dihedrals
atomic friction coefficients
P3M optimal influence function (G−hat)
gromos++- specific libraries

*.mtb
*.ifp
*.run
*.imd
*.omd
*.cnf
*.top
*.ptp

*.rpr
*.por
*.dsr
*.dhr
*.jvr
*.opr
*.xrs
*.lud
*.led
*.frc
*.ght
*.lib

trajectories:

coordinates
velocities
forces
energies
free energies
special trajectories
block average energies
block average free energies

*.trc
*.trv
*.trf
*.tre
*.trg
*.trs
*.bae
*.bag

4-121

Bibliography

[1] W. Hasel, T. F. Hendrickson, and W. C. Still. A rapid approximation to the solvent accessible surface areas of atoms. Tetra.
Comput. Method., 1:103–116, 1988.

[2] F. Fraternali and W.F. van Gunsteren. An Efficient Mean Solvation Force Model for Use in Molecular Dynamics Simulations
of Proteins in Aqueous Solution. J. Mol. Biol., 256:939–948, 1996.

[3] J.R. Allison, K. Boguslawski, F. Fraternali, and W.F. van Gunsteren. A refined, efficient mean solvation force model that
includes the interior volume contribution. J. Phys. Chem. B, 115:4547–4557, 2011.

[4] G. Nagy and C. Oostenbrink. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem.

Inf. Model., 54:266 – 277, 2014.
[5] G. Nagy and C. Oostenbrink. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides. J.

Chem. Inf. Model., 54:278 – 288, 2014.
[6] T. Heinz and P.H. Hünenberger. A fast pairlist construction algorithm for molecular simulations under periodic boundary

conditions. J. Comput. Chem., 25:1474, 2004.

4-i

The GROMOS Software for (Bio)Molecular

Simulation

Volume 5: Program Library Manual

January 9, 2021

Contents

Chapter 1. Introduction 5-1
1.1. Nomenclature of GROMOS files 5-1
1.2. Common arguments in GROMOS++ 5-1
1.3. Atom, property and vector specifiers in GROMOS++ 5-2
1.3.1. Atom specifiers 5-2
1.3.2. Vector specifiers 5-4
1.3.3. Property specifiers 5-4

Chapter 2. Setup of simulations (preprocessing) 5-7
2.1. bin box (GROMOS++ program) 5-7
2.2. build box (GROMOS++ program) 5-8
2.3. check box (GROMOS++ program) 5-9
2.4. check top (GROMOS++ program) 5-10
2.5. com top (GROMOS++ program) 5-12
2.6. con top (GROMOS++ program) 5-13
2.7. copy box (GROMOS++ program) 5-14
2.8. cry (GROMOS++ program) 5-15
2.9. duplicate (GROMOS++ program) 5-16
2.10. explode (GROMOS++ program) 5-17
2.11. gca (GROMOS++ program) 5-18
2.12. gch (GROMOS++ program) 5-19
2.13. ion (GROMOS++ program) 5-21
2.14. link top (GROMOS++ program) 5-22
2.15. make pt top (GROMOS++ program) 5-24
2.16. make sasa top (GROMOS++ program) 5-25
2.17. make top (GROMOS++ program) 5-26
2.18. mk script (GROMOS++ program) 5-27
2.19. pdb2g96 (GROMOS++ program) 5-29
2.20. pert top (GROMOS++ program) 5-30
2.21. prep eds (GROMOS++ program) 5-31
2.22. prep xray (GROMOS++ program) 5-32
2.23. prep xray le (GROMOS++ program) 5-33
2.24. pt top (GROMOS++ program) 5-34
2.25. ran box (GROMOS++ program) 5-35
2.26. ran solvation (GROMOS++ program) 5-36
2.27. red top (GROMOS++ program) 5-37
2.28. sim box (GROMOS++ program) 5-38

Chapter 3. Minimizers and simulators 5-39
3.1. md (MD++ program) 5-40
3.2. repex mpi (MD++ program) 5-41
3.3. eds 2box (MD++ program) 5-42

Chapter 4. Analysis of trajectories (postprocessing) 5-43
4.1. bar (GROMOS++ program) 5-43
4.2. bilayer dist (GROMOS++ program) 5-45
4.3. bilayer oparam (GROMOS++ program) 5-46
4.4. cluster (GROMOS++ program) 5-47

5-I

4.5. cog (GROMOS++ program) 5-48
4.6. cos dipole (GROMOS++ program) 5-49
4.7. cos epsilon (GROMOS++ program) 5-50
4.8. cry rms (GROMOS++ program) 5-51
4.9. dfgrid (GROMOS++ program) 5-52
4.10. dfmult (GROMOS++ program) 5-54
4.11. disicl (GROMOS++ program) 5-55
4.12. dg ener (GROMOS++ program) 5-56
4.13. dGslv pbsolv (GROMOS++ program) 5-57
4.14. diffus (GROMOS++ program) 5-59
4.15. dipole (GROMOS++ program) 5-60
4.16. ditrans (GROMOS++ program) 5-61
4.17. dssp (GROMOS++ program) 5-62
4.18. eds update 1 (GROMOS++ program) 5-63
4.19. eds update 2 (GROMOS++ program) 5-64
4.20. edyn (GROMOS++ program) 5-65
4.21. ene ana (GROMOS++ program) 5-66
4.22. ener (GROMOS++ program) 5-67
4.23. epath (GROMOS++ program) 5-69
4.24. eps field (GROMOS++ program) 5-70
4.25. epsilon (GROMOS++ program) 5-71
4.26. espmap (GROMOS++ program) 5-73
4.27. ext ti ana (GROMOS++ program) 5-74
4.28. ext ti merge (GROMOS++ program) 5-77
4.29. filter (GROMOS++ program) 5-78
4.30. follow (GROMOS++ program) 5-79
4.31. gathtraj (GROMOS++ program) 5-80
4.32. hbond (GROMOS++ program) 5-81
4.33. int ener (GROMOS++ program) 5-82
4.34. iondens (GROMOS++ program) 5-83
4.35. jepot (GROMOS++ program) 5-84
4.36. jval (GROMOS++ program) 5-85
4.37. m widom (GROMOS++ program) 5-86
4.38. matrix overlap (GROMOS++ program) 5-87
4.39. mdf (GROMOS++ program) 5-88
4.40. nhoparam (GROMOS++ program) 5-89
4.41. noe (GROMOS++ program) 5-90
4.42. post noe (GROMOS++ program) 5-91
4.43. postcluster (GROMOS++ program) 5-92
4.44. predict noe (GROMOS++ program) 5-93
4.45. prep noe (GROMOS++ program) 5-94
4.46. r factor (GROMOS++ program) 5-96
4.47. r real factor (GROMOS++ program) 5-97
4.48. rdf (GROMOS++ program) 5-98
4.49. rep ana (GROMOS++ program) 5-99
4.50. rep reweight (GROMOS++ program) 5-100
4.51. reweight (GROMOS++ program) 5-101
4.52. rgyr (GROMOS++ program) 5-102
4.53. rmsd (GROMOS++ program) 5-103
4.54. rmsdmat (GROMOS++ program) 5-104
4.55. rmsf (GROMOS++ program) 5-105
4.56. sasa (GROMOS++ program) 5-106
4.57. sasa hasel (GROMOS++ program) 5-107
4.58. solute entropy (GROMOS++ program) 5-108
4.59. structure factor (GROMOS++ program) 5-109
4.60. temperature (GROMOS++ program) 5-110
4.61. tcf (GROMOS++ program) 5-111

5-II

4.62. trs ana (GROMOS++ program) 5-112
4.63. tser (GROMOS++ program) 5-113
4.64. tstrip (GROMOS++ program) 5-114
4.65. visco (GROMOS++ program) 5-115
4.66. xrayts (GROMOS++ program) 5-116

Chapter 5. Miscellaneous 5-117
5.1. atominfo (GROMOS++ program) 5-117
5.2. close pair (GROMOS++ program) 5-118
5.3. frameout (GROMOS++ program) 5-119
5.4. inbox (GROMOS++ program) 5-120
5.5. pairlist (GROMOS++ program) 5-121
5.6. shake analysis (GROMOS++ program) 5-122
5.7. unify box (GROMOS++ program) 5-123
5.8. rot rel (GROMOS++ program) 5-124
5.9. VMD plugin (GROMOS++ program) 5-125
5.10. xray map (GROMOS++ program) 5-126

Bibliography 5-i

5-III

CHAPTER 1

Introduction

GROMOS, consisting of MD++ and GROMOS++, is a collection of programs developed to prepare,
run and analyse a MD simulation. Most programs belong to GROMOS++ and may be used to set up a
simulation or analyse the trajectories of a simulation, while MD++ is used to run the simulation.

This volume gives an overview over all the programs, listed either in Chap. 2 (setup of simulations), Chap. 3
(minimizers and simulators) and Chap. 4 (analysis of trajectories) or Chap. 5 with a program description
together with required and optional input arguments as well as standard and additional outputs. The focus
is on the use of the programs and not on the source code behind. The reader who wishes to change or add
the source code of GROMOS is referred to Chap. 6-1 where an outline of the source code including libraries
as well as predefined classes and namespaces is given in more datail.

Most common arguments used and needed by a majority of GROMOS programs are explained more
extensively in Sec. 1.2 of this volume. The diverse use of (atom, property and vector) specifiers, a powerful
tool to specify a group of atoms, properties as distances, angles and many others, is described in Sec. 1.3,
accompanied by multiple examples.

1.1. Nomenclature of GROMOS files

GROMOS is very generous concerning the names and endings of input and output files. It leaves the user
absolute freedom. Nevertheless, we strongly recommend a consistent pattern of file name endings which helps
keeping the overview over different file types. A possible naming (recommendations) is given in Chap. 4-13.

1.2. Common arguments in GROMOS++

Several arguments appear in many GROMOS++ programs and their explanation is given here.

1. @topo
Molecular topology files are read from the @topo argument. The file format of a topology is described
in Sec. 4-3.2.

2. @pbc arg1 [arg2] [arg..]
Periodic boundary type and gathering parameters are read from @pbc. The first argument is the
boundary type which may take the following values:
v vacuum, non-periodic boundary conditions
r rectangular periodic boundary conditions
c triclinic periodic boundary conditions
t truncated octahedral periodic boundary conditions

The second and following arguments determine the gathering method and additional gather options.
The available gathering methods (arg2) are:

5-1

nog or 0 do not gather

glist or 1 (default) gathering, based on a list of pairs of atoms

the atom pair should be in the sequence: A B, where A is

an atom of the molecule to be gathered, and B is an atom

of the reference molecule

gtime or 2 gathering based on previous frame

gref or 3 gathering based on a reference structure

gltime or 4 gather first frame based on a list, next frames based on

previous frame

grtime or 5 gather first frame based on a reference structure, next

frames based on previous frame

gbond or 6 gathering based on bond connectivity

cog or 7 gathering with respect to the centre of geometry of

all atoms of the first molecule in the system

gfit or 8 gather selected molecules based on a reference structure which has

been superimposed on the first frame of the trajectory, gather

remaining molecules to the cog of selected molecules
Further arguments are necessary or optional for specific gathering methods:

list <atom pair list> e.g. @pbc r gref refg coord.cnf

refg <ReferenceStructure> e.g. @pbc r gltime list 2:res(15:CA) 1:11 3:134 1:11

molecules <molecule numbers> e.g. @pbc r gfit refg coord.cnf molecules 1-5
3. @outformat

Some GROMOS++ programs can write the output coordinates in different formats. The following
formats are supported:
cnf Configuration format containing POSITION blocks (extension .cnf).
trc Coordinate trajectory format containing POSITIONRED blocks (extension .trc).
por Position restraints specification format (extension .por).
pdb Protein Data Bank (PDB) format. An additional factor can be given to convert the length unit

to Å, default 10.0 (nm to Å).
vmdam VMD’s ,,Amber Coordinates” format. An additional factor can be given to convert the length

unit to Å, default 10.0 (nm to Å).

1.3. Atom, property and vector specifiers in GROMOS++

Analysis of the trajectories of a MD simulation is, besides the correct setup, of importance to a computa-
tional scientist. The more specific the questions, the more flexible the programs which answer those questions
have to be. GROMOS++ makes use of three specifiers to keep its flexibility: atom specifiers, property
specifiers and vector specifiers. Each of them is used as an input parameter (a string with a well defined
format) for some GROMOS++ programs. Note that some shells may modify the brackets or other special
characters. Therefore, quotes should be used when using atom specifiers as a command line argument.

This section introduces the reader to each of the three specifiers giving an overview of the different
possibilities to use them.

1.3.1. Atom specifiers. Atom specifiers define a general way to access specific atoms of a system. It
is even possible to access atoms which are not there (virtual atoms) or common properties (e.g. the center
of geometry or center of mass) of multiple atoms. The atom specifier can be defined using four different
formats:

- Molecules and Atoms:
<mol>[-<mol>]:<atom>[-<atom>]

- Residues:
<mol>[-<mol>]:res(<residue>:<atom>[,<atom>...])

- Virtual Atoms:
va(<type>, <atomspec>)

5-2

- File:
file(<filename>)

<mol> is the molecule number and <atom> either the atom number or the atom name. Instead of the atom
or molecule number one can also specify all solute or solvent molecules or atoms using a or s, respectively.
The solvent is only accessible if there is a topology and a coordinate file given. It is not possible to access
the solvent from a topology only, since GROMOS does not know how many solvent molecules the system
consists of. The <type> argument defines the virtual atom type the specifier accesses. The following types
are known in GROMOS++:

0: explicit/real atom
1: aliphatic CH1 group
2: aromatic CH1 group
3: non-stereospecific aliphatic CH2 group (pseudo atom)
4: stereospecific aliphatic CH2 group
5: single CH3 group (pseudo atom)
6: non-stereospecific CH3 groups (isopropyl; pseudo atom)
7: non-stereospecific CH3 groups (tert-butyl; pseudo atom)
-1: centre of geometry
-2: centre of mass

<atomspec> is a complete atom specifier of one of the four formats above and <filename> is the name of
the file (output of the atominfo program) listing the atoms to consider.

Multiple atom specifiers must be separated by a semicolon while multiple molecules or atoms within the
same atom specifier are separated by a comma.

Examples:

atoms 3 an 7 to 12 of molecule 2:

2:3,7-12

all atoms of molecule 1:

1:a

all CA, N or C atoms of all molecules

a:CA,N,C

atom 1 of residue 3 and 5 of molecule 1:

1:res(3,5:1)

all C, N or CA atoms of residues named SER or THR of molecule 1:

1:res(SER,THR:C,N,CA)

the centre of mass of molecule 1:

va(-2,1:a)

the alpha hydrogen of residue 1 in a protein:

va(1,1:res(1:CA,N,CB,C))

all CA atoms of the first molecule, accessed by a file from atominfo:

\$ atominfo @topo ex.topo @atomspec 1:CA > ca.spec

file(ca.spec)

In addition, there are the two keywords not and minus to exclude some atoms from an atom specifier. Note
that the atoms specified with the keyword not are never included in the resulting atom specifier while the
keyword minus allows to add the removed atoms within the same specifier later on again.

Examples:

all atoms of the first molecule but without the second residue:

1:a minus(1:res(2:a))

5-3

all atoms of the first molecule but without any C atoms:

1:a minus(1:res(2:a)) 1:res(2:C)

Finally there are programs that syntactically require an atom specifier although one does not want to specify
any atoms for the computation (e.g. to disable rotational fits). For this purpose there is the keyword no. It
can be used to specify an empty set of atoms.

Example:
no atoms:
no

1.3.2. Vector specifiers. Vector Specifiers may be used in a property specifier (see Sec. 1.3.3) to
calculate some well defined properties using the help of vectors. There are three different formats to specify
a vector:

- cart(<x>,<y>,<z>)

- polar(<r>,<α>,<β>)
- atom(<atomspec>)

with <x>, <y> and <z> being the three coordinates of a Cartesian 3D vector, <r> the length (norm) of a
vector x, <α> and <β> the polar angles in degree,

x = (r cos(α) cos(β), r sin(α),−r cos(α) sin(β)) , (1.1)

and <atomspec> is an atom specifier (see Sec. 1.3.1).

Examples:

the vector vector (2, 5, 1):

cart(2,5,1)

the vector (0, 2.5, 0)

polar(2.5,45.0,90.0)

1.3.3. Property specifiers. Like the other two specifiers (see Sec. 1.3.1 and Sec. 1.3.2), property
specifiers are used as an argument for some analysis programs of GROMOS++. They are used to specify
the property one is interested in. The general format of a property specifier is:

- <type>%<arg1>[%<arg2>...]

with <type> defining the specific property and <arg1> the argument (an atom or vector specifier, compare
Sec. 1.3.1 and Sec. 1.3.2, respectively) needed to calculate this property. It is clear that dependent on the
property type the number of required arguments may change.

The following is a list of all property types implemented in GROMOS++:

d: distance
a: angle
t: torsion

tp: periodic torsion
ct: cross torsion
hb: hydrogen bond
st: stacking
o: order

op: order parameter
pr: pseudo rotation
pa: pucker amplitude

expr: expression property

Multiple calculations of the same property at different positions of the molecule or system are available
via substitutions (see example 4 where it is shown to calculate multiple distances within the same molecule).

Some examples for all properties but the expr property follow. The latter is a bit more complex and will
be discussed after the examples at the end of Sec. 1.3.1.

5-4

Examples:

the distance between atoms 1 and 2 of molecule 1:
d%1:1,2

the distance between the first atoms of molecule 1 and 2:
d%1:1;2:1

the distance between the centres of mass of molecules 1 and 2:
d%va(com,1:a);va(com,2:a)

the distances between the H and N atoms of residues 3 to 5 of molecule 1 (making use substitution):

d%1:res((x):H,N)|x=3-5

the angle defined by atoms 1, 2 and 3 of molecule 1:

a%1:1-3

the angle between the virtual alpha hydrogen of residue 1 and the atoms CA and C of residue 1 of molecule
1:
a%va(1,1:res(1:CA,N,CB,C));1:res(1:CA,C)

the torsion defined by the atoms H, N, CA and CB of residue 2 of molecule 1:

t%1:res(2:H,N,CA,CB)

the cross torsion defined by the atoms 2, 3, 4 and 5 as well as 3, 4, 5 and 6 of molecule 1:

t%1:1,2,3,4%1:3,4,5,6

the hyrdogen bond between the H atom of residue 3 and the O atom of residue 5 of the first molecule:

hb%1:res(3:N,H);1:res(5:O)

the stacking between the HISB ring of residue 44 of molecule 1 and and the pyrimidine ring of residue 2 of
of molecule 2:
st%1:res(44:CG,CE1,CE2,CD1,CD2,CZ)%2:res(1:N1,C5,N3,C6,C2)

the order between the N-H bond of residue 2 and the z-axis:
o%atom(1:res(2:H,N))%cart(0,0,1)

the order parameter between the x-axis and the vector defined by atoms 1 and 2 of the first molecule:

op%cart(1,0,0)%atom(1:1,2)

the pseudo rotations of the atoms in the furanose ring of residues 1 to 6 of molecule 1:

pr%1:res((x):C1*,C2*,C3*,C4*,O4*)|x=1-6

the pucker amplitude of the atoms in the furanose ring of residue 1 of molecule 1:

pa%1:res(1:C1*,C2*,C3*,C4*,O4*)

The expression property allows the evaluation of a multitude of expressions over a trajectory. The
general form is:

- expr%<f1>(<args1>) <op> <f2>(<args2>)

where <op> is one of the following arithmethic or logical operators:

+ addition
- subtraction
* multiplication
/ division
! not

== equals
!= does not equal
> bigger than
< smaller than

>= bigger or equal than
<= smaller or equal than
&& logical and

5-5

|| logical or

<f1> and <f2> are functions followed by their arguments. Depending on the type of function, the arguments
are different. There are the following funcitons:

- functions where the argument is a scalar:
sin the sine function
cos the cosine function
tan the tangens function
asin the inverse sine function
acos the inverse cosine function
atan the inverse tangens function
exp the exponential function
ln the logarithm

abs the absolute value
sqrt the square root
- functions where the argument is a vector:
abs the norm of a vector
abs2 the squared norm of a vector
- functions which need two vectors:
dot the dot product of two vectors

cross the cross product of two vectors
ni the nearest image of vector 1 with respect to vector 2

Examples:

calculates the dot product between position of atom(1:1) and the vector (0,0,1); that is the z-component of
the position of the first atom of the first molecule:

expr%dot(atom(1:1),cart(0,0,1))

calculates the distance between the first atom of the first and second molecule. First, the nearest image of
atom(2:1) according to atom(1:1) is calculated. Second, this vector is substracted from atom(1:1) and the
absolute value is taken:
expr%abs(atom(1:1) - ni(atom(2:1), atom(1:1)))

returns 1 if the the discussed distance is below 1.0 nm and 0 if not:
expr%abs(atom(1:1) - ni(atom(2:1), atom(1:1)))<1.0

calculates the order of the vector defined by atoms 1:1,2 and the z-axis. First, the cosine is calculated by the
dot product of the vectors and division by their lengths (the second vector has length 1). Then the angle is
calculated and converted to degrees:

expr%acos(dot(atom(1:1,2),cart(0,0,1)) / abs(atom(1:1,2)))*(180/3.1415)

5-6

CHAPTER 2

Setup of simulations (preprocessing)

2.1. bin box (GROMOS++ program)

Program description:

When simulating a molecular liquid, a starting configuration for the solvent molecules has to be generated.
To generate a starting configuration for the simulation of a binary mixture, the program bin box can be
used. A cubic box is filled with solvent molecules by randomly distributing them on an evenly spaced grid
such that the total density of the box and the mole fractions of the solvent components match the specified
values. Note that the program ran box (see Sec. 2.25) can be used alternatively, which generates a starting
configuration for the simulation of mixtures consisting of an unlimited number of components, in which the
molecules are oriented randomly.

Required input arguments

@topo1 〈molecular topology file for a single molecule of the type of mixture
component 1〉

@pos1 〈input coordinate file for a single molecule of the type of mixture com-
ponent 1〉

@topo2 〈molecular topology file for a single molecule of the type of mixture
component 2〉

@pos2 〈input coordinate file for a single molecule of the type of mixture com-
ponent 2〉

@nsm 〈total number of molecules per dimension (NSM)〉

@densit 〈density of the binary mixture (kg/m3)〉

@fraction 〈mole fraction of mixture component 1〉

Optional input arguments

none

Standard output

coordinate file with NSM3 molecules in a cubic box at the specified density.

Additional output
none

5-7

2.2. build box (GROMOS++ program)

Program description:

When simulating a molecular liquid, a starting configuration for the solvent molecules has to be gener-
ated. Program build box generates a cubic box filled with identical solvent molecules which are put on
an evenly spaced grid such that the density of the box matches the specified value. Note that to gener-
ate a starting configuration for the simulation of a binary mixture, the program bin box can be used (see
Sec. 2.1). Alternatively, program ran box (see Sec. 2.25) generates a starting configuration for the simulation
of mixtures consisting of an unlimited number of components, in which the molecules are oriented randomly.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) for a single molecule〉

@pos 〈input coordinate file for a single molecule〉

@nsm 〈number of molecules per dimension (NSM)〉

@dens 〈density of the liquid (kg/m3)〉

Optional input arguments

none

Standard output

coordinate file with NSM3 solvent molecules in a cubic box at the specified density

Additional output
none

5-8

2.3. check box (GROMOS++ program)

Program description:

To check for the distances between atoms and periodic copies of the other atoms in the system, program
check box can be used. check box calculates and writes out the minimum distance between any atom in the
central box of the system and any atom in the periodic copies (rectangular box and truncated octahedron
are supported).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) of the system〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈input coordinate (trajectory) file〉

Optional input arguments

@atoms 〈atoms to include in calculation (default: all solute)〉

Standard output

time series of the shortest distance between periodic copies of the selected atoms,
followed by the overall minimum over the simulation

Additional output
none

5-9

2.4. check top (GROMOS++ program)

Program description:

Making a correct topology is one of the most important requirements for doing a successful simulation.
check top helps to remove often made errors from a topology in three ways. First, it runs some standard
tests on the molecular topology and warns if something unexpected is observed in the topology. Second, it
can calculate all bonded interaction energies for a given set of coordinates to determine the compatibility
of the topology with the coordinates. Third, it can check for consistency in the force-field parameters by
comparing it to a specified set of building blocks and force-field parameters.

In the first phase, check top tests that:

1. there is maximally one bond defined between any pair of atoms
2. no atom appears twice in the definition of one given bond
3. only bond types are used that are defined in the topology
4. a bond angle is defined for the atoms involved in any two bonds sharing one atom
5. there is maximally one bond angle defined for a given set of three atoms
6. atoms involved in a bond angle definition are bound to the central atom
7. no atom appears twice in the definition of one given bond angle
8. only bond angle types are used that are defined in the topology
9. an improper dihedral angle is defined centered on every atom that is bound to exactly three other

atoms
10. there is maximum one improper dihedral angle defined for any set of four atoms
11. atoms involved in an improper dihedral angle definition are bound
12. no atom appears twice in the definition of one given improper dihedral angle
13. only improper dihedral types are used that are defined in the topology
14. atoms involved in a proper dihedral angle are sequentially bound
15. no atom appears twice in the definition of one given dihedral angle
16. only dihedral angle types are used that are defined in the topology
17. only atom types are used that are defined in the topology
18. the sum of partial charges on atoms in one charge group is an integer value
19. excluded atoms are 1,2- or 1,3- or 1,4-neighbours
20. atoms only have atoms with a higher sequence number in their exclusion list
21. 1,2- or 1,3-neighbours are excluded
22. 1,4-exclusions are separated by 3 bonds (1,4-neighbours)
23. atoms only have atoms with a higher sequence number in their 1,4-exclusion list
24. 1,4-neighbours are in the exclusion list or in the 1,4-exclusion list
25. no exclusions or 1,4-exclusions are defined for the last atom in the topology
26. the charge group code of the last atom in the topology is 1

Additionally, for atoms that are 1,4 neighbours but are listed as excluded atoms a warning is printed. This
is usually only the case if an aromatic group is involved. Note that a topology that passes all these tests is
by no means guaranteed to be error-free. Conversely, some of these tests are merely meant as warnings for
the user which may point at errors in the majority of cases. In some cases, the user may very well want to
use a topology that does not fulfill all tests.

In the second phase, potential energies of all bonds, bond angles, improper dihedral angles and proper
dihedral angles are calculated and written out. Abnormally large energies or deviations from ideal values
may indicate an error in the topology, or an inconsistent set of coordinates with the topology. See program
shake analysis (see Sec. 5-5.6) for a similar check on the non-bonded interaction energies.

In the third phase check top can compare the topology with other building blocks in a specified molecular
topology building block file and the corresponding interaction function parameter file. It checks if in the
molecular topology building block file we observe one of the following:

1. other atoms with the same name and the same integer atom code (IAC)
2. other atoms with the specified IAC
3. other atoms with the same IAC and mass
4. other atoms with the same IAC and charge
5. other bonds between atoms of the same IAC with the same bond type
6. other bond angles between atoms of the same IAC with the same bond-angle type

5-10

7. other improper dihedral angles between atoms of the same IAC with the same improper dihedral
type

8. other dihedral angles between atoms of the same IAC with the same dihedral-angle type

In cases where the parameters specified in the program are not observed anywhere else, or when they are
not the most common parameter, the program prints out a list of possible alternatives. Again, we stress that
check top only points at possible inconsistencies and does not necessarily indicate errors in your topology.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

Optional input arguments

@coord 〈coordinate file for energy calculation〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@build 〈building block file for consistency check〉

@param 〈parameter file for consistency check〉

Standard output

list of inconsistencies

Additional output
none

5-11

2.5. com top (GROMOS++ program)

Program description:

To generate molecular topology files for the use in simulations of e.g. (macro) molecular complexes, or
mixtures containing several solutes and/or (co)solvents, it is usually convenient to merge existing molecular
topology files. Program com top combines multiple topologies into one new topology.

The user has to specify which molecular topologies are to be merged, and from which file the force-field
parameters and the solvent have to be taken. The resulting molecular topology file is written out to the
standard output.

The program can also be used for topology file format conversion. The argument @inG96 converts
GROMOS96 topologies to the current format. On the other hand @outG96 converts topologies in the
current format to GROMOS96 format.

Required input arguments

@topo 〈molecular topology files (see Sec. 1.2)〉

@param 〈index number of molecular topology file to take parameters from〉

@solv 〈index number of molecular topology file to take solvent from〉

Optional input arguments

@inG96 〈reads in a topology file in GROMOS96 format〉

@outG96 〈the output topology is written in the GROMOS96 format〉

Standard output

combined topology file

Additional output
none

5-12

2.6. con top (GROMOS++ program)

Program description:

A molecular topology file in which a system is described by a specific version of a force-field parameter
set can be converted into a molecular topology file with interaction parameters from a different force-field
version, using the program con top.

An interaction function parameter file has to be specified that corresponds to the force-field version into
which the molecular topology should be converted. con top checks whether the topology is not referring
to atom, bond, bond angle or (improper) dihedral types that are not defined in the parameter file. If type
numbers of atoms, bonds, bond angles, etc. change with the force-field parameter set, a renumbering file
(see Sec. 4-7.2 for its formats) can be given to specify these changes.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) to be converted〉

@param 〈interaction function parameter file〉

@renum 〈renumbering file〉

Optional input arguments

none

Standard output

converted molecular topology file

Additional output
none

5-13

2.7. copy box (GROMOS++ program)

Program description:

Program copy box can be used to duplicate the size of a system in the x, y or z direction (or a, b, c for
triclinic boxes). This is especially convenient if one wants to double the size of a system under periodic
boundary conditions in which the central box has a rectangular or triclinic shape. If one wants to perform
more elaborate transformations, the program cry might be of use (see Sec. 2.8). Note that program com top

(see Sec. 2.5) can be useful to additionally duplicate the solute block in the topology. The @pbc flag is
optional. Only if this flag is given, gathering of the molecules will be performed before copying the box.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) of the system〉

@pos 〈input coordinate file〉

@dir 〈direction in which the coordinates are to be duplicated (x,y,z)〉

Optional input arguments

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

Standard output

coordinate file containing the multiplied system

Additional output
none

5-14

2.8. cry (GROMOS++ program)

Program description:

When using periodic boundary conditions, the computational box containing the molecular system is treated
as being translationally invariant. So, periodic boundary conditions can also be used when simulating a
crystal as long as the unit cell, or a number of adjacent unit cells is used as computational box. Unless the
asymmetric unit is translationally invariant, it cannot be used as computational box. Since crystallographic
coordinates of molecular systems are generally only provided for the molecules in one asymmetric unit, the
coordinates of the other molecules in the unit cell or cells are to be generated by crystallographic symmetry
transformations.

The program cry can rotate and translate copies of a system to create a crystal unit cell. Based on
a topology and initial (gathered) coordinates, as well as a specification file for the symmetry transforma-
tions. A conversion factor can also be given if the translation vector is specified in different units than
the coordinates. A coordinate file is generated that contains coordinates for as many systems as there are
transformations defined in the specification file. The corresponding topology can easily be generated using
the program com top (Sec. 2.5).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pos 〈input coordinate file for the molecules〉

Optional input arguments

@spec 〈specification file for the symmetry transformations〉

@factor 〈conversion factor for distances〉

@spacegroup 〈space group symbol〉

@cell 〈cell edge lengths [nm] and angles [degrees]〉

@keepbox 〈no expansion of the initial box〉

Standard output

coordinates for a crystal unit cell

Additional output
none

5-15

2.9. duplicate (GROMOS++ program)

Program description:

Program duplicate searches for duplicated atoms, i.e. atoms having the same coordinates as another atoms.
If requested, a coordinate file with the duplicated molecules removed is written out.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pos 〈input coordinate file for the molecules〉

Optional input arguments

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@write 〈write out filtered coordinates〉

Standard output

A list of molecules containing duplicated atoms. The coordinates filtered for dupli-
cated if requested.

Additional output
none

5-16

2.10. explode (GROMOS++ program)

Program description:

Program explode takes a box with nsm molecules and puts them on a grid with distance dist between
the grid points. This tool is useful in case a vacuum simulation has to be performed by simulating nsm

molecules at a large intermolecular distance. The input topology and coordinate files must contain at least
nsm molecules. If there are less molecules than grid positions a message is printed to inform the user. As
input coordinates, one can for instance take a liquid box generated by program build box (see Sec. 2.2).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) of the system〉

@pos 〈input coordinate file〉

@nsm 〈number of solute molecules〉

@dist 〈distance to put between molecules 〉

Optional input arguments

none

Standard output

coordinate file containing the coordinates of molecules that were put at larger inter-
molecular distances

Additional output
none

5-17

2.11. gca (GROMOS++ program)

Program description:

Sometimes, one may want to modify a specified molecular configuration such as to obtain specified values of
bond lengths, bond angles or dihedral angles. Program gca allows the user to do this. In addition, series of
configurations can be generated in which the molecular properties of choice are modified stepwise. If more
than one property to be changed has been specified, configurations for all combinations of values will be
generated, allowing for a systematic search of the property space.

In order to fulfill the requested property values, program gca will

- for a bond length between atoms i and j, shift all atoms connected to j (not i) and onwards;
- for an bond angle defined by atoms i,j and k rotate all atoms connected to k (not j) and onwards
around the axis through atom k and perpendicular to the i,j,k-plane;

- for a dihedral angle defined by atoms i,j,k and l rotate all atoms connected to k and l (not j) around
the axis through atoms j and k.

This procedure may lead to distortions elsewhere in the molecule if the atom count is not roughly linear
along the molecular structure, or if the specified properties are part of a cyclic structure. The program does
not check for steric clashes resulting from the modifications.

The properties to be modified are specified through a property specifier (see Sec. 1.3.3), followed by either
one additional argument (single value to be specified) or three additional arguments (to generate a range of
values).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@prop 〈property specifier (see Sec. 1.3.3): properties to change〉

@traj 〈input coordinate file〉

Optional input arguments

@outformat 〈output coordinates format, see Sec. 1.2〉

Standard output

molecular configurations in the requested format

Additional output
none

5-18

2.12. gch (GROMOS++ program)

Program description:

In the standard GROMOS force fields, part of the hydrogen atoms (polar, aromatic) are explicitly treated,
whereas other hydrogen atoms (aliphatic, some aromatic) are implicitly treated by incorporation into the
(carbon)atom to which they are attached. Depending on the presence or absence of hydrogen atom coordi-
nates in a molecular configuration file, hydrogen atom coordinates may have to be recalculated.

Program gch calculates optimal positions for hydrogen atoms for which the connecting bond shows a
relative deviation from the zero-energy value larger than a user specified threshold. Coordinates for all
hydrogen atoms that are explicitly listed in the topology should already be contained in the coordinate file.
Program pdb2g96 (see Sec. 2.19) e.g. will include atoms for which no coordinates were present in the pdb file
with coordinates set to zero. If defined, gch uses topological information on bonds, bond angles and dihedral
angles to place hydrogen atoms at the optimal location. In cases where the necessary angular parameters
are not provided in the topology, gch uses 109.5◦ for tetrahedral centers and 120◦ for planar centers.

Eight types of geometries can be handled when generating hydrogen atom coordinates:

1. An atom (a) is bonded to one hydrogen (H) and one other heavy atom (nh). A fourth atom (f) is
searched for which is bound to nh and preferably used to define the dihedral around the nh-a bond.
The coordinates of H are generated in such a way that the dihedral f-nh-a-H is trans and that the
angle nh-a-H and bond length a-H correspond to their minimum energy values.

2. An atom (a) is bonded to one hydrogen (H) and two other heavy atoms (nh1 and nh2). The
coordinates of H are generated to be in the plane through nh1, nh2 and a, on the line bisecting the
nh1-a-nh2 angle and with an a-H bond length corresponding to the minimum energy value in the
topology, such that the nh1-a-H and nh2-a-H angles are larger than 90 degrees.

3. An atom (a) is bonded to two hydrogens (H1 and H2) and one other heavy atom (nh). A fourth
atom (f) is searched for which is bound to nh and preferably is used to define the dihedral around
the nh-a bond. The coordinates of H1 are generated in such a way that the dihedral f-nh-a-H1 is
trans and that the angle nh-a-H1 and bond length a-H1 correspond to their minimum energy values.
The coordinates of H2 are generated to have the angles nh-a-H2 and H1-a-H2 as well as the bond
length a-H2 at their minimum energy values. If this does not result in a planar configuration around
a, the improper dihedral a-nh-H1-H2 will be positive.

4. An atom (a) is bonded to three hydrogens (H1, H2 and H3) and one other heavy atom (nh). A
fourth atom (f) is searched for which is bound to nh and preferably is used to define the dihedral
around the nh-a bond. The coordinates of H1 are generated in such a way that the dihedral f-nh-a-
H1 is trans and that the angle nh-a-H1 and bond length a-H1 correspond to their minimum energy
values. The coordinates of H2 are such that the angles nh-a-H2 and H1-a-H2 and the bond length
a-H2 are at their minimum energy values, and the improper dihedral a-nh-H1-H2 is positive. The
coordinates of H3 are such that the angles nh-a-H3 and H1-a-H3 and the bond length a-H3 are at
their minimum energy values and the improper dihedral a-nh-H1-H3 has a negative value.

5. An atom (a) is bonded to one hydrogen atom (H) and three other heavy atoms (nh1, nh2, nh3). The
coordinates of H are generated along the line going through atom a and a point corresponding to
the average position of nh1, nh2 and nh3, such that the bond length a-H is at its minimum energy
value and the angles nh1-a-H, nh2-a-H and nh3-a-H are larger than 90 degrees.

6. An atom (a) is bonded to two hydrogen atoms (H1 and H2) and two other heavy atoms (nh1 and
nh2). The coordinates of H1 and H2 are placed above and below the plane going through atoms
nh1, nh2 and a, in such a way that the a-H1 and a-H2 bond lengths and the H1-a-H2 bond angle
are at their minimum energy values. The improper dihedral angle a-nh1-nh2-H1 will be positive.

7. An atom (a) is bonded to two hydrogen atoms (H1 and H2), but to no heavy atoms. This is likely
to be a (crystallographic) water molecule. First a molecule is generated having the a-H1 aligned in
the z-direction and the a-H2 in the z-y plane with the angle H1-a-H2 and bond lengths a-H1 and
a-H2 according to their minimum energy values. This molecule is then rotated around x, y and z
by three random angles.

8. An atom (a) is bonded to four hydrogen atoms (H1, H2, H3 and H4), but to no heavy atoms. A
molecule is generated with all bond lengths at their minimum energy values, the a-H1 aligned in the
z-direction, H2 in the x-z plane and H3 such that the improper a-H1-H2-H3 is positive and H4 such
that the improper a-H1-H2-H4 is negative. The complete molecule is then rotated by three random
angles around x, y and z.

5-19

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pos 〈input coordinate file〉

Optional input arguments

@tol 〈tolerance (default 0.1 %)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

Standard output

coordinates of the molecular system in which the coordinates of all hydrogen atoms
that displayed a relative deviation larger than the specified tolerance have been
repositioned

Additional output
none

5-20

2.13. ion (GROMOS++ program)

Program description:

When simulating a charged solute in solution, one may wish to include counter-ions in the molecular system
in order to obtain a neutral system, or a system with a specific ionic strength. The program ion can replace
solvent molecules by atomic ions by placing the ion at the position of the first atom of a solvent molecule.
Substitution of solvent molecules by positive or negative ions can be performed by selecting solvent positions
with the lowest or highest Coulomb potential, respectively, or by random selection. In order to prevent two
ions being placed too close together, a sphere around each inserted ion can be specified from which no solvent
molecules will be substituted by additional ions. In addition, the user can specify specific water molecules
that should not be considered for replacement.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@pos 〈input coordinate file〉

Optional input arguments

@positive 〈number〉 〈ionname〉 〈residue name (optional)〉

@negative 〈number〉 〈ionname〉 〈residue name (optional)〉

@potential 〈cutoff for potential calculation〉

@random 〈random seed〉

@exclude 〈atom specifier (see Sec. 1.3.1): solvent molecules to be excluded〉

@mindist 〈minimum distance between ions〉

Standard output

Coordinates of the molecular system in which the specified number of ions replace
solvent molecules

Additional output
none

5-21

2.14. link top (GROMOS++ program)

Program description:

For branched systems, it may be very cumbersome to create crosslinks in a topology. Program link top
allows the user to apply a pre-defined link to the topology. The link is defined in a special building block
file, which contains (after a TITLE block), MTBUILDBLLINK blocks. This block has the following layout:

MTBUILDBLLINK

RNME

XYZ

number of atoms

7

#ATOM RES ANM IACM MASS CGMICGM MAE MSAE

1 1 CA 14 13.018 0.00000 1 2 2 6

2 1 CB 15 14.027 0.16000 1 2 5 6

3 1 OG 0 0 0.00000 1 0

4 1 HG 0 0 0.00000 1 0

5 2 CB 15 14.027 0.16000 0 1 6

6 2 OG 4 15.994 -0.32000 1 0

7 2 HG 0 0 0.00000 1 0

bonds

NB

2

IB JB MCB

1 2 1

2 6 12

bond angles

NBA

2

IB JB KB MCB

1 2 6 12

2 6 5 12

improper dihedrals

NIDA

0

IB JB KB LB MCB

dihedrals

NDA

3

IB JB KB LB MCB

0 1 2 6 1

1 2 6 5 1

2 6 5 0 1

END

The atoms section of the building block contains all atoms that are involved in the link. The second
column specifies that these atoms are to be found in the first or second residue of the link. The atoms are
identified in the original topology by the residue sequence number indicated in the input (@linking) and
the name of the atom according to the MTBUILDBLLINK.

In a first step, link top, removes all atoms for which the IAC is 0. All references to these atoms (exclusions,
bonds, angles, etc.) are removed from the topology. Next, the remaining atoms in the link defition get
updated: the values in the topology of IAC, mass, charge, and charge group get replaced by whatever is
indicated in the MTBUILDBLLINK block. The exclusions of the original topology (without the removed
atoms) remain, and the exclusions that are specified in the MTBUILDBLLINK block are added.

Covalent interactions that need to be changed are also specified in the MTBUILDBLLINK block. The
program only allows the user to specify bonds, angles and improper dihedral angles that are referring to

5-22

atoms that are all part of the link specification. Any bonds, angles and improper dihedral angles that were
present in the topology for these atoms will be removed and the newly defined interactions are added to
the topology. For dihedral angles, the program allows the user to refer to the first and/or last atom to be
represented by a number 0. For these atoms, the program will search in the topology for an atom that is
bound to the second or third atom, respectively and assign the dihedral angle to this atom. Any dihedral
angles that were already defined for this group is replaced. Multiple dihedral angles for the same set of four
atoms may be added.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@links 〈file containing the MTBUILDBLLINK blocks〉

@linking 〈residue sequence number〉 〈residue sequence number〉 〈name of link〉

Optional input arguments

none

Standard output

molecular topology file

Additional output
none

5-23

2.15. make pt top (GROMOS++ program)

Program description:

Program make pt top takes two or more molecular topologies and writes the differences in the perturbation
topology format. Both topologies must contain the same number of atoms. The softness parameters αLJ

and αC can be specified by an input parameter.

Required input arguments

@topo 〈multiple molecular topology files (see Sec. 1.2)〉

@softpar 〈softness parameters (αLJ and αC)〉

Optional input arguments

none

Standard output

perturbation topology, containing the parameter differences.

Additional output
none

5-24

2.16. make sasa top (GROMOS++ program)

Program description:

Program make sasa top adds the atom-specific information required to use the SASA/VOL implicit sol-
vent model to the molecular topology file. It reads in an existing molecular topology file created using
make top (see Sec. 2.17), along with a SASA/VOL specification library file, which contains the atom-specific
SASA/VOL parameters. The specification library file must be for the same force field as was used to create
the molecular topology file. The inclusion of hydrogen atoms in the calculation of the SASA during the
simulation may also be specified.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@sasaspec 〈SASA/VOL specification library file〉

Optional input arguments

@noH 〈do not include hydrogen atoms (default: include)〉

Standard output

molecular topology file with appended SASA/VOL information

Additional output
none

5-25

2.17. make top (GROMOS++ program)

Program description:

Program make top builds a molecular topology from a building block sequence. make top reads in a
molecular topology building-block file (e.g. mtb53a6.dat) and an interaction function parameter file (e.g.
ifp53a6.dat), and gathers the specified building blocks to create a topology. Cysteine residues involved in
disulfide bridges as well as heme and coordinating residues involved in covalent bonds to the iron atom have
to be explicitly specified. Topologies for cyclic sequences of building blocks can be generated using @cyclic.

Required input arguments

@build 〈molecular topology building block file〉

@param 〈interaction function parameter file〉

@seq 〈sequence of building blocks in the solute〉

@solv 〈building block for the solvent〉

Optional input arguments

@cys 〈cys1〉–〈cys2〉 . . . 〈cys1〉–〈cys2〉

@heme 〈residue sequence number〉 〈heme sequence number〉

Standard output

molecular topology file

Additional output
none

5-26

2.18. mk script (GROMOS++ program)

Program description:

A MD simulation is usually performed by executing a small script that combines all the necessary files and
redirects the output to the appropriate places. When simulations are performed on a queue, such scripts
become indispensable. Additionally, in many simulation projects the user prepares similar input files and
scripts over and over again. Program mk script can either create a series of similar scripts that run a
sequential list of simulations (@script) or it can create scripts for a more complex set of simulations that
perform a specific task (start-up, perturbation; @joblist). Scripts for special cases such as REMD simulations
(@remd) can also be written.

GROMOS does not require specific filenames for specific types of files. However, most users find it useful
to retain some order in their filenames. mk script has a standard way of constructing filenames that depends
on the script number and the system name. The user can specify another set of rules to create filenames
through the mk script library file (@template). In this file, machine-dependent modifications to the scripts
that are to be written can also be specified, such as the job submission command, the MPI command, the
stopcommand (to delete all subsequent jobs from the queue in case the current job fails) and which queue
to use (@queue). A standard location of the mk script library file can be specified through the environment
variable MK SCRIPT TEMPLATE.

Program mk script can write input files forMD++ (@version). The MD++ input file (@files->input)
should also be of the correct format: mk script cannot convert program-specific MD++ input blocks into
the analogous blocks for the other version of GROMOS.

In addition to write out scripts and input files, mk script performs a small number of tests on the given
input files to prevent the user from submitting a simulation that will fail within the first few seconds. In the
messages produced by these tests, a distinction is made between warnings and errors. A warning is given
for inconsistencies in the inputs that may lead to an erroneous simulation, but could also be intentional. An
error is produced by inconsistencies that will definitely result in the program crashing. Note that passing
the tests carried out by mk script does not guarantee that a simulation will work, as these checks are not
exhaustive. All performed tests are listed below (Warnings, Errors).

The mentioned tests are done for every script since some variables may change due to a joblist file. If
there are no errors, the input file and script will be written to disc. If there are errors, the script and input
file will not be written, unless the user forces this (@force).

Warnings:

1. the GROMOS binary specified in the mk script input file cannot be found
2. the highest LAST atom number in the MULTIBATH block in the MD++ input file is not equal to the

total number of atoms calculated from the topology file and SYSTEM block
3. DT in the STEP block is too large in combinations with the geometric constraints in the CONSTRAINT

block (MD++). Suggested step sizes are:

0.0005 ps: no constraints on solvent or bonds involving hydrogens

0.001 ps: no constraints on bonds not involving hydrogens

0.002 ps: all bonds constrained
4. the FORCE for bonds that are SHAKEn is calculated
5. the FORCE for bonds that are not SHAKEn is not calculated
6. smallest box dimension (length) of the periodic box is less than twice the long-range cut-off RCUTL

in the PAIRLIST block of the MD++ input file
7. the reaction field cut-off distance RCRF in the NONBONDED block of the MD++ input file is not

equal to the long-range cut-off RCUTL in the PAIRLIST block (MD++)
8. a perturbation topology was specified in the mk script input file but no perturbation was requested

in the MD++ input file
9. the combination of RLAM and DLAMT in the PERTURBATION block and the number of steps from

the STEP block in the MD++ input file will lead to a lambda value larger than 1

Errors:

1. one of the essential blocks is missing (MD++): STEP, BOUNDCOND, INITIALISE, FORCE, CONSTRAINT,
PAIRLIST, NONBONDED

5-27

2. there is no VELOCITY block in the coordinate file, but NTIVEL in the INITIALISE block of the MD++

input file specifies that the velocities should be read from file
3. non-zero NTISHI in the INITIALISE block of the MD++ input file specifies that the lattice shifts

should be initialised, but zero NTB in the BOUNDCOND block specifies a vacuum simulation
4. there is no LATTICESHIFT block in the coordinate file, but NTISHI in the INITIALISE block of the

MD++ input file specifies that the lattce shifts should be read from file
5. there is no GENBOX block in the coordinate file, but non-zero NTB in the BOUNDCOND block specifies a

non-vacuum simulation
6. the number of the last atom given in the FORCE block of the MD++ input file is not equal to the

total number of atoms calculated from the topology and SYSTEM block
7. the number of atoms calculated from the topology and SYSTEM block of the MD++ input file is not

equal to the number of atoms in the POSITION block of the coordinate file
8. in the PAIRLIST block, the short-range cutoff RCUTP is larger than the long-range cutoff RCUTL

(MD++)
9. no position restraints specification file is specified in the mk script input file, but position restraining

is switched on in the MD++ input file
10. no perturbation topology file is specified in the mk script input file, but perturbation is switched

on in the MD++ input file

Required Input Arguments

@sys 〈system name〉

@bin 〈GROMOS binary to use〉

@dir 〈where the files should be (all filenames to be given relative to this)〉

@version 〈md++ / promd〉

@files

topo 〈molecular topology file (see Sec. 1.2)〉

input 〈input file〉

coord 〈initial coordinates〉

refpos 〈reference positions〉

posresspec 〈position restraint specifications〉

disres 〈distance restraint specifications〉

dihres 〈dihedral restraint specifications〉

jvalue 〈j-value restraint specifications〉

order 〈order parameter restraint specifications〉

ledih 〈local elevation dihedral specifications〉

pttopo 〈perturbation topology〉

Optional input arguments

@script 〈first script〉 〈number of scripts〉 (default: 1 1)

@joblist 〈joblist file〉

@template 〈mk script library file or filename template〉

@queue 〈which queue to use in mk script library file〉

@remd 〈master / slave hostname port〉 (replica exchange MD)

@cmd 〈overwrite last command in mk script library file〉

@force (write script regardless of errors)

Standard output

warnings and errors concerning the consistency checks

Additional output

scripts and input files for the requested MD simulations

5-28

2.19. pdb2g96 (GROMOS++ program)

Program description:

Converts coordinates of a pdb file (Protein Data Bank) to coordinates in GROMOS format. The unit of
the coordinates is converted from Å to nm. The order of the atoms in the pdb file does not necessarily
correspond to the order of the atoms in the topology, but the residues should come in the proper order. The
program identifies atoms and residues based on their names. Alternatives to the atom and residue names in
the topology can be specified in a library file (see Sec. 4-7.3). The only requirement on residue numbers in
the pdb file is that the residue number should change when going from one residue to the next. Mismatches
between the topology and the pdb file are treated as follows:

1. If the expected residue according to the topology is not found, a warning is written out and the next
residue in the pdb file is read in until a match with the topology is found.

2. Atoms that are expected according to the topology, but that are not found in the pdb file are written
out in the coordinate file with coordinates (0.0, 0.0, 0.0). A warning is written to the standard error.

3. Atoms that are present in the pdb file, but not expected according to the topology are ignored, a
warning is written to standard error.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pdb 〈pdb coordinates〉

@lib 〈library for atom and residue names〉

Optional input arguments

@out 〈resulting GROMOS coordinates〉 (optional, defaults to stdout)

@outbf 〈write B factors and occupancies to an additional file〉

Standard output

GROMOS coordinates for the atoms of the system

Additional output
none

5-29

2.20. pert top (GROMOS++ program)

Program description:

Creates a perturbation topology to perturb specified atoms. A perturbation topology is written that defines
a perturbation to alter the specified atoms into a specified atom types, charges and masses. Each of the
arguments @types, @masses and @charges can be omitted. In this case the values from the topology are
taken. If not sufficient values are given, the last given value is taken for all the remaining atoms.

Use program pt top to convert the resulting perturbation topology to a different format or to a regular
molecular topology.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to be modified〉

@types 〈IACs of the perturbed atoms〉

@charges 〈charges of the perturbed atoms〉

@masses 〈masses of the perturbed atoms〉

Optional input arguments

none

Standard output

perturbation topology

Additional output
none

5-30

2.21. prep eds (GROMOS++ program)

Program description:

The topology file for EDS (dual topology!) is generated from N (s)’normal’ topologies, where N (s) is the
number of end states. An end state is in EDS a molecule, e.g. a ligand. In the EDS topology, all states or
molecules, respectively, are combined and excluded from another. The resulting molecular topology file is
written out to a file called com eds.top.

In the EDS perturbation topology, a molecule is ’visible’ in one state and in all other states it consists of
dummy atoms. For this the MPERTATOM block is used. The resulting perturbation topology file is written out
to a file called pert eds.ptp.

The argument @inG96 convertsGROMOS96 topologies to the current formats. On the other hand outG96

converts topologies in the current format to the GROMOS96 format.

Required input arguments

@topo 〈molecular topology files of end states〉

@numstat 〈number of end states N (s)〉

@param 〈index number of molecular topology file to take parameters from〉

@solv 〈index number of molecular topology file to take solvent from〉

Optional input arguments

@update tree 〈switch for max. spanning tree update (required if @form=3)〉

@tree 〈file with old max. spanning tree (required if @update tree is
specified)〉

Standard output
none

Additional output

combined molecular topology file (written to a file with name com eds.top) and
perturbation topology file (written to a file with name pert eds.ptp) for EDS
simulation (dual topology)

5-31

2.22. prep xray (GROMOS++ program)

Program description:

Program prep xray converts a crystallographic information file (CIF) containing reflection data into a GRO-
MOS X-ray restraints specification file. Using a mapping file (map) it writes out the element names of the
solute and solvent atoms according to their integer atom codes. The atoms’ B-factors and occupancies are
read from a special file (@bfactor) if requested or defaulted to 0.01nm2 and 100%. The reflection list can be
filtered according to the given resolution range. If no resolution is given, it is determined automatically. A
random set of amplitudes is created for the computation of the free R factor.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@cif 〈crystallographic information file〉

@map 〈file with IAC-to-element name mapping〉

@bfactor 〈file with the B-factors and occupancies〉

@spacegroup 〈space group in Hermann-Mauguin format〉

@cell 〈cell descriptor: a, b, c, α, β, γ〉

@resolution 〈resolution range: minimum, maximum〉

@rfree 〈percentage taken for the free R factor〉

Optional input arguments

@filter 〈filter amplitudes smaller than multiple of RMSD〉

@symmetrise 〈apply symmetry operations to reflections〉

@factor 〈factor to convert the length unit to Angstrom〉

Standard output

crystallographic restraints specification data

Additional output
none

5-32

2.23. prep xray le (GROMOS++ program)

Program description:

Program prep xray le creates a X-ray local elevation file. It takes the side chains of the residues contained in
the specified atoms. The side chains are defined in a special file (@library). It should contain the following
block:

LESIDECHAIN

name dim atom names

ARG 4 N CA CB CG CA CB CG CD CB CG CD NE CG CD NE CZ

ASN 2 N CA CB CG CA CB CG OD1

END

As the atom names define (dim) dihedral angles they have to be a multiple of four. The local elevation
parameters (force constant, the number of bins of the grid, the functional form switch, the width of the
potential energy function and its cutoff) are specified using @leparam. The X-ray parameters R0 threshold
and cutoff for Rreal calculation are specified using @xrayparam.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@atoms 〈atoms to consider〉

@library 〈library file〉

Standard output

crystallographic local elevation specification data

Additional output
none

5-33

2.24. pt top (GROMOS++ program)

Program description:

Combines topologies with perturbation topologies to produce new topologies or perturbation topologies.
Reads a topology and a perturbation topology to produce a new (perturbation) topology. The perturba-
tion topology can contain a PERTATOMPARAM, or MPERTATOM block (see Sec. 4-3.3). The atom numbers in the
perturbation topology do not need to match the numbers in the topology exactly. If the topology and pertur-
bation topology do not match in their atom numbering, a shift can be applied using the @firstatom option.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pttopo 〈perturbation topology with PERTATOMPARAM or MPERTATOM block〉

@type 〈output format: TOPO, PERTTOPO or PERTTOPO03〉

@npt 〈sequence number of the perturbation in a MPERTATOM block to apply
(0 = stateA)〉

@firstatom 〈atom specifier (see Sec. 1.3.1): first atom to which the perturbation
will be applied〉

Optional input arguments

none

Standard output

combined (perturbation) topology

Additional output
none

5-34

2.25. ran box (GROMOS++ program)

Program description:

When simulating a molecular liquid, a starting configuration for the solvent molecules has to be generated.
Program ran box generates a starting configuration for the simulation of mixtures consisting of an unlimited
number of components. The molecules are randomly placed in a cubic or a truncated octahedron box, in
a random orientation. Note that for the generation of a starting configuration for the simulation of pure
liquids and binary mixtures, the programs build box and bin box can alternatively be used (see Secs. 2.2
and 2.1, respectively).

Required input arguments

@topo 〈topologies of single molecule for each molecule type: topo1 topo2 ...〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@pos 〈coordinates of single molecule for each molecule type: pos1 pos2 ...〉

@nsm 〈number of molecules for each molecule type: nsm1 nsm2 ...〉

@dens 〈density of liquid (kg/m3)〉

Optional input arguments

@thresh 〈threshold distance in overlap check (nm) [default: 0.20 nm]〉

@layer 〈create molecules in layers (along z-axis)〉

@boxsize 〈boxsize〉

@fixfirst 〈do not rotate / shift first molecule〉

@seed 〈random number generator seed〉

Standard output

coordinate file (cubic or truncated octahedron box, specified density)

Additional output

progress report (written to the standard error)

5-35

2.26. ran solvation (GROMOS++ program)

Program description:

When simulating a molecule in solution or in a crystal containing solvent molecules, the atomic coordinates of
the solvent molecules are to be generated if they are not available from experiment. Alternatively to sim box

(which solvates a solute in a pre-equilibrated box of a molecular liquid, see Sec. 2.28), ran solvation can
solvate a solute in a mixture consisting of an unlimited number of components. The program places the
solute in the center of a box (rectangular or truncated octahedron) and generates a random distribution of
solvent molecules around it, which are placed in a random orientation. The total number of solvent molecules
is calculated based on the specified solvent density and the molar fractions. When calculating the solvent
density, the excluded volume of the solute is taken into account as specified by the user. ran solvation

checks separately for solute-solvent and solvent-solvent overlap after every insertion. If any solute-solvent or
solvent-solvent interatomic distance is smaller than the respective threshold distance specified by the user,
the insertion trial is rejected. Note that for the optional input flags, either the box-size or the minimum
solute-to-wall distance should be specified.

Required input arguments

@topo u 〈molecular topology file (see Sec. 1.2) for the solute〉

@pos u 〈input coordinate file for the solute to be solvated〉

@sev 〈solvent-excluded volume of the solute (nm3) 〉

@topo v 〈list of (single molecule) molecular topology files of solvents: topo solv1
topo solv2 . . . 〉

@pos v 〈list of (single molecule) coordinate files of solvents: pos solv1 pos solv2
. . . 〉

@molf v 〈mole fraction of each solvent: molf solv1 molf solv2 . . . 〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@dens 〈mass density of solvent mixture (kg/m3)〉

Optional input arguments

@minwall 〈minimum solute-to-wall distance(s)〉

@boxsize 〈length of box-edge(s)〉

@thresh u 〈threshold interatomic distance in overlap check (solute - solvent); de-
fault: 0.40 nm〉

@thresh v 〈threshold interatomic distance in overlap check (solvent - solvent); de-
fault: 0.20 nm〉

Standard output

coordinate file for the solvated solute

Additional output
none

5-36

2.27. red top (GROMOS++ program)

Program description:

For large molecular complexes, one would sometimes like to consider only a part of the many atoms, thereby
reducing the computational effort required by a simulation. Programs tstrip and filter can filter an
atomic coordinate file (see Secs. 4.64 and 4.29, respectively). Accordingly, program red top can cut out
parts of a molecular topology.

