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1 Before You Start

As is the case in most academic and industrial computational chemistry groups, the CSBMS exercises will
require using computers at two different locations1:

• The computer you log into in the exercise room D267.4 will be referred to as your workstation. The
workstation is the computer on your desk, where you do interactive and computationally inexpensive
work (editing files, structure visualisation, web browsing, e-mail, ...).

• The computer you actually use for the heavy calculations, which is more powerful and kept largely free
of any other processes besides number-crunching jobs. For CSBMS, this computer is actually a cluster
of 10 computers (nodes) belonging to our research group and called realbeaver,2 further referred to
simply as beaver.

The beaver cluster has one special node, the login node, which you can access remotely from your workstation
in an interactive session (e.g. a window on your workstation behaves like a window directly on the beaver
login node). The nine other nodes of beaver, the execution nodes, cannot be accessed interactively. They
are strictly reserved for calculations (jobs), e.g. GROMOS simulations, which you submit from the login
node using a queueing system. Finally, you should realize that your workstation and the beaver cluster have
distinct storage spaces, so that you may have to transfer files explicitly between your workstation and beaver
to have them where you want. Figure 1 provides a schematic description of the computational setup of the
course CSBMS.

Figure 1: Description of the computional setup of the CSBMS course.

The main goals of this document are to:

• Make sure the workstation/beaver setup works properly for you (Section 2)

• Explain how to use and access the beaver cluster (Sections 3-4)

• Explain how to open interactive sessions with and transfer files from/to beaver (Section 5)

1 Our group does not do it differently. We use workstations in our offices the daily interactive work, and the cluster “euler”
of the ETH high performance computing center for running simulations.

2It is located in HIT D13 - feel free to ask an assistant if you want to visit it once!
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• Provide a list of programs/files needed for the CSBMS exercises3 (Sections 6-8)

• Explain how the queueing system works on beaver (Section 9)

2 Getting Started

Follow the series of steps below to make sure every component of the computational setup is working
properly for you and to learn how to do the basic operations. More details on each step are provided in the
corresponding sections of this document as indicated between parentheses.

1. Login into a workstation of D267.4 using your ETH (nethz) username and password.

2. Open a terminal session - this one will be accessing your workstation and we’ll call it the workstation
terminal.

3. Open another terminal session - this one will be accessing the beaver login node and we’ll call it the
beaver terminal.

4. Beaver terminal : access the beaver login node through ssh (Section 4).

5. Beaver terminal : change your password on beaver (Section 4.3).

6. Workstation terminal : try copying files from/to your workstation home to/from your beaver home by
means of the command scp (Section 5.1).

7. Workstation terminal : mount your beaver home under your workstation home using sshfs (Sec-
tion 5.2).

8. Workstation terminal : try again copying files from/to your workstation home to/from your beaver
home, now by using the mounted directory, by means of the command cp.

9. Workstation terminal : unmount your beaver home using fusermount (Section 5.2)

10. Workstation terminal : try to start firefox (Section 6).

11. Workstation or beaver terminal : try to start your favorite editor like gedit, vim or emacs (Section 6).

12. Workstation or beaver terminal : try to start the plotting program xmgrace (Section 6).

13. Workstation terminal : try to start the visualisation program vmd (Section 6).

14. Workstation terminal : try to start the visualisation program pymol (Section 6).

15. Beaver terminal : check that you find the course-material directory (Section 7).

16. Beaver terminal : try to run the GROMOS md mpi program (Section 8).

17. Beaver terminal : check the jobs in the queueing system (Section 9.1).

18. Beaver terminal : submit a test job to the queueing system (Section 9.2).

19. Beaver terminal : check again the jobs in the queueing system (Section 9.1).

20. Beaver terminal : remove your test job from the queue (Section 9.3).

21. Read about the beaver cluster (Section 3).

22. Read about the optimal usage of beaver (Section 10).

3 In CSBMS, the login node of beaver will also be used for many interactive manipulations. It is OK because we are only a
few students - and it was more convenient for us to install a number of programs on beaver than on the D267.4 workstations.
In a more realistic setup, the login node of a cluster is really only for babysitting jobs and file transfers, and not for any other
interactive manipulations (unless you want to be kicked out by angry sysadmins!)
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23. Read about troubleshooting (Section 11).

24. If at this point you have headache, just take an aspirin.

If you completed all steps above then you know the basis of the CSBMS computational setup and
operations - and can now turn to the fun part: the simulation exercises.

3 The Cluster

The beaver (realbeaver) cluster belongs to the Informatikgestützte Chemie (IGC) group at ETH Zürich. It
is installed in HIT D13 and consists of ten physically distinct computers (nodes), nine execution nodes and
one login node, dedicated to user login, filesystem operations and queueing system management. Each node
comprises two AMD 6220 CPUs with 8 processors each (total of 144 processors in the cluster) and 32 GB
memory4. This cluster is used by IGC and invited members for research and educational work.

3.1 Restrictions

The cluster is used simultaneously by many different people, so that some policies (restrictions) must be
respected in the usage of the login node, of the storage space, and of the queueing system. The execution
nodes are only accessible interactively to the system administrators.

3.1.1 Number of Simultaneous Logins

The maximum number of simultaneous login sessions per user is set to eight.

3.1.2 Memory Allocation

The maximum total memory per user at the login node is set to 512 MB.

3.1.3 Processes

The maximal duration of any process run at the login node is set to 30 minutes, and the maximal number of
simultaneous processes is set to 20. The login node should not be used to run big calculations. Calculations
that take more than 5-10 minutes should be submitted to the queueing system instead.

3.1.4 Disk Space and Usage

No disk quota is enforced at the moment, but users should not have more than 50 Gb in their beaver home
(data in excess of this may be removed by the system administrators without warning in case of system
malfunction). This disk space must be treated as scratch (temporary) space and only be used to store
CSBMS-related data. Note that it is not backed up.

3.1.5 Queueing System

The following restrictions apply to the queueing system (see section 9).
The maximum number of simultaneous jobs per user is set to 165 and the default maximum job duration

is 10 hours.

4 This is more than enough memory for MD. For example, a MD simulation of 512 water molecules requires about 20 MB
memory

5This implies a maximum of 4 simulateous jobs if you request 4 processors for each job.
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4 Account and Login

4.1 Account

Each student will be provided with a beaver account and an initial password, that must be changed at the
first exercise session for security reasons. Your username and password should be sent to you per e-mail
already, otherwise ask the assistants. Never share your password with anyone else. Never use anyone’s
account even with his/her permission.

4.2 Login

The beaver cluster can be accessed within the ETH network through ssh. You can even run x-windows
programs like emacs and xmgrace remotely if you enable window-tunneling (X11 forwarding) within.ssh 6

The beaver cluster can be accessed using simply

ssh <your-beaver-username>@realbeaver.ethz.ch

In order to use graphical programs on beaver one should add the ‘-X’ option after the ssh command. If
you are lucky, you have the same login name on your workstation and on beaver, and then you can also use

ssh realbeaver.ethz.ch

4.3 Changing Password at First Login

In order to change your password after the first login type

passwd

Then follow the instructions.

5 Accessing your Files

There are two ways of accessing files in your beaver home. The first one is through a network copy and
this is the preferred way when one has a slow internet connection to beaver, which is not the case for the
computer room D267.4.

The other one is through a local mount of your beaver home into your workstation home. Mounting means
that your beaver home will look exactly like a subdirectory in your workstation home (although the beaver
disks are physically located in another room!). This is the preferred way when you have a fast connection
to beaver. However it requires that you manually do the mount and, after usage, the unmount.

The following sections explain how to use either methods.

5.1 Network Copy

In order to copy files from/to beaver one can use the rsync or the scp commands7. They work as

scp/rsync <options> <source> <destination>

where source and destination can be a directory or file.
For example, if you want to copy a directory named folder on workstation from your workstation

current directory to your beaver home, you can type (in the workstation window)

scp -r folder_on_workstation <your-beaver-username>@realbeaver.ethz.ch:

6For windows users: http://realprogrammers.com/how_to/set_up_an_ssh_tunnel_with_putty.html. For Linux/Mac
please use the option ‘-X’ within ssh

7 Roughly speaking, scp copies whereas rsync updates. For a file, this does not make any difference. For a directory which
does not yet exist in the destination folder, there is no difference either. But for a directory that exists in both source and
destination folders, rsync will copy from the source only what is new or differs from the destination content (scp, in contrast,
will copy the source directory inside the destination one, which is probably not what you want).
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And to copy a directory called folder on beaver from your beaver home to your workstation current
directory, you can type (in the workstation window)

scp -r <your-beaver-username>@realbeaver.ethz.ch:folder_on_beaver .

Do not forget the option ‘-r’ for the scp command, which is needed to copy entire directories with their
content. If you have the same login name on your workstation and on beaver, then you can omit the
“<your-beaver-username>@”. Finally, you can use most of unix ways to specify files/directories, e.g.

scp -r ../doc/folders[0-9]* <your-beaver-username>@realbeaver.ethz.ch:doc/my_folders/

should work.
The same actions using the program rsync look like8

rsync -avz folder_on_workstation <your-beaver-username>@realbeaver.ethz.ch:

and

rsync -avz <your-beaver-username>@realbeaver.ethz.ch:folder_on_beaver .

5.2 Mounting Directories Through sshfs

Sometimes, repeatedly copying files/directories from one machine to another using scp or rsync can be
fairly annoying. An alternative is to mount the directory that contains the required files on beaver into your
workstation home directory, so that you can use it as if it was a subdirectory of your workstation home.

One way of doing so is through sshfs. This program uses the ssh protocol to share files through a
secure channel. The mounted folders are visible through the ssh protocol, which means in particular that
the read/write/execute rules of file access are still enforced. In order to avoid security issues with your data
and decrease the network usage of the cluster, one must not forget to unmount the folder when the mount
point is no longer required. In order to properly use the sshfs system you must go through the following
steps:

1. Create an empty mount-point directory.

2. Mount the external folder to the mount point directory.

3. Use the mount point.

4. Unmount the folder, so as to release the network connection.

These are described below.

5.2.1 Creating the Mount Point Folder

You can create the mount point folder wherever you have write permission, using the command mkdir

mkdir <mount-folder>

5.2.2 Mounting the External Folder to the Mount Point Folder

For simplicity, we will assume that you want to mount your beaver home (you could as well mount a
subdirectory of this home). In order to mount your home directory just type

sshfs <your-beaver-username>@realbeaver.ethz.ch:/home/<your-beaver-username> <mount-folder>

8The option ‘-a’ forces the files to be transferred in “archive” mode, which ensures that symbolic links, devices, attributes,
permissions, ownerships, etc. are preserved in the transfer. The option ‘-z’ forces compression of files to reduce the size of
data portions of the transfer. And the option ‘-v’ increases program verbosity.
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5.2.3 Unmounting the Mount Point Folder

In order to unmount the mount point folder just type:

fusermount -u <mount-folder>

6 List of Programs

In this section there is a list of programs that might be necessary during the CSBMS exercises. Some
programs are available on the workstation, some on the beaver login node, and some on both, as indicated.

Table 1: List of programs that might be necessary during the CSBMS exercises.
Program Available Type Notes

firefox workstation web browser
vim workstation/beaver editor
emacs workstation/beaver editor

xmgrace workstation/beaver 2D Plotting tool
python workstation/beaver python interpreter
vmd workstation molecular visualisation located at /opt

pymol workstation molecular visualisation
GROMOS programs beaver molecular simulation most recent release

All graphical programs should be used on the workstations.

7 Course-Material Directory

The CSBMS course material can be found on beaver at the following folder

/usr/local/CSBMS

There are subdirectories for each of the exercises (plus one for this document)

8 Using GROMOS

The GROMOS program compiled with MPI (multiprocessor) is available on beaver (login as well as execution
nodes). Its most recent release can be found in the folder

/opt/progs/gromos

The GROMOS simulation program md mpi can be found at

/opt/progs/gromos/bin/md_mpi

8.1 GROMOS Manual and Doxygen Files

The 9 volumes of the GROMOS manual can be accessed in the folder

/usr/local/gromos/GROMOS_pdf

For further details of GROMOS program implememtation you can access the doxygen documentation
through a browser pointed at the following addresses https://dstar.ethz.ch/gromos/md++-1.3.1/ (for
md++ documentation) or https://dstar.ethz.ch/gromos/gromos++-1.3.1/ (for gromos++ documenta-
tion).
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8.2 GROMOS mk script Library File

The GROMOS mk script program relies on a template file in order to create a sequence of calculations.
These files define among other things, the number of processors and the type of parallelisation strategy that
will be used by the GROMOS md mpi program. As discussed above the beaver cluster only contains the MPI
version of GROMOS. Therefore parallel calculations using the GROMOS program on this cluster must use
MPI. GROMOS does not scale well above 8 processors, thus a smaller number of processors should be used.
The mk script library files defining the MPI environment and three different number of processors (1, 2 and
4) are available at the folder:

/usr/local/CSBMS/lib

9 Queueing System

This section describes the basic commands to get started with the Sun Grid Engine (SGE) queueing system
installed on beaver.

9.1 Queue Status

To check the status of your jobs in the queue use

qstat

For further information you can add the flags ‘-f’ and/or ‘-u \*’

qstat -f -u \*

The ‘-f’ option specifies a “full” format display of information, and causes summary information on all
queues to be displayed along with the queued job list.

The ‘-u user, ...’ displays information only on those jobs and queues being associated with the users
from the given user list. Queue status information is displayed if the ‘-f’ or ‘-F’ options are specified
additionally and if the user runs jobs in those queues. An asterisk ‘\*’ can be used as username wildcard
to request any users’ jobs be displayed.

On beaver, a shortcut for the command above is

queue

9.2 Submitting Jobs to the Queue

In order to submit jobs to the queue use the following command:

qsub -N <job-name> -cwd -pe mpi <NSLOTS> ./<script-name>

where <job-name> is how you want to name your job. Note that job names cannot start with numbers.
<script-name> is the name of the script/program you want to run. <NSLOTS> defines the number of
processors to run the calculation. For better performance you should match the <NSLOTS> variable to be
equal to the number of processors defined by the mk script library file.

The jobs should be started from the user home directory or a subdirectory within this home.

9.3 Removing Jobs from the Queue

In order to remove jobs from the queue use the following command:

qdel <ID>

where <ID> is job number given by the queue system to your job. To find the job ID use the command
qstat.
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9.4 Further Information

For further information please refer to the full SGE user guide on beaver (http://realbeaver/sgedoc/
820-0699.pdf).

10 Optimal Usage of beaver

The optimal way of using beaver is the combination of the following conditions:

• User passwords are more than 8 characters long and include numbers, capitalized and non-capitalized
letters as well as special characters.

• Files are accessed through the sshfs protocol and the mount point folders are mounted only as long
as they are needed.

• The required (side)programs are used on the workstations and not on beaver.

• GROMOS parallelisation is achieved through MPI.

• GROMOS mk script program uses the provided mk script library files.

• No job with more than 8 processors is submitted to the queueing system.

• User folders are kept below 50 GB and store only CSBMS-related files.

• Calculations and analysis are submitted to the queue system, which should guarantee the fair share of
resources.

11 Troubleshooting

If you have any questions or experience any problem please contact the assistant.
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Getting Started Really Quickly

1. Login into a workstation of D267.4 using your ETH (nethz) username and password;

2. Open a terminal window - this one will be accessing your workstation and we’ll refer to it as workstation
window ;

3. Open another terminal window - this one will be accessing the beaver login node and we’ll refer to it
as beaver window ;

4. Beaver window : access the beaver login node using ssh:

ssh -X <your-beaver-username>@realbeaver

The password is given by the assistant.

Please change your password (use command passwd).

5. Workstation window : mount your username folder from your workstation’s home using sshfs;

mkdir ∼/beaver-home
sshfs <your-beaver-username>@realbeaver: beaver-home

6. Beaver window : Copy the /usr/local/CSBMS/ex1 folder to your home;

cp -r /usr/local/CSBMS/ex1 ∼

7. Workstation window : Open the file EGM.top from the folder on ex1/topo on your home directory.

cd ∼/beaver-home/ex1
<your-prefered-text-editor> topo/EGM.top

where <your-prefered-text-editor> can be gedit, emacs or vi

Please before you leave:

1. Workstation window : Do not forget to unmount the sshfs folder mounted on the Workstation;

cd

fusermount -u beaver-home

2. Beaver window : logout

exit

3. Please logout from your workstation.

Thanks for your cooperation!
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CSBMS: Exercise 1

Topology Creation & Parameter Transferability
Document version: 27.08.2019

Exercises week 1: 24.09. or 26.09.
Exercises week 2: 01.10. or 03.10.
Deadline for the report: 13.10.
Contact: linker@phys.chem.ethz.ch

Stephanie Linker - HCI G239

Summary

In this first exercise, you will create a model for ethylene glycol monoacetate, a molecule
for which no parameters exist within the GROMOS force field, by combining well-tested GRO-
MOS parameters from similar molecules, ethyl acetate and propanol. This means that you will
write most of the corresponding molecular topology file by hand, thereby learning to know the
different topological parameters. To assess the quality of your model, you will run simulations
of the compound in the liquid state, calculate its density (ρ) and heat of vaporization (ΔHvap),
and compare these with experiment. You will also qualitatively investigate the effect of the
environment on the conformational properties of the molecule, by running simulations of the
compound in vacuum and in water.

1 Introduction

Any GROMOS simulation using the program md (or md_mpi) requires at least three files to be
provided, namely

• an input file (flag @input), containing all switches and parameters specifying the desired
simulation run (e.g. number of steps, timestep, writeout frequency, temperature and pressure
coupling, ...),

• a topology file (flag @topo), containing the specification of the atom content, force-field terms
and force-field parameters for the system to be simulated (e.g. number and types of atoms,
bond, angle, improper and dihedral angle definitions, charges and Lennard-Jones interaction
parameters, ...),

• a starting configuration file (flag @conf), containing the starting coordinates of all atoms
and, for a continuation run, the corresponding starting velocities (possibly along with other
relevant configurational information).

For this first exercise, all the input and configuration files will be provided to you (but you can
still have a look at them for the sake of curiosity!), and the focus will be on the topology file. In
many situations, creating a GROMOS molecular topology file for your system is relatively easy.
This is the case when the GROMOS force field already includes parameters for the molecule of
interest or, considering a polymer, for the corresponding monomers. These molecules or monomers
are referred to as building blocks, and can be assembled using standard GROMOS tools. This will

1
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be the situation in Exercise 2. But today, you are not that lucky. You will have to construct your
topology file by hand for a new molecule (and perform an initial validation of the resulting model
against experimental data).