The user has to list atoms of the molecular topology to be reduced. All atoms, exclusions, bonds, bond
angles etc. that involve atoms that are not in this list are removed. Note that to cut out all atoms within
a sphere around a part of the system, one could first generate a list of the corresponding atoms using the
program pairlist (see Sec. 5.5).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) to be reduced〉

@atoms 〈atoms in the system to keep〉

Optional input arguments

none

Standard output

reduced topology file

Additional output
none

5-37

2.28. sim box (GROMOS++ program)

Program description:

When simulating a molecule in solution or in a crystal containing solvent molecules, the atomic coordinates
of the solvent molecules are to be generated, if they are not available from experiment. Program sim box can
solvate a solute in a pre-equilibrated box of solvent molecules. The file specifying the solvent configuration
should contain a GENBOX block with the dimensions corresponding to the pre-equilibrated density. The
solvent topology is read from the SOLVENTATOM block of the specified topology.

To prevent overlap between solute and solvent molecules, only solvent molecules for which the centre of
geometry is at a minimum distance from any solute atom (which can be defined via the @thresh flag) are
put into the box. Before solvating the solute molecules, the solute can be rotated such that the largest
distance between any two solute atoms is directed along the z-axis, and the largest atom-atom distance in
the xy-plane lies in the y-direction, by giving the @rotate flag. The resulting box containing solute and
solvent molecules can be either rectangular or a truncated octahedron. Its dimensions can be specified via
the @boxsize flag. If this flag is given, the box dimensions are read in from the GENBOX block in the solute
coordinate file. Alternatively, when the @minwall flag is given, the solute is put into a box filled with solvent
molecules with box dimensions guaranteeing a minimum distance between any solute molecule and the box
edges. Either one value can be specified for the @minwall flag, resulting in a cubic or truncated octahedron
box, or three values can be specified, to generate a rectangular box. In the latter case, the solute molecules
can be gathered on request (by specifying the @gather flag) and the @rotate flag must be given. Note that
to solvate a solute in a triclinic box, one can use sim box to generate a rectangular box and subsequently
apply the appropriate symmetry transformations on the generated box using the program cry or use sim box

to generate a truncated octahedral box and convert it to a triclinic box using the program unify box.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2) of the solute〉

@pbc 〈periodic boundary condition (r or t)〉

@pos 〈input coordinate file for the solute〉

@solvent 〈input coordinate file for the pre-equilibrated solvent〉

Optional input arguments

@boxsize 〈use boxsize specified in input file〉

@minwall 〈minimum solute to wall distance〉

@thresh 〈minimum solvent to solute distance (nm) [default: 0.23 nm]〉

@gather 〈gather solute〉

@rotate 〈rotate solute: biggest axis along z, second along y〉

Standard output

coordinate file of the solvated solute.

Additional output
none

5-38

CHAPTER 3

Minimizers and simulators

When performing an energy minimization (EM) or a molecular dynamics (MD) or stochastic dynamics
(SD) simulation, the minimum requirement is the availability of a starting configuration and a molecular
topology file containing the atomic masses and physical force-field data with respect to the molecular system

(Chap. 2-5). The non-physical atomic interaction function V(spec) (Chap. 2-9) needs not be specified, since

it only serves special purposes. The different terms in V(spec) represent different ways in which the motion
of the atoms can be restrained or influenced:

- atom position restraining or fixing
- atom-atom distance restraining
- dihedral-angle restraining
- 3J-coupling constant restraining
- S2 order-parameter restraining
- X-ray structure factor amplitude, electron density or symmetry restraining
- distancefield distance restraining
- local-elevation interaction

Since application of these special forces is optional, the different types of special force data are kept in
different files. When performing a SD simulation, atomic friction coefficients γi must be available. These
can be given in an atomic friction coefficients file. Finally, when performing a free energy calculation a
perturbation molecular topology is required specifying the change in Hamiltonian from state A to state B.

5-39

3.1. md (MD++ program)

Program description:

Program md carries out an EM, MD or SD simulation for a molecular system consisting of solute and solvent
(molecules Chaps. 2-11, 2-12 and 2-13). Periodic boundary conditions can be applied Sec. 2-4.1. Bond
lengths and in solvent molecules also bond angles can be treated as holonomic constraints (Chap. 2-10).
Temperature and pressure can be maintained by weak coupling of different degrees of freedom (solute internal
plus rotational, solute translational, solvent) to different temperature baths and of the box dimensions
(isotropic or along x-, y- and z-axis) to different pressure baths. Translation of and rotation around the
centre of mass of the molecular system can be monitored and halted. Atomic coordinates, velocities, energies,
pressure, volume and free energy data can be written to various trajectory files for later analysis.

Required input arguments:

@topo R 〈molecular topology file (see Sec. 1.2)〉

@conf R 〈coordinates and restart data〉

@input R 〈input parameters〉

@fin W 〈final configuration〉

@trc W 〈coordinate trajectory〉

Optional input arguments:

@pttopo R 〈perturbation topology file〉

@trc W 〈coordinate trajectory〉

@trv W 〈velocity trajectory〉

@trf W 〈force trajectory〉

@trs W 〈special trajectory〉

@tramd W 〈RAMD trajectory〉

@tre W 〈energy trajectory〉

@bae W 〈block averaged energy trajectory〉

@trg W 〈free energy trajectory〉

@bag W 〈block averaged free energy trajectory〉

@posresspec R 〈position restraints specification〉

@refpos R 〈position restraints〉

@distrest R 〈distance restraints specification〉

@dihtrest R 〈dihedral restraints specification〉

@jval R 〈J-value restraints specification〉

@order R 〈S2-value restraints specification〉

@xray R 〈Xray restraints specification〉

@lud R 〈local elevation umbrella database〉

@led R 〈local elevation coordinate specification〉

@friction R 〈atomic friction coefficients〉

@print 〈print additional information〉

@anatraj R 〈re-analyze trajectory〉

@verb 〈control verbosity〉

@version 〈print version information〉

Standard output

general information about the running simulations, printed to the standard output

Additional output

different files (trajectories) depending on the input flags specified in the input file

5-40

3.2. repex mpi (MD++ program)

Program description:

This program is used to run replica exchange simulations. See md (Sec. 3.1) for the documentation of all
command line arguments. Additional command line arguments are reported below.

Required input arguments:

@repout W 〈output file for replicas〉

@repdat W 〈replica data file〉

Optional input arguments:

none

Standard output

information from master about timings, printed to the standard output

Additional output

general information about the running simulations is printed to the output file
specified under @repout, different files (trajectories) depending on the input flags
specified in the input file

5-41

3.3. eds 2box (MD++ program)

Program description:

This program is used to run twin-system EDS simulations. The command line arguments are reported below.

Required input arguments:

@topo1 R 〈molecular topology file for box 1 (see Sec. 1.2)〉

@topo2 R 〈molecular topology file for box 2 (see Sec. 1.2)〉

@conf1 R 〈coordinates and restart data for box 1〉

@conf2 R 〈coordinates and restart data for box 2〉

@input1 R 〈input parameters for box 1〉

@input2 R 〈input parameters for box 2〉

@pttopo1 R 〈perturbation topology file for box 1〉

@pttopo2 R 〈perturbation topology file for box 2〉

@tre1 W 〈energy trajectory for box 1〉

@tre2 W 〈energy trajectory for box 2〉

@fin1 W 〈final configuration for box 1〉

@fin2 W 〈final configuration for box 2〉

Optional input arguments:

@trc1 W 〈coordinate trajectory for box 1〉

@trc2 W 〈coordinate trajectory for box 2〉

@trv1 W 〈velocity trajectory for box 1〉

@trv2 W 〈velocity trajectory for box 2〉

@trf1 W 〈force trajectory for box 1〉

@trf2 W 〈force trajectory for box 2〉

Standard output

general information about the running simulations, printed to the standard output

Additional output

different files (trajectories) depending on the input flags specified in the input file

5-42

CHAPTER 4

Analysis of trajectories (postprocessing)

4.1. bar (GROMOS++ program)

Program description:

Program bar calculates free energy differences between (at least) two states using Bennett’s Acceptance
Ratio method.1 The free energy between two states, i and j, is given by

∆G(λi → λj) = kBT ln
〈f(E(λi)− E(λj) + C)〉λj

〈f(E(λj)− E(λi)− C)〉λi

+ C (4.1)

where f(x) denotes the Fermi function

f(x) =
1

1 + exp(x/kBT)
(4.2)

and

C = kBT ln
Nj

Ni
+∆G(λi → λj). (4.3)

These equations are solved self-consistently, using a numerically stable implementation.2 The conver-
gence criterion (relative change in free energy between iterations; @convergence) and maximum number of
iterations (@maxiterations) can be specified.

Time series of the energies (with lenght Ni and Nj , respectively) are read in from one file per simulated
state, which also contains the energies of the neighbouring states. These files may be generated using program
ext ti ana with option @bar data (see Sec. 4.27).

Error estimates are standardly determined from the ensemble averages in the equations above. Optionally,
a bootstrap error can be computed, where the calculation is repeated the indicated number of times (option
@bootstrap), with random samples of the original time series. The standard deviation of the bootstrap
estimates is reported.

The program also computes the overlap integral from distributions of the energy differences Pi(∆E) and
Pj(∆E), using

OI = 2
∑

∆E

Pi(∆E)Pj(∆E)

Pi(∆E) + Pj(∆E)
(4.4)

with the sum running over all bins of the distribution. The distributions may be written out to separate
files using option @printdist.

Required input arguments

@files 〈energy files from ext ti ana (see Sec. 4.27)〉

@temp 〈absolute temperature〉

Optional input arguments

@maxiterations 〈maximum number of iteractions (default: 500)〉

@convergence 〈relative change in free energy for convergence (default: 1E-5)〉

@printdist 〈write out distributions〉

@bootstrap 〈number of bootstrap estimates for error estimates (default: 0)〉

5-43

Standard output

Overview of free energy calculation

Additional output

Distributions of the individual energy differences

5-44

4.2. bilayer dist (GROMOS++ program)

Program description:

Distributions along the bilayer normal are useful to characterise membrane systems. This program calculates
the distribution of a given set of atoms with respect to the center of mass of another given set of atoms
(usually, this set will include all bilayer atoms to give a distribution of atoms with respect to the bilayer
center of mass).

By default, all distributions are normalised to unity. However, the user may be interested in density
distributions. In this case, the flag @density must be included. The user can also obtain mass or electron
densities with the help of the @mult argument. This will multiply the distribution by a given number. If
the user wants to calculate electron density profiles the @mult and @density arguments must be given. In
some cases, the bilayer is not centered in the periodic box and the center of mass will not be in between the
two layers but in the bulk of the solvent instead. The argument @translate can be used to circumvent this
problem.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms for c.o.m calculation〉

@selection 〈atom specifier (see Sec. 1.3.1): atoms to consider〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

@grid 〈integer (default: 100)〉

@translate 〈translate box〉

@mult 〈double (default: 1)〉

@density 〈calculate density distribution〉

Standard output

distribution of selected atoms

Additional output
none

5-45

4.3. bilayer oparam (GROMOS++ program)

Program description:

Deuterium order parameters (SCD) can be derived from deuterium quadrupole splitting experiments and
have used to study biological membranes. The corresponding carbon-hydrogen order parameters (SCH) can
be calculated by computing the correlation functions describing the reorientation of the carbon-hydrogen
vectors. More precisely, for each methylene group along the chain, an order parameter tensor S can be
defined as

Sij =
1

2
〈3cosθi cosθj − δij〉, (4.5)

where θi is the angle between the ith local molecular axis (x′, y′ or z′) and the bilayer normal (z-axis), δij is
the Kronecker delta symbol and 〈...〉 stands for trajectory averaging. As a convention, for the nth methylene
group Cn, the direction of the vector Cn−1 − Cn+1 is taken as z′, the direction of the vector normal to z′

in the plane Cn−1, Cn, and Cn+1 defines y′, while x′ is the direction of the vector perpendicular both to z′

and y′. The quantity SCH = −(2/3Sxx + 1/3Syy) is the value to be compared with the experimental SCD

value.

The order parameters are calculated with respect to a fixed orientational vector (corresponding to the di-
rection of the experimental magnetic field; usually taken along the bilayer normal) given by the flag @refvec.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1) for which order parameters will be
calculated〉

@refvec 〈reference orientational vector〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

Standard output

order parameter tensor components and carbon-hydrogen order parameter for se-
lected atoms

Additional output
none

5-46

4.4. cluster (GROMOS++ program)

Program description:

Program cluster performs a conformational clustering based on a similarity matrix, such as calculated by
the program rmsdmat (see Sec. 4.54). The program uses the clustering algorithm of Daura.3 Structures
with RMSD values smaller than a user specified cutoff are considered to be structural neighbours. The
structure with the highest number of neighbours is considered to be the central member of the cluster of
similar structures forming a conformation. After removing all structures belonging to this first cluster, the
procedure is repeated to find the second, third etc. most populated clusters.

One specific structure can be forced to be the central member structure of the first cluster, this can also
be the reference structure, by specifying structure number 0. The clustering can be performed on a subset
of the matrix, by specifying the maximum number of structures to consider. This allows for an assessment
of the development of the number of clusters over time.

Depending on the settings used for program rmsdmat, the flags @human and @big may need to be specified
to ensure proper reading of the matrix.

Clusters may be further analysed using program postcluster (see Sec. 4.43).

Required input arguments

@rmsdmat 〈RMSD matrix file name〉

@cutoff 〈cutoff〉

@time 〈t0〉 〈dt〉

Optional input arguments

@maxstruct 〈maximum number of structures to consider〉

@human (use a human readable matrix)

@force 〈structure〉 (force clustering on the indicated structure, 0 is the refer-
ence)

@big (when clustering more than 50’000 structures)

Standard output

listing of the size of every cluster that was found

Additional output

Two additional files are written to disk: cluster structures.dat and
cluster ts.dat. cluster structures.dat contains for every cluster its size,
the central member and a listing of all structures in the cluster. cluster ts.dat

contains a time series of the clusters. At every point in time the structure number
and cluster number are given.

5-47

4.5. cog (GROMOS++ program)

Program description:

Program cog calculates the centre of geometry (cog) or centre of mass (com) of the solute molecule(s) in the
specified frames of the input trajectory file(s), and writes out a single trajectory file in which the position
of the cog or com either replaces the atomic coordinates of the solute molecule(s) or are appended directly
after the coordinates of the last atom of the solute molecule(s).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈input trajectory files〉

Optional input arguments

@nthframe 〈write every nth frame (default: 1)〉

@cog com 〈calculate center of geometry (cog) or centre of mass (com) of solute
molecules (default: cog)〉

@add repl 〈add (add) the position of the cog/com or replace (repl) the solute
coordinates with the position of the cog/com (default: repl)〉

Standard output

single trajectory file

Additional output
none

5-48

4.6. cos dipole (GROMOS++ program)

Program description:

Program cos dipole calculates the average dipole moments over a selected set of molecules, taking into
account also polarizable sites. Standardly it outputs the magnitude of the average total, fixed and induced
molecular dipoles, but if needed, the x-, y- and z-components can be written to a file by specifying the @xyz
flag.

Note that the dipole moment is only well-defined for systems consisting of neutral molecules. If the sys-
tem carries a net-charge, the dipole moment will depend on the position of the origin. In cases where the
overall system is neutral but contains ions, the dipole moment will depend on which periodic copy of the
ions is taken. In these cases, the program issues a warning that results will critically depend on the choice
of gathering method.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

@trs 〈special trajectories with COS displacements〉

Optional input arguments

@time 〈time and dt〉

@molecules 〈solute molecules to average over, e.g. 1-5,10,17〉

@fac 〈conversion factor for the unit of the dipole, default: 1; use 48.032045
to convert from e∗nm to Debye〉

@xyz 〈filename for writing out dipole x-,y-,z-components, if no name given:
Mxyz.out〉

@solv 〈include solvent〉

Standard output

time series of the magnitude of the average total, fixed and induced molecular
dipoles

Additional output

output file Mxyz.out contains average x-, y- and z-components of the average total,
fixed and induced molecular dipoles

5-49

4.7. cos epsilon (GROMOS++ program)

Program description:

Program cos epsilon calculates the dielectric permittivity, ǫ(0) , of a simulation box from a Kirkwood-
Fröhlich type of equation as derived by Neumann,4 taking into account also the polarizable centers.

(ǫ(0)− 1)
2ǫrf + 1

2ǫrf + ǫ(0)
=

〈MM2〉 − 〈MM 〉2

3ǫ0VkBT
, (4.6)

where MM is the total dipole moment of the system, ǫ0 the dielectric permittivity of vacuum, ǫrf is a
reaction-field epsilon value, V is the volume and kBT is the absolute temperature multiplied by the Boltzmann
constant.

If the @autocorr flag is given, the program also writes out the normalized autocorrelation function θ(τ),

θ(τ) =
< ~M(t) · ~M(t+ τ) >t

< M(t)2 >t
= exp(−

t

τφ
) (4.7)

from which the Debye relaxation time τD can be calculated:4

τD =
2ǫrf + ǫ(0)

2ǫrf + 1
τφ (4.8)

Using the @truncate flag, the autocorrelation output can be truncated when the number of independent
contributing frames drops below a given threshold.

Note that the total dipole moment of the system is only well-defined for systems consisting of neutral
molecules. If the system carries a net-charge, the dipole moment will depend on the position of the origin.
In cases where the overall system is neutral but contains ions, the dipole moment will depend on which
periodic copy of the ions is taken. In these cases, cos epsilon issues a warning that results will critically
depend on the choice of gathering method.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@e rf 〈reaction field epsilon〉

@temp 〈temperature〉

@traj 〈trajectory files〉

@trs 〈special trajectories with COS displacements〉

Optional input arguments

@time 〈time and dt〉

@fac 〈conversion factor for the unit of the dipole, default: 1; use 48.032045
to convert from e∗nm to Debye〉

@autocorr 〈filename for storing time autocorrelation〉

@truncate 〈minimum number of independent contributing frames after which to
truncate the correlation function〉

Standard output

time series of the box dipole, average molecular dipole and epsilon

Additional output

output file Mcorr.out contains the box dipole autocorrelation data

5-50

4.8. cry rms (GROMOS++ program)

Program description:

Program cry rms is used to compute atom positional RMSDs and RMSFs between the asymmetric units
within a unit cell of a crystalline system. The symmetry operations are either specified using a special file
(@spec, @factor) or by the space group (@spacegroup). In order to identify the individual asymmetric units
(ASUs) an @ref AtomSpecifier AtomSpecifier to the first atom of every ASU have to be given (@asuspec).
If an RMSD is requested (@atomsrmsd), the atom positional RMSD between all the asymmetric units is
printed in separate columns. The RMSF is calculated for the requested atoms (@atomsrmsf) while taking
also the fluctuations of the symmetry related copies into account.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈input trajectory files〉

@asuspec 〈AtomSpecifier to the first atom of every asymetric unit〉

Optional input arguments

@spec 〈specification file for the symmetry transformations〉

@factor 〈conversion factor for distances〉

@spacegroup 〈space group in Hermann-Mauguin format〉

@atomsrmsd 〈AtomSpecifier used for RMSD calculation〉

@atomsrmsf 〈AtomSpecifier used for RMSF calculation〉

Standard output

Time-series of the atom-positional RMSD between of specified atoms with respect
to all asymmetric units. Atom-positional RMSF of the asymmetric unit taking all
asymmetric units of the unit cell into account.

Additional output
none

5-51

4.9. dfgrid (GROMOS++ program)

Program description:

Program dfgrid calculates a distancefield grid analogously to the way it is done in md++, where distancefield
(DF) distances can be used as restraints and reaction coordinates in path pulling methods5. The DF method
is based on the mapping of distances from a target point on a grid, where grid points that overlap with the
protein are penalized. As a result the shortest path for a ligand to the target point will never go through
the protein, making it less likely to get stuck in a dead end.

Program dfgrid calculates the grid for any given snapshot, facilitating the visualization and analysis. It
writes out a coordinate file which contains both the input coordinates and the distancefield grid, in addition
to the target (zero-distance) point which will often be a virtual atom. When choosing pdb as output format,
the distances on the grid will be written to the b-factor column for easy visualization.

The use of either @stride or @frames to reduce the analysis to a few snapshots is recommended.

The following flags are defined in the same way as in the md++ parameter and distance restraints files:
@gridspacing, @proteinoffset, @proteincutoff and @smooth (see Sec. 2-9.12). @proteinatoms has the
same function as the corresponding md++ parameter, but here the atom selection is specified in the form
of an atomspecifier.

@max allows to specify a maximum distance, grid points to which higher distances are mapped will not be
written to the coordinate file. @protect protects grid points within a certain radius from the target point
from being flagged as protein.

With the @distatoms flag you can specify (virtual) atoms for which the df distance will be printed in
standard output and for which the shortest df path will be added to the output coordinates for visual in-
spection. If one is only interested in the distances, @nogrid will prevent writing of the coordinate file.

Required input arguments

@topo 〈molecular topology file 〉

@pbc 〈boundary type [gather method]〉

@atom 〈(virtual) atom specifier for the target (zero-distance) point〉

@gridspacing 〈grid spacing 〉

@proteinoffset 〈penalty for being in the protein 〉

@proteincutoff 〈cutoff to determine gridpoints within the protein 〉

@proteinatoms 〈last atom considered as protein〉

@traj 〈input trajectory files〉

Optional input arguments

@max 〈maximum distance: do not write out grid points with higher dis-
tances (default: 1)] 〉

@smooth 〈number of rounds to smoothen the forces at the edge of the protein
〉

@protect 〈radius around the target atom that will not be flagged as protein 〉

@outformat 〈output coordinates format 〉

@notimeblock 〈do not write timestep block 〉

@time 〈time and dt〉

@stride 〈write every nth frame (default: 1)〉

@frames 〈select frames to write out, starts at 0 (default: 0) 〉

@distatoms 〈(virtual) atom specifier for atoms for which to output the df
distance〉

@nogrid 〈do not write out grid coordinate file〉

Standard output
none

5-52

Additional output

coordinates for the input system, DF grid and target point in the specified coordinate
file format

5-53

4.10. dfmult (GROMOS++ program)

Program description:

Calculates free energy differences between multiple states A and B from an EDS simulation of a reference
state R according to

∆FBA = FB −FA = FB −FR − (FA −FR) = ∆FBR −FAR

= −β−1ln
〈exp[−β(VB − VR)]〉R
〈exp[−β(VA − VR)]〉R

(4.9)

The program reads in energy time series generated by ene ana. It provides an error estimate (err) which
is based on calculation of the (co)variances and the statistical inefficiency as described in6. The implemen-
tation closely follows the Python implementation provided by the authors. When calculating averages and
uncertainties special care is taken in order to avoid overflow (see7).

Required input arguments

@temp 〈temperature of the system〉

@stateR 〈energy time series of the reference state R〉

@endstates 〈energy time series of the end states〉

Optional input arguments

none

Standard output

free energy differences between end states and reference state, and between end
states

Additional output
none

5-54

4.11. disicl (GROMOS++ program)

Program description:

Program disicl classifies secondary structure elements in proteins and nucleic acids based on dihedral
angles.8,9 Angle, region and class definitions are read from a user-specified library file (see Sec. 4-7.10). The
program will warn about overlapping regions and region limits that are outside the chosen periodic range
and will abort if two classes have the same definition.

The program writes out classification statistics per residue and averaged over all residues (stat disicl.out).
Timeseries are written for each class (class XXX.dat) and for the dihedral angles (ts disicl.dat).

In the output files the determined class will be assigned to the residue 0 (as defined in the DSCLANG
block) of the first region contributing to the classification.

The program provides an option (pdbstride) to write out pdb files containing class information in the b-
factor column for visualization using the ”color by b-factor”-function in your favorite visualization software.
An additional pdb is created (colorlegend.pdb), which can be used as a kind of legend for the class color
code when loaded into the visualization software together with the output pdbs.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@lib 〈library file〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

@atoms 〈atoms to include (default: all atoms)〉

@skip 〈skip n first frames〉

@stride 〈take every n-th frame〉

@periodic 〈dihedral angle periodic range (default: -180 180)〉

@nots (do not write time series)

@pdbstride 〈write out pdb coordinates every n steps (has to be >= stride)〉

Standard output

timeseries of the dihedrals; timeseries and statistics of the classification

Additional output

pdb files with class information in the b-factor column

5-55

4.12. dg ener (GROMOS++ program)

Program description:

Program dg ener applies the perturbation formula to calculate the free energy difference between two states
A and B. It reads in the output of program ener (section Sec. 4.22), which can be calculated for the same
trajectory using two different Hamiltonians. The free energy difference is calculated as

∆GBA = −kBT ln〈e−(ĤB−ĤA)/kBT 〉A (4.10)

where the average is over all entries of the energy files that are specified and the Hamiltonians are taken
from the last column of these files.

Required input arguments

@temp 〈temperature for perturbation 〉

@stateA 〈energy files for state A 〉

@stateB 〈energy files for state B 〉

Optional input arguments

@col 〈numbers of the columns to use from file A and B [default: last] 〉

Standard output

For every line in the energy files, the program writes out the energy difference and
the Boltzmann probability for that particular frame. The last column contains the
current estimate of the free-energy difference.

Additional output
none

5-56

4.13. dGslv pbsolv (GROMOS++ program)

Program description:

Progam dGslv pbsolv will compute two electrostatic components of the solvation free energy, namely one for
Coulombic interactions under non-periodic boundary conditions (CB/NPBC) and one for the user-specified
electrostatics scheme (lattice sum, LS or reaction field, RF), under periodic boundary conditions (PBC).
The solute will be centered in the computational box, with its center of geometry.

In the following, the abbreviation ∆Gchg will be used to denote an electrostatic component of the solvation
free energy. ∆Gchg will be computed for a user-specified group of atoms. Note that all atoms of the solute
topology block will be nonpolarizable, i.e. they will be assigned a relative dielectric permittivity of one.

∆G
CB/NPBC
chg and ∆G

LS/PBC
chg will both be computed from two calculations employing finite difference

(FD) algorithms.10 One calculation is carried out with a permittivity appropriate for the solvent (ǫsol), the
other calculation is carried out under vacuum conditions (ǫ0). The differences between both is the solvation
free energy. The resulting correction for the LS scheme is:

∆GLS/PBC
corr = ∆G

CB/NPBC(FD)
chg −∆G

LS/PBC(FD)
chg (4.11)

with

∆Genv
chg = ∆Genv

chg;ǫsol −∆Genv
chg;ǫ0 (4.12)

where env can be CB/NPBC(FD) or LS/PBC(FD).

∆G
RF/PBC
chg will be computed from a FFT algorithm.11,12 For the RF scheme, the user should use the

corresponding LS calculation to compute a correction to cancel possible grid discretization errors. That is,
the resulting correction is:

∆GRF/PBC
corr = ∆G

CB/NPBC(FD)
chg −∆G

LS/PBC(FD)
chg +∆G

LS/PBC(FFT)
chg −∆G

RF/PBC(FFT)
chg (4.13)

In the LS-scheme, tinfoil boundary conditions are used and a hat charge shaping function will be used.
In the RF-scheme, a user-specified relative dielectric permittivity is used. Note that a relative dielectric
permittivity of one implies no application of a reaction-field correction.

As an alternative, PQR files can be used instead of GROMOS coordinate files and topologies. PQR files
are PDB files with the temperature and occupancy columns replaced by columns containing the per-atom
charge and radius.

5-57

Required input arguments

if used with a GROMOS

coordinate file and

topology:

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@coord 〈g96 coordinates〉

@probeIAC 〈integer atom code to take for radius calculation (for wa-
ter, it would be 4 or 5 depending on the ff)〉

@atoms 〈atoms to include〉

@atomsTOcharge 〈atoms to charge〉

@rminORsigma 〈which radii to use: rmin (0) or sigma (1); default 0〉

if used with a PQR file:

@pqr 〈pqr file〉

@coordinates 〈box coordinates in X,Y,Z direction (in nm) that were
used in the simulation〉

@atoms 〈atoms to include; the molecule (as used in gromos-
standard format) can be scipped (e.g. simply ’a’ is enough
to include all atoms)〉

@atomsTOcharge 〈atoms to charge; the molecule (as used in gromos-
standard format) can be scipped (e.g. simply 1-5,7 is
enough to include atoms 1 to 5 and 7)〉

general input:

@schemeELEC 〈electrostatics scheme: LS or RF〉

@rcut 〈cutoff distance in nm (ONLY USED IF scheme==RF)〉

@epsRF 〈reaction field relative dielectric permittivity (ONLY
USED IF scheme==RF)〉

@epsSOLV 〈solvent relative dielectric permittivity of the employed
solvent model〉

@gridspacing 〈grid spacing in nm〉

Optional input arguments

@epsNPBC 〈relative dielectric permittivity for NPBC calculation; default: 78.4〉

@maxiter 〈maximum number of iteration steps; default: 600〉

@cubesFFT 〈number of cubes in the fast Fourier transformation for boundary
smoothing; default: 4〉

@probeRAD 〈probe radius in nm; default 0.14 (for water)〉

@radH 〈your desired hydrogen radius in nm; default 0.05〉

@radscal 〈scale non-H radii with this factor (in case you want to play with radii);
default 1.0〉

@verbose 〈path to log file to document status and errors〉

Standard output

Additional output
none

5-58

4.14. diffus (GROMOS++ program)

Program description:

Program diffus calculates the diffusion of the centre-of-geometry of a specified set of atoms. Firstly,
the mean square displacements (∆(t)) are calculated over all considered molecules and over multiple time
averages.

∆(t) =
1

Nm

Nm
∑

i=1

〈[ri(t+ τ) − ~ri(τ)]
2〉τ≤tav−t (4.14)

where Nm is the total number of molecules (or atoms) considered in the analysis, and tav is the duration of
the averaging block.

According to the Einstein expression, the function ∆(t) should be approximately linear and in practice,
the diffusion could be obtained from the slope of the ∆(t) devided by 2Ndt:

D = lim
t→∞

∆(t)

2Ndt
(4.15)

where Nd is the number of considered dimensions (3 for 3D vectors ri). The slope of the ∆(t) is obtained
from linear least-square fit (LSF). The diffus program makes an automatic LSF considering the whole time
range of ∆(t), which might not be a reasonable approach due to the poor statistics for bigger values of t. It
is recommended that the user analyzes the shape of ∆(t) and performs the LSF considering only the region
of linearity.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@dim 〈dimensions to consider〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to follow〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

Standard output

The value for the diffusion D obtained from LSF and the corresponding R2 of the
LSF are printed to the standart output. The outputfile diffusdp.out contains the
time series of the mean square displacement ∆(t).

Additional output
none

5-59

4.15. dipole (GROMOS++ program)

Program description:

Program dipole will calculate and print the dipole moment of molecules. By default, the program will take
all solute atoms into account, but the user can also specify a set of atoms. The dipole moment of a set of
atoms carrying a net-charge is ill-defined and depends on the position of the origin. For these cases, the
program allows the user to move the centre of geometry of the atoms to the origin.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

@atoms 〈atom specifier (see Sec. 1.3.1) atoms to include〉 (default: all solute)

@cog (move molecule to centre of geometry)

Standard output

time series and averages of the magnitude of the dipole moment and its components

Additional output
none

5-60

4.16. ditrans (GROMOS++ program)

Program description:

Dihedral angle transitions can be monitored during the course of a simulation using MD++. Even though
in many cases a molecular trajectory file will not contain every structure of the simulation, dihedral angle
transitions can also be determined a posteriori from such a trajectory using program ditrans. This program
can also write the time series of dihedral angles without taking the inherent periodicity of a dihedral angle
into account, but rather allow for dihedral angle values below 0◦ or above 360◦.

The program determines the position of maxima and minima in the dihedral angle potential energy function
based on the phase shift and multiplicity given in the topology. Energy barriers arising from alternative
terms, such as non-bonded interactions, which may in theory shift the position of energy minima and maxima
of the dihedral angle are not taken into account.

Two different criteria can be used to count dihedral angle transitions, as described in the manual. A strict
criterion only counts a transition once a dihedral angle passes beyond the minimum of an adjacent energy
well to prevent counting of short lived transitions of the maximum dividing the two energy wells. Because
of a possibly sparse sampling of data in a molecular trajectory, this criterion may be too restrictive. As
an alternative a transition can also be counted as soon as a dihedral angle is seen to cross the maximum
separating two energy wells.

The (standard) output can be restricted to the number of observed dihedral angle transitions for every
dihedral angle that was specified or can be extended to information on every transition encountered.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@prop 〈property specifier (see Sec. 1.3.3)〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

@strict (use GROMOS96 transition criterion)

@verbose (print out every encountered transition)

@tser 〈file name〉 (extended time series)

Standard output

number of dihedral angle transitions for every specified dihedral angle

Additional output

time series of dihedral angles without periodicity restrictions (optional)

5-61

4.17. dssp (GROMOS++ program)

Program description:

Program dssp monitors secondary structure elements for protein structures over a molecular trajectory. The
definitions are according to the DSSP rules defined by Kabsch and Sander13. Within these rules it may occur
that one residue is defined as being part of two different secondary-structure elements. In order to avoid
duplicates in the output, the following priority rules are applied: Beta Sheet/Bridge > 4-helix > 5-helix >
3-helix > H-bonded turn > Bend. As a consequence, there may be, for instance, helices that are shorter
than their minimal length.

The program summarizes the observed occurrences of the secondary structure elements and averages the
different properties over the protein. In addition time series for every type of secondary structure element
are written to file.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1) for the protein〉

@time 〈time and dt〉

@traj 〈trajectory files〉

Optional input arguments

@nthframe 〈write every nth frame〉 (default is 1)

Standard output

summary of the occurrences of all selected residues within different secondary struc-
ture elements

Additional output

time series of the occurrences of all structural elements are written to different
files: Bend.out, Beta-Bridge.out, Beta-Strand.out, 3-Helix.out, 4-Helix.out,
5-Helix.out and Turn.out

5-62

4.18. eds update 1 (GROMOS++ program)

Program description:

Calculates iteratively the EDS parameters ER and s from energy time series of a number (@numstat) of end
states (@vy) and the reference state R (@vr). The form of the used Hamiltonian (single s = 1, multiple s
= 2, maximum spanning tree s = 3) has to be specified (@form), as the number of s parameters depends
on the functional form. For @form = 1, only a single s parameter is calculated (only recommended for N (s)

= 2), for @form = 2 N (s) (N (s)-1)/2 s parameters are calculated and for @form = 3 (N (s)-1) s parameters,
respectively. There are always N (s) energy offset parameters ER, independent of the functional form. The
same number of old parameters have to be given (s and ER).
If a maximum spanning tree is used as functional form (@form = 3), an initial tree must be specified (@tree)
and if this tree shall be updated along with the parameters (@update tree = 1) or not (update tree = 0).

The s parameters are calculated using

ln

M
∑

j=1,j 6=i

[(〈

e−β(|∆Vji|−∆ER
ji)
〉

i

)s]

= ln(M − 1)− 1 (4.16)

where M = N (s) for @form = 1, and M = 2 for @form = 2,3, respectively.

The energy offset parameters are calculated using

ER
i(new) = −β−1 · ln

〈

1 +

N (s)
∑

j=1,j 6=i

e−β(∆Vji−∆ER
ji)

−1
〉

Rnew

+ ER
i(old) (4.17)

As the formulae are correlated, they are solved iteratively until both parameters are converged.

At the end of the program, the number of iterations are written out together with the final parameters.
For @form = 3 and @update tree = 1, the new maximum spanning tree is written to a separate file called
tree.dat. When calculating averages and distributions special care is taken in order to avoid overflow
(see7).

Required input arguments

@temp 〈temperature of the system〉

@numstat 〈number of end states N (s)〉

@form 〈functional form of the Hamiltonian〉

@vr 〈energy time series of the reference state R〉

@vy 〈energy time series of the end states〉

@s 〈 list of old s parameters〉

@EiR 〈 list of old energy offset parameters (ER
i)〉

Optional input arguments

@update tree 〈switch for max. spanning tree update (required if form=3)〉

@tree 〈file with old max. spanning tree (required if update tree is
specified)〉

Standard output

new s and ER
i parameters

Additional output

if @form=3, the maximum spanning tree is written to a file with name tree.dat

5-63

4.19. eds update 2 (GROMOS++ program)

Program description:

Calculates the EDS parameters ER and s from energy time series of two endstates (@vy) and the reference
state R (@vr). Two update schemes are implemented: Scheme 1 calculates the new parameters according
to the procedure described in Ref.14 In that case the parameter @eunder corresponds to the energy thresh-
old. Scheme 2 calculates new parameters according to the procedure described in Ref.15 In that case the
parameter @eunder corresponds to the energy separating sampling from state A from sampling of state B
while the parameters @etrans specifies the width of the transition region.

Required input arguments

@temp 〈temperature of the system〉

@vr 〈energy time series of the reference state R〉

@vy 〈energy time series of the end states〉

@s 〈current s parameter〉

@s old 〈old s parameter〉

@EiR 〈old energy offset parameters (ER
i)〉

@update 〈choice of update scheme〉

@eunder 〈energy threshold if update=1; separation energy if update=2〉

Optional input arguments

@etrans 〈ignored if update=1; size of transition region if update=2 (required)〉

@scale 〈scaling factor to modify default factors〉

Standard output

new s and ER
i parameters

Additional output
none

5-64

4.20. edyn (GROMOS++ program)

Program description:

Program edyn performs an essential dynamics analysis over a trajectory. The covariance matrix is calculated
for the specified atoms and diagonalised. The eigenvalues and eigenvectors are written to file, as well as
information about selected eigenvalues.

The trajectory is subsequently analysed as projections along the eigenvalues. For all of the selected eigen-
values, the atomic components of the eigenvalues and the time series of the projection along the eigenvalue
are written to file. In addition, pdb files are written with coordinates of the specified atoms at the extreme
values of the projection along the eigenvalue. With the @skip flag, the usually time-consuming projections
can be skipped and, in this case, only the covariance matrix, the eigenvalues and the eigenvectors will be
printed to file.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to be considered〉

@ref 〈reference coordinates〉

@traj 〈trajectory files〉

Optional input arguments

@eigenvalues 〈list of eigenvalues for which data is written〉

@skip (skip the (time-consuming) projections)

Standard output
none

Additional output

Most of the output of this program is written to a selection of files:

AVE.pdb contains the average position of the specified atoms

EIVAL.out contains the eigenvalues of the covariance matrix

EIVEC.out contains the eigenvectors of the covariance matrix

EIFLUC.out contains the fluctuation along the eigenvectors

ESSDYN.out contains the averages, fluctuations, minimum and maximum
values of the projections along the eigenvectors

In addition, several files are written out for each selected eigenvalue, x:

EVCOMP x.out contains the atomic contributions to the eigenvector

EVPRJ x.out contains the time series of the projection of the trajectory
along the eigenvector

PRJMAX x.pdb contains coordinates of the selected atoms, displaced from the
average positions along the eigenvector to the maximum value
of the observed projection

PRJMIN x.pdb contains coordinates of the selected atoms, displaced from the
average positions along the eigenvector to the minimum value
of the observed projection

5-65

4.21. ene ana (GROMOS++ program)

Program description:

GROMOS can write energies, free-energy derivatives and block averages of them to separate trajectory
files for later analysis. Program ene ana extracts individual values from such files and can perform simple
mathematical operations on them. The format for (free) energy trajectory files as written by MD++ is
known to the program. In addition, the user can define custom made formats of any trajectory file that
comes in a block-format through a library file. ene ana is able to read and interpret series of two types of
such files simultaneously, typically referred to as the “energy file” and the “free energy file”.

Using the same library file one can define properties to be calculated from the values that are listed in
them. For the selected properties, ene ana will calculate the time series, averages, root-mean-square fluc-
tuations and a statistical error estimate. The error estimate is calculated from block averages of different
sizes. The time for the time series is taken from the trajectory files, unless a different time interval between
blocks is specified through an input parameter. If a topology is supplied, the ene ana uses this to define the
total solute mass (MASS) and the total number of solute molecules (NUMMOL).

Required input arguments

@en files 〈energy files〉

@fr files 〈free energy files〉

@prop 〈properties to monitor〉

Optional input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉 (for MASS and NUMMOL)

@time 〈t and dt〉 (overwrites TIME in the trajectory files)

@library 〈library for property names〉 [print]

Standard output

averages, root-mean-square fluctuations and error estimates for the requested prop-
erties over the supplied trajectories

Additional output

time series of every property will be written to a separate file with name
〈property〉.dat.

5-66

4.22. ener (GROMOS++ program)

Program description:

Program ener can recalculate interaction energies over molecular trajectory files using the interaction pa-
rameters specified in the molecular topology file.

Non-bonded interactions are calculated for all selected atoms with all other atoms in the system. Some
atoms can be specified as being soft, indicating that interactions involving any of these atoms have a specified
softness parameter, for all other atoms in the system, the softness parameter α = 0. Van der Waals
interactions between particles i and j are calculated as

V(vdw)
ij =

[

C12(i, j)

(r6ij + αLJλ2C126)
− C6(i, j)

]

1

(r6ij + αLJλ2C126)
(4.18)

with C126 = C12/C6 for C12 and C6 unequal 0, C126 = 0 otherwise. C12 and C6 are the interaction parameters
taken from the topology, λ and αLJ are specified by the user. Similarly, the electrostatic interaction, including
reaction field contribution for a homogeneous medium outside the cutoff sphere is calculated as

V(ele)
ij =

qiqj
4πǫ0

[

1

(r2ij + αCλ2)1/2
−

1
2CRF r

2
ij

(RRF
2 + αCλ2)3/2

−
(1 − 1

2CRF)

RRF

]

(4.19)

where ǫ0 is the dielectric permittivity of vacuum and qi and qj are the atomic partial charges. RRF is the
reaction field cutoff distance, here assumed to be the same as the interaction cutoff. αC and λ are again
user specified. CRF is calculated from the reaction field dielectric constant ǫRF and κRF (user specified) as

CRF =
(2− 2ǫRF)(1 + κRFRRF)− ǫRF (κRFRRF)

2

(1 + 2ǫRF)(1 + κRFRRF) + ǫRF (κRFRRF)2
(4.20)

The bonded interactions are calculated for all specified properties using the following interaction functions.
For bonds we use the quartic bond stretching interaction form V (b) = V (b,q):

V (b,q)(bn; k
(b,q)
n , b0n) = 1/4k(b,q)n (bn

2 − b0n
2)2 (4.21)

with bn the actual bond length, k
(b,q)
n and b0n the force constant and optimal bond length, respectively. For

angles we use the cosine-harmonic bond-angle bending interaction form V (θ) = V (θ,c):

V (θ,c)(θn; k
(θ,c)
n , θ0n) = 1/2k(θ,c)n (cos(θn)− cos(θ0n))

2 (4.22)

with θn the actual bond angle, k
(θ,c)
n and θ0n the force constant and optimal bond angle respectively. For

proper torsional dihedral angle terms we use:

V (ϕ)(ϕn; k
(ϕ)
n , ϕ0

n,m
(ϕ)
n) = k(ϕ)

n (1 + cos(ϕ0
n) cos(m

(ϕ)
n ϕn)) with ϕ0

n = 0, π . (4.23)

with ϕn the actual dihedral angle value, k
(ϕ)
n the force constant and ϕ0

n and m
(ϕ)
n the phase shift and

multiplicity, respectively. Improper dihedral energy contributions are calculated from the function V (ξ) :

V (ξ)(ξn; k
(ξ)
n , ξ0n) = 1/2k(ξ)n (ξn − ξ0n)

2 (4.24)

ξ0n are the force constant and optimal improper dihedral angle value.

The program can print out various energies in separate columns, e.g. bonded energies, non-bonded ener-
gies with the solute only, with the solvent only or the total energies.

5-67

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1) : atoms for non-bonded interaction〉

@energies 〈energy specifier for the interaction energies to be calculated (1: cova-
lent; 2: elec with solute; 3: elec with solvent; 4: elec total; 5: vdW
with solute; 6: vdW with solvent; 7: vdW total; 8: nonbonded total; 9:
total)〉

@props 〈property specifier (see Sec. 1.3.3): bonded properties to be calculated〉

@cut 〈cut-off distance〉

@eps 〈epsilon for reaction field contribution〉

@kap 〈kappa for reaction field contribution〉

@RFex 〈switch the self term for excluded atoms in the reaction field polariza-
tion on or off 〉

@soft 〈atom specifier (see Sec. 1.3.1) for soft atoms〉

@softpar 〈lam〉 〈a lj〉 〈a c〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time〉 〈dt〉

Standard output

time series of calculated energies (averages).

Additional output
none

5-68

4.23. epath (GROMOS++ program)

Program description:

Program epath finds electron-tunneling pathways in proteins. It uses Dijkstra’s graph search algorithm16 to
find the pathway with the highest product of the decay factors, corresponding to the “shortest path”. The
decay factor ǫij for the electron transfer between atoms i and j is calculated according to:

ǫij = AeB(r2
ij−R) (4.25)

where r ij is the distance between the atoms and the different parameters A, B and R are specified for jumps
through covalent bonds, hydrogen bonds and space as described by Beratan.17

For every atom of the system, the neighbouring atoms within a user-specified cutoff are determined. For
every neighbouring atom its connectivity is classified as covalent, H-bonded or through space. The decay
factor for the neighbouring atoms is calculated using the appropriate parameters and stored if it is higher
than the decay factor that was already stored from a previous cycle. Additionally the jump type and the
atom from where this jump occured are stored. When all atoms have been visited, the “shortest path” is
backtraced from the acceptor to the donor.

The parameters A, B and R are configurable via a parameter file, as well as the parameters for the Hbond
detection. All filenames are configurable.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@donor 〈atom specifier (see Sec. 1.3.1): electron donor〉

@acceptor 〈atom specifier (see Sec. 1.3.1): electron acceptor〉

@traj 〈trajectory files〉

Optional input arguments

@cutoff 〈cut-off distance (default 0.6)〉

@param 〈parameter file〉

@outfile 〈name of the output file〉

@details (detailed output)

@detailsfile 〈name of the output file of the details〉

@timeseries (print time series)

@timeseriesfile 〈filename of the time series file〉

@verbose (produce a verbose output to stderr giving runtime details)

Standard output

A pdb file containing the coordinates of all atoms that have been part of a path
throughout the different frames and how often they have been part of a path as
percentage in the B-factor column

Additional output

Detailed output consiting off a summary per frame and a pdb file containing the
coordinates of the system as well as the coordinates of the path corresponding to
that frame linked together in order to make the path visualisable. Also the program
can output to a file a timeseries of the product of the decay factor of the different
frames as well as its log, and the avarages of both at the end.

5-69

4.24. eps field (GROMOS++ program)

Program description:

Program eps field estimates the relative static dielectric permittivity, ǫ(0) , of a liquid when an external
electric field was applied during the simulation. The permittivity for a specific external field is given by

ǫ(0) = 1 + 4π
< P >t

Eext
(4.26)

where Eext is the external electric field, ǫ0 is the dielectric permittivity of vacuum, and P is the polarisation
of the system defined as

P(t) = V(t)−1MM(t) (4.27)

where MM is the total dipole moment of the system and V is the volume.
Note, to get a linear response of the polarisation, the electric field should be small enough to avoid saturation,
which is the case if

< µiE
ext >

3kB
<< T (4.28)

with µi the dipole moment of molecule i, kB the Boltzmann constant and T the temperature, is fulfilled.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@E ex 〈external electric field strength〉

@trs 〈special trajectory files (with box dipole moment)〉

Optional input arguments

@time 〈time and dt〉

Standard output

time series of polarisation in z-direction. Average of polarisation in x-, y-, and
z-direction, and ǫ(0)

Additional output
none

5-70

4.25. epsilon (GROMOS++ program)

Program description:

Program epsilon calculates the dielectric properties of the system. For systems containing only neutral
molecules, it estimates the relative dielectric permittivity, ǫ(0) , of a simulation box from a Kirkwood-
Fröhlich type of equation, as derived by Neumann,4

(ǫ(0)− 1)
2ǫrf + 1

2ǫrf + ǫ(0)
=

〈MM2〉 − 〈MM 〉2

3ǫ0VkBT
, (4.29)

where MM is the total dipole moment of the system, ǫ0 the dielectric permittivity of vacuum, ǫrf is a
reaction-field epsilon value, V is the volume and kBT is the absolute temperature multiplied by the Boltzmann
constant.

For systems containing ionic species, the total dipole moment is split into a rotational part, MdMd , and a
translational part, MjMj :

MdMd =

Nm
∑

m=1

Nm,a
∑

a=1

qm,a(rm,a − rcm,m) (4.30)

MjMj =

Nm
∑

m=1

qmrcm,m (4.31)

where Nm is the total number of molecules, Nm,a is the number of atoms of the molecule m and cm stands
for the center of mass.

The generalized frequency-dependent dielectric constant can be decomposed into the following contribu-
tions:

〈MdMd
2〉 (4.32)

and the autocorrelation functions

〈MdMd(τ)MdMd(τ + t)〉 (4.33)

〈JJ(τ)JJ(τ + t)〉 (4.34)

as well as the cross term

〈MdMd(τ)JJ (τ + t)〉 (4.35)

where JJ =
dMjMj
dt =

∑Nm

m=1 qmvcm,m.

Using fit functions one can calculate both the frequency-dependent dielectric response and the static
dielectric constant of the system. For more details see Ref.18.

Practically, to calculate the static dielectric constant the contribution of the cross term can be neglected,
while the contribution from Eq. 4.34 can be calculated from 〈∆MjMj

2〉 (the mean square displacement of MjMj)
using the Einstein relation. For more details see Ref.19.

Note that 〈∆MjMj
2〉 has to be calculated from an unfolded trajectory. For that reason, the first frame of

the trajectory is gathered using the gbond (to avoid broken molecules) and the rest with the gtime method.

The program outputs the relative permittivity (epsilon) calculated exclusively from the 〈MdMd
2〉 contribution.

For systems containing ionic species, 〈∆MjMj
2〉 is calculated and written in file Mj2.out, from which the

translational contribution to the relative permittivity can be calculated. See the fit Mj2.py script in the
gromos++/examples/ directory.

Optionally, the program can calculate the 〈MdMd(τ)MdMd(τ + t)〉 and 〈JJ(τ)JJ(τ + t)〉 autocorrelation functions
as well as the 〈MdMd(τ)JJ(τ + t)〉 cross term (files MdMd.out, JJ.out and MdJ.out). Note that velocity trajec-
tory files have to be provided to calculate the contributions due to Eq. 4.34 and Eq. 4.35. The translational
contribution to the relative permittivity can be calculated from file JJ.out. See the fit JJ.py script in the
gromos++/examples/ directory.

5-71

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@temp 〈temperature〉

@traj 〈trajectory files〉

Optional input arguments

@e rf 〈reaction field epsilon〉

@time 〈time and dt〉

@traj vel 〈velocity trajectory files〉

@omega 〈enable omega-dependent calculation〉

@MdJ 〈enable cross-term MdJ calculation (usually neglected)〉

Standard output

time series of the current estimate of ǫ(0) calculated exclusively from the 〈MdMd
2〉

contribution

Additional output

output file Mj2.out contains the time series of the mean square displacement of MjMj

output file MdMd.out contains the autocorrelation function of MdMd

output file JJ.out contains the autocorrelation function of JJ

output file MdJ.out contains the cross correlation function of MdMd and JJ

5-72

4.26. espmap (GROMOS++ program)

Program description:

Program espmap calculates the vacuum electrostatic potential around a user specified group of atoms. It
uses the atomic partial charges as defined in the topology and calculates the potential on a grid. The results
are written to a .pl file that can be converted to a .plt file which can be read in by Gopenmol.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to consider〉

@grspace 〈grid spacing (default: 0.2 nm)〉

@traj 〈trajectory files〉

Optional input arguments

none

Standard output

a .pl and .plt file to be read in by Gopenmol

Additional output
none

5-73

4.27. ext ti ana (GROMOS++ program)

Program description:

From a simulation at a single coupling parameter λ program ext ti ana predicts free energy derivatives ∂H
∂λ

over a range of λ values. To do this it requires that the terms described in ref20 have been precalculated
during the simulation and written to the energy trajectories (using gromos md++ block PRECALCLAM).

The program reconstructs the free energy derivatives at the requested λp values and performs a reweighing
to obtain the ensemble averages at λp, from the simulations at the simulated λs, using

〈

∂H

∂λ

〉

p

=

〈

∂H
∂λ

∣

∣

p
e−β[H(λp)−H(λs)]

〉

s
〈

e−β[H(λp)−H(λs)]
〉

s

(4.36)

The predictions from multiple simulations at λs can be merged into a single TI profile using program
ext ti merge (see Sec. 4.28).

In GROMOS the coupling parameter of different interaction types x, Λx, can be set individually from a
fourth order polynomial of the global coupling parameter λ (md++ block LAMBDAS, see Sec. 2-14.4):

Λx = axλ
4 + bxλ

3 + cxλ
2 + dxλ+ ex. (4.37)

ext ti ana can make predictions for other combinations of the coefficients (ax,bx,cx,dx,and ex) than the
ones used in the simulation. The interaction properties (x) that can be given individual λ dependencies are:
- slj: lennard jones softness
- scrf: coulomb reaction-field softness
- lj: lennard jones
- crf: coulomb reaction-field
- bond: bond
- ang: angle
- impr: improper dihedral angle
- dih: dihedral angle
- kin: kinetic (not implemented in the LAMBDAS block of md++)

To facilitate the evaluation of many sets of coefficients for slj and scrf, these can be given in an input file
of the following format:

TITLE

..

END

SLJ

uniquelabel a b c d e

1 -0.4 0.4 -0.3 1.3 0.0

2 -0.4 0.4 -0.2 1.2 0.0

3 -0.4 0.4 -0.1 1.1 0.0

END

SCRF

uniquelabel a b c d e

1 0.0 0.0 0.7 0.3 0.0

2 0.0 0.0 -0.1 0.3 0.0

END

Predictions will be made for any combination of every given slj with every given scrf.

The coefficients used in the simulation are specified by the @lamX sim flags or read from the LAMBDAS
block in a gromos input parameter file specified by @imd. The coefficients we want to predict for are specified
by the @lamX flags. Also the temperature of the simulation, the simulated λ (@slam) and its exponent
(@NLAMs) and the parameters of the PRECALCLAM block (@nrlambdas, @minlam, @maxlam) can be read
from this parameter file. If parameters are specified explicitly as input flags they will always overwrite the
corresponding values read from the imd file.

5-74

If the flag @countframes is set, the number of contributing frames for each predicted λ is appended as
an additional column to the output. This number is evaluated as the number of snapshots for which the
difference in the predicted energy and the simulated energy is less than the free energy difference between
the two states, as calculated using the perturbation formula.

Error estimates can be calculated using bootstrapping. A random set of data points of the size of the
original set will be chosen and the predictions made. This is repeated for as many bootstrap replicates as
requested. The standard deviation over the bootstrap replicates is reported as a bootstrap error.

The predicted TI curves from several simulations at different λ values can be combined using program
ext ti merge (see Sec. 4.28).

Finally, program ext ti ana can write out time series of energies at alternative value of λ to be used for
free-energy estimates with Bennett’s acceptance ratio (BAR). If option @bar data is used without further
input parameters, this data is written out for all predicted λ values, or if further input parameters are given
it is only written for the selected values of λ. Program bar (see Sec. 4.1) can be used to estimate free-energy
differences from these files.

Required input arguments

@en files 〈energy trajectory files〉

@fr files 〈free-energy trajectory files〉

@library 〈library for block information〉

@temp 〈simulation temperature〉

Optional input arguments

@nrlambdas 〈number of precalculated lambdas (can also be read from @imd)〉

@minlam 〈minimum precalculated lambda (can also be read from @imd)〉

@maxlam 〈maximum precalculated lambda (can also be read from @imd)〉

@slam 〈lambda value of simulation (can also be read grom @imd)〉

@NLAMs 〈lambda exponent of simulation (can also be read grom @imd)〉

@lam<X> sim 〈a〉 〈b〉 〈c〉 〈d〉 〈e〉 coefficients for individual lambda dependence
(default: 0 0 0 1 0) where 〈X〉 is one of: slj, scrf, lj, crf, bond,
ang, impr, dih, kin

@imd 〈gromos input parameter file〉

@NLAMp 〈lambda exponent value to predict for, default: @NLAMs〉

@lam<X> 〈a〉 〈b〉 〈c〉 〈d〉 〈e〉 coefficients for individual lambda dependence
(default: @lam<X> sim) where 〈X〉 is one of: slj, scrf, lj, crf, bond,
ang, impr, dih, kin

@slj scrf file 〈file with sets of slj and scrf lambda coefficients〉

@no <X> exclude 〈X〉; free energy derivative contribution, where 〈X〉 is one
of: slj, scrf, lj, crf, bond, ang, impr, dih, kin

@countframes 〈count nr of contributing frames for each plam〉

@pmin 〈min index of prediction〉

@pmax 〈max index of prediction〉

@bootstrap 〈number of bootstrap cycles〉

@outdir 〈directory to write output to〉

@lam precision 〈lambda value precision in outfiles (default: 2)〉

@bar data 〈print energies to be used for BAR (not reweighted)〉

@verbose 〈print used parameters to file header〉

@cpus 〈number of omp threads (default: 1)〉

Standard output

details of the calculation

5-75

Additional output

- files with predicted free-energy derivatives using the specified parameters these
can be merged with program ext ti merge (see Sec. 4.28

- files with data to be used by program bar (see Sec. 4.1)

5-76

4.28. ext ti merge (GROMOS++ program)

Program description:

Program ext ti merge combines TI curves predicted by program ext ti ana (Sec. 4.27) from several sim-
ulations at different λs points by a linear weighting scheme. Two weights are defined for any value of λP ,
which lies between two simulated points λS1 and λS2:

ws1 =
λp − λs2

λs1 − λs2
ws2 =

λp − λs1

λs2 − λs1
. (4.38)

The appropriate ensembler average of the free energy derivatives ∂H
∂λ are then computed as,

〈

∂H(λp)

∂λ

〉

λp

= ws1

〈

∂H(λp)

∂λ

〉

λs1

+ ws2

〈

∂H(λp)

∂λ

〉

λs2

(4.39)

The integral (using the trapezoidal rule) of the final TI curve (and of its error values) is appended to the
output file.

Required input arguments

@files 〈data files〉 generated by ext ti ana, see Sec. 4.27

Optional input arguments

@slam 〈lambda values of the simulation〉 optional if found in the header of the
data files after #SLAM

@noerrors 〈do not read and use the error column which might be in the files〉

Standard output

single merged free energy derivative profile

Additional output
none

5-77

4.29. filter (GROMOS++ program)

Program description:

Program filter reduces coordinate trajectory files and writes out a trajectory file (in GROMOS or pdb
format) in which for every frame, the coordinates are only kept for atoms that are within a specific distance
of a specified part of the system. To determine if interatomic distances are within the specified cut-off, either
an atomic or a charge-group based cut-off scheme can be employed. Additionally, parts of the system can
be specified for which in all cases the atomic coordinates should either be kept or rejected.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈input trajectory files〉

Optional input arguments

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to consider as reference part of
the system〉

@cutoff 〈cut-off distance (nm, default: 0.0)〉

@pairlist 〈cut-off scheme (ATOMIC (default) or CHARGEGROUP)〉

@select 〈atom specifier (see Sec. 1.3.1): atoms to keep〉

@reject 〈atom specifier (see Sec. 1.3.1): atoms not to keep〉

@time 〈time and dt〉 (overwrites TIME in the trajectory files)

@outformat 〈output coordinates format, see Sec. 1.2〉

Standard output

filtered trajectory file

Additional output
none

5-78

4.30. follow (GROMOS++ program)

Program description:

Program follow can create a 3D trace of selected atoms through time. The program always takes the
nearest image with respect to the previous position of the particle.

Required input arguments

@topo 〈topology〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@dim 〈dimensions to consider〉

@atoms 〈atoms to follow〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt 〉

Standard output
none

Additional output

For every atom that is selected, a pdb file is written out (FOLLOW x.pdb) in which
the trajectory is indicated in the CONECT entries.

5-79

4.31. gathtraj (GROMOS++ program)

Program description:

Program gathtraj applies the periodic boundary conditions to a coordinate trajectory and writes the gath-
ered trajectory.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈input trajectory files〉

Optional input arguments

none

Standard output

a single trajectory file

Additional output
none

5-80

4.32. hbond (GROMOS++ program)

Program description:

Program hbond monitors the occurrence of hydrogen bonds over a molecular trajectory file. It can monitor
conventional hydrogen bonds, as well as three-centered hydrogen bonds through geometric criteria.