2 Week 1 - Creating the Topology / Starting the Simulations

The goal of this exercise is to create a model for ethylene glycol monoacetate (EGM, see Figure 1),
an organic molecule that is in the liquid state at room temperature and ambient pressure. A
quick check (e.g. using the list of building blocks in the GROMOS manual volume 3) reveals that
this specific compound is not available as a ready-made building block in the currently available
force fields. On second look, it is not so bad, since two similar compounds, ethyl acetate and
propanol (EAE and PPL, see Figure 1), have been parametrised within the GROMOS 53A6OXY

force field [1], which should be a good source for the parameters needed using a transferability
assumption. Nothing guarantees that the resulting model will be good, i.e. it will still need to be
validated (and further refined if not sufficiently good). So, we are going to proceed in three steps:

• Construct the topology of EGM by analogy with EAE and PPL, first in terms of “drawings”
(Section 2.1).

• Write this topology into a topology file, with a format recognised by GROMOS (Section 2.2).

• Perform an initial characterisation/validation of this model using simulations (Section 2.3).

2.1 Defining the Topology

Your first task is to create the topology for a single EGM molecule. For that, let us start by
looking at Figure 1 and determining the different atom types found in the molecule. An atom
type corresponds to a given atom in a specific chemical environment. This is a relatively fuzzy
definition that arises from the observation that one can make “better” force fields by assigning
different parameters to the same atom in distinct contexts, as suggested by chemical intuition.
For example, the 53A6OXY force field [1] could only achieve a sufficiently accurate description of
(uncharged) oxygen-containing organic compounds by distinguishing three types of oxygen atoms
(labelled O, OE and OA, see below). Also remember that for efficiency (and historical) reasons,
GROMOS represents an aliphatic carbon atom and the attached non-polar hydrogen atoms as a
single “atom” called a united-atom.

(a) EGM (b) EAE (c) PPL

Figure 1: Ethylene glycol monoacetate, ethyl acetate and propanol

Given these considerations, EGM is built from the following atom types:

1. C, a plain carbon atom;

2
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2. CH2, a carbon united-atom with two implicitly attached hydrogen atoms;

3. CH3, a carbon united-atom with three implicitly attached hydrogen atoms;

4. O, a carbonyl oxygen atom;

5. OE, an ether or ester oxygen atom;

6. OA, an alcohol oxygen atom;

7. H, an explicit hydrogen atom.

In the following, we will use the above numbering for the integer atom code (IAC) of a given atom
type1 (e.g. the IAC of atom type OE will be 5). The IACs of the atoms of EAE and PPL are shown
in Figures 2b and 2c. Now you can (and should!) add the IACs for EGM in Figure 2a.

(a) EGM (b) EAE (c) PPL

Figure 2: Atom Types (IAC)

By choosing an IAC for each atom in the molecule, you have actually decided the form of the van
der Waals interaction between any pair of atoms (short-range repulsion when the atoms overlap +
longer-range attraction due to dispersion). This is because GROMOS determines the parameters
of this interaction based on the IAC of the two interacting atoms2. The electrostatic (Coulombic)
interaction, however, is not determined by the IAC. For this one, you have to assign partial charges
to all atoms in your molecule. Because we have partial charges for EAE and PPL from the 53A6OXY

force field, we will simply assume here that these charges can be directly transferred to EGM by
analogy. The partial charges of the atoms of EAE and PPL are shown in Figure 3b and 3c. Now
you can (and should!) add the partial charges for EGM in Figure 3a.

(a) EGM (b) EAE (c) PPL

Figure 3: Atomic Partial Charges

1The 53A6OXY force field considers many more molecules than just EAE and PPL, and has thus as many as 53
atom types. However, for simplicity, we have taken the types relevant for EGM and renumbered them from 1 to 7.

2This is not entirely true. Within a molecule, you still need some additional information on the topological
relationship between the pair, i.e. we need to know the IACs of the two interacting atoms and whether they are in a
normal, third-neighbour or excluded relationship.
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In a next step, the bond stretching, bond-angle bending, improper dihedral-angle distortion
and proper dihedral-angle torsion potential energy terms defining the covalent flexibility of the
molecule have to be defined. The first three types of terms are defined by a reference value (length
or angle) and a force constant regulating the strength (the energetic cost of a deviation away from
the reference value). The torsional terms are periodic and characterised by a multiplicity and a
phase shift instead of a single reference value.

These parameters can be obtained from experimental structure-determination (e.g. X-ray or
NMR) and spectroscopic (e.g. IR) measurements, or from quantum mechanical (QM) calculations.
Fortunately, the parameter optimisation was already performed for EAE and PPL by the authors
of the 53A6OXY force field, so that we will simply assume that they are transferable by analogy to
EGM. The covalent parameters of the 53A6OXY force field relevant for EGM are listed in Table 1.
For each of the four types of term, each set of parameter is assigned a type code for the ease of
further reference.3,4 The type codes of the bond stretching, bond-angle bending, improper dihedral
distortion and proper dihedral torsion terms for EAE and PPL are shown in Figures 4b - 7b and
Figures 4c - 7c, respectively5. Now you can (and should!) add the corresponding type codes for
EGM in Figures 4a - 7a.

2.2 Writing the Topology File

Congratulations! You have now determined all potential energy terms present in the EGMmolecule,
i.e. the form of the van der Waals, electrostatic and covalent interactions. Time to let GROMOS
know about this success. And for this, you have to encode your freshly acquired knowledge into a
topology file.

If you have not done so yet, copy the main exercise directory ex1/6 to your home directory. See
Appendix A for an overview of the files found in the directory.

Open the file topo/EGM.top in your favourite text editor. In general, a GROMOS file consists
of a series of blocks. Each block starts with the block name in capital letters and ends with the
capitalised keyword END, both required to be on separate lines. Each block must contain a well-
defined number of entries (character strings, integer numbers or real values, depending on the
specific block) in a defined order. It is important to prepare GROMOS files with great care, as
input errors can only be detected in some cases. In the file EGM.top, you will find a sketch for the
topology file of EGM based on the model you constructed in Section 2.1. All the required blocks
are listed, but some have been left empty, with the line # TODO instead of a content.7 Your task is
to fill these blocks yourself.

The subsections 2.2.1-2.2.4 below describe in more details the block content of the file (and

3 Here again, the 53A6OXY force field considers many more molecules than just EAE and PPL. For simplicity, we
have only taken the types relevant for EGM and renumbered them from 1.

4 Note that GROMOS can use two different forms of potential-energy terms for both bond stretching and bond-
angle bending (the form employed in a given simulation is selected in the input file). For the bond stretching,
the quartic and harmonic force constants are listed with a “q” and a “h” superscript, respectively. For the bond-
angle bending, the cosine-harmonic and angle-harmonic force constants are listed with a “c” and a “h” superscript,
respectively.

5The proper dihedral torsion potential number 1 is defined using the atoms (CH3)-(C)-(OE)-(CH2).
6See the document “CSBMS computational setup” for the exact location of the directory
7Note that in a GROMOS file, any line starting with a hash (#) is a comment, i.e. the entire line ignored upon

reading. Feel free to write your own explanatory comments when making your topology file, it is actually a good
practise.
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(a) EGM (b) EAE (c) PPL

Figure 4: Bond Stretching Potentials

(a) EGM (b) EAE (c) PPL

Figure 5: Bond-Angle Bending Potentials

(a) EGM (b) EAE (c) PPL

Figure 6: Improper Dihedral Distortion Potentials

(a) EGM (b) EAE (c) PPL

Figure 7: Proper Dihedral Torsion Potentials
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bond type code Kq
b /[kJmol−1 nm−4] Kh

b /[kJmol−1 nm−2] b◦ /[nm]

1 1.66× 107 5.02× 105 0.123
2 7.15× 106 3.35× 105 0.153
3 1.02× 107 3.77× 105 0.136
4 8.18× 106 3.35× 105 0.143
5 7.15× 106 3.35× 105 0.153
6 1.57× 107 3.14× 105 0.100

(a) Bond Stretching Potential

angle type code Kc
θ /[kJmol−1] Kh

θ /[kJmol−1 deg−2] θ◦ /[deg]

1 750 0.153 125.0
2 700 0.153 122.0
3 545 0.140 113.0
4 635 0.153 117.0
5 530 0.140 111.0
6 450 0.122 109.5

(b) Bond-Angle Bending Potential

improper type code Kξ /[kJmol−1 deg−2] ξ◦ /[deg]

1 0.0510 0.0

(c) Improper Dihedral Distortion Potential

dihedral type code Kφ /[kJmol−1] δ /[deg] m

1 16.70 180.0 2
2 3.77 0.0 3
3 5.92 0.0 3
4 1.26 0.0 3

(d) Proper Dihedral Torsion Potential

Table 1: Potential Energy Terms in the 53A6OXY force field
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what you have to place into the blocks), from top to bottom. Subsection 2.2.5 tell you how to do
a first consistency check of the file you created using the GROMOS program check_top.

2.2.1 Title, Constants, Atom and Residue Names

First comes the TITLE block. Here, you can give a title consisting of any number of lines. This is
merely a help for yourself, to remember what kind of topology you are doing, very useful in case
you are working with dozens of topologies at a time or have to find out half a year later what
exactly you were doing in this file (the topology title will also be printed in the md output, so you
know what topology was used for a specific run). Type a descriptive title replacing the # TODO tag,
so that your block looks something like

TITLE

My first GROMOS topology

Compound: Ethylene glycol monoacetate (EGM)

Author: Sir Isaac Newton

Note: Adapted from ethyl acetate and propanol in 53 A6_OXY

Date: September 22, 2015

END

The next two blocks are already filled and need no change. The first one, PHYSICALCONSTANTS,
is rather self-explanatory and sets a number of physical constants. The second one, TOPVERSION,
is used internally by the GROMOS program package to keep track of different topology versions.

The following block ATOMTYPENAME contains the number of distinct atom types in your topology8

(first line), then lists their name in order of ascending IAC (each on a separate line). For simplicity,
we already filled out this block for you. You will recognise the 7 atom types of Section 2.1, plus an
additional oxygen atom called OW and given the IAC of 8. It will be used for the representation of
water.

The RESNAME block contains the number of residues (monomers) in the molecule, then lists their
name in order of ascending residue number. For simplicity, we already filled out this block for you.
Your molecule is not a polymer, so it has only one “residue” which we called EGM. This string will
be used to refer to the residue in the analysis programs, but has no influence on the parameter
selection.

2.2.2 The SOLUTEATOM Block

The SOLUTEATOM block contains the number of atoms in the molecule (first line), then lists the atoms
in sequence and provides information on a per-atom basis (two lines per atom9). For simplicity, we
already filled out this block, but you should definitely go through it very carefully and understand
what is there. For each atom, the two lines must list in sequence:

8In general, this block will contain not only the types you need for your specific molecule, but the entire set for a
given force field, e.g. 53 types for the 53A6OXY force field. This is because we do not want to renumber the atom
types for every new molecule. We better use one numbering for all atom types in a force field, take the types we need
for the given molecule, and ignore the others. For the present exercise, however, we did the renumbering and only
include the 7 useful atom types plus one needed for water.

9It would also work to make these two lines a single one (GROMOS moves to the next atom whenever it has all
records for one atom, irrespective of the number of line breaks), but the two-line format is more readable.
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• ATNM: The atom number.
This number will be used to define the covalent potential-energy terms (e.g. in the list
specifying the bonded atom pairs). The numbers of the different atoms should start from
one and be incremental in the list10. For your molecule, the numbering we chose is shown in
Figure 8a.11

• MRES: The residue number.
This number specifies the residue to which the atom belongs. In our case, having only one
residue, this will always be 1.

• PANM: The atom name.
This string will be used to refer to the atom in the analysis programs, but has no influence
on the parameter selection12. For your molecule, the naming we chose is shown in Figure 8b.

• IAC: The integer atom code.
The IAC is used to define the (Lennard-Jones) interaction parameters associated with this
atom. These parameters are given later in the form of a two-dimensional matrix, the lines
and columns of which are the IACs of the two interacting atoms (see LJPARAMETERS block
later). The IACs listed in the block should match those you have in Figure 2a.

• MASS: The atomic mass, given in u.
Watch out that the masses of the united-atoms include those of the attached hydrogen atoms.

• CG: The atomic partial charge of the atom, given in e.
The charges listed in the block should match those you have in Figure 3a.

• CGC: The charge group code (boolean, 0 or 1).
For different reasons13, sets of successive atoms are grouped into so-called charge groups (CG).
A 0 indicates that the current CG starts or continues. A 1 indicates the last atom of the CG.
So, your molecule has 3 CG. Try to draw them in Figure 3a. What are their net charges?

• INE: The excluded-atom list.
Excluded-atom pairs are pairs of close covalent neighbours in a molecule (i.e. normally
those separated by one or two bonds) which are exempted from mutual van der Waals and
electrostatic interaction. For a given atom, the INE record specifies the number of atoms with
higher ATNM sequence numbers that belong to the exclusion list of this atom, then lists their
ATNM sequence numbers in ascending order. Are the excluded pairs listed in the file those you
would expect considering the structure of your molecule?

10Note that although the list in the file must be sequential, there are still many different ways to number the atoms
of a molecule (some choices make your life easier than others, though).

11Warning: Do not confuse the atom number ATNM in Figure 8a with the atom type IAC in Figure 2a. The first one
is just a “label”, the second one determines the van der Waals interactions.

12 Here also, there are many different ways to name the atoms of a molecule (some choices make your life easier
than others, though).

13 These are explained in the lecture: computational speed-up (making a list of CG pairs is faster than making
a list of atom pairs) and reduced cutoff noise (cutting off interactions between neutral CG induces less noise than
cutting off interactions between charged atoms). The CGs should be reasonably small and as much as possible overall
neutral.
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• INE14: The third-neighbour list.
Third-neighbour atom pairs are pairs of third covalent neighbours in a molecule (i.e. those
separated by three bonds), that are subject to special (reduced) mutual van der Waals interac-
tion. The electrostatic interaction is unchanged. For a given atom, the INE14 record specifies
the number of atoms with higher ATNM sequence numbers that belong to the third-neighbour
list of this atom, then lists their ATNM sequence numbers in ascending order. For readability,
one generally aligns the INE14 record just below the INE record. Are the third-neighbour
pairs listed in the file those you would expect considering the structure of your molecule?

(a) ATNM (b) PANM

Figure 8: The unique atom numbers (ATNM) and the atom names (PANM), as defined in the
SOLUTEATOM block. Not to be confused with the atom type (IAC), given in Figure 2a.

2.2.3 Covalent Potential Energy Terms

The BONDSTRETCHTYPE block defines all possible bond stretching potential energy terms in the
molecule. The first entry defines the number of distinct bond potential energy terms, the following
values, in groups of three, the actual potential energy terms. Each potential definition consists
of the quartic (CB) and the harmonic (CHB) force constants and the bond length at the energy
minimum (B0). The successive bond potentials are referred to by a bond-type code (in ascending
order starting from 1), which will be used later to assign a given bond-stretching potential to a
given bond in the molecule.
To complete the blocks defining the bond stretching potentials, do the following:

• Carefully compare the values from Table 1 with the entries in the BONDSTRETCHTYPE block to
make sure that the order and the definitions are identical.

• Bring together the bond definitions (BONDSTRETCHTYPE block and Figure 4a) and the atom
numbers (SOLUTEATOM block and Figure 8a) to fill in the BONDH (all bonds containing at
least one hydrogen atom) and BOND (all other bonds) blocks.14 The first entry denotes the
number of bonds in the block, the entries afterwards define the bonds. Every bond definition
consists of three integer numbers, the first two referring to the atom numbers defined in the
SOLUTEATOM block (ATNM, not IAC), the third defining the bond type as implicitly defined by
the order in the BONDSTRETCHTYPE block.

For a three-atomic molecule containing no explicit hydrogen atoms, the three blocks could look like

BONDSTRETCHTYPE

# NBTY: number of covalent bond types

14The differentiation has purely historical reasons.
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2

# CB: quartic force constant

# CHB: harmonic force constant

# B0: bond length at minimum energy

# CB CHB B0

1.00e7 5.21e5 0.110

2.32e7 7.42e5 0.155

END

BONDH

# NBONH: number of bonds involving H atoms in solute

0

# IBH , JBH: atom sequence numbers of atoms forming a bond

# ICBH: bond type code

# IBH JBH ICBH

END

BOND

# NBON: number of bonds NOT involving H atoms in solute

2

# IB , JB: atom sequence numbers of atoms forming a bond

# ICB: bond type code

# IB JB ICB

1 2 1

2 3 2

END

In analogy to the bond-stretching potential, fill out the bond-angle bending poten-
tial blocks (BONDANGLEBENDTYPE, BONDANGLEH, BONDANGLE), the improper dihedral distorsion
blocks (IMPDIHEDRALTYPE, IMPDIHEDRALH, IMPDIHEDRAL) and the proper dihedral torsion blocks
(TORSDIHEDRALTYPE, DIHEDRALH, DIHEDRAL). Note that for each kind of potential, it is again distin-
guished whether the potential includes a hydrogen atom or not. In contrast to the bond-stretching
terms, which involve two atoms, the bond-angle terms involve three atoms and the (proper and im-
proper) dihedral terms involve four atoms. The order of the bond-angle terms (first atom - central
atom - last atom) and of the proper dihedral terms (first atom - central atom 1 - central atom 2
- last atom) follows the bonds between the atoms. The bond-angle and proper dihedral terms are
identical under inversion of the definition order. For the (planar or tetrahedral) improper dihedral
terms, the central atom is defined first, followed by the three outer atoms in arbitrary order.

The next (already filled) blocks in the file are the CROSSDIHEDRALH and CROSSDIHEDRAL, defin-
ing cross dihedral potential energy terms not used in our molecule. This completes the covalent
interaction part of the topology.

2.2.4 Lennard-Jones Parameters, Temperature and Pressure Groups, Exceptions,
Solvent

The LJPARAMETERS block spans the (triangular) two-dimensional matrix defining the Lennard-Jones
interaction between all defined atom types, both for the normal as well as for the third-neighbour
interactions. In case of nonbonded interactions, the simulation program will resort to this matrix

10

   [ex 1]



to determine the correct potential parameters15.
The SOLUTEMOLECULES block is used to subdivide the solute into separate molecules or frag-

ments, if necessary. Here, we have only one molecule defined. The last atom of each molecule or
fragment (or of the only molecule) must be given.

The next blocks, TEMPERATUREGROUPS and PRESSUREGROUPS allow to treat certain atoms differ-
ently in terms of the coupling to a thermostat or a barostat - you will hear about these techniques
later in the lecture. For now, we will simply treat all atoms equivalently, which means defining
only one temperature and pressure group and give the last atom of the molecule as last atom of
the group, just as with the SOLUTEMOLECULES block above.

The LJEXCEPTIONS block is another special block allowing to tweak certain pairwise Lennard-
Jones interactions specifically. We do not need this for our molecule.

The last two blocks of the topology do not concern the solute anymore, but the solvent it is (or
might be) solvated in. The use of solvent can still be turned off in the input file, even though it
needs to be present here. Here we chose to have water as a solvent, represented by the SPC (simple
point charge) model [2], a very simple but surprisingly accurate water model represented by three
point charges. The SOLVENTATOM block defines the properties of the solvent atoms, starting by a
unique identifier (I), followed by a name (ANMS), which in analogy to the solute is only used for
the identification during analysis. Then, the Lennard-Jones parametrization is given via the IACS

code, as well as the mass (MASS, in u) and the (point) charge (CGS, given in e). No exclusion or
exception list is provided, as all intramolecular non-bonded interactions in solvents are excluded
by definition.

The last block, SOLVENTCONSTR, gives the solvent constraints, defining the geometry of the
solvent molecules.16

2.2.5 Final Check

To help finding mistakes in hand-written topologies, GROMOS++ offers a tool called check_top.
After you saved your topology written in the Sections 2.2.1 to 2.2.4, navigate to your ex1 directory,
and invoke check_top by calling

check_top @topo topo/EGM.top @coord crd/EGM.g96 @pbc r gbond

topo/EGM.top is the topology file you just wrote, crd/EGM.g96 a single EGM molecule coordi-
nate file provided, and @pbc r gbond tells the program about the boundary conditions and the
gathering. Please refer to the doxygen for further information on the options.

In a first phase, check_top performs a number of simple consistency checks on your topology
and writes out errors in case it finds something dubious. Read the output carefully and try to find
possible mistakes in your topology. A correct topology passes the test without errors or warnings!

15Generally, first and second covalent neighbours (connected by one or two bonds) are excluded and will have no
van der Waals interaction at all. Second covalent neighbours (connected by three bonds), i.e. third-neighbours, will
have reduced van der Waals interactions. Only beyond is the interaction “normal” and specified by the IACs of the
two interacting atoms.

16Solvents in GROMOS do not have potential energy terms for bonds, bond angles and dihedrals, but are kept
completely rigid. You can imagine a water molecule as a triangle with three bonds, each of them always kept at the
same distance. This is computationally much more efficient (as constraints are more efficient than bond potentials,
and there are a lot more solvent molecules than solute molecules in a typical system), and the approximation done
by this treatment is justifiable, since we are in general interested in an exact treatment of the solute under the effect
of a solvent, not in the exact treatment of the solvent. If a flexible solvent is needed, it must be defined as a set of
molecules formally belonging to the solute part of the topology.
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In a second phase, check_top calculates the potential energies of all bonded potentials defined
in the topology using the coordinates provided with the @coord flag. An unusually high energy
suggests that the coordinates are far from the reference position given by the potential assigned and
indicates a probable error in the topology, given the coordinates are correct. Use this second indi-
cation to further check your topology. As a guideline, the covalent potential energies corresponding
to the given coordinates should be around 0.46 kJmol−1.

2.3 Initial Validation

Up to now, we have created a model for EGM inspired by analogy with existing parameters for
EAE and PPL, and managed to encode this information into a GROMOS topology file. This is
expected to be a reasonable way of proceeding if the EAE-like and PPL-like fragments of EGM do
not present a dramatic influence on each other in terms of electron density distribution.17 Even
if we believe the transferability assumption to work well in the present case, we cannot trust our
model without a minimal amount of validation against experimental data.

The following three subsections describe in turn: (i) the principle of the validation; (ii) the
setup of the required simulations; (iii) the execution of these simulations on the beaver cluster.

2.3.1 Principle of the Validation

For the purpose of initial validation, we are going to simulate EGM under standard conditions, i.e.
at 298.15K and 1 bar, considering three distinct situations:

• GAS: In the gas phase (ideal gas limit18)

• LIQ: In the pure-liquid phase

• WAT: In water (infinite dilution limit)

For the GAS, we consider a set of N EGM molecules placed at very large distances from each other
(initial positions at intermolecular distances of at least 500 nm) under periodic boundary conditions
in a box large enough to mimic an ideal (non-interacting) gas. For the LIQ, we consider a set of
N (the same number, for simplicity) EGM molecules within a cubic box simulated under periodic
boundary conditions and kept at a size yielding the appropriate pressure for the chosen (standard)
conditions. For the WAT, we consider a single EGM molecule surrounded by Nwat water molecules
within a cubic box simulated under periodic boundary conditions again kept at an appropriate size.

The LIQ simulation will give access to the pure-liquid density (ρ) using the equation

〈ρ〉 = MN

〈V 〉 , (1)

17A lot of organic chemistry is about substituent effects, i.e. cases where this assumption breaks down! For
example, the properties of a substituted benzene ring are seldom the “sum” of those of a free benzene and a separate
substituent, due to resonance effects.

18Thermodynamically, an ideal gas can exist at any temperature and pressure, unlike a liquid or a solid, which
are real phases bound to a specific part of the phase diagram. In practice, we will mimic an ideal gas by placing
molecules so far from each others that there is no interaction, keeping the (very large) box volume unchanged during
the simulation. The pressure during the simulation will not be properly defined, but is not relevant for the value of
the (intramolecular) gas phase energy that we are interested in.
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where M is the molecular weight of EGM, N the number of molecules in the computational box,
V the volume of the computational box, and 〈·〉 denotes an average over the simulated trajectory.

The LIQ and GAS simulations will give access to the enthalpy of vaporization (ΔHvap) of the
liquid using the equation

ΔHvap =
〈U〉gas
N

− 〈U〉liq
N

+RT , (2)

where U is the total potential energy, R the ideal gas constant, T the absolute temperature, and
〈·〉gas and 〈·〉liq denote averages of the GAS and LIQ trajectories, respectively.

A third quantity of great interest for validation is the hydration free energy ΔGwat of the
molecule. Calculating this quantity is, however, a bit more complicated (as you will learn in
Exercise 5), and in the WAT simulation, we are merely going to simulate the compound in water
to examine its conformational properties.

The experimental data for ρ and ΔHvap is reported in Table 2, along with that for the liquids
EAE and PPL. There, you can see in particular that the 53A6OXY force field does a good job at
reproducing experimental data for EAE and PPL. The question is: does our newly constructed
model for EGM do comparably well?

comp ρ(e)(298.15K) ρ(s)(298.15K) ΔH
(e)
vap(298.15K) ΔH

(s)
vap(298.15K) Tb ΔH

(e)
vap(Tb)

/[kgm−3] /[kgm−3] /[kJmol−1] /[kJmol−1] /[K] /[kJmol−1]

PPL 800 [4] 781.0±0.15 [1] 47.5 [4] 49.5±0.02 [1] 370 [3] 41.44 [3]
EAE 895 [4] 881.8±0.27 [1] 35.6 [4] 36.0±0.02 [1] 350 [3] 31.94 [3]
EMG 1108 [3] 63.9 [5] 461 [3] 55.1 [5]∗

Table 2: Experimental data ((e) superscript) and simulation results using the 53A6OXY force field
((s) superscript) for the compounds considered. The boiling temperature Tb and the enthalpy of

vaporization at the boiling point ΔH
(e)
vap(Tb) are given as an additional information. They are not

needed for our simulations but listed in view of Question 5 in Section 4.3.
∗No experimental value at boiling point could be found. The value reported here is measured at
378K.

2.3.2 System Size, Combined Topologies

The topology we have created contains a single solute molecule. As explained in Section 2.3.1, we
need to simulate a larger number N of solute molecules for the GAS and LIQ calculations. For
the WAT calculation, we need only one solute molecule, but surrounded by Nwat water (solvent)
molecules. To chose the number of molecules, we go for a simple rule: The system should be big
enough to be simulated under periodic boundary conditions with a cutoff of 1.4 nm19 without ever
encountering self-interactions with a molecules periodic copy, but otherwise as small as possible to
keep simulations short. Values which have proved to work well for similar systems are N = 512 for
the GAS and LIQ simulations and Nwat = 1024 for the WAT simulations.

191.4 nm is a value used very commonly in recent atomistic simulations. Its justifications comes from water simu-
lations - at 1.4 nm, the coulombic interactions between two water molecules drop below 1% of their magnitude in the
first molecule shell. For general systems possibly having much lower electrostatic shielding, this value is somewhat
arbitrary, but it can be seen as a part of the model’s parametrization.
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To be able to use 512 solute molecules in a GROMOS simulation, we need to combine 512 single
topologies in a single one, creating one solvent consisting of 512 molecules.20 No worries, you do
not have to redo the work you did before 512 times - for this, there is a GROMOS++ program:

com_top @topo 512: topo/EGM.top @param 1 @solv 1 > topo/EGM_512.top

EGM.top is the single molecule topology you just wrote, and we told the program to use it 512
times. The @param 1 and @solv 1 flags tell to use the parameters and solvent definitions of the
first topology.21 This writes a new topology file called EGM_512.top, which now contains the 512
solute molecules mentioned before. Go ahead and have a look at the file, checking the differences
to the single topology you just wrote by hand.

2.3.3 Simulation Setup

As stated in Section 1, the generation of input files and starting configuration files are beyond
the scope of this exercise. For this reason, they are provided to you ready-for-use. Except for
the topo directory you have worked in until now, you will see four further directories in the main
exercise directory: crd, GAS, LIQ and WAT. crd contains the starting configurations for the different
simulations, go have a look if you are curious. The other directories contain everything else needed
to run the calculations mentioned in Section 2.3.1, namely input files and running scripts. The latter
are automatically generated scripts that prepare the GROMOS simulations, run the calculations,
clean up the files, and, if needed, start the next job. The input files, as mentioned in the very
beginning, contain all switches and parameters specifying the desired simulation run. You will look
at them in more details in the next exercises. The most important characteristics of the three
simulations are summarised in Table 3.

GAS LIQ WAT

number of independent jobs 3 6 3
simulation time per job 100 ps 500 ps 500 ps
total simulation time 300 ps 3 ns 1.5 ns

simulation temperature 298.15K 298.15K 298.15K
simulation pressure – 1 bar 1 bar

number of solute molecules 512 512 1
number of solvent molecules 0 0 1024

Table 3: Characteristics of the Simulations

Note that there are several sequentially numbered input files and scripts in each directory.
In general, we are used to subdivide longer jobs in independent, sequentially starting subjobs,
connected only via the end configuration of the first job serving as an input configuration to the

20When looking at the input file (already this week if you are curious, otherwise in the next exercise for sure), you
will see that there is a switch to chose the number of solute and solvent molecules. While this is nicely working for
the solvent (we will use that to have Nwat water molecules in our solvated simulation), this functionality has not been
implemented to date for the solute, despite the switch. This is the reason for the workaround using com_top.

21For this simple example, this does not sound very relevant - but com_top does also allow to combine various
different topologies to a single one - in which case the user has to decide which parameters shall be valid in the
combined topology. Obviously, this implies that the topologies to be combined are compatible with each other - at
least one topology needs to contain the parameters relevant to all molecules to be combined.
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next. Besides a number of general advantages22, in our case a number of independent energy
trajectories will make the analysis in terms of convergence much more convenient.

2.3.4 Submitting and Checking Your Simulations

Once that everything is ready, start your first run by navigating to the folder LIQ and sending the
first job to the queue

qsub -N liq_1 -cwd -j y -o liq_1.o ./ liq_1.run

Check that your simulation actually starts to run23 - if your job is finished after a few second, you
most probably had a crash during initialisation. In this case, go to the folder, and have a look
if you can understand the reason by looking at the file liq_1.omd. Ask an assistant for help if
necessary. If everything seems fine, repeat the above step correspondingly for the GAS and the
WAT simulations in the respective folders.

The next part of doing simulations should be waiting while the computer is doing its part of the
labour. Unfortunately, this is not strictly true in practise - it can feel much more like baby-sitting,
especially when working with little known systems or new methods or programs. It is important
to check from time to time whether the simulations are still running and the system is behaving
in the desired way. As you will only learn to do analysis on the systems in the coming week, you
do not have to worry about it this time - your assistants will have a backup solution for the worst
case.24 If your runs are still up a few minutes after you started them, you are done for this week!

3 Week 2 - Analysis

Last week, we created a model for ethylene glycol monoacetate (EGM) and set up a number of
simulations to assess the quality of the model. This assessment is the task this week.

3.1 Status

Navigate to your simulation directory. You should find the following additional files compared to
last week:

• compressed coordinate trajectories *.trc.gz

• compressed energy trajectories *.tre.gz

• GROMOS output files *.omd

• queue output files *.o

Start by checking that all simulations finished successfully. To do this, open one of the GROMOS
output file. You can check the first part, everything before the lines

22Circumvention of queue time, memory and file size limitations as well as easier restarting and less loss in the
event of crashes, just to name a few.

23Use the command queue to check the current status of the queue - see the Document “CSBMS Computational
Setup” for further information.

24In case you anyway want to check, do not forget that from home, you need a running VPN connection to access
to beaver. If you want to use any program having a graphic user interface, use ssh -X when logging in to beaver.
Check the “CSBMS Computational Setup” document for further information.
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==================================================

MAIN MD LOOP

==================================================

to see how the simulation was set up. Then move to the very end of the file. You will find a
summary of the simulation and, hopefully, the line

MD++ finished successfully

Check that all simulations finished successfully.25 If you notice any problem with your simulations,
try to find out what the problem could be by checking the messages in the output file. Then talk
to an assistant to check how to solve the problem.

3.2 Visualisation

In a first step, we would like to visualise our simulations, thereby getting a first feeling of what
is happening. Let us start with the gas-phase simulations by moving to the GAS directory. The
coordinates of the system during the simulation run are buried within the coordinate trajectory
files. In order to visualise them in an external program like vmd, we must extract them. The
GROMOS++ program for this task is called frameout. Create a file called frameout.arg within the
GAS folder with the following content:

@topo ../ topo/EGM_512.top

@pbc r gbond

@spec ALL

@outformat pdb

@include ALL

@time 0 2

@single

@traj gas_2.trc.gz gas_3.trc.gz

Please check the GROMOS++ doxygen (navigate to available, then find frameout) for further doc-
umentation on the options chosen above. You can then call frameout as26

frameout @f frameout.arg

Then, open vmd on your local machine and load the file just created under File→New Molecule.
It should be named FRAME_00001.pdb. In the gas phase, you will not see a lot initially, as the box
is extremely large compared to the molecules. We should therefore choose one molecule to focus
on - you can do that via Graphics→Representations. Under Selected Atoms, replace all by
resid 2527 and press Enter on your keyboard. Then, click on the “Display” window, and press
= on your keyboard. Your view should now be centred on the chosen molecule. You can now
play around with the different options in the “Graphical Representations” window to change the

25Useful trick: To rapidly check a larger number of files, try a command like
tail -n5 *.omd

or
for f in *.omd; do echo $f; grep ’MD++ finished successfully’ $f; done

26Note that you could also type the arguments directly, without the use of an argument file, just as we did using
check_top.

27As you might have guessed, any number between 1 and 512 (for the GAS and LIQ simulations) after resid will
give you access to a specific molecule.
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appearance of your molecule, and view different viewing angles and zooms in the “Display” window.
To look at the other frames of the simulation, the camera needs to follow the chosen molecule. This
is done using Extensions→Analysis→RMSD Trajectory Tool. In the top left corner of the new
window, replace protein by resid 25, then click ALIGN. Go back to the “Display” window, hit =
once more, then go to the “VMD Main” window and click the small “Play” icon in the lower right
corner of the window. Feel free to play around a bit with VMD, then repeat the steps just done
for the LIQ and WAT simulations.
You now have the tools to answer Question 4.2.1

3.3 Energy Trajectory Analysis

Now it is time to look at other properties of the system along the course of the simulation. A
large number of observables gets calculated during the simulation run and saved in the energy
trajectories. The GROMOS++ program ene_ana extracts values from the trajectory, saves them
in time series and calculates the average, standard deviation and error28 over the simulation run.
The properties that ene_ana is aware of are defined in a library. You can create your own (given
a certain knowledge of the structure of the energy trajectories) or modify the one standardly
distributed with GROMOS. For our purposes, however, the standard library is more than enough.
Create a file called ene_ana.arg within the folder LIQ with the following content:

@topo ../ topo/EGM_512.top

@library /usr/local/CSBMS/lib/ene_ana.md++.lib

@prop densit

totpot

@time 0 2

@en_files liq_2.tre.gz liq_3.tre.gz liq_4.tre.gz

liq_5.tre.gz liq_6.tre.gz

densit and totpot are two of these properties defined in the library. Open the one we are using
here, and have a look at the properties defined. You will need at least one other property to answer
the questions at the end of this exercise, and many more in the exercises to come! You can then
call ene_ana as

ene_ana @f ene_ana.arg > ene_liq.out

As mentioned, ene_ana returns the average values of the chosen properties, with standard deviation
and errors (check the file ene_liq.out). Further on, it also writes a timeseries for each property
separately, see for example totpot.dat. A very simple way to have a quick look at this timeseries
is by using xmgrace totpot.dat. xmgrace has a lot of options to customise your plot, just explore
a bit! Note that ene_ana always chooses the same file names for the timeseries, make sure that
you do not overwrite important data. Repeat the steps just done for the GAS simulations using an
ene_ana.arg file in the GAS folder containing

@topo ../ topo/EGM_512.top

@library /usr/local/gromos -1.3.2/ share/gromos ++/ ene_ana.md++. lib

@prop totpot

28The errors are calculated using block averages of varying sizes. Thereby averages taken over different intervals
of the total simulation time are compared to get an estimate of the error. More details can be found in Ref [6].
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@time 0 2

@en_files gas_2.tre.gz gas_3.tre.gz

You now have the tools to answer Questions 4.2.2 and 4.2.3

4 Report

4.1 Format

Just as for experimental approaches, mastering the technique is only one component in the scientific
investigation of a given problem. Equally important components - in experiment as well as in
simulation - are to:

• Formulate the question clearly

• Design an appropriate experiment to answer the question

• Interpret the results in terms of the question

• Be aware of the shortcomings and approximations of the employed method

To train these components also (at least to some extent), we expect you to hand in a short
report after each exercise series. This report should be a bit like the “results and discussion”
section of a scientific article. No need to repeat all what you did. Just quote your main results
and observations, possibly using tables or/and graphs, and discuss what scientific message can be
extracted from them.

To help you, at the end of each exercise series, you will find a “report” section with two sub-
sections (here, these are the next two subsections): simulation results and thinking questions.
The first one provides a hint on how you could structure the discussion of the results of the spe-
cific exercise in your report. The second one asks “outlook” questions related to the theme of the
exercise (and the corresponding lecture material), which should also be answered in your report.

Try to keep you report short and precise. If possible, keep its length to a maximum29 of two
A4 pages text (i.e. excluding the space taken by possible graphs or tables). The deadline to
hand in your report is the end of the week following second week of the exercise (see front page
of this document for the exact date). Please hand in your report to the responsible assistant
either via e-mail (one single printable PDF document!) or on paper. You can find the contact
details of the assistants on the course web page.

4.2 Simulation Results

4.2.1 Visualisation

(a) Give a qualitative description of the conformational behaviour of one EGM molecule in the
gas phase, in the liquid, and in water. What are the most striking differences? Can you
explain the reason for these differences?