A hydrogen bond is considered to be present if the distance between a hydrogen atom, H, connected to a
donor atom D, is within a user specified distance (typically 0.25 nm) from an acceptor atom A and the D-H-A
angle is larger than another user specified value (typically 135◦). Occurrences of three centered hydrogen
bonds are defined for a donor atom D, hydrogen atom H and two acceptor atoms A1 and A2 if:

(i) the distances H-A1 and H-A2 are within a user specified value (typically 0.27 nm)

(ii) the angles D-H-A1 and D-H-A2 are larger than a second user specified value (typically
90◦)

(iii) the sum of the angles D-H-A1, D-H-A2 and A1-H-A2 is larger than a third user specified
value (typically 340◦)

(iv) the dihedral angle defined by the planes through the atoms D-A1-A2 and H-A1-A2 is
smaller than a fourth user specified value (typically 15◦).

The user can specify two groups of atoms (A and B) between which the hydrogen bonds are to be
monitored. If hydrogen bond donors and acceptors are not explicitly specified, these can be filtered based
on their masses, as can be specified in a so-called “massfile”. If a reference structure is given, only hydrogen
bonds that are observed in the reference structure will be monitored.

The program calculates average angles, distances and occurrences for all observed hydrogen bonds over
the trajectories and prints out a time series of the observed hydrogen bonds.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@DonorAtomsA 〈atom specifier (see Sec. 1.3.1)〉

@AcceptorAtomsA 〈atom specifier (see Sec. 1.3.1)〉

@DonorAtomsB 〈atom specifier (see Sec. 1.3.1)〉

@AcceptorAtomsB 〈atom specifier (see Sec. 1.3.1)〉

@Hbparas 〈distance [nm] and angle [degrees]; default: 0.25, 135〉

@traj 〈trajectory files〉

Optional input arguments

@threecenter 〈distances [nm]〉 〈angles [degrees]〉 〈sum〉 〈dihedral〉

@ref 〈reference coordinates for native H-bonds〉

@massfile 〈massfile〉

@time 〈time and dt〉

Standard output

Statistics on all monitored hydrogen bonds, consisting of average distances and
angles, number of occurrences and percentage of occurrence over the trajectory.

Additional output

Time series of the number of hydrogen bonds and the number of three-centered
hydrogen bonds are written to files Hbnumts.out and Hb3cnumts.out, respectively.
Time series for every observed hydrogen bond and three-centered hydrogen bonds
are written to files Hbts.out and Hb3cts.out, respectively.

5-81

4.33. int ener (GROMOS++ program)

Program description:

Program int ener recalculates the nonbonded interaction energy between two non-overlapping sets of so-
lute atoms using the interaction parameters specified in the molecular topology file. It can also compute the
interaction energy between a specified group of solute atoms and the solvent. If a time series is requested,
the total nonbonded interaction is printed at each time point, along with the van der Waals and electrostatic
contributions.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atomsA 〈atom specifier (see Sec. 1.3.1) for the first group of atoms〉

@traj 〈position trajectory file(s)〉

Optional input arguments

@atomsB 〈atom specifier (see Sec. 1.3.1) for the second group of atoms〉

@solvent 〈compute energy between atomsA and solvent〉

@time 〈time and dt〉

@timeseries 〈print time series〉

@timespec 〈time points at which to compute the energy: ALL (default), EVERY
or SPEC (if time series)〉

@timepts 〈time points at which to compute the energy (if timesseries and time-
spec EVERY or SPEC)〉

@cut 〈cut-off distance (default: 1.4)〉

@eps 〈epsilon for reaction field contribution (default: 1.0)〉

@kap 〈kappa for reaction field contribution (default: 0.0)〉

Standard output

average total nonbonded interaction energy and the van der Waals and electrostatic
contributions, preceded by time series if requested

Additional output
none

5-82

4.34. iondens (GROMOS++ program)

Program description:

Program iondens calculates the average density of ions (or other particles) over a trajectory file. A rota-
tional fit of the system onto the solute can be performed, to correct for rotations of the complete simulation
box. The density will be calculated on a grid of points. Two sets of densities can be written out, containing
1) occupancies on the grid points, relative to the maximally occupied gridpoint, or 2) occupancies as a
percentage of the number of frames. User specified cutoffs determine which gridpoints will be written out.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@grspace 〈grid spacing (default: 0.2 nm)〉

@ions 〈atom specifier (see Sec. 1.3.1): ions to monitor〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to use for fit〉

@ref 〈reference coordinates〉

@thresholds 〈threshold values for occupancy percentages (default: 20 and 5)〉

@traj 〈trajectory files〉

Optional input arguments

none

Standard output
none

Additional output

Four files will be written out, which are all in the same coordinate frame:

1) ref.pdb the reference structure used for fitting

2) aver.pdb the average structure over the trajectory

3) grid.pdb the ion density relative to the most occupied grid point

4) gridnf.pdb the ion density as percentage of the total number of frames

5-83

4.35. jepot (GROMOS++ program)

Program description:

Program jepot computes the 3J-value local elevation (LE) potential energy term from a LE 3J-value re-
strained simulation. The LE potential can be calculated for all values (0 − 360◦) of all restrained angles
at the end of the simulation only (@fin) or for selected angles (@angles) as a time series throughout the
simulation (requires @topo, @pbc, @postraj and @restraj). The @timespec, @timepts and @restraj ar-
guments control the time series. The time series can be of the LE potential for all values of the selected
angle (ALL; default) or for only the current value of the selected angle (CURR) at each point in time, giving
only the current contribution of the LE potential to the overall potential energy of the selected angle. With
CURR, the @jval file must contain the 3J-value specifications for the selected angle only.

@K is the force constant given in the MD input file. Note that this is multiplied by WJVR, the weight factor
in the @jval file, during the calculation of the LE potential energy to give k(Jr).

Required input arguments

@jval 〈jvalue restraint specifications〉

@K 〈force constant〉

@ngrid 〈number of grid points〉

Optional input arguments

@angles 〈angle〉 values over which to compute the LE potential energy: ALL

(default) or CURR

@fin 〈file containing final coordinates (if not time series)〉

@time 〈time dt (optional and only if time series)〉

@timespec 〈time points at which to compute the LE potential energy: ALL (de-
fault), EVERY or SPEC (if time series)〉

@timepts 〈time points at which to compute the LE potential (if time series and
@timespec is EVERY or SPEC)〉

@topo 〈molecular topology file (see Sec. 1.2) (if CURR)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2), if CURR〉

@postraj 〈position trajectory files (if CURR)〉

@restraj 〈restraint trajectory files (if time series)〉

Standard output

With @angles ALL and @fin: 3J-value LE potential energy over 360◦ for each of
the 3J-value restraints specified in @jval and @fin at the end of the simulation.
With @angles CURR, @topo, @pbc, @postraj and @restraj: the current value of the
restrained angle and the 3J-value LE potential energy for this angle value. A time
series will be written unless only one frame is selected (using @timespec, @timepts).
The time values printed can be manipulated using @time and the time points for
which the LE potential energy is calculated and printed can be controlled using
@time, @timespec and @timepts.

Additional output
none

5-84

4.36. jval (GROMOS++ program)

Program description:

Program jval computes the 3J-values from a single conformation or from a trajectory. It can write out the
values of all 3J-couplings specified in the file specified by @jval or the total RMSD over all couplings from
the reference values at each point in time. The final part of the output is always a summary of the 3J-value
specification parameters, the averages over the entire trajectory and other statistics. Note that the dihedral
angle is computed in a non-periodic manner, possibly going beyond the range [0, 360]. This allows the user
to distinguish very dynamic from more restricted dihedral angles through the average and root-mean-square
fluctuations of the dihedral angle.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@jval 〈3J-value specification file〉

@traj 〈position trajectory file(s)〉

Optional input arguments

@timeseries 〈write time series of 3J-values〉

@rmsd 〈write the RMSD over all 3J-values as a time series〉

@time 〈time dt (optional and only if time series)〉

@timespec 〈time points at which to compute the 3J-values: ALL (default), EV-
ERY or SPEC (if time series)〉

@timepts 〈time points at which to compute the 3J-values (if time series and
@timespec is EVERY or SPEC)〉

Standard output

Information required to specify each 3J-value, averaged 3J-values and other statis-
tics. If @timeseries, the value of each 3J-coupling is printed at each point in time.
If @rmsd, the overall RMSD from the reference 3J-values is printed at each point in
time.

Additional output
none

5-85

4.37. m widom (GROMOS++ program)

Program description:

Program m widom can calculate the free energy of inserting a test particle into configurations of a molecular
system. For every configuration in the given trajectory file, the program places the particle at a user specified

number of random positions and evaluates the nonbonded interaction energy, V(nbd) . The free energy is
calculated as

∆GS = −kBT ln
< Ve−V(nbd)/kBT >

< V >
(4.40)

with kB the Boltzmann constant and T and V the temperature and volume of the system. The program
will also calculate the solute-solvent energies according to

∆Uuv =
< V(nbd)Ve−V(nbd)/kBT >

Ve−V(nbd)/kBT
(4.41)

which equals the solute-solvent enthalpy, Huv, as no volume change upon solvation is taking place. The
solute-solvent entropy is subsequently calculated from

T ∆Suv = ∆G−∆Huv . (4.42)

For a more complete description of these free energies, see e.g.21 In addition to the energetics of the system,
the program can also calculate radial distribution functions for all inserted species, with respect to user-
specified atoms in the original system. Each group of atoms to include in the rdf calculations is preceded by
the keyword new in the input string. The radial distribution function is calculated as in the program rdf

(Sec. 4.48), where all averages are weighted with the Boltzmann probability of every insertion attempt.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@intopo 〈topology of the inserted particle〉

@inpos 〈coordinates of the inserted particle〉

@cut 〈cut-off distance〉

@temp 〈temperature〉

@ntry 〈number of insertion tries per frame〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time〉 〈dt〉

@stride 〈take every n-th frame (default: 1)〉

@eps 〈epsilon for reaction field (default: 1)〉

@kap 〈kappa for reaction field (default: 0)〉

@rdf 〈rdf with atom types〉

@rdfparam 〈rdf-cutoff〉 〈grid〉

Standard output

time series and summaries of free energies and solute-solvent enthalpies and entropies
for all species that are inserted

Additional output

for every species, a file called rdf widom 〈n〉.out is written out, where n represents
the sequence number of the species in the perturbation topology (the files contain
radial distribution functions of the inserted species with user-specified atoms)

5-86

4.38. matrix overlap (GROMOS++ program)

Program description:

This program makes use of the GSL library to calculate the overlap between two matrices. Considering the
following equation for the difference between matrices M1 and M2

D =

√

tr((
√

M1 −
√

M2)2) (4.43)

where tr is the trace and the square root operator corresponds to the matrix-square root and is calculated
according to the following steps. Consider a matrix A that can be diagonalized by

T = V−1AV (4.44)

The square root of the elements of the diagonal matrix is taken. This procedure corresponds to the application
of a normal scalar square root operator to all the elements of the diagonal matrix. Third, the square root of
the diagonal matrix is used to calculate the square root of the matrix as

A1/2 = VT1/2V−1 (4.45)

The (normalized) overlapO is given by 1 minus the difference D of the matrices divided by the normalization
factor as shown below,

O = 1−
D

√

tr(M1) + tr(M2)
. (4.46)

Required input arguments

@m1 〈matrix 1〉

@m2 〈matrix 2〉

@dimension 〈dimension〉

Optional input arguments

Standard output

trace, difference and normalised overlap of the two matrices

Additional output
none

5-87

4.39. mdf (GROMOS++ program)

Program description:

Program mdf calculates and lists, for a given set of atoms, the distance to the nearest atom belonging to a
second set of atoms. For every selected atom, an output file is written with the minimum distance to, and
an atom specifier (see Sec. 1.3.1) for, the nearest atom. This program also works for virtual atoms.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@centre 〈atom specifier (see Sec. 1.3.1): central group of atoms〉

@with 〈atom specifier (see Sec. 1.3.1): group of atoms from which to find the
nearest atom〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉 (overwrites TIME in the trajectory files)

Standard output
none

Additional output

for every centre-atom, a file (MIN 〈atomspec〉.dat) is written out with a time series
of the distance to the nearest with-atom and an atom-specification of that atom

5-88

4.40. nhoparam (GROMOS++ program)

Program description:

Program nhoparam calculates order parameters for a given set of nitrogen atoms. In a first step, the program
determines the N-H bonds (of which µ is the unit vector) by the atomic masses of nitrogen and hydrogen.
For secondary and tertiary amides the different N-H bonds are averaged. Then,

S2 =
1

2

3

3
∑

i=1

3
∑

j=1

〈µi(t)µj(t)〉
2
t − 1

 (4.47)

is applied in order to calculate the order parameter of the N-H bond after performing a least-square rota-
tional fit. Fitting can be controlled using the @ref and @atomsfit arguments. If @ref is absent, the first
frame of the trajectory is taken as reference. @atomsfit are the atoms used for fitting. If omitted, the
nitrogen atoms are used. The fit can be disabled by giving an empty set of atoms.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@winframe 〈averarging window (number of frames)〉

@atoms 〈nitrogen atoms for order parameter calculation〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

@atomsfit 〈atoms to consider for fit〉

@ref 〈reference coordinate (if absent, the first frame of @traj is reference)〉

Standard output

final results and statistics are written to the standard output

Additional output

running averaged and window averaged (using a window size of @winframe) order
parameters are written to two seperate time series files (OPts.out, OPwints.out).

5-89

4.41. noe (GROMOS++ program)

Program description:

Program noe calculates and averages atom-atom restraint distances for specified NOE distances over a
molecular trajectory. The NOE distances are to be specified in a NOE specification file that can be prepared
with e.g. program prep noe (see Sec. 4.45). Program noe will calculate the average distance according to
〈r−p〉−1/p for values of p = 1, 3, 6. It will also calculate the deviations of these distances from the specified
reference distances, r0. These violations can be written to a time series file. The average violation is
calculated as the sum of positive violations divided by the total number of NOE distances considered in the
analysis.

The output of the program can be further analysed using program post noe.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@noe 〈NOE specification file〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

Standard output

average distances, violations and average violations of all NOE distances

Additional output
none

5-90

4.42. post noe (GROMOS++ program)

Program description:

Program post noe allows the user to re-analyse the data that was generated by program noe (see Sec. 4.41).
It reads in the NOE specification file, and the filter-file, which were generated by program prep noe

(Sec. 4.45), as well as the output of program noe.

In cases where a stereospecific hydrogen from a CH2-group, without an explicit assignment was given in
the library file of program prep noe (type 4 without subtype), the NOE distance according to both virtual
atoms will have been calculated. Program post noe can be used to select from these distances the proton
that shows either the largest or the smallest violation with the experimental data. Additionally, the user
can choose to disregard specific NOEs either by specifying a 0 in the filter field of the filter file that was
generated by prep noe, or by giving a cutoff distance.

The user may want to regenerate the filter file using a different kind of pseudo-atom and multiplicity cor-
rection by running the prep noe program a second time. When using post noe, the reference distances can
then be read from this filter file allowing for a quick assessment of the effect of the corrections. Furthermore,
the user can tell post noe to change the exponential in the averaging method.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@noe 〈NOE specification file〉

@noeoutput 〈output of noe-program〉

@filter 〈NOE filter file〉

@averaging 〈1/3/6〉

Optional input arguments

@distance 〈additional filter distance〉

@ref 〈noeoutput/filter〉

@minmax 〈min/max〉

@distribution 〈binsize〉

Standard output

overview of NOE violations for the remaining NOE’s after the filtering process,
average NOE violations and if requested a distribution of the NOE violations

Additional output
none

5-91

4.43. postcluster (GROMOS++ program)

Program description:

Program postcluster can do additional analyses on the output of cluster (section Sec. 4.43). Three different
kinds of analyses are currently possible on specified clusters:

1. postcluster can perform a lifetime analysis. A lifetime limit can be specified. This is the number
of subsequent structures in the time series need to have switched to a different cluster before a true
transition to the new conformation is taken into account. This allows the user to disregard single
events from being counted as a double transition to and from a new conformation. The program
will write out the number of times a certain cluster is observed, its average lifetime. In addition it
prints for every cluster the number of transitions to and from the other clusters.

2. postcluster can also be used to analyse combined clusterings, in which the original structures
come from different sources (e.g. different trajectories). This can be used to assess the overlap in
the sampled conformational space between two simulations. This option is called @rgb. By specifying
the number of frames from every individual source, the program will write out a file that can easily
be used to produce a bar-plot in which the height of the bar indicates the size of the cluster and
individual colors represent the portions of that cluster coming from the different sources.

3. postcluster can be used to write out trajectory files and single structure files containing the central
member structures of the clusters. The trajectories can subsequently be used in any other analysis
program to monitor properties over all structures belonging to one cluster.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@cluster struct 〈structures file from cluster〉

@cluster ts 〈time series file from cluster〉

@clusters 〈StructureSpecifier〉

Optional input arguments

@lifetime 〈lifetime limit〉

@rgb 〈red〉 〈green〉 〈blue〉 ...

@traj 〈trajectory files〉

Standard output

lifetime analyses of the specified clusters

Additional output

If requested a file cluster rgb.dat will be written out, containing the split up
of clusters to their origins. If the original trajectory files were specified, central
member structures and complete clusters will be written to files cluster 〈X〉.cms
and cluster 〈X〉.trj, respectively, where 〈X〉 represents the cluster number.

5-92

4.44. predict noe (GROMOS++ program)

Program description:

Program predict noe is used to predict possible NOE pairs from distance averages. The program calculates
and averages all possible NOE pairs from a trajectory. The nuclei are taken from the atom specifier provided
if those are found in the NOE library file as well.

The averaging is carried out as

r =
〈

r−p
〉− 1

p (4.48)

where p can be either 1, 3 or 6 (@averaging). Distances above a threshold level (@filter) are discarded in
the final output.

Required input arguments

@topo 〈molecular topology file〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1)〉

@lib 〈NOE specification library〉

@traj 〈trajectory files〉

Optional input arguments

@dish 〈carbon-hydrogen distance (default: 0.1 nm)〉

@disc 〈carbon-carbon distance (default: 0.153 nm)〉

@averaging 〈averaging power: 1, 3 or 6 (default 6)〉

@filter 〈distance above which NOE’s should be discareded [nm]〉

Standard output

list of expected NOEs

Additional output
none

5-93

4.45. prep noe (GROMOS++ program)

Program description:

Program prep noe converts NOE data from an X-plor like format to GROMOS format, determining the
proper choice of pseudo- or virtual atoms based on the topology and a library file. The output can be used
to apply distance restraints during a simulation using program MD++, or to analyse a molecular trajectory
using the program noe (Sec. 4.41). For a definition of the different types of pseudo- and virtual atoms see
Sec. 2-9.4. In cases where the library file specifies a stereospecific CH2 atom (type 4), but does not indicate
which of the two protons is specified, NOE upper bounds are created for both protons. Program post noe

can process the output of an NOE analysis to determine the best assignment.

The experimentally determined upper bounds are generally listed in a three column format, with distances
in Å. prep noe has three types of parsing these three columns, specified by @parsetype:

1. take the first value as the upper bound;
2. take the sum of the first and third values as the upper bound (default);
3. take the difference between the first and second values (commonly the lower bound).

The experimentally determined upper bounds can be corrected for pseudo-atom distances (addition of a
geometric constant) or multiplicity factors (typically multiplication with N1/p, where N is the multiplicity
of indistinguishable protons involved and p is the averaging power). Such corrections can either be applied
to the distances or can be taken out of a set of distances.

The NOE specification file (@noe) should contain the NOESPEC block (see section Sec. 4-7.8), which
contains the ambiguous and unambiguous NOEs. For unambiguous NOEs, only the first eight columns of
this file are to be specified. For ambiguous restraints, the 9th column repeats the number of the NOE (first
column), the 10th column contains the number of NOEs this NOE may be linked to and the remaining
columns lists the numbers of the NOEs to which it is linked.

Ambiguous NOEs can be assigned by program post noe (see Sec. 4.42) by removing all but one of the
ambiguous NOE distances through the @minmax flag. prep noe writes a filter file which can be used to re-
evaluate a given analysis over a specific trajectory, without recalculating all distances (also through program
post noe).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@title 〈NOE title for output〉

@noe 〈X-plor like NOE specification file〉

@lib 〈NOE specification library〉

Optional input arguments

@dish 〈carbon-hydrogen distance; default: 0.1 nm〉

@disc 〈carbon-carbon distance; default: 0.153 nm〉

@parsetype 〈Upper bound parse type: 1, 2 or 3〉

Choices are:

1: Upper bound = first number

2: Upper bound = first + third number (most common, default)

3: Upper bound = first - second number (commonly the lower bound)

@correction 〈correction file〉 [〈correction type〉]

@action 〈add〉 or 〈sub〉 correction from upper bound; default: add

@filter 〈discard NOEs above a certain distance [nm]; default 10000 nm〉

@factor 〈conversion factor Angstrom to nm; default is 10〉

Standard output

distance restraints specification file to be used with the analysis tool noe

5-94

Additional output

noe.filter: NOE filter file, containing upper bounds and information on automatically
generated NOE distances in case of unassigned stereospecific protons

noe.dsr: distance restraint file to be used as @disres input for MD++.

5-95

4.46. r factor (GROMOS++ program)

Program description:

Program r factor calculates crystallographic structure-factor amplitudes and phases from a given trajec-
tory and compares them to experimental values. Only the atoms given by the AtomSpecifier @atomssf

are considered for the calculation. The atoms’ IAC are mapped to their element names according to the
rules given in the @map file. The atoms’ B-factors and occupancies are read from a special file (@bfactor)
if requested or defaulted to 0.01nm2 and 100%. Structure factors are calculated to the given resolution
(@resultion) while the cell information is calculated from the system’s box. Symmetry operations are
taken into account by specifying a space group (@spacegroup). Make sure you only give asymmetric unit
when using spacegroup. The program can write the electron density (a 2 | F 0 | − | F | map) to special files
(FRAME DENSITY #.ccp4), if requested (density flag).

A bulk solvent correction can be applied if @solvent is given. In a first step a solvent mask is determined.
Therefore the parameters rvdW, r ion, r shrink and the IAC of the water oxygen have to be provided. The
occupied space is determined by the van-der-Waals radius of the atoms plus a probe radius. The van-der-
Waals radius of an atom is calculated as half of the distance where the Lennard Jones potential energy
of the atom/water-oxygen interaction reaches its minimum. The probe radius is either taken as rvdW (for
neutral atoms) or r ion (for charged atoms). The occupied space is shrinked by r shrink. The structure factor
is calculated as

F = Fmodel + ρ exp(−B sin(θ)2/λ2)F(M). (4.49)

The parameters ρ and B are determined by least-square fitting. Initial values have to be provided. For nu-
merical stability the reflections are split in a high and low resolution set in the fitting procedure. Therefore
a resolution cutoff has to be given. Finally the maximum iterations have to be given.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

@time 〈time and dt〉

@atomssf 〈atoms considered in the structure factor calculation〉

@cif 〈crystallographic information file〉

@map 〈file with IAC-to-element name mapping〉

@bfactor 〈file with the B-factors and occupancies〉

@resolution 〈resolution range: minimum, maximum〉

Optional input arguments

@spacegroup 〈space group in Hermann-Mauguin format, default: P 1〉

@density 〈write electron density maps〉

@factor 〈factor to convert length unit to Angstrom〉

@bins 〈number of resolution bins for computation of the R-factor〉

@solvent 〈solvent parameters: RVDWRIONRSHRINK IACW IRHO IB RES-
CUT MAXIT. RVDW: van-der-Waals radius of the probe, RION:
van-der-Waals radius of an atom, RSHRINK: radius for shrinking
of the solvent mask, IACW: integer atom code of the solvent van-
der-Waals atom (e.g OW for SPC), IRHO: initial value for ρ, IB:
initial value for B, RESCUT: resolution cutoff, MAXIT: maximum
iterations〉

Standard output

R-factor for all resolution bins

Additional output

calculated and ,,observed” electron density maps for every frame.

5-96

4.47. r real factor (GROMOS++ program)

Program description:

Program r real factor calculates two electron densities. One (ρ) from the atomic positions and a second (ρ0)
from the structure factor amplitudes and calculated phases. Only the atoms given by the AtomSpecifier
@atomssf are considered for the structure factor calculation.

The real space residual

R =

∑

αρ0 + β − ρ
∑

αρ0 + β + ρ
(4.50)

is calculated for every residue. Summation is only carried out over the extent of the atoms contained in the
AtomSpecifier @atomsr

For the documentation of the other arguments see Sec. 4.46.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

@time 〈time and dt〉

@atomssf 〈atoms considered in the structure factor calculation〉

@atomsr 〈atoms considered in the R factor calculation〉

@cif 〈crystallographic information file〉

@map 〈file with IAC-to-element name mapping〉

@bfactor 〈file with the B-factors and occupancies〉

@resolution 〈resolution range: minimum, maximum〉

Optional input arguments

@spacegroup 〈space group in Hermann-Mauguin format, default: P 1〉

@factor 〈factor to convert length unit to Angstrom〉

Standard output

A time-series of the real-space R-factor.

Additional output
none

5-97

4.48. rdf (GROMOS++ program)

Program description:

Program rdf calculates radial distribution functions over structure files or trajectories. The radial distri-
bution function, g(r), is defined here as the probability of finding a particle of type J at distance r from a
central particle I relative to the same probability for a homogeneous distribution of particles J around I.
Program rdf calculates g(r) for a number of discreet distances rr(k), separated by distance dr as

g(r) =
NaJ(k)

4πrr(k)2drρJ
(4.51)

where NaJ(k) is the number of particles of type J found at a distance between rr(k) - 1/2 dr and rr(k) + 1/2
dr and ρJ is the number density of particles J. If particles I and J are of the same type, ρJ is corrected for
that. At long distances, g(r) will generally tend to 1.

Both atoms of type I and J can be solute atoms, solvent atoms as well as virtual atoms. If more than one
particle of type I is specified, rdf calculates the average radial distribution function for all specified atoms.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@centre 〈atom specifier (see Sec. 1.3.1): atoms to take as centre〉

@with 〈atom specifier (see Sec. 1.3.1): atoms to calculate distances for〉

@cut 〈maximum distance〉

@grid 〈number of points〉

@traj 〈trajectory files〉

Optional input arguments

@nointra 〈exclude intramolecular atoms 〉

Standard output

radial distribution function of particles J around I

Additional output
none

5-98

4.49. rep ana (GROMOS++ program)

Program description:

Program rep ana extracts the information stored in the replica exchange molecular dynamics (REMD)
output file replica.dat. It produces seven multi column output files:

temperature.dat run number vs. temperature of replica (column 2 corresponds to replica 1, column 3
to replica 2 etc.)

lambda.dat run number vs. lambda value of replica

epot.dat run number vs. potential energy of replica

probability.dat run number vs. switching probability of replica

switches.dat run number vs. switching data of replica (0 = no switch in this run, 1 = switch in
this run)

prob T.dat switching probabilities per temperature

prob l.dat switching probabilities per lambda

Furthermore it calculates an optimized temperature or lambda set based on the fraction of replicas diffusing
from the lowest to the highest temperature (lambda value). This algorithm is based on22.

Optional input arguments

@repdata 〈REMD output file, replica.dat〉

Optional input arguments

none

Standard output
none

Additional output
temperature.dat, lambda.dat, epot.dat, probability.dat, switches.dat,
prob T.dat and prob l.dat

5-99

4.50. rep reweight (GROMOS++ program)

Program description:

Program rep rewrite sorts replica exchange trajectories according to the lambda values or the temperature
and writes them to individual files.

Required input arguments

@input 〈input file〉

@trj 〈cordinate trajectories〉

@name 〈prefix and postfix of output trajectories〉

Optional input arguments

none

Standard output
none

Additional output

output file named 〈prefix〉 〈temperature〉 〈lambda〉.〈postfix〉

5-100

4.51. reweight (GROMOS++ program)

Program description:

Reweights a time series of observed values of X sampled during a simulation at state R (i.e. using the

Hamiltonian ĤR = K̂R(~p) + V̂R(~r)) to another state Y (neglecting kinetic contributions for simplicity):

〈X〉Y =
〈X exp [−β (VY − VR)]〉R
〈exp [−β (VY − VR)]〉R

= 〈X exp [−β (VY − VR −∆FY R)]〉R (4.52)

with ∆FY R = FY − FR. The observed quantitiy X can be a structural quantity (e.g. the time series of
an angle) or an energetic quantity (e.g. the time series of the ligand-protein interaction energy). Note that
the reweighting will only give useful results if during the simulation at state R all configurations that are
important to Y are sampled. The program reads three time series corresponding to the quantitiy X , the
energy of state R, and the energy of state Y . All time series must have been calculated from the same
ensemble R. The time series files consist of a time column and a column containing the quantity (i.e. X ,
VR, or VY). The time series are obtained e.g. by ene ana or tser. If the bounds flag is given a normalized
distribution of X in the Y ensemble will be written out. When calculating averages and distributions special
care is taken in order to avoid overflow (see7).

Required input arguments

@temp 〈temperature of the system〉

@x 〈time series of quantity X〉

@vr 〈energy time series of the reference state R〉

@vy 〈energy time series of the end states〉

Optional input arguments

@bounds 〈lower bound〉 〈upper bound〉 〈grid points〉

Standard output

average of quantity X in ensemble of state Y

Additional output

if bounds are given, a histogram (distribution) of the reweighted quantity X is given

5-101

4.52. rgyr (GROMOS++ program)

Program description:

Program rgyr calculates the radius of gyration, Rgyr, for a selected set of atoms over the trajectory according
to

Rgyr =

√

1

NN
i=1

∑

(ri − rcom)2 (4.53)

where N is the number of specified atoms, ri is the position of particle i and rcom is the centre-of-mass of
the N atoms.

Alternatively, the radius of gyration can be calculated in a mass-weighted manner,

Rgyr =

√

√

√

√

1

M

N
∑

i=1

mi(ri − rcom)2 (4.54)

where M is the total mass of the specified atoms and mi is the mass of particle i.

Please note that in case atoms from more than one molecule have been chosen, care should be taken in
the choice of gathering method to ensure a proper calculation of the centre-of-mass.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@time 〈time and dt〉

@atoms 〈atom specifier (see Sec. 1.3.1) for the atoms to consider〉

@traj 〈trajectory files〉

Optional input arguments

@massweighted (use massweighted formula)

Standard output

time series of the radius of gyration for the specified atoms

Additional output
none

5-102

4.53. rmsd (GROMOS++ program)

Program description:

The structural deformation of a molecule with respect to a reference structure can be expressed in terms
of a root-mean-square deviation (RMSD) of the position of selected atoms. Program rmsd calculates the
RMSD over a molecular trajectory after superimposing the centres of mass and performing a least-squares
rotational fit. The fit can be performed using a different set of atoms than the calculation of the RMSD.
The fit can be disabled by giving an empty set of atoms (compare Sec. 1.3.1).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@time 〈time and dt〉

@atomsrmsd 〈atom specifier: atoms to consider for RMSD〉

@traj 〈trajectory files〉

Optional input arguments

@ref 〈reference coordinates (if absent, the first frame of @traj is used as
reference coordinates)〉

@atomsfit 〈atom specifier (see Sec. 1.3.1): atoms to consider for fit〉

Standard output

time series of the root-mean-square deviation from the reference structure

Additional output
none

5-103

4.54. rmsdmat (GROMOS++ program)

Program description:

Program rmsdmat calculates the atom-positional root-mean-square deviation between all pairs of structures
in a given trajectory file. This matrix of RMSDs can subsequently be used by program cluster to perform
a conformational clustering. The matrix can be written out in human readable form, or – to save disk space
– in binary format. For efficiency reasons, the RMSD values are written in an integer format. The user can
specify the required precision of the RMSD values that are stored, if the precision is less or equal to 4, the
values are stored as unsigned short int, otherwise as unsigned int.

Different sets of atoms can be selected to perform a rotational least-squares-fit and to calculate the RMS
deviation from. The RMSD matrix can also be calculated from deviations in internal coordinates defined
by a set of properties (e.g. torsional angles or hydrogen bonds). A selection of structures in the trajectory
file to consider can be made using the options @skip and @stride. Structure pairs may occur for which the
least-squares rotational fit fails for numerical reasons. In these cases both structures are fit to the reference
structure. If no user specified reference structure is available, the first structure in the trajectory is taken
as such. Specifying a reference structure allows the program cluster (section Sec. 4.4) to perform a forced
clustering as well, requiring that the first cluster contains the reference structure, regardless of the cluster
size.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

Optional input arguments

@atomsfit 〈atom specifier (see Sec. 1.3.1): atoms to consider for fit〉

@atomsrmsd 〈atom specifier (see Sec. 1.3.1): atoms to consider for RMSD〉

@prop 〈property specifier (see Sec. 1.3.3): properties to consider for RMSD〉

@ref 〈reference coordinates〉

@skip 〈skip frames at beginning〉

@stride 〈use only every step frame〉

@human (write the matrix in human readable form)

@precision 〈number of digits in the matrix (default 4)〉

@big (when clustering more than 50’000 structures)

Standard output

some information about the clustering process

Additional output

RMSD matrix in binary form (RMSDMAT.bin) or human readable form (RMSDMAT.dat)
depending on the user specifications

5-104

4.55. rmsf (GROMOS++ program)

Program description:

Program rmsf calculates atom-positional root-mean-square fluctuations (RMSF) around average positions
for selected atoms over a trajectory. A superposition of centres of mass and a rotational fit to a reference
structure is performed for every structure in the trajectory. Different sets of atoms can be specified for the
fitting procedure and for the calculation of the RMSF. The fit can be disabled by giving an empty set of
atoms (see Sec. 1.3.1).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atomsrmsf 〈atom specifier (see Sec. 1.3.1): atoms to consider for RMSF〉

@traj 〈trajectory files〉

Optional input arguments

@ref 〈reference coordinates (if absent, the first frame of @traj is reference)〉

@atomsfit 〈atom specifier: atoms to consider for fit〉

Standard output

a list containing the atom-positional root-mean-square fluctuation for each of the
atoms specified by atomsrmsf

Additional output
none

5-105

4.56. sasa (GROMOS++ program)

Program description:

Program sasa calculates and prints the solvent-accessible surface area (SASA) of all heavy atoms in the
solute part of the molecular system. It also calculates the contribution made by a specified set of heavy
atoms. The program uses the algorithm of Lee and Richards23. A spherical probe of given radius is rolled
over the surface of the molecule (the size of the probe is typically 0.14 nm for water). The path traced
out by its centre gives the accessible surface. In GROMOS, the radii of the heavy atoms are obtained
by calculating the minimum energy distance of the interaction between the heavy atom and the first sol-
vent atom. This value is reduced by the specified probe radius to account for the radius of the solvent atom.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈boundary type〉 [〈gather method〉]

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to consider for sasa〉

@traj 〈trajectory files〉

Optional input arguments

@zslice 〈distance between the Z-slices through the molecule (default: 0.005 nm)〉

@probe 〈probe IAC and radius (default: 4 0.14 nm)〉

@time 〈time and dt〉

@verbose (print summaries)

Standard output

time series of the solvent-accessible surface area for the selected heavy atoms and for
all heavy atoms and, if requested, the atomic contributions for the selected atoms
are also printed

Additional output
none

5-106

4.57. sasa hasel (GROMOS++ program)

Program description:

Program sasa hasel computes the solvent-accessible surface area (SASA) of all atoms in the solute part
of the molecular system according to the method of Hasel et al.24. This is the method implemented in the
SASA/VOL implicit solvent model. If a single conformation is given, either the atomic SASA values or the
total SASA, along with the hydrophilic and hydrophobic contributions (defined by the sign of the sigma
values given in the sasaspec file) may be printed. If multiple conformations are given, the averaged totals,
the averaged atomic SASA values, or a time series of the total SASA values may be printed.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@sasaspec 〈sasa specification library file〉

@probe 〈IAC of central atom of solvent and radius of solvent molecule〉

@traj 〈trajectory file(s)〉

Optional input arguments

@time 〈time and dt (optional and only if time series)〉

@timeseries 〈if you want the time series as well as the average〉

@timespec 〈time points at which to compute the sasa: ALL (default), EVERY
or SPEC (if time series)〉

@timepts 〈time points at which to compute the sasa (if time series and timespec
EVERY or SPEC)〉

@atomic 〈print atomic sasa (only if not time series)〉

@noH 〈do not include hydrogen atoms in the sasa calculation (default:
include)〉

@p 12 〈overlap parameter for bonded atoms (default: 0.8875)〉

@p 13 〈overlap parameter for atoms separated by two bonds (default:
0.8875)〉

@p 1x 〈overlap parameter for atoms separated by more than one bond (de-
fault: 0.3516)〉

Standard output

single input conformation:

total sasa and contributions made by hydrophilic and hydrophobic atoms

single input conformation and @atomic:

atomic sasa values followed by total sasa and contributions made by hydrophilic and
hydrophobic atoms

time series of input conformations:

average total sasa and contributions made by hydrophilic and hydrophobic atoms

time series of input conformations and @atomic:

average atomic sasa values followed by total sasa and contributions made by hy-
drophilic and hydrophobic atoms

time series of input conformations and @timeseries:

time series of total sasa and contributions made by hydrophilic and hydrophobic
atoms, followed by averages

Additional output
none

5-107

4.58. solute entropy (GROMOS++ program)

Program description:

Program solute entropy takes a coordinate trajectory and calculates the configurational entropy using the
Schlitter and the quasiharmonic analysis methods (see25) for a given set of atoms. The entropy can be
averaged over a window of a given size. If requested, a superposition of centres of mass and a rotational fit
prior to the entropy calculation is carried out.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atomsentropy 〈atoms to consider for entropy calculation〉

@temp 〈temperature〉

@traj 〈trajectory files〉

Optional input arguments

@time 〈time and dt〉

@ref 〈reference structure for fit〉

@ref pbc 〈reference boundary type〉

@atomsfit 〈atoms to consider for fit〉

@method 〈method to use: schlitter or quasiharm〉

@n 〈entropy is calculated every nth step〉

Standard output

time series of the calculated configurational entropy

Additional output
none

5-108

4.59. structure factor (GROMOS++ program)

Program description:

Program structure factor calculates crystallographic structure-factor amplitudes and phases from a given
trajectory. Only the atoms given by the AtomSpecifier @atomssf are considered for the calculation. The
atoms’ IAC are mapped to their element names according to the rules given in the @map file. The atoms’
B-factors and occupancies are read from a special file (@bfactor) if requested or defaulted to 0.01nm2 and
100%. Structure-factor amplitudes are calculated to the given resolution (@resultion) while the cell infor-
mation is calculated from the system’s box. Symmetry operations are taken into account by specifying a
space group (@spacegroup). When using @spacegroup, make sure only the asymmetric unit is given.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

@time 〈time and dt〉

@atomssf 〈atoms considered in the structure factor calculation〉

@map 〈file with IAC-to-element name mapping〉

@bfactor 〈file with the B-factors and occupancies〉

@resolution 〈resolution range: minimum, maximum〉

Optional input arguments

@spacegroup 〈space group in Hermann-Mauguin format, default: P 1〉

@factor 〈factor to convert length unit to Angstrom〉

Standard output

averaged structure factor amplitudes

Additional output
none

5-109

4.60. temperature (GROMOS++ program)

Program description:

Program temperature will calculate the temperature for different sets of atoms, as specified by the atom-
specifier(s). Multiple sets of atoms can be specified by white-space separated Atomspecifiers (see Sec. 1.3.1).
For each of the sets one dof value is expected.

You can find the number of degree of freedoms for a temperature group in the md++ output file under
”DEGREES OF FREEDOM” → ”DOF”

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@atoms 〈atom specifier〉

@dofs 〈degrees of freedom〉

@traj 〈velocity trajectory files〉

Optional input arguments

@time 〈time and dt〉

Standard output

timeseries of temperature for each set of atoms

Additional output
none

5-110

4.61. tcf (GROMOS++ program)

Program description:

Program tcf performs simple statistical analyses, calculates distributions and time-correlation functions for
any series of data points. It takes files with data listed in any number of columns as input, but no further
formatting, e.g. the output files of programs tser (see Sec. 4.63) or ene ana (compare Sec. 4.21). Lines
starting with the character # are ignored.

For data in the specified columns, the program writes out the number of data points, the average value,
root-mean-square fluctuation, a statistical error estimate as well as the minimal and maximal value observed.
The error estimate is calculated from block averages of different sizes. In addition, the program can calculate
distributions and time-correlation functions. The program does not read time from the data file, but the
time interval between data points can be specified by the user. Otherwise it is taken to be 1.

Distributions can be calculated for data in specified columns and can be normalized.

Time correlation functions of the general form

C(t) = 〈f(A(τ), B(τ + t))〉τ (4.55)

can be calculated, where A(τ) and B(τ + t)) represent the data points at different time points and the user
can specify any function f(A,B). The program can calculate both auto-correlation functions (B = A) and
cross correlation functions (B! = A) for time series of scalars or vectors. If A and B are represented by
scalars and f(A(τ), B(τ+t)) = A(τ)∗B(τ+t), the program makes use of fast Fourier transforms to calculate
C(t). In other cases a direct summation algorithm is used, which may be considerably slower.

In cases where one is interested in the correlation function of the fluctuations around the average, this
average value can be subtracted from the data points before calculating the correlation function. A power
spectrum can also be calculated. Because the correlation function is usually very noisy at larger times, the
noise level can be specified as the fraction of the correlation function that should be considered. This part
of the correlation function is then smoothened by multiplication by a cosine to make sure that it is zero at
the end. It is then mirrored: all data points are repeated in reverse order at the end. From this the Fourier
transform is taken, which is the resulting spectrum.

Required input arguments

@time 〈time〉 〈time step〉

@files 〈data files〉

Optional input arguments

@distribution 〈data columns to consider〉

@bounds 〈lower bound〉 〈upper bound〉 〈grid points〉

@normalize (normalize the distributions)

@tcf 〈data columns to consider〉

@expression 〈expression for correlation function〉

@spectrum 〈noise level〉

@subtract average (take difference with respect to average value for tcf)

Standard output

statistical analyses for all specified data columns, distributions and / or time-
correlation functions

Additional output
none

5-111

4.62. trs ana (GROMOS++ program)

Program description:

Program trs ana extracts individual values from gromos trajectory files and can perform simple mathemat-
ical operations on them.

The program is based on ene ana (see Sec. 4.21). It uses the same library format to define blocks which
can be read from any trajectory file that comes in the Gromos block-format. In contrast to ene ana it does
not require that all the blocks defined in the library are present in the trajectory file or in the specified order.
It can handle trajectories where not all timesteps contain the same number of blocks, e.g. when different
properties were written to the trajectory at different intervals. The time in the output timeseries will always
correspond to the time in the previous TIMESTEP block if no time is given by the user, else the time will be
increased by the given timestep at every occurrence of a TIMESTEP block. If multiple blocks of the same
name occur between two TIMESTEPs, only the last one will be used.

In the library file one can also define properties to be calculated from the defined entries. For the selected
properties, trs ana will calculate the time series, averages, root-mean-square fluctuations and a statistical
error estimate. The error estimate is calculated from block averages of different sizes, as described in Allen
and Tildesley: ”Computer Simulation of Liquids”, 1987. If a topology is supplied, the trs ana uses this to
define the total solute mass (MASS) and the total number of solute molecules (NUMMOL).

Required input arguments

@trs 〈trajectory files〉

@prop 〈properties to monitor〉

@library 〈library for property names〉

Optional input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉 (for MASS and NUMMOL)

@time 〈t and dt〉 (overwrites TIME in the trajectory files)

Standard output

averages, root-mean-square fluctuations and error estimates for the requested prop-
erties over the supplied trajectories

Additional output

time series of every property will be written to a separate file with name
〈property〉.dat.

5-112

4.63. tser (GROMOS++ program)

Program description:

Program tser can calculate structural quantities from a trajectory file and print the time series and/or a
distribution of the value associated with the requested property. The quantity to be calculated is specified
through a property specifier (compare Sec. 1.3.3) and can be any of the structural properties described in
Sec. 1.3, which can be calculated from atomic positions in the trajectory file. Time series can later be
analysed further with e.g. the program tcf.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@time 〈time and dt〉

@prop 〈property specifier (see Sec. 1.3.3)〉

@traj 〈trajectory files〉

Optional input arguments

@nots (do not write time series)

@dist 〈steps [min max]〉

@norm (normalise distribution)

@solv (read in solvent)

@skip 〈skip n first frames〉

@stride 〈take every n-th frame〉

Standard output

time series and/or distributions of the specified properties

Additional output
none

5-113

4.64. tstrip (GROMOS++ program)

Program description:

Program tstrip removes all solvent coordinates from a (list of) trajectory files for ease of later analysis.
Note that program filter (see Sec. 4.29) captures the functionality of tstrip as well.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@traj 〈input trajectory file(s)〉

Optional input arguments

@nthframe 〈write every nth frame (default: 1)〉

@time 〈time and dt〉 (overwrites TIME in the trajectory files)

@notimeblock (suppresses reading and writing of TIMESTEP block)

Standard output

trajectory file for the solute atoms only

Additional output
none

5-114

4.65. visco (GROMOS++ program)

Program description:

Program visco calculates the bulk and shear viscosities from the elements of the pressure tensor that are
written to MD++ energy trajectory files. In order to access this data, visco makes use of the ene ana

library. To obtain more accurate results from the simulation, the Einstein relation is used instead of the direct
evaluation of the autocorrelation function (Green-Kubo formulation). Consider Pαβ as being an element of
the pressure tensor. Consider that Gαβ(t) is the integral of Pαβdt:

Gαβ(t) =

t
∫

0

Pαβ(t)dt (4.56)

We define ηαβ as a viscosity term calculated in terms of the integral of the pressure component (Gαβ). It
will be proportional to the mean-square “displacements” of Gαβ(t) in the limit of infinit time.

ηαβ =
V

2kBT
lim
t→∞

〈
[Gαβ(t+ τ) − Gαβ(t)]

2

τ
〉 (4.57)

where V is the volume of the periodic box, kB is the Boltzmann constant and T is the absolute temperature
of the system. For isotropic systems, the estimation of the bulk viscosities can be obtained from the average
of the viscosity terms obtained from the diagonal components of the pressure tensor:

ηbulk = (ηxx + ηyy + ηzz)/3 (4.58)

The shear viscosities of an isotropic system can be estimated by averaging the viscosity terms obtained from
the off-diagonal elements of the pressure tensor:

ηshear = (ηxy + ηxz + ηyz)/3 . (4.59)

The time series of the mean square ”displacements” of Gαβ(t) are printed to separate files (Gxx msd.dat,
Gyy msd.dat, Gzz msd.dat, Gxy msd.dat, Gxz msd.dat, Gyz msd.dat). In view of the poor statistics for
long times, it is up to the user to decide the interval for which the least-squares-fitting should be performed.
For convenience, program visco also prints the constant V

2kBT and the conversion factors with respect to
the commonly used units.

Required input arguments

@en files 〈energy files〉

@temp 〈temperature〉

@library 〈library file (same as for ene ana)〉

Optional input arguments

@time 〈time and dt〉

Standard output
none

Standard output
Gxx msd.dat, Gyy msd.dat, Gzz msd.dat, Gxy msd.dat, Gxz msd.dat, Gyz msd.dat

5-115

4.66. xrayts (GROMOS++ program)

Program description:

Program xrayts extracts the crystallographic restraints information form a special trajectory. In addition
it calculated the minimal normal and free R factors.

Required input arguments

@restraj 〈special trajectory files〉

Optional input arguments

@time 〈time and dt〉

Standard output

Time-series of R factors.

Standard output
none

5-116

CHAPTER 5

Miscellaneous

5.1. atominfo (GROMOS++ program)

Program description:

Internally the GROMOS preparation and analysis tools determine which atoms belong to one molecule
based on bonds specified in the topology. These programs can make use of the convenient atom specifier to
select atoms, molecular properties etc. For efficiency reasons, the MD engine md numbers all atoms in the
molecular system sequentially. Program atominfo can read both atom specifiers and sequential numbers
(GROMOS-numbers) and will list the properties of the selected atoms.

The atom list can be sorted, according to the following priority: solute atom < virtual atom < solvent
molecule. All programs that make use of atom specifiers (see Sec. 1.3.1) can also read in a file containing the
output of atominfo, by specifying a file (〈atominfo output file〉). This allows the user to store complicated
selections in a file for future use.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@gromosnum 〈GROMOS atom number〉

@atomspec 〈atom specifier (see Sec. 1.3.1)〉

Optional input arguments

@sort (sort the atoms)

@redun 〈1 for redundancy check (default), 0 for not (important when generating
an atom list for gathering with redundant presence of one or more atoms)〉

Standard output

list with atomic information of all specified atoms

Additional output
none

5-117

5.2. close pair (GROMOS++ program)

Program description:

Program close pair is to find the closest atom pairs between two molecules in a system with multiple
molecules. It is mainly used to propose an atom list for the gathering of a complicated system, and can also
be used to analyze the close contacts of two or more molecules in a system.

Periodicity and time series are supported in the program close pair.

Note: the atom list proposed by the program close pair represents the atom pairs that are closest to each
other in two (specified) molecules, but not necessarily the best choice for gathering since in order to obtain
an ideal picture of the unit cell, one should also consider the assembly of the molecules. For this purpose,
the closest pairs beween one molecule and all the other molecules are also calculated, and if the closest
molecule to the molecule that is to be gathered is not a good reference, one may choose other molecules as
the reference, depending on the symmetry of the system.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈boundary type〉

@groupA 〈atoms to be analyzed that are from the molecule group to be gathered〉

@groupB 〈atoms to be analyzed that are from the reference molecule group for the
gathering of group A〉

@traj 〈coordinate file〉

Optional input arguments

@dist 〈lower limit of distance for searching the closest pair. Default: 0.3 nm〉

@time 〈t0 and dt〉

Standard output

The standard output contains two parts:

1. the close atom pairs between each molecule in group A and all molecules that are
specified in group B;

2. the Summary part: contains the close atom pairs between two molecules that are
closest to each other.

Additional output

A file called atominfo.atomspec is generated with an atom list which is from the
Summary part of the standard output. The atom list is formatted and can be
directly used by the program atominfo to generate an atominfo atom list file.

5-118

5.3. frameout (GROMOS++ program)

Program description:

Program frameout can be used to extract individual configurations from a molecular trajectory file. Three
different formats are supported: the GROMOS96 format, the PDB format and an VMD-Amber format
which can be read by program VMD. The user determines which frames should be written out and if solvent
should be included or not. Atom positions can be corrected for periodicity by taking the nearest image to
connected atoms, or to the corresponding atom in a reference structure. A centres of mass superposition
and least-squares rotational fit to a reference structure can be performed based on selected atoms.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

Optional input arguments

@spec 〈specification for writing out frames: ALL (default), EVERY or SPEC〉

@frames 〈frames to be written out〉

@outformat 〈output coordinates format, see Sec. 1.2〉

@include 〈SOLUTE (default), SOLVENT or ALL〉

@ref 〈reference structure to fit to or to gather with respect to〉

@atomsfit 〈atom specifier (see Sec. 1.3.1): atoms to fit to〉

@single 〈write to a single file〉

@time 〈time and dt〉 (overwrites TIME in the trajectory files)

@notimeblock (suppresses reading and writing of TIMESTEP block)

Standard output
none

Additional output

selected frames are written to files FRAME xxxxx.ext, where xxxxx is the frame
number of the individual frame and ext is determined by the file format

5-119

5.4. inbox (GROMOS++ program)

Program description:

Even though all GROMOS programs correct for periodic boundary conditions whenever necessary, it can
sometimes be quite cumbersome to create a simulation box for display that contains all molecules. For
simulations containing one or a few solute molecules, program frameout in combination with the proper
gathering method will be sufficient, but for molecular systems consisting of many solute molecules, it may
be that none of the gather settings works correctly.

Program inbox puts the atoms into the positive quadrant of the computational box according to the
periodic boundary conditions. It can be used to visualize the computational box in a crystal simulation.
The connectivity and gathering of charge groups is ignored, thus the charge groups (and solvent molecules)
will not be gathered after application of this program.

One can specify the atoms which are put into the box. All other atoms are not affected by the program.
By default all atoms are put into the box.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@traj 〈trajectory files〉

Optional input arguments

@atoms 〈atom specifier (see Sec. 1.3.1): atoms to put in the box〉

Standard output

shifted coordinates, with all atoms forced to be within the simulation box, in pdb
format

Additional output
none

5-120

5.5. pairlist (GROMOS++ program)

Program description:

Program pairlist determines all particles within user specified cutoffs from a given reference point. The
reference point can either be an atom specifier (see Sec. 1.3.1) to a single atom or a set of three Cartesian
coordinates. The output can be written in the same style as the output of the program atominfo to allow
usage as an atom specifier (see Sec. 1.3.1) itself.

The program can produce two pairlists at the time, one short-range and one long-range. It will also print
out a list of particles that occur in the long-range pairlist only. The pairlist determination can be done on
an atomic basis or based on charge groups.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@coord 〈coordinates to base the list on〉

@refpos 〈atom specifier (see Sec. 1.3.1)〉 or 〈vector〉

Optional input arguments

@cutp 〈small cutoff〉

@cutl 〈large cutoff〉

@type 〈ATOMIC (default) or CHARGEGROUP〉

@atominfo (write in atominfo style)

Standard output

lists of particles within the short-range and long-range cutoff, or in the shell between
short- and long-range cutoffs

Additional output
none

5-121

5.6. shake analysis (GROMOS++ program)

Program description:

A SHAKE failure in one of the MD engines is one of the few indications that something is going wrong in
your simulation. Most often, there is a mismatch between the topology and the set of coordinates, or an
extremely strong force between particles is built up otherwise. Program shake analysis is a diagnostic tool
that can be used to evaluate all interaction energies for selected atoms, on a coordinate file right before or
after a SHAKE failure. The output can be limited by specifying the number of interactions that should be
displayed, or by giving an energy cutoff above which interactions should be listed.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@atoms 〈atom specifier (see Sec. 1.3.1): atoms for which shake fails〉

@cut 〈cut-off distance〉

@coord 〈coordinate file〉

Optional input arguments

@eps 〈epsilon for reaction field correction〉

@kap 〈kappa for reaction field correction〉

@top 〈number of non-bonded interactions per atom to print〉

@higher 〈print energies higher than specified value〉

@nocov (do not print covalent interactions)

Standard output

tables with interaction energies involving the specified atoms

Additional output
none

5-122

5.7. unify box (GROMOS++ program)

Program description:

Program unify box can convert different box shapes. All periodic boxes can be described as a triclinic box,
which is defined by vectors a, b and c. The program is mostly used to convert a truncated octahedral box
into a triclinic box or vice versa, according to26. The user can also specify a rotation matrix and a, b and
c vectors directly.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@to pbc 〈target boundary condition〉

@pos 〈coordinate file〉

Optional input arguments

@from pbc 〈original boundary condition〉

@rot 〈rotation matrix〉

@KLM 〈a, b and c〉

Standard output

coordinates in which the molecular system has been rotated to fit the target box
shape

Additional output
none

5-123

5.8. rot rel (GROMOS++ program)

Program description:

The rotational relaxation time of molecules can be estimated from the autocorrelation function of the Le-
gendre polynomials of molecular axes ri, rj and rk.

C1(t) = 〈ri (τ) · ri(τ + t)〉τ (5.1)

C2(t) =
1

2
(3〈ri(τ) · ri(τ + t)〉2τ − 1) (5.2)

Program rot rel calculates the first and second order Legendre polynomials and calculates the time cor-
relation functions. The user specifies two of the molecular axes, the third is defined as the cross product
of the first two. The program can average the correlation functions over multiple molecules in the system.
Note that the output of this program can also be produced by a combination of programs tser and tcf (see
Secs. 4.63 and 4.61, respectively).

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@ax1 〈specify molecular axis 1〉

@ax2 〈specify molecular axis 2〉

@traj 〈trajectory files〉

Optional input arguments

@average 〈average over all molecules〉

@time 〈time and dt〉

Standard output

autocorrelation functions of the first and second Legendre polynomials of the molec-
ular axes

Additional output
none

5-124

5.9. VMD plugin (GROMOS++ program)

Program description:

This program is not an individual program but a plugin library which runs in the VMD (Visual Molecular
Dynamics) program. It is used to open GROMOS configuration files directly in VMD.

Once a file is opened using one of the GROMOS plugins VMD will prompt for the arguments in the
VMD console. Because the topological data in GROMOS is separated from the configurational data the
plugin can only roughly guess the data from a configuration file. For this reason it is recommended to give
information about the topology and periodic boundary conditions using the arguments. The arguments can
also be read from a file (@f). Gathering and superpositioning and rotational fitting (to a reference structure
or the first structure in the trajectory) can be carried out directly in the plugin.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

Optional input arguments

@pbc 〈periodic boundary and gathering (Sec. 1.2)〉

@include 〈SOLUTE (default), SOLVENT or ALL〉

@ref 〈reference structure to fit to〉

@atomsfit 〈atom specifier (see Sec. 1.3.1): atoms to fit to〉

@time 〈time and dt〉

@factor 〈factor to convert length unit to Angstrom, 10.0〉

5-125

5.10. xray map (GROMOS++ program)

Program description:

Program xray map is used to transform and/or filter crystallographic maps. It reads given CCP4 map files
(@map) and atomic coordinates (@pos) and writes the final result to a CCP4 map file (@out) and/or prints
some statistics (@stat) to the standard output.

If requested by @expression an expression is evaluated to calculate every grid points value from the maps,
which are available in the expression via the symbols rho1, rho2, etc. By default the expression rho1 is
evaluated which corresponds of the value of the first map provided. A difference map, for example, can be
calculated by giving rho1 - rho2.

The final map can be filtered by a simple cutoff criterion. All grid points closer than a given distance
(@cutoff) to given atom centres (@centre) are included in the final map. All other grid points are set to
zero.

If @symmetrise is given, the symmetry operations of the space group are applied in oder to create a P 1
map of the while unit cell.

Required input arguments

@topo 〈molecular topology file (see Sec. 1.2)〉

@pos 〈coordinate file for filtering and expressions〉

@map 〈map files〉

@out 〈output filename〉

Optional input arguments

@stat 〈print map statistics〉

@expression 〈expression to evaluate at every grid point〉

@centre 〈AtomSpecifier of centre atoms〉

@cutoff 〈grid cell cutoff〉

@symmetrise 〈apply symmetry operations to create a P 1 map〉

@factor 〈factor to convert length unit to Angstrom〉

Standard output

Map statistics

Additional output

A CCP4 crystallographic map

5-126

Bibliography

[1] C. H. Bennett. Efficient estimation of free-energy differences from Monte-Carlo data. J. Comput. Phys., 22(2):245–268,
1976.

[2] M.R. Shirts, E. Blair, G. Hooker, and V.S. Pande. Equilibrium free energies from nonequilibrium measurements using
maximum-likelihood methods. Phys. Rev. Lett., 91:140601, 2003.

[3] X. Daura, W.F. van Gunsteren, and A.E. Mark. Folding-Unfolding Thermodynamics of a beta-Heptapeptide From Equi-
librium Simulations. Proteins, 34:269–280, 1999.

[4] M. Neumann. Dipole-Moment Fluctiation Formulas in Computer-Simulations of Polar Systems. Mol. Phys., 50(4):841–858,
1983.

[5] A. de Ruiter and C. Oostenbrink. Protein-ligand binding from distancefield distances and Hamiltonian replica exchange
simulations. J. Chem. Theor. Comput., 9:883 – 892, 2012.

[6] J. D. Chodera, W. C. Swope, J. W. Pitera, C. Seok, and K. A. Dill. Use of the weighted histogram analysis method for
the analysis of simulated and parallel tempering simulations. J. Chem. Theory Comput., 3(1):26–41, 2007.

[7] B.A. Berg. Multicanonical simulations step by step. Comput. Phys. Commun., 153(3):397–406, 2003.
[8] G. Nagy and C. Oostenbrink. Dihedral-based segment identification and classification of biopolymers I: Proteins. J. Chem.

Inf. Model., 54:266 – 277, 2014.
[9] G. Nagy and C. Oostenbrink. Dihedral-based segment identification and classification of biopolymers II: Polynucleotides.

J. Chem. Inf. Model., 54:278 – 288, 2014.
[10] M.E. Davis, J.D. Madura, B.A. Luty, and J.A. McCammon. Electrostatics and diffusion of molecules in solution: simulations

with the university of houston brownian dynamics program. Comput. Phys. Commun., 62:187 – 197, 1991.
[11] C. Peter, W.F. van Gunsteren, and P.H. Hünenberger. Solving the Poisson equation for solute-solvent systems using fast

Fourier transforms. J. Chem. Phys., 116:7434–7451, 2002.
[12] C. Peter, W.F. van Gunsteren, and P.H. Hünenberger. A fast-Fourier-transform method to solve continuum-electrostatics

problems with truncated electrostatic interactions: algorithm and application to ionic solvation and ion-ion interaction. J.
Chem. Phys., 119:12205–12223, 2003.

[13] W. Kabsch and C. Sander. Dictionary of protein secondary structure - Pattern-recognition of hydrigen-bonden and geo-
metrical features. Biopolymers, 22(12):2577–2637, 1983.

[14] S. Riniker, C.D. Christ, N. Hansen, A.E. Mark, P.C. Nair, and W.F. van Gunsteren. Comparison of enveloping distribution
sampling and thermodynamic integration to calculate binding free energies of phenylethanolamine N-methyltransferase
inhibitors. J. Chem. Phys., 135:024105, 2011.

[15] N. Hansen, J. Dolenc, M. Knecht, S. Riniker, and W.F. van Gunsteren. Assessment of enveloping distribution sampling
to calculate relative free enthalpies of binding for eight netropsin-DNA duplex complexes in aqueous solution. J. Comput.

Chem., 33:640–651, 2012.
[16] E. W. Dijkstra. A note on two problems in connexion with graphs. Numer. Math., 1:269–271, 1959.
[17] D. N. Beratan. Electron-Tunneling Pathways in Ruthenated Proteins. J. Am. Chem. Soc., 112:7915–7921, 1990.
[18] C. Schroeder and O. Steinhauser. Using fit functions in computational dielectric spectroscopy. J. Chem. Phys., 132:244109,

2010.

[19] C. Schroeder. Collective translational motions and cage relaxations in molecular ionic liquids. J. Chem. Phys., 135:024502,
2011.

[20] A. de Ruiter and C. Oostenbrink. Extended thermodynamic integration: efficient prediction of lambda derivatives at
non-simulated points. J. Chem. Theory Comput., 12:4476 – 4486, 2016.

[21] H. Yu and W.F. van Gunsteren. Charge-on-spring polarizable water models revisited: From water clusters to liquid water
to ice. J. Chem. Phys., 121:9549–9564, 2004.

[22] H. G. Katzgraber, S. Trebst, D. A. Huse, and M. Troyer. Feedback-Optimized Parallel Tempering Monte Carlo Journal of

Statistical Mechanics-Theory and Experiment. Iop Publishing Ltd, 2006.
[23] B. Lee and F. M. Richards. The interpretation of protein structures: estimation of static accesibility. J. Mol. Biol.,

55:379–400, 1971.
[24] W. Hasel, T. F. Hendrickson, and W. C. Still. A rapid approximation to the solvent accessible surface areas of atoms.

Tetra. Comput. Method., 1:103–116, 1988.
[25] R. Baron, W.F. van Gunsteren, and P.H. Hünenberger. Estimating the configurational entropy from molecular dynamics

simulations: anharmonicity and correlation corrections to the quasi-harmonic approximation. Trends Phys. Chem., 11:87–
122, 2006.

[26] H. Bekker. Unification of box shapes in molecular simulations. J. Comput. Chem., 18:1930–1942, 1997.

5-i

Index

GROMOS++

arguments, 5-1

file names, 5-1
flags, 5-1

nomenclature of input/output files, 5-1

common arguments

GROMOS++, 5-1

input/output files, GROMOS++

nomenclature, 5-1

program, GROMOS++

atominfo, 5-117
bar, 5-43

bilayer dist, 5-45
bilayer oparam, 5-46

bin box, 5-7
build box, 5-8

check box, 5-9
check top, 5-10

close pair, 5-118

cluster, 5-47
cog, 5-48

com top, 5-12
con top, 5-13

copy box, 5-14
cos dipole, 5-49

cos epsilon, 5-50

cry, 5-15
cry rms, 5-51

dfgrid, 5-52
dfmult, 5-54

dg ener, 5-56
dGslv pbsolv, 5-57

diffus, 5-59

dipole, 5-60
disicl, 5-55

ditrans, 5-61
dssp, 5-62

duplicate, 5-16
eds update 1, 5-63

eds update 2, 5-64
edyn, 5-65

ene ana, 5-66

ener, 5-67
epath, 5-69

eps field, 5-70
epsilon, 5-71

espmap, 5-73
explode, 5-17

ext ti ana, 5-74

ext ti merge, 5-77
filter, 5-78

follow, 5-79

frameout, 5-119

gathtraj, 5-80

gca, 5-18

gch, 5-19

hbond, 5-81

inbox, 5-120

int ener, 5-82

ion, 5-21

iondens, 5-83

jepot, 5-84

jval, 5-85

link top, 5-22

m widom, 5-86

make pt top, 5-24

make sasa top, 5-25

make top, 5-26

matrix overlap, 5-87

mdf, 5-88

mk script, 5-27

nhoparam, 5-89

noe, 5-90

pairlist, 5-121

pdb2g96, 5-29

pert top, 5-30

post noe, 5-91

postcluster, 5-92

predict noe, 5-93

prep eds, 5-31

prep noe, 5-94

prep xray, 5-32

prep xray le, 5-33

pt top, 5-34

r factor, 5-96

r real factor, 5-97

ran box, 5-35

ran solvation, 5-36

rdf, 5-98

red top, 5-37

rep ana, 5-99

rep reweight, 5-100

reweight, 5-101

rgyr, 5-102

rmsd, 5-103

rmsdmat, 5-104

rmsf, 5-105

rot rel, 5-124

sasa, 5-106

sasa hasel, 5-107

shake analysis, 5-122

sim box, 5-38

solute entropy, 5-108

structure factor, 5-109

5-iii

tcf, 5-111
temperature, 5-110
trs ana, 5-112
tser, 5-113
tstrip, 5-114
unify box, 5-123
visco, 5-115
VMD plugin, 5-125
xray map, 5-126
xrayts, 5-116

program, MD++

eds 2box, 5-42
md, 5-40
repex mpi, 5-41

specifier
atom, 5-2
property, 5-2, 5-4
vector, 5-2, 5-4

5-iv

The GROMOS Software for (Bio)Molecular

Simulation

Volume 6: Technical Details

January 9, 2021

Contents

Chapter 1. Outline of the GROMOS Code 6-1
1.1. MD++ outline 6-1
1.1.1. Efficiency 6-2
1.1.2. Debugging information 6-3
1.1.3. In-code documentation 6-3
1.2. GROMOS++ outline 6-4
1.2.1. GROMOS++ source code and in-code documentation 6-5

Chapter 2. Error Messages 6-7

Chapter 3. Machine Compatibility 6-9

Chapter 4. Numerical and Mathematical Functions 6-11
4.1. Numerical functions 6-11
4.2. Mathematical functions 6-11
4.2.1. MD++ 6-11
4.2.2. GROMOS++ 6-12

Chapter 5. Nomenclature 6-15

Chapter 6. Units 6-17

Chapter 7. Charge Group Codes 6-21

Chapter 8. Pair List Generation 6-23
8.1. Double loop pair list 6-23
8.2. Grid pair list (Heinz and Hünenberger) 6-23
8.3. Grid pair list with expanded coordinates 6-23

Chapter 9. Boundary Conditions and Periodicity 6-25

Chapter 10. Generation of Cartesian Coordinates from Internal Coordinates 6-31

Chapter 11. Generation of Hydrogen Atom Coordinates 6-33

Chapter 12. Generation of Atomic Velocities 6-39

Chapter 13. What to Do when SHAKE Fails 6-41

Chapter 14. Removal of Centre of Mass Motion 6-43

Chapter 15. Saving Trajectories 6-45

Chapter 16. Performing a Translational Superposition and a Rotational Least-Squares Fit 6-47

Chapter 17. Transformation between Coordinates 6-49
17.1. Cartesian and Oblique Contravariant Crystallographic Coordinates 6-49

Chapter 18. Distributions, Averages and Root-Mean-Square Fluctuations 6-53

Chapter 19. Dihedral-Angle Conventions, Names and Transitions 6-55

Chapter 20. Definition of Hydrogen Bonds 6-59

6-I

Chapter 21. Time Correlation Functions and Spectral Densities 6-61
21.1. Use of fast Fourier transform (FFT) routines in GROMOS 6-62

Chapter 22. Coarse Graining in GROMOS 6-63

Chapter 23. Parallelisation in GROMOS 6-65
23.1. Parallelisation in MD++ 6-65
23.2. Parallelisation in GROMOS++ 6-65

Chapter 24. Fast Solvent Interaction Function Evaluation 6-67
24.1. Solvent innerloops in MD++ 6-67

Chapter 25. Replica Exchange Simulation 6-69

Bibliography 6-i

6-II

CHAPTER 1

Outline of the GROMOS Code

1.1. MD++ outline

The code is split into two parts, the first one being an MD library containing basic functions necessary
to run an MD simulation, the second one being the actual MD program. This second part is very small.
It is therefore easy to write other specialised MD programs that make use of a subset of the functions
provided in the library or apply them in a different order. The source code of the library is in turn split up
into nine different parts: math, simulation, topology, configuration, algorithm, interaction, io, util and check
(represented as C++ namespaces).

- math contains classes for vectors, matrices and vector arrays, mathematical operations, physical
constants and periodic boundary treatment.

- simulation contains the simulation parameters supplied to run an MD or SD simulation or an EM.
- topology contains the topology of the simulated system, possibly also including a perturbation topol-
ogy.

- configuration contains the state of a system: its coordinates, velocities, forces, restraints data and
so on.

- algorithm contains classes that use information from simulation and topology to act upon a configu-
ration. All steps during an MD or SD simulation or EM can be carried out using an algorithm.

- interaction contains the largest algorithm: the energy, forces and virial evaluation. Here, all inter-
action terms and their parameters are defined. Because of its size, interaction is a separate part,
though it formally belongs to algorithm. The interaction part is further split into bonded, nonbonded
and special interactions.

- io contains classes to read in or write out information. All file access is block oriented and human
readable.

- util contains a few extra classes that are necessary to set up a simulation but which do not exactly
belong to it. Parsing of command line arguments, generation of initial velocities or setting of debug
levels are examples of classes found herein.

- check contains test routines. Testing includes the automatic calculation of energies under differ-
ent conditions as well as the calculation of forces, virial tensor and energy λ-derivatives and their
comparison to values obtained by finite difference calculations.

One step of an MD or SD simulation or EM consists of several Algorithms (List. 1.1) applied to the
Configuration in the right order.

1 class Algorithm {

2 public:

3 Algorithm(string name) : name(name) {}

4 ~Algorithm() {}

5 virtual int init(Topology & topo ,

6 Configuration & conf ,

7 Simulation & sim) = 0;

8

9 virtual int apply(Topology & topo ,

10 Configuration & conf ,

11 Simulation & sim) = 0;

12

13 string name;

14 };

Listing 1.1. Interface of the Algorithm class

6-1

The Algorithm Sequence class (List. 1.2) is a container for all these algorithms. When a simulation is set up,
they are inserted in the correct order into the Algorithm Sequence. Before the start of a simulation, all algo-
rithms will be initialised (by calling the init() function). During anMD step (Algorithm Sequence::run()),
the algorithms are applied (by calling Algorithm::apply()).

1 class Algorithm_Sequence : public vector <Algorithm *> {

2 public:

3 Algorithm_Sequence();

4 ~Algorithm();

5

6 int init(Topology & topo ,

7 Configuration & conf ,

8 Simulation & sim);

9

10 int run(Topology & topo ,

11 Configuration & conf ,

12 Simulation & sim);

13

14 Algorithm * algorithm(string name);

15 };

Listing 1.2. Interface of the Algorithm Sequence class. It is a container for Algorithm
objects which provides methods to initialise and run the contained algorithms. It further
provides access by name.

The force-field itself is also an algorithm, which, when applied, calculates the energies, forces and virial con-
tribution of all force-field terms for the complete system. The force-field terms themselves are Interaction
classes. The Forcefield is therefore a container to store the different Interaction objects (in analogy to
the Algorithm Sequence and Algorithm classes). When the force-field is applied, it calls
calculate interactions() on all interaction objects. There are distinct interaction objects for the co-
valent interactions (bond-length, bond-angle, improper-dihedral and torsional-dihedral interactions), the
non-bonded interactions (pairlist construction, long-range interactions and short-range interactions) and
the non-physical interactions (atom-position, atom-distance, dihedral-angle, NOE, 3J-value or S2 order-
parameter restraints). It is very easy to add a custom Interaction class to calculate a non-standard
interaction. An overview of the (non-bonded) interaction classes is given in Fig. 1.1. The Nonbonded Sets

contain independent subsets of the non-bonded interactions. Their calculate interactions() method
may be called in parallel (using either shared or distributed memory parallelisation). The Nonbonded Sets

share (through the Nonbonded Interaction) a pairlist construction algorithm, which they call to create the
part of the complete pairlist relevant to them. These different parts of the pairlist stay together with the
Nonbonded Set and need never be assembled into the complete pairlist. To gain flexibility, the calculation of
the individual atom - atom pair interaction is further split up into a Nonbonded Outerloop (loops over the
atom - atom pairs), a Nonbonded Innerloop (prepares the parameters necessary to calculate the interaction)
and a Nonbonded Term (calculates the atom - atom pair interaction energy, force and virial contribution).
The Storage class provides directly accessible (local) memory for each Nonbonded Set.

1.1.1. Efficiency. The main goal for writing a new C++ MD engine was to further improve on mod-
ularity (using some object-oriented features) and extendability (using clear and common interfaces between
the modules). Nevertheless, a simulation code has to be reasonably efficient to be of practical use. The
complete code is written in standard C++1 with no language extensions or machine-specific parts, resulting
in a highly portable program. This means that the compiler has to do all machine specific optimisations.
We believe that the absence of any machine specific parts of code, which require duplication to be able to
run on different machines, facilitates future modification. Furthermore, current compilers are getting ever
better at producing fast programs, making use of the specific features available on the machine. In the inner
loops of the interaction calculation, templates are used to generate specialised code. There are, for instance,
specialised periodicity classes for the different implemented types of periodic boundary conditions (vacuum,
rectangular, truncated octahedral and triclinic). The Innerloop methods are called with the boundary type
as a template argument. Thus the compiler will generate a different specialised version of the inner loops
for different boundary conditions automatically. In the same manner, the interaction function term of the
non-bonded interaction can also be chosen (e.g. with or without switching function for non-bonded inter-
actions) without any if statement required in the compiled inner loop. Example code fragments are shown

6-2

Figure 1.1. Illustration of the Interaction classes in MD++. The red arrows de-
note a is-a relationship, the black arrows has-a. All Interaction classes inherit from
Interaction and, therefore, can be stored in the Forcefield, which is a vector of
Interaction classes. The Nonbonded Interaction consists of a Pairlist Algorithm (ei-
ther a Standard Pairlist Algorithm or a Grid Pairlist Algorithm) and (depending on
parallelisation) one or more Nonbonded Sets. Those, in turn, consist of Storage (to locally
store forces, energies, virial tensor and pair lists) and an Outerloop (to calculate the inter-
actions). The Outerloop relies on the Innerloop and on Term to calculate the interactions.

in List. 1.3 and List. 1.4. The same technique is used to implement perturbation simulations and different
definitions of the virial tensor.

Some algorithms do rely on information from the previous integration step. To help implementing those
kinds of algorithms, the complete current and old state (positions, velocities, forces, energies, restraint and
constraint data, averages, and so on) of the simulation are stored. During the leap-frog algorithm, the current
state becomes the old state and the updated information is stored in the new current state. This transfer is
done by a simple and fast pointer exchange. This slightly increases memory usage, but the required space is
still small compared to that used to store the pairlists.

1.1.2. Debugging information. It is often difficult to figure out what is going on during an MD or SD
simulation or an EM and users tend to use the program as a black box. MD++ tries to improve this situation
by enabling the user to select a tuneable amount of information to be printed out during the simulation.
Every output or debugging message is associated with a debugging level, and the message is printed only if
the requested debugging level is high enough. Additionally, every code section belongs to a module and a
submodule. Different debug levels can be specified for all combinations of modules and submodules. In that
way, fine grained control is achieved on how much information from which part of the MD++ code should
be printed. For example, running MD++ like this

1 ~/> md @f md.args @verb interaction:special:4

will print all debug messages in the interaction/special part of the code with a level lower than four. Addi-
tional information on debugging can be found in the doxygen documentation.

1.1.3. In-code documentation. All classes, structures and enumerations are documented in-code
using the doxygen documentation tool. This documentation contains descriptions of the classes of MD++

and their usage. Inheritance diagrams, function call relationships and interactive links to other classes

6-3

1 enum boundary_type {vacuum, rectangular , triclinic};

2 template <boundary_type boundary >

3 class Periodicity;

4

5 template <>

6 class Periodicity <vacuum >{

7 public:

8 void nearest_image(Vec const & ri, Vec const & rj, Vec & rij);

9 };

10

11 template <>

12 class Periodicity <rectangular >{

13 public:

14 void nearest_image(Vec const & ri, Vec const & rj, Vec & rij);

15 };

16

17 template <>

18 class Periodicity <triclinic >{

19 public:

20 void nearest_image(Vec const & ri, Vec const & rj, Vec & rij);

21 };

22

23 template <boundary_type boundary >

24 class Interaction{

25 public:

26 virtual int calculate_interactions(Topology const & topology ,

27 Configuration & configuration ,

28 Simulation const & simulation) {

29

30 Vec r;

31 Periodicity <boundary > periodicity(configuration.current ().box);

32

33 periodicity.nearest_image(

34 configuration.current ().pos(0),

35 configuration.current ().pos(1),

36 r);

37 const double r2 = math::abs2(r);

38 // and so on

39 return 0;

40 }

41 };

Listing 1.3. Specialized code generation using templates.

1 int main(int argc , char **argv) {

2 Interaction <triclinic > interaction;

3 interaction.calculate_interactions(

4 topology , configuration , simulation);

5 return 0;

6 }

Listing 1.4. The usage of periodic boundary condition specific templates demonstrated on
the Interaction class.

are automatically generated by the tool. The documentation further contains a brief description of the
current input formats used in the given version of MD++. See Sec. 8-3.1 on how to generate the doxygen

documentation during the compilation procedure of MD++.

1.2. GROMOS++ outline

GROMOS++ is a software package providing the user with tools to prepare all the needed input files
for a standard simulation using MD++, e.g. the generation of the molecular topology, initial coordinates of
randomly distributed molecules (solvent) or initial coordinates derived from a pdb file (solute), the solvation
of a solute in the solvent and the split up of a simulation in multiple jobs with constant or changing simulation
parameters over the job sequence. Furthermore, there are multiple programs to analyse the simulations
performed. The following is a list of the most important GROMOS++ programs and the corresponding
tasks. A complete list is available via the documentation tool, see Sec. 8-3.1 for more information:

- com top combines multiple topology files into one file.

6-4

- dssp monitors secondary structure elements of a protein, based on the rules defined by Kabsch and
Sander2.

- ene ana analyses (energy) trajectories.
- frameout writes out individual configurations or movies from a molecular trajectory file.
- hbond monitors the occurrence of hydrogen bonds.
- ion replaces water molecules by ions (to get an overall neutral box).
- make top creates molecular topologies from building block and force-field parameter files.
- mk script generates (multiple) script files to run simulations.
- noe analyses NOE distances over a trajectory.
- pdb2g96 converts coordinate files from pdb to the GROMOS file format.
- ran box creates a condensed phase system of any composition (randomly distributed molecules).
- sim box solvates a solute in a box of pre-equilibrated solvent.
- tser calculates time series of properties which may be specified flexibly by the user (distances, angles,
dihedral angles, intersection angles with planes, . . .).

As mentioned before, this list is not complete and a lot of more specific analyses can be done using multiple
programs in the right order.

Besides all the programs listed above there is a contrib collection of programs, a folder containing some
GROMOS++ programs which are not of general use but treat a very specific topic or programs which were
replaced by newer versions. A list and short explanation of these programs is available via the documentation
tool, see Sec. 8-3.1 for more information.

1.2.1. GROMOS++ source code and in-code documentation. The GROMOS++ source code
is divided into two major parts, one containing the programs and contrib programs, the other one collecting
the tools (classes, structures and enumerations) used within the programs. The second part is in turn split
up into eight different parts: gromos, gcore, gmath, gio, bound, fit, args and utils (represented as C++
namespaces):

- gromos handles the gromos exceptions (error messages).
- gcore contains all the classes that store the information about the molecular system, e.g. angles,
bonds, atom properties, Lennard-Jones parameters, information and coordinates of the solvent and
many more.

- gmath contains the tools of the basic vector and matrix algebra, handles time correlation functions
and distributions for a series of values as well. There is also a class to handle a kind of pocket
calculations read from a string (useful to mathematically interpret a program input parameter
defining some specific properties or calculations).

- gio contains the tools to read in data or write them out. The read or written data may for example
be a topology, coordinates, building block or input parameter files or any kind of trajectory.

- bound contains the classes to handle periodic boundary conditions (rectangular, triclinic, truncated
octahedron and vacuum).

- fit is the namespace that contains code for translational superpositioning and rotational fitting of
configurations.

- args contains classes to handle the different command line arguments needed by the programs.
- utils is the biggest and most manifold namespace. It contains a class which may perform some basic
tests on a molecular topology, classes which provide the tools to observe hydrogen bonds or define
secondary structure elements within the backbone of a protein using the rules defined by Kabsch and
Sander2, and many other classes. One of the most used classes within this namespace is probably
the class AtomSpecifier: it defines and implements a general form to access atoms in a system. It is
used to look over a specific set of atoms, possibly spanning different molecules. An AtomSpecifier is
basically a string defining one or a group of atoms, used as an input parameter of a program. More
detailed information about the exact format is given in the documentation tool (see Sec. 8-3.1).

All the classes, structures and enumerations of the eight namespaces used in GROMOS++ are docu-
mented in-code and available via the doxygen documentation tool. This also contains a description of all
programs together with some example input parameters. Interactive links to other classes are automatically
generated and help to understand the specific parts and functions of the code.

6-5

CHAPTER 2

Error Messages

Error checking is done in GROMOS with respect to three types of inconsistencies.

1. The array sizes defined in the header files may not be sufficiently large to cope with the size of
the molecular system (solute, solvent, restraints, etc.) as specified in the input files. This type of
inconsistency is signalled by an error message indicating the subroutine producing the error and
that the value of an (input) variable is larger than the array size parameter MAX.... to be found in
the header files. So, either the former should be reduced or the latter enlarged.

2. The files from which data are read by a program may contain data or data types that are incompat-
ible with the expectations of the program. This type of inconsistency is signalled by an error message
as described under Pt. 1.

3. The control switches governing the action of a program may be set such that incompatible options
or program actions are selected. This type of inconsistency is signalled by an error message that
specifies the incompatible conditions that have been selected.

The philosophy with respect to error checking in GROMOS is that the user should be allowed to do silly
things, since what is silly in one case, may be useful in another. This means that only inconsistencies of the
first type mentioned above are rigorously checked. GROMOS error messages state the inconsistency, so
what’s wrong, not what’s to be done to remove the inconsistency. It is up to the user to think of and select
the appropriate action to avoid the error message.

With respect to the inconsistencies of the types mentioned above, the error message indicates the line of
the file where the error occurs and the name of the program or subroutine. This allows the user to identify
and analyse the inconsistency in case the printed error message is not sufficiently informative.

6-7

CHAPTER 3

Machine Compatibility

The GROMOS programs, class libraries and subroutines have been written in standard C++1. This
means that GROMOS should compile and run on any machine for which standard C++ compilers are
available.

MD++ and GROMOS++ require a set of libraries to carry out numerical calculations. These libraries
are written in the C programming language and can be compiled with the same compilers as MD++

and GROMOS++ themselves, See Chap. 8-2. To maximize operating system and compiler compatibility
configuration is carried out by a GNU Autotools generated configuration script which generates the Makefiles
and takes care of correct linking of the libraries. All calculations are carried out in 64 bit (double) precision
only. Single precision may be available (by some compilers through their options) but is not recommended.

6-9

CHAPTER 4

Numerical and Mathematical Functions

The MD++ source code contains a set of mathematical classes and functions to carry out mathematical
operations.

4.1. Numerical functions

MD++ contains two random number generators.

1. Function math::RandomGeneratorG96::get() generates (a series of) uniformly distributed random
numbers between 0 and 1, using a linear congruential method.

2. Function math::RandomGeneratorG96::get gauss() generates (a series of) normally or Gaussian dis-
tributed random numbers x with mean<x> and standard deviation σ, using the Box-Müller method.
The probability distribution is

p(x) = [2π σ2]−1/2 exp[−(x− < x >)2/(2 σ2)]. (4.1)

Alternatively, the random number generators as available in the GSL-libraries may be used, which are inter-
faced via the functionsmath::RandomGeneratorGSL::get() andmath::RandomGeneratorGSL::get gaussian(),
respectively. The choice of random number generator is determined via the block RANDOMNUMBERS in
the MD++ input file.

The Gaussian random number generator is used in program MD++ for the following purposes:

1. Generation of random initial atomic velocities, see Chap. 12.

2. Sampling of the stochastic integrals in a stochastic dynamics simulation, see Chap. 2-13.

4.2. Mathematical functions

4.2.1. MD++. MD++ source code contains a set of mathematical classes and functions to carry out
mathematical operations. These classes and functions are grouped into the math namespace. Most of the
classes are implemented as templates and can be used for either integer and floating point numbers.

1. Class math::GenericVec<t> is a generic three-dimensional vector type class. The standard arith-
metic operators are overloaded. math::Vec is a widely used typedef to math::GenericVec<double>.

2. Class math::GenericMatrix<t> is a generic 3 × 3 matrix type class. The standard arithmetic op-
erators are overloaded. math::Matrix is a widely used typedef to math::GenericMatrix<double>.

3. Class math::GenericSymmetricMatrix<t> is a generic 3× 3 matrix type class. The only difference
to the standard matrix is that it is symmetric.

There are several manipulation functions for vectors and matrices:

1. product either calculates the product of a matrix and a vector or the product of a two matrices.
2. dot and cross are used to calculate the scalar product and the vector product of two vectors.
3. square and pow are used to calculate the square or power of a matrix.
4. inverse calculates the inverse of a matrix.
5. det and trace compute the determinant and the trace of a matrix.
6. transpose gives the transposed of a matrix.

6-11

7. tensor product and dyade calculate the tensor product of two vectors resulting in a matrix.
8. symmetric tensor product calculates the tensor product of two vectors assuming the result is a

symmetric matrix.
9. v2s and m2s can be used to convert vectors and matrices to formatted strings.

10. abs and abs2 calculate the length and the squared length of a vector.
11. norm normalises a vector to a length of 1.

The standard arithmetic and overloaded functions for vectors math::GenericVec<t> and matrices
math::GenericMatrix<t> are

1. operator+/operator- either calculates the vector sum/difference or the sum/difference of two ma-
trices/vectors.

2. operator*/operator/ calculates the multiplication/division of a vector with/by a scalar.

The type math::Box is very similar to the matrix and is used to represent the box. There are constructors
to convert the matrix and the box into each other. product can be used the calculate the product of a box
with a vector. There are accessor functions to the column vectors of the box matrix.

The type configuration::GenericMesh<t> is a generic mesh class which can be used for gridded quan-
tities. It is cuboid and constructed from the number of grid points. There are accessor functions to get and
set the value of a grid point and transformation functions to carry out a fast Fourier transform (FFT) using
an underlying FFT library (FFTW).

A more detailed description and a list of all available classes and functions can be found in the MD++

doxygen under Modules in math.

4.2.2. GROMOS++. The GROMOS++ source code contains a namespace gmath including a set of
mathematical classes and functions to carry out mathematical operations for vectors and matrices and the
calculation of (weighted) distributions and correlation functions. The namespace consists of the following
classes:

1. Class gmath::correlation is a class to calculate time correlation functions. It calculates almost
any kind of correlation function between two time series of scalars or vectors. The data should be
provided by either two (or one) vectors of double, statistic classes or vectors gmath:Vec for vector
correlation functions.

2. Class gmath::Distribution calculates a distribution for a series of values. The user has to specify
an upper and lower bound and number of grid points. After adding all the values a distribution can
be written out.

3. Class template gmath::Stat<t> is a class template to perform some basic statistics on a series of
numbers (double, float). This class allows one to store a series of numbers and calculates the
average, rmsd and an error estimate.

4. Class template gmath::StatDisk<t> is similar to the class template gmath::Stat<t> but stores the
data in a scratch file and not in the memory.

5. Class gmath::WDistribution is similar to the class gmath::Distribution but calculates a distri-
bution for a series of values with different weights.

6. Class gmath::Vec is a three-dimensional vector type class. The standard arithmetic operators are
overloaded.

7. Class gmath::Matrix is a 3×3 matrix type class. The standard arithmetic operators are overloaded.

The standard arithmetic and overloaded functions for vectors gmath::Vec and matrices gmath::Matrix
are:

- operator+/operator- either calculates the vector sum/difference or the sum/difference of two ma-
trices.

- operator*/operator/ calculates the multiplication/division of a vector with/by a scalar. The class
gmath::Matrix is overloaded for multiplications (with a scalar) only.

- dot and cross are used to calculate the scalar product and the vector product of two vectors.
- normalize stretches a vector to a length of 1.
- abs and abs2 compute the length and the squared length of a vector.
- luDecomp performs a single value decomposition of a matrix.
- diagonaliseSymmetric is used to diagonalise a symmetric matrix. The corresponding eigenvalues
are returned.

- det and fastdet3X3Matrix calculate the determinant of a matrix.

6-12

- transpose returns the corresponding transposed matrix of a matrix.

6-13

CHAPTER 5

Nomenclature

In Vol. 4 the basic principles of storage and identification of topological and configurational data concern-
ing a molecular system were discussed. Data or quantities related to e.g. atoms or atom-atom distance
restraints, etc. are identified by their position in the sequence of such data or quantities, and not by their
names, e.g. atom names or names of restraints, etc. This choice of the sequence number in a list as the key
to identifying data has been made to keep GROMOS independent of naming conventions, e.g. for atoms,
which may vary through the various fields of application of computer simulation.

For the convenience of the user, however, atoms can be given atom names and (sequential) groups of
atoms can be given amino acid residue or nucleotide or glucose unit, etc. names. In principle, such names
are only used for writing to file or printing, not as parameters in an algorithm. However, in GROMOS++

programs, atom names or residue names can be used to define a particular selection, as outlined below.

1. In program make top the argument @seq is used to define the sequence of building blocks in order
to make a topology. In this case, residue names (e.g. CYS1, CYS2, HIS1, HEME, ...) play a role
when building a molecular topology from molecular topology building blocks.

2. In various analysis programs, atom names can be used as AtomSpecifiers, see Sec. 5-1.3, to select
atoms for which a translational superposition and rotational positional least-squares fit is to be
performed (e.g. in program rmsd, the argument of type atom specifier @atomsfit can be set to
1:CA, which means that all CA atoms of molecule 1 are selected). In various analysis programs,
atom names and residue names can be or are used to define sets of atoms or quantities over which
averages are to be calculated.

As long as no ambiguity is introduced, GROMOS data files contain atom names and residue or nucleotide
names as defined by the IUPAC-IUB convention3.

We note that for a bond i-j or an improper dihedral angle i-j-k-l the residue name that is associated with
the bond or improper dihedral is the residue name of the first atom, i, in the definition of the bond or im-
proper dihedral. For a bond angle i-j-k or a torsional dihedral angle i-j-k-l the residue name that is associated
with the bond angle or torsional dihedral is the residue name of the second atom, j, in the definition of the
bond angle or torsional dihedral.

6-15

CHAPTER 6

Units

Different sets of units are used in molecular simulations. In simulations of model systems, such as Lennard-
Jones liquids, it is often advantageous to work with dimensionless quantities (reduced units) and apply the
appropriate scaling to the required units afterwards. When treating realistic molecular systems the use of
Standard International (SI) units is recommended. Apart from restrictions when storing or printing data in
non-exponential format, the GROMOS programs are independent of the chosen units. The units are de-
fined by the ones used for physical constants and atomic or molecular quantities in the (GROMOS) data files.

When choosing the SI system it is recommended to use the following basic units.

- length: r : nm = 10−9m = 10 Å

- mass : m: u = atomic mass unit

= 1/12 of the mass of a 12C atom

= 10−3/NAv kg

= 1.6605655 10−27 kg

- time: t: ps = 10−12 s

- temperature: T : K

- charge: q : e = electronic charge

= 1.6021892 10−19 C

The basic units determine the units for other quantities, e.g. the quoted basic units yield

- energy: E : kJ mol−1 = 0.2390 kcal mol−1

= 103/NAv

= 1.6605655 10−21 J

- force: f : kJ mol−1 nm−1 = 1.6605655 10−12 N

- pressure: P : kJ mol−1 nm−3 = 1030/NAv Pa

= 1.6605655 MPa

= 16.6057 Bar

= 16.3885 atm

- velocity: v : nm ps−1

- Boltzmann’s constant : kB: = 8.31441 10−3 kJ mol−1 K−1

(= gas constant)

- electric field : E : kJ mol−1 e−1 nm−1

- electric dipole: µ: e nm = 48.032424 D

- polarisability: α: e2 nm2 kJ−1 mol = 138.9354 (4πǫ0) nm
3

We have used the following physical constants.

6-17

- NAv = Avogadro’s number = 6.022045 1023 mol−1

- R = gas constant = 8.31441 10−3 kJ mol−1 K−1

- kB = Boltzmann’s constant = R/NAv

= 1.380662 10−26 kJ K−1

Other physical constants required by GROMOS are, again using the basic units quoted above,

- ǫ0 = permittivity of vacuum

= 5.727659 10−4 kJ−1 mol e2 nm−1

- (4πǫ0)
−1 = 138.9354 kJ mol−1 e−2 nm

- h = Planck’s constant

= 0.3990313 kJ mol−1 ps

- ~ = h/ 2π

= 0.06350780 kJ mol−1 ps

- c = speed of light

= 2.99792458 105 nm ps−1

We note that only a restricted set of units can be chosen independently. For example, if the energy unit
is kcal mol−1, the length unit is Angstrom and the mass unit is atomic mass unit, the time unit is a derived
unit equal to 0.0488882 ps, which makes the use of these units in simulation a nuisance.

We note that it is possible to use for a quantity in a particular part of a calculation a unit that differs
from the unit generally used in GROMOS for the quantity involved. For example, it is general custom to
use the unit Hz = 10−12 ps−1 for 3J-coupling constants, see Sec. 2-9.7. The recommended SI unit men-
tioned before would be ps−1. However, one may choose to use the unit Hz for 3J-coupling constants and

the parameters a, b and c in (Eq. 2-9.62) as long as the energy units used for the parameters V(Jr)
n (energy

(time)−2) are consistent with those of the other interaction terms. The GROMOS data files (Sec. 4-4.11)

use kJ mol−1 Hz−2 for V(Jr)
n .

In the (perturbation) molecular topology file the atomic charges qi are stored as such in the chosen units.
In MD++ and GROMOS++, the charges are stored as in the molecular topology file.

A number of quantities or interaction function parameters in GROMOS are either angles or dependent
on angle units through their definition.

1. Bond-angle bending interaction Sec. 2-5.2 and Sec. 2-17.2:
bond angles θn (angle)
parameters θ0n (angle)

parameters k
(θ,h)
n (energy (angle)−2)

2. Improper dihedral-angle bending interaction Sec. 2-5.3 and Sec. 2-17.3:
improper dihedral angles ξn (angle)
parameters ξ0n (angle)

parameters k
(ξ)
n (energy (angle)−2)

3. Trigonometric dihedral-angle torsion interaction Sec. 2-5.4 and Sec. 2-17.4:
dihedral angles ϕn (angle)

4. Dihedral-angle restraining interaction Sec. 2-9.6:
dihedral angles ϕn (angle)
parameters ϕ0

n (angle)
parameters k(tr) (energy (angle)−2)

5. 3J-coupling constant restraining interaction Sec. 2-9.7:
dihedral angles ηn (angle)

6-18

dihedral angles ζn (angle)
parameters δn (angle)

6. Local-elevation interaction Sec. 2-9.13.1:

dihedral angles ϕn(angle)

parameters ϕm′

n (angle)
parameters ∆ϕ0

n(angle)

For convenience of the user these quantities are kept in the GROMOS data files using degrees as angle
units. However, when angles are used in calculations involving mathematical functions such as sin, cos, etc.
they should be expressed in radians. Therefore, upon reading GROMOS data files the values of quantities
and parameters that depend on angle units are converted from degrees to radians. So, in the programs and
functions these quantities and parameters are stored using radians as angle units.

Finally, we note that the GROMOS programs can also be used using so-called reduced units, which are
denoted by *:

- length: r * = r /σ

- mass : m * = m/M

- time: t * = t/[σ (M /ǫ)1/2]

- temperature: T * = T /[ǫ/kB]

- charge: q * = q/[(4πǫ0σǫ)
1/2]

- energy: E * = E /ǫ

- force: f * = f /[ǫ/σ]

- pressure: P * = P /[ǫ/σ 3]

- velocity: v * = v /[(ǫ/M)1/2]

where the parameters ǫ and σ are defined by the Lennard-Jones interaction

V (r ij) = 4ǫ
[

(σ/r ij)
12 − (σ/r ij)

6
]

and M is the mass unit.

6-19

CHAPTER 7

Charge Group Codes

The concept of a charge group of atoms has been defined and discussed in Sec. 3-2.6.2. In the GROMOS

non-bonded interaction subroutine NONBML the non-bonded energy and forces are only calculated between
charge groups: for two (different) charge groups the interaction is, apart from excluded neighbours, either
calculated between all or none (if the distance between the charge groups is longer than the cut-off radius)
of the atoms forming the charge groups.

The selection of atoms belonging to a particular charge group is subject to the following restrictions.

1. Atoms belonging to one charge group must have sequential atom sequence numbers.
2. The solute may contain more than one charge group, but atoms of different molecules may not belong

to one charge group.
3. Each solvent molecule consists of one charge group.

When defining solute charge groups, two considerations should be kept in mind.

1. The larger the charge groups, the smaller the total number of charge groups and the faster the
charge group pair list can be constructed.

2. The larger the spatial size (radius Rcg of a charge group, the larger cut-off radius Rc must be used
in order to avoid that the atoms of spatially adjacent charge groups do not interact with each other
(see also Sec. 2-4.4):

Rc ≫ 2 ∗ largestRcg

The charge group definitions of the GROMOS force-field are given in Tabs. 3-3.12-3-3.16 for the 45A4
and 45B4 GROMOS force fields, Tabs. 3-3.27-3-3.31 for the 54A7 and 54B7 GROMOS force fields and in
the figures of Chap. 3-5.

In GROMOS the identification of which atoms of the solute belong to which charge group is done in two
different ways.

1. In the GROMOS data files, the molecular topology building block file (Sec. 4-5.2) and the molecular
topology file (Sec. 4-3.2), each solute atom i has a so-called charge group code ICGM or ICG: the
last atom of a charge group has ICG[i] = 1, whereas the other member atoms of a charge group have
ICG[i] = 0.

2. In the programs and functions a solute charge group pointer list INC[1..NCAG] is used to indicate
the NCAG charge groups of a solute. The atom sequence number of the last atom of the I -th charge
group is stored in INC[I].

Upon reading the GROMOS topology files, the solute charge group codes ICGM[i] or ICG[i] are used to
calculate the solute charge group pointer list INC[1..NCAG] (see Sec. 4-3.2 and Sec. 4-5.2).

6-21

CHAPTER 8

Pair List Generation

An essential part of the calculation of short-range nonbonded interactions is the construction of a pair list,
containing all atom pairs separated by a distance less than the given cutoff distance. Various algorithms for
the generation of pair lists are available in MD++.

8.1. Double loop pair list

A pair list is generated by a double loop, looping over NCG(NCG−1)
2 possible charge group pairs and checking

their respective separation distance against the given cutoff Rc . A double loop pair list algorithm can be
applied by setting algorithm=standard(0) in the PAIRLIST block of MD++. The double loop pair list
algortihm is slow compared to grid-based pair list algorithms and is not recommended for the simulation of
large systems.

8.2. Grid pair list (Heinz and Hünenberger)

A pair list is generated by sorting the charge groups into grid cells with a specified grid index, defined as

Igrid = NyNzix +Nziy + iz , (8.1)

where N gives the number of grid cells in each direction and ix is defined as ix = mod(x, (xbox/Nx)
(similarily for y and z).

For each grid cell, the neighbouring grid cell indices are found by the application of a mask array. This
mask array contains the relative grid cell indices to all cells that may possibly be within the cutoff distance
of the central cell, and the possibly neighbouring grid cells are found by adding the indices of the mask array
to the index of the central cells. Due to the definition of the grid cell index Eq. 8.1, cells are sequential in
the z-direction. This allows the mask array to be constructed as stripes, giving the grid cell range of each
stripe in the z-direction. The sorted charge groups are stored in an array sorted by the same grid index.
The algorithm applies one array of the size O(N3

cell) pointing to the position in the charge group array of
the first charge group of the previous non-empty grid cell. This enables the mask ranges to be converted
to ranges in the sorted charge group array. This striping makes the overall algorithm less dependent on the
grid size.

The Heinz and Hünenberger grid pair list algorithm can be applied by setting ALGORITHM=2 in the
PAIRLIST block of MD++. For further information see4.

8.3. Grid pair list with expanded coordinates

The original Heinz and Hünenberger pair list algorithm creates the mask such that the periodicity is
implicit. This is done by adding the possible box-shifted stripes to the mask. Another approach is to use
a non-periodic mask, but expanding the system by duplicating atom coordinates close to the box edge to
its periodicly shifted boxes. This requires some overhead in terms of computational speed and memory
but prevents the consideration of periodic shifts in the nonbonded calculation routines, and improves data
locality.

This modified grid pair list algorithm can be applied by setting ALGORITHM=1 in the PAIRLIST block
of MD++.

6-23

CHAPTER 9

Boundary Conditions and Periodicity

The concept of periodic boundary conditions has been discussed in Chap. 2-4, where also the formulae for
the three types of periodic boundary conditions that can be selected in GROMOS were given.

1. Periodic rectangular box.

switch NTB = 1, angle BETA = 90.0
box lengths BOX[1..3] = a, b, c

2. Periodic triclinic box.

switch NTB = 2, angle BETA[1..3] = α, β, γ
box lengths BOX [1..3] = a, b, c

3. Periodic truncated octahedral box.

switch NTB = -1, angle BETA = 90.0
box lengths BOX [1..3] = a, a, a

The use of pressure coupling in a simulation under periodic boundary conditions (Sec. 2-12.5-Sec. 2-12.4)
enables variations of the box parameters. The various options for these variations are:

1. no variations of the box parameters (NTP=0);
2. isotropic scaling, i.e. identical relative variations of the box-edge lengths only (NTP>0, NPCPL

{1,1,1,0,0,0});
3. partially-anisotropic scaling, i.e. independent relative variations of the box-edge lengths only (NTP>0,

NPCPL {i, j, k, 0, 0, 0} with i,j,k = 0,1,2 or 3 and i 6=j or i 6=k);
4. fully-anisotropic scaling, i.e. independent variations of all box parameters (box-edge lengths, box

angles and Euler angles)(NTP>0, NPCPL {1,1,1,1,1,1}).

For a system under vacuum boundary conditions (VBC), only the first option is allowed. For a truncated-
octahedral box, only the first two options are allowed. For a rectangular box, only the first three options
are allowed. For a triclinic box, all options are allowed.

In GROMOS, the periodic boundary transformations are generally not performed for single atoms, but
for all atoms of a charge group, that is, charge groups are (periodically) translated as one entity.

When considering a time series of configurations rr(tn) (n=1,2,3,...Ntot), e.g. to obtain averages or time
correlation functions, the function rr(tn) should be continuous in the time, that is, the atom positions ri(tn−1)
and ri(tn) at consecutive time points should satisfy the nearest image condition. This is enforced in the
analysis programs and will only give correct results if the time difference tn − tn−1 is smaller than the time
period that an atom needs to travel over a distance d equal to half the box size (i.e. d should satisfy the
relations Eq. 2-4.55 or Eq. 2-4.60 or Eq. 2-4.59 with Rc replaced by d).

When using the GROMOS analysis package GROMOS++, the periodic boundary transformations are
controlled by the switch

@pbc <boundary type> [<gathermethod>]

[list <list of atom pairs>]

[refg <reference structure>]

6-25

where boundary type is the periodic boundary condition used in generating the trajectory:

v - vacuum

r - rectangular

t - truncated octahedral

c - triclinic

The gathermethod controls which method is to be used for gathering. During a simulation the molecules
in the system can cross the boundaries of the central periodic box. If one would depict the system in such a
case, using a molecular visualization program, the molecules would appear as if they were ’broken’. Parts of
the molecules that are outside the central box would appear inside of it, but on the opposite edge of the box.
The gathering procedure puts the atoms comprising the molecular system into a single central box without
’breaking’ the molecules. The available gathering options are:

nog or 0 no gathering;

glist or 1 gathering of each configuration based on a single list of pairs of atoms that are close
to each other; the atom pair should be in the sequence: A B, where A is an atom of
the molecule to be gathered, and B is an atom of the reference molecule; if the list
argument is not given by the user, gathering is done based on the first atom of the
previous molecule; the list argument should be in the atom specifier format;

gtime or 2 gathering based on the previous configuration; the first configuration is not gathered;

gref or 3 gathering of each configuration based on a reference structure; refg argument required;

gltime or 4 gathering based on the previous configuration; the first configuration is gathered based
on a single list file; list argument required;

grtime or 5 gathering based on the previous configuration; the first configuration is gathered based
on a reference structure; refg argument required;

gbond or 6 gathering of each configuration based on bond connectivity.

cog or 7 gathering based on the centre of geometry of the first molecule.

gfit or 8 gather selected molecules based on a reference structure which has been superimposed
on the first frame of the trajectory, gather remaining molecules to the cog of selected
molecules. Depends on correctly gathered reference (”refg” argument). Molecules to
be selecte are specified with the ”molecules” argument.

The default option in GROMOS is glist. For a single molecule in solution it is often not neccessary to
gather the system. If gathering is required, then the methods gbond or gref are the most suitable ones. For
systems with more than one molecule and for crystals gathering is usually an essential step in the analysis
of trajectories. The correct gathering strongly influences the results of the calculation of atom-positional
RMSD, RMSF, and other quantities. Not every method is appriopriate for every case, though. For instance,
the glist method is not suitable for e.g. lipid bilayers, since the lipids can flip from one layer to the other.
The lipid which moved to another layer will be close to completely different lipid molecules than before the
flip.

6-26

periodic box

split charge group

i2

i3

i4

i1

periodic box

gathered charge group

i4

i1

i2

i3

Figure 9.1. The atoms with atom sequence numbers i1, i2 and i3 belong to a solute charge
group and are gathered such that the spatial closeness of the charge group is not broken by
the periodic boundary condition.

periodic box

not allowed for solvent

i2

i3

i1

periodic box

allowed for solvent

i1

i3

i2

Figure 9.2. For the three atoms of a solvent molecule the simulation in the left figure must
never occur in GROMOS, that is, the covalent bonds must not be split by the periodic
boundary condition. All solvent configurations must be as in the right figure.

6-27

central periodic box

1st atom of charge group outside central box

i1

i2

i3

central periodic box

1st atom of charge group inside central box

i1

i2

i3

Figure 9.3. For the three atoms of a solvent molecule the simulation in the left figure must
never occur in GROMOS, that is, the covalent bonds must not be split by the periodic
boundary condition. All solvent configurations must be as in the right figure.

periodic box

covalent connectivity of molecules is broken

i2

i3

i4

i1

periodic box

gathered charge group

i4

i1

i2

i3

Figure 9.4. The covalent connectivity of a molecule with atom sequence numbers i1, i2,
i3, i4 that is broken by the periodic boundary condition, is restored by making the atomic
coordinates of atoms for which the sequence numbers differ only by one satisfy the nearest
image condition.

6-28

periodic box

atom i4 not in nearest neighbour position to atom i3

i1 i2 i3

i4 i5 i6

periodic box

atom i4 in nearest neighbour position to atom i3

i1 i2 i3

i4 i5 i6

Figure 9.5. Undesired action of gathering routines.
The atoms are put into the nearest neighbour position with respect to the previous atom in
the atom sequence. Since after atom i3 the numbering of the atoms does not follow more
or less (i.e. within half a box length) the covalent connectivity of the chain, the latter is
broken between atoms i3 and i6 by the gather method. Selecting the proper gather method
can be a challenging task.

6-29

CHAPTER 10

Generation of Cartesian Coordinates from Internal Coordinates

The configuration of a molecule can be characterized by different types of coordinates.

1. Cartesian coordinates for all the atoms of the molecule.

2. Internal coordinates such as bond lengths, bond angles and dihedral angles, one of each per atom
plus the spatial positions of three atoms not lying on a line.

GROMOS++ contains programs and functions performing the transformations from Cartesian to inter-
nal coordinates and backwards.

1. Program tser (see Sec. 5-4.63) calculates bond-length or bond-angle or dihedral-angle values from
sets of Cartesian coordinates.

2. Program gca (see Sec. 5-2.11) generates Cartesian coordinates from a set of bond-length, bond-angle
and dihedral-angle values.

Using the IUPAC-IUB convention for dihedral angle values the position r l′ of atom l after rotation over a
dihedral angle ∆ϕ around the axis defined by the line connecting atoms j and k and starting from a position
r l before the rotation is

rl′ = rl +[cos(∆ϕ)− 1]
rnk
r2kj

+ sin(∆ϕ)
rnk
r2kj

rmk

rmk
, (10.1)

where

rkj = rk − rj
rlk = rl − rk
rmk = rkj × rlk
rnk = rmk × rkj (10.2)

and ∆ϕ = ϕ(i-j-k-l’) - ϕ(i-j-k-l) for example.

Resetting the dihedral angles along a linear covalently bound chain of atoms, as in Fig. 10.1, is straight-
forward. When rotating atom in (n = 4,5,..., N) around bond in−2 - in−1 over ∆ϕ, all atoms im with n <
m 6 N should be rotated over the same angle ∆ϕ in order to avoid deformation of the molecule. When the
chain is branched, as in Fig. 10.2, it must be possible to specify an upper bound M for the atom sequence
numbers m so that only the atoms m with n < m 6 M of a side chain are rotated with atom n if n denotes
a side chain atom.

6-31

i1 i3 i5 i7 i9

i2 i4 i6 i8 i10

Figure 10.1. Unbranched covalently bound chain. Rotating atom i4 around i2 − i3 over
an angle ∆ϕ, atoms i5 to i10 should also be rotated over ∆ϕ.

i1 i3 i5 i10

i2 i4 i9

i6

i7

i8
Figure 10.2. Branched covalently bound chain. Rotating atom i7 around i5 − i6 over an
angle ∆ϕ, atom i8 should also be rotated over ∆ϕ.

6-32

CHAPTER 11

Generation of Hydrogen Atom Coordinates

Generally, molecular configurations as obtained by X-ray diffraction experiments do not contain coor-
dinates for hydrogen atoms. If the molecular model and force field include an explicit representation of
hydrogen atoms, their coordinates must be generated using the coordinates of the non-hydrogen atoms of
the molecule.

When generating a GROMOS coordinate file from a PDB file, the GROMOS++ program pdb2g96
generates enries for all hydrogen atoms for which no coordinates were present in the PDB file and sets the
corresponding Cartesian coordinates to zero (see Sec. 5-2.19).

The GROMOS++ program gch (Sec. 5-2.12) can be used to generate the Cartesian coordinates for the
hydrogen atoms. With gch, it is possible to use topological information on bonds, bond angles and dihedral
angles to place hydrogen atoms at the optimal location. In cases where the necessary angular parameters are
not provided in the topology, gch uses 109.5 degrees for tetrahedral centers and 120 degrees for planar centers.

Eight types of geometry can be handled by gch:

1. An atom (i) is bonded to one hydrogen (H) and one other heavy atom (j). A fourth atom (k) is
searched for which is bonded to j and preferably is used to define the dihedral around the j-i bond.
The coordinates of H are generated in such a way that the dihedral k-j-i-H is trans and that the
angle j-i-H and bond length i-H correspond to their minimum energy values. Considering that b is
the bond length i-H and α is the angle j-i-H, the position rH of the hydrogen atom is given by

rH = ri + b ·
t

t
, (11.1)

with

t = cosα ·
rji
rji

− sinα ·

[(

rji
rji

)

×

(

ta
ta

)]

, (11.2)

in which

ta = rji × rkj . (11.3)

2. An atom (i) is bonded to one hydrogen (H) and two other heavy atoms (j and k). The coordinates
of H are generated to be in the plane through j, k and i, on the line bisecting the j-i-k angle and
with an i-H bond length corresponding to the minimum energy value in the topology, such that the
j-i-H and k-i-H angles are larger than 90 degrees. Considering that b is the bond length i-H, the
position rH of the hydrogen atom is given by

rH = ri − b ·
t

t
, (11.4)

with

6-33

t =
rji
rji

+
rki
rki

. (11.5)

3. An atom (i) is bonded to two hydrogens (H1 and H2) and one other heavy atom (j). A fourth atom
(k) is searched for which is bonded to nh and preferably is used to define the dihedral around the j-i
bond. The coordinates of H1 are generated in such a way that the dihedral k-j-i-H1 is trans and that
the angle j-i-H1 (α1) and bond length i-H1 (b1) correspond to their minimum energy values. The
coordinates of H2 are generated to have the angles j-i-H2 (α2) and H1-i-H2 (α3) as well as the bond
length i-H2 (b2) at their minimum energy values. If this does not result in a planar configuration
around i, the improper dihedral i-j-H1-H2 will be positive.

rH1 = ri + t1, (11.6)

with

t1 = b1

[

cosα1 ·
rji
rji

− sinα1 ·
ta
ta

]

, (11.7)

and with

ta =
rji
rji

×

[

rkj
rkj

×
rji
rji

]

; (11.8)

and

rH2 = ri + t2, (11.9)

with

t2 = c1
rji
rji

+ c2
ta
ta

+ c3

[

rkj
rkj

×
rji
rji

]

, (11.10)

in which the scalar coeficients c1, c2 and c3 are given by

c1 = b2 · cosα2 (11.11)

c2 =

b1 · b2 · cosα3 − c1

(

rji

rji
· t1

)

ta

ta
· t1

(11.12)

c3 =
√

b22 − c21 − c22. (11.13)

4. An atom (i) is bonded to three hydrogens (H1, H2 and H3) and one other heavy atom (j). A fourth
atom (k) is searched for which is bonded to j and preferably is used to define the dihedral around the
j-i bond. The coordinates of H1 are generated in such a way that the dihedral k-j-i-H1 is trans and
that the angle j-i-H1 (α1) and bond length i-H1 (b1) correspond to their minimum energy values.
The coordinates of H2 are such that the angles j-i-H2 (α2) and H1-i-H2 (α4) and the bond length
i-H2 (b2) are at their minimum energy values, and the improper dihedral i-j-H1-H2 is positive. The

6-34

coordinates of H3 are such that the angles j-i-H3 (α3) and H1-i-H3 (α5) and the bond length i-H3
(b3) are at their minimum energy values and the improper dihedral i-j-H1-H3 has a negative value.

rH1 = ri + t1, (11.14)

with

t1 = b1

[

cosα1 ·
rji
rji

− sinα1 ·
ta
ta

]

, (11.15)

and with

ta =
rji
rji

×

[

rkj
rkj

×
rji
rji

]

; (11.16)

now for the second hydrogen atom

rH2 = ri + t2, (11.17)

with

t2 = c1
rji
rji

+ c2
ta
ta

+ c3

[

rkj
rkj

×
rji
rji

]

, (11.18)

in which the scalar coeficients c1, c2 and c3 are given by

c1 = b2 · cosα2 (11.19)

c2 =

b1 · b2 · cosα4 − c1

(

rji

rji
· t1

)

ta

ta
· t1

(11.20)

c3 =
√

b22 − c21 − c22. (11.21)

finally, for the third hydrogen atom

rH3 = ri + t3, (11.22)

with

t3 = c4
rji
rji

+ c5
ta
ta

+ c6

[

rkj
rkj

×
rji
rji

]

, (11.23)

in which the scalar coeficients c4, c5 and c6 are given by

c4 = b3 · cosα3 (11.24)

6-35

c5 =

b1 · b3 · cosα5 − c4

(

rji

rji
· t1

)

ta

ta
· t1

(11.25)

c6 =
√

b23 − c24 − c25. (11.26)

5. An atom (i) is bonded to one hydrogen atom (H) and three other heavy atoms (j, k, l). The
coordinates of H are generated along the line going through atom i and a point corresponding to the
average position of j, k and l, such that the bond length i-H (b) is at its minimum energy value and
the angles j-i-H, k-i-H and l-i-H are larger than 90 degrees.

rH = ri − b
ta
ta
, (11.27)

with

ta = rji + rki + rli (11.28)

6. An atom (i) is bonded to two hydrogen atoms (H1 and H2) and two other heavy atoms (j and k).
The coordinates of H1 and H2 are placed above and below the plane going through atoms j, k and
i, in such a way that the i-H1 (b1) and i-H2 (b2) bond lengths and the angle H1-i-H2 (α) are at their
minimum energy values. The improper dihedral angle i-j-k-H1 will be positive.

rH1 = ri + b1

[

sin

(

α

2

)

·
tb
tb

+ cos

(

α

2

)

·
ta
ta

]

, (11.29)

and

rH2 = ri − b2

[

sin

(

α

2

)

·
tb
tb

+ cos

(

α

2

)

·
ta
ta

]

, (11.30)

with

ta = −(rji + rki), (11.31)

and

tb = rji × rki. (11.32)

7. An atom (i) is bonded to two hydrogen atoms (H1 and H2), but to no heavy atoms. This is likely
to be a (crystallographic) water molecule. First a molecule is generated having the i-H1 aligned in
the z-direction and the i-H2 in the z-y plane with the angle H1-i-H2 (α) and bond lengths i-H1 (b1)
and i-H2 (b2) according to their minimum energy values. This molecule is then rotated around x, y
and z by three random angles.

rH1 = ri +Rt1, (11.33)

6-36

rH2 = ri +Rt2, (11.34)

in which t1 has the coordinates (0.0, 0.0, b1) and t2 has the coordinates (0.0, b2 sinα, b2 cosα) and R
is a matrix that corresponds to rotations around x, y and z by three random angles (φ, ψ and θ).
R can be written as:

R =

1.0 0.0 0.0

0.0 cosφ − sinφ

0.0 sinφ cosφ

×

cosψ 0.0 sinψ

0.0 1.0 0.0

− sinψ 0.0 cosψ

×

cos θ − sin θ 0.0

sin θ cos θ 0.0

0.0 0.0 1.0

. (11.35)

8. An atom (i) is bonded to four hydrogen atoms (H1, H2, H3 and H4), but to no heavy atoms. A
molecule is generated with all bond lengths (b1, b2, b3 and b4) at their minimum energy value, the
i-H1 aligned in the z-direction, H2 in the x-z plane and H3 such that the improper i-H1-H2-H3 is
positive and H4 such that the improper i-H1-H2-H4 is negative. In addition, all Hn-i-Hm angles (α)
are set to 109.5◦. The complete molecule is then rotated by three random angles around x, y and
z. Here we also make use of the rotational matrix (R) defined by Eq. 11.35. Similarly to the above
case, we have

rH1 = ri +Rt1, (11.36)

rH2 = ri +Rt2, (11.37)

rH3 = ri +Rt3, (11.38)

rH4 = ri +Rt4, (11.39)

in which t1 has the coordinates (0.0, 0.0, b1), t2 has the coordinates (b2 sinα, 0.0, b2 cosα), t3 has the
coordinates (b3 sinα cos 120◦, b3 sinα sin 120◦, b3 cosα), and t4 has the coordinates (b4 sinα cos 240◦,
b4 sinα sin 240◦, b4 cosα).