29But we are not going to hang anyone if it is three (or even four) pages, so no need to decrease the character font
to 6 points so as to squeeze all on two pages!
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(b) Repeat this analysis considering a few different single molecules in the liquid and the gas phase.
Are the conformational behaviours similar for all these molecules, i.e. are your observations
noted in (a) representative?

(c) Direct visualisation is a very crude method to monitor the conformational behaviour of a
molecule (but it is not a bad start to get a “feeling”!). Can you suggest observables we could
calculate along the trajectories (i.e. quantities that can be given a value for each trajectory
frame), so as to characterise the conformational behaviour on a quantitative basis?

4.2.2 Convergence

(a) The ene_ana input file given for the LIQ phase (see Section 3.3) omits the first trajectory file.
Repeat the analysis including also the first trajectory file and plot the timeseries of the total
potential energy and the density. What do you observe? What do you conclude concerning
the starting configuration that was provided to you? When is it sensible to discard an initial
piece of simulation when doing the analysis?

(b) Again omitting the first trajectory, redo the analysis using 1, 2, 3, 4 and all 5 trajectories.
From the output of ene_ana, read out the average and the error estimate. Plot the density and
the heat of vaporization30 (including error bars) as a function of the number of trajectories
considered in the calculation. Was the total simulation length chosen long enough?

(c) The WAT simulation alone is not sufficient to calculate the hydration free energy ΔGwat of
EGM (you will see this in Exercise 5). But we can use it to estimate the hydration enthalpy
ΔHwat based on the solute-solvent non-bonded energy. Write the corresponding equation and
use ene_ana to estimate the value based on your simulations.

(d) The approach in (c) is not rigorously correct. Why? How could we make it right?

4.2.3 Quality of the Model / Parameter Transferability

(a) Report the values of ρ and ΔHvap you calculated for EGM (including an error bar estimate)
and compare these with the experimental data in Table 2. Is the agreement as good as for
EAE and PPL?

(b) From this comparison, is the transfer of EAE and PPL parameters to construct a model for
EGM appropriate? If not, what could be the reason for the breakdown of the transferability
assumption?

(c) If you wanted to refine your initial EGM model to improve agreement with experiment by
slightly adjusting parameters, what kind of parameters would have the largest influence on ρ
and on ΔHvap?

4.3 Thinking Questions

Answer the following questions:

30You can keep the calculation for the GAS potential energy unchanged.
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1. Do the atomic partial charges of your EGM molecule (Figure 3a) follow more or less what you
expect based on chemical intuition, e.g. considering the electronegativities of the different
atoms?

2. Use the LJPARAMETERS block of your topology file to calculate the pairwise C6 and C12

Lennard-Jones interaction coefficients for the (normal) interactions between the CH2-CH2,
CH2-CH3 and CH3-CH3 atom-type pairs. Convert these values31 to well depths (ε) and
distances at the minimum (Rmin) of the Lennard-Jones curve. Comment on the differences
between the three pairs of values.

3. In the gas-phase simulations, we started with molecules being separated by at least 500 nm,
simulated for 300 ps at 298.15K, used a cutoff of 1.4 nm, and hoped that the molecules would
never collide (or even just interact). Do a back-of-the-envelope calculation showing that this
is a reasonable assumption. For this, you need to estimate the average translational velocity
of a gas-phase EGM molecule at the selected temperature.

4. Have a look at the formula to calculate the enthalpy of vaporization given in Equation 2
(Section 2.3.1). Why did we use the average total potential energy 〈U〉 and not the average
total energy 〈H〉 = 〈K + U〉? Why did we have to add RT?

5. When you look up for experimental data on the enthalpy of vaporization of liquids, you
typically find two types of values, both corresponding to a standard pressure of 1 bar: a
value at the boiling point Tb of the liquid and a value the standard temperature of 298.15K.
What are the two different types of experimental measurements leading to these two values?
In force-field parametrization, we preferably use the standard value to be compared with a
simulation at 298.15K (as we did for EGM). Why is it so?

A Available Files

In the main exercise directory ex1/, you will find ex1.pdf, the digital version of the document you
are reading, and five additional directories, namely

• topo/

Contains EGM.top, a sketch for the topology file to be created during this exercise.

• crd/

Contains the starting coordinates for the systems you will simulate to validation the topology
(EGM_gas.g96, EGM_liq.g96 and EGM_h2o.g96) as well as the coordinates of a single EGM
molecule (EGM.g96) used in a first consistency check in Section 2.2.5.

• GAS/

Three input files (*.imd) and three script files (*.run) ready to be used to run the gas phase
simulation, once the topology is created.

• LIQ/

Six input files (*.imd) and six script files (*.run) ready to be used to run the liquid phase
simulation, once the topology is created.

31The equations are in the lecture notes
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• WAT/

Three input files (*.imd) and three script files (*.run) ready to be used to run the solvated
simulation, once the topology is created.
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CSBMS: Exercise 2

MD Simulation of a β-peptide
Document version: 27.08.2019

Exercises week 1: 08.10. or 10.10.
Exercises week 2: 15.10. or 17.10.
Deadline for the report: 27.10.
Contact: thomas.stadelmann@phys.chem.ethz.ch

Thomas Stadelmann - HCI G238 / HCI E314

Summary

In this second exercise, we will perform molecular dynamics (MD) simulations of a β-
hexapeptide in methanol. The peptide considered is known experimentally to adopt either
a hairpin (folded) or more disordered (unfolded) conformation in this solvent, depending on
the environmental conditions. We will thus consider different conditions of ionic strength and
temperature in the simulations, in order to investigate the influence of these parameters on the
folding-unfolding equilibrium of the peptide. In terms of setup, you will learn how to: (i) con-
struct a molecular topology file by assembling building blocks already available in GROMOS; (ii)
generate an initial configuration including solvent and ions based on a file providing coordinates
for the peptide alone; (iii) modify/complement an existing input file for carrying out an energy
minimization (EM) or a MD simulation. In terms of analysis, you will use the following prop-
erties to investigate the folding-unfolding equilibrium: (i) visualization of the trajectory; (ii)
atomic positional root-mean-square deviation (RMSD) from a canonical hairpin structure; (iii)
end-to-end distance of the peptide; (iv) solute-solute and solute-solvent electrostatic interaction
energies.

1 Introduction

A β-peptide is an oligomer of so-called β-amino acids, i.e. amino acids which, compared to the α-
amino acids constituting natural peptides and proteins, possess an additional carbon atom between
the amino and carboxylic acid groups1. For these peptides, the two aliphatic carbon atoms Cα and
Cβ of the chain may or may not be functionalized and, when functionalized, may be of R or S
chirality2.

In this exercise, we consider the β-hexapeptide shown in Fig 1. The residue sequence is given
in the caption, and the peptide is shown in a form that corresponds to a pH where the two amino
groups (one terminus and one sidechain) are protonated and the carboxylic acid group (other
terminus) deprotonated, resulting in a net peptide charge of +1e. The conformation displayed
corresponds to a hairpin, inferred from NMR experiments as being a dominant folded conformer

1 These peptides are of great interest as peptidomimetic drug candidates, because they “look” like natural peptides
but cannot be degraded by proteases. They have been studied extensively, both experimentally and theoretically, see
in particular the work of the Seebach and van Gunsteren groups at ETHZ [1, 2, 3]

2 The sequence of atoms is H2N-Cβ-Cα-COOH and the chirality is specified as (R/S,R/S) where the first specifier
refers to Cβ and the second to Cα.
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in methanol under “usual” conditions3. The hairpin4 consists of two anti-parallel strands, so that
the N- and C-termini, which bear net charges of opposite signs, are in close proximity. The strands
are also connected by a number of hydrogen-bonds between backbone amide NH and carbonyl CO
groups.

Figure 1: The β-hexapeptide studied in this exercise. The peptide is shown with two protonated amino groups
and a deprotonated carboxylic acid group, and in a model hairpin conformation. The sequence of the peptide
is H+

2 -(S,R)-β3-HAla(αMe) –(S,R)-β3-HVal(αMe) –(−,R)-β2-HVal –(S,−)-β3-HLys –(S,R)-β3-HAla(αMe) –(S,R)-
β3-HLeu(αMe) -OH. For more information, please refer to Ref. [4] (note that this study considered a different peptide
protonation state, with the carboxylic acid protonated).

We are going to perform molecular dynamics (MD) simulations of the peptide (in the specified
protonation state) in methanol considering a set of different environmental conditions of ionic
strength and temperature, summarized in Table 1. Because it would be silly to ask everyone to
run the 9 combinations, each participant will be asked to run only one set of conditions. Now is a
good time to ask your assistant to distribute the various conditions among participants, if she/he
did not do it already! 5

3 One should be very careful about such statements. It would be tempting to say simply that the represented
structure is “the structure of the peptide in methanol”. The truth is that: (i) it is a single-structure model for
an ensemble of conformations; (ii) even under “usual” conditions this “folded” ensemble still only accounts for a
fraction of the conformers at equilibrium, the one that is detected by NMR precisely because it is structured; (iii) the
model structure is inferred from NMR on the basis of NOE-derived average proton-proton distances, which always
underdetermine an ensemble, i.e. must be complemented by some modeling; (iv) what is referred to as “usual” con-
ditions must be specified very precisely before any further statement (e.g. concerning the population of this “folded”
ensemble) makes sense (pH, counter-ion content, residual water, pressure, temperature, ...). Considering all these
complicating factors, you should already see why MD studies (characterizing the detailed content of conformational
ensembles under different environmental conditions) can help a lot in the correct interpretation of experimental data.

4 More precisely called a β-hairpin, where the β refers to the specific structural motif, and has nothing to do with
the β in “β-peptide”.

5 Note that “none” corresponds to a non-neutral system and “380K” is above the boiling point of methanol
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ions 300K 340K 380K

none A B C
1 Cl− D E F
11Cl− + 10Na+ G H I

Table 1: Set of 9 environmental conditions (labels A-I) to be considered in the simulations. The simulations are
to be performed for the β-peptide of Fig. 1 in methanol and at 1 bar, with the selected peptide protonation state
(which implicitly determines the pH and an overall peptide charge of +1e), at the indicated temperature and with
the indicated counter-ion content (which implicitly determines the ionic strength). Each participant will be assigned
one of the 9 cases A-I by the assistant. Please do not continue this exercise before you are assigned one case.

As stated in Exercise 1 (see Introduction therein), any GROMOS simulation using the program
md (or md_mpi) requires at least three files to be provided, namely

• an input file (flag @input)

• a topology file (flag @topo)

• a starting configuration file (flag @conf)

In Exercise 1, you made the topology file the hard way, namely from scratch. In this exercise,
your life will be easier because the current GROMOS force field [6, 7] (version 54A7) includes
parameters (in the form of building blocks) for all residues involved in your β-peptide, for the Cl−

and Na+ ions, and for the methanol solvent. So, you’ll just have to learn the way to assemble these
elements into a topology for your specific peptide. And since the topology making is far easier, we
can now invest a bit more time on the two other files...

For the starting configuration file, we will provide you with a GROMOS configuration file that
contains atomic coordinates for the peptide alone in the model hairpin conformation of Fig. 1. You
will then learn how to: (i) solvate the peptide with methanol so as to fill a rectangular computational
box that will be simulated under periodic boundary conditions; (ii) add the appropriate number
of counter-ions into your box; (iii) perform the initial energy minimization (EM) of the system,
required to avoid having a catastrophically high potential energy (clashes and gaps between atoms)
when you start your MD simulation.

And for the input file, we will provide you with a partially filled template, leaving it up to you
to complement the most relevant blocks (and understand what they mean). Because the EM and
subsequent MD steps use largely similar input files, you will actually create the EM input file first,
and later adjust it into the MD input file.

This will be it for Week 1. Then you will run one system of Table 1 (again, ask the assistant
which one). And in Week 2, we will gather the trajectories generated by all participants in a
common directory, so that you can analyse all runs of Table 1. For the analysis of the simulations,
we will focus on observables that give us a hint on the course and energetics of the folding-unfolding
equilibrium (RMSD from the model hairpin structure, end-to-end distance, solute-solute and solute-
solvent electrostatic interaction energy).

(338 K). We consider these “unphysical” conditions to underline trends: in MD, everything is possible - not only real
situations!
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2 Week 1 - Setting Up and Starting the Simulations

The work for Week 1 is described in the five following subsections and consists of

• Creating the topology file (Section 2.1)

• Preparing the initial coordinate file (Section 2.2)

• Performing EM to relax the system (Section 2.3)

• Setting up the MD simulations (Section 2.4)

• Setting up the simulation jobs (Section 2.5)

• Starting the simulation jobs (Section 2.6)

The files provided to you for these operations can be found in the directory /usr/local/CSBMS/

ex2. Make a ex2 subdirectory in your home directory for all files of this exercise and copy the lib,
md, min and topo directories from /usr/local/CSBMS/ex2 to your home.

mkdir ~/ex2

cp -r /usr/local/CSBMS/ex2/lib ~/ex2/

cp -r /usr/local/CSBMS/ex2/md ~/ex2/

cp -r /usr/local/CSBMS/ex2/min ~/ex2/

cp -r /usr/local/CSBMS/ex2/topo ~/ex2/

For simplicity, this document will only describe how to generate the situation labelled E in Table 1,
i.e. a simulation at 340 K with a single Cl− counter-ion. To keep track of the system considered in a
particular set of files, the filenames should always contain a string like “hexapepE”, where “E” refers
to the situation considered. If the assistant asked you to run the simulation for another situation
of Table 1, do first the variant for system E and then extrapolate a bit to make the setup for the
other system. In particular always use the corresponding string in filenames, e.g. “hexapepA” for
situation A and so on.

2.1 Creating the Topology

The GROMOS community develops not only a simulation package (MD engine plus setup and
analysis tools), but also a force field. The current version of the force field is called6 54A7. The
force-field information for 54A7 is contained in two kinds of files7.

• A set of molecular topology building block (mtb) files, which you can find under /usr/local/
CSBMS/ex2/topo/54a7.mtb (main file) and /usr/local/CSBMS/ex2/topo/54a7_*.mtb (spe-
cialized files).

6 54 is the number of atom types, A stands for a force field for condensed-phase simulations (e.g. pure liquids or
hydrated molecules) and 7 is the version number

7 These can be directly found in the standard gromos distribution under /usr/local/gromos/forcefields/

official, but we copied the relevant ones to /usr/local/CSBMS/ex2 for simplicity.
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• An interaction function parameter (ifp) file, which you can find under /usr/local/CSBMS/
ex2/topo/54a7.ifp.

The mtb files contain records for a series of building blocks. These can be either entire molecules
or monomers (residues) to be linked together within a polymer. For each building block, the atoms
and their properties (name, mass, charge, IAC, exclusions, third neighbors) are listed, followed by a
list of covalent terms (bonds, angles, impropers, dihedrals). For residues, there is also information
on how to do the linkage of a residue with the preceding and following residues. Special building
blocks are also available for the “capping” of polymers, i.e. to terminate a chain before the first
residue or after the last residue. Finally, building blocks are also available for various solvents. For
your β-peptide, you will need the main mtb file 54a7.mtb, which contains the solvent methanol and
the Cl− and Na+ ions, and the specialized mtb file 54a7_beta.mtb, which contains the β-amino
acid residues and associated capping groups. Most parameters are not directly provided within the
mtb file, but referred to by a code (IAC, bond-type, angle-type, ...). The ifp file in turn binds these
codes to specific values of the force-field parameters. GROMOS provides an automatic tool called
make_top that can assemble residue building blocks into a chain according to a specified residue
sequence (which must also include the two capping groups).

So our first task is to define the sequence corresponding to the β-hexapeptide of Fig. 1 (with
the specified protonation states). For that, you would have to compare the sequence given in
the caption of this figure and find the corresponding building-block names, e.g. by looking in the
GROMOS manual Volume 7 [5] or in the 54a7_beta.mtb file. For simplicity, we did this search
for you and the sequence of your peptide in the GROMOS nomenclature is:
NH3+ SRAM SRVM SAV SBKH SRAM SRLM COO-

We selected the charged capping groups NH3+ and COO− and the protonated form SBKH of β3-HLys
to match the required protonation states8. Possible counter-ions must also be specified in the
topology, and for this, you can simply add them after the peptide sequence9, here as CL- or NA+
building blocks. For our reference example of system E in Table 1, we need to add one single CL-

at the rear of the peptide sequence.
At this point, it is not a bad idea to open 54a7_beta.mtb in your favorite editor, and take a

glimpse at what the records look like for the 8 building blocks above. Although we are not going to
explain this in more details, you will see that a lot of the data looks very similar to what you wrote
by hand in your topology file for Exercise 1. You can also look at the solvent molecule methanol
(building block name CH3OH) and the ions (CL- and NA+), which are located in 54a7.mtb. Now:
let’s build!

Go to the subdirectory topo in your ex2 directory.

cd ~/ex2/topo

Create a file make_top_hexapepE.arg with the arguments required for running make_top. These
arguments are:

8 Here, we chose the protonation states for you. In general, you will have to pay special attention to this by
yourself, selecting deprotonated or protonated forms depending on pKa’s and pH. Watch out: this decision can have
a very large impact on the simulation results! Whenever you have a bit of time for additional exploration: can you
find in the mtb file the uncharged variants of the two capping groups and of the β3-HLys residue?

9Another is to set up the topologies of the peptide and the ions separately and use the com_top program in order
to combine these topologies [5].
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• @build followed by the mtb files to be used (we need two of them, see above)

• @param followed by the ifp file to be used (one file, see above)

• @seq followed by the sequence of building blocks (we need eight of them plus one ion for
situation E, see above)

• @solv followed by the name of the solvent building block (see above)

Now, you can run make_top to generate hexapepE_54a7.top

make_top @f make_top_hexapepE.arg > hexapepE_54a7.top

The generated file hexapepE_54a7.top contains the complete molecular topology of the peptide
plus one Cl− counter-ion, along with methanol as a solvent. The first thing to do is definitely to
look at it. You should recognize the exact same structure (block content) you had in Exercise 1 for
your organic molecule10. The second reflex you should now have is to check it using check_top. If
you don’t remember how to set up the argument (.arg) file for this program, refer to the script of
Exercise 1 or, like a real GROMOS pro, try to find the arguments needed using the doxygen docu-
mentation.11 For the @coord argument of check_top, you can use the coordinate file /usr/local/
CSBMS/ex2/coord/hexapep_vac.cnf, /usr/local/CSBMS/ex2/coord/hexapep_Cl_vac.cnf or /

usr/local/CSBMS/ex2/coord/hexapep_11Cl_10Na_vac.cnf depending on your system according
to Table 1.12

At this point, you may also want to generate the topology file for the specific variant of Table
1 that has been assigned to you (with appropriate filenaming containing the corresponding letter
A-I). In addition, create the topology file for system A since we need this file in later sections (when
using the sim_box and ion modules).

2.2 Preparing the Initial Coordinates

In general, preparing an initial (solute) coordinate file for a given biomolecule is not a trivial task,
because, in the best case13, you may have to convert from non-GROMOS formats (e.g. PDB) and
possibly reorder, add or delete atoms14. All these issues will be discussed in Exercise 3.