6-37

CHAPTER 12

Generation of Atomic Velocities

The atomic velocities vj of a molecular system in equilibrium will obey a Maxwell distribution at a given
temperature T , that is, the probability that the atomic velocity lies between vj and vj + dvj is

P (vj)dvj = [2πkBT/mj]
− 3

2 exp[mjv
2
j/(2kBT)]dvj (12.1)

where kB is Boltzmann’s constant and mj the mass of atom j. If no constraints are applied, the 3D velocity
distribution has the form of a product of three Gaussian distributions Eq. 4.1,

p(x)dx = [2πσ2]−
1

2 exp[−(x− < x >)2/(2σ2)]dx (12.2)

for the Cartesian velocity components vjx, vjy and vjz , each with < x > = 0 and Eq. 2-12.58

σ = [kB T/m j]
1

2 . (12.3)

If constraints are applied, the velocity components that will induce a violation of the constraints, have to
be eliminated. For solute or solvent distance constraints this is done using the procedure to obtain so-called
shaken or constrained velocities (Sec. 2-10.3.7). For position constrained or fixed atoms the velocities are
simply set equal to zero (Sec. 2-10.2). These operations imply a modification of the sampled unconstrained
(vuc

j) velocity distribution to a constrained (vj) velocity distribution, which may involve a change of proper-
ties. For example, the solute or solvent temperatures as calculated from the velocities via (Eq. 2-10.49 and
Eq. 2-10.50) or (Eq. 2-10.52 and Eq. 2-10.53), before or after shaking may be different.

T (vuc
j) 6= T (vj). (12.4)

The constrained velocity distribution can be brought to the desired temperature T by coupling to a temper-
ature bath in a simulation (Sec. 2-12.2).

6-39

CHAPTER 13

What to Do when SHAKE Fails

When something goes wrong in a simulation that involves constraints handled by the SHAKE method, it
often shows up as a SHAKE error. This means that the atomic coordinate resetting, i.e. from the uncon-
strained atomic positions ruc to the constrained atomic positions r in Eq. 2-10.14, cannot be accomplished
within the limit of Nsh = 1000 iterations over the solute or solvent constraints, or it cannot be accomplished
since the deviation between ruck2

and rk2
is or has become too large, as illustrated in Fig. 2-10.2. This

situation can easily occur when something is wrong with

1. the constraint lengths d0k1k2
in Eq. 2-10.11,

2. the reference atomic positions rk1k2
(t) in Eq. 2-10.11,

3. the unconstrained atomic positions ruck1k2
(t+∆t) in Eq. 2-10.11,

4. the constrained atomic velocities vi(t−∆t/2) determining ruci(t+∆t) through Eq. 2-10.6,

5. the unconstrained atomic forces fuci(t) determining ruci(t+∆t) through Eq. 2-10.6.

So, any anomalously large atomic force or arbitrary modification of the quoted quantities may induce
SHAKE to fail. However, due to this sensitivity of SHAKE to incorrect forces, velocities or coordinates, a
failure of SHAKE often signals an error for which the cause must be sought elsewhere. Here, we list a few
possible causes of errors showing up in SHAKE, and what could be done to identify their cause.

1. The length unit in the molecular topology does not match that of the atomic coordinates, e.g. nm
versus Å. This will result in the energies of the bonds being much too large, see Sec. 2-10.3.

2. The sequence of the atoms in the molecular topology does not match that of the atomic coordinates.
This error usually shows up in the bond-angle energies.

3. The chirality of the atomic coordinates does not correspond to the definition of the improper dihedral
angles in the molecular topology (building blocks). This error will show up in the improper dihedral
angle energies.

4. The (initial) molecular configuration (atomic coordinates) has a very high energy in terms of the
force-field used. This error will show up in the output of an energy minimization without constraints:
the energies in the zero-th EM step will be large.

5. During a simulation, the forces may become too large, for example, when positively and negatively
charged atoms come too close to each other, SHAKE may not be able to maintain the bonds to
these atoms. This error will show up in the output of an MD run without constraints: the energy
of the bonds will become large.

6. During a simulation, some forces may act largely perpendicular to an extended, constrained planar
group of atoms, for example the side chain atoms of Arg residues. In such a situation SHAKE is
not very efficient, since it attempts to compensate the unconstrained step which is perpendicular to
the plane of the planar group by modifying iteratively the atomic coordinates within the plane of
the planar group, see Fig. 13.1. This error shows up in the SHAKE error message. The coordinates
of the atoms of the planar group or nearby atoms cannot be reset. Use of a smaller time step ∆t
(so that the positional changes per step are smaller) or switching off (part of) the solute constraints
(Sec. 2-10.4) may help to overcome this situation.

We note that the contribution of the various terms in the force field to the (in)stability of a simulation can
be analyzed by switching on and off the various force-field terms. The switches NTF[1..10] (forces), NTPOR

6-41

(position restraining), NTDIR (distance restraining), NTDLR (dihedral angle restraining), NTJVR (3J-
value restraining) and NTLES (local elevation biasing) can be used to this end (Secs. 2-12.7 and 2-10.3).
The solute constraints can be switched on and off using the switch NTC (Sec. 2-10.4), whereas the solvent
constraints cannot be switched off (Sec. 2-10.5).

x-axis x-axis x-axis

z-axis z-axisy-axis

C C CN NH

force

H

H

N

N

H

H H

SHAKE

Figure 13.1. The inefficiency of SHAKE when forces perpendicular to constrained, ex-
tended planar groups of atoms, e.g. in an Arg side chain (left panel), are present. The force
(in the z-direction) induces a change of the H atom position out of the (x, y) plane (middle
panel), which SHAKE attempts to compensate for by coordinate modification within the
(x, y) plane (right panel).

6-42

CHAPTER 14

Removal of Centre of Mass Motion

When simulating a system in vacuo, the total translational momentum and the total angular momentum
are conserved quantities. When periodic boundary conditions are applied the total angular momentum is
not conserved, but the total translational momentum still is. When parts of the system are positionally
restrained (e.g. by position restraining, Sec. 2-9.2) neither of these quantities are conserved. In the case of
in vacuo or periodic boundary condition simulations, it is common practice to stop the translational motion
of the centre of mass and the rotational motion around the centre of mass of the entire molecular system
at the start of such a simulation (NTICOM = 1 see Chap. 4-8 block INIT IALISE for more details) and
at regular time intervals afterwards (NSCM ≈ 104) in order to counteract a numerical build-up of centre of
mass motion (Sec. 2-4.2, Sec. 2-4.4, and Sec. 2-12.7). Here we present the algorithm forremoval of motion
of and around the system centre of mass. It consists of the following steps.

1. Determine the centre of mass coordinates

rcm = M−1
N
∑

i=1

mi ri (14.1)

of the molecular system containing N atoms with masses mi and positions ri, where

M =
N
∑

i=1

mi . (14.2)

2. Determine the coordinates of the atoms relative to the system centre of mass

r′i = ri− rcm . (14.3)

3. Determine the system centre of mass velocity

vcm = M−1
N
∑

i=1

mi vi, (14.4)

and calculate the system centre of mass translational kinetic energy

Kcm,tr = 1
2M v2

cm . (14.5)

4. Determine the velocities of the atoms relative to the system centre of mass translation

v′
i = vi−vcm . (14.6)

5. Determine the system angular momentum around the system centre of mass

Lcm =
N
∑

i=1

mi r
′
i ×v′

i . (14.7)

6. Determine the inertia tensor of the system with respect to the centre of mass

I cm =
N
∑

i=1

mi

(r′i)
2 −(x′i)

2 − x′i y
′
i − x′i z

′
i

− y′
i x

′
i (r′i)

2 −(y′i)
2 − y′

i z
′
i

− z′i x
′
i − z′i y

′
i (r′i)

2 −(z′i)
2

. (14.8)

7. Determine the angular velocity around the system centre of mass using the inverted inertia tensor

Ocm = I−1
cm Lcm, (14.9)

and calculate the rotational kinetic energy around the system centre of mass

Kcm,rot = 1
2 Ocm ·Lcm (14.10)

6-43

8. Determine the velocities of the atoms relative to the system centre of mass translation and to its
rotation around its centre of mass

v′′
i = v′

i−Ocm× r′i . (14.11)

6-44

CHAPTER 15

Saving Trajectories

The molecular information which is generated by a simulation can be stored in different ways in order
to enable the user to analyze the various molecular or system properties after completion of the simulation
using specialized analysis programs or so-called post-MD programs (see Vol. 5). Saving all information that
is generated in a simulation, i.e. atomic coordinates, velocities, forces, pair energies, etc. at each time point
tn′ would require an excessive amount of disc space. Moreover, the information stored would be redun-
dant, since the values of the mentioned quantities are highly correlated between subsequent simulation time
points tn, tn+1 = tn + ∆t, etc., since ∆t is generally small ≈ 0.002 ps. The information may also be re-
dundant due to dependence between different physical quantities. For example, molecular potential energies
and atomic forces can be (re)calculated from atomic coordinates (if no velocity dependent forces are present).

The amount and type of molecular or system information that can be stored during a simulation can be
controlled in programMD++ within the WRITETRAJ input block (described in Chap. 4-8) in the following
manner:

1. In every simulation the final configuration and velocities and other quantities that are needed to
continue the simulation are saved (Sec. 5-1.1) in a so-called single-configuration file. These con-
figurations, which generally lie far apart in time, typically 10-100 ps, can be used to obtain a low
time-resolution picture of the properties of the molecular system.

2. During a simulation different groups of atomic or system quantities can be saved at different time
intervals in different trajectory files.
a. Atomic coordinates (Sec. 4-4.2) and possibly corresponding energies (Sec. 4-4.17) and time step

data (Sec. 4-4.16) in a coordinates trajectory file. The switches NTWX and NTWSE control
the saving of configurations:

(i) If NTWX 6= 0 and NTWSE = 0, atomic coordinates (POSITION block) are saved at
constant time intervals |NTWX |×∆t, where ∆t is the simulation time step. If NTWX >
0, solute plus solvent atomic coordinates are saved, whereas if NTWX < 0, only solute
atomic coordinates are saved.

(ii) If NTWX 6= 0 and NTWSE > 0, the lowest energy configuration of each sequential block
of |NTWX| simulation time points is saved, while the value of NTWSE specify the type
of energy used for the selection, ENER[NTWSE] (refer to Sec. 4-4.17 for the description
of the energy types). In this case, the time intervals between saved configurations are
variable, minimally ∆t and maximally |NTWX |×∆t, so the time and step number and the
energy are saved together with the configuration (POSITION block, TIMESTEP block,
ENERGY03 block). If NTWX > 0, solute plus solvent atomic coordinates are saved,
whereas if NTWX < 0, only solute atomic coordinates are saved.

b. Atomic velocities (Sec. 4-4.3) in a velocity trajectory file. The switch NTWV controls the saving
of velocities. If NTWV 6= 0, atomic velocities (VELOCITY block) are saved at constant time
intervals |NTWV |×∆t. If NTWV > 0, solute plus solvent atomic velocities are saved, whereas
if NTWV < 0, only solute atomic velocities are saved.

c. Energies, temperature scaling factors, virial, pressure and computational box size in a so-called
energy trajectory file. The switch NTWE controls the saving of these data. If NTWE 6= 0, the
ENERGY03 block and the VOLUMEPRESSURE03 block, as described in Sec. 4-4.17, are saved
at constant time intervals |NTWE| ×∆t.

d. Data to compute relative free energies with respect to changing the coupling parameter λ are
saved in a so-called free-energy trajectory file. The switch NTWG controls the saving of free

6-45

energy data. IfNTWG 6= 0, the FREEENERDERIVS03 block is saved at constant time intervals
|NTWG| ×∆t.

e. Forces are saved to a force trajectory file. If NTWF 6= 0, the FORCE block is saved at constant
time intervals |NTWF |×∆t. If NTWF > 0, solute plus solvent atomic forces are saved, whereas
if NTWF < 0, only solute atomic forces are saved.

f. Block-averaged energies are written to a block average energies file. If NTWB 6= 0, the
block averaged energies (and free energies if NTWG > 0) are saved at constant time inter-
vals |NTWB| ×∆t.

g. A special trajectory file is written for some specific applications (e.g. polarisation, NMR data, X-
ray data, ...). The writting of this trajectory is not controlled by the WRITETRAJ input block,
but within the specific input blocks. For example, the POLARISE block in MD++ contains a
WRITE flag which determines the frequency with which the distances ∆r between the charges
(of the charge on spring model, see Sec. 2-7.5) will be written to the special trajectory (see
Chap. 4-8).

When choosing the time interval between saved configurations, velocities, energies or free energy data, the
following points should be considered.

1. Sufficient data points (i.e. > 1000) should be available to secure sufficient precision of averages,
fluctuations.

2. The larger the accessible part of phase space of the molecular system, the more configurations, etc.
may be needed for satisfactory averaging.

3. The longer the relaxation time of the property of interest, the more time points should be saved.
4. The wider the time scales that determine a molecular or system property of interest, the more dense

the time points for saving configurations or velocities should be chosen.

For example, configurations are typically stored every 0.1-10 ps. In simulations of molecular liquids com-
prising a few hundred identical molecules, simulation periods of 10-100 ps are sufficient to obtain precise
values for quantities, such as the density, heat of vaporization, diffusion coefficient, rotational correlation
times, thermal expansion coefficient, isothermal compressibility, specific heat, excess free energy5,6. Dielec-
tric properties require much longer (> 1 nsec) simulations in which long-range electrostatic interactions are
taken into account. Calculation of the shear viscosity requires saving the pressure at every time step for
more than a nanosecond5,6.

GROMOS++ analysis programs usually require one or more trajectory files as input. This is usually
performed with specifying the flag @traj (although, other types are also possible: @en files, @fr files, ...).
See Vol. 5 for more details.

If necessary, GROMOS++ program tstrip can be used to remove solvent coordinates from the trajectory
file (Sec. 5-4.64). In addition, GROMOS++ program filter can be used to filter a coordinate trajectory for
a limited set of atoms.

6-46

CHAPTER 16

Performing a Translational Superposition and a Rotational

Least-Squares Fit

When analyzing or averaging quantities that depend on the atomic position vectors ri(t) of the atoms
of a (solute) molecule generated in a simulation, it is often desired to separate the internal motions or
fluctuations from the centre of mass translation of the molecule and the rotation around the centre of mass
of the molecule. The translation of and the rotation around the centre of mass of a molecule can be eliminated
from the configurations of a trajectory by superimposing the centres of mass of the sequential configurations
and subsequently performing a rotational least-squares fit of the positions of corresponding atoms in the
configurations of the trajectory and in the first configuration.

Elimination of the translational centre of mass motion from a trajectory of solute configurations ri(tn)
with n = 1, 2, . . . ,N solu

a is achieved by conversion of the atomic coordinates to atomic coordinates relative
to the solute centre of mass for each time frame tn′ ,

r′i(tn) = ri(tn)− rCOM (tn) (16.1)

with

rCOM (tn) =
1

msolute

N
solu
a
∑

i=1

miri(tn) (16.2)

and

msolute =

N
solu
a
∑

i=1

mi . (16.3)

Eq. 16.2 is calculated in GROMOS++ using the class fit::PositionUtils.

Elimination of the rotational motion of the solute around its centre of mass is achieved by performing
a least-squares fit of the position vectors r′i(tn) and r′i(tm) of two different configurations at times tn and
tm. The atoms i = 1, 2, . . . ,N for which the superposition is to be carried out, should be chosen from the
relatively rigid parts of the solute in order to minimize the effect of internal molecular deformations on the
rotational fit. For example, one may use all solute atoms, or only the atoms bearing the name CA or the
atoms specified in a list for the rotational fit. The problem is to find an orthonormal 3x3 matrix Q which
represents a solute rotation

r′′i (tn) = Qr′i(tn) , (16.4)

and which minimizes the function

E(Q) =

N
∑

i=1

wi

[

Qr′i(tn)− r′i(tm)
]2

=

N
∑

i=1

wi [r
′′
i (tn)− r′i(tm)]

2

(16.5)

where the wi are weights given to the atoms of the solute. All wi are zero, except for the atoms for which
the rotational least-squares fit is to be performed.

Two procedures to obtain Q have been implemented in GROMOS++, proposed by McLachlan7 and

Kabsch8.

1. The method of McLachlan, J. Mol.Biol. 128 (1979) 74-77 in subroutine LSQSTR, file lsqstr.f.
2. The method of Kabsch, Acta Cryst. A32 (1976) 922-933 in subroutine LSQSTR, file lsqstrk.f.

6-47

Given the reference coordinates r′i(tm), the coordinates r′i(tn) are rotated around the origin such that
r′′i (tn) of Eq. 16.4 are obtained and the function Eq. 16.5 is minimal.

Elimination of solute translation and rotation can be selected in a number of analysis programs (frame-
out, nhoparam, rmsd, rmsdmat, rmsf and solute entropy, see Vol. 5) and using the input parameter flags
@atomsfit.

6-48

CHAPTER 17

Transformation between Coordinates

17.1. Cartesian and Oblique Contravariant Crystallographic Coordinates

The result of a crystal structure determination of a molecule using X-ray or neutron diffraction is an
electron density distribution function ρ(r′), the number of electrons per unit volume at position r′. It is
derived from the measured diffracted beam intensities Iobs(h), which are proportional to the square of the
amplitude of the crystallographic structure factor

F (h) = ∫
Vc

ρ(r′) e+2πih·r′ dr′ , (17.1)

i.e. the 3-dimensional Fourier transform of ρ(r′) over a crystal unit cell with volume Vc. So, we have

Iobs(h)α|F (h) |
2

. (17.2)

The electron density ρ(r′) could be derived from the structure factors F (h) through the inverse of Eq. 17.1,

ρ(r′) = V
−1
c

∑

h

∑

k

∑

l

F (h) e−2πi(hx′+ky′+lz′) , (17.3)

where h is the reciprocal space vector9. Since only the amplitudes |F (h)| of the complex structure factors
F (h) can be obtained from experiment, it is common practice to postulate an analytical form for the function
ρ(r′).

In isotropic crystallographic refinement it is assumed that the electron density is distributed as an isotropic
Gaussian function around the positions r′j of the atoms,

Pj(r
′) =

[

(2π)
3/2
u3j

]−1
e−(x′2 + y′2 + z′2)/(2u2

j) . (17.4)

Fourier transforming Eq. 17.4 yields again a Gaussian distribution in h space

P̂j(h) = e−2π2u2

j (h
2+k2+l2)

= e−2π2u2

j (2 sin θ/λ)2

= e−Bj(sin θ/λ)2 , (17.5)

where we have expressed it in terms of the isotropic atomic B-factor or temperature factor

Bj = 8 π2 u2j , (17.6)

the diffracted beam scattering angle θ and wave length λ.

In anisotropic crystallographic refinement, the atomic electron density distribution is assumed to be an
ellipsoid Gaussian, so

P̂j(h) = e−(b11h
2+b22k

2+b33l
2+b12hk+b13hl+b23kl)

= e−2π2[U ′

11
(ha∗)2+(U ′

12
+U ′

21
)(ha∗kb∗)+...] (17.7)

in h-space. The anisotropic temperature factors are usually given in the form of the symmetric 3× 3 matrix
b or U ′, where the prime in the latter is used to indicate that a crystallographic, possibly oblique coordinate
system has been used in Eq. 17.7. According to crystallographic convention the real space lengths of the
edges of the unit cell are indicated by a, b and c and the corresponding lengths of the reciprocal lattice cell
by a∗, b∗ and c∗.

6-49

Since Newton’s equations of motion are not valid in oblique coordinates, simulations of molecular crystal
unit cells are performed using (orthogonal) Cartesian coordinates. When the crystallographically refined
atomic coordinates r′j and anisotropic temperature factors U ′

j are given in an oblique crystallographic coor-
dinate system, indicated by the prime on the symbols, the quantities have to be transformed to an orthogonal
(Cartesian) coordinate system. This can be done in the following way:

The standard orthogonal coordinate system with coordinates indicated by x, y and z is defined by

1. The x-axis is the projection of the crystallographic x′-axis on the plane orthogonal to the crystallo-
graphic y′-axis.

2. The y-axis coincides with the crystallographic y′-axis.
3. The z-axis is orthogonal to the x-axis and y-axis and defined as in a right-handed Cartesian system.

The transformation of the atomic coordinates (x′, y′, z′) in the oblique crystallographic coordinate system
to the atomic coordinates (x, y, z) in the orthogonal (Cartesian) coordinate system then reads

x

y

z

=

T11 T12 T13

T21 T22 T23

T31 T32 T33

x′

y′

z′

, (17.8)

with

T11 = sin γ

T22 = 1

T33 = [sin2 α− ((cos β − cosα cos γ)/ sin γ)
2
]
1

2

T13 = (cosβ − cosα cos γ)/ sin γ

T21 = cos γ

T23 = cosα

T12 = T31 = T32 = 0

, (17.9)

where α is the angle between the positive y′- and z′-axes, β is the angle between the positive z′- and x′-axes
and γ is the angle between the positive x′- and y′-axes.

The transformation of the matrix U ′ of atomic temperature factors in the oblique crystallographic coordi-
nate system to the matrix U of temperature factors in the (orthogonal) Cartesian system reads

U = (T D) U ′ (T D)
τ

(17.10)

where

D =

d−1 sinα 0 0

0 d−1 sinβ 0

0 0 d−1 sin γ

, (17.11)

with

d = [1− cos2 α− cos2 β − cos2 γ + 2 cosα cosβ cos γ]
1

2 , (17.12)

and the transpose of a matrix is indicated by the superscript τ . So we find

(T D)11 = d−1 sinα sin γ

(T D)22 = d−1 sinβ

(T D)33 = d−1 sin γ[sin2 α− ((cos β − cosα cos γ)/ sin γ)
2
]
1

2

(T D)13 = d−1(cos β − cosα cos γ)

(T D)21 = d−1 sinα cos γ

(T D)23 = d−1 cosα sin γ

(T D)12 = (T D)31 = (T D)32 = 0 .

(17.13)

6-50

For a monoclinic crystallographic unit cell (2nd setting, y′-axis unique) we have α = γ = 90o, so d = sin β
and

T =

1 0 cosβ

0 1 0

0 0 sinβ

(17.14)

and

T−1 =

1 0 − cotβ

0 1 0

0 0 1/ sinβ

(17.15)

and

TD =

1/ sinβ 0 cotβ

0 1 0

0 0 1

. (17.16)

6-51

CHAPTER 18

Distributions, Averages and Root-Mean-Square Fluctuations

The ensemble or trajectory that is produced in a simulation of a molecular system can be analyzed in a
variety of ways.

1. Different scalar quantities Q , such as energies, atom-atom distances, 3J-coupling constants, inter-

nal coordinates, etc., or vector quantities ~Q , such as atomic positions, velocities, molecular dipole
moments, etc. can be considered.

2. The static equilibrium properties of quantities Q or ~Q can be analyzed in terms of their probability

distribution or frequencies of occurrence of the various Q or ~Q values, P (Q) or P (~Q), in a trajectory.

3. The probability distributions P (Q) or P (~Q) can also be characterized by calculating the various
moments (p = 1,2,3...)

< Qp >≡
1

Ntot

Ntot
∑

t=1

[Q(t)]p (18.1)

or

< ~Qp >≡
1

Ntot

Ntot
∑

t=1

[~Q(t)]p (18.2)

of the distributions. The Ntot being the total number of data points (time frames) of the trajectory,
and the product of two vectors is to be interpreted as their scalar or dot product. From these
moments of the distributions the mean or average

< Q >≡
1

Ntot

Ntot
∑

t=1

Q(t) (18.3)

and

< ~Q >≡
1

Ntot

Ntot
∑

t=1

~Q(t) (18.4)

can be determined. If we assume that the instantaneous value of a given property Q is statistically
independent of the other values in the time series of this property, then the variance can be simply
taken as

σ2(Q) =
1

Ntot

Ntot
∑

t=1

(Q(t)− < Q >Ntot
)2 (18.5)

where < Q >Ntot
represents an average of Q(t) over the entire run.

If the configurations are correlated, the block averaging method should be used. The time series
Q(t) is divided into blocks of length tb, the average of each block being

< Q >b=
1

tb

tb
∑

t=1

Q(t) (18.6)

The variance can then be estimated with the average values for all blocks of this kind as

σ2(< Q >b) =
1

nb

nb
∑

b=1

(< Q >b − < Q >Ntot
)2 (18.7)

where nb is the number of blocks.

6-53

The quantity σ2(< Q >b) is expected to be inversely proportional to the block size (tb), for
increasing values of tb. The goal is now to find the proportionality constant that will allow for
an estimation of σ2(< Q >b) for the single large block that characterizes the entire trajectory
(tb = Ntot), for which the statistical inefficiency Sinef is defined as

Sinef = lim
tb→∞

tbσ
2(< Q >b)

σ2(Q)
(18.8)

with the error estimation given by

σ(< Q >Ntot
) =

√

Sinef

Ntot
× RMSD(Q) (18.9)

where RMSD(Q) is the root mean square deviation of Q . This blocking averaging method is used
by the GROMOS++ program ene ana.

The root-mean-square fluctuations can be calculated as

∆Q ≡
√

< [Q− < Q >]2 >

=
√

1
Ntot

∑Ntot

t=1 [Q(t)− < Q >]2

=
√

1
Ntot

∑Ntot

t=1 [Q(t)]2− < Q >2

(18.10)

or for the vector quantity ~Q

∆ ~Q ≡
√

< [~Q− < ~Q >]2 >

=
√

1
Ntot

∑Ntot

t=1 [~Q(t)− < ~Q >]2

=
√

1
Ntot

∑Ntot

t=1 [~Q(t)]2− < ~Q >2

(18.11)

When the quantity ~Q is an atomic position, one finds the following relation between the 3-dimensional
mean square displacement of an atom j,

(∆rj)
2 = < [rj− < rj >]

2 >

= 3u2j

= 3B j/(8π
2)

(18.12)

and the isotropic atomic B-factor or temperature factor B as described in Chap. 17.

4. The dynamic properties of the quantities Q or ~Q can be analyzed in terms of time series and time
correlation functions using the GROMOS++ programs tser and tcf, respectively.

6-54

CHAPTER 19

Dihedral-Angle Conventions, Names and Transitions

In the literature different conventions for the definition of the value and sign of a dihedral angle ϕ(i-j-k-l)
defined by the planes through atoms i, j and k and through j, k and l are in use, see Fig. 19.1

1. IUPAC-IUB convention3.
The dihedral angle ϕI is considered positive or negative according as, when the system is viewed
along the central bond j-k in the direction from j to k (or k to j), the bond i-j to the front atom j (or
the bond l-k to the front atom k) requires rotation to the right or to the left, respectively, in order
that it may eclipse the bond l-k to the rear atom k (or the bond i-j to the rear atom j).

2. Polymer convention.
The trans conformation has ϕp = 0◦. When the system is viewed along the central bond j-k in
the direction from j to k (or k to j), a counterclockwise rotation of the bond i-j (or l-k) around the
central bond j-k is defined to be positive.

In GROMOS the IUPAC-IUB convention is standardly used.

Figure 19.1. The relation between a dihedral angle value ϕI according to the IUPAC-IUB
convention and the corresponding value ϕp in the polymer convention is ϕp = ϕI ± 180◦.
For both conventions the rotation of the angle ϕ is positive giong from the right to the left
through the 4 pictures using the shortest rotation pathway.

The direction of positive rotation is the same in both conventions, only the zero point is shifted by 180◦,

ϕp = ϕI ± 180◦ (19.1)

or

ϕI = ϕp ± 180◦ . (19.2)

6-55

The residue name that is associated with a torsional dihedral angle ϕ(i-j-k-l) is the residue name of the
second atom j in the definition of the dihedral angle.

When calculating a dihedral angle value ϕ using the definition (Eq. 2-5.19) or (Eq. 2-5.14) its value will
lie in the range

−π 6 ϕ 6 π. (19.3)

This means that the ϕ value shows a discontinuity of 2π when passing the point ϕ = ±π. When analyzing
trajectories, that is, dihedral angles as a function of time, the function ϕ(t) should be made continuous, i.e.
the restriction (Eq. 19.3) should not be applied. This can be achieved by applying the transformation

ϕ(tn) = ϕ(tn)−NINT ((ϕ(tn)− ϕ(tn−1))/(2π)) ∗ 2π (19.4)

as long as the dihedral angle has not rotated over more than 180◦ from time point tn−1 to time point tn.

During a simulation the extent of the conformational changes of a solute can be measured bymonitoring the
transitions of the torsional dihedral angles between adjacent minima of the dihedral angle torsional potential
energy term (Eq. 2-5.18). The simplest way to define a dihedral angle transition would be to use the passing
by the maximum in the torsional dihedral angle energy function V (ϕ), see Fig. 19.2. However, if the dihedral
angle ϕ immediately returns backwards over the barrier, one would not consider such crossing events as two
transitions. Therefore, in GROMOS a dihedral angle transition is only considered to be completed if the
dihedral angle passes the bottom of an adjacent well in the dihedral angle energy function, see Fig. Fig. 19.3.

Figure 19.2. Monitoring of torsional dihedral angle transitions. A barrier crossing should
not be counted as a transition.

Figure 19.3. Monitoring of torsional dihedral angle transitions. A passing by the minimum
of an adjacent energy well should be counted as a transition.

The procedure to monitor torsional dihedral angle transitions is the following:

6-56

Figure 19.4. Monitoring of torsional dihedral angle transitions. Between separate parts
of a simulation a transition may be missed.

1. Using the first (t=t0) molecular configuration, it is determined in which valley of V (ϕ), characterized
by the minimum energy dihedral angle ϕref (t0), the dihedral angle ϕ(t0) is found (Fig. 19.2). The
distance between the minima is given by

∆ϕmin = 2π/m (19.5)

where m
(ϕ)
n (=1,2,3,4,5,6) is the multiplicity of the dihedral energy function (Eq. 2-5.18). One of

the minima is given by

ϕref = π[3 − cos(ϕ0
n)]/(2m

(ϕ)
n) (19.6)

where cos(ϕ0
n) = ±1, see (2.5.5.2). A transformation such as (Eq. 19.7) can be used to bring ϕref

within ± π from ϕ(t0),

ϕref = ϕref −NINT ((ϕref −ϕ(t0))/(2π)) ∗ 2π, (19.7)

and the minimum ϕref (t0) that is closest to ϕ(t0) is then found by the transformation

ϕref (t0) = ϕref −NINT ((ϕref −ϕ(t0))/∆ϕmin) ∗∆ϕmin . (19.8)

The relation between ϕref (t0) and ϕ(t0) is illustrated in Fig. Fig. 19.2.
2. At each time point tn the occurrence of a dihedral angle transition since the last transition at time

point tm is checked. If

|ϕ(tn)− ϕref (tm)| > ∆ϕmin (19.9)

a transition is registered and the reference angle is set equal to the minimum of the well that has
just been passed by (Fig. Fig. 19.3)

ϕref (tn) = ϕref (tm) + ∆ϕmin sign(ϕ(tn)− ϕref (tm)). (19.10)

This procedure delivers all transitions that have occurred since the start of a simulation at t=t0. However,
if the monitoring of dihedral transitions is not continuous, but restarted, for example for each separate part
(job) of a simulation, a dihedral transition may be missed. This is illustrated in Fig. 19.4. If the first part
of a simulation ends with ϕ(tn) and ϕ

ref (tn) as indicated in Fig. 19.4, the first configuration of the second
part, i.e. ϕ(tn), is used to determine the new ϕref (t0) , which will differ (by ∆ϕmin) from the ϕref (tn) at
the end of the first part.

6-57

CHAPTER 20

Definition of Hydrogen Bonds

Hydrogen bonds may be defined by specifying donor and acceptor atoms and an energetic or geometric
criterion. GROMOS++ contains a program called hbond (Sec. 5-4.32) which determines the occurrence
of hydrogen bonds in a molecular system containing solute and solvent molecules using a geometric criterion.

The geometry of a hydrogen bond (Fig. 20.1) is defined by

1. a maximum distance d(H-A) between the hydrogen (H) atom and the acceptor (A) atom, and
2. a minimum angle θ(D-H-A) between the donor (D) atom, the hydrogen (H) and the acceptor (A)

atom.

A so-called three centre hydrogen bond is defined by the additional specification of

3. a minimum value for the sum of the three angles θ(D-H-A1), θ(D-H-A2) and θ(A1-H-A2), and
4. a maximum value for the (improper) dihedral angle ϕ(H-A2-A1-D).

H

D

A

θ

d

D

H A2

A1

Figure 20.1. Left: definition of a hydrogen bond using a maximum distance d(H-A) and a
minimum angle θ(D-H-A). Right: a three-centre hydrogen bond is defined by the additional
specification of a minimum value for the sum of the three angles θ(D-H-A1), θ(D-H-A2) and
θ(A1-H-A2), and a maximum value for the (improper) dihedral angle ϕ(H-A2-A1-D).

In the program, two groups of atoms (A and B) can be specified between which the hydrogen bonds
are to be monitored. The hydrogen bond donor and acceptor atoms are either identified using the atom
specifier, by a mass file or a reference structure. In case of the mass file, the donor and acceptors are filtered
based on their masses which are given in the file (HYDROGENMASS and ACCEPTORMASS block). If
a reference structure is provided, only the hydrogen bonds observed in the reference structure are monitored.

In addition, time series of specific hydrogen bonds can be generated using the GROMOS++ program
tser (Sec. 5-4.63). Thereby is the property specifier set to hb and the involved atoms (with atom specifiers),
the distance and angle are to be specified. The default distance is 0.25 nm and the default angle 135 degrees.
General: hb%<atomspec>%<dist upper>%<angle lower>
Example: hb%1:res(3:N,H);1:res(5:O)
means the hydrogen bond between the H atom of residue 3 and the O atom of residue 5 of the first molecule.

For three centre hydrogen bonds, the default lower angle is 90 degrees, the default sum of angles is 340
degrees and the default angle of the plane is 15 degrees.
General: hb%<atomspec>%<dist upper>%<angle lower>%<angle sum>% <angle plane>
Example: hb%1:res(3:N,H);1:res(5:O);1:res(6:O)
means the three centre hydrogen bond between atom H of residue 3 and atom O of residues 5 and 6 of
molecule 1.

6-59

CHAPTER 21

Time Correlation Functions and Spectral Densities

As was mentioned in Chap. 18, the dynamic properties of a scalar quantity Q or a vector quantity ~Q can
be analyzed in terms of

1. time series Q(t) or ~Q(t) , and

2. time correlation functions CQ(t) or C~Q(t).

The time correlation function CQ(t) of a quantity Qi(t), or two quantities Qi(t) and Qj(t) is defined by

CQ(t) = < Qi(t
′) ∗ Qj(t

′ + t) >t′

= [tMD − t]−1
∫ tMD−t

0 Qi(t
′)Qj(t

′ + t)dt′
(21.1)

where tMD is the length of the simulation. From a trajectory file the quantities Qi(t) and Qj(t) can only be
calculated at Nt discrete, equally spaced time points n∆t with n = 0,1,..., Nt − 1. The discrete equivalent
of (Eq. 21.1) is then

CQ(n∆t) = [Nt − n]−1
Nt−n−1
∑

k=0

Qi(k∆t)Qj((k + n)∆t). (21.2)

This formula (Eq. 21.2) requires computation time proportional to Nt
2. A much faster method based on the

convolution theorem combined with a fast Fourier transform (FFT) algorithm is the following. The discrete
Fourier transform of the quantity Q(t) with respect to time t is

Q̂ =

Nt−1
∑

k=0

Q(k∆t)e+im∆ωk∆t (21.3)

where m = 0,1,..., Nt − 1 and

∆ω =
2π

Nt∆t
. (21.4)

By taking the Fourier transform of (Eq. 21.2) and using the convolution theorem the summation (integral)

reduces to a product of the Fourier transformed function Q̂ and the complex conjugate Q̂∗, which may be
subsequently inversely transformed to obtain the time correlation function

CQ(n∆t) = [Nt(Nt − n)]−1
Nt−1
∑

m=0

Q̂i(m∆ω)Q̂j(m∆ω)∗e−im∆ωn∆t (21.5)

where CQ(t) is assumed to be periodic with period Nt∆t. This assumption introduces spurious correlations
in CQ(t), which can be avoided by simply adding a series of Nt zeros to the n = 0, 1, . . . ,Nt−1 known values
Qi(n∆t) and Qj(n∆t). The summation in (Eq. 21.3) and (Eq. 21.5) then contains 2Nt terms and the FFT
expression for the time correlation function becomes

CQ(n∆t) = [2Nt(Nt − n)]−1
2Nt−1
∑

m=0

Q̂i(m∆ω)Q̂j(m∆ω)∗e−im∆ωn∆t (21.6)

with

.∆ω =
2π

2Nt∆t
(21.7)

This expression for the time correlation function requires computation time proportional to NtlgNt.

6-61

The spectral density of the time correlation function CQ(t) is its Fourier transform ĈQ(ω), or in discrete
form

ĈQ(m∆ω) =

Nt−1
∑

k=0

CQ(k∆t)e
+im∆ωk∆t. (21.8)

Introduction of spurious components by the Fourier transform (Eq. 21.8) can be avoided by making the
function to be transformed periodic (with period 2Nt), which can be achieved by adding the inverse sequence
of CQ(t) values after CQ((Nt − 1)∆t). Then we find

ĈQ(m∆ω) =

Nt−1
∑

k=0

CQ(k∆t)e
+im∆ωk∆t +

2Nt−1
∑

k=Nt

CQ((2Nt − k − 1)∆t)e+im∆ωk∆t. (21.9)

TheGROMOS++ program tcl (see Vol. 5) is able to calculate distributions and time-correlation functions
form any series of data points. The time correlation functions of the general form

CQ(t) =< f(Qi(τ), Qj(τ + t)) >τ (21.10)

can be calculated, where Qi(τ) and Qj(τ + t) represent the data points at different time points and the user
can specify any function f(Qi, Qj) which is then inserted into (Eq. 21.2). The program can calculate both
auto-correlation functions (Qi = Qj) and cross correlation functions (Qi 6= Qj) for time series of scalars or
vectors. If Qi and Qj are represented by scalars and f(Qi, Qj) = Qi(τ) ∗Qj(τ + t), the program makes use
of fast Fourier transform to calculate CQ(t). In other cases the direct summing algorithm is used.

21.1. Use of fast Fourier transform (FFT) routines in GROMOS

Application of the PPPM algorithm in MD++ requires the availability of functions performing fast
Fourier transforms (FFT). Such functions are collected in FFT libraries. MD++ is using the FFTW library
by default and no other library can be selected. In GROMOS++ either the FFT routines from the Gnu
Scientific Library (GSL) or the FFTW library are used depending on the individual program.

6-62

CHAPTER 22

Coarse Graining in GROMOS

For coarse graining, two different models are implemented in MD++: the MARTINI model10 and the
GROMOS model11 (for details of both models see the corresponding literature). To use the MARTINI
model (NTCGRAN = 1 or 2), the Lennard-Jones parameters have to be specified in the special topology
block CGPARAMETERS.
TheGROMOSmodel on the other hand (NTCGRAN = 3 or 4) makes use of the normal LJPARAMETERS
block for the Lennard-Jones parameters and the BONDSTRETCHTYPE block for the bonds, although the
range of particles which are coarse grained has to be specified in the topology block CGSOLUTE. As the
coarse grained bonds in the GROMOS model are unconstrained, bonds involving coarse grained particles
need to be given in the topology block CGBOND.

6-63

CHAPTER 23

Parallelisation in GROMOS

The most time-consuming parts of the GROMOS code are parallelised in order to run on shared- or
distributed-memory architectures. The details of the parallelisation employed depend on the part of the
GROMOS code.

23.1. Parallelisation in MD++

Computationally, the interaction calculation is by far the most expensive part of an MD or SD simulation
or an EM, while the non-bonded interactions constitute the bulk of the effort. Again, MD++ is focused
on achieving parallelisation without complicating the code. The non-bonded interaction is split up into
Nonbonded Sets, each containing its own storage space for a pairlist, energies, forces, and virials. In this
way, the standard code is ready for shared and distributed memory parallelisation without any need for code
duplication. If the system is using distributed memory, the (updated) positions and box parameters have to
be copied from the master to all other processes before the next interaction calculation. While composing
the pairlist in parallel, only a subset of atoms is considered per process, so that each processor creates its own
partial and local pairlist. The interactions are calculated from this partial pairlist and stored in local arrays.
This ensures synchronisation for shared memory machines and replicated data parallelisation for distributed
memory systems. For the PPPM method, additional parallelisation steps are required. The mesh used for
the long-range interaction evalulation is split and distributed over the individual compute nodes in a slice
manner. Every compute node only evaulates the interactions for the atoms mapped on the slice of the
grid. After the charge assignment the bordering cells of the slices are shared with the neighbouring nodes.
The longe-range energy and virial are calculated on the individual slices of the mesh and summed in the
final reduction step. Before the force calculation, bordering cells of the electrostatic potential are again
shared with the neighbouring nodes in order to allow the evalulation of the force. All FFT calculations are
carried out in a parallel way using the FFTW MPI library. The computation of the expensive Ã2 term
is also parallelised using MPI. After the partial interaction calculations have finished, the energies, forces,
and virials of all non-bonded sets are summed up and stored in the Configuration of the master process.
The SHAKE algorithm of the solvent molecules is parallelised using MPI. The old and new positions of the
atoms are broadcasted to the compute nodes and every node applies the SHAKE algorithm on a subset of
the solvent molecules. The resulting positions are then send back to the master node. MD++ can use
OpenMP12 for shared memory and MPI13 for distributed memory parallelisation. For best performance the
use of MPI is recommended. Reasonable parallelisation (using a small number of parallel processes) can be
achieved with only a few lines of code (almost) completely separate from the non-bonded routines.

23.2. Parallelisation in GROMOS++

Some analysis programs in GROMOS++ carry out very intensive computation. These programs can be
executed in parallel on shared memory architectures using OpenMP12. The programs including some form
of parallelisation:

1. filter: Parallel filtering using a cutoff criterion.
2. rdf: Parallel radial distribution function evaluation.
3. rot rel: Parallel rotational correlation function.
4. utils::Energy: Parallel interaction function evaluation in programs using the utils::Energy class

like the program ener.

6-65

CHAPTER 24

Fast Solvent Interaction Function Evaluation

In a biomolecular simulation, using an explicit representation of the solvent, the solvent-solvent interaction
function evaluation is the most time consuming computational step. Using roughly 75% of the computation
time, this step is a good candidate for further optimizations. The following features of solvent molecules in
the GROMOS software can be used to speed up the solvent-solvent interaction evaluation:

1. A solvent molecule is also a charge group, all atoms in one solvent molecule interact with all atoms
in another solvent molecule.

2. A solvent molecule is rigid (i.e. does only have distance constraints and no harmonic bonds, bond
angles or dihedral angles)

3. The atoms within a molecule do not interact with each other (no intra-molecular interaction).
4. Inter-molecular interaction cutoff truncation is applied. The first atom in the solvent topology is

used to calculate the molecule-molecule distance.

Solvents which do violate these assumptions cannot be simulated using the GROMOS solvent loops but
have to be technically treated as solute molecules. These assumptions, with the additional condition that a
charge group is always gathered, i.e. no bonds between atoms of a charge group are broken by the periodic
boundary condition, allow us to implement more efficient solvent-solvent loops.

24.1. Solvent innerloops in MD++

MD++ contains four additonal innerloops for solvent-solvent interactions. These loops can be controlled
using the INNERLOOP block in the input file (see 4-95).

1. The first innerloop (NTILM=1) is a generic fast version. It takes advantage of the simplified repre-
sentation of the solvent in order to speed up the interaction evalulation. The pairlist is evalulated
in a molecule against molecule instead of an atom against atom way. Because the molecules are
gathered, the nearest image calculation is only applied once. The nonbonded parameters are stored
in a small atom against atom matrix which is efficiently cached. Application of this loop does not
affect the accuracy and results in a speedup factor of about 1.5 for SPC water.

2. The second innerloop (NTILM=2) is a solvent specific version. The solvent has to be specified using
the NTILS switch. In addition to the first method the molecule against molecule loop is manually
unrolled and and the nonbonded parameters are hardcoded. The computation steps are aligned in a
special way to help the compiler to use efficient (SSE) optimisation and automatic vectorisation. In
the initalisation period, checks are made to ensure that the topological parameters are in agreement
with the hardcoded ones. This loop does not affect the accuracy and results in a speedup factor
of about 1.6 for SPC water. It is recommended to use this loop. Usage of the first method is only
recommended if the solvent of interest is not implemented.

3. The third innerloop (NTILM=3) is a solvent specific version. It makes use of tables for the interaction
evaluation. For every atom-type pair a hardcoded table holding the Lennard-Jones- and Coulomb-
Reaction-Field-energies and forces are used. The energies and forces are tabulated for r2ij in order
to avoid the expensive square-root and inverse computations. In the initalisation period, checks are
made to ensure that the topological and input file parameters are in agreement with the hardcoded
ones. Between the individual tabulated data points linear interpolation is used. The tables have to
be generated and provided as a header file. The program tabulate spc is used to generate the table
for SPC water. By default a table size of 5000 for shortrange- and of 2000 for longrange-interactions
is used. The resulting energies and forces are approximate and a speedup by a factor of 2 can be
expected. Due to the r2ij nature of the table, it contains less grid points for small distances than
for long distances. For this reason this method should be used with caution in high temperature or
pressure simulations.

6-67

4. The fourth innerloop (NTILM=4) makes use of graphics processing units (GPUs) as acceleration
hardware. The solvent-solvent iteractions are not run on the CPU but are executed on the CUDA
enabled devices with the device number NGPUS. In a first step the positions and box parameters are
transfered to the GPU. The pairlist for the solvent-solvent interaction is generated on the GPU. The
pairlist evaluation on the GPU is executed in a parallel way14. The resulting energies, forces and
virials are transfered to the main memory and summed in double precision. The computation is
carried out in mixed precision resulting in numerical differences in comparison to the standard loops.
Nevertheless, energetic, structural and dynamic quantities are not affected by this14. Depending on
the GPUs, CPU and solvent used an overall speedup of a factor of 6 to 9 can be expected. In order
to use this acceleration technique MD++ has to be compiled using special compiler options (see
Sec. 8-3.1.3).

6-68

CHAPTER 25

Replica Exchange Simulation

In MD++, temperature and/or Hamiltonian replica exchange simulation can be performed using the
program repex mpi. Note that for this MD++ has to be compiled with MPI13. The replicas are controlled
by the REPLICA block in the input file (see 4-103). In case of Hamiltonian replica exchange, the PERTURBATION
block is additionally required (see 4-100). The number of replicas is given by NRET*NRELAM. Each replica with
its specific combination of T and λ is assigned to a MPI process and remains with this process throughout
the simulation. The master process is always replica 1. If a switching occurs, the configuration data is
exchanged between two replicas.
Each replica writes into its own trajectory files and output file which are distinguished automatically by X

in the file name, where X is the number of replica (starting at 1). The output file for the replicas is given
with the flag @repout. In contrast to normal MD++ simulations, only some information from the master
about timings are printed to the standard output.
A continuation run is started by setting the parameter CONT in the REPLICA block to 1. Thus, a separate
input coordinate file, distinguished by X in the file name, where X is the number of replica, is read in for
each replica. With the flag @conf simply the root of the file name has to be given and the program will
search automatically for files with this root file name containing X.
Information about the switching behaviour with probabilities and energies is printed to the replica data
file specified with the flag @repdat. This data can be further analyzed using the GROMOS++ program
rep ana.
For optimal performance, it is advised to use the same number of MPI13 processes as replicas. Additional
speed-up can be obtained by compiling MD++ as OpenMP12/MPI13 hybrid where each replica is parallelized
further by OpenMP12.

6-69

Bibliography

[1] ISO 14882:2003. Programming languages – C++. ISO, Geneva, Switzerland, 2003.
[2] W. Kabsch and C. Sander. Dictionary of protein secondary structure - Pattern-recognition of hydrigen-bonden and geo-

metrical features. Biopolymers, 22(12):2577–2637, 1983.
[3] IUPAC-IUB commission on biochemical nomenclature. Abbreviations and symbols for the description of the conformation

of polypeptide chains. Tentative rules (1969). Biochemistry, 9:3471–3479, 1970.
[4] T. Heinz and P.H. Hünenberger. A fast pairlist construction algorithm for molecular simulations under periodic boundary

conditions. J. Comput. Chem., 25:1474, 2004.
[5] I.G. Tironi and W.F. van Gunsteren. A molecular dynamics simulation study of chloroform. Mol. Phys., 83:381–403, 1994.
[6] H. Liu, F. Müller-Plathe, and W.F. van Gunsteren. A Force Field for Liquid Dimethyl Sulfoxide and Physical Properties

of Liquid Dimethyl Sulfoxide Calculated Using Molecular Dynamics Simulation. J. Am. Chem. Soc., 117:4363–4366, 1995.
[7] A.D. McLachlan. Gene duplications in the structural evolution of chymotrypsin. J. Mol. Biol., 128:44–77, 1979.
[8] W Kabsch. Solution for best rotation to relate 2 sets of vectors. Acta Crystallogr., A32:922–923, 1976.
[9] G.H. Stout and L.H. Jensen. X-ray structure determination. Wiley, New York, USA, 1989.

[10] S.J. Marrink, A.H. de Vries, and A.E. Mark. Coarse Grained model for Semiquantitative Lipid Simulations. J. Phys. Chem.

B, 108:750, 2004.
[11] S. Riniker and W.F. van Gunsteren. A simple, efficient polarisable coarse-grained water model for molecular dynamics

simulations. J. Chem. Phys., 134:084110, 2011.
[12] OpenMP.
[13] The Message Passing Interface.
[14] N. Schmid, M. Bötschi, and W.F. van Gunsteren. A GPU solvent-solvent interaction calculation accelerator for biomolecular

simulations using the GROMOS software. J. Comput. Chem., 31:1636–1643, 2010.

6-i

Index

GROMOS++

doxygen, 6-5
code outline, 6-4
gathering methods, 6-25
gmath, 6-12
matrices, 6-12

namespaces, 6-5
periodic boundary conditions, 6-25
source code, 6-5
vectors, 6-12

GROMOS

error messages, 6-7
MD++

doxygen, 6-3
code outline, 6-1

compiling, 6-2
debugging, 6-3
efficiency, 6-2
libraries, 6-9
math, 6-11

matrices, 6-11
namespaces, 6-1
random number generators, 6-11
vectors, 6-11

doxygen

GROMOS++, 6-5
MD++, 6-3

algorithm
MD, 6-1

AtomSpecifier, 6-5

AtomSpecifiers, 6-15

C++, 6-9

charge groups, 6-21
periodic boundary conditions, 6-25

code outline
MD++, 6-1

compatibility, 6-9

compiling
MD++, 6-2

cut-off, 6-21

debugging
MD++, 6-3

documentation, in-code

GROMOS++, 6-5
MD++, 6-3

error messages
GROMOS, 6-7

gathering methods
GROMOS++, 6-25
periodic boundary conditions, 6-25

gmath
GROMOS++, 6-12

IUPAC, 6-15

libraries
GROMOS++, 6-9
MD++, 6-9

machines
compatibility, 6-9

math
MD++, 6-11

matrices
GROMOS++, 6-12
MD++, 6-11

nomenclature, 6-15

periodic boundary conditions, 6-25
GROMOS++, 6-25
gathering methods, 6-25

physical constants, 6-17
pressure coupling, 6-25

periodic boundary conditions, 6-25

random number generators
MD++, 6-11

rectangular
periodic boundary conditions, 6-25

reduced
units, 6-17

reduced units, 6-17, 6-19

SI
units, 6-17

source code
GROMOS++, 6-5

templates
MD++, 6-2

time series, 6-25
periodic boundary conditions, 6-25

triclinic
periodic boundary conditions, 6-25

truncated octahedral
periodic boundary conditions, 6-25

units, 6-17

vacuum
periodic boundary conditions, 6-25

vectors
GROMOS++, 6-12

MD++, 6-11

6-iii

Symbols

Symbol Meaning

Common names and abbreviations

GROMOS The GROMOS software package

MD++ The MD++ simulation engine in C++

GROMOS++ The GROMOS++ analysis package in C++

GROMOS96 The GROMOS96 simulation package (1996)

3D abbreviation for three dimensions

AA Atomistic (All Atom) models

BD Brownian Dynamics simulation

B&S− LEUS Ball and stick local elevation umbrella sampling

CG Coarse Grained models

CGEM Conjugate gradient method for energy minimization

FRCG Fletcher-Reeves conjugate gradient method for energy minimization

PRCG Polak-Ribiére conjugate gradient method for energy minimization

COG Center of geometry

COS Charge On Spring approach

CP Car Parrinello approach

DF Distancefield

DOF Degrees of freedom (abbreviation)

DPD Diffusive Particle Dynamics simulation

doxygen Documentation platform

EM Energy minimisation

EDS Enveloping distribution sampling

FBC Fixed boundary conditions

HBC Hyper-spherical boundary conditions

LE Local elevation

LEUS Local elevation umbrella sampling

LS Lattice-sum method

MC Monte Carlo sampling

MD Molecular Dynamics simulation

NOE Nuclear Overhauser Effect

PBC Periodic boundary conditions

PPPM Particle-particle–particle-mesh (P3M) method

QM Quantum Mechanical models

QMD Quantum Molecular Dynamics simulation

RDF Radial distribution function

RE Replica Exchange

REMD Replica Exchange Molecular Dynamics simulation

RF Reaction-field method

RMSD Root-mean-square difference

RMSF Root-mean-square fluctuation

SD Stochastic Dynamics simulation

SDEM Steepest descent method for energy minimization

TI Thermodynamic integration

US Umbrella sampling

6-iv

Symbol Meaning

VBC Vacuum boundary conditions

Physical constants

h Planck’s constant [0.3990313 kJ mol−1 ps]

~ Planck’s constant divided by 2π [0.06350780 kJ mol−1 ps]

NAv Avogadro’s number [6.02214 ×1023]

kB Boltzmann’s constant [1.380662 ×10−26 kJ K−1)]

R Ideal gas constant (NAv × kB)

c Speed of light [2.99792458 ×105 nm ps−1]

Degrees of freedom and system configuration

Nd Number of degrees of freedom of a system

Na Number of particles in a system of particles (Nd =3Na)

N solu
a Number of particles the solute consists of

qq 3Na-dimensional generalized coordinate vector of a system of particles

ppqq 3Na-dimensional generalized momentum vector of a system of particles

rr 3Na-dimensional Cartesian coordinate vector of a system of particles

pp 3Na-dimensional Cartesian momentum vector of a system of particles

ff 3Na-dimensional Cartesian force vector of a system of particles

ff 3Na-dimensional Cartesian mean force vector of a system of particles

ff st 3Na-dimensional Cartesian stochastic force vector of a system of particles

fsti 3Na-dimensional Cartesian stochastic force vector of a system of particles

vv 3Na-dimensional Cartesian velocity vector of a system of particles

r 3-dimensional Cartesian coordinate vector of a particle

p 3-dimensional Cartesian momentum vector of a particle

f 3-dimensional Cartesian force vector of a particle

v 3-dimensional Cartesian velocity vector of a particle

Ψ [Ψ(rr)] Wavefunction (position representation; configuration of a quantum-
mechanical system of Na particles)

{ rr ,pp } Phase-space point (Cartesian coordinates; configuration of a classical system
of Na particles)

(Statistical) thermodynamics

F Free energy

G Gibbs free energy

H Enthalpy

U Energy of a system

S Entropy of a system

Z Partition function

T Instantaneous temperature

To Reference temperature

K Instantaneous kinetic energy of a system

Ktr Instantaneous translational kinetic energy

Kir Instantaneous internal+rotational kinetic energy

U Instantaneous total potential energy of a system

W Instantaneous virial of a system

P Instantaneous pressure of a system

V Instantaneous volume of a system

ρJ Number particle density of particles J

Miscellaneous

6-v

Symbol Meaning

t Time

∆t discrete time step

Nt Number of MD steps

P Probability

m Mass of a particle

M Mass of the whole system

m Diagonal mass matrix of a system of Na particles

γ Friction coefficient of a particle

γ Diagonal friction coefficient matrix of a system of Na particles

T Absolute temperature

β prefactor: 1/kBT

τT relaxation time for the coupling to a temperature bath

s Vector denoting the collection of all force-field parameters

λ Coupling parameter Lambda for a lambda dependent Hamiltonian

Nλ Number of λ-values in a TI simulation

H Heaviside function defined as H(x) = 0 ∀ x < 0 and H(x) = 1 ∀ x > 0

sign Sign function: sign(x) = 1 ∀ x > 0 and sign(x) = −1 ∀ x < 0

i imaginary number, i2 = −1

δij general Kronecker delta

σ Standard deviation

σ2 Variance

Nconf Number of configurations in an ensemble

D Diffusion constant

Rgyr radius of gyration

η the viscosity of a system

g(r) radial distribution function

s Smoothness parameter in EDS simulations

ER Energy offset parameter in EDS simulations

N (s) Number of states in EDS simulations

Spatial boundary conditions

B 3×3-matrix of the box-edge vectors (columns) in the reference Cartesian
coordinate system (PBC)

ê Unit vector

a First edge vector of a (triclinic) box (in the reference coordinate system)

b Second edge vector of a (triclinic) box (in the reference coordinate system)

c Third edge vector of a (triclinic) box (in the reference coordinate system)

a length of first edge of a (triclinic) box

b length of second edge of a (triclinic) box

c length of third edge of a (triclinic) box

T Position vector of the reference corner of a triclinic box (components in the
reference coordinate system and vector relative to the origin of this system)

L Computational box matrix (columns defined by the components of edge
vectors a, b and c in the reference coordinate system)

B Edge length matrix (diagonal, elements a, b and c)

α First edge angle a triclinic box (between b and c)

β Second edge angle a triclinic box (between a and c)

γ Third edge angle a triclinic box (between a and b)

φ First Euler angle of a triclinic box

6-vi

Symbol Meaning

θ Second Euler angle of a triclinic box

ψ Third Euler angle of a triclinic box

r̆ Oblique coordinates of a real-space vector (with reference to the box-edge
vectors)

ř Oblique fractional coordinates of a real-space vector (with reference to the
box-edge vectors)

k̆ Oblique coordinates of a reciprocal-space vector

ǩ Oblique fractional coordinates of a reciprocal-space vector

l Lattice vector (three-dimensional vector with integer components)

k Reciprocal-lattice vector (k = 2πL−1l)

S Transformation matrix

R Transformation matrix

T Transformation matrix

Representation of the interaction

Ĥ Hamiltonian operator describing the interaction for quantum-mechanical de-
grees of freedom

K̂ Kinetic energy operator (kinetic energy contribution to the quantum-
mechanical Hamiltonian operator)

V̂ Potential energy operator (potential energy contribution to the quantum-
mechanical Hamiltonian operator)

H [H(rr, pp)] Hamiltonian function describing the interaction for classical degrees of free-
dom

K [K(pp)] Kinetic energy contribution to the classical Hamiltonian function

V [V(rr)] Potential energy contribution to the classical Hamiltonian function

V [V(rr)] Potential of mean force contribution to the classical Hamiltonian function

Physical interactions

ϕ [Proper dihedral-angle term]

V(phys) [V(phys) (rr;B; s)] Physical potential energy contribution to V

V(cov) [V(cov) (rr ;B; s)] Covalent potential energy contribution to V(phys)

V(nbd) [V(nbd) (rr ;B; s)] Non-bonded potential energy contribution to V(phys)

V(b) [V(b) (rr ;B; s)] Bond stretching potential energy contribution to V(cov)

V(θ) [V(θ) (rr ;B; s)] Bond-angle bending potential energy contribution to V(cov)

V(ξ) [V(ξ) (rr ;B; s)] Improper dihedral-angle bending potential energy contribution to V(cov)

V(ϕ) [V(ϕ) (rr;B; s)] Proper dihedral-angle torsion potential energy contribution to V(cov)

V(vdw) [V(vdw) (rr ;B; s)] Van der Waals potential energy contribution to V(nbd)

V(ele) [V(ele) (rr ;B; s)] Electrostatic potential energy contribution to V(nbd)

V(LJCRF) Sum of the non-bonded potentials V(vdw) and V(ele)

Physical force-field terms

V (b) [V (b)(b; k(b), b0)] Potential energy function associated with the stretching of a single covalent
bond (quartic: V (b,q) ; harmonic: V (b,h) ; soft harmonic: V (bs,h))

V
(b)
n [V (b)(bn; k

(b)
n , b0n)] Potential energy function associated with the stretching of the nth single

covalent bond (quartic: V
(b,q)
n ; harmonic: V

(b,h)
n ; soft harmonic: V

(bs,h)
n)

f (b,q) Force due to the bond stretching potential (quartic)

f (b,h) Force due to the bond stretching potential (harmonic)

f (bs,h) Force due to the bond stretching potential (soft harmonic)

N (b) Number of covalent bonds in the molecular system

N (bs) Number of soft covalent bonds in the molecular system

M
(b)
n Bond type code associated with covalent bond term n

6-vii

Symbol Meaning

bn [bn(rr,B)] Length of covalent bond n in the considered configuration

b0n [b0(M
(b)
n , s)] Reference length of covalent bond term n

k
(b,q)
n Force constant of stretching for covalent bond term n (quartic potential)

k
(b,h)
n Force constant of stretching for covalent bond term n (harmonic potential)

V (θ) [V (θ)(θ; k(θ), θ0)] Potential energy function associated with the bending of a single covalent
bond angle (cosine-harmonic: V (θ,c) ; soft cosine-harmonic: V (θs,c) ; angle-
harmonic: V (θ,h))

V
(θ)
n [V

(θ)
n (θn; k

(θ)
n , θ0n)] Potential energy function associated with the bending of the nth covalent

bond angle (cosine-harmonic: V
(θ,c)
n ; soft cosine-harmonic: V

(θs,c)
n ; angle-

harmonic: V
(θ,h)
n)

f (θ,c) Force due to the bond angle potential (cosine-harmonic)

f (θs,c) Force due to the bond angle potential (soft cosine-harmonic)

f (θ,h) Force due to the bond angle potential (angle-harmonic)

N (θ) Number of covalent bond angles in the molecular system

M
(θ)
n Bond-angle type code associated with covalent bond-angle term n

θn [θn(rr,B)] Value of covalent bond angle n in the considered configuration

θ0n [θ0(M
(θ)
n , s)] Reference angle of covalent bond-angle term n

k
(θ,c)
n Force constant of bending for covalent bond-angle term n (cosine-harmonic

potential)

k
(θs,c)
n Force constant of bending for covalent bond-angle term n (soft cosine-

harmonic potential)

k
(θ,h)
n Force constant of bending for covalent bond-angle term n (angle-harmonic

potential)

V (ξ) [V (ξ)(ξ; k(ξ), ξ0)] Potential energy function associated with the bending of a single covalent
improper dihedral angle

V (ξs) [V (ξs)(ξ; k(ξ), ξ0)] Potential energy function associated with the bending of a single covalent
improper dihedral angle

f (ξ) Force due to the improper dihedral-angle potential

f (ξs) Force due to the soft improper dihedral-angle potential

N (ξ) Number of covalent improper dihedral angles in the molecular system

N (ξs) Number of covalent improper dihedral angles in the molecular system

M
(ξ)
n Improper dihedral-angle type code associated with covalent improper

dihedral-angle term n

ξn [ξn(rr,B)] Value of covalent improper dihedral angle n in the considered configuration

ξ0n [ξ0(M
(ξ)
n , s)] Reference angle of covalent improper dihedral-angle term n

k
(ξ)
n Force constant of bending for covalent improper dihedral-angle term n

V (ϕ) [V (ϕ)(ϕ; k(ϕ), ϕ0)] Potential energy function associated with the torsion of a single covalent
proper dihedral angle (symmetric potential: V (ϕ,s) ; generalized: V (ϕ,g))

f (ϕ,s) Force due to the symmetric proper dihedral-angle potential

f (ϕ,g) Force due to the generalized proper dihedral-angle potential

N (ϕ) Number of covalent proper dihedral angles in the molecular system

M
(ϕ)
n Proper dihedral-angle type code associated with covalent proper dihedral-

angle term n

ϕn [ϕn(rr,B)] Value of covalent proper dihedral angle n in the considered configuration

ϕ0
n [ϕ0(M

(ϕ)
n , s)] Reference angle (phase shift) of covalent proper dihedral-angle term n

m
(ϕ)
n [m

(ϕ)
n (M

(ϕ)
n , s)] Multiplicity of covalent proper dihedral-angle term n

k
(ϕ,s)
n Force constant of torsion for covalent proper dihedral-angle term n (sym-

metric potential; ϕ0
n = 0, π; m

(ϕ)
n ≤ 6)

6-viii

Symbol Meaning

k
(ϕ,g)
n Force constant of torsion for covalent proper dihedral-angle term n (gener-

alized potential; ϕ0
n ∈ [0, 2π[)

q Partial charge of an atom or site

C12 Van der Waals (Pauli) repulsion coefficient of an atom or site (Lennard-Jones
function)

C6 Van der Waals (London) dispersion coefficient of an atom or site (Lennard-
Jones function)

C126 Ratio of Van der Waals coefficients C12

C6
(Lennard-Jones function)

αLJ Lennard-Jones soft-core switching parameter

αC Coulomb soft-core switching parameter

V(ele,pws) [V(ele,pws) (rr ;B; s)] Pairwise potential energy contribution to V(ele)

V(ele,slf) [V(ele,slf) (B;s)] Self potential energy contribution to V(ele)

V(ele,srf) [V(ele,srf) (rr ;B; s)] Surface potential energy contribution to V(ele)

f (nbd) Force due to the non-bonded forces

Ψ
(ele)
ij [Ψ

(ele)
ij (rr ;B; s)] Electrostatic influence function associated with the particle pair i− j

δ
(exc)
ij [δ

(exc)
ij (s)] Indicator of non-bonded exclusion for the particle pair i− j

Ψ(ele,slf) [Ψ(ele,slf) (B)] Electrostatic self influence function

ψ(RF) [ψ(RF) (x)] Influence function at distance x of a particle in RF electrostatics

H [H (x)] Heaviside step function (one if x is positive, zero otherwise)

RC Cutoff distance (truncation)

Rcp Short-range cut-off

Rcl Long-range cut-off

Rcg radius of a charge group

Ncg number of atoms belonging to a charge group

RRF Cutoff distance (onset of the RF continuum; usually set equal to RC)

ǫRF Relative dielectric permittivity of the RF continuum (usually set equal to
that of the solvent)

κRF Inverse Debye screening length of the RF continuum (usually set to zero)

CRF Constant characterizing the effect of the RF continuum

Rij [Rij (rr)] Vector (FBC) or minimum-image vector (PBC) connecting the center of the
CG containing particle j to the center of the CG containing particle i (norm
Rij)

V(ele,pws,RF−CB)

[V(ele,pws,RF−CB) (rr ;B; s)]
Coulombic pairwise potential energy contribution to V(ele,pws) (RF electro-
statics)

V(ele,pws,RF−RF)

[V(ele,pws,RF−RF) (rr ;B; s)]
Distance-dependent pairwise potential energy contribution to V(ele,pws) (RF
electrostatics)

V(ele,pws,RF−RC)

[V(ele,pws,RF−RC) (rr;B; s)]
Distance-independent pairwise potential energy contribution to V(ele,pws)

(RF electrostatics)

Ψ
(ele,LS−RS)
ij [Ψ

(ele,LS−RS)
ij

(rr ;B; s)]

Real-space component of electrostatic influence function Ψ
(ele)
ij (LS electro-

statics)

Ψ
(ele,LS−KS)
ij [Ψ

(ele,LS−KS)
ij

(rr ;B; s)]

Reciprocal-space component of the electrostatic influence function Ψ
(ele)
ij (LS

electrostatics)

V(ele,pws,LS−RS)

[V(ele,pws,LS−RS) (rr ;B; s)]
Real-space pairwise potential energy contribution to V(ele,pws) (LS electro-
statics)

V(ele,pws,LS−KS)

[V(ele,pws,LS−KS) (rr ;B; s)]
Reciprocal-space pairwise potential energy contribution to V(ele,pws) (LS
electrostatics)

ψ(LS) [ψ(LS) (x)] Influence function at position x relative to a particle in LS electrostatics

a Width of the charge-shaping function

γ [γ (x)] Charge-shaping function

6-ix

Symbol Meaning

γ̂ [γ̂ (x)] Fourier transformed charge-shaping function

E Electric field

µ Dipole

JJ

α Electronic polarisability

P Polarisation

ǫ Dielectric permittivity

γpol γ to calculate position of off site charge

kho harmonic force constant in the COS model

φ Electrostatic potential

Unphysical force-field terms

V(spec) Unphysical potential energy

V(res) Restraint energy

V(pr) Position restraining potential energy contribution to V(phys)

f (c) Force due to the position constraints

k(pr) Force constant of an unphysical position-restraining term

N (pr) number of positionally restrained atoms

l Lagrange multiplier for position constraints

V(dr) Distance restraining potential energy contribution to V(phys)

f (dir) Force due to the atom-atom distance restraints

k(dr) Force constant of an unphysical distance-restraining term

r0 Equilibrium distance of distance restraint

N (dir) Number of atom-atom distance restraints

dCH carbon-hydrogen distance

dCC carbon-carbon distance

τdr decay time for time-averaged distance restraining

V(tr) Dihedral-angle restraining potential energy contribution to V(phys)

k(tr) Force constant of an unphysical dihedral-angle restraining term

N (tr) number of restrained dihedral angles

V(Jr) 3J-restraining potential energy contribution to V(phys)

k(Jr) Force constant of an unphysical 3J-value restraining term
3J J-value or J-coupling constant
3J0 experimental J-value

J general representation of a J-value

J0 experimental J-value

∆J0 width of flat-bottom for J-value restraining

a a in Karplus relation

b b in Karplus relation

c c in Karplus relation

τsJr period of scaling in periodically-scaled J-value restraining

∆tω time period for which scaling is suspended in periodically-scaled J-value
restraining

Nle number of bins in J-value local elevation biasing

wζni weight of gaussian in J-value LE

V(Fxr) | F |-restraining potential energy contribution to V(phys)

V(exr) ρ-restraining potential energy contribution to V(phys)

V(sxr) symmetry restraining potential energy contribution to V(phys)

6-x

Symbol Meaning

kxr (harmonic) force constant for the crystallographic restraining

ksym harmonic force constant for the crystallographic symmetry restraining

F Structure factor amplitude

ρ Electron density

S space group of a crystal

Nsym Number of symmetry operations of a space group

S Symmetry operator S = Rr+ t

R Rotation matrix of a symmetry operator

t Translation vector of a symmetry operator

V(Sr) S2-restraining potential energy contribution to V(phys)

k(Sr) Force constant of an unphysical S2-value restraining term

S2 S2-order parameter

S2,0 experimental S2-value

S general representation of a S2-value

S0 experimental S2-value

V(df) Distancefield restraining potential energy contribution to V(phys)

f (df) Force due to the atom-atom distance restraints

k(df) Force constant of an unphysical distance-restraining term

l0 Equilibrium distance of distance restraint

gs Distancefield grid distance

V(le) Local elevation (LE) energy

V(bias) bias energy

γ LE basis function

k(le) LE force constant

ruc unconstrained atomic positions

Nc Number of constraints

Nsh number of iterations of the SHAKE algorithm

d0 constraint length

fuc unconstrained atomic forces

6-xi

The GROMOS Software for (Bio)Molecular

Simulation

Volume 7: Tutorial with Examples

January 9, 2021

Contents

Chapter 1. Introduction 7-1
1.1. Simulation using GROMOS 7-1
1.1.1. Units 7-1
1.1.2. File and software organisation 7-1
1.1.3. Summary of the exercise 7-2
1.1.4. Calling the GROMOS programs 7-3
1.2. Practical information 7-3

Chapter 2. A practical exercise 7-5
2.1. Building a topology 7-5
2.1.1. Creating the topology for the penta-peptide 7-5
2.2. Generating atom Cartesian coordinates for the solute, solvent and counter ions 7-7
2.2.1. Generating atomic Cartesian coordinates for the linear charged penta-peptide 7-7
2.2.2. Energy minimisation of the penta-peptide 7-8
2.2.3. Solvating the penta-peptide in a water box 7-10
2.2.4. Adding counter ions to the simulation box 7-12
2.3. Set-up and production simulation of the penta-peptide 7-13
2.3.1. Thermalisation and equilibration 7-13
2.3.2. Molecular dynamics sampling simulation 7-17
2.4. Analysis of the penta-peptide trajectories 7-19
2.4.1. Analysis of the energy trajectory 7-19
2.4.2. Analysis of the coordinate trajectory 7-22
2.5. Enhancing sampling using Local Elevation 7-35
2.6. Free energy calculations 7-38
2.6.1. Thermodynamic integration 7-38
2.6.2. Enveloping distribution sampling 7-40
2.7. Constructing a new building block 7-43

Bibliography 7-i

7-I

CHAPTER 1

Introduction

1.1. Simulation using GROMOS

GROMOS is a software package used for computer simulations of molecular systems like proteins, inor-
ganic and organic chemical compounds, DNA, etc. In order to perform a molecular dynamics simulation
using GROMOS one should:

1. create a topology of the system (*.top file)
2. have spacial coordinates of the system converted into GROMOS format (*.cnf file)
3. prepare an input file (*.imd) with parameters for the MD simulation

1.1.1. Units. Different sets of units are used in MD simulations. In general the use of Standard
International (SI) units is recommended. In MD simulation of model systems, like Lennard-Jones liquids,
it is often advantageous to work with dimensionless quantities (reduced units) and apply the appropriate
scaling afterwards.

When choosing the SI system it is recommended to use the basic units shown in Tab. 1.1. From this
basic set of units you can derive the units for all other quantities used in GROMOS. Units for some
important quantities are given in Tab. 1.2. Apart from restrictions when storing or printing data in non-
exponential format, the GROMOS programs are independent of the chosen units. The units are defined
by the ones used for physical constants (Tab. 1.3) and atomic or molecular quantities in the (GROMOS)
data files. Note that a number of quantities or interaction function parameters in GROMOS are either
angles or dependent on angle units through their definition (see Chap. 6-6). For convenience of the user
these quantities are kept in the GROMOS data files using degrees as angle units. However, when angles
are used in calculations involving mathematical functions such as sin, cos, etc. they should be expressed in
radians. Therefore, upon reading GROMOS data files the values of quantities and parameters that depend
on angle units are converted from degrees to radians. So, in the programs and subroutines these quantities
and parameters are stored using radians as angle units. For more information on units see Chap. 6-6.

Quantity Unit

length: r : nm 10−9 m

mass: m: u atomic mass unit

1/12 of the mass of a 12C atom

10−3/NAv kg

1.6605655 · 10−27 kg

time: t: ps 10−12 s

temperature: T : K

charge: q: e elementary charge

1.6021892 · 10−19 C

Table 1.1. Recommended units

1.1.2. File and software organisation. GROMOS knows different types of data and data files. Two
types of information concerning a molecular system can be distinguished.

7-1

Quantity Unit

energy: U ,K: kJ mol−1 0.2390 kcal mol−1

force: ff : kJ mol−1 nm−1

pressure: P : kJ mol−1 nm−3 1030/NAv Pa

1.6605655 MPa

16.6057 Bar

16.3885 atm

velocity: vv: nm ps−1

Table 1.2. Derived units

Constant Value

NAv Avogadro’s number 6.022045 · 1023 mol−1

R gas constant 8.31441 · 10−3 kJ mol−1 K−1

kB Boltzmann’s constant R/NAv = 1.380662 · 10−26 kJ K−1

Table 1.3. Physical constants used

1. Topological information: data on the covalent structure, atomic masses, charges, van der Waals
parameters, atom-atom distance restraints specification, 3J-value restraints specification, local-
elevation dihedral angles specification, etc.

2. Configurational information: atomic coordinates and atomic coordinate dependent or related quan-
tities, such as velocities and forces, atom-atom distances, dihedral angles, 3J-values, energies, size
of the computational box, etc.

These two types of information are generally stored in separate files, since configurations change con-
tinuously during a simulation, whereas molecular topological data generally do not change. The naming
convention for these files can be found in Chap. 4-13. Both types of files, topological files and configurational
files, for a specific molecular system are related through the requirement that in both the sequence of the
quantities is the same, e.g.

1. sequence of atoms
2. sequence of atom-atom distance restraints
3. sequence of dihedral angle restraints
4. sequence of 3J-value restraints

This identity of sequence could be checked e.g. by comparing atom names occurring in topological files
with those from the configurational files. However, in order to avoid dependence on naming conventions and
to maintain maximum flexibility, this is not done in the GROMOS programs. When molecular information,
such as residue numbers and names or atom sequence numbers or names, is present both in a topological file
and in a configurational file of a molecular system, the program generally uses the data from the topological
file and ignores the corresponding data on the configurational file.

In GROMOS files all the information is contained in blocks. For example, the molecular topology building
block (*.mtb) file and the interaction function parameter (*.ifp) file, which are used for creating topologies,
consist of blocks describing e.g. the physical constants used in GROMOS (PHYSICALCONSTANTS block),
names of atom types recognized by GROMOS (ATOMTYPENAME block), force constants and lengths of various
bonds in molecules (BONDSTRETCHTYPECODE block) and other atomic details and force-field parameters.

1.1.3. Summary of the exercise. All topological data mentioned above is used to construct topo-
logical building blocks. Many building blocks are chained together to form a final topology. If the system
under consideration is charged, counter ions may be added, for which parameters are also included in the
topological and force-field files (Sec. 2.1).

7-2

The second task is to obtain atomic cartesian coordinates of the system in GROMOS format. One can
convert e.g. Protein Data Bank (PDB) files into GROMOS *.cnf files using programs available in the
package (Sec. 2.2).

Further steps of an MD simulation involve minimizing the obtained spacial structure in vacuum, adding
solvent molecules (Sec. 2.2.3) and counter ions (Sec. 2.2.4), minimizing the energy of the system and finally
equlibration and thermalisation simulations (Sec. 2.3). After performing all these steps the actual MD sim-
ulation can be carried out. Input files used for minimisation, equilibration, thermalisation and molecular
dynamics simulations also consist of blocks, which contain information about the simulation. For example,
one has to specify the system by writing in the SYSTEM block how many solvent molecules there are. Simula-
tion time, as well as integration time step, temperature and frequency of writing output files are all defined
in the GROMOS *.imd files.

1.1.4. Calling the GROMOS programs. GROMOS programs are used with certain arguments,
for example argument @topo would define the name of the topology file that should be used by the program
called. One can write argument (*.arg) files which contain each argument and can be read by a program
in the following way:

~> a_program @f file.arg

This saves a lot of time and makes it easier to repeat certain steps of your simulation, if needed.

1.2. Practical information

In this volume practical exercises are presented. You will perform a simulation of a penta-peptide in
simple point charge (SPC) water with two chloride counter ions using the molecular dynamics software
package GROMOS. Furthermore, you will analyse your results using GROMOS++ programs. Basic
knowledge of the UNIX operating system is required in order to carry out the exercises. Further, you are
going to use a graphical data plotting software called xmgrace. You can find an online xmgrace manual on
http://linux.die.net/man/1/xmgrace.

After downloading the tutorial files from www.gromos.net to your local directory, type

~> tar zxf tutorial_files.tar.gz

Now you should have a new directory called peptide in your local directory and be ready to start doing
the tutorial.

7-3

CHAPTER 2

A practical exercise

2.1. Building a topology

When a simulation study of a particular system or process is to be carried out, a number of choices have to
be made with respect to the set-up of the simulation. The first task is to generate a molecular topology file
containing the topological and force-field data concerning the molecular system under consideration. Specify-
ing a complete molecular topology for a large molecule, however, is a tedious task. Therefore, in GROMOS

a molecular topology is generated from molecular topology building blocks which carry the topological
information of molecules like amino acid residues, nucleotides, etc., see Vol. 3. The molecular topology
building blocks can be linked together into a complete molecular topology file using the GROMOS++

program make top. Many molecular topology building blocks are available in the molecular topology build-
ing block files (*.mtb), which are standard data files that come together with the GROMOS package. In
case the needed molecular topology building blocks are not part of the standard distribution, they must be
constructed. Constructing a new topology building block may require estimation of additional force-field
parameters, which have to be added to the interaction function parameter file (*.ifp). When generating a
molecular topology for the system of interest one should also address the protonation state of the molecular
groups according to the pH and of the solvent and counter ions that need to be included in the simulation
box. In case of a molecular complex, e.g. a DNA-protein complex, the two separately generated molecular
topologies for the protein and the DNA can be merged using the GROMOS++ program com top.

2.1.1. Creating the topology for the penta-peptide. In this section you should build a molecular
topology of a linear charged penta-peptide (Fig. 2.1) with water as a solvent, including two Cl− counter
ions.

H3N

H
N

N
H

O

O

O

H
N

O

N
H

O

O

HN

NH2
H2N

O NH2

OH

NH3

Figure 2.1. The topology of the penta-peptide

You need the following programs from the GROMOS simulation package:

GROMOS++: make top com top check top

You need the following input files:
54a7.mtb 54a7.ifp make top peptide.arg make top Cl.arg com top peptide 2Cl.arg

The procedure will create the following output files:
peptide 54a7.top Cl 54a7.top peptide 2Cl 54a7.top

Go into the subdirectory topo of the directory peptide in your home.

7-5

~> cd ~/peptide/topo

You will build the molecular topology file of the linear charged penta-peptide Val-Tyr-Arg-Lys-Gln by
using the GROMOS++ program make top. The input file make top peptide.arg is already prepared
and contains the following data: under the argument @build the molecular topology building block file is
specified. The argument @param specifies the interaction function parameter file. Under the argument @seq
the sequence of the building blocks for the amino acid residues, including the amino and carboxy terminus
is specified (NH3+ VAL TYR ARG LYSH GLN COO-). Notice that both termini are charged.

Hint: If CA is a CH2 united atom (for natural amimo acids, this is only glycine), the N-terminal patches
GH3+ or GH2 should be used instead of NH3+ or NH2. For beta-peptides, the N-terminal patches AH3+
or AH2 should be used to precede a residue where CB is a CH2 united atom, while BH3+ or BH2 should
be used where CB is a CH1 united atom.

Hint: The ARG and LYSH building blocks correspond to the protonated amino acids. Always check carefully
the name of the charged amino acids, to make sure you have the correctly protonated species. See Chap. 3-4.

The argument @solv specifies the solvent. The molecular topology file for the penta-peptide, peptide 54a7.top,
with water as a solvent can then be generated as

~/peptide/topo> make_top @f make_top_peptide.arg > peptide_54a7.top

The next step is to build a molecular topology file for a chloride ion using the GROMOS++ program
make top and the input file make top Cl.arg:

~/peptide/topo> make_top @f make_top_Cl.arg > Cl_54a7.top

Now we will combine the generated molecular topology files (peptide 54a7.top and Cl 54a7.top) into
the molecular topology file peptide 2Cl 54a7.top using the GROMOS++ program com top. The input
file com top peptide 2Cl.arg is already prepared and it contains the following data: under the argument
@topo the molecular topology files that you would like to combine are specified. Since two chloride ions
are needed to neutralize the charge of the penta-peptide, the molecular topology file of the chloride ion is
specified as 2:Cl 54a7.top. The arguments @param and @solv specify from which molecular topology file
the parameters for the solute and solvent should be taken. Since we use the same molecular topology building
block and interaction function files for both topologies, this is not important for us and both numbers are
set to 1. To run com top type:

~/peptide/topo> com_top @f com_top_peptide_2Cl.arg > peptide_2Cl_54a7.top

The file peptide 2Cl 54a7.top contains the complete molecular topology of the linear charged penta-peptide
including 2Cl− counter ions with water as a solvent. Have a look at it and check whether it makes sense! To
be sure that your topology is correct, you should always check your topology using the check top program.

Hint: Use check top with the additional arguments @build and @param for a more careful check of your
topology against the force field. (see the check top peptide.arg file for an example).

Warning: Be aware that although check top can find many mistakes in your topology it is always important
to carefully check your topology and building block files manually. This is especially important if you had
to modify an existing or create a new building block.

7-6

2.2. Generating atom Cartesian coordinates for the solute, solvent and counter ions

Coordinates for biomolecules are often available from X-ray or NMR experiments and can be obtained in
Protein Data Bank (PDB) format, which can be converted to GROMOS format using the GROMOS++

program pdb2g96. However, the conversion is not always straightforward since the naming and numbering
of the atoms in the PDB format usually do not match the GROMOS format. Moreover, the coordinates for
hydrogen atoms are not present in the PDB files (when the structure was determined using X-ray diffraction
data) and have to be generated using the GROMOS++ program gch. When the structure is determined
using NMR data, the PDB structure often contains more hydrogen atoms than are needed for GROMOS,
as in the GROMOS force field only polar and aromatic hydrogens are explicitly represented. Aliphatic
hydrogens are non-existing due to the use of so-called united atoms. The aliphatic hydrogen and carbon
atoms are merged to form united atoms which have their own parameters. If no atomic coordinates for the
solute are available from experimental data, the coordinates have to be generated using molecular modeling
software. Often parts of the structure (e.g. flexible loops) are not resolved in the experiment and therefore
not available in the PDB and have to be modeled as well. When a simulation of a solute in solution is to be
carried out, a (periodic) box (be it rectangular, triclinic or truncated octahedral) is put around the solute
and filled with solvent molecules up to the required density. The solvent coordinates can e.g. be generated
using the GROMOS++ program sim box. The generated box should be sufficiently large to allow the
use of a reasonable non-bonded interaction cut-off radius. Putting the solute in a box of solvent using the
sim box program will result in several high-energy atom-atom contacts at the solute-solvent interface and
at the box edges. In order to relax the generated configuration the solvent configuration should be energy
minimized while positionally restraining the solute. Counter-ion atomic coordinates can then be generated
using the GROMOS++ program ion, which can replace a number of solvent molecules by ions.

2.2.1. Generating atomic Cartesian coordinates for the linear charged penta-peptide. You
need the following programs from the GROMOS simulation package:

GROMOS++: pdb2g96 gch frameout

You need the following input files:
peptide.pdb pdb2g96 peptide.arg gch peptide.arg frameout peptide.arg

The procedure will create the following output files:
pdb2g96 peptide.cnf gch peptide.cnf gch peptide.pdb

Go into the subdirectory coord. Open the file peptide.pdb and check if the atom names match the names
in the molecular topology file peptide 2Cl 54a7.top.

In the pdb file peptide.pdb the coordinates for hydrogen atoms are not given and have to be generated.
Convert the PDB file peptide.pdb into the GROMOS format using the GROMOS++ program pdb2g96.
The hydrogen atoms will be added to the coordinate file according to the topological requirements. The
input arguments of the pdb2g96 program are self explanatory.

~/peptide/coord> pdb2g96 @f pdb2g96_peptide.arg > pdb2g96_peptide.cnf

Warning: When converting coordinate files from the Protein Data Bank to GROMOS format many diffi-
culties may emerge. If you encounter problems using the pdb2g96 program, have a look at Sec. 4-7.3. There
you can find further documentation on the advanced usage of this program. Especially the use of a library
that matches residue and atom names might be useful in many cases. pdb2g96.lib which you can find in
the directory is an example of the PDB library file.

Have a look at the pdb2g96 peptide.cnf file. You will notice that the hydrogen atoms have been added
to the coordinate file with the Cartesian coordinates being set to zero. In order to generate meaningful
coordinates for the hydrogen atoms run the GROMOS++ program gch. It will generate the coordinates
for hydrogen atoms by geometric means using the information from the molecular topology file. Therefore,
the molecular topology file, peptide 2Cl 54a7.top, and the coordinate file, pdb2g96 peptide.cnf, have
to be specified in the gch input file. The argument @tol sets the tolerance that is used for keeping the
coordinates of hydrogens that are already present in the coordinate file.

7-7

To run gch type:

~/peptide/coord> gch @f gch_peptide.arg > gch_peptide.cnf

Using the GROMOS++ program frameout you can convert the coordinate file
gch peptide.cnf back to the PDB format and look at the structure using the molecular visualization
program VMD (Visual Molecular Dynamics).

~/peptide/coord> frameout @f frameout_peptide.arg

~/peptide/coord> mv FRAME_00001.pdb gch_peptide.pdb

~/peptide/coord> vmd gch_peptide.pdb

2.2.2. Energy minimisation of the penta-peptide. You need the following programs from the
GROMOS simulation package:

MD++: md

You need the following input files:
peptide 54a7.top gch peptide.cnf em peptide.imd em peptide.run

The procedure will create the following output files:
em peptide.omd peptide min.cnf

Before putting the penta-peptide into a box of solvent, its configuration has to be relaxed by energy
minimisation. Go into the subdirectory called min.

The MD++ input file em peptide.imd contains the following blocks:

TITLE

steepest descent energy minimisation of the peptide in vacuum.

END

In the TITLE block you specify what is done with following input file.

ENERGYMIN

NTEM NCYC DELE DX0 DXM NMIN FLIM

1 0 0.1 0.01 0.05 2000 0.0

END

The existence of the ENERGYMIN block means that the MD++ program will perform an energy minimisation
(EM) run. The NTEM switch indicates which minimisation algorithm to be used. With NTEM = 1 we indicate
that the steepest-descent algorithm (Sec. 2-11.2) is used. NCYC gives the number of steps before resetting of
conjugate-gradient search direction in case we would use the conjugate gradient method (NTEM = 2). Using
DELE the energy threshold (the difference in energy between two energy minimisation steps) for stopping the
minimisation process (convergence) is specified. The initial step size and maximum step size is given in DX0

and DXM, respectively. Using FLIM the absolute value of the forces can be limited to a maximum value before
the algorithm is applied (see also 4-93).

SYSTEM

NPM NSM

1 0

END

In the SYSTEM block you specify the number of solutes (NPM) and solvent (NSM) molecules. You only have
one solute NPM = 1 and no solvent molecules NSM = 0 because you still did not add any solvent molecules
to the configuration file and the peptide is still in vacuum. Otherwise you would have to tell MD++ how
many solvent molecules you are using.

Hint: Note that the solute and solvent topologies contained in the topology file are multiplied by these
factors to match the sequence of atoms in the configuration file. If you want to simulate a peptide with two
counter ions you still have to specify NPM = 1. The peptide and the counter ions form one solute. As NPM > 1
is not supported by MD++ you should use the GROMOS++ program com top to multiply the topology
of a solute if required.

7-8

INITIALISE

NTIVEL NTISHK NTINHT NTINHB NTISHI NTIRTC NTICOM NTISTI IG TEMPI

0 0 0 0 1 0 0 0 210185 300.0

END

This block will be explained in more detail in section Sec. 2.3.

STEP

NSTLIM T DT

2000 0.0 0.002

END

In the STEP block you specify the maximum number of steps (NSTLIM) for the energy minimisation. GROMOS

will stop as soon as the energy changes less than DELE or this step number is reached. For an MD simulation
T is the initial time and DT is the integration time step used.

BOUNDCOND

NTB NDFMIN

0 1

END

In the BOUNDCOND block you specify which periodic boundary conditions (PBC) you are going to use in the
EM procedure. NTB = 0 defines a vacuum simulation: PBC are not applied. To indicate the truncated
octahedron (t) PBC, NTB is set to -1, for rectangular (r) PBC NTB is 1, and for the triclinic (c) PBC NTB is
2. NDFMIN defines the number of degrees of freedom subtracted from the total number of degrees of freedom
for the calculation of the temperature.

PRINTOUT

NTPR NTPP

10 0

END

With the PRINTOUT block you can specify how often (every NTPRth step) you are printing out the energies
to the output file.

CONSTRAINT

NTC NTCP NTCP0(1) NTCS NTCS0(1)

3 1 0.0001 1 0.0001

END

Bonds vibrate at high frequencies (hν ≫ kBT). Therefore, these vibrations are of quantum-mechanical
nature. So constraining the bond lengths is a better approximation than treating them as classical harmonic
oscillators. Constraining all bond lengths of the solute and solvent (NTC=3) allows the use of a rather large
time step of 2 fs. In this example the constraints are imposed by the SHAKE algorithm for both solute
(NTCP=1) and solvent (NTCS=1) with a tolerance of 0.0001. See 4-90 for more information.

FORCE

NTF(1..6): 0,1 determines terms used in force calculation

0: do not include terms

1: include terms

NEGR: ABS(NEGR): number of energy groups

> 0: use energy groups

< 0: use energy and force groups

NRE(1..NEGR): >= 1.0 last atom in each energy group

NTF(1) NTF(2) NTF(3) NTF(4) NTF(5) NTF(6)

bonds angles improper dihedral electrostatic vdW

0 1 1 1 1 1

NEGR NRE(1) NRE(2) ... NRE(NEGR)

1 71

END

In the FORCE block you tell MD++ which terms it should use for the energy and force calculation. For bond
angles, improper dihedrals, torsional dihedrals and the non-bonded interactions the standard terms of the
GROMOS force field are switched on (1). Because we are using bond-length constraints and the SHAKE
algorithm, we have to switch off (0) the bond-stretching terms for the bonds involving hydrogen atoms and
not involving hydrogen atoms..

In the last line of this block, the energy groups are defined. In general, we define one or more energy
groups for every molecule, and one comprising all the solvent molecules. The first integer is the number of
energy groups we want to use (in the present case we only have one energy group). The following numbers
are the atom sequence numbers of the last atom of each energy group. By defining these energy groups we

7-9

tell MD++ to sum up the energies between the atoms within these groups and calculate the inter-group
energies, which can be very useful.

Warning: Think very carefully about the definition of energy groups before running the simulation. Energies
of energy groups can not be calculated from the trajectories in an efficient way. So, changing an energy-group
definition will result in rerunning the simulation.

PAIRLIST

algorithm: standard (0) (gromos96 like pairlist)

grid (1) (XX grid pairlist)

SIZE: grid cell size (or auto = 0.5 * RCUTP)

TYPE: chargegoup (0)(chargegroup based cutoff)

atomic (1)(atom based cutoff)

#

ALGORITHM NSNB RCUTP RCUTL SIZE TYPE

0 5 0.8 1.4 0.4 0

END

In the PAIRLIST block you specify which algorithm you will use for the pairlist generation. The cut-off used
in the short-range pairlist construction is given by RCUTP and for GROMOS it is usually 0.8 nm. The cut-off
used in the long-range interactions is given by RCUTL and for GROMOS it is usually 1.4 nm. The pairlist is
generated every 5th (NSNB) step. TYPE specifies the type of the cut-off, whether it is based on the distance
between charge-groups (0) or on the distance between atoms (1).

NONBONDED

NLRELE APPAK RCRF EPSRF NSLFEXCL

1 0.0 1.4 1 1

NSHAPE ASHAPE NA2CLC TOLA2 EPSLS

-1 1.4 2 1e-10 0

NKX NKY NKZ KCUT

10 10 10 100

NGX NGY NGZ NASORD NFDORD NALIAS NSPORD

32 32 32 3 2 3 4

NQEVAL FACCUR NRDGRD NWRGRD NLRLJ SLVDNS

100000 1.6 0 0 0 33.3

END

In the NONBONDED block you specify using NLRELE which method for the evaluation of long-range electrostatic
interactions is used. Since you will use the reaction-field method, the value of NLRELE should be equal to
1. The long-range electrostatic interactions are truncated beyond a certain cutoff (RCUTL in the PAIRLIST

block). Beyond the reaction-field cut-off radius (RCRF) the electrostatic interactions are replaced by a static
reaction field with a dielectric permittivity of EPSRF. RCRF and RCUTL should be identical. Because we are
doing the energy minimisation in vacuo EPSRF is set to 1. With NSLFEXCL equal to 1, you include the
contributions of excluded atoms to the electrostatic energy. The ionic strength of the continuum is set to 0
(APPAK). All other switches are not used for the reaction-field method. See 4-98 for more information.

In order to run theMD++ program, a shell script needs to be prepared. Open the shell script em peptide.

run and adapt the paths and the names of the files according to your system. The energy minimisation of
the solute in vacuo is very fast and you can run it interactively by typing:

~/peptide/min> ./em_peptide.run

Once the energy minimisation is finished, the file with the minimized coordinates, peptide min.cnf, and
the general output file, em peptide.omd, that reports the progress of the minimisation, will be written out.
Have a look at both files and check if the minimisation has finished successfully. Using the GROMOS++

program frameout you can again convert the coordinate file peptide min.cnf into PDB format and view
the new configuration using the VMD program.

2.2.3. Solvating the penta-peptide in a water box. You need the following programs from the
GROMOS simulation package:
GROMOS++: sim box

MD++: md

You need the following input files:
peptide 54a7.top spc.cnf em solvent.imd sim box peptide.arg sim box peptide.rpr sim box peptide.por em solvent.run

7-10

The procedure will create the following output files:
sim box peptide.cnf em solvent.omd peptide h2o.cnf

Now you can put the energy minimized penta-peptide in a box of solvent using the GROMOS++ program
sim box which can solvate the solute in a pre-equilibrated box of solvent molecules. Go to the subdirectory
box. In the input file for the program sim box you have to specify the following input arguments: the
molecular topology file under the argument @topo, the resulting box shape under the argument @pbc (r-
rectangular, t-truncated octahedron, c-triclinic), the coordinate file of the solute under the argument @pos,
the coordinate file of the pre-equilibrated box of solvent molecules under the argument @solvent, minimum
solute-to-wall distance under the argument @minwall, and the minimum solute-to-solvent distance under
the argument @thresh. If you are using a rectangular box (@pbc r) it is recommended to use an additional
argument, @rotate. With this additional argument the solute can be rotated (before solvating) such that
the largest distance between any two solute atoms is directed along the z-axis, and the largest atom-atom
distance in the xy-plane lies in the y-direction. An input file sim box peptide.arg is already prepared. To
put the solvent box around the penta-peptide type:

~/peptide/box> sim_box @f sim_box_peptide.arg > sim_box_peptide.cnf

In order to relax the unfavorable atom-atom contacts between the solute and the solvent, energy minimi-
sation of the solvent should be performed while keeping the solute positionally restrained (i.e. connecting
the atom to a reference position by a spring). In order to do that two additional files, in which the position-
ally restrained atoms and the reference coordinates are specified, have to be generated from the coordinate
file sim box peptide.cnf. Copy the coordinate file sim box peptide.cnf to sim box peptide.por and to
sim box peptide.rpr. Open the new file sim box peptide.por with a text editor, write in the TITLE block
the text “solute atoms to be positionally restrained”, and delete all the coordinates of the solvent such that
only the coordinates of the solute atoms are left. Then change the keyword POSITION at the beginning
of the atom coordinate block of sim box peptide.por to POSRESSPEC. You now have a file containing a
POSRESSPEC block which only contains the atoms of the peptide. With these changes the position restraints
specification file sim box peptide.por should look like this:

TITLE

solute atoms to be positionally restrained

END

POSRESSPEC

1 VAL H1 1 0.508983407 -0.108220645 -0.056160171

1 VAL H2 2 0.478246738 -0.131824700 0.103013982

...

5 GLN O1 70 -0.389334812 -0.481578304 -0.248788696

5 GLN O2 71 -0.408991389 -0.269160831 -0.187628610

END

The preparation of the reference position file is even simpler as it is very similar to the coordinate file and
only the TITLE block has to be changed and one block has to be renamed. In order to prepare the reference
position file, open the new file sim box peptide.rpr in a text editor, write in the TITLE block the text
“reference positions for restraining solute atoms”, and change the block name POSITION to REFPOSITION.

Warning: When reading in a coordinate file with a POSITION block the first 24 characters (atom specification)
are ignored. However, in a position restraints file each line of the POSRESSPEC block must have seven columns
as the fourth to seventh column are read in by the program.

The MD++ input files for minimisation of the solvent around the penta-peptide, em solvent.imd,
and the script to run the minimisation, em solvent.run, are already prepared. Nevertheless, open the
em solvent.imd and compare it with em peptide.imd. You will notice that em solvent.imd contains one
input block more, the POSITIONRES block.

POSITIONRES

values for NTPOR

0: no position re(con)straining

1: use CPOR

2: use CPOR/ ATOMIC B-FACTORS

3: position constraining

NTPOR NTPORB NTPORS CPOR

1 1 0 25000

END

7-11

Using this block you are specifying that you want to restrain the positions of your solute molecule. The
restraining is achieved by a harmonic force term with a force constant CPOR. The NTPORB indicates that the
reference positions are read from a separate file, which is in our case sim box peptide.rpr. NTPORS equal
to 0 prevents the program from changing the reference positions upon pressure scaling.

Hint: Notice and understand the differences in SYSTEM, BOUNDCOND and FORCE block between
em peptide.imd and em solvent.imd.

Have a look at em solvent.run and put in the correct paths to your files. Run the energy minimisation
of the solvent interactively by typing

~/peptide/box> ./em_solvent.run

This will take a few minutes. Once the minimisation is finished, the new coordinate file, peptide h2o.cnf,
and the general output file em solvent.omd will be written out.

2.2.4. Adding counter ions to the simulation box. You need the following programs from the
GROMOS simulation package:

GROMOS++: ion

You need the following input files:
peptide 54a7.top peptide h2o.cnf ion peptide.arg

The procedure will create the following output files:
peptide 2Cl h2o.cnf

In the next step, two chloride ions should be added to the box. Go to the subdirectory ion. The two
chloride ions are added to the simulation box by using the GROMOS++ program ion such that they
replace the water molecules which have the highest electrostatic potential. You can run ion by typing

~/peptide/ion> ion @f ion_peptide.arg > peptide_2Cl_h2o.cnf

Convert the file peptide 2Cl h2o.cnf into the PDB format using the GROMOS++ program frameout

and check where the chloride ions have been placed. In Fig. 2.2 you can see how it should look like.

Hint: Have a look at the file frameout 1.arg in ~/peptide/ana/frameout/. Two arguments have been
added:
@pbc r

@include ALL

The argument @pbc specifies which periodic boundary condition was used (in our case rectangular - r) and
that we want to gather the frames. The argument include specifies whether frameout should convert only
the solute, which is the default option, only the solvent (@include SOLVENT), or all the atoms (@include
ALL).

7-12

Figure 2.2. The penta-peptide and the two counter ions in a box of water.

2.3. Set-up and production simulation of the penta-peptide

2.3.1. Thermalisation and equilibration. You need the following programs from the GROMOS

simulation package:
GROMOS++: mk script ene ana

MD++: md

You need the following input files:
eq mk script.arg equilibration.imd equilibration.jobs mk script.lib ene ana.arg ene ana.md++.lib

The procedure will create the following output files:
eq peptide *.run eq peptide *.imd eq peptide *.omd eq peptide *.cnf eq peptide *.tre.gz eq peptide *.trc.gz totkin.dat

In the previous steps you have generated a topology and initial coordinates of your system. At this point,
you have to generate initial velocities. In the process of thermalisation and equilibration, initial velocities
are sampled from a Maxwell-Boltzmann distribution at a low temperature and the system is slowly heated
up to the final production simulation temperature. The atoms of the solute are positionally restrained and
these restraints are loosened while heating up. With the help of these restraints you make sure that the
random initial velocities do not disrupt the initial conformation too much.

You already know a couple of things about job scripts. Because the set-up of a job script can be a labor-
intensive undertaking, there is a little but powerful helper called mk script. This GROMOS++ program
is able to automatically generate a job script from a given input file and a series of arguments.

Before we have a detailed look at mk script, let’s see which MD++ input file we need for the thermal-
isation and equilibration period. Go to the subdirectory eq. Open the equilibration.imd file. This file
contains a series of input blocks some of which you have already seen at the energy minimisation step. Here
only new or changed input blocks are explained.

7-13

INITIALISE

NTIVEL NTISHK NTINHT NTINHB NTISHI NTIRTC NTICOM NTISTI IG TEMPI

1 0 0 0 1 0 1 0 210185 300.0

END

In the INITIALISE block the NTIVEL tells GROMOS whether it should generate the initial velocities or
read them from the configuration file. NTISHK is used to restore bond length constraints (SHAKE). NTINHT
and NTINHB are only used for Nose-Hoover thermo- and barostats and can be ignored in our case. Every
time an atom is leaving the periodic box and entering it from the opposite site this incident is recorded in
the so-called lattice shift vectors. Using NTISHI we want to make sure that these vectors are initialised to
zero. As you don’t want to use roto-translational constraints NTIRTC can be ignored. NTICOM is used for
initial removal of centre of mass motion. NTISTI is used to reset the stochastic integrals used in stochastic
dynamics (SD) simulations. IG is the random number generator seed and TEMPI the initial temperature used
to generate the Maxwell-Boltzmann distribution for generation of initial velocities. See also 4-94 for more
information.

In the SYSTEM block you need to replace NSM with the number of solvent molecules in your system (you will
find it in peptide 2Cl h2o.cnf file).

STEP

NSTLIM T DT

10000 0.0 0.002

END

In the STEP block you specify how many steps you want to simulate (NSTLIM), at what time your simulation
starts (T) and how big the integration time step (DT) is. In this case you want to start at time 0 and you
want to carry out a 20 ps simulation, because the time unit happens to be ps.

BOUNDCOND

NTB NDFMIN

1 3

END

As previously described, with the BOUNDCOND block you specify which PBC you will use. With NTB=1 you
specify rectangular PBC.

MULTIBATH

ALGORITHM:

weak-coupling(0): use weak-coupling scheme

nose-hoover(1): use Nose Hoover scheme

nose-hoover-chains(2): use Nose Hoover chains scheme

NUM: number of chains in Nose Hoover chains scheme

!! only specify NUM when needed !!

NBATHS: number of temperature baths to couple to

ALGORITHM

0

NBATHS

2

TEMP0(1 ... NBATHS) TAU(1 ... NBATHS)

60 0.1 60 0.1

DOFSET: number of distinguishable sets of d.o.f.

2

LAST(1 ... DOFSET) COMBATH(1 ... DOFSET) IRBATH(1 ... DOFSET)

73 1 1 LSTATM 2 2

END

In our case we want to run the simulation at constant temperature. For this purpose, we have to add the
MULTIBATH input block (see 4-96). First we specify which algorithm we will use. In this case we will use
the weak-coupling scheme (ALGORITHM=0). How many temperature baths we want to couple to the system
is specified by NBATHS. You can specify the temperature using the TEMP0 parameter. TAUT is the coupling
time used in the weak-coupling method for this bath. DOFSET specifies the number of distiguishable sets
of degrees of freedom. LAST is pointing to the last atom for the set of degrees of freedom; thus, you put
the number of last atom of your system instead of LSTATM. COMBATH is the temperature bath to which we
want to couple the centre of mass motion of this set of degrees of freedom IRBATH is the temperature bath
to which the internal and rotational degrees of freedom of this set of degrees of freedom are coupled. The
temperatures in this block are modified by mk script.

COMTRANSROT

NSCM

1000

7-14

END

This block is needed to remove the centre of mass motion (translation and rotation). Without this block it
can happen that all the kinetic energy is converted to centre of mass translation (flying ice cube problem).
With NSCM we specify how often the center-of-mass (COM) motion is removed. If NSCM is < 0 translation
and rotation motion are removed every |NSCM|th step. If NSCM is > 0 only translation motion is removed
every NSCMth step.

COVALENTFORM

NTBBH: 0,1 controls bond-stretching potential energy term

0: quartic form (default)

1: harmonic form

NTBAH: 0,1 controls bond-angle bending potential energy term

0: cosine-harmonic (default)

1: harmonic

NTBDN: 0,1 controls torsional dihedral angle potential energy term

0: arbitrary phase shifts (default)

1: phase shifts limited to 0 and 180 degrees.

NTBBH NTBAH NTBDN

0 0 0

END

This block is needed to define which functional form we will use for bond-stretching (NTBBH), bond-angle
bending (NTBAH) and for torsional dihedral (NTBDN). We just use the default options for all functional forms.

WRITETRAJ

NTWSE = configuration selection parameter

=0: write normal trajectory

>0: chose mininimum energy for writing configurations

NTWX NTWSE NTWV NTWF NTWE NTWG NTWB

100 0 0 0 100 0 0

END

MD++ produces a massive amount of data and it is impossible to store all the data it produces. The
WRITETRAJ block meets this demand: Here you specify how often the coordinate trajectory (NTWX), the
velocity trajectory (NTWV), the force trajectory (NTWF), the energy trajectory (NTWE), the free energy trajectory
(NTWG) and the block averaged energy trajectory (NTWB) are written out. In the present case, we are only
interested in the coordinates (NTWX) and energies (NTWE) and we write them every 100th step. The second
switch (NTWSE) defines selection criterion for trajectories: if NTWSE = 0 the normal coordinate trajectory will
be written, or if NTWSE > 0 a minimum energy trajectory will be written.

Warning: It makes no sense to write out configurations too often. First, it needs a lot of disk space. Second,
the data is highly correlated and so no additional information is gained from it.

PRINTOUT

#NTPR: print out energies, etc. every NTPR steps

#NTPP: =1 perform dihedral angle transition monitoring

NTPR NTPP

100 0

END

This block is very similar to the WRITETRAJ block but the information about the energies (NTPR) is printed
to the output file. By giving NTPP, dihedral angle transitions are written to the special trajectory.

In the FORCE block you need to replace the LSTATM with the number of last atom of your system.

PAIRLIST

ALGORITHM: standard(0) (gromos96 like pairlist)

grid(1) (MD++ grid pairlist)

SIZE: grid cell size (or auto = 0.5 * RCUTP)

TYPE: chargegroup(0) (chargegroup based cutoff)

atomic(1) (atom based cutoff)

#

ALGORITHM NSNB RCUTP RCUTL SIZE TYPE

1 5 0.8 1.4 0.4 0

END

MD++ knows different algorithms for the generation of the pairlist, a list containing the atoms interacting
with each other. Here, we use a grid based pairlist generation: the space is discretized into grid cells and
only the neighboring cells are searched for interacting partners. The use of this algorithm results in a

7-15

significant speed increase because the scaling of the algorithm is changed from O
(

Na
2
)

to O (Na). The
pairlist is generated every 5th (NSNB) step. RCUTP and RCUTL are the cutoffs for the pairlist construction for
the short-range and the long-range interactions.

POSITIONRES

values for NTR

0: no position re(con)straining

1: use CHO

2: use CHO/ ATOMIC B-FACTORS

3: position constraining

NTPOR NTPORB NTPORS CPOR

1 1 0 25000

END

Finally, we want to restrain the position of our solute. The restraining is achieved by a harmonic special
force term with a force constant of CPOR. This force constant is also modified by mk script.

Now you should understand the main blocks of the MD++ input files.

Hint: You can find further information on the GROMOS input file in Chap. 4-8.

Now it is time to have a look at mk script. Open the input file eq mk script.arg. Here choose a system
name @sys, describing your simulation. @bin points to the MD++ executable md and @dir points to the
directory where the simulation files are. Using the @files argument you specify all the files needed by your
simulation (topology, MD++ input file, initial coordinate file, position restraints and reference position
file). @template respectively mk script.lib is a configuration file for mk script. Therein you can adapt
mk script to your local system or cluster. Because we are usingMD++ you have to give the @version md++

argument. Finally, you tell mk script what to do, using a joblist file that you specify with the @joblist

argument.

Hint: All file paths that you give in a mk script input file must be relative to the path @dir.

The joblist is already prepared for you. Therein you can change parameters in the MD++ input file for
a certain job. Have a look into the file:

~/peptide/eq> cat equilibration.jobs

TITLE

General startup protocol.

heating while loosening the position restraints.

END

JOBSCRIPTS

job_id NTIVEL TEMPI TEMP0[1] TEMP0[2] COUPLE NTPOR CPOR subdir run_after

1 1 60.0 60.0 60.0 1 1 2.5E4 . 0

2 0 0.0 120.0 120.0 1 1 2.5E3 . 1

3 0 0.0 180.0 180.0 1 1 2.5E2 . 2

4 0 0.0 240.0 240.0 1 1 2.5E1 . 3

5 0 0.0 300.0 300.0 1 0 0.000 . 4

END

All the jobs have a certain ID which you can find in the first column. The following columns specify the
parameters of the MD++ input file that you want to change. In the first job, we have to generate the initial
velocities. Thus, we give an initial temperature (TEMPI) and set the NTIVEL parameter to one. In the further
jobs we will read the velocities from a file, hence we set NTIVEL to 0. You can see that we are increasing
the temperature for both baths by 60K at every new job (TEMP0[1..2]). Simultaneously, the force constant
(CPOR) for the position restraints is decreased by an order of magnitude at every new job. Finally, in the last
columns you specify in which subdirectory and in what order you want to run the jobs. The only thing that
is missing to start the equilibration are the files containing the position restraints of the solute. To prepare it,
copy the coordinate file peptide 2Cl h2o.cnf from the ion directory to the local directory and open it with
a text editor and prepare the files peptide 2Cl h2o.por and peptide 2Cl h2o.rpr as you prepared the files
sim box peptide.por and sim box peptide.rpr for the energy minimisation of the solvent (Sec. 2.2.3).

Now, run mk script:

~/peptide/eq> mk_script @f eq_mk_script.arg

7-16

This creates five eq peptide *.run job scripts and the corresponding input files (eq peptide *.imd).

Warning: mk script will not complain if the refpos file is not found! And the MD++ will crash if the
POSRESSPEC block contains an empty line (only whitespace) at the end of the file!

You are now ready to start the thermalisation and equilibration. Run the first job script and the others
will be automatically executed as soon as the preceding script has finished.

~/peptide/eq> ./eq_peptide_1.run

Warning: Depending on your system’s speed this will take up to five hours. As we are using the simulation
directory as the working directory there will be an error message after every job which can be ignored.

Hint: Have a look at all the output files eq peptide *.omd. If anything goes wrong, a message will be
printed to the output file.

After the equilibration has finished, carry out some basic checks in the eq/ana directory.

~/peptide/eq/ana> ene_ana @f ene_ana.arg

~/peptide/eq/ana> xmgrace totkin.dat

There you can see that the kinetic energy is increasing at every new job (Fig. 2.3).

Figure 2.3. The kinetic energy during the equilibration.

2.3.2. Molecular dynamics sampling simulation. You need the following programs from theGROMOS

simulation package:
GROMOS++: mk script

MD++: md

You need the following input files:
md mk script.arg md.imd mk script.lib

The procedure will create the following output files:
md peptide *.run md peptide *.imd md peptide *.omd md peptide *.cnf md peptide *.trc.gz md peptide *.tre.gz

The equilibration period already produced a short simulation at constant temperature and volume. At
this point we want to elongate the simulation to a nanosecond under constant temperature and pressure.
Go to the directory md and use the mk script program to create the job scripts and the input files.

7-17

Have a look at the input file md.imd. Compared to the file used for the equilibration there are only a few
differences: First, we don’t use position restraining anymore and so, the POSITIONRES block was removed.
We want to simulate under constant pressure rather than constant volume. For this purpose we have to add
an additional block:
PRESSURESCALE

COUPLE SCALE COMP TAUP VIRIAL

2 1 0.0004575 0.5 2

SEMI (semianisotropic couplings: X, Y, Z)

1 1 1

PRES0(1...3,1...3)

0.06102 0 0 0 0.06102 0 0 0 0.06102

END

In the PRESSURESCALE block we tell MD++ to calculate and scale the pressure by setting COUPLE to 2. As
the box should be isotropically scaled we set SCALE equal to 1. The weak-coupling method (Sec. 2-12.2.2)
uses two additional parameters: COMP is the isothermal compressibility and TAUP is the coupling time. We
are calculating the molecular virial (VIRIAL is equal to 2), so intramolecular forces don’t contribute to the
pressure. The next line is only used for semi-anisotropic pressure coupling and can be ignored in our case.
Finally, we have to specify the reference pressure in a tensor form.

In the other blocks only minor things have changed: the temperature was set to 300K and the trajectories
are written out less often (every 250th step only). In the mk script input file (md mk script.arg) the
specifications of the position restraints file and the joblist file are not needed any more. Instead of the joblist
we use the @script argument. Here, we tell mk script to create 10 consecutive scripts, beginning with the
first (1). Run mk script to generate the job scripts.

~/peptide/md> mk_script @f md_mk_script.arg

This command creates 10 md peptide *.run job scripts and corresponding input files (md peptide *.imd).
Now, you can submit the first script to the job control system (queue) or run it interactively on the command
line.
~/peptide/md> ./md_peptide_1.run

After all the jobs are finished, you should start to analyse the trajectories.

7-18

2.4. Analysis of the penta-peptide trajectories

2.4.1. Analysis of the energy trajectory. GROMOS can write energies, free-energy λ-derivatives
and block averages of these to separate trajectory files for later analysis. Program ene ana extracts individual
values from such files and can perform simple mathematical operations on them. In this tutorial we have
only written energy trajectories (*.tre.gz) and in the following you will learn how to extract time series
and averages from these files.

You need the following programs from the GROMOS simulation package:
GROMOS++: ene ana

others: xmgrace

You need the following input files:
ene ana peptide.arg

The procedure will create the following output files:
ene ana peptide.out totene.dat totpot.dat totkin.dat pressu.dat solutemp2.dat solvtemp2.dat

Go to the direcory ana. In the subdirectory ene ana have a look at the input file:

~/peptide/ana/ene_ana> cat ene_ana_peptide.arg

@en_files ../../md/md_peptide_1.tre.gz

../../md/md_peptide_2.tre.gz

...

@prop totene totpot totkin solutemp2 solvtemp2 pressu

@topo ../../topo/peptide_2Cl_54a7.top

@library ene_ana.md++.lib

With @en files you tell ene ana which energy trajectories should be read in. The @prop argument specifies
for which properties the time series should be extracted from the energy trajectory. The topology is specified
with @topo. One can specify an ene ana library with the @library argument. Now you can run ene ana:

~/peptide/ana/ene_ana> ene_ana @f ene_ana_peptide.arg > ene_ana_peptide.out

Have a look at the output:

~/peptide/ana/ene_ana> cat ene_ana_peptide.out

property average rmsd error est.

totene -33001.249 108.441729 4.49116286

totpot -40082.2818 138.689821 4.23048814

totkin 7081.03283 95.494846 1.17739268

solutemp2 301.387955 27.0028093 0.357744616

solvtemp2 303.959409 4.13812131 0.051210902

pressu 1.9180672 305.759605 7.91642893

The program calculates the average of the specified properties as well as the root-mean-square deviations
(rmsd) and a statistical error estimate (error est.). The error estimate is calculated from block averages
of growing sizes extrapolating to infinite block size1.

Warning: Sometimes the error estimates are NaN (not a number), which is due to the fact that we do not
have enough values to calculate a meaningful error estimate.

Program ene ana also produced a couple of time series files

~/peptide/ana/ene_ana> ls *.dat

pressu.dat solutemp2.dat totene.dat

totpot.dat solvtemp2.dat totkin.dat

Exercise: Have a look at these time series with xmgrace. Annotate the plots (axes, legends etc.). Print the
plots and hand them in.

In the following you should learn how to use the ene ana library. In the input file we specified as a first
property totene. How did ene ana know which numbers should be extracted from the energy trajectory in
order to calculate the total energy? Have a look at one of the energy trajectories

~/peptide/ana/ene_ana>less ../../md/md_peptide_2.tre.gz

TITLE

GromosXX

Automatically generated input file

7-19

energy trajectory

END

TIMESTEP

0 100.000000000

END

ENERGY03

totals

-3.304678446e+04

7.179524549e+03

-4.022630901e+04

2.125140821e+02

0.000000000e+00

1.301350362e+02

2.765269150e+01

5.472635430e+01

0.000000000e+00

-4.043882310e+04

6.127461522e+03

-4.656628462e+04

0.000000000e+00

0.000000000e+00

0.000000000e+00

0.000000000e+00

As you can see there is a number of blocks, but you will not find totene anywhere. The ene ana.md++.lib

helps ene ana to interpret the (free) energy trajectory files. This library file defines which value ene ana

should take from the trajectory if you ask for property totene. It can also calculate additional properties
by performing simple mathematical operations on the values in the trajectories. 1

Warning: The ene ana.md++.lib file is very tightly coupled to the exact version of MD++ you use. The
program checks if the file you specify matches the version of MD++ with which the energy trajectory
was generated. If these do not match, you can find an updated version of ene ana.md++.lib in the data

directory of your MD++ installation.

The ene ana.md++.lib file will look something like this:

~/peptide/ana/ene_ana>cat ene_ana.md++.lib | grep "totene = "

totene = ENER[1]

~/peptide/ana/ene_ana>more ene_ana.md++.lib

TITLE

XX Library file for ene_ana

END

ENERTRJ

block definition for the energy trajectory file.

which is specified by the input flag en_files of program ene_ana.