For the present exercise, we decided to be nice and to provide you with a file in GROMOS
format listing the coordinates of all atoms for the model hairpin structure of your peptide as
displayed in Fig. 1, already in the correct order15. This file can be found in /usr/local/CSBMS/

ex2/coord/hexapep_vac.cnf. All you have to do is to add the solvent and the counter-ions.

10 The main differences are that : (i) the lists of atoms and force-field terms (bonds, angles, ...) are much longer,
because your peptide is much larger; (ii) the lists of types (atom types, bond types, angle types, ...) and the matrix
of Lennard-Jones parameters are also much longer, because they correspond to the entire 54A7 force field, not just
a subset of those you need for your specific molecules; (iii) the solvent is now methanol and not water.

11see in the “CSBMS Computer Setup” document if you don’t know how to access it
12The pH is implicitly determined by the protonation state and the ionic strength is implicitly determined by the

counter-ion content.
13 The worst case is when a piece (e.g. loop) is missing in your experimental coordinate file or, worse, if there is

no experimental structure. Then the only option is to try to model the structure.
14 Particularly hydrogen atoms, which may be present in the source structure but absent in the simulation (united

atoms) or, in the opposite, absent in the source structure (X-ray structure) but present in the simulation.
15The structure is taken from Ref [2] where it has been derived based on 20-NOE-derived proton-proton distances

in combination with MD simulations.
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We are going to simulate the peptide in methanol under periodic boundary conditions based
on a rectangular computational box. This means that we will only consider atomic coordinates
for the particles within this rectangular box, but implicitly assume that the box is surrounded
by an infinite number of periodic copies of itself. Initial coordinates for the methanol molecules
surrounding the peptide can be generated using the GROMOS++ program sim_box. The size
of the box (three edge lengths) is typically defined by imposing a minimum distance between any
solute atom and the closest box wall, with the solute at the box center (and possibly optimally
rotated). We will use a value of 1.5 nm for this minimal distance16.

The program sim_box will use a reference file containing the coordinates of methanol molecules
in the pure liquid17.

This file is provided18 in /usr/local/CSBMS/ex2/coord/ch3oh.cnf, and sim_box will pave
our box with methanol using these coordinates. Obviously some methanol molecules will nastily
overlap with the peptide and must be deleted. Any solvent molecule with an atom closer than some
minimal distance from any atom of the peptide will be removed by sim_box. We will use a value
of 0.23 nm for this minimal distance.

Go to the subdirectory box in your directory ex2.

cd ~/ex2/box

sim_box @f sim_box_hexapep.arg > hexapepE_met.cnf

Create a file sim_box_hexapepE.arg with the arguments required for sim_box. These argu-
ments are:

• @topo followed by the molecular topology file to be used19

• @pbc followed by the desired box shape (see above; r: rectangular, t: truncated octahedron,
c: triclinic)

• @pos followed by the coordinate file of the solute in vacuum (see above)

• @solvent followed by the coordinate file of the reference pure-solvent box (see above)

• @minwall followed by the minimum solute-to-wall distance (see above)

• @thresh followed by the minimum solute-to-solvent distance (see above)

• @rotate to optimally rotate the solute prior to filling the box which does not need any
additional arguments (see above; rotation will lead to the minimal possible box size)

Now you can solvate the peptide using

16 This distance must be larger than the electrostatic long-range cutoff of 1.4 nm, but the choice of 1.5 nm is a bit
minimalistic! We do this because we want the simulations to run fast. For serious work, we should consider using a
larger distance.

17Well equilibrated by someone else in previous simulations at 300 K and 1 bar, and provided in the GROMOS
distribution.

18 These types of files can be directly found in the standard gromos distribution under gromos/forcefields/

official, but we copied the relevant one to /usr/local/CSBMS/ex2 for simplicity.
19 Remember that at present, we have no ions in the coordinate file. So, you need a topology without ions. You

can generate it as described in the previous section. To save time, the resulting file is also provided in /usr/local/

CSBMS/ex2/topo/hexapepA.top.
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sim_box @f sim_box_hexapep.arg > hexapepE_met.cnf

Counter-ion atomic coordinates can then be generated using the GROMOS++ program ion,
which replaces a given number of solvent molecules by ions. The program proceeds by successive
replacements, substituting every time the molecule at the location of highest or lowest electrostatic
Coulomb potential (depending on the ion charge - we use 0.8 kJ/mol) by an ion. Ions can only be
generated beyond a given distance from any solute atom. We will use a value of 0.35 nm for this
minimal distance.

Go to the subdirectory ion in your ex2 directory.

cd ~/ex2/ion

Create a file ion_hexapepE.arg with the arguments required for ion. These arguments are:

• @topo followed by the molecular topology file to be used (without any counter-ions)

• @pbc followed by the desired box shape

• @negative followed by the number and the name of the negative ion(s) to be added

• @positive followed by the number and the name of the positive ion(s) to be added

• @potential followed by the value for the electrostatic potential (see above)

• @mindist followed by the minimum distance to the counter-ions (see above)

• @pos followed by the coordinate file of the peptide in methanol (the one we just generated
with sim_box)

You can now add the ions by typing

ion @f ion_hexapepE.arg > hexapepE_box.cnf

Done. You have prepared your computational box! It is now a good idea to open the file
hexapepE_box.cnf to see how it looks like. What are the dimensions of the box? Is it rather
isotropic (close to a cube) or anisotropic (elongated)? How many methanol molecules have been
generated? Have the ions been inserted correctly? You may also want to visualize the box using
vmd which you already know from Exercise 1, it should look like shown in Fig. 2.

At this point, you may also want to generate the coordinate file for the specific variant of
Table 1 that has been assigned to you (with appropriate filenaming containing the corresponding
letter A-I).

2.3 Relaxing the System

Let’s face it: throwing the peptide into a box of solvent using the sim_box program and swapping
solvent molecules for ions using the ion program is a rather barbarian procedure to generate an
initial configuration. Not unexpectedly, the system will not be very happy in this patched-together
configuration, i.e. the potential energy is likely to be quite high. There will be high-energy atom-
atom contacts as well as unfavorable vacuum gaps, prominently at the solute-solvent interface. In
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Figure 2: Neighborhood of the β-hexapeptide in a hairpin configuration solvated by methanol (white sticks) within
the computational box. The ions are not visible in this picture.

order to relax this initial configuration, the system should undergo energy minimization (EM),
which can be done using the program20 md (or md_mpi).

Go to the subdirectory min in your ex2 directory.

cd ~/ex2/min

Copy the file hexapep_em_template.imd to the name hexapepE_em.imd. This file already contains
the appropriate block structure for running an EM. Some of the blocks are only partially filled with
the string #TO_DO replacing specific entries. You guessed right: what is filled is what we don’t want
to discuss in details today (often, these are values that you generally don’t change), and the #TO_DO
you must replace by appropriate values.

In the TITLE block

TITLE

Exercise 2: My first GROMOS MD simulation

Compound: hexapeptide in methanol and counter -ions

Author: Sir Isaac Newton

Date: October 6, 2017

END

you provide as usual basic info on origin/nature of the system/job.
If an ENERGYMIN block

ENERGYMIN

# NTEM NCYC DELE DX0 DXM NMIN FLIM

#TO_DO 1 #TO_DO 0.01 0.05 2000 0.0

END

is present, we tell the MD++ program to perform an EM run (default is a MD run). The NTEM

switch selects the EM algorithm, where 1 is steepest descent (SD) and 2 is conjugate gradient (CG).
The integer number NCYC, used in CG only, sets the interval (in steps) at which we reset the search

20Yes, in GROMOS, the same program is used to run EM and MD.
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direction to the gradient.21 The real number DELE is the termination criterion, i.e. we will stop
the EM when the potential energy difference over a step becomes smaller than this. 22 The real
number DX0 sets the initial step size. The real number DXM sets the maximal step size. The real
number FLIM can be used to limit the absolute value of the forces to a maximum value before the
algorithm is applied. With NMIN, we set the minimum number of iteration steps for our algorithm.
We will use SD until the potential energy difference over a step becomes smaller than 0.1 kJmol−1.
Reasonable values for the other parameters are already filled in.

The SYSTEM block

SYSTEM

# NPM NSM

1 #TO_DO

END

specifies the number of solute (NPM) and solvent (NSM) molecules in the system. You only have one
solute23. The number of solvent molecules has been determined by sim_box (solvation) and ion

(replacement by ions). Have a look in the file ../ion/hexapepE_box.cnf (and keep in mind that
it might not be the same for the other systems of Table 1).

The INITIALISE block

INITIALISE

# NTIVEL NTISHK NTINHT NTINHB NTISHI NTIRTC NTICOM

NTISTI IG TEMPI

#TO_DO 0 0 0 1 0 0

0 210185 #TO_DO

END

specifies how a run should be initialized. It will be explained later in Section 2.4. The values
NTIVEL and TEMPI are irrelevant in EM. So, just set them to 0 and 1.0 for now.

The STEP block

STEP

# NSTLIM T DT

#TO_DO #TO_DO #TO_DO

END

specifies the maximum number of steps (NSTLIM) for the energy minimisation24. Let’s set this
maximum to 5000 steps. The values T and DT are irrelevant in EM and will be explained later in
Section 2.4 for MD. So, just set them to 0.0 and 1.0 for now.

21 This is because CG may get “trapped” in a subspace of the conformational space, failing to achieve full mini-
mization.

22 This is because CG may get “trapped” in a subspace of the conformational space, failing to achieve full mini-
mization.

23 By “solute”, it is meant whatever is not solvent in the topology file. If you have counter-ions along with the
peptide in the solute topology file, they are considered to belong to the solute and you still have only one solute
“molecule”. In fact, NPM > 1 is no longer supported by MD++ (it was a feature of the 1987 and 1996 codes), i.e. will
result in an error message. To simulate e.g. a box containing two peptide molecules, you have to use com_top to
“multiply” the topology of the peptide (so that there is still one “solute” consisting of two peptide units).

24 The EM should ideally stop when convergence is reached as specified by DELE. But if convergence is hard to
reach, it will stop ion any case after NSTLIM steps. It is a good idea to check the EM output file for the kind of
termination, since in the latter case, you may not have reached the minimum!
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The BOUNDCOND block

BOUNDCOND

# NTB NDFMIN

#TO_DO 3

END

specifies the spatial boundary conditions. The NTB switch selects the boundary conditions employed,
where 0 is vacuum, -1 is periodic based on a truncated octahedron box, 1 is periodic based on a
rectangular box, and 2 is periodic based on a triclinic box. The value NDFMIN is irrelevant in EM
and will be explained later in Section 2.4 for MD.

At this point of the file, you will see that three blocks are commented out: MULTIBATH,
PRESSURESCALE and COMTRANSROT. Leave them untouched, they will be uncommented and used for
MD in Section 2.4 (they are not used for EM).

The PRINTOUT block

PRINTOUT

# NTPR NTPP

#TO_DO 0

END

specifies how often (every NTPRth step) you are printing out the energies to the output file. Let’s
print them every 10th step. NTPP controls dihedral angle transition monitoring which we are not
interested in.

MD++ produces a massive amount of data and it is impossible to store all the data it produces.
The WRITETRAJ block meets this demand:

The WRITETRAJ block

WRITETRAJ

# NTWX NTWSE NTWV NTWF NTWE NTWG NTWB

#TO_DO 0 0 0 #TO_DO 0 0

END

specifies how often information about the trajectory frames is written to file. It will be explained
later in Section 2.4. We don’t want to generate trajectories in EM, so just set NTWX and NTWE to 0
for now.

The CONSTRAINT block

CONSTRAINT

# NTC NTCP NTCP0 (1) NTCS NTCS0 (1)

#TO_DO #TO_DO 0.0001 #TO_DO 0.0001

END

regulates the application of bond-length constraints. Here, as is usual practice in biomolecular
simulation (for reasons explained in the lecture), we will constrain all bond lengths and impose
the full rigidity of the solvent molecules (NTC=3). In this example, the constraints are imposed by
the SHAKE algorithm for both solute (NTCP=1) and solvent (NTCS=1) with a relative geometric
tolerance of 0.0001.

The FORCE block
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FORCE

# NTF array

# bonds angles imp. dihe elec. vdW

#TO_DO 1 1 1 1 1

# NEGR NRE(1) NRE(2) ... NRE(NEGR)

#TO_DO #TO_DO #TO_DO ... #?TO_DO

END

specifies which of the various types of force-field terms are included into the potential energy, and
serves to define energy groups. For bond angles, improper dihedrals, torsional dihedrals, non-
bonded electrostatic and non-bonded van der Waals, the standard terms of the GROMOS force
field are switched on (1). We let you guess what is to be done with the bond-stretching terms, given
that we apply constraints on all bond lengths (see above). In the second line of this block, so-called
energy groups are defined. This definition will not affect the simulated trajectory, but what you
get in the energy trajectory file. There, a partitioning of the energy into intra-group (N values for
N groups) and inter-group (N(N −1)/2 values for N groups) contributions will be reported, which
can be very useful for analysis purposes.25 In general, we define one or more energy groups for the
solute, and another one comprising all the solvent molecules. The first integer NEGR is the number of
energy groups we want to use. The following numbers NRE(1)...NRE(NEGR) are the atom sequence
numbers of the last atom of each energy group. Here, define your energy groups so as to have
hexapeptide, all counter-ions (all Na+ and all Cl-), and all solvent molecules separately as a group.
To find the last atom of each energy group have a look in the file ../ion/hexapepE_box.cnf (and
keep in mind that the number of groups and their terminal atoms might not be the same for the
other systems of Table 1).

The COVALENTFORM block

COVALENTFORM

# NTBBH NTBAH NTBDN

0 0 0

END

specifies which functional form we will use for bond-stretching (NTBBH), bond-angle bending (NTBAH)
and torsional dihedral (NTBDN) interactions. We just use the default options for all functional forms.

The PAIRLIST block

PAIRLIST

# algorithm: standard (0) (gromos96 like pairlist)

# grid (1) (XX grid pairlist)

# SIZE: grid cell size (or auto = 0.5 * RCUTP)

# TYPE: chargegoup (0) (chargegroup based cutoff)

# atomic (1) (atom based cutoff)

#

# algorithm NSNB RCUTP RCUTL SIZE TYPE

0 #TO_DO #TO_DO #TO_DO 0.4 #TO_DO

25 Think very carefully about the definition of energy groups before running the simulation. Group-based energy
partitioning cannot be recalculated from the trajectories in an efficient way. So, if you realize after the simulation
that you did not choose a clever partitioning for the analysis you have to make, you will likely have to rerun the
simulation.
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END

specifies which algorithm you will use for the pairlist generation. The cut-off used in the short-
range pairlist construction is given by RCUTP and for GROMOS it is usually 0.8 nm. The cut-off
used in the long-range interactions is given by RCUTL and for GROMOS it is usually 1.4 nm. The
pairlist is recalculated every NSNB steps, and we typically use 5. Finally TYPE specifies the type
of the cut-off, whether it is based on the distance between charge-groups (0) or on the distance
between atoms (1). Here we choose charge-groups based.

The NONBONDED block

NONBONDED

# NLRELE APPAK RCRF EPSRF NSLFEXCL

#TO_DO 0.0 #TO_DO #TO_DO 1

# NSHAPE ASHAPE NA2CLC TOLA2 EPSLS

-1 1.4 2 1e-10 0

# NKX NKY NKZ KCUT

10 10 10 100

# NGX NGY NGZ NASORD NFDORD NALIAS NSPORD

32 32 32 3 2 3 4

# NQEVAL FACCUR NRDGRD NWRGRD NLRLJ SLVDNS

100000 1.6 0 0 0 33.3

END

specifies how to treat the electrostatic interactions. Since you will use the reaction-field method, the
value of NLRELE should be equal to 1. The long-range electrostatic interactions are truncated beyond
a certain cutoff (RCUTL in the PAIRLIST block). Beyond the reaction-field cut-off radius (RCRF) the
electrostatic interactions are replaced by a static reaction field with a dielectric permittivity EPSRF.
RCRF and RCUTL should be identical. Because we are doing the EM in methanol EPSRF is set to
the experimental permittivity of this solvent (32.3 26). With NSLFEXCL equal to 1, you include the
contributions of excluded atoms to the electrostatic energy. The ionic strength of the continuum is
set to 0 (APPAK). All other switches are not used for the reaction-field method.

In order to run the EM, a shell script has been created for you (hexapepE_em.run). You only
have to adapt the paths and the names of the files according to your setup. Then run the script

./ hexapepE_em.run

The EM should run relatively fast, which is why you are allowed to run it without sending the
calculation to the cluster.

When the process is finished, you should find in your current directory a file hexapepE_min

.cnf with the optimized coordinates and the EM output file hexapepE_em.omd. Have a look at
the output file to verify that the potential energy was indeed going down and that the EM has
completed successfully. You may again want to visualize the box using vmd.

At this point, you may also want to generate the energy minimized coordinate file for the
specific variant of Table 1 that has been assigned to you (with appropriate filenaming containing
the corresponding letter A-I).

26 Note that in prinicple it would be better to use the permittivity of the methanol model, which would be 27.8
[8].
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2.4 Setting Up the Simulations

Now let’s start with the MD. Go to the subdirectory md in your ex2.

cd ~/ex2/md

In the previous section, we have already made an input file for the EM, so it would be silly to write
the MD input file entirely from scratch. Copy the file ../min/hexapepE_em.imd to your current
directory under the name hexapepE_md.imd. Now we just have to adjust this file so that it does a
MD run instead of an EM run.

The first thing is to delete (or comment out) the entire ENERGYMIN block (including the terminal
END). Also, update the TITLE block accordingly.

Then we have to reconsider the INITIALISE block

INITIALISE

# NTIVEL NTISHK NTINHT NTINHB NTISHI NTIRTC NTICOM

NTISTI IG TEMPI

#TO_DO 0 0 0 1 0 0

0 210185 #TO_DO

END

which specifies how a run should be initialized (remember that we had inserted dummy numbers
0 and 1.0 for NTIVEL and TEMPI, which we have to reconsider). The NTIVEL switch determines
the source of the atomic velocities, where 0 means they should be read from the starting config-
uration file and 1 means they should be generated pseudo-randomly from a Maxwell-Boltzmann
distribution. The NTISHK switch enforces the application of bond-length constraints in the initial
configuration. The NTINHT and NTINHB switches are only relevant for Nose-Hoover thermo- and
barostats and can be ignored in our case. The NTISHI switch determines the source of the lattice-
shift vectors27, where 0 means they should be read from the starting configuration file and 1 means
they should be set to zero. The NTIRTC is only relevant if we use roto-translational constraints28

and can be ignored in our case. The NTICOM switch enforces the removal of the center-of-mass
component in the initial velocities. The NTISTI switch is used to reset the stochastic integrals in
stochastic dynamics (SD) simulations. The integer number IG is the pseudo-random number gener-
ator seed29 (used only if NTIVEL is set30). The real number TEMPI provides the initial temperature
for generating pseudo-random initial velocities (used only if NTIVEL is set). The energy minimized
configuration obtained in the last section does not contain velocities. So, we have to generate them
at random, by setting NTIVEL to 1 and TEMPI to 340 K (watch out that the value can be 300 K
or 380 K for the other systems of Table 1). Let’s not change IG so we can compare later with the
results of the assistants (who also use this specific IG).