#

Use keyword ’block’ to specify the blocks

’subblock’ to specify name and dimensions of a set of data

’size’ to specify a size that should be read in from the file

this size can be used as dimension specification

in a subblock definition. Using the prefix ’matrix_’

with such a definition will expand the size N to

N*(N+1)/2

#

Following is the definition for a gromosXX energy trajectory

#

block TIMESTEP

subblock TIME 2 1

block ENERGY03

subblock ENER 35 1

size NUM_BATHS

subblock KINENER NUM_BATHS 3

size NUM_ENERGY_GROUPS

subblock BONDED NUM_ENERGY_GROUPS 5

subblock NONBONDED matrix_NUM_ENERGY_GROUPS 4

subblock SPECIAL NUM_ENERGY_GROUPS 9

size NUM_EDS_STATES

1some properties can also be calculated without specifying a library file as some part of the library is implemented already
in the program itself. However, understanding the library syntax is important as it allows you to calculate any property you
wish from the energy trajectory.

7-20

subblock EDS NUM_EDS_STATES 3

block VOLUMEPRESSURE03

subblock MASS 1 1

size NUM_BATHS

subblock TEMPERATURE NUM_BATHS 4

subblock VOLUME 10 1

subblock PRESSURE 30 1

END

FRENERTRJ

block definition for the free energy trajectory file.

which is specified by the input flag fr_files of program ene_ana.

#

syntax as for the ENERTRJ definition

#

Following is the definition for a gromosXX free energy trajectory.

#

block TIMESTEP

subblock TIME 2 1

block FREEENERDERIVS03

subblock RLAM 1 1

subblock FREEENER 35 1

size NUM_BATHS

subblock FREEKINENER NUM_BATHS 3

size NUM_ENERGY_GROUPS

subblock FREEBONDED NUM_ENERGY_GROUPS 5

subblock FREENONBONDED matrix_NUM_ENERGY_GROUPS 4

subblock FREESPECIAL NUM_ENERGY_GROUPS 9

size NUM_EDS_STATES

subblock FREEEDS NUM_EDS_STATES 3

END

VARIABLES

Here you can define variables to be calculated by the program ene_ana

In principal the program refers to the blocknames you have defined above,

accessing individual element using array indices (one- or two-dimensional)

#

Predefined as well is the Boltzmann constant (as BOLTZ = 0.00831441) and

the MASS which (if not present in the energy trajectory) will be calculated

from the topology (if inputflag @topo is given).

#

Additional properties can be defined here as a direct mapping of a known

property or as an expression of such properties. Make sure that variables

and operators are always seperated by spaces. Multi-line expressions are

allowed.

#

Examples that work with the standard gromos96 definition are

given below and are actually standardly define if no library

file is specified.

time = TIME[2]

dvdl = FREEENER[3]

totene = ENER[1]

totkin = ENER[2]

totpot = ENER[3]

...

As you can see totene is defined as the first entry of the ENER array. The ENER array is defined as a subblock
of the ENERGY03 block. This subblock has 1 column with 38 lines (subblock ENER 38 1).

Exercise: Use ene ana to calculate the density of your system. You will have to specify a proper variable
for the density behind the @prop argument. You can find out which variable from the ene ana.md++.lib

library file it should be. Plot the resulting density trajectory with xmgrace, annotate and hand in the plot.

Exercise: This is a rather advanced exercise. We want to extract the time series of the total nonbonded
interactions of the peptide with itself, the chloride ions and the water. The energies we need for that are
stored in the energy trajectory in the # nonbonded block. In section Sec. 2.2.2 we defined four energy groups:
the peptide, the first chloride ion, the second chloride ion and the water molecules. The # nonbondedmatrix
contains the following information:

nonbonded

van der Waals Coulomb LSR LSK

nonbonded

7-21

-6.777453864e+01 -3.617661756e+02 0.000000000e+00 0.000000000e+00 # 1 - 1 peptide with peptide

-2.605382239e-02 -8.326755384e+00 0.000000000e+00 0.000000000e+00 # 1 - 2 peptide with first Cl-

-4.098207266e-01 -8.853119150e+01 0.000000000e+00 0.000000000e+00 # 1 - 3 peptide with second Cl-

-3.822977361e+01 -2.549027033e+03 0.000000000e+00 0.000000000e+00 # 1 - 4 peptide with water

0.000000000e+00 -7.382455923e+01 0.000000000e+00 0.000000000e+00 # 2 - 2 first Cl- with itself

-2.759122936e-03 1.126804790e+00 0.000000000e+00 0.000000000e+00 # 2 - 3 first Cl- with second Cl-

3.690831600e+01 -6.603813595e+02 0.000000000e+00 0.000000000e+00 # 2 - 4 first Cl- with water

0.000000000e+00 -7.382455923e+01 0.000000000e+00 0.000000000e+00 # 3 - 3 second Cl- with itself

3.924154608e+01 -5.281465864e+02 0.000000000e+00 0.000000000e+00 # 3 - 4 second Cl- with water

6.258839244e+03 -4.214886612e+04 0.000000000e+00 0.000000000e+00 # 4 - 4 water with water

Copy the ene ana library to your current directory and change its name (e.g. add a ‘mod’). You will have
to define four new variables. Add them at the end of the file (but before the last END). The variable for the
peptide-peptide interactions could e.g. be called e pp. It would be defined as:

e_pp = NONBONDED[1][1] + NONBONDED[1][2]

i.e. we add up the van der Waals and Coulomb energies2 of the peptide-peptide interactions. Now define
three more variables which you could call, e.g. e pCl1 (peptide with first chloride), e pCl2 (peptide with
second chloride), e pwater (peptide with water). Now you can specify these newly defined variables as
properties (@prop) in the ene ana peptide.arg file. ene ana will then produce the following four files:

e_pCl1.dat e_pCl2.dat e_pp.dat e_pwater.dat

Plot these time series with xmgrace, annotate and hand in the plot. The plot should look like Fig. 2.4.

Figure 2.4. Time-series of energies.

2.4.2. Analysis of the coordinate trajectory.

2.4.2.1. visual analysis. You can generate PDB snapshots from your trajectory (or any other) coordinate
files using the program frameout. Go to the directory frameout.

You need the following programs from the GROMOS simulation package:
GROMOS++: frameout

others: vmd

You need the following input files:
frameout 1.arg frameout 2.arg

The procedure will create the following output files:
FRAME 00001.pdb FRAME 00035.pdb FRAME 00049.pdb

2In LS simulations make sure to also add the third and forth column as these contain the real- and reciprocal-space
contributions to the electrostatic energy.

7-22

Like in most GROMOS++ programs you have to specify some basic information about your system using
the @topo and @pbc arguments. Let’s look at an example:

~/peptide/ana/frameout> cat frameout_1.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@include ALL

@outformat pdb

@traj ../../ion/peptide_2Cl_h2o.cnf

With the @include argument you tell frameout which atoms of the topology it should include in the output
file. Here, we want to write all the atom coordinates (including the solvent) to the output file. Other options
are SOLVENT which selects the solvent and SOLUTE which selects the solute. The latter is the default and so
the @include argument can be omitted in this case.

The format of the output file is specified with the @outformat argument. Here, we use the PDB (Protein
Data Bank) format. It is worth mentioning that other formats, including cnf the GROMOS coordinate
format, are supported.

Hint: You can use frameout to create a gathered GROMOS frame by selecting cnf as output format.

Finally, you have to tell frameout where it can find the coordinate files with the @traj argument. Of course
you can give multiple files as input.

Now try to run frameout:

~/peptide/ana/frameout> frameout @f frameout_1.arg

This command has generated a FRAME 00001.pdb file which can be opened with a molecular visualisation
software (PDB viewer) like VMD or pyMOL.

Warning: Rename the PDB files generated by frameout or you might accidentally overwrite them.

It happens often that you see a certain effect (like a RMSD increase) at a certain time step and you want
to have a look at this frame to see what happened. For this case, you have to add some arguments to the
frameout input file:

~/peptide/ana/frameout> cat frameout_2.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@include SOLUTE

@outformat pdb

@traj

../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

@spec SPEC

@frames 35 49

First, you need to add all the MD trajectory coordinate files to the @traj argument. Because we want to
extract a certain frame we tell frameout to be SPECific using the @spec argument. Last, the frames have
to be given (@frames). This will create two PDB files containing the given frames. Open these files using
VMD as well as the previous frame and compare the structures.

Hint: Use the option RMSD Trajectory Tool from the VMD-Extensions-Analysis menu. Align the structures
and calculate the deviation from the initial structure. You can plot all three structures at the same time by
going to Graphics-Representation-Trajectory and giving 1-3 for Draw Multiple Frames

Hint: You can use frameout to produce a movie that you can watch using VMD or pymol. Have a look at
the files frameout movie.arg. This will produce a single PDB file that contains all the configurations of
the trajectory, after a roto-translational least-square fit based on the Cα atoms. Your favourite visualisation
program can play this as a movie.

7-23

2.4.2.2. Radial distribution function. The radial distribution function (RDF) gives you the number den-
sity of atoms of a specified type around an atom (which can be of the same or of another type). The
theoretical description is given in Sec. 5-4.48. GROMOS++ offers a tool that calculates the radial distri-
bution function called rdf.

You need the following programs from the GROMOS simulation package:
GROMOS++: rdf

others: xmgrace

You need the following input files:
rdf peptide 2CL.arg

The procedure will create the following output files:
rdf peptide 2CL.out

Go to the directory rdf and have a look at the input file:

~/peptide/ana/rdf> cat rdf_peptide_2CL.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@centre a:CL

@with s:OW

@cut 1.4

@grid 100

@traj ../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

The topology file is specified by @topo. With the option @centre you specify which atoms are supposed to
be at the centre of your RDF and by @with which atoms should be the surrounding ones.

Hint: The AtomSpecifier

a:CL looks in all molecules for the atom named CL (chlorine ion)

s:OW looks in all solvent molecules for the atom named OW (water oxygen)

Have a look at the doxygen documentation of the AtomSpecifier and the PropertySpecifier.

With the parameter @cut you specify up to which distance you want to look at3 and with @grid how many
bins from 0 to @cut you want to have4. Finally you specify with @traj which trajectories you want to look
at. The more trajectories, the better the statistics.

Now you can run rdf

~/peptide/ana/rdf> rdf @f rdf_peptide_2CL.arg > rdf_peptide_2CL.out

Have a look at the output. It should look similar to Fig. 2.5 where the first peak representing the first
hydration shell is clearly visible meaning that the water molecules are organised around the chlorine ion.
Note that there is no water molecule very close to the chloride ion as two atoms cannot be at the same place.

Exercise: Have a look at the difference between the RDF around the first and the second chlorine atom with
xmgrace. Label the plot (axes, legends etc.). Print the plot and hand it in.

Hint: All you have to do to solve the exercise is to change the @centre in your input file. To find the atom
specifier for the first chlorine atom, open the topology and see which ATNM (atom number) it has (should be
72). Then use

atominfo @topo ../../topo/peptide_2Cl_54a7.top @gromosnum 72

The atomspecifier is then 2:1 (first atom of the second molecule). Proceed in the same way for the other
chlorine atom.

3do not go over half the box size
4bigger number means finer resolution, but less statistics

7-24

Figure 2.5. Cl-OW radial distribution function of chlorine ions in water

2.4.2.3. Root-mean-square difference. Atom-positional root-mean-square difference (RMSD) is a mea-
surement of structural difference between two given conformations. For two conformations with the coordi-
nates rr and rrref , the RMSD is given by

RMSD(rr, rrref) =

(

1

Na

Na
∑

i=1

(

rri − rrrefi

)2

)

1

2

(2.1)

where rri is the position of the i-th particle in the one configuration and rrrefi in the other, here called its
reference position.

You need the following programs from the GROMOS simulation package:
GROMOS++: rmsd

others: xmgrace

You need the following input files:
rmsd peptide.arg

The procedure will create the following output files:
rmsd peptide.out

Go to the directory rmsd and have a look at the input file:

~/peptide/ana/rmsd> cat rmsd_peptide.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@atomsrmsd 1:CA,N,C

@ref ../../eq/eq_peptide_5.cnf

@traj ../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

Again the topology is given by @topo and @pbc defines the periodic boundary condition and gathers the
frames. In @atomsrmsd one gives the atomspecifier of the atoms of which one wants to calculate the RMSD
compared to a reference structure @ref. Here we want to analyse the backbone of the peptide (Cα, N, C)
as a function of time. With @traj the coordinate trajectories are specified.

Now calculate the RMSD using the GROMOS++ program rmsd

~/peptide/ana/rmsd> rmsd @f rmsd_peptide.arg > rmsd_peptide.out

The output should look like Fig. 2.6, where you can see that at the beginning (t=0) the RMSD is zero
as the structure in the beginning of the simulation is identical to the reference structure. The next few
structures are nearly identical with the reference structure as well. Afterwards the RMSD increases as the
structure is evolving away from the reference structure.

Exercise: Compare the RMSD of the backbone with the RMSD of the whole protein using xmgrace. Do you
see more deviation from the original structure in the RMSD from the backbone or from the whole protein?

7-25

Figure 2.6. Atom-positional root-mean-square deviation of the backbone atoms of the
penta-peptide from the starting (reference) structure.

Is that what you expected? Annotate the plots (axes, legends, etc.). Print the plot, answer the questions
and hand them in.

Hint: The atom specifier for the whole protein is 1:a (all atoms of the first molecule).

2.4.2.4. Root-mean-square fluctuation. Atom-positional root-mean-square fluctuation RMSF gives fluc-
tuations of an atom coordinate rri around its mean and is given by :

RMSF(rri) =

(

1

Nt

Nt
∑

n=1

(rri(tn)− 〈rri〉)
2

)

1

2

(2.2)

where rri(tn) is the position of atom i at time tn = n∆t and 〈rr i〉 is its mean position.

You need the following programs from the GROMOS simulation package:
GROMOS++: rmsf

others: xmgrace

You need the following input files:
rmsf peptide.arg

The procedure will create the following output files:
rmsf peptide.out

Go to the directory rmsf and have a look at the input file:

~/peptide/ana/rmsf> cat rmsf_peptide.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@atomsfit 1:CA

@atomsrmsf 1:CA,N,C

@ref ../../eq/eq_peptide_5.cnf

@traj ../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

Topology and periodic boundary conditions are given by @topo and @pbc, respectively. With @atomsfit one
specifies which atoms are used to superimpose the structures (in order to remove translational and rotational
changes in rri; just look at the intramolecular structural changes). @ref specifies the reference structure.
The atoms for which the RMSFs are calculated are given by @atomsrmsf (here it is the backbone of the
protein), and @traj indicates which coordinate trajectories are looked at.

Now you can run rmsf:

~/peptide/ana/rmsf> rmsf @f rmsf_peptide.arg > rmsf_peptide.out

7-26

Exercise: Look at the RMSF of the backbone to see that the ends of the peptide are more flexible than the
middle. Look at the RMSF of the whole protein to see that the side chains move more than the backbone.
Plot your output with xmgrace, label the graph and hand it in.

2.4.2.5. Time series of properties. Often you are interested in the time change of a certain property.
You can monitor the properties of your system using time series. In addition, you may want to compare
a property of your simulation with an experimental value. In this case a time-average is calculated which
can be compared to experimental data. You need the following programs from the GROMOS simulation
package:
GROMOS++: tser

others: xmgrace

You need the following input files:
tser peptide.arg

The procedure will create the following output files:
tser peptide.out

Such kind of analysis is carried out with the tser GROMOS++ program. tser is a very powerful program
and only its basic function is explained here. Go to the directory tser and have a look into the example file:

~/peptide/ana/tser> cat tser_peptide.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@traj

../../md/md_peptide_1.trc.gz

...

@prop

d%1:3,69

d%1:37;2:1

a%1:70,69,71

t%1:47,46,48,49

First, you have to tell tser were the topology (@topo) resides and which boundary conditions (@pbc) you
are using. With the @traj argument, tell tser where it can find the trajectory coordinates files. Second,
tell @tser using @prop which properties it should calculate and print out.

1. In our penta-peptide system an interesting property is the head to tail distance. Its fluctuations over
time give you an indication on the stiffness of the secondary structure: a stable α-helix, for example,
has a rather constant head to tail distance. With tser, the calculation of distances is very easy:
the d defines a distance between the two atoms of the atom specifier after the % sign. d%1:3,69

thus calculates the distance between atoms 3 and 69 in molecule 1 (our penta-peptide). 1:3 is the
nitrogen atom at the N-terminus, and 69 is the carbon atom at the C-terminus. Because atom 69

also belongs to the first molecule, 1: can be omitted.
2. In the second example (d%1:37;2:1) the distance between the arginine residue (1:37 is the CZ atom)

and the first chloride ion is calculated. Because in the topology the chlorine atom is a molecule on
it’s own, you have to specify this with a molecule indicator (2: for the first chloride ion). Thus 2:1
denotes the first atom of the second molecule which is the first chloride ion.

3. The third property analysed is an angle (a). The angle is defined by the 3 atoms in the atom specifier
after the % sign. In this case we monitor the atoms of the C-terminal carboxy group (O1, C and O2).
You may also use an equivalent form of specifying the angle: a%1:70-71.

4. Finally, a torsional angle (t) is calculated. The torsional angle is defined by four atoms in the
atom specifier after the % sign. Torsional angles are an important property of protein backbones
(Ramachandran map) and are called φ- and ψ-angles. Here we look at the torsional angle between
the H-N bond of lysine (atoms 47,46) and the Cα-Cβ (48,49) bond of the lysine residue.

Call tser and redirect its output:

~/peptide/ana/tser> tser @f tser_peptide.arg > tser_peptide.out

Now you can open the file in xmgrace and plot the time series. E.g. plot the time (1, first column in output)
versus the arginine-chloride distance (3 - third column in output).

~/peptide/ana/tser> xmgrace -block tser_peptide.out -bxy 1:3

7-27

Hint: The last line of the output file contains the averages of the properties.

Hint: Have a look at the doxygen documentation of Property Specifier. There you will find that you can
specify many more properties (@prop) than shown in this simple example.

Hint: If you are simulating an elongated molecule, you should first gather the solute with frameout and
then analyse the results using tser and vacuum boundary conditions (@pbc v). This way you avoid flawed
results due to the nearest image distance between the specified atoms.

If everything worked out, your arginine-chloride distance should look like shown in Fig. 2.7.

Figure 2.7. Time-series of the arginine (CZ) - chloride (1) distance.

Exercise: The distance between the two chloride atoms is an interesting property of your system. Create a
time series and plot it with xmgrace. Annotate and hand in the graph.

2.4.2.6. Hydrogen-bond analysis. Hydrogen bonds are important intra- and intermolecular interactions.
For example, the conservation of the genetic information of a cell is based on hydrogen bonding between bases
in nucleic acids (Watson-Crick base pairing). The secondary structure of proteins is formed by hydrogen
bonds between backbone amide hydrogens and oxygens. Thus, it is useful to analyse the hydrogen bonds of
the penta-peptide in detail. You need the following programs from the GROMOS simulation package:
GROMOS++: hbond

others: xmgrace

You need the following input files:
hbond peptide.arg

The procedure will create the following output files:
hbond peptide.out Hbond 2c time index.out Hbond 2c time numHb.out

The GROMOS++ program hbond is a convenient tool for hydrogen bonds analysis. Go to the directory
hbond and have a look at the input file:

~/peptide/ana/hbond> cat hbond_peptide.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@Hbparas 0.25 135

@massfile mass.file

@AcceptorAtomsA 1:a

@AcceptorAtomsB 1:a

@DonorAtomsA 1:a

@DonorAtomsB 1:a

@traj

../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

7-28

With the first two arguments you are already familiar from previous analyses. The hbond program determines
the hydrogen bonds between donors (the atoms carrying a hydrogen atom) and acceptors (the atoms to
which the bonds are formed) by geometrical criteria. @Hbparas takes two parameters for a hydrogen-bond
calculation: a maximum distance between the hydrogen and the acceptor and a minimum angle between
donor, hydrogen and acceptor atoms. The parameters in this example are used very often and can be
considered as standard. hbond has to know which atoms it may consider as acceptors or donors. In the
@massfile the acceptors and donors (and the hydrogen itself) are identified by their masses. You can define
two groups (A and B) between which the hydrogen bonds are calculated. In this case we are interested in
intramolecular hydrogen bonds, so both of the groups consist of atoms of the peptide only. We thus have to
set the @AcceptorAtomsA and the @DonorAtomsB arguments both to an atom specifier of the whole peptide
(1:a). The execution of the hbond program

~/peptide/ana/hbond> hbond @f hbond_peptide.arg > hbond_peptide.out

produces three output files: hbond peptide.out (the redirected standard output), Hbond 2c time index.out

and Hbond 2c time numHb.out

1. The hbond peptide.out file contains a summary table. In this table all the hydrogen bonds are
numbered (first column). In the second column you can find the molecule and residue numbers of the
donor and acceptor, followed by the numbers and names of the atom involved in the hydrogen bond.
In the next two columns the geometric properties are listed (average hydrogen-acceptor distance,
average donor-hydrogen-acceptor angle). Finally, the last two columns show the occurrence (absolute
and relative) of the hydrogen bonds.

2. The total number of hydrogen bonds at a certain time is listed in the Hbond 2c time numHb.out

file.
3. The Hbond 2c time index.out file contains times series of all hydrogen bonds found in the summary

table. The first column is the time, and in the second column is the ID number found in the first
column of the summary file of the hydrogen bond occurring at this time. Hbts.out is usually filtered
before plotting. A plot of the unfiltered file is shown in Fig. 2.8.

|

|

|

|

|

|

|

|

|

|||||||||||||

|

|

|

|

|

|||

|

|

|

|||||||

|

||

|

|

|||

|

|

|

|

|

|

|

|

|

|

|

|

||

|

||||||||||

|

|

|

|

|

|

|

||

|

|

|

|

|

||

|

|

||

||

|

|

|

|

|

|

||

|

|||||||

|

||

|

|||

|

||

|

|

|

|

|

||||||||||||

|

|

|

||||||||||||||||||||||||

|

||

|

||||||||||||||||||

|

|

||

|

|||||||||||||||||

|

|

|

||

|

|

|

|

|

|

|

|

|

||||

|

|

|

|

|

|

|

|

|

|||||||||||||||||||||||

|

||||||

|

||||||||||||||||||||||||||||||||||

||

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|

||

|

|

||||||||||||||

|

||||||

|

|

|

|||

|

|||||||||

|

|||||||||||

||

|

|||

||

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

||||

|

|

|

|

|

|

||

|

|||||||||||||||||||||

|

|

||

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||||||

|

|

||

|

|

||||

|

|

|

||||||||||||||||||||||||||||||

|

|||||||||||||

||||

|

|||

|

||||

|

|

|

||

|

||

|

|||

|

|||||||

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|||

|

|||||

||

|

|

|

|

|

|||

|

||||

|

|

||

|

||||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|||

|

|

|

||||

|

|

||||||||||||||||

|

|||||

|

||

|

|||||||||

|

|

|

|

|

|

|

|||||

|

|

|

|

|

|

|

|||

|

|

|

|||||

|

|

||

|

|

|

|||

|

||||||||

|

||

|

||

|||

|||||

|

||

|

|||||

|

|||||

|

|

|

|

|

||

||

|

|

|

|

|||||

|

||||||||||

||

||

|||

|

|

|

|

|

|

|

|

|

||

|

||

|

|

|

||

|

|

|

|

||

|

|

|

||

|

|

|

||

|

|

||

|

|

|

|

||

|

|

|

|

|

|

|

|

|

||

||

|

||

|

||

|

|

|||||

|

|

|||

|

|

|

||

||

|

|

|

||

|

|

||

|

|

||

|

|

|

||||

|

||

|

|

|

||

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

||||

|

|

|

|

|

|

|

|

|||||

|

|

|

|

|

|

|

|

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|||

|

|

|

|||||

|

|||

|

||||||||||||||

|

|

|

|||

|

||||||||||||

|

|||

|

|

|

|

|

||

|

||

|

|

|

|

|

|

|

|

||||

|

|

|

|

|

|

|

|

|

|

||||||||||||

|

||

|

||||||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||||

|

|||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||||

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|||

|

|

|

|

||

||

|

|

|

|

|

|

|

|

||

|

||

|

|

|||

||

|

|

||

|

|

|

|||

|

|||

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

||

||

|

|

|

|

|

||

||

|

|

||||

|

||

|

||

|

|||

|

|

|

||||

|

|||

|

|

|

||

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

||

||

|

|

|

|

|

|

|

|

|

|||

|

|

|

|

||

|

|||

|

|

|

|||

|

|

|

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|||||||||

|

|||||||||||||||||||

|

||||||||||||||||||

|

|

|

|

|

||

|

|

|

|

|

|

|

|

|||

||

|

|

|

|

|

|

|

|||||||||

|

||||||||||||||

|

||

|

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

||

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|||

|

|

|

||

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

||

|

|

|

|||

|

||

|

|||||||

|

|

|

|

|

|

||||

|

|

|

|

|

|||||||

|

||

|

|||||||||||||||||||||||||

|||||||||

||

|

|

|

|

|

|

|

||

|

||

|

|

|

|

|

|

|

|

|

|

|

|||

|

|

|

||

|

|

|

||

|

|

|

||||||

|

|

|

|

|

|||

|

|

|

|

|

|

|

|

|

|| |||||||||||||||||||||||||||||||||||||

|

|

|

|

|

|||

|

||||||

|

|

|

|

|

|

|

|

|

|||

|

|

||

||

|

||||||||||||||||

|

|||||||||||||||||||||||||||

|

|||||||||||

|

||||

|

|||||||||||||

|

|

|

|

|

|

|

||

|||

|

|

|

|

|||

|

|

|

||||

|

||||

|

|||||||||||||||||||||

|

|

|

|||

|

|

|

|

||

|

|

|

||||||||||||||||||||||||||||||||||

|

||

|

|

|

||

|

|

|

|||

||

|

||

|

|

|

|

|

|

||

|

||

|

|

|

||

0 200 400 600 800 1000
Time [ps]

0

5

10

15

20

H
y

d
ro

g
en

 b
o

n
d

 I
D

Figure 2.8. Time series of hydrogen bonds.

Exercise: Backbone hydrogen bonds are crucial for secondary structure. Can you tell which of them are
present at t = 640 ps?

2.4.2.7. Conformational clustering. To map the structures sampled during the simulations onto a set of
generic conformations, we can perform a clustering analysis of the MD trajectories.

You need the following programs from the GROMOS simulation package:

GROMOS++: rmsdmat cluster postcluster

You need the following input files:
rmsdmat.arg cluster.arg postcluster.arg

The procedure will create the following output files:
RMSDMAT.dat cluster structures.dat cluster ts.dat postcluster.out cluster*.trc cluster*.cms cluster*.out

7-29

The first program that we will use is the GROMOS++ program rmsdmat. This program calculates the
atom-positional root-mean-square deviation between all pairs of structures in a given trajectory file. The
RMSD matrix can be written out in a readable form, or in a binary format5 in order to save disk space.

Go to the directory cluster and have a look at the input file rmsdmat.arg.

~/peptide/ana/cluster> cat rmsdmat.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@atomsfit 1:CA,N,C

@stride 1

@human

@precision 6

@traj ../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

Topology and periodic boundary conditions are given by @topo and @pbc, respectively. With @atomsfit

one specifies atom names which are to be used for least-squares fitting of the translational and rotational
positions for the calculation of the RMSD. Here we only took the backbone atoms (N, C and Cα). With
@stride one can specify a selection of structures in the trajectory file to be considered in this analysis. As
we don’t want to skip frames @stride is set to one. With @human the output file will be written in a readable
form, otherwise it will be written in a binary form. With the argument @precision we specify the number
of digits in the output matrix. With the argument @traj we specify the coordinate trajectories which will
be analysed.

In the input for the rmsdmat program one can optionally specify the reference structure with respect to
which the structures are fitted (@ref ../../eq/eq peptide 5.cnf). Furthermore, in case the atoms differ
from those on which the fit is performed this can be additionally specified with the argument @atomsrmsd
1:CA,N,C . If the reference structure is not provided in the input file, the first structure from the trajectory
file is taken as the reference structure. By specifying a reference structure, one allows the program cluster

(see below) to perform a forced clustering, where the first cluster contains the reference structure.

~/peptide/ana/cluster> rmsdmat @f rmsdmat.arg

As an output file you will get a file RMSDMAT.dat. This output file is used as an input file for the cluster

program.

Now we will use the GROMOS++ program cluster. This program performs a conformational clustering
based on a similarity matrix, such as calculated in program rmsdmat. The clustering algorithm is described
in2. In this program a cut-off can be specified such that the structure pairs with RMSD values smaller than
this cutoff are considered as structural neighbors. The structure with the highest number of neighbors is
considered as the central member of the cluster of similar structures.

Have a look at the input file cluster.arg:

~/peptide/ana/cluster> cat cluster.arg

@rmsdmat RMSDMAT.dat

@human

@precision 6

@cutoff 0.06

@time 0 0.5

#@maxstruct

As previously mentioned RMSDMAT.dat, the output file of rmsdmat, is used here as an input file. With
@human the program can use the readable matrix file. With the argument @precision we specify the
number of digits in the input matrix. With the argument @cutoff we can specify the similarity criterion
for two structures. In this case we are not reading a trajectory and thus we have to tell the program time
information using the @time argument. The first argument (0) is the starting time and the second argument
is the increment in time per element contained in the RMSD matrix. With @maxstruct we can specify how
many structures are to be considered. Here we take all of them. If we have to perform a forced clustering to
a specific structure, an extra argument has to be specified in the input file together with the number of the
structure to which the clustering will be forced. For example, if one performs the calculation of the RMSD
matrix with a reference structure, the reference structure used in this program is the first structure. This
additional argument should look as follows: @force 0.

~/peptide/ana/cluster> cluster @f cluster.arg > cluster.out

5This is curcial for large trajectories.

7-30

The output consists of two files: cluster structures.dat and cluster ts.dat.

Figure 2.9. Time-series of the clusters.

File cluster structures.dat contains information about the clustering procedure, information about
each cluster such as the size of the cluster (i.e. how many structures are in each cluster), averaged lifetime of
a given cluster and the number of the structure which is the central member structure of a specific cluster.

In cluster ts.dat occurrences of specific clusters at specific times are listed (the time series of each
cluster).

Next we will use the GROMOS++ program postcluster. This program can do additional analysis and
data extraction on the output of the cluster program.

Have a look at the input file postcluster.arg:

~/peptide/ana/cluster> cat postcluster.arg

@topo ../../topo/peptide_2Cl_54a7.top

@cluster_struct cluster_structures.dat

@cluster_ts cluster_ts.dat

@clusters 1-8

@lifetime 2

@traj ../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

Among the analyses which one can do with the postcluster program is the lifetime-analysis. To perform it
one has to specify the lifetime limit of a certain cluster with the argument @lifetime. It defines a number
of subsequent structures that are significantly different from the structures of the cluster of interest. If this
limit is reached, a switch to another cluster will occur. For example, if we specify a lifetime limit equal to 2,
this means that at least two subsequent structures of a cluster that differ from the cluster of interest have
to occur in order to detect a cluster transition.
~/peptide/ana/cluster> postcluster @f postcluster.arg > postcluster.out

The output of the postcluster program consists of trajectory files *.trj as well as *.cms files for each
cluster. Thus, postcluster can also be used to write out the trajectory files and single structure files
containing the central member structure of the cluster. With the argument @clusters we can specify for
how many clusters we want to write out the trajectories and the corresponding central member structures.
The resulting trajectories can further be used in any other analysis programs.6

2.4.2.8. NMR analysis. To compare simulated with experimental NMR data one may calculate NOE
(Nuclear Overhauser Effect) distance upper bound violations and 3J-coupling constant values and compare
them with the corresponding experimental values.

You need the following programs from the GROMOS simulation package:

GROMOS++: prep noe noe post noe jval

You need the following input files:
prep noe.arg noe.arg post noe.arg jval.arg jval.jvr prep.noe noecor.wuthrich noelib.54a7

6You should compress them using gzip first.

7-31

Figure 2.10. The number of visits and lifetimes of the clusters.

The procedure will create the following output files:
noe.filter prep noe.out noe.dsr noe peptide.out noets.out post noe.out jval.out

Go into the subdirectory called noe. You will perform three steps in order to analyse the NOE distance
upper bound violations. First you need to prepare the bonds derived from experiment such that GROMOS

will understand them. Take a look at the argument file prep noe.arg:

~/peptide/ana/noe> cat prep_noe.arg

@topo ../../topo/peptide_2Cl_54a7.top

@title NOE_specification_file

@filter 1000

@factor 10

@noe prep.noe

@lib noelib.54a7

@parsetype 1

@correction noecor.wuthrich

The topology file is given by the argument @topo. With @title one specifies the title in the prep noe

output. The @filter argument determines the upper limit of the NOE distance bounds which should be
considered. By setting @filter to large value (1000 nm) we make sure that all distances will be taken
into account. Most of the NMR experimental data is reported in Angstrom units [Å], whereas using the
GROMOS force field the standard length unit is nanometer [nm]. Thus we have to give the program a
@factor by which it has to scale all the NOE distance bounds prior to any other calculation. The input
file in an X-PLOR like format (and units) with all NOE distances between the atoms of interest is specified
by the argument @noe. Take a look at the prep.noe file in a text editor. It contains the atom number
and the name of each hydrogen as it is used in structure determination and refinement using X-PLOR.
In GROMOS the names used for the hydrogens might differ, thus we should specify a library file which
converts the X-PLOR names into ones that the noe program can read. This is done with the argument
@lib. The last three columns (6, 7 and 8) in the X-PLOR file stand for the upper bounds derived from the
NOE intensities. There are three ways of parsing these columns. For that purpose program prep noe uses
@parsetype argument:

@parsetype=1 : the first of the three columns is taken as the upper bound
@parsetype=2 : (default value) the upper bound will be the sum of the first and

third column
@parsetype=3 : the upper bound is equal to the difference between the first and

second column

If you set @parsetype to either 2 or 3, you have to also use an argument called @action, which applies a
correction to the upper bound value. The argument @correction specifies a file containing the information
about types of correction that should be taken into account by prep noe. NOE bound corrections are used
in case of non-specific assignment of individual hydrogen atoms. Several methods have been proposed to
define pseudo-atoms. Here we use the ’centre average’ approach. The correction is two-fold: a pseudo-atom
correction and a multiplicity correction. The former aims to solve the dilemma when several hydrogen atoms
of group I interact with a second hydrogen atom, labelled S, and the interactions between the various pairs

7-32

of hydrogen atoms are practically indistinguishable. The solution to this problem is to define a pseudo atom,
labelled Q, at the mean position of the hydrogen atoms of group I.

A sample of the correction file is shown below:

~/peptide/ana/noe> cat noecor.wuthrich

TITLE

NOE correction file containing the multiplicity corrections and pseudo

atom corrections in nm as described in

* Wuethrich, K.; Billeter, M. and Braun, W.: J. Mol. Biol. 169:949-961

(1983)

* Wuethrich, K.: NMR of Protein and Nucleic Acids. John Wiley, New York

(1986)

END

NOECORGROMOS

NTPAC: NOE type to which the pseudo-atom correction applies

NSPAC: NOE suptype to which the pseudo-atom correction applies

(set to 0 if no subtype defined)

FTPAC: Distance of the pseudo-atom correction

#

Possible combinations of NOE types/subtypes:

NTPAC NSPAC NOE type

-1 1 flipping aromatic ring

-1 2 unassigned NH2 group

3 0 non-stereospecific aliphatic CH2 group

5 0 single CH3 group

6 0 non-stereospecific (CH3)2 group (isopropyl)

7 0 non-stereospecific (CH3)3 group (tert-butyl)

NTPAC NSPAC FTPAC

3 0 0.10000000

5 0 0.15000000

6 0 0.29000000

-1 1 0.20000000

-1 2 0.10000000

END

MULTIPLICITY

NTMPC: NOE type to which the multiplicity correction applies

NSMPC: NOE suptype to which the multiplicity correction applies

FTMPC: Factor for the multiplicity correction

#

Possible combinations of NOE types/subtypes:

NTPAC NSPAC NOE type

-1 1 flipping aromatic ring

-1 2 unassigned NH2 group

3 0 non-stereospecific aliphatic CH2 group

5 0 single CH3 group

6 0 non-stereospecific (CH3)2 group (isopropyl)

7 0 non-stereospecific (CH3)3 group (tert-butyl)

NTMPC NSMPC NTMPC

3 0 1.00000000

5 0 1.00000000

6 0 1.00000000

-1 1 1.00000000

-1 2 1.00000000

END

The execution of the prep noe program:

~/peptide/ana/noe> prep_noe @f prep_noe.arg > prep_noe.out

produces three output files: prep noe.out (the redirected standard output), noe.filter and noe.dsr. Now
look at the argument file noe.arg for the noe program:

~/peptide/ana/noe> cat noe.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@noe prep_noe.out

@traj ../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

Topology and periodic boundary conditions are given by @topo and @pbc, respectively. Output from the
previous program prep noe.out is used here as the input file. Before executing the noe program open the
prep noe.out file and compare it with the prep.noe. With the argument @traj we specify the trajectories
which will be analysed.

7-33

The execution of the noe program:

~/peptide/ana/noe> noe @f noe.arg > noe.out

produces the file noe.out. This file already contains the NOE violation information in a computer readable
format. To make it more human readable you have to process it using the post noe program. Now open
the argument file for the post noe program:

~/peptide/ana/noe> cat post_noe.arg

@topo ../../topo/peptide_2Cl_54a7.top

@noe prep_noe.out

@noeoutput noe.out

@filter noe.filter

@averaging 6

@distribution 0.05

The topology is given by @topo. The three following arguments @noe, @noeoutput, and @filter are output
files of the prep noe and noe programs. The @noe and @noeoutput arguments serve here as input files,
whereas the @filter filters are the NOE distances which we will not use. With @averaging 6 one specifies
which averaging should be used. Here we are using the r−6 averaging. The argument @distribution

indicates the binsize in which the final data will be separated.

The execution of the post noe program:

~/peptide/ana/noe> post_noe @f post_noe.arg > post_noe.out

produces one output file: post noe.out

The next analysis is 3J-coupling constant analysis. In GROMOS, the 3J-coupling constant can be
calculated using program jval. It uses the so-called Karplus relation to relate the 3J-coupling constant to
the local molecular structure or torsional angle.

3J(HN , Hα/β) = a cos2 ζn + b cos ζn + c (2.3)

where ζn is the dihedral angle between the planes defined by the atoms (H, N, Cα/β) and the atoms (N,
Cα/β , Hα/β). In our calculations, we use parameters a, b, c equal to 6.4 Hz, -1.4 Hz and 1.9 Hz, respectively,

which were optimized by Wüthrich et al.3

We will use the jval program to calculate the 3J-coupling constant. Go into a subdirectory called jval.

Before we can calculate the 3J-coupling constants, we need to define the torsional angle(s) that will be
used for the calculation. For this we need a 3J-coupling constant restraints file. In this example, as there
are no experimental 3J-values reported for this peptide, we will use hypothetical 3J-coupling constants. The
3J-coupling constant restraints file jval.jvr is already prepared for you and is shown below.

TITLE

penta-peptide, Val-Tyr-Arg-Lys-Gln, linear,

J-coupling constant restraints, hypothetical

END

JVALRESSPEC

IPJV, JPJV, KPJV, LPJV:

atom sequence numbers of the real atoms defining the dihedral

angle that is related to the restrained J-value

WJVR: individual 3J-value restraint weight factor by which

the restraining term for each 3J-value may be multiplied

PJR0: the experimental or reference 3J-value. In case of a full-harmonic

3J-value restraint (NHJV = 0), it is the minimum-energy 3J-value;

in the case of an attractive or repulsive half-harmonic

3J-value restraint (NHJV = +- 1), it is the upper or lower bound,

respectively, beyond which the restraining force becomes non-zero.

PSJR: phase shift or difference between the dihedral angle formed

by the possibly non-existing H-atoms defining the J-coupling

and the dihedral angle i-j-k-l formed by the real atoms

present in the simulation (in degrees)

AJV, BJV, CJV:

Karplus parameters a, b and c for the J-coupling constant

expressed as a function of the dihedral angle

NHJV: type of J-value restraint

0: full harmonic [recommended]

-1: half-harmonic repulsive

+1: half-harmonic attractive

#

#IPJV JPJV KPJV LPJV WJVR PJR0 PSJR AJV BJV CJV NHJV

9 11 13 27 1.0 7.3 -60.0 6.4 -1.4 1.9 0.0

27 29 31 44 1.0 8.6 -60.0 6.4 -1.4 1.9 0.0

7-34

29 31 32 33 1.0 7.4 -120.0 9.5 -1.6 1.8 0.0

29 31 32 33 1.0 5.7 0.0 9.5 -1.6 1.8 0.0

44 46 48 57 1.0 7.4 -60.0 6.4 -1.4 1.9 0.0

END

The first four columns describe the dihedral angle ηn from which the 3J-value is derived using the Karplus
relation. The weight factor in the fifth column is only used for restraining and is ignored in this case. The
sixth column is used as reference 3J-value in order to calculate the deviation from it. As the measured
3J-coupling constant may arise from a torsional angle ζn whose atoms, such as aliphatic hydrogens, are not
explicilty represented in the GROMOS force field, the torsional angle ζn has to be related to the torsional
angle ηn by a phase shift δn = ζn − ηn. This phase shift is read from the seventh column. In the following
three columns you can specify different parameters for the Karplus relation for every individual 3J-coupling
constant. Finally in the last column the type of the 3J-value restraining is specified. For more detailed
information you can refer to Sec. 4-3.6.

Have a look at the input file jval.arg:

~/peptide/ana/jval> cat jval.arg

@topo ../../topo/peptide_2Cl_54a7.top

@pbc r

@jval jval.jvr

@traj

../../md/md_peptide_1.trc.gz

../../md/md_peptide_2.trc.gz

...

You should be already familiar with the first three arguments from previous analyses. The argument @jval
determines the file which contains the torsional angle specification corresponding to the specific 3J-coupling
constant.

The execution of the jval program:

~/peptide/ana/jval> jval @f jval.arg > jval.out

produces the output file jval.out. In the first columns it contains the information that we gave in the
jval.jvr file, and the last five columns give the information about our calculated 3J-coupling constants.

Hint: You can plot the observed vs. the calculate 3J-values by xmgrace -block jval.out -settype xydy

-bxy 17:20:21.

2.5. Enhancing sampling using Local Elevation

In a normal MD simulation like the one presented in this tutorial, not all minima of the potential energy
surface are visited. This is called limited sampling and is a result of the rugged potential energy surface
of the solvated peptide. There are many large (> kBT) potential energy barriers present which prevent
the peptide from changing from one minimal energy conformation to another. There are many sampling
enhancement techniques available and the Local Elevation (LE) method4 is discussed now.

Instead of looking at all degrees of freedom of the system, a set of possibly collective variables QQ (QQi,
i = 1, 2, ..., NLE) such as dihedral angles can be used to describe the conformation of a peptide. For
example the well-known Φ-Ψ dihedral angles can be used to describe the peptide’s backbone conformation.
In the Local Elevation method conformations visited in this (chosen) variable space are penalized by a
multi-dimensional Gaussian-like potential energy term (see Sec. 2-9.13.1) centered at QQ0

i

V(le)(QQ;nk(t)) =

NG
∑

k=1

nk(t)

NLE
∏

i=1

γi(QQi −QQ0
k,i) with k = 1, 2, ...,NG. (2.4)

For practical reasons the visited conformations are stored on grids. Everytime a grid point QQ0
k,i is visited,

nk(t) is increased by one and thus the local-elevation energy function is pushing the conformation away from
the grid point. For the potential energy function a grid-point centered γi is used. Usually this function is of
Gaussian or Gaussian-like truncated polynomial functional form.

You need the following programs from the GROMOS simulation package:
MD++: md

GROMOS++: mk script tser

others: xmgrace

7-35

You need the following input files:
md le.imd tyrosine.led tyrosine.lud mk script.arg tser md.arg tser le.arg

The procedure will create the following output files:
le peptide 1.* tser md.out tser le.out

Because the hydroxy-phenyl sidechain of the tyrosine residue is bulky, it is rather immobile in the first
100 ps of the simulation. In order to demonstrate the LE procedure we would like to enhance sampling on
the N-CA-CB-CG dihdral angle of this residue. Change into the le folder and open the file tyrosine.led

~/peptide/le> cat tyrosine.led

TITLE

Dihedral angle definition file for local elevation.

END

LOCALELEVSPEC

here we only define one dihedral angle on the

tyrosine residue: N-CA-CB-CG

NLEPID TYPE IPLE JPLE KPLE LPLE

1 1 11 13 14 15

END

This file contains the LOCALELEVSPEC block which is used to specify the dihedral angles which are used as
collective variables for local elevation. The first column is the number of the local elevation potential function
we want to attach this dihedral to. The second column indicates the type of the internal coordinate. In the
next four columns the atom numbers of the four atoms defining the dihdral angle are given. As we choose
the N-CA-CB-CG dihedral angle we have to give the numbers 11, 13, 14 and 15.

Hint: The command atominfo @topo ../topo/peptide 2Cl 54a7.top @atomspec ’1:res(TYR:N,CA,CB,CG)’

yields this information.

Multiple collective variables now have to be grouped together to form the effective LEUS potential. Have
a look at the LEUSBIAS block in the tyrosine.lud file.

~/peptide/le> cat tyrosine.lud

TITLE

Local elevation umbrella defintion file

END

LEUSBIAS

NRUMB

1

NLEPID NDIM CLES

1 1 0.1

VARTYPE(N) NTLEFU(N) WLES(N) RLES(N) NGRID(N) GRIDMIN(N) GRIDMAX(N)

1 0 1.0 1.0 36 0.0 0.0

NCONLE

0

NVISLE ICONF

END

In this example we are using just one LEUS potential (NRUMB=1). Every LEUS potential gets its own
identifier number (NLEPID). Note that this is the number we used in the LOCALELEVSPEC block. As we
just use one dihdral angle in this example the dimensionality is one (NDIM=1). The force constant can be
specified by CLES. The next line has to be given to characterize the (collective) variable attached to the LEUS
potential function. VARTYPE=1 is used to specify a dihedral angle. The potential function in this variable γi
is of truncated polynomial functional form (NTLEFU=0) with a width of WLES given in grid coordinates. It
is truncated after a distance of RLES in grid coordinates. Finally, the grid has to be defined. It consists of
NGRID grid cells and the boundary values are GRIDMIN and GRIDMAX. As we are using a cyclic dihedral angle
coordinate the minimum and the maximum angle (in degree) are the same. Because we’re just beginning
the local elevation run we haven’t penalized any conformation yet (NCONLE=0). Now the only thing still left
to adjust is the MD++ input file md le.imd. It is exactly the same file as the one in the md folder used for
the main run but it contains an additional block to turn on local elevation.
LOCALELEV

NTLES NLEPOT NTLESA NTWLE

1 1 2 100

NLEPID[1..NLEPOT]

1

NLEPFR[1..NLEPOT]

7-36

0

END

NTLES is used to turn on LE. The number of LEUS potentials is given by NLEPOT. We want to read the LEUS
definition from an external file (tyrosine.lud) and thus have to specifiy NTLESA=2. In order to monitor
the LEUS potential built we write the LEUSBIAS block to the special trajectory every NTWLEth step. Finally
we have to specify the ID number of the LEUS potential function (NLEPID). NLEPFR can be used to control
whether the potential function is to be built or kept fixed and used for equillibrium sampling. We want to
build and thus do not freeze the potential function.

The two additional files for LE (tyrosine.led and tyrosine.lud) have to be added to @files section
in mk script.arg. They are called ledih and leumb. Adjust the paths, run mk script and the simulation.

~/peptide/le> mk_script @f mk_script.arg

~/peptide/le> ./le_peptide_1.run

Once the simulation has finished, change to the ana subdirectory and run the tser program to produce
two time series of the dihedral angle. The first time series is obtained from the first 100 ps of the normal
MD simulation, the second time series from the local elevation simulation.

~/peptide/le/ana> tser @f tser_md.arg > tser_md.out

~/peptide/le/ana> tser @f tser_le.arg > tser_le.out

Use xmgrace to visualise the angles and the distributions obtained from the two simulations. It should look
as shown in Fig. 2.11. It can be seen that in the normal MD simulation the sidechain is moving only very
slightly. The angle is fluctuating around the average value. In the LE simulation sampling of the rotation is
enhanced by a large extent resulting in a uniform distribution of the dihedral angle.

Figure 2.11. Tyr. N-CA-CB-CG dihedral angle time-series and distribution.

An application in ligand binding to the protein factor Xa involving LE-search for the χ1 and χ2 dihedral
angles of Trp and Tyr side chains in the binding pockets can be found in5. An application of LE search to
search possible conformations of a 10-residue loop of the protein Ribonuclease A can be found in6.

As an exercise, do perform a LE search for the χ1 and χ2 side chain dihedral angles of the Tyr residue in
the penta-peptide.

7-37

2.6. Free energy calculations

In GROMOS the free energy difference between two states A and B of a molecular system or between
two molecular systems A and B can be calculated using i) thermodynamic integration (TI) (Sec. 2-14.6), ii)
thermodynamic perturbation and extrapolation (Sec. 2-14.7), iii) umbrella sampling (Sec. 2-14.8), and iv)
enveloping distribution sampling (Sec. 2-14.9).

2.6.1. Thermodynamic integration. In this exercise you will calculate two solvation free energies,
the solvation free energy of a simple point charge (SPC) water molecule in a box of 999 SPC water molecules,
and the solvation free energy of a methane molecule in a box of 999 SPC water molecules. Since the absolute
value for free energy of solvation is difficult to calculate directly, we use the fact that the free energy is a
state function. From the thermodynamic cycle presented in Fig. 2.12 it follows that

∆Fsolvation
solute = ∆Fvacuo

dummies,solute +∆Fsolvation
dummies −∆Fsolvent

dummies,solute. (2.5)

Figure 2.12. Thermodynamic cycle for the determination of solvation free energies

The solvation free energy ∆Fsolvation
solute is the work required to transfer a molecule from the gas phase into

solution. ∆Fvacuo
dummies,solute is the work required to remove all the internal nonbonded interactions in the

solute in vacuo, which is achieved by gradually mutating all atoms in a solute molecule into dummy atoms.
A dummy atom is an atom for which the nonbonded interactions, i.e. Lennard-Jones and electrostatic in-
teractions, with all other atoms are set to zero while the bonded interactions within the molecule and the
masses of individual atoms are kept unchanged. In the case of an SPC water molecule or a methane molecule
this work is equal to zero. ∆Fsolvation

dummies is the work required to transfer the dummy solute molecule from
vacuum to the solvated phase. As the dummy molecule does not interact with the rest of the system this
term is also equal to zero. In order to determine the solvation free energy of an SPC water or a methane
molecule in a box of SPC water only the free energy ∆Fsolvent

dummies,solute must therefore be calculated. Since

∆Fsolvent
dummies,solute is the work required to remove the solute-solvent and solute-intramolecular interactions.

This value can be calculated by gradually mutating all atoms in the solute into dummy atoms. In this
exercise you will do that by using the thermodynamic integration method (Sec. 2-14.6).

2.6.1.1. Topology and perturbation topology files. In order to perturb one SPC water molecule or one
methane molecule in a water box into dummies, molecular topology files, which contain one water or one
methane molecule as a solute, have to be prepared using the GROMOS++ program make top as described
in Sec. 7-2.1.1. The necessary input files make top spc.arg and make top ch4.arg are already prepared
and you can find them in the subdirectory topo in the directory TI. Besides the molecular topology file,
molecular perturbation topology file that specifies all the changes that occur to your solute in the perturba-
tion, has to be prepared as well. In the case of the perturbation of a single SPC water molecule this file is
called spc dummy.ptp and you can find it in the subdirectory topo in the directory TI. If you have a look
at it you will see that it lists the following perturbations: atom no. 1 of residue 1 (OW) will be changed
from an oxygen atom with a integer atom code (IAC) 5, mass 15.99940 and a charge of -0.82 in the starting
state to a dummy atom with IAC 22, mass 15.99940 and charge 0.00 in the final state. Besides that, atoms

7-38

no. 2 and 3 of residue 1 (HW1 and HW2) will be changed from hydrogen atoms with an IAC 21, mass 1.008
and charge 0.41 in the starting state to dummy atoms with IAC 22, mass 1.0080 and charge 0.00 in the end
state. Since the Lennard-Jones as well as electrostatic interactions will be perturbed, the parameters ALJ
and ACRF in the molecular perturbation topology file are set to 1.0. A similar file also has to be prepared
for the perturbation of the methane molecule. Try to prepare this file yourself.

2.6.1.2. Coordinate files. In the subdirectory coord in the directory TI you will find two coordinate
files, spc 1000.cnf and ch4 spc.cnf. The file spc 1000.cnf contains a rectangular box of 1000 SPC water
molecules. Note that the first water molecule of the box will be treated as a solute in your simulation. The
file ch4 spc.cnf contains a rectangular box with 1 methane molecule, which will be treated as a solute, and
999 SPC water molecules, which will be treated as solvent in your simulations.

2.6.1.3. Thermalisation and equilibration. As in the case of the peptide simulation the two systems con-
sidered in this exercise have to be slowly heated up from 60 K to 300 K, which is the temperature of your
thermodynamic integration simulation. The input files for thermalisation of the SPC water box are prepared
in the subdirectory eq spc and the input files for equilibration of the SPC water box including methane
are prepared in the subdirectory eq ch4 of the directory TI. The process of thermalisation is for both sys-
tems the same as explained in Sec. 7-2.3.1, and it is specified in the joblist file called equilibration.jobs.
Have a look at the files that have been prepared for you, generate the job scripts and the input files using
the GROMOS++ program mk script and then run the thermalisation of the two boxes as described in
chapter Sec. 7-2.3.1. Each thermalisation will be 100 ps long. Note that you do not have to restrain the
solute this time. After the thermalisation is finished you have to simulate the two boxes for another 100
ps at constant temperature and pressure. The necessary input files for the simulations are prepared in the
subdirectories md spc and md ch4 of the directory TI. Again generate the job scripts and the input files
using the GROMOS++ program mk script and start the simulations as described in Sec. 7-2.3.2. Once
the simulations are finished you are ready to start the thermodynamic integration simulations. Note that
TI simulations can take up to ten hours, it is therefore recommended to run them over night.

2.6.1.4. Thermodynamic integration simulations. In this exercise you will run two thermodynamic inte-
gration simulations, one in which a SPC water molecule will be changed into dummies and one in which a
methane molecule will be changed into a dummy atom. If your computer allows it, you can run the two TI
simulations in parallel. In both cases you will run the thermodynamic integration simulations at 21 equally
distributed λ points. At each λ point you will simulate your system for 60 ps. The first 20 ps will be taken
as an equilibration period and will not be used in the subsequent free energy calculation. You can find the
necessary input files for both TI simulations in the subdirectories TI spc and TI ch4 of the directory TI. If
you take a look at the startup files for TI simulations, TI spc dummy.imd and TI ch4 dummy.imd, you will
notice that the main difference with respect to the input files used in equilibration simulations is an extra
block called PERTURBATION in which the perturbation parameters are specified:

PERTURBATION

NTG: 0..1 controls use of free-energy calculation.

0: no free-energy calculation (default)

1: calculate dH/dRLAM

NRDGL: 0,1 controls reading of initial value for RLAM.

0: use initial RLAM parameter from PERTURBATION block

1: read from configuration

RLAM: 0.0..1.0 initial value for lambda

DLAMT: >= 0.0 rate of lambda increase in time.

ALPHLJ: >= 0.0 Lennard-Jones soft-core parameter

ALPHC: >= 0.0 Coulomb-RF soft-core parameter

NLAM: > 0 power dependence of lambda coupling

NSCALE: 0..2 controls use of interaction scaling

0: no interaction scaling

1: interaction scaling

2: perturbation for all atom pairs with scaled

interactions. No perturbation for others.

#

NTG NRDGL RLAM DLAMT

1 0 0.0 0.0

ALPHLJ ALPHC NLAM NSCALE

0.5 0.5 2 0

END

7-39

With setting the switch NTG to 1 you specify that you would like to do a free energy calculation. The
parameter NRGDL controls reading of the initial value for the coupling parameter λ. In the PERTURBATION

block this value is specified with the parameter RLAM and can be read from the jobscript file when the TI
simulation is set up. If the coupling parameter λ is a function of time, the rate of λ increase in time has to
be specified with parameter DLAMT. The parameters ALPHLJ and ALPHC control the softness of the Lennard-
Jones and electrostatic interactions, the parameter NLAM defines the power dependence of λ coupling and
the parameter NSCALE allows scaling of interactions between the energy groups. Besides the PERTURBATION

block which has been added to the startup file for the TI simulation, the difference between the startup file
for the TI simulation and the input file used in the equilibration simulation is that writing of the free energy
trajectory is now specified using the switch NTWG in the WRITETRAJ block. By running the GROMOS++

program mk script using a joblist TI joblist.dat, 21 directories with the corresponding input files and
job scripts for running the simulations will automatically be generated. You can start the TI simulation
by running the first script, i.e. TI spc dummy 1.run or TI ch4 dummy 1.run in the directory L 0.0. After
the last simulation at a certain λ point is finished, a simulation at the next λ point will start using the
coordinates generated in the last simulation at a previous λ point. After the simulations at all λ points have
been finished, run the script perform analysis.sh, which you can find in the directories TI spc and TI ch4.
This script will create an input file ene ana.inp in each of the λ directories, which will be used to calculate
the 〈∂H/∂λ〉λn

(see Sec. 2-14.6) using the GROMOS++ program ene ana (Sec. 7-2.4.1). Furthermore the
perform analysis.sh script runs the ene ana program, copies the dvdl.dat files back in the λ directories
and extracts the ensemble averages 〈∂H/∂λ〉λn

from the ene ana.out files which were generated in each
of the λ directories by the ene ana program. In order to calculate the free energy difference of perturbing
the SPC water molecule or the methane molecule to dummies, the calculated ensemble averages have to be
integrated over all λ points. You can do that by plotting 〈∂H/∂λ〉λn

as a function of λ using the xmgrace

program and calculating the respective integral using the option /Data/Transformations/Integration in the
menu bar (see Fig. 2.13).

−50

0

50

100

150

200

250

0.0 0.2 0.4 0.6 0.8 1.0

∂H
/∂

λ
/

(k
J

m
o

l−
1
)

λ

 SPC → dummies
 ∆F = 25.1 ± 1.1 kJ/mol

A

−60

−40

−20

0

20

0.0 0.2 0.4 0.6 0.8 1.0

λ

 CH4 → dummy
 ∆F = −8.7 ± 1.0 kJ/mol

B

Figure 2.13. Thermodynamic integration perturbing (A) an SPC water molecule into
dummy atoms (B) a methane molecule into a dummy atom7.

2.6.2. Enveloping distribution sampling. In this exercise you will calculate the difference in solva-
tion free energies between a simple point charge (SPC) water molecule and a methane molecule in a box of
999 SPC water molecules. In Sec. 7-2.6.1 we have calculated both solvation free energies, ∆Gsolvation

SPC and
∆Gsolvation

CH4
, separately. Now we will determine the relative free energy ∆Gsolvent

SPC→CH4
directly via Enveloping

Distribution Sampling (EDS) and compare the result to the difference of the two former values by making
use of the thermodynamic cycle shown in figure Fig. 2.14.

∆Gsolvent
SPC→CH4

= ∆Gsolvent
dummies→CH4

−∆Gsolvent
dummies→SPC (2.6)

The relative free energy ∆Gsolvent
SPC→CH4

is the free energy change associated with the perturbation of a SPC
molecule to a methane molecule in the solvated phase. This free energy change is estimated from simulation
in a reference state with the corresponding potential energy VR. The reference state is designed in such a way

7-40

Figure 2.14. Thermodynamic cycle for the determination of relative solvation free energies

that the important phase spaces of both endstates, in our case the solvated SPC molecule and the solvated
methane molecule, are sampled in the reference state simulation. The free energy difference ∆Gsolvent

SPC→CH4

can then be evaluated from the reference state simulation, see Sec. 2-14.9.

2.6.2.1. Topology and perturbation topology files. In order to perturb one SPC water molecule in a water
box into a methane molecule a single or dual topology approach can be applied. In the single topology
approach only the topology of one of the end states is used. The perturbation is specified in the molecular
perturbation topology file based on this topology. You can find it in the subdirectory topo of the directory
EDS. If you have a look at it you will see that the oxygen atom OW of the SPC molecule (state A) is perturbed
to a carbon atom with an integer atom code 17. Besides that the hydrogen atoms of state A are perturbed
to dummy atoms.
In the dual topology approach a combined topology of both end states is used. You can prepare the
combined topology file with the GROMOS++ program prep eds. Give the topology files of both end
states as arguments:

~> prep_eds @topo <molecular topology files> @numstat 2 @param 1 @solv 1 > com_eds_H2O_ch4.top

You can find the corresponding molecular perturbation topology in the subdirectory topo. When you are
finished with the single topology approach, which is described in the following, try to set up the dual topology
approach, accordingly. The subdirectory prodrun dual of the directory EDS is already prepared.

2.6.2.2. Coordinate files. For the EDS simulations the same coordinate files as in the TI chapter can
be used. As you have already thermalised and equilibrated the system prior to the TI simulations you can
use the equilibrated simulation boxes as input to the EDS simulations. For the dual topology approach
the coordinates of both end states in one simulation box are needed. They are already prepared in the
subdirectory prodrun dual of the directory EDS. In the production simulations the two end state molecules
are held together through a distance restraint between the oxygen atom of water and the united atom
representing methane.

2.6.2.3. Parameter update scheme simulations. Prior to the EDS simulations suitable EDS parameters
have to be determined. This can be done using an automatic iterative procedure which is described in8.
You can find a bash script in the subdirectory update new of the directory EDS which calculates new EDS
parameters after evaluating the previous simulation run. It is named submit jobs eds update new.sh. The
last command of this script is the submission of the next simulation run. You have to adapt the submission
command to the infrastructure of your cluster. At the beginning of the script the variables needed to start
the parameter update scheme are defined. Most of them are already initialized with the correct values. You
have to specify the correct paths to the gromos directory and the working directory. If you take a look at
the template input file for EDS simulations, eds template.imd, you will notice that the main modification
is an extra block called EDS, in which the EDS parameters are specified:

EDS

EDS

1

ALPHLJ ALPHC

0.0 0.0

FUNCTIONAL FORM

7-41

1

NUMSTATES

2

S

0.08

EIR

0.0

25.0

END

With setting the switch EDS to 1 you specify that you would like to do a EDS simulation. The parameters
ALPHLJ and ALPHC should be ignored, i.e. set to zero. They will be removed in the future. The param-
eter FUNCTIONAL FORM chooses the functional form of the reference state Hamiltonian and the parameter
NUMSTATES defines the number of end states. At the end of the block starting values for the EDS parameters
are set. The smoothness parameter should be set to a rather low value, the initial energy offset could be
estimated from the energy difference between the two end states sampled in a short EDS simulation using
a very low smoothness parameter and an energy offset of zero. The resulting value is then also a reasonable
estimate for the parameter Esep in the bash script submit jobs eds update new.sh. You can perform the
parameter update scheme by running the bash script submit jobs eds update new.sh. It will take some
time, so make sure to run it with nohup in the background. Only the first job script needs to be submitted
by hand. You can create the first job script with the mk script file. This procedure generates also an input
file which is essentially the same as the template input file. However, the template input file is formatted in
a way that is compatible to the bash script submit jobs eds update new.sh and should therefore be used
in the following. Thus, overwrite the just generated input file by

~> mv eds_template.imd eds_spc_ch4_1.imd

When the update scheme simulations are finished, have a look at the convergence of the EDS param-
eters. They will be written out by the bash script extract.sh to the output files s series.dat and
eir series.dat. In this relatively simple example the smoothness parameter increases up to a value of 1
(see Fig. 2.15), which is usually not the case for more complex perturbations.

0.0

0.2

0.4

0.6

0.8

1.0

0 10000 20000 30000 40000

sm
o

o
th

n
es

s
p

ar
am

et
er

time / ps

20

30

40

0 10000 20000 30000 40000

en
er

g
y

 o
ff

se
t

/
(k

J
m

o
l−

1
)

time / ps

Figure 2.15. Convergence of the smoothness parameter (left) and the energy offset (right)
for the parameter update scheme.

2.6.2.4. Enveloping distribution sampling production simulations. Now you will run an EDS simulation
with fixed parameters in which the reference state envelopes the end states defined in the perturbation
topology. You can find the necessary input files in the subdirectory prodrun of the directory EDS. In the
input file the smoothness parameter is set to 0.8 and the energy offset to 33.0. In the file eds.jobs you can see
the joblist for the simulation. The simulation time is 1 ns of equilibration and 20 ns of production and is split
in 21 jobs. By running the GROMOS++ program mk script using the argument file md mk script.arg

the 21 input files and job scripts for running the simulation will automatically be generated. Make sure
that you have correctly adapted the paths to the GROMOS program md, the working directory and the
mk script library to your system. You can start the EDS simulation by running the first script, when
a job is finished it will submit the next one. After the last simulation is finished you can start with the
analysis, which is prepared in the subdirectory ana/ene of the directory prodrun. Take a look at the file
ene ana.md++.lib and search for the section EDS variables. Here, the end state energies and the energy
difference between them are defined. First run the energy analysis ene ana with the corresponding argument
file. It will write out the energy time series for the reference state eR.dat as well as of the two endstates,

7-42

e1.dat and e2.dat, and the energy difference diff21.dat between the two endstates. The GROMOS++

program dfmult calculates the resulting free energy difference from these energy time series. Use the given
argument file to run it and write the output in a file dfmult.out. You can visualize if the sampling of
both endstates in the reference state simulation is sufficient with some standard plots. One is the energy
difference time series in Fig. 2.16 on the left hand side. To plot the distributions of the energy difference
on the right hand side you have to reweight the energy difference from the reference state to the endstates.
There is a GROMOS++ program for this which is called reweight. Have a look at the script reweight.sh,
run it and plot the resulting distributions. To check if the important phase spaces of both end states were
sampled in the EDS simulation, the potential energy distributions from the reference state simulation are
compared to the potential energy distributions from independent MD simulations of the end states. With
the script reweight endst.sh you can reweight the potential energy distributions of the end states from the
reference state to the end states. In the subdirectory distri solute nonb you can evaluate the potential
energy distributions of the end state simulations carried out in Sec. 7-2.6.1. An energy analysis file is already
prepared to evaluate the nonbonded potential energy of water. After the energy analysis is finished execute
the bash script to obtain the distribution of the energy from the time series. This distribution should look
very similar to the one obtained from the EDS simulation, see Fig. 2.17. If the distributions are too noisy
you should extend the end state simulations in Sec. 7-2.6.1.

−100

0

100

200

300

400

10 20

∆V
A

B

/

(k
J

m
o
l−

1
)

time / ns

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−100 0 100 200 300 400

ρ(
∆V

A
B

)

∆VAB / (kJ mol
−1

)

Figure 2.16. Energy difference time series in the reference state simulation (left) and
energy difference distributions in the reference state as well as reweighted to the endstates
(right). The blue curve corresponds to state A (SPC) the red curve to state B (CH4).

0.00

0.05

0.10

0.15

0.20

−140 −120 −100 −80 −60 −40 −20 0

ρ(
V

A
,B

)

VA,B / (kJ mol
−1

)

Figure 2.17. Comparison of the potential energy distributions of the EDS end states
reweighted from the reference state simulation (red and blue) with the independent MD
simulations (black).

2.7. Constructing a new building block

As mentioned in Chap. 7-1 there might be cases where the needed molecular topology building block is
not available in the standard distribution. The following task is to construct a new building block.

7-43

You need the following programs from the GROMOS simulation package:

GROMOS++: prep bb

You need the following input files:
54a7.mtb 54a7.ifp prep bb DTT.arg spec DTT.dat

The procedure will create the following output files:
BUILDING.out

When creating a new building block it is highly recommended to first prepare pictures containing all the
topological information. Draw your molecule on paper taking the united atom approach into account. Num-
ber the atoms sequentially, thinking about how the charge groups will be defined. By analogy to the existing
GROMOS building blocks in Chap. 3-4 define the integer atom codes, mass codes and charges of all the
atoms as they are described in Chap. 3-3. Define the charge groups making sure they are neutral unless the
molecule itself is charged. By analogy to the existing GROMOS building blocks define also bond types,
bond angle types, dihedral angle types and improper dihedral angle types. Once you have the picture ready
use the GROMOS++ program prep bb, which will help you create the building block.

In this exercise you will generate a building block for 2,3-dihydroxy-1,4-dithiobutane (DTT), a small
detergent molecule. The pictures with the parameters for DTT are already prepared (Fig. 2.18).

Go into the subdirectory DTT bb of the directory peptide in your home.

~> cd ~/peptide/DTT_bb

Have a look at the input file prep bb DTT.arg. Next to the standard force field files specified under the
flags @build and @param a special file which lists sequentially all the atoms in the molecule and all the
bonds between them has to be specified. For the case of DTT this file is already prepared and is called
spec DTT.dat. Since we will run the program prep bb interactively the flag @interact is also needed. Try
to run the program prep bb

~/peptide/DTT_bb> prep_bb @f prep_bb_DTT.arg

The program will first check whether there are any aromatc rings present in the molecule. Then it will
go through the list of atoms specified in the file spec DTT.dat and for each atom will ask you to input
the respective integer atom type (IAC), mass code, charge and charge group specifier. It will also give you
suggestions for all these values as you go along. You can compare these suggestions with the parameters in
Fig. 2.18. All the parameters are given in Chap. 3-3. Let’s do this for the atom (CA in Fig. 2.18). First you
have to give IAC (integer atom code). As CA is a united atom consiting of a carbon with two hydrogens,
its IAC is 15, in agreement with Fig. 2.18 A. This means its mass code is 4. Next the program asks for the
charge. We give a 0.150. The next thing the program wants to know is the charge group code. GROMOS

topologies usually have charge groups with an integer charge, preferably zero. As the CA is charged, we
should give a 0 and add the next atoms until we have an uncharged or integer charge charge group. Then
we would give a charge group code 1 to the last atom. Otherwise if CA is uncharged, the charge group can
be closed with a 1. In the GROMOS building block figures charge groups are specified by color. Now do
the same for the other atoms using Fig. 2.18 A for support.

The same procedure will follow for the bonds, bond angles, dihedral angles and improper dihedral angles,
respectively. The program will first ask you for the bonds. The first bond is between atom 1 (CA) and 1
(SA). In Fig. 2.18 B you see that we want this bond to be of type 32. Continue for the other bonds. The
bond angles follow, with the first angle being between atoms 2 (SA) - 1 (CA) -4 (CB) being of type 16.
Again, continue for all the bond angles. Then the improper dihedrals are set. For the first one 4 (CB) -
1 (CA) -5 (OB) - 7 (CG) the type is given as 2 (Fig. 2.18 C). Note that DTT has two chiral centers (CB
and CG). Therefore there are four different combinations of the two correspoding improper dihedrals. In
this exercise you decide for one of them. Fig. 2.18 shows (2R,3R)-dihydroxy-1,4-dithiobutan. Finally the
program asks you about the proper dihedrals. The first proper dihedral is 4 (CB) - 1 (CA) - 2 (SA) - 3(HA)
and has type 26. Define the rest of them yourself.

At the end the building block for DTT will be written to a file called BUILDING.out. Open it and verify
if it is correct.

7-44

Figure 2.18. Force-field parameters for DTT. A) atom number (plain bold), integer atom
code (italic bold), IAC charge (plain); B) atom number (plain bold), bond type (plain
underlined), bond angle type (italic bold); C) atom number (plain bold), dihedral angle
type (plain), improper dihedral angle type (italic bold). The charge groups are depicted in
yellow, blue, green and red color.

7-45

Bibliography

[1] M.P. Allen and D.J. Tildesley. Computer simulation of liquids. Oxford University Press, New York, USA, 1987.
[2] X. Daura, W.F. van Gunsteren, and A.E. Mark. Folding-Unfolding Thermodynamics of a beta-Heptapeptide From Equilib-

rium Simulations. Proteins, 34:269–280, 1999.
[3] K Wuethrich, M Billeter, and W. Braun. Pseudo-structures for the 20 common amino acids for use in studies of protein

conformations by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J.
Mol. Biol., 169:949–961, 1983.

[4] T. Huber, A.E. Torda, and W.F. van Gunsteren. Local elevation: A method for improving the searching properties of
molecular dynamics simulation. J. Comput. Aided Mol. Des., 8:695–708, 1994.

[5] X. Daura, E. Haaksma, and W.F. van Gunsteren. Factor Xa: Simulation studies with an eye to inhibitor design. J. Comput.

Aided Mol. Des., 14:507–529, 2000.
[6] W.R.P. Scott, P.H. Hünenberger, I.G. Tironi, A.E. Mark, S.R. Billeter, J. Fennen, A.E. Torda, T. Huber, P. Krüger, and

W.F. van Gunsteren. The GROMOS Biomolecular Simulation Program Package. J. Phys. Chem. A, 103:3596–3607, 1999.
[7] C. Peter, C. Oostenbrink, A. van Dorp, and W.F. van Gunsteren. Estimating entropies from molecular dynamics simulations.

J. Chem. Phys., 120:2652–2661, 2004.
[8] N. Hansen, J. Dolenc, M. Knecht, S. Riniker, and W.F. van Gunsteren. Assessment of enveloping distribution sampling

to calculate relative free enthalpies of binding for eight netropsin-DNA duplex complexes in aqueous solution. J. Comput.

Chem., 33:640–651, 2012.

7-i

Index

MD

tutorial, 7-17
3J analysis

tutorial, 7-34

check top
tutorial, 7-6

com top

tutorial, 7-6

ene ana

tutorial, 7-19
energy minimisation

tutorial, 7-8
energy trajectory

tutorial, 7-19
equilibration

tutorial, 7-13

gch
tutorial, 7-7

input file
tutorial, 7-13

ion

tutorial, 7-12

J-value analysis
tutorial, 7-34

joblist
tutorial, 7-16

Local Elevation
introduction, 7-35
peptide, 7-36

make top
tutorial, 7-5

mk script

tutorial, 7-16

NOE analysis
tutorial, 7-32

PDB
converting to GROMOS, tutorial, 7-7

pdb2g96
tutorial, 7-7

peptide
Local Elevation, 7-36

tutorial, 7-1, 7-5
pressure coupling

tutorial, 7-18

setup
tutorial, 7-13

sim box
tutorial, 7-11

solvation
tutorial, 7-11

temperature coupling
tutorial, 7-14

theory
tutorial, 7-1

thermalisation
tutorial, 7-13

topology
combining several, 7-6
tutorial, 7-1, 7-5

tutorial
introduction, 7-1
peptide, 7-1, 7-5

7-iii

The GROMOS Software for (Bio)Molecular

Simulation

Volume 8: Installation Guide

January 9, 2021

Contents

Chapter 1. System requirements 8-1

Chapter 2. Installation of required libraries 8-3
2.1. GNU scientific library 8-3
2.1.1. Installation from source 8-3
2.2. FFTW 3 8-3
2.2.1. Installation from source 8-4

Chapter 3. Installation of GROMOS 8-5
3.1. Installing MD++ 8-5
3.1.1. Debug version of MD++ 8-5
3.1.2. Parallel version of MD++ 8-6
3.1.3. Compiling MD++ using the CUDA solvent-solvent interaction evaluation acceleration 8-6
3.1.4. What is installed 8-6
3.2. Installing GROMOS++ 8-6
3.2.1. Generating the documentation 8-7
3.2.2. Adding it to the path 8-7
3.2.3. What is installed 8-7

Bibliography 8-i

8-I

CHAPTER 1

System requirements

GROMOS can be compiled on almost any operating system compatible with the POSIX standard1. Make
sure that your system is powerful enough, that you have sufficient disk space, and that all required libraries
are installed.

The hardware requirements are rather high for simulations, but nowadays most of the setup and analysis
can be carried out on personal computers or even laptops.

Architecture: Intel or AMD x86, SUN SPARC or IBM PowerPC CPU.
Memory: This depends on the simulation you are running and the analysis you want to carry out.

For most simulations and analyses you need just a few 100 MB of RAM but there are exceptions.
Diskspace: This also depends on the simulation. Typical are up to 5 GB for a big simulation. For

analysis, up to 1 GB is sufficient.

Please have a look at the software requirements because these are usually not installed on an out-of-box
operating system.

Operating System: POSIX compatible UNIX like Linux.
Build-Essentials: make, binutils (usually installed by default).
Compiler(C++): In principle it is possible to use any ISO C++ compiler but it is recommended to

use the GNU Compiler Collection (GCC) g++.
Libraries(C++): There are a few of libraries that have to be installed on your system. Make sure

the header files (-devel, -dev packages) are also installed. The libraries needed are:
- zlib compression library
- gsl GNU Scientific Library (see Appendix)
- for MD++: socket, nsl, fftw (3.3)

8-1

CHAPTER 2

Installation of required libraries

Some of the libraries required by GROMOS++ and MD++ are not available on standard operating
systems and have to be installed manually. The installation of these libraries is discussed in this chapter.
Make sure you only install the libraries that you really need for the subpart of GROMOS you want to
install.

2.1. GNU scientific library

The GNU Scientific Library2 is a C library for scientific calculations like complex number arithmetic, fast
Fourier transformations, integration of functions etc. It is needed by MD++ and GROMOS++. Usually
it can be installed via your operating systems package manager.

On Debian or Ubuntu Linux you can install it by typing sudo apt-get install libgsl0 libgsl0-dev.
On Windows, install it via the CYGWIN setup.

If it is not distributed with your operating system or you are not super user you have to compile it from the
source code. Fortunately this is rather easy and straightforward.

2.1.1. Installation from source. In your home create a directory where you want to install the library
/home/user/lib/gsland a working directory /home/user/tmp. Go to the GSL web page ftp://ftp.gnu.org/gnu/gsl/
and download the latest version into your working directory1. In a command line shell cd /home/user/tmp

to the working directory and untar the package:

~/tmp> tar zxf gsl-2.6.tar.gz

~/tmp> cd gsl-2.6

Now you need to ./configure for the compilation and installation. As a prefix give the directory where
you want to install the library. After successful configuration make and install the GSL.

~/tmp/gsl-2.6> ./configure --prefix=/home/user/lib/gsl

~/tmp/gsl-2.6> make

~/tmp/gsl-2.6> make install

After a successful installation you can delete the working directory

~/tmp/gsl-2.6> cd ..

~/tmp> rm -rf gsl-2.6*

The GSL is now successfully installed in your home.

2.2. FFTW 3

The Fastest Fourier Transform in the West library3 is a C library used to carry out fast Fourier transfor-
mations. It is needed by MD++. Usually the version available from package managers is too old to be of
any use. Make sure that you install version 3. MD++ uses MPI parallelization and thus it is important
that an MPI version of FFTW is installed.

On Debian or Ubuntu Linux you can install it by typing sudo apt-get install libfftw3-3 libfftw3-dev.
However, this will not install the MPI version of the library.

If it is not distributed with your operating system or you are not super user you have to compile it from the
source code.

1In the example below the version 2.6 was used but make sure the most recent version is used

8-3

2.2.1. Installation from source. In your home create a directory where you want to install the
library /home/user/lib/fftw3 and a working directory /home/user/tmp. Go to the FFTW web page
http://www.fftw.org and download the latest version into your working directory. In a command line shell
go to your working directory and untar the package:

~/tmp> tar zxf fftw-3.3.8.tar.gz

~/tmp> cd fftw-3.3.8

Then configure FFTW. In this case we want to build an MPI version of the library. Thus one has to use
the correct MPI compiler wrappers and enable MPI.

~/tmp/fftw-3.3.8> ./configure --prefix=/home/user/lib/fftw3 \

--enable-moi CC=mpicc CXX=mpiCC F77=mpif77 \

--enable-fortran --disabled-shared

~/tmp/fftw-3.3.8> make

~/tmp/fftw-3.3.8> make install

Like this the normal FFTW library, an MPI version, a Fortran binding and shared libraries are installed.
On clusters with multiple MPI implemenations installed it is important to use the same compiler wrappers
for FFTW and for MD++.

8-4

CHAPTER 3

Installation of GROMOS

3.1. Installing MD++

MD++ is a C++ batch program for molecular simulation jobs. Because its execution time is critical you
have to compile it on the machine you would like to use it to make sure that the maximum performance
is obtained. Open a command line shell and find out where your home is. Then create a working and an
installation directory (md++).

~> pwd

/home/user

~> mkdir temp

~> mkdir md++

Change the path /home/user to your home (the result of the pwd command).

Copy md++.tar.gz into your working directory. Change into the temp directory and unpack MD++.

~> cd temp

~/temp> tar zxf md++.tar.gz

~/temp> cd md++

In this directory now lies the source code of MD++ which is ready for compilation. The configuration is a
bit tricky, because there are many options which are explained below:

1. You can specify the installation path using the --prefix directive.
2. If the GNU Scientific Library (gsl) was installed by the superuser configure will find it. If it is

installed locally in your home you must specify this using the --with-gsl directive.
3. The same applies for the FFTW library. If it is installed locally in your home you must specify this

using the --with-fftw directive.
4. On clusters where setup of library paths is not guaranteed, it is a good idea to link it statically.

--disable-shared will disable the shared library and create statically linked executables.

Now you know what the options mean and you are ready to configure and run the compilation of MD++.
On multicore CPU machines add the -j flag to make to boost the compilation.

~/temp/md++> ./configure --prefix=/path/to/install/md++ \

--with-gsl=/path/to/gsl \

--with-fftw=/path/to/fftw3 \

--disable-shared

~/temp/md++> make

~/temp/md++> make install

~/temp/md++> make check

~/temp/md++> touch doc/doxygen.conf.in

~/temp/md++> make doc

~/temp/md++> cp -r doc /path/to/install/md++

MD++ is now installed. You can test it by typing

~/temp/gromosxx> /path/to/install/md++/bin/md

If it prints the usage everything is fine.

Clean up the working directory because the static builds need a lot of diskspace and are not needed anymore.

~/temp/md++> cd ..

~/temp> rm -rf md++

3.1.1. Debug version of MD++. MD++ allows you to compile a special version for debugging.
This version has additional debug statements and the code is not optimised by the compiler. You can enable
debugging by giving --enable-debug as an argument to configure. Using this special version you can
specify level of debug information you are interested in. See Sec. 6-1.1.2 for details.

8-5

3.1.2. Parallel version of MD++. In order to enable MD++ to use the full power of your com-
puter’s hardware you have to compile a parallel version. MD++ knows two kinds of parallelization:

OpenMP: This parallelization is straightforward and enables MD++ to run on multiple core CPUs,
like all recent x86 CPUs are. No additional software is required. You can enable this by adding
--enable-openmp to configure.

MPI: MPI is used for parallelization when no shared memory is available: the different CPUs you
want to use for the calculations are located in different machines. This is the case in computer
clusters.

To compile the MPI version you have to use a special set of compilers wrappers, which know which MPI
version and implementation you have on the cluster. In general these compilers are called mpicc for the
C compiler and mpiCC for the C++ compiler. You have to tell configure to use these compilers and to
--enable-mpi:

~/temp/md++> ./configure CC=mpicc CXX=mpiCC \

--enable-mpi \

--disable-shared \

--with-gsl=/path/to/gsl \

--with-fftw=/path/to/fftw3 \

--prefix=/home/user/md++

You have to make sure that the binary of the FFTW library was compiled using the same compiler
wrappers and is linked to the same MPI libraries. This can be achieved by compiling an own version of
FFTW with MPI enabled.

~/temp/fftw-3.3.8> ./configure --enable-mpi CC=mpicc CXX=mpiCC F77=mpif77 \

--enable-fortran \

--prefix=/path/to/install/fftw3_mpi

~/temp/fftw-3.3.8> make

~/temp/fftw-3.3.8> make install

After successful configuration just make and make install it as usual. If the test call

~/temp/md++> /home/user/md++/md/md_mpi

does not tell you to enable MPI, everything is fine.

3.1.3. Compiling MD++ using the CUDA solvent-solvent interaction evaluation accelera-
tion. In order to make use of the CUDA solvent-solvent interaction evaluation acceleration library (cukernel)
MD++ has to be compiled using an additional path pointing to the directory containing the CUDA libraries
and header file.

~/temp/md++> ./configure --disable-shared \

--with-gsl=/path/to/gsl \

--with-fftw=/path/to/fftw3 \

--with-cuda=/path/to/cuda \

--prefix=/home/user/md++

If necessary the appropriate compiler and flags can be set by adding the appropriate variables, e.g.:

NVCC=nvcc

NVCCFLAGS=’-arch sm_30’

NVCC_CFLAGS=’-O2 -D DNDEBUG -lcuda -lcudart ’

3.1.4. What is installed. After successful compilation,

1. the program binaries are in bin/. If you used --prefix option, you will find bin/ there. Note that
for MPI support you should use the binary md mpi (or repex mpi for replica exchange).

2. in the include/ and lib/ subdirectories are the files needed for programming with MD++.

3.2. Installing GROMOS++

GROMOS++ is a collection of command line programs needed to setup a simulation or to analyze the
results of a simulation. In order to use these programs you have to compile and install them on your machine.
Open a command line shell and find out where your home is.

~> pwd

/home/nschmid

8-6

Change the path /home/user to your home (the result of the pwd command).

Unpack GROMOS++.

~> tar xfz gromos++.tar.gz

~> cd gromos++

You are now in the GROMOS++ source directory and can start to configure and makeGROMOS++. Tell
configure where it has to look for the GNU Scientific Library (gsl) and the Fastest Fourier Transform in the
West library (fftw) using the --with-gsl and --with-fftw directives. Usually these libraries are installed
in /usr/local and configure will find it without telling, but if you have installed them in your home you have
to tell configure using the --with-gsl and --with-fftwdirectives. Some programs in GROMOS++ make
use of algorithms of MD++. In order to use these programs one has to specify the location of the MD++

libraries and header files using the --with-mdpp directive. Debugging should be disabled in order to make
use of compiler optimizations. Some operating systems require static linking which can be controlled by
the --disable-shared directive. A few computationally demanding programs can be run in parallel on
shared memory machines using OpenMP. OpenMP can be enabled by the --enable-openmp directive. On
multicore CPU machines add the -j flag to make to speed up the compilation.

~/gromos++> ./configure --with-gsl=/path/to/gsl --with-fftw=/path/to/fftw

~/gromos++> make

~/gromos++> make install

3.2.1. Generating the documentation. If doxygen is installed on your machine you can generate
documentation directly from the source code. Go to the gromos++ directory and type

~/gromos++> touch doc/doxygen.conf.in

~/gromos++> make doc

In the doc directory you will find html documentation. Open a web browser and open file:///home/<username>/<path

to gromos++>/gromos++/doc/html/index.html. Under available you find the documentation of the var-
ious GROMOS++ programs.

After the successful installation you should clean up the working directory.

~/gromos++> make clean

3.2.2. Adding it to the path. In order to use the programs without specifying the full path you can
add them to your PATH veriable. Add the following two lines to your ~/.bashrc:

export PATH="${PATH}:/path/to/gromos++/bin"

export LD_LIBRARY_PATH="${LD_LIBRARY_PATH}:/path/to/gromos++/lib"

3.2.3. What is installed. After successful compilation,

1. the program binaries are in bin/. If you used --prefix option, you will find bin/ there.
2. in the include/ and lib/ subdirectories are the files needed for programming with GROMOS++

3. share/ is home of useful files (called libraries) and examples.

8-7

Bibliography

[1] IEEE Standards Department. IEEE 1003.1-2008, Standard for Information Technology - Portable Operating System In-
terface (POSIX R©). Institute of Electrical and Electronics Engineers (IEEE), 2008.

[2] M. Galassi, J. Daviesm, J. Theiler, B. Gough, G. Jungman, M. Booth, and F. Rossi. Gnu Scientific Library: Reference
Manual. Network Theory Ltd., 2003.

[3] F. Matteo and S. G. Johnson. The Design and Implementation of FFTW3. Proceedings of the IEEE, 93:216–231, 2005.

8-i

Index

debugging
installation, 8-5

documentation
doxygen, 8-7

doxygen

generation for GROMOS++, 8-7
generation for MD++, 8-5

GROMOS++
installation, 8-6

installation
GROMOS++, 8-6
MD++, 8-5
parallelization, 8-6
required libraries, 8-3

MD++
installation, 8-5

MPI
installation, 8-6

OpenMP
installation in MD++, 8-6

optimization
MD++, 8-5

parallelization
installation, 8-6

system requirements, 8-1
hardware, 8-1
software, 8-1

8-iii

The GROMOS Software for (Bio)Molecular

Simulation

Volume 9: Index

January 9, 2021

Contents

VOLUME 1

Chapter 1. What is GROMOS 1-1

Chapter 2. The GROMOS force fields 1-3

Chapter 3. GROMOS functionalities and documentation 1-5

Chapter 4. Examples of application of GROMOS 1-7
4.1. Analysis: Calculation of dielectric permittivity and relaxation time 1-7
4.2. Simulation of polypeptide folding using a polarisable solvent 1-8
4.3. Properties of coarse-grained models for solvents: H2O and co-solvents 1-9
4.4. Enhancing the configurational sampling of ions 1-9
4.5. Calculation of protein-ligand binding free enthalpies 1-9
4.6. Structure refinement based on NMR data 1-11
4.7. Water configurations and mobility in the pore of a membrane protein 1-11
4.8. Computer time required for MD simulation 1-11

Chapter 5. Limitations of GROMOS 1-17

VOLUME 2

Chapter 1. Introduction 2-1

Chapter 2. Basic choices in the definition of a molecular model 2-3
2.1. Introduction 2-3
2.2. Choice of degrees of freedom 2-4
2.3. Choice of the description of the interaction 2-5
2.4. Choice of method for configuration generation 2-6
2.5. Choice of the boundary conditions 2-8

Chapter 3. Scope of the GROMOS package 2-9
3.1. Introduction 2-9
3.2. Choice of the degrees of freedom 2-9
3.3. Choice of the description of the interaction 2-9
3.3.1. Charge groups, searching neighbours 2-10
3.3.2. Twin-range method for long-range interactions 2-11
3.3.3. Pairlist construction 2-11
3.4. Choice of the method for the configuration generation 2-12
3.5. Choice of the boundary conditions 2-12

Chapter 4. Spatial boundary conditions 2-13
4.1. Introduction 2-13
4.2. Vacuum boundary conditions (VBC) 2-13
4.3. Fixed boundary conditions (FBC) 2-14
4.4. Periodic boundary conditions (PBC) 2-15
4.4.1. Triclinic computational box under PBC 2-16

9-I

4.4.2. Special periodic boundary conditions 2-21
4.4.3. Multiple unit-cell simulations under PBC 2-22
4.4.4. Rectangular-brickwall box 2-23

Chapter 5. Bonded interaction force-field terms 2-25
5.1. Bond stretching force-field term 2-25
5.2. Bond-angle bending force-field term 2-26
5.3. Improper dihedral-angle bending force-field term 2-26
5.4. Proper dihedral-angle torsion force-field term 2-27

Chapter 6. van der Waals interactions 2-31
6.1. Introduction 2-31
6.2. Excluded neighbours 2-31
6.3. Normal van der Waals interactions 2-31
6.4. Third-neighbour van der Waals interaction 2-32
6.5. Soft-core interactions 2-33

Chapter 7. Electrostatic interactions 2-35
7.1. Introduction 2-35
7.2. Common features 2-35
7.3. Reaction-field (RF) interactions 2-36
7.4. Lattice-sum (LS) interactions 2-36
7.4.1. Introduction 2-36
7.4.2. Real-space interactions in LS electrostatics 2-44
7.4.3. Ewald reciprocal-space interactions in LS electrostatics 2-44
7.4.4. PPPM reciprocal-space interactions in LS electrostatics 2-46
7.5. Polarization 2-55
7.5.1. Introduction 2-55
7.5.2. Theory 2-56
7.5.3. Off-atom sites 2-58
7.5.4. Non-linear polarizability 2-59

Chapter 8. Coarse-grained models and multi-resolution simulation 2-61
8.1. Introduction 2-61
8.2. Multi-resolution simulation 2-64

Chapter 9. Special force-field terms 2-65
9.1. Introduction 2-65
9.2. Atom-position restraining or fixed atoms 2-65
9.3. Distance restraining 2-66
9.4. Virtual and pseudo atoms 2-70
9.4.1. CH1-group (aliphatic) 2-72
9.4.2. CH1-group (aromatic) 2-72
9.4.3. CH2-group (two virtual protons) 2-73
9.4.4. CH2-groups (one pseudo site) 2-74
9.4.5. CH3-group (one pseudo site) 2-74
9.4.6. Two CH3-groups (one pseudo site) 2-74
9.4.7. Three CH3-groups (one pseudo site) 2-74
9.4.8. Center of geometry (one pseudo site) 2-75
9.4.9. Center of mass (one pseudo site) 2-75
9.5. Bond-angle restraining 2-75
9.6. Dihedral-angle restraining 2-75
9.7. 3J-coupling constant restraining 2-76
9.8. S2-order parameter restraining 2-82
9.9. X-ray structure factor amplitude restraining 2-84
9.10. X-ray electron density restraining 2-85
9.11. X-ray crystallographic symmetry restraining 2-85
9.12. Distance-field distance restraining 2-86

9-II

9.13. Biasing energy functions 2-88
9.13.1. Local elevation biasing 2-88
9.13.2. Umbrella sampling 2-89
9.13.3. Local elevation umbrella sampling (LEUS) 2-89
9.13.4. Ball and stick LEUS 2-90

Chapter 10. Constraints 2-95
10.1. Introduction 2-95
10.2. Position Constraints 2-96
10.3. Constraints using the SHAKE method and its derivatives 2-96
10.3.1. Constraints using the SHAKE method 2-96
10.3.2. Constraints using the SETTLE method 2-99
10.3.3. Constraints using the LINCS method 2-100
10.3.4. Constraints using the M-SHAKE method 2-101
10.3.5. Constraints using the FLEXSHAKE method 2-102
10.3.6. Constrained positions 2-102
10.3.7. Constrained velocities 2-102
10.3.8. Constrained forces 2-103
10.4. Bond-length constraints in the solute 2-103
10.5. Bond-length and bond-angle constraints in solvent 2-104
10.6. Dihedral-angle constraints 2-104
10.7. Translational and rotational constraints 2-107

Chapter 11. Energy Minimization 2-111
11.1. Introduction 2-111
11.2. Steepest-descent minimization 2-112
11.3. Conjugate-gradient minimization 2-112
11.4. Steepest-descent minimization with constraints (SHAKE) 2-114
11.5. Conjugate-gradients minimization with constraints (SHAKE) 2-115

Chapter 12. Molecular Dynamics 2-119
12.1. Introduction 2-119
12.2. Temperature scaling 2-120
12.2.1. Temperature calculation in MD++ 2-120
12.2.2. Thermostat algorithms in MD++ 2-121
12.2.3. Use of temperature groups, sets of degrees of freedom and thermostats 2-124
12.3. Number of degrees of freedom 2-125
12.4. Calculation of the virial 2-126
12.5. Pressure scaling 2-128
12.6. MD algorithms 2-130
12.7. Initialization, equilibration and sampling 2-131

Chapter 13. Stochastic Dynamics 2-137
13.1. Introduction 2-137
13.2. Leap-frog SD algorithm 2-137
13.3. Choice of atomic friction coefficient 2-141

Chapter 14. Free Energy Determination 2-143
14.1. Introduction 2-143
14.2. Parameterization of the Hamiltonian 2-144
14.2.1. Covalent bond forces 2-145
14.2.2. Covalent bond forces (soft potential energy function) 2-147
14.2.3. Covalent bond-angle forces 2-148
14.2.4. Covalent bond-angle forces (soft potential energy function) 2-151
14.2.5. Improper dihedral-angle forces 2-151
14.2.6. Improper dihedral-angle forces (soft potential energy function) 2-153
14.2.7. Dihedral-angle torsion forces 2-154
14.2.8. Non-bonded forces 2-156

9-III

14.2.9. Polarization 2-158
14.2.10. Perturbed atom-atom distance restraints 2-161
14.2.11. Perturbed dihedral angle restraints 2-164
14.2.12. Perturbed distance-field distance restraints 2-165
14.3. Constraints 2-166
14.4. Assigning different λ−dependences for specific groups of atoms 2-167
14.5. Choice of pathway and states A and B 2-170
14.6. Thermodynamic integration 2-172
14.7. Thermodynamic perturbation and extrapolation 2-173
14.8. Umbrella sampling 2-174
14.9. Enveloping Distribution Sampling 2-176
14.9.1. EDS with smoothness parameter s 2-176
14.9.2. Accelerated EDS 2-178
14.9.3. Twin-system EDS 2-180
14.9.4. Configurational EDS 2-181

Chapter 15. QM/MM simulation 2-185
15.1. Introduction 2-185
15.2. Hamiltonian 2-185
15.3. Initialization, simulation and analysis 2-187

Chapter 16. Replica Exchange (RE) Molecular Dynamics 2-189
16.1. Introduction 2-189
16.2. Temperature replica exchange MD 2-190
16.2.1. Simulation checks 2-191
16.2.2. Factors determining the efficiency 2-192
16.3. Hamiltonian replica exchange MD 2-192
16.4. Initialization, simulation and analysis 2-192
16.4.1. Set up of a RE simulation 2-192
16.4.2. Analysis of a RE trajectory 2-193

Chapter 17. Derivatives of the force-field terms 2-195
17.1. Bond stretching force-field term 2-195
17.2. Bond-angle bending force-field term 2-195
17.3. Improper dihedral-angle bending force-field term 2-196
17.4. Proper dihedral-angle torsion force-field term 2-196
17.5. LJ interaction terms 2-197
17.6. Electrostatic interaction terms: Coulomb plus reactive field 2-197
17.7. Electrostatic interaction terms: lattice sum 2-197

Chapter 18. Appendices 2-199
18.1. Conversion of force constants: bond-stretching and bond-angle bending interactions 2-199

VOLUME 3

Chapter 1. Introduction 3-1
1.1. GROMOS force fields 3-1
1.2. Development of the GROMOS force field 3-2

Chapter 2. Physical forces: GROMOS force field 3-5
2.1. Introduction 3-5
2.2. Bond stretching force-field terms 3-5
2.3. Bond-angle bending force-field terms 3-6
2.4. Improper dihedral-angle bending force-field term 3-6
2.5. Proper dihedral-angle torsion force-field term 3-7
2.6. Non-bonded interactions 3-9
2.6.1. van der Waals parameters 3-9

9-IV

2.6.2. Atomic charges and charge groups 3-10

Chapter 3. GROMOS interaction function parameters 3-13

Chapter 4. GROMOS molecular topology building blocks 3-55
4.1. Introduction 3-55
4.2. Definition of molecular topology building block pictures 3-67
4.3. α-amino acids and analogues 3-67
4.4. β-amino acids 3-199
4.5. Nucleotides 3-344
4.6. Carbohydrates 3-429
4.7. Other molecules 3-481

Chapter 5. GROMOS standard configurations 3-529
5.1. Water 3-529
5.2. Chloroform 3-529
5.3. DMSO 3-529
5.4. Methanol 3-529
5.5. Carbontetrachloride 3-529

VOLUME 4

Chapter 1. Introduction 4-1

Chapter 2. Block structure and title record of GROMOS files 4-3

Chapter 3. Topological information 4-5
3.1. Introduction 4-5
3.2. Molecular topology 4-6
3.3. Perturbation molecular topology 4-16
3.4. Atom-atom and distance-field distance restraints 4-23
3.5. Dihedral-angle restraints or constraints 4-27
3.6. 3J-coupling constant restraints 4-28
3.7. S2-order parameter restraining 4-29
3.8. Local-elevation coordinates 4-31
3.9. Local elevation umbrella sampling database file 4-32
3.10. Atomic friction coefficients 4-32
3.11. Position restraining or constraining atom specification list 4-33
3.12. B-factor restraining 4-33
3.13. Backwards compatibility with GROMOS96 4-34

Chapter 4. Configurational information 4-37
4.1. Introduction 4-37
4.2. Atomic coordinates 4-38
4.3. Atomic velocities 4-39
4.4. Atomic forces 4-40
4.5. Atomic stochastic integrals 4-40
4.6. Periodic box 4-41
4.7. Nose-Hoover chain thermostat variables 4-42
4.8. Roto-translational constraints reference variables 4-42
4.9. Perturbation data 4-42
4.10. Atom-atom distance restraints 4-43
4.11. 3J-coupling constant restraints 4-43
4.12. S2-order parameter restraints 4-44
4.13. Crystallographic restraints 4-45
4.14. Local-elevation data 4-45
4.15. Ball and stick local-elevation data 4-46
4.16. Time or step number data 4-49

9-V

4.17. Energies, pressure, volume and free-energy data 4-49
4.18. Atomic B-factors and positional fluctuations 4-54
4.19. Accelerated EDS parameter search data 4-55
4.20. Backwards compatibility with GROMOS96 4-56

Chapter 5. Molecular topology building blocks 4-57
5.1. Introduction 4-57
5.2. Separate molecules 4-57
5.3. Linking of building blocks 4-65
5.4. Other building blocks 4-66
5.5. End groups 4-67
5.6. Contents of the MTB file 4-67

Chapter 6. Interaction function parameters 4-69
6.1. Introduction 4-69
6.2. Mass atom types 4-69
6.3. Covalent bond-stretching interaction parameters 4-70
6.4. Covalent bond-angle bending interaction parameters 4-70
6.5. Improper dihedral-angle interaction parameters 4-70
6.6. Dihedral-angle torsional interaction parameters 4-71
6.7. Van der Waals interaction parameters and integer atom codes 4-71
6.8. Atomic charges and charge group codes 4-73
6.9. Excluded neighbours 4-73
6.10. Contents of the IFP file 4-73

Chapter 7. Library files for GROMOS++ 4-75
7.1. Introduction 4-75
7.2. Interaction function parameter renumbering 4-75
7.3. Atomic naming conventions 4-76
7.4. Definition of file-names and joblists 4-77
7.5. Energy trajectory block definition 4-79
7.6. Hydrogen-bond donors and acceptors 4-79
7.7. Crystallographic transformations 4-80
7.8. NOE analysis 4-81
7.9. SASA implicit solvent model 4-83
7.10. DISICL angle, region and segment definitions 4-84

Chapter 8. Input file for MD++ 4-87

Chapter 9. Output files for MD++ 4-107

Chapter 10. Files accessed by MD++ for reading or writing 4-109

Chapter 11. Other non-GROMOS formats 4-115

Chapter 12. List of GROMOS blocknames 4-117

Chapter 13. Recommendations for standard input and output file names 4-121

VOLUME 5

Chapter 1. Introduction 5-1
1.1. Nomenclature of GROMOS files 5-1
1.2. Common arguments in GROMOS++ 5-1
1.3. Atom, property and vector specifiers in GROMOS++ 5-2
1.3.1. Atom specifiers 5-2
1.3.2. Vector specifiers 5-4
1.3.3. Property specifiers 5-4

9-VI

Chapter 2. Setup of simulations (preprocessing) 5-7
2.1. bin box (GROMOS++ program) 5-7
2.2. build box (GROMOS++ program) 5-8
2.3. check box (GROMOS++ program) 5-9
2.4. check top (GROMOS++ program) 5-10
2.5. com top (GROMOS++ program) 5-12
2.6. con top (GROMOS++ program) 5-13
2.7. copy box (GROMOS++ program) 5-14
2.8. cry (GROMOS++ program) 5-15
2.9. duplicate (GROMOS++ program) 5-16
2.10. explode (GROMOS++ program) 5-17
2.11. gca (GROMOS++ program) 5-18
2.12. gch (GROMOS++ program) 5-19
2.13. ion (GROMOS++ program) 5-21
2.14. link top (GROMOS++ program) 5-22
2.15. make pt top (GROMOS++ program) 5-24
2.16. make sasa top (GROMOS++ program) 5-25
2.17. make top (GROMOS++ program) 5-26
2.18. mk script (GROMOS++ program) 5-27
2.19. pdb2g96 (GROMOS++ program) 5-29
2.20. pert top (GROMOS++ program) 5-30
2.21. prep eds (GROMOS++ program) 5-31
2.22. prep xray (GROMOS++ program) 5-32
2.23. prep xray le (GROMOS++ program) 5-33
2.24. pt top (GROMOS++ program) 5-34
2.25. ran box (GROMOS++ program) 5-35
2.26. ran solvation (GROMOS++ program) 5-36
2.27. red top (GROMOS++ program) 5-37
2.28. sim box (GROMOS++ program) 5-38

Chapter 3. Minimizers and simulators 5-39
3.1. md (MD++ program) 5-40
3.2. repex mpi (MD++ program) 5-41
3.3. eds 2box (MD++ program) 5-42

Chapter 4. Analysis of trajectories (postprocessing) 5-43
4.1. bar (GROMOS++ program) 5-43
4.2. bilayer dist (GROMOS++ program) 5-45
4.3. bilayer oparam (GROMOS++ program) 5-46
4.4. cluster (GROMOS++ program) 5-47
4.5. cog (GROMOS++ program) 5-48
4.6. cos dipole (GROMOS++ program) 5-49
4.7. cos epsilon (GROMOS++ program) 5-50
4.8. cry rms (GROMOS++ program) 5-51
4.9. dfgrid (GROMOS++ program) 5-52
4.10. dfmult (GROMOS++ program) 5-54
4.11. disicl (GROMOS++ program) 5-55
4.12. dg ener (GROMOS++ program) 5-56
4.13. dGslv pbsolv (GROMOS++ program) 5-57
4.14. diffus (GROMOS++ program) 5-59
4.15. dipole (GROMOS++ program) 5-60
4.16. ditrans (GROMOS++ program) 5-61
4.17. dssp (GROMOS++ program) 5-62
4.18. eds update 1 (GROMOS++ program) 5-63
4.19. eds update 2 (GROMOS++ program) 5-64
4.20. edyn (GROMOS++ program) 5-65
4.21. ene ana (GROMOS++ program) 5-66

9-VII

4.22. ener (GROMOS++ program) 5-67
4.23. epath (GROMOS++ program) 5-69
4.24. eps field (GROMOS++ program) 5-70
4.25. epsilon (GROMOS++ program) 5-71
4.26. espmap (GROMOS++ program) 5-73
4.27. ext ti ana (GROMOS++ program) 5-74
4.28. ext ti merge (GROMOS++ program) 5-77
4.29. filter (GROMOS++ program) 5-78
4.30. follow (GROMOS++ program) 5-79
4.31. gathtraj (GROMOS++ program) 5-80
4.32. hbond (GROMOS++ program) 5-81
4.33. int ener (GROMOS++ program) 5-82
4.34. iondens (GROMOS++ program) 5-83
4.35. jepot (GROMOS++ program) 5-84
4.36. jval (GROMOS++ program) 5-85
4.37. m widom (GROMOS++ program) 5-86
4.38. matrix overlap (GROMOS++ program) 5-87
4.39. mdf (GROMOS++ program) 5-88
4.40. nhoparam (GROMOS++ program) 5-89
4.41. noe (GROMOS++ program) 5-90
4.42. post noe (GROMOS++ program) 5-91
4.43. postcluster (GROMOS++ program) 5-92
4.44. predict noe (GROMOS++ program) 5-93
4.45. prep noe (GROMOS++ program) 5-94
4.46. r factor (GROMOS++ program) 5-96
4.47. r real factor (GROMOS++ program) 5-97
4.48. rdf (GROMOS++ program) 5-98
4.49. rep ana (GROMOS++ program) 5-99
4.50. rep reweight (GROMOS++ program) 5-100
4.51. reweight (GROMOS++ program) 5-101
4.52. rgyr (GROMOS++ program) 5-102
4.53. rmsd (GROMOS++ program) 5-103
4.54. rmsdmat (GROMOS++ program) 5-104
4.55. rmsf (GROMOS++ program) 5-105
4.56. sasa (GROMOS++ program) 5-106
4.57. sasa hasel (GROMOS++ program) 5-107
4.58. solute entropy (GROMOS++ program) 5-108
4.59. structure factor (GROMOS++ program) 5-109
4.60. temperature (GROMOS++ program) 5-110
4.61. tcf (GROMOS++ program) 5-111
4.62. trs ana (GROMOS++ program) 5-112
4.63. tser (GROMOS++ program) 5-113
4.64. tstrip (GROMOS++ program) 5-114
4.65. visco (GROMOS++ program) 5-115
4.66. xrayts (GROMOS++ program) 5-116

Chapter 5. Miscellaneous 5-117
5.1. atominfo (GROMOS++ program) 5-117
5.2. close pair (GROMOS++ program) 5-118
5.3. frameout (GROMOS++ program) 5-119
5.4. inbox (GROMOS++ program) 5-120
5.5. pairlist (GROMOS++ program) 5-121
5.6. shake analysis (GROMOS++ program) 5-122
5.7. unify box (GROMOS++ program) 5-123
5.8. rot rel (GROMOS++ program) 5-124
5.9. VMD plugin (GROMOS++ program) 5-125

9-VIII

5.10. xray map (GROMOS++ program) 5-126

VOLUME 6

Chapter 1. Outline of the GROMOS Code 6-1
1.1. MD++ outline 6-1
1.1.1. Efficiency 6-2
1.1.2. Debugging information 6-3
1.1.3. In-code documentation 6-3
1.2. GROMOS++ outline 6-4
1.2.1. GROMOS++ source code and in-code documentation 6-5

Chapter 2. Error Messages 6-7

Chapter 3. Machine Compatibility 6-9

Chapter 4. Numerical and Mathematical Functions 6-11
4.1. Numerical functions 6-11
4.2. Mathematical functions 6-11
4.2.1. MD++ 6-11
4.2.2. GROMOS++ 6-12

Chapter 5. Nomenclature 6-15

Chapter 6. Units 6-17

Chapter 7. Charge Group Codes 6-21

Chapter 8. Pair List Generation 6-23
8.1. Double loop pair list 6-23
8.2. Grid pair list (Heinz and Hünenberger) 6-23
8.3. Grid pair list with expanded coordinates 6-23

Chapter 9. Boundary Conditions and Periodicity 6-25

Chapter 10. Generation of Cartesian Coordinates from Internal Coordinates 6-31

Chapter 11. Generation of Hydrogen Atom Coordinates 6-33

Chapter 12. Generation of Atomic Velocities 6-39

Chapter 13. What to Do when SHAKE Fails 6-41

Chapter 14. Removal of Centre of Mass Motion 6-43

Chapter 15. Saving Trajectories 6-45

Chapter 16. Performing a Translational Superposition and a Rotational Least-Squares Fit 6-47

Chapter 17. Transformation between Coordinates 6-49
17.1. Cartesian and Oblique Contravariant Crystallographic Coordinates 6-49

Chapter 18. Distributions, Averages and Root-Mean-Square Fluctuations 6-53

Chapter 19. Dihedral-Angle Conventions, Names and Transitions 6-55

Chapter 20. Definition of Hydrogen Bonds 6-59

Chapter 21. Time Correlation Functions and Spectral Densities 6-61
21.1. Use of fast Fourier transform (FFT) routines in GROMOS 6-62

Chapter 22. Coarse Graining in GROMOS 6-63

9-IX

Chapter 23. Parallelisation in GROMOS 6-65
23.1. Parallelisation in MD++ 6-65
23.2. Parallelisation in GROMOS++ 6-65

Chapter 24. Fast Solvent Interaction Function Evaluation 6-67
24.1. Solvent innerloops in MD++ 6-67

Chapter 25. Replica Exchange Simulation 6-69

VOLUME 7

Chapter 1. Introduction 7-1
1.1. Simulation using GROMOS 7-1
1.1.1. Units 7-1
1.1.2. File and software organisation 7-1
1.1.3. Summary of the exercise 7-2
1.1.4. Calling the GROMOS programs 7-3
1.2. Practical information 7-3

Chapter 2. A practical exercise 7-5
2.1. Building a topology 7-5
2.1.1. Creating the topology for the penta-peptide 7-5
2.2. Generating atom Cartesian coordinates for the solute, solvent and counter ions 7-7
2.2.1. Generating atomic Cartesian coordinates for the linear charged penta-peptide 7-7
2.2.2. Energy minimisation of the penta-peptide 7-8
2.2.3. Solvating the penta-peptide in a water box 7-10
2.2.4. Adding counter ions to the simulation box 7-12
2.3. Set-up and production simulation of the penta-peptide 7-13
2.3.1. Thermalisation and equilibration 7-13
2.3.2. Molecular dynamics sampling simulation 7-17
2.4. Analysis of the penta-peptide trajectories 7-19
2.4.1. Analysis of the energy trajectory 7-19
2.4.2. Analysis of the coordinate trajectory 7-22
2.5. Enhancing sampling using Local Elevation 7-35
2.6. Free energy calculations 7-38
2.6.1. Thermodynamic integration 7-38
2.6.2. Enveloping distribution sampling 7-40
2.7. Constructing a new building block 7-43

VOLUME 8

Chapter 1. System requirements 8-1

Chapter 2. Installation of required libraries 8-3
2.1. GNU scientific library 8-3
2.1.1. Installation from source 8-3
2.2. FFTW 3 8-3
2.2.1. Installation from source 8-4

Chapter 3. Installation of GROMOS 8-5
3.1. Installing MD++ 8-5
3.1.1. Debug version of MD++ 8-5
3.1.2. Parallel version of MD++ 8-6
3.1.3. Compiling MD++ using the CUDA solvent-solvent interaction evaluation acceleration 8-6
3.1.4. What is installed 8-6
3.2. Installing GROMOS++ 8-6
3.2.1. Generating the documentation 8-7

9-X

3.2.2. Adding it to the path 8-7
3.2.3. What is installed 8-7

9-XI

Index

MD

tutorial, 7-17
GROMOS++

doxygen, 6-5
arguments, 5-1

code outline, 6-4
file names, 5-1
flags, 5-1

gathering methods, 6-25
gmath, 6-12

matrices, 6-12
namespaces, 6-5

nomenclature of input/output files, 5-1
periodic boundary conditions, 6-25
source code, 6-5

vectors, 6-12
GROMOS

error messages, 6-7
MD++

doxygen, 6-3
code outline, 6-1

compiling, 6-2
debugging, 6-3
efficiency, 6-2

libraries, 6-9
math, 6-11

matrices, 6-11
namespaces, 6-1

random number generators, 6-11
vectors, 6-11

doxygen

GROMOS++, 6-5
MD++, 6-3

3
J analysis
tutorial, 7-34

algorithm

MD, 6-1
AtomSpecifier, 6-5

AtomSpecifiers, 6-15

C++, 6-9
charge groups, 6-21

periodic boundary conditions, 6-25
check top

tutorial, 7-6
code outline

MD++, 6-1
com top

tutorial, 7-6

common arguments
GROMOS++, 5-1

compatibility, 6-9
compiling

MD++, 6-2

cut-off, 6-21

debugging

MD++, 6-3
installation, 8-5

documentation

doxygen, 8-7
documentation, in-code

GROMOS++, 6-5

MD++, 6-3
doxygen

generation for GROMOS++, 8-7
generation for MD++, 8-5

ene ana
tutorial, 7-19

energy minimisation
tutorial, 7-8

energy trajectory

tutorial, 7-19
equilibration

tutorial, 7-13

error messages
GROMOS, 6-7

gathering methods

GROMOS++, 6-25
periodic boundary conditions, 6-25

gch

tutorial, 7-7
gmath

GROMOS++, 6-12

GROMOS++
installation, 8-6

input file
tutorial, 7-13

input/output files, GROMOS++

nomenclature, 5-1
installation

GROMOS++, 8-6

MD++, 8-5
parallelization, 8-6
required libraries, 8-3

ion

tutorial, 7-12
IUPAC, 6-15

J-value analysis
tutorial, 7-34

joblist

tutorial, 7-16

libraries

9-i

GROMOS++, 6-9
MD++, 6-9

Local Elevation

introduction, 7-35
peptide, 7-36

machines

compatibility, 6-9
make top

tutorial, 7-5
math

MD++, 6-11
matrices

GROMOS++, 6-12

MD++, 6-11
MD++

installation, 8-5
mk script

tutorial, 7-16
MPI

installation, 8-6

NOE analysis
tutorial, 7-32

nomenclature, 6-15

OpenMP
installation in MD++, 8-6

optimization
MD++, 8-5

parallelization
installation, 8-6

PDB

converting to GROMOS, tutorial, 7-7
pdb2g96

tutorial, 7-7

peptide
Local Elevation, 7-36
tutorial, 7-1, 7-5

periodic boundary conditions, 6-25

GROMOS++, 6-25
gathering methods, 6-25

physical constants, 6-17
pressure coupling, 6-25

periodic boundary conditions, 6-25
tutorial, 7-18

program, GROMOS++

atominfo, 5-117
bar, 5-43
bilayer dist, 5-45
bilayer oparam, 5-46

bin box, 5-7
build box, 5-8
check box, 5-9

check top, 5-10
close pair, 5-118
cluster, 5-47
cog, 5-48

com top, 5-12
con top, 5-13
copy box, 5-14
cos dipole, 5-49

cos epsilon, 5-50
cry, 5-15
cry rms, 5-51

dfgrid, 5-52
dfmult, 5-54
dg ener, 5-56

dGslv pbsolv, 5-57
diffus, 5-59

dipole, 5-60
disicl, 5-55
ditrans, 5-61

dssp, 5-62
duplicate, 5-16

eds update 1, 5-63
eds update 2, 5-64
edyn, 5-65

ene ana, 5-66
ener, 5-67
epath, 5-69

eps field, 5-70
epsilon, 5-71

espmap, 5-73
explode, 5-17
ext ti ana, 5-74

ext ti merge, 5-77
filter, 5-78
follow, 5-79

frameout, 5-119
gathtraj, 5-80

gca, 5-18
gch, 5-19
hbond, 5-81

inbox, 5-120
int ener, 5-82
ion, 5-21

iondens, 5-83
jepot, 5-84

jval, 5-85
link top, 5-22
m widom, 5-86

make pt top, 5-24
make sasa top, 5-25
make top, 5-26

matrix overlap, 5-87
mdf, 5-88

mk script, 5-27
nhoparam, 5-89
noe, 5-90

pairlist, 5-121
pdb2g96, 5-29
pert top, 5-30

post noe, 5-91
postcluster, 5-92

predict noe, 5-93
prep eds, 5-31
prep noe, 5-94

prep xray, 5-32
prep xray le, 5-33
pt top, 5-34

r factor, 5-96
r real factor, 5-97

ran box, 5-35
ran solvation, 5-36
rdf, 5-98

red top, 5-37
rep ana, 5-99

rep reweight, 5-100
reweight, 5-101
rgyr, 5-102

rmsd, 5-103
rmsdmat, 5-104
rmsf, 5-105

rot rel, 5-124
sasa, 5-106

9-ii

sasa hasel, 5-107

shake analysis, 5-122

sim box, 5-38
solute entropy, 5-108

structure factor, 5-109

tcf, 5-111

temperature, 5-110

trs ana, 5-112
tser, 5-113

tstrip, 5-114

unify box, 5-123

visco, 5-115

VMD plugin, 5-125
xray map, 5-126

xrayts, 5-116

program, MD++

eds 2box, 5-42

md, 5-40
repex mpi, 5-41

random number generators

MD++, 6-11
rectangular

periodic boundary conditions, 6-25

reduced

units, 6-17

reduced units, 6-17, 6-19

setup

tutorial, 7-13

SI
units, 6-17

sim box

tutorial, 7-11

solvation

tutorial, 7-11

source code
GROMOS++, 6-5

specifier

atom, 5-2

property, 5-2, 5-4

vector, 5-2, 5-4
system requirements, 8-1

hardware, 8-1

software, 8-1

temperature coupling

tutorial, 7-14

templates

MD++, 6-2

theory
tutorial, 7-1

thermalisation

tutorial, 7-13

time series, 6-25

periodic boundary conditions, 6-25

topology
combining several, 7-6

tutorial, 7-1, 7-5

triclinic

periodic boundary conditions, 6-25

truncated octahedral
periodic boundary conditions, 6-25

tutorial

introduction, 7-1

peptide, 7-1, 7-5

units, 6-17

vacuum
periodic boundary conditions, 6-25

vectors
GROMOS++, 6-12
MD++, 6-11

9-iii