We also have to look again at the STEP block

STEP

# NSTLIM T DT

27 The lattice-shift vectors indicate where an atom is located in the infinite periodic system. For each atom, a
specific Cartesian component is changed by ±1 every time the atom crosses the corresponding box wall.

28 Such constraints can be used to block the overall translation and rotation of the solute in the box.
29 This seed is included in the input file for reproducibility purposes. Even if the velocities are generated at random,

the same seed will generate the same velocity distribution.
30Or if we perform SD
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#TO_DO #TO_DO #TO_DO

END

which now specifies the number of steps (NSTLIM) for the simulation (remember that we had inserted
5000 for NSTLIM along with dummy numbers 0.0 and 1.0 for T and DT, which we have to reconsider).
The real number DT is the simulation timestep. Given that we have bond-length constraints, a value
of 2 fs is appropriate31. For each MD job (we will run 50 of them in sequence), we are going to
perform 500’000 steps (yes, half a million!). So, what will be the duration of each job in ns? And
the total duration of the simulation? (find out and then check32!). The real number T specifies the
time origin of each job. For now, insert 0.0, as appropriate for the first job.

Remember that in the file, we have three blocks that are commented out: MULTIBATH,
PRESSURESCALE and COMTRANSROT. Now, we need them, so just uncomment them (remove the first
hash of each line).

The MULTIBATH block

MULTIBATH

# ALGORITHM

#TO_DO

# NBATHS

#TO_DO

# TEMP0(1 ... NBATHS) TAU(1 ... NBATHS)

#TO_DO 0.1

#TO_DO 0.1

# DOFSET: number of distiguishable sets of d.o.f.

2

# LAST(1 ... DOFSET) COMBATH (1 ... DOFSET) IRBATH (1 ... DOFSET)

#TO_DO 1 1

#TO_DO 2 2

END

specifies if and how we want to apply thermostating. First we specify which algorithm we will use.
Here, we will use the weak-coupling scheme (ALGORITHM=0). How many temperature baths we want
to couple to the system is specified by NBATHS. We want two baths, one for the hexapeptide and
one for the ions and the solvent. For each bath, you must specify the temperature using the TEMP0
parameter. They should both be 340 K (watch out that the value can be 300 K or 380 K for the
other systems of Table 1). And for each bath, you must insert the coupling time TAU used in the
weak-coupling method for this bath, which we take to be 0.1 ps. DOFSET specifies the number of
distiguishable sets of degrees of freedom. LAST is pointing to the last atom for the set of degrees
of freedom, e.g. to the last atom of the hexapeptide and the last solvent atom. To find these last
atoms, have a look at the file ../min/hexapepE_min.cnf (and keep in mind that the number of
groups and their terminal atoms might not be the same for the other systems of Table 1). COMBATH
is the temperature bath to which we want to couple the centre of mass motion of this set of degrees
of freedom. IRBATH is the temperature bath to which the internal and rotational degrees of freedom
of this set of degrees of freedom are coupled.

The PRESSURESCALE block

31 Watch out the units. GROMOS wants times in ps, not fs!
32 Answer: 1 ns per job, 50 ns in total.
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PRESSURESCALE

# COUPLE SCALE COMP TAUP VIRIAL

#TO_DO #TO_DO 0.0004575 0.5 #TO_DO

# SEMI

1 1 1

# PRES0 (1...3 ,1...3)

0.06102 0 0

0 0.06102 0

0 0 0.06102

END

specifies if and how we want to calculate the pressure and apply barostating. We tell GROMOS to
calculate and scale the pressure by setting COUPLE to 2. As the box should be isotropically scaled
we set SCALE equal to 1. The weak-coupling method uses two additional parameters: COMP is the
isothermal compressibility and TAUP is the coupling time. We are calculating the molecular virial
(VIRIAL is equal to 2), so intramolecular forces do not contribute to the pressure. The next line is
only used for semi-anisotropic pressure coupling and can be ignored in our case. Finally, we have
to specify the reference pressure33 (1 bar) in a tensor form.

The COMTRANSROT block

COMTRANSROT

# NSCM

#TO_DO

END

is needed to remove the centre of mass motion (translation and rotation). Without this block it can
happen that all the kinetic energy is converted to centre of mass translation (the so called ”flying
ice cube problem”). With NSCM we specify how often the center-of-mass (COM) motion is removed.
If NSCM is < 0 translational and rotational motion are removed every |NSCM|th step. If NSCM is
> 0 only translational motion is removed every NSCMth step. Set NSCM to 1000. Also recall that
the BOUNDCOND block has a parameter NDFMIN, which specifies the number of degrees of freedom
subtracted from the total number of degrees of freedom for the calculation of the temperature. If
we suppress center-of-mass translation, we should remove 3 degrees of freedom (the value should
already be 3 in your file).

Then we have to reconsider the PRINTOUT block

PRINTOUT

# NTPR NTPP

#TO_DO 0

END

which specifies how often you are printing out the energies to the output file (remember that we
had inserted 10 for EM, which we have to reconsider). Change this parameter to 1000 in order to
save space on the disk.

Finally, we have to reconsider the WRITETRAJ block

WRITETRAJ

# NTWX NTWSE NTWV NTWF NTWE NTWG NTWB

33 Recall that the GROMOS units of pressure are kJmol−1 nm−3.
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#TO_DO 0 0 0 #TO_DO 0 0

END

which specifies how often information about the trajectory frames are written to file (remember
that we had inserted 0 and 0 for NTWX and NTWE, which we have to reconsider). More specifically,
we specify the frequency at which we write the coordinate trajectory (NTWX), the velocity trajectory
(NTWV), the force trajectory (NTWF), the energy trajectory (NTWE), the free energy trajectory (NTWG)
and the block averaged energy trajectory (NTWB) to specific files34. In the present case, we are only
interested in the coordinates (NTWX) and energies (NTWE), and will write them at every 500th step35.
So, how much time in ps will separate records be written to file? And how many records will we
write in total for the 50 jobs (50 ns trajectory)? (find out and then check36!).

At this point we are done. You may notice that the blocks SYSTEM, BOUNDCOND, CONSTRAINT,
FORCE, COVALENTFORM, PAILIST and NONBONDED were not modified relative to the EM run. The
blocks INITIALISE, PRINTOUT and WRITETRAJ were adjusted. And the new blocks MULTIBATH,
PRESSURESCALE and COMTRANSROT were added.

At this point, you may also want to generate the MD input file for the specific variant of Table
1 that has been assigned to you (with appropriate filenaming containing the corresponding letter
A-I).

2.5 Generating the Simulation Jobs

As already mentioned, we are not going to run one job of 1 ns as set up in the previous section, but
50 successive jobs of 1 ns each37. Because the manual set-up of 50 job scripts can be a painful and
error-prone procedure, there is a little but powerful helper called mk_script. This GROMOS++
program is able to automatically generate a job script from a given model input file and a series of
arguments.

At this point, you should only do the specific variant of Table 1 that has been assigned to you
- since it is the system you are going to actually run. We’ll keep using the letter E below, but you
should replace it by your own letter A-I. Still in your subdirectory md of your ex2 directory, create
the input file hexapepE_make_script.arg required for running mk_script by using the following
arguments:

• @sys followed by a string referencing your simulation (hexapepE with E replaced by A-I).

• @bin followed by the executable name, which in our case is /opt/progs/gromos/bin/md_mpi

• @dir followed by the directory path your MD is going to run in, i.e. your current directory.

• @files

34The second switch (NTWSE) defines selection criterion for trajectories: if NTWSE = 0 the normal coordinate trajec-
tory will be written, or if NTWSE > 0 a minimum energy trajectory will be written.

35Warning: It makes no sense to write out configurations too often. First, it needs a lot of disk space. Second, the
data is highly correlated and so no additional information is gained from it.

36 Answer: 1 ps between records, 1000 records per job, so 50000 records in total. The energy records are reasonably
small, but the coordinate records (including solvent) will take about 1’000’000 kilobytes (so we are shooting for 1 Gb
of trajectory in total!).

37 The advantages of splitting the 50 ns across 50 jobs are that (i) you can fit the time-limit of the cluster queue
for each job and (ii) if a job crashes, you loose only a small piece of data, not the whole. You will submit the first
job to the queue and each job will submit the next one when done.

17

   [ex 2]



– topo followed by the path to your topology file (../topo/hexapepE.top with E replaced
by A-I)

– input followed by the path to your input file (hexapepE_md.imd with E replaced by A-I)

– coord followed by the path to your initial coordinate file (../min/hexapepE_min.cnf
with E replaced by A-I)

• @template followed by the standard mk_script configuration file (mk_script.lib)

• @version followed by the program of interest (md++)

• @script followed by two numbers, the first one indicating the starting number of the first
job script (1), the second one indicating the number of job scripts to generate (50)

Now run mk_script to generate the job scripts

mk_script @f hexapepE_make_script.arg

This will create 50 hexapepE_*.run job scripts numbered from 1 to 50, along with the corresponding
50 input files (hexapepE_*.imd). Now there is one last important thing to take care of. Remember
that in the last section, we asked you to set NTIVEL to 1? This means in the beginning of each
job velocities will be created from Maxwell-Boltzmann distribution. This isn’t appropriate for a
continuation job, where we want to read the velocities from the initial configuration (they are there,
since the previous job wrote them out), but not for the first job, where we need to generate them.
To fix this, just edit the file hexapepE_md.imd and change NTIVEL back to 0 and type again

mk_script @f hexapepE_make_script.arg

You can see that you got one error and that first job hasn’t been written out. This is fine since the
first job has been written before with NTIVEL equal to 1 so it creates its own velocities. Other jobs
created previously were overwritten so now they read velocities from the previous job.

2.6 Starting the Simulations

Now, you are ready to start your 50 ns MD simulation (split across 50 jobs that will each submit
the next one) on the beaver cluster. Submitting your calculation is similar as in Exercise 1, so if
you don’t remember, please consult the script of Exercise 1. The simulation of 50 ns should run
for about 5 days on 4 cores. Just type (remember that E should be replaced by your letter A-I !)

qsub -N hexapepE_1 -cwd -j y -o hexapepE_1.o -pe mpi 4 ./hexapepE_1.run

3 Week 2 - Analyzing the Simulations

When getting close to the session of Week 2, your jobs should be finished. Then you should check
that the simulation finished successfully as you did in Exercise 1, and leave the trajectories where
they are in ex2/md. On the afternoon preceding your session of Week 2, the responsible assis-
tant will create a directory /usr/local/CSBMS/ex2/all_runs, collect the coordinate and energy
trajectories of all participants from their home directories and copy them into /usr/local/CSBMS

/ex2/all_runs/md. In this way, everyone will have access to the 50 ns trajectories corresponding
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to the 9 situations A-I of Table 1. For simplicity, the topology files and model hairpin structures
in vacuum (including possible ions at large distance) corresponding to systems A-I will also be
available under /usr/local/CSBMS/ex2/all_runs/topo and /usr/local/CSBMS/ex2/all_runs/

coord, respectively.
For your analysis, it is important that you do not copy the trajectories from /usr

/local/CSBMS/ex2/all_runs/md to your home directory, otherwise we would run out of
space! Just use the files by pointing to them using the appropriate path. Also, pay
attention to the ordering of the files. We have reordered the output of the whole
simulation with new labels going from 101 to 150 which will make scripting easier (see
below).

Since we are mostly interested in the folding-unfolding behavior of the peptide under different
conditions, the following analysis seems highly relevant and is described in the next four subsections:

• Visualization of the trajectory (Section 3.1)

• Atomic positional root-mean-square deviation (RMSD) from a canonical hairpin structure
(Section 3.2)

• End-to-end distance of the peptide (Section 3.3)

• Solute-solute and solute-solvent electrostatic interaction energies (Section 3.4)

Just a little comment to simplify your life. At one point or another, you will have to repeat
the same operation for the 9 systems A-I. When you reach this point, it may not be silly to think
about scripting your analysis. For example, in BASH

#!/bin/bash

dir="/usr/local/CSBMS/ex2/all_runs"

GROMOS ="/ opt/progs/gromos/bin/some_gromos_analysis"

for sys in A B C D E F G H I; do

$GROMOS @topo ${dir}/topo/hexapep${sys}_54a7.top \

@ref ${dir}/ coord/hexapep_${sys}.cnf \

@traj $( ls ${dir}/md/${sys}/md${sys}_1

[0 -4][0 -9]. trc.gz )

> analysis_results_${sys}.out

done

will run the same analysis of the full trajectories (excluding job 1) of the 9 systems in one go. Don’t
forget that to run a script you have to change its access permissions with the chmod command. To
give yourself permission to execute, just type

chmod u+x your_script_name

For this bash script, you need to be aware of the following: The line-continuations ’\’ will fail
if you have whitespace after the backslash and before the newline. However, we need those line
continuations as ’some gromos analysis’ expects the argument string on one line. Make sure you
do not have any additional empty spaces in your script as bash is very sensitive for this!

It takes some time to calculate 49 ns for 9 systems, therefore you have to submit your script
into a queueing system. In that case you have to specify the full path to the analysis program so
e.g. instead of writing frameout write /opt/progs/gromos/bin/frameout. To find the full path
of your program type which your_program. As a reminder, in order to submit a job, type
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qsub -N arbitrary_job_name ./ your_script_name

If you prefer to run everything on the command line instead, you can also use the wildcard ’∗’
or a range such as {a..b}, so that your command would look something like this (this, however,
does NOT work within an .arg file):

some_gromos_analysis @topo all_runs/topo/hexapepE_54a7.top

@ref all_runs/coord/hexapep_E.cnf

@traj all_runs/md/E/mdE_*.trc.gz

> analysis_results_E.out

or

some_gromos_analysis @topo hexapep/topo/hexapepE_54a7.top

@ref hexapep/coord/hexapep_E.cnf

@traj hexapep/md/mdE_ {110..120}. trc.gz

> analysis_results_E.out

As was the case in Week 1, the subsections below will use system E as an example. And you
will have to adjust things accordingly to process other systems A-I, possibly taking advantage of
scripting. In the following, we show the example arguments which you should use in your scripts.

3.1 Visualization

In Exercise 1, you have seen how to visualize a trajectory as a movie using the GROMOS program
frameout and the graphic program vmd. It would take too much time to visualize the 9 trajectories,
so maybe focus on systems A, C and E only to get an idea of typical behaviors. Include the ions
into your visualized trajectories to also see how they behave. For the visualization, make a new
subdirectory ana and also a new subdirectory vis in your ex2 directory and work in there.

You can generate PDB snapshots from your trajectory (or any other) coordinate files using the
program frameout, which you already know from Exercise 1. Go to the directory ana/vis and
have a look at the example arguments:

@topo /usr/local/CSBMS/ex2/all_runs/topo/hexapepE_54a7.top

@pbc r cog

@spec EVERY

@frames 100

@outformat pdb

@include ALL

@time 0 0.001

@single

@traj /usr/local/CSBMS/ex2/all_runs/md/E/mdE_102.trc.gz

Because now you have long trajectories you don’t want to write out every frame. With @spec

EVERY and @frames 100 you specify that every 100th frame will be written out. If you would like
to get specific frames (let’s say 36 and 408) you should write @spec SPEC and @frames 36 408

instead. @single tells the program to put frames in one file. We advise you not to take the whole
MD trajectory into account for visualization as this would take too long for this exercise. Instead,
take a look at the output for the first ns, then another output in the middle of the whole run, and
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then another output at the end of the simulation. You will then get a feeling of what has happened
during the simulation overall.

You now have the tools to answer Question 4.2.1

3.2 Monitoring the RMSD

Atom positional root-mean-square deviations (RMSD) is a measurement of structural difference
between two given conformations. For two conformations of N atoms with the 3N -dimensional
coordinates vectors r and rref , the RMSD is given by

RMSD(r, rref ) =

(
1

N

N∑
i=1

(ri − rrefi )2

) 1
2

(1)

where rrefi is the position vector of the ith atom in the reference conformation and ri is the corre-
sponding position in the test conformation, after least-squares translational and rotational super-
imposition of the two structures.

For the RMSD calculations, make a new subdirectory rmsd in your ex2/ana directory and work
in there.

Create a file rmsd_hexapepE.arg with the arguments required for the program rmsd. Required
arguments for the program rmsd are:

@topo /usr/local/CSBMS/ex2/all_runs/topo/hexapepE_54a7.top

@pbc r cog

@time 0 0.001

@atomsrmsd 1:C,CA,CB,N

@ref /usr/local/CSBMS/ex2/all_runs/coord/hexapep_E.cnf

@traj /usr/local/CSBMS/ex2/all_runs/md/E/mdE_102.trc.gz

Again the topology is given by @topo and @pbc defines the periodic boundary condition and gathers
the frames. In @atomsrmsd one gives the atom specifier of the atoms of which one wants to calculate
the RMSD compared to a reference structure @ref. Here we want to analyse the backbone of the
peptide (C, Cα, Cβ , N) as a function of time. With @traj the coordinate trajectories are specified.
Now calculate the RMSD using the GROMOS++ program38 rmsd

% ~/ex2/ana/rmsd >

rmsd @f rmsd_hexapepE.arg > rmsd_hexapepE.out

You now have the tools to answer Question 4.2.2

3.3 Monitoring the end-to-end distance

Often you are interested in the time change of a certain geometric property. You can monitor the
properties of your system using time series. In addition, you may want to compare a property of
your simulation with an experimental value. In this case a time-average is calculated which can be
compared to experimental data. Such kind of analysis is carried out with the tser GROMOS++
program. tser is a very powerful program and only its basic function is explained here.

38Hint: The atom specifier for the whole protein is 1:a (all atoms of the first molecule).
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Make a new subdirectory tser in your ex2/ana directory and work in there. Create a file
tser_hexapepE.arg with the arguments required for the program tser. The example arguments
are:

@topo /usr/local/CSBMS/ex2/all_runs/topo/hexapepE_54a7.top

@pbc r cog

@time 0 0.001

@prop d%1:3 ,61

@traj /usr/local/CSBMS/ex2/all_runs/md/E/mdE_102.trc.gz

First, you have to tell tser were the topology (@topo) resides and which boundary conditions
(@pbc) you are using. Second, tell tser using @prop which properties it should calculate and print
out. Here d stands for distance and 1:3,61 stands for atom number 3 and 61 in the first molecule.
Have a look at the atom type of those two atoms. With the @traj argument, tell tser where it
can find the trajectory coordinates files. In our hairpin system an interesting property is the head
to tail distance. Its fluctuations over time give you an indication on the stiffness of the secondary
structure.

Now call tser and redirect its output

tser @f tser_hexapepE.arg > tser_hexapepE.out

Now you can open the file in xmgrace and plot the time series39 40

xmgrace -block tser_hexapepE.out

You now have the tools to answer Question 4.2.3

3.4 Monitoring the energy components

From Exercise 1, you should know how the program ene_ana works.
Make a new subdirectory ene_ana in your ex2/ana directory and work in there. Create a

file ene_ana_hexapepE.arg with the arguments required for the program ene_ana. The example
arguments are:

@topo /usr/local/CSBMS/ex2/all_runs/topo/hexapepE_54a7.top

@time 0 0.001

@prop ele_solusolu ele_solusolvE

@library ../../lib/ene_ana.md++.lib

@en_files /usr/local/CSBMS/ex2/all_runs/md/E/mdE_102.tre.gz

With @en_files you tell ene_ana which energy trajectories should be read in. The @prop argu-
ment specifies for which properties the time series should be extracted from the energy trajectory.
Properties are defined in ene_ana.md++.lib which you can copy from /usr/local/CSBMS/ex2/lib

to your current directory. ele_solusolu and ele_solusolvE stand for electrostatic interaction
within the solute itself and between solute and solvent with ions, respectively. Note that for the
second property you have to specify a code of the system. One specifies an ene_ana library with
the @library argument. Now you can run ene_ana

39Hint : The last line of the output file contains the averages of the properties.
40Hint : Have a look at the doxygen documentation of Property Specifier. There you will find that you can specify

many more properties (@prop).
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ene_ana @f ene_ana_hexapepE.arg > ene_ana_hexapepE.out

The program calculates the average of the specified properties as well as the root-mean-square
deviations (rmsd) and a statistical error estimate (error est.). The error estimate is calculated
from block averages of growing sizes extrapolating to infinite block size. 41

The program ene_ana also produced a time series of calculated properties. Have a look at them
using xmgrace as above.

You now have the tools to answer Question 4.2.4

4 Report

4.1 Format

Please refer to the corresponding section of Exercise 1 for information on the goal and expected
structure of the report.

4.2 Simulation Results

4.2.1 Visualization

(a) Visualize the three trajectories of the systems A, C and E. Describe qualitatively the confor-
mational behavior of the peptide in the three cases. Also describe qualitatively the behaviour
of the counter-ions.

(b) In systems C, F and I, we simulated methanol at 380 K, i.e. far above its boiling point (338
K) - to extract a trend considering an “unphysical” situation. Verify that methanol actually
remains liquid even in this case (you can do this by monitoring the average box volume in the
different simulations: partial or complete vaporization would lead to a very large increase).

4.2.2 RMSD

(a) Calculate and display graphically the RMSD time series for the 9 simulations A-I (think about
scripting!)

(b) Make a simplified 3×3 table similar to Table 1 where you report as entries a “o” if the peptide
stays close to the hairpin structure throughout the simulation, a “+” if the peptide alternates
between hairpin and non-hairpin structures, and a “*” if the peptide drifts away from the
hairpin structure and never comes back.

(c) Discuss your simplified table. Is there a clear trend? What seem to be the effects of the
temperature and ionic strength on the conformatonial behavior?

41Warning: Sometimes the error estimates are NaN (not a number), which is due to the fact that we do not have
enough values to calculate a meaningful error estimate.
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4.2.3 End-to-end distance

(a) Calculate and display graphically the time series of the end-to-end distance for the 9 simula-
tions A-I (think about scripting!)

(b) Compare your observations to those based on the RMSD. Do the RMSD and end-to-end
distance correlate? If yes, why do you think it is so?

4.2.4 Energy components

(a) Calculate and display graphically the time series of the solute-solute and solute-solvent elec-
trostatic energy for the 9 simulations A-I (think about scripting!)

(b) How do these time series correlate with each other, and with the RMSD and end-to-end
distance time series?

(c) Can you now propose a molecular interpretation for the effect of ionic strength on the con-
formational behavior of the peptide?

(d) Also explain the effect of the temperature.

4.3 Thinking questions

Answer the following questions:

(a) A rigorous way of characterizing the folding-unfolding equilibrium of the peptide would be
to monitor the relative populations of folded and unfolded conformers. The population ratio
is the equilibrium constant, giving in turn access to the relative free energy. In this exercise,
instead, we started from a folded conformation and examined whether it is maintained or
disrupted under different environmental conditions on the 50 ns timescale. Why did we take
this second approach rather than the first one? What are the shortcomings of the second
approach?

(b) Related to the previous question. Imagine you would run 50 ns in situation E, where the
peptide unfolds, save the final coordinates, then revert all the atomic (solute, ions and solvent)
velocities (v → −v). We would then give this configuration to the CSBMS students next year,
telling them to run 50 ns in the same situation E. What would they observe (assuming infinite
numerical precision in the simulations)? What (incorrect!) conclusion would they be tempted
to draw based on this simulation?

(c) Calculate the “effective” molar (mol solute per liter solution) concentration of the peptide in
methanol for your simulated system. For this, you need to consider the volume of the box
containing one peptide molecule. Calculate similarly the ionic strength of the solution when
the box contains either the peptide plus one Cl− or the peptide plus 11 Cl− plus 10 Na+. What
do you think about the resulting values (in comparison to a typical experimental situation)?
Would it be correct to say that the simulations are representative for an experimental setup
at the concentration and ionic strength you calculated? If not, what is the main difference
between the “effective” concentration in a simulation and the “real” concentration in an
experiment?
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(d) The autoionization constant of methanol is 16.70 at 298 K [9]. The pKa-values of propanoic
acid and ethylamine in methanol are 9.71 and 11.0, respectively, at 298 K [10]. Using the
two latter compounds as models for the C- and N-termini, respectively, of your peptide,
what would be the expected ionization state of the peptide at neutral pH in methanol? And
considering the ionization states you used in the simulations, what is the pH range your
simulations were actually probing?

(e) What type of force-field interaction (bonds, angles, dihedrals, impropers, Lennard-Jones or
electrostatics) dominates the folding-unfolding equilibrium of the peptide? What crucial
approximation in the treatment of this interaction could lead to a very large bias in the
simulated results?

(f) In systems C, F and I, we simulated methanol at 380 K, i.e. far above its boiling point (338
K), and observed that methanol actually remains liquid even in this case. Can you suggest
reasons why methanol evaporation does not occur in these simulations?

(g) When generating the methanol box, we imposed a minimal distance of 1.5 nm between any
peptide atom and the nearest box wall. Do you think this minimal distance, enforced in the
initial configuration, is maintained throughout the simulations? If not, why?

(h) To relax the system, we have applied EM to the box containing the peptide, the counter-ions
and the solvent. Then, we directly started the MD. Do you think such a set up protocol is
sufficiently careful? It clearly overlooks a relatively slow equilibration process, do you see
which one?

A Available Files

In the main exercise directory /usr/local/CSBMS/ex2/, you will find ex2.pdf, the digital version
of the document you are reading, and five additional directories, namely

• topo/

Contains 54a7_beta.mtb and 54a7.mtb which are molecular topology building block files and
the 54a7.ifp interaction function parameter file.

• coord/

Contains the starting coordinates for the hexapeptide (hexapep_vac.cnf) and the coor-
dinates of the solvent (ch3oh.cnf). The last two coordinates of the peptide containing
ions (hexapep_11Cl_10Na_vac.cnf and hexapep_Cl_vac.cnf) are supposed to be used for
check_top.

• min/

Contains the input file (hexapep_em_template.imd) and hexapepE_em.run to be modified
and to run the energy minimization of the compound after solvation.

• md/

Contains the library file for mk_script (mk_script.lib).

• all_runs

Contains the finished exercise. You will get read-permission in the second week of Exercise 2.
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• lib

Contains the library ene_ana.md++.lib for the program ene_ana.
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CSBMS: Exercise 3

Protein Simulations & Properties
Document version: 27.08.2019

Exercises week 1: 22.10. or 24.10.
Exercises week 2: 29.10. or 31.11.
Deadline for the report: 10.11.
Contact: sadra.gheta@phys.chem.ethz.ch

Sadra Gheta - HCI G243

Summary
During this third exercise you will perform molecular dynamics (MD) simulations of

the 56-residue protein Gb88 in water at two temperatures using the GROMOS program,
in order to investigate its fold and stability. The set up of the simulations is similar to
that of the previous exercise concerning a β-peptide in methanol, except for the use of non-
GROMOS (PDB) initial coordinates and the more careful equilibration protocol. The focus
of this exercise is on: (i) the aspects of the topology definition specific to proteins; (ii)
the generation of initial coordinates based on an experimentally derived three-dimensional
structure; (iii) the thorough equilibration and thermalisation of the initial configuration
prior to production; (iv) the analysis of the simulations in terms of observables relevant for
proteins. For this exercise, you are asked to work in pair with another student, each of the
two being responsible for a simulation at one of the two temperatures considered. You can
then directly compare your results with those of your colleague.

1 Introduction

Proteins are one of the four major classes of biomolecules and represent a key component in
numerous biological processes including structuring, catalysis, transport and signalling. They
are linear polymers of the 20 natural amino-acid residues, the specific sequence of residues in a
protein being referred to as its primary structure. In three dimensions, protein segments tend to
adopt preferential local conformation (e.g. α-helix or β-sheet) referred to as secondary-structure
elements. In turn, these elements typically pack together to define what is called the tertiary
structure of the protein. Last, when multiple proteins assemble to form a single protein complex,
this is referred to as a quaternary structure.

With the improvement in sequencing techniques it has become relatively easy to establish
the residue sequence of a protein. Experimental techniques such as X-ray crystallography (on
protein crystals) and NMR spectroscopy (in solution), although far less trivial to apply, have also
permitted the determination of the three-dimensional structures of numerous proteins. These
structures (atomic coordinates) are typically deposited in databases, the most famous one being
the Protein Data Bank (PDB). Benefiting from the availability of such structures, the field of
protein simulation has advanced very rapidly over the last three decades, and received its first
Nobel Prize in 2013. Key questions addressed in these simulations include protein dynamics,
folding and conformational changes, protein-protein interactions and protein-ligand binding.
These two weeks, you will be getting a crash-course in protein MD research!

As an example, we will work with a small protein called Gb88. This is one of the multidomain
parts of the protein G, a cell wall protein from Streptococcus. The Gb88 domain binds to serum
proteins in the blood. Their special camouflage strategy, as they cover themselves with host
proteins, gives them a selective advantage to pathogenic bacteria. To investigate the protein
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fold and stability, 24 mutations to the natural occurring version (wild type) of the protein
were applied that resulted in the protein we will work today with. Circular dichroism spectra
indicated that the melting temperature (unfolding) for the protein is around 74◦C [3]. The
detailed three-dimensional structure of the protein in solution was determined on the basis of
NMR data [4]. This protein has already been considered in computational research at ETHZ
[5].

In this exercise you will perform MD simulations of Gb88 in water at two temperatures: (i)
at 25◦C (298 K), the temperature at which the protein is stable (at equilibrium) and (ii) at
75◦C (348 K), the temperature at which we expect the protein to unfold. The work for the first
week is described in Section 2 (preparation of the GROMOS molecular topology and initial
coordinate files, starting of the MD simulations). An overview of the work flow for this first
week is provided in the Figure 1.

Figure 1: Overview of the GROMOS work flow for the present exercise.

The work for the second week is described in Section 3 (analysis of the MD simulations). At
the end of the exercise, each student is expected to write a short report as described in Section
4. Note that contrary to the two preceding exercises, questions to be addressed in the report
are asked on the flight (rather than gathered in Section 4.2). You will find these throughout
the document labelled as (Q...). But additional thinking questions are still listed at the
end (in Section 4.3). Please answer the questions and write down your name and the name of
the student you will work with. At the end of this document, you will also find an appendix
(Appendix A: a list with all the files you need to successfully perform the exercise; Appendix B:
a quick summary of pH and pKa for non-chemists) and a list of relevant references.
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Note that when we need a text editor there, we will use “vim”1, but you are of course free
to use instead the text editor of your choice.

As usual, some of the files will be provided to you ready-for-use (but it is still a good idea to
look inside!), other files will be provided to you in an incomplete form (i.e. with “TO_DO” inserts
to be substituted by appropriate entries), and other files not at all (then it is all up to you to
generate them!).

If you have any question regarding the exercise, the computational technique(s), or our field
of research in general, do not hesitate to ask us!

2 Week One (Submitting Simulations)

2.1 The Protein Data Bank (PDB)

The three-dimensional structure of the protein Gb88 in aqueous solution has been determined
on the basis of NMR data [3], and the coordinates deposited in the Protein Data Bank (PDB).
More precisely, Nuclear Overhauser Effect (NOE) intensities have been recorded, which provide
information on average hydrogen-hydrogen distances within the protein. Based on this informa-
tion (along with a substantial amount of modelling!), a set of model three-dimensional structures
have been optimized that reproduce the experimental data with similar accuracies. Note that
the atomic coordinates only include protein atoms (no solvent). In the PDB, all structures have
a unique identifier consisting of four letters or digits. The set of model structures for Gb88 based
on the quoted NMR study have the identifier 2JWU.

To get these structures, go the website www.rcsb.org and download the corresponding record
(in the right upper corner of the web page, option: PDB file (text) of the protein (2JWU)) to
your working directory. Open the downloaded file with your text editor and have a look at it.

The file contains the coordinates of the atoms in your molecule in a format specific to the
PDB (PDB format) which differs from the GROMOS format for atomic coordinates (note in
particular the use of Ångstrom rather than nanometer as unit of length). The PDB file contains
a lot of information regarding the protein in addition to the atomistic coordinates, such as the
primary sequence and the corresponding experimental conditions.

(Q1) Find out and report the following information from the PDB file:

• Check that the set of structures is derived from NMR and that the literature source is [4].

• What were the experimental conditions during the NMR measurements? (temperature,
pressure, solvent, pH?)

• Number of chains and the corresponding chain identifier

• Number of residues

• What is the amino-acid sequence of the protein?

• What are the secondary-structure elements of the protein? (Hint: on the webpage about
2JWU, look at the structure image on the right)

• Number of atoms in the protein

• Number of model structures in the file
1for more info, see http://www.terminally-incoherent.com/blog/reference/vim-cheat-sheet/
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The file contains a set of model structures, and we will only consider the first of them for our
simulations. To extract this model 1 structure, use the following command

awk ’NR==220, NR==1142’ 2JWU.pdb > protein_model1.pdb

It is often a good idea to check first the consistency of your model structure. There are online
servers (e.g. WHATIF, PROCHECK) that perform this task, and can spot e.g. missing residues
or atoms, inconsistency of symmetries, unlikely covalent geometries, etc. The model 1 structure
passes these simple consistency checks easily so they can be skipped in our case.

2.2 Visualization of the Protein

First let’s examine the model structure of our protein using the graphics program PyMOL. Load
in your local machine the structure in PyMOL using

pymol protein_model1.pdb

The structure is initially represented in a ’line’ representation. On the right sight of the main
window, the object (protein) is listed and next to it several options allow you to change the
representation. Have a look at the options and then, show the structure as cartoon by writing
in the window

hide all

show cartoon

To color your protein according its secondary structure (ss), where we consider helices (h),
β-sheets (s) and connections/loops (|+”), type

color red, ss h

color yellow, ss s

color green, ss |+’’

To get a space-filling (CPK) model of the protein on top, type the following commands

show spheres

bg_color white

set sphere_scale, 0.9

set sphere_transparency, 0.6

To save an image of your protein representation, first improve the quality by typing

set opaque_background, off

ray 1000

Then export it using

png perfect_protein.png

(Q2) Insert the image into your report and describe the secondary elements of the protein

Now, before we start setting up and running simulations, there are three important points you
should keep in mind concerning this structure. First, this is a single static conformation within
an ensemble of conformations at equilibrium in solution, a conformation which was selected be-
cause it is expected to be a highly-populated member of this ensemble. Second, this expectation
is only relevant for the ensemble of conformations corresponding to the experimental conditions
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of the NMR experiment, i.e. in pure water at atmospheric pressure and close to room tem-
perature (e.g. at higher temperature, the protein is expected to be predominantly unfolded!),
and close to neutral pH (e.g. under acidic or basic conditions, it may unfold as well!). Third,
the structure is inferred based on NMR data and not determined by the NMR data. A limited
number of NOE-derived hydrogen-hydrogen distances is not sufficient alone to determine the co-
ordinates of all atoms in the protein, and the structure refinement relies on the use of standard
geometric parameters (bond lengths, angles, dihedrals and improper dihedrals, atomic excluded
volumes), sometimes even on a potential energy function (simple force field) to complement the
experimental information. This underdetermination by the experimental data is the very reason
why a set of acceptable structures has been provided in the PDB file of Gb88 rather than a
single one. To summarize, saying that 2JWU/model1, or the cartoon you just made of it, is
“the structure of the protein Gb88” is a very common but also very imprecise statement, hiding
a lot of the complexity of the situation. And when you forget too much of the complexity of a
problem, it always ends up blowing up in your face at a later point. . .

The above discussion should also make the key strength of protein MD simulations (also valid
for other biomolecular systems) very obvious: it permits to replace a discussion of conformational
properties based on single structures by a discussion properly based on conformational ensembles.

2.3 Setting up the Directory Structure

In the Exercise 2, you have already become familiar with the set-up procedure for starting
MD simulations of a peptide using GROMOS [1, 2]. For the protein, we will follow a similar
preparation procedure. As mentioned before, in order to speed-up this preparation, a number
files are directly provided to you, either ready-for-use or in an incomplete form.

ssh -X user@realbeaver.ethz.ch

cd

mkdir ex3

cd ex3

cp -r /usr/local/CSBMS/ex3/dir_for_students/* ./

There should now be 10 subdirectories in your current directory:

• the pdb dir: contains the file protein_model1.pdb, i.e. the 2JWU/model1 structure you
considered in the previous section with "END" as last line; this is our reference structure
for the folded conformation of the protein (solute atom coordinates) in PDB format, and
the one we will use to set-up the MD simulations.

• the topo dir: will be used to construct and store the topology information.

• the coord dir: will be used to convert the PDB coordinates (solute atoms) to the GROMOS
coordinate format.

• the min dir: will be used to perform an EM of the initial coordinates (solute alone) in
vacuum

• the box dir: will be used to solvate the protein into a box of water

• the min_h2o dir: will be used to perform an EM of the initial coordinates (solute+solvent)
in solution

• the eq dir: will be used for further equilibration and thermalisation of the coordinates
(solute+solvent) using MD
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• the md dir: will be used for the production MD simulations at the two temperatures
considered.

• the ana_298K dir: will be used for the analysis of the MD simulations at 298 K.

• the ana_348K dir: will be used for the analysis of the MD simulations at 348 K.

These directories will progressively fill up as we follow the set-up and simulation protocol de-
scribed in detail in Sections 2.4. Today, we provide this tidy directory structure, but next time
(and maybe after the CSBMS course), you might be on your own and should keep in mind to
organize things yourself. There are two key advantages in maintaining such a clear directory
structure (as well as a carefully thought file-naming system) when you set-up a simulation. First,
you may easily generate over hundred files in the set-up. Keeping everything in a single directory
would increase the likelihood of confusions and mistakes. Second, you will typically spend a day
or two on the set up, but months on the runs. By the time you are done, you will have largely
forgotten the set-up details. If you need to recheck things later (or someone else after you), this
will be far easier when the structure is clear. Structuring your directories / file names should in
any case not be difficult if you have a clear idea (flowchart) of the set-up protocol in your mind,
which you should have in any case prior to starting anything.

2.4 Setting up and Running the Simulation

2.4.1 Topology

GROMOS++ PROGRAM NEEDED: make_top

INPUT FILES AVAILABLE: 54a7.mtb 54a7.ifp make_top_protein.arg

OUTPUT FILES THAT WILL BE CREATED: protein.top

TO DO: complete the make_top_protein.arg file

Let’s begin as usual with the construction of the molecular topology file using make_top.

⇒ For more details on the purpose and content of the topology file, refer to Exercise 1.
⇒ For more details on the construction of the topology file using make_top, refer to Exercise

2.

We are going to use the 54A7 version of the GROMOS biomolecular force field (molecular
topology building block file 54a7.mtb and interaction parameter file 54a7.ifp provided), which
includes building blocks and parameters for the 20 natural amino acids (in different protonation
states for ionisable residues) as well as information on how to link them together through suc-
cessive peptide bonds and to cap the chain with terminal groups. All we need is to know about
the sequence of the protein and the protonation states of the ionisable residues, the nature of
the chain termini and the counter-ions to be possibly added. Go into the topo dir

cd topo

Have a look at the make_top_protein.arg file

vim make_top_protein.arg
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The main element missing in this file is the @seq parameter, where you have to provide the
residue sequence of the protein, i.e. the GROMOS names of the 56 residues preceded by the
N-terminal capping and the C-terminal capping (that is, in total, 58 words). You can start by
copying the sequence you read from the PDB file, adding NH (with the corresponding charge
plus/min) at the start and CO (with the corresponding charge plus/min) at the end.

For most residues, the PDB name is the same as the GROMOS name, so you have nothing
to change. But some residues are ionisable, i.e. they can bear a proton or not depending on
the pKa of the functional group and the experimental pH. The same is true for the non-blocked
capping groups R-NH2 and R-COOH which we will use here, and for which we can use the
pKa of ethylamine and acetic acid, respectively, as estimates. If you are not a chemist, you can
find some basic information on pH and pKa in Appendix B of this document. And for your
convenience, indicative pKa’s for the relevant residues are listed in Table 1.

Table 1: Indicative pKa values for the natural amino-acid residues. Note that the pKa of a
specific residue within a protein may differ (shifts induced by the local protein environment of
the residue). Source: Ref. [6].

AA pKa

ASP 3.02
GLU 4.61
Acetic acid 4.76
HIS 6.99
CYS 6.18
Ethylamine 10.75
LYS 10.67
ARG 12.10

If the pH is lower than their pKa:

• The acidic residues Asp and Glu as well as the free C-terminus will be protonated and
neutral (GROMOS names: ASPH, GLUH and COOH).

• The basic residues Lys, Arg and His as well as the free N-terminus will be protonated
and positively charged (GROMOS names: LYSH, ARGH, HISH and NH3+).

If not:

• The acidic residues Asp and Glu as well as the free C-terminus will be deprotonated
and negatively charged (GROMOS names: ASP, GLU and COO-).

• The basic residues Lys, Arg and His as well as the free N-terminus will be deprotonated
and neutral (GROMOS names: LYS, ARG, HISA/HISB and NH2).

Note, His is a bit special in that it has two deprotonated forms depending on the location of the
remaining proton, as illustrated in Figure 2. Then you have to think about which form to select
(e.g. by looking at potential hydrogen-bonding partners in the protein structure). Luckily, we
have no His in our protein Gb88. At very high pH, we also have to consider the protonation
state of residue Cys. But there aren’t any in Gb88.

Now, you should be able to modify your initial @seq appropriately for the experimental
pH (hint: besides replacing the NH (charged?) and CO (charged?) by something meaningful,
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Figure 2: Histidine protonation states labelled HISA (H on ND1), HISH (protonated) and HISB
(H on NE2).

there is only one name to change systematically to another one). When this is done, it is also
important to determine the net charge of the protein given the selected ionization state. If the
protein is non-neutral, you may have to decide whether to simulate a non-neutral system or to
neutralize it by adding counter-ions, which must then also be included into the topology file as
seen in Exercise 2. You may also add counter-ions even for a neutral protein to mimic a finite
ionic strength in the experiment. Here, we will add none. Answer the following questions:

(Q3) What pH will we consider in the simulations (same as in the NMR experiments)?
(Q4) List the 58 words you added after the @seq?
(Q5) What is the net charge of the protein?

Now make sure you have complemented everything else needed in make_top_protein.arg and
build the topology file of the protein using make_top

make_top @f make_top_protein.arg > protein.top

Now the molecular topology file protein.top is generated. Open the file and check that it looks
reasonable

vim protein.top

In particular, have a look at the number of atoms (solute)

/SOLUTEATOM

Now you should see:

SOLUTEATOM

# NRP: number of solute atoms

592

(Q6) Why is this number of atoms different from that in the PDB file?

(The answer to this question will become obvious in the next subsection; but don’t miss the
thrill of finding the answer by yourself right now!) At this point, you should in principle run
check_top to perform a consistency check of your topology. For the sake of time, we will skip
this step and go directly to the coordinate generation step

cd ../coord
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2.4.2 Coordinates

GROMOS++ PROGRAM NEEDED: pdb2g96

INPUT FILES THERE: pdb2g96.arg pdb2g96.lib

OUTPUT FILES THAT WILL BE CREATED: protein_g96.cnf

The discrepancy between the number of solute atoms in the PDB file and in the GROMOS
molecular topology file is a clear hint that there are at this point some compatibility problems
between the two files. If you want them to live together as a happy couple, you’ll have to iron
these out. The possible sources of discrepancies can be the following:

1. Coordinates are in Ångstrom in the PDB file but nanometer in the GROMOS file.

2. There can be extra hydrogen atoms in the PDB file. This is typically the case for NMR
structures, where all hydrogen atoms are included, even the aliphatic ones that GROMOS
does not treat explicitly (united-atom representation).

3. There can be missing hydrogen atoms in the PDB file. This is typically the case for
X-ray structures, where these atoms have a too low electron density to be detected.

4. The ordering of the atoms in the PDB file may differ from the one adopted in GROMOS
files

5. There can be missing residues in the PDB file. For example, it is not uncommon that
disordered segments in a protein (typically loops or termini) cannot be resolved in an
experimental X-ray structure determination, and are absent in the PDB file. In this case,
you would have to do some modelling to generate a good guess for the missing coordinates.

6. There may be small typos and errors in the PDB file.

Besides these, also remember that a PDB file may contain multiple structures for the same
protein. This was the case for our file 2JWU (bundle of structures refined based on NMR data),
and we already took care of that by selecting model1. It can also happen in X-ray structures
when the different copies of the protein in the crystallographic unit cell are refined independently.

Discrepancies of types 1-4 above can be fixed automatically using the GROMOS++ program
pdb2g96, which converts a PDB coordinate file into a GROMOS coordinate file based on a
GROMOS molecular topology file, in such a way that the atom content and ordering in the
created GROMOS coordinate file matches exactly that specified in the topology (by matching
the names of the atoms in the topology with the ones of the PDB file. Note that as soon as
agreement is reached, the atom name information in the coordinate file will be entirely ignored
for all subsequent GROMOS operations, i.e. only the atom order in this file will matter, the
names being extracted from the topology file. In case 2 above, pdb2g96 will have to add hydrogen
atoms, the coordinates of which are not known experimentally. In this case, pdb2g96 will set
the unknown coordinates to zero, and a second GROMOS++ program gch has to be used to
construct these coordinates based on standard geometric constructions. Whenever discrepancies
of types 5-6 above occur, they will have to be detected and repaired manually (good luck!).

In the case of our protein Gb88, we only have types 1 (atom needed reordering) and 3
(aliphatic hydrogen atoms to be mercilessly slaughtered), and pdb2g96 will do the job. Briefly
review the argument file pdb2g96.arg
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vim pdb2g96.arg

If you agree with the content of the file, you can continue with the execution of the command

pdb2g96 @f pdb2g96.arg > protein_g96.cnf

Now the GROMOS coordinate file protein_g96.cnf of the protein is generated
(Q7) Compare the records for residue 4 (Lys) in the PDB and GROMOS coordinate files

and describe/explain the differences?

Let’s continue with the next step, performing an EM in vacuum

cd ../min

2.4.3 Energy Minimization of the Protein (Vacuum)

GROMOS++ PROGRAM NEEDED: md

INPUT FILES THERE: em_protein.imd em_protein.run

OUTPUT FILES THAT WILL BE CREATED: protein_min.cnf em_protein.omd

em_protein.out

Before placing the protein in a box and solvating it, the initial GROMOS coordinates generated
based on the PDB file will be relaxed by energy minimization.

⇒ A more detailed explanation regarding the EM procedure can be found in Exercise 2!

Briefly check if all is correctly specified in the argument file em_protein.run

vim em_protein.run

and in the GROMOS input file em_protein.imd

vim em_protein.imd

If you agree with the content of these files, you can continue with the execution of the command

./em_protein.run

Now your protein is energy minimized (protein_min.cnf)

(Q8) Which algorithm is applied in the EM procedure? (Tip: check the em_protein.imd

file)
(Q9) What is the total potential energy of the system before and after EM (look it up in

protein_min.out)?
(Q10) What are the two main causes for the very high potential energy of the 2JWU/model1

structure in the GROMOS force field?
Let’s continue with the next step, solvating the protein and creating a computational box

cd ../box
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2.4.4 Solvating the Protein in a Water Box

GROMOS++/MD++ PROGRAM NEEDED: sim_box md frameout

INPUT FILES THERE: sim_box_protein.arg h2o.cnf

OUTPUT FILES THAT WILL BE CREATED: protein_box.cnf protein_box.pdb

Now the protein is ready to be placed into a box and solvated, for subsequent simulations under
periodic boundary conditions.

⇒ A more detailed explanation regarding this procedure can be found in Exercise 2!

The box shape will be chosen rectangular (r), the simple point charge (SPC) water model[8]
will be employed (as already specified in the topology file), the minimum solute-to-wall distance
will be 0.9 nm and the minimum solute-solvent distance 0.23 nm. Thus, there will be no direct
interactions between periodic copies of the protein, the closest surface atoms of two periodic
copies being at least 1.8 nm apart (longer than the cutoff distance of 1.4 nm). A slightly larger
distance would be advised considering that the protein can rotate in the box and that some water
molecules will still interact with two periodic copies of the protein, but we want fast simulations
for this exercise so we are less careful. Also we don’t add ions (neutral protein, assumed zero
ionic strength situation). The GROMOS++ program sim_box is used to generate the box and
solvate the protein. Briefly check if all is correctly specified in the sim_box_protein.arg file

cat sim_box_protein.arg

If you agree with the content of the file, you can continue with the execution of the command

sim_box @f sim_box_protein.arg > protein_box.cnf

Now your protein is solvated in a water box (protein_box.cnf). To visualize how the protein
is solvated execute the following command

frameout @f frameout_box.arg

mv FRAME_00001.pdb protein_box.pdb

pymol protein_box.pdb

(Q11) What is the volume of your protein? (hint: approximate the protein volume as a
cylinder and use PyMOL Measurement’s function to get the length and radius)

(Q12) What is the volume of your box?

Let’s continue with the next step, relaxing the solute-solvent system in the computational box

cd ../min_h2o
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2.4.5 Energy Minimization of the Protein in the Box

MD++ PROGRAM NEEDED: md

INPUT FILES THERE:
protein_box.cnf em_protein_box.imd em_protein_box.run

frameout_protein_h2o.arg

OUTPUT FILES THAT WILL BE CREATED:
protein_box_min.cnf em_protein_box.out

During the immersion into the solvent, water molecules may still have been placed too close
(clash) or too far (gaps) relative to the protein surface. In addition, their orientation towards the
protein surface is not optimized. All these effects result in high potential energy contributions. If
we were to immediately start with MD, this would result within a few steps into a huge effective
temperature at the protein surface, and collisions leading to distortion in the protein structure
(generally sanctioned by GROMOS in form of an unpleasant SHAKE failure!).

Therefore, we need to perform an equilibration of the solute-solvent system using EM. During
this process, the solute atoms will be positionally restrained around their coordinates in the initial
structure. This means that we keep them on a tight leach (harmonic spring) and prevent that
they move too far away from their starting position, which corresponds to the (energy minimized)
experimental structure. The solvent molecules, on the other hand, can move entirely freely.

The list of atoms to be positionally restrained must be specified in a file protein_box.por.
The reference positions of these atoms must be specified in a file protein_box.rpr. You have
to prepare these two files yourself, but it is easy. First copy the file protein_box.cnf file to the
current directory

cp ../box/protein_box.cnf ./

Now make two clones of it with the required file names

cp protein_box.cnf protein_box.por

cp protein_box.cnf protein_box.rpr

Open the file protein_box.por in your text editor

vim protein_box.por

• Write in the TITLE block the text “list of solute atoms to be positionally restrained”

• Change the keyword POSITION at the beginning of the atom coordinate block into the
keyword POSRESSPEC

• Delete all the solvent atoms

Now you your protein_box.por should look like:

TITLE

list of solute atoms to be positionally restrained

END

POSRESSPEC

# first 24 chars ignored
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1 THR H1 1 5.144434523 5.236928112 4.193546264

......

......

56 GLU O1 591 0.316814628 0.079450732 1.428651374

END

When GROMOS reads this file, it will ignore entirely the coordinates and just look at the list
of atoms. Next, open the file protein_box.rpr in your text editor

vim protein_box.rpr

• Write in the TITLE block the text “reference positions of solute atoms to be positionally
restrained”

• Change the keyword POSITION at the beginning of the atom coordinate block into the
keyword REFPOSITION

Now you your protein_box.rpr should look like:

TITLE

reference positions of solute atoms to be positionally restrained

END

REFPOSITION

# first 24 chars ignored

1 THR H1 1 5.144434523 5.236928112 4.193546264

......

......

5181 SOLV HW2 16135 2.1554.91829 0.562881411 0.408577477

END

When GROMOS reads this file, it will only use the coordinates of the atoms listed in protein_box.por

(i.e. here, the solute atoms), and ignore all the rest. Now open the file em_protein_box.imd in
your text editor

vim em_protein_box.imd

Look at the POSITIONRES block

POSITIONRES

# NTPOR NTPORB NTPORS CPOR

1 1 0 2.5E4

END

This block takes care that the atoms are positionally restrained (NTPOR = 1) with a specified
harmonic force constant (COPR).
(Q13) What are the units of the number 2.4E4 listed as CPOR? How does the value compare

with e.g. the force constant for a C-C bond? (Hint: check the force field parameter
file .ifp for the C, CHn - C CHn bond)

Reminder: you can find the doxygen documentation here:
For GROMOSXX: http://realbeaver/gromos/md++/
For GROMOS++: http://realbeaver/gromos/gromos++/
(Q14) What are the switches NTPORB and NTPORS (by now, you are GROMOS experts,

so you should know where to find the answer yourself!)

Briefly check if all is correctly specified in the file em_protein_box.run
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cat em_protein_box.run

If you agree with the content of the file, you can continue with the execution of the command
(the ’&’ symbol puts the job on the background, in case you want to check something in the
meanwhile)

./em_protein_box.run &

Now your solvated protein in the box is equilibrated (protein_box_min.cnf). Let’s continue
to the last step before the actual production run, the generation of initial velocities followed by
MD thermalisation/equilibration

cd ../eq

2.4.6 Thermalisation and Equilibration

GROMOS++/MD++ PROGRAM NEEDED: mk_script ene_ana md

INPUT FILES THERE:
eq_mkscript.arg eq.imd equilibrium.jobs mk_script.lib

protein_box_min.cnf

OUTPUT FILES THAT WILL BE CREATED:
protein_*.imd protein_*.run protein.cnf protein_*.trc.gz

protein_*.tre.gz

In the previous exercise, we immersed the peptide in the solvent, performed an EM, generated
random velocities appropriate for a temperature T and directly started the MD simulation
at this temperature. For a protein, we want to be a bit more careful and apply a thorough
thermalisation procedure. We will only let the protein loose when the system has been well
equilibrated at the target temperature. This will avoid that the actual production simulation
starts from a protein structure that looks already quite distorted (in a random fashion) relative to
the experimental one. For this, we will use in combination a progressively increasing temperature
and progressively decreasing position restraints on the solute atoms. Note that there will be
two different target temperatures, 298 K and 348 K, one for each student of a pair.

The thermalisation procedure is greatly facilitated by the use of the GROMOS++ program
mk_script, which allows the automatic generation of successive MD jobs that: (i) slightly differ
in their input parameters; (ii) use the final configuration of one job as the starting configuration
of the next one; (iii) automatically submit the next job upon completion of the previous one.
Have a look at the eq_mkscript.arg input file

vim eq_mkscript.arg

The name you want to give to the jobs for thermalisation/equilibration is indicated after @sys,
the pathway of your current working directory is indicated after @dir, the file specifying the
number of heat-up steps and their differing input parameters after the @joblist and all the
information regarding the protein system after @files. To understand how the work will be
done, we have to look further at the files eq.imd and equilibrium.jobs.

The model input file eq.imd is a regular input file for the GROMOS program md. It specifies
default input parameters for all the jobs. Only a few (8) of them will be later substituted by
other values specific to each job, which will be indicated by the word “overwritten” below. This
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file is similar to the input file for the energy minimization em_protein_box.imd. The structure
of these files has been already discussed in Exercise 2. So, we will only mention the most relevant
blocks here.

********************

The INITIALISE block

********************

INITIALISE

# NTIVEL NTISHK NTINHT NTINHB NTISHI NTIRTC NTICOM NTISTI IG TEMPI

1 3 0 0 1 0 0 0 145117 0.0

END

NTIVEL (overwritten) specifies if GROMOS++ should generate the initial velocities (1) or read
them from the initial configuration file (0). NTISHK (overwritten) is used to enforce bond-length
constraints (SHAKE) after reading the initial configuration. NTINHT and NTINHB are only used
for Nose-Hoover thermo- and barostats and can be ignored in our case. Every time an atom
leaves the periodic box and enters from the opposite site, the incident is recorded in the so-called
lattice shift vectors. NTISHI (overwritten) makes sure that these vectors are initialized to zero.
NTIRTC can be turned on for roto-translational constraints, which is not relevant in our case.
NTICOM specifies if initial removal of centre of mass motion is required. NTISTI specifies whether
to reset the stochastic integrals used in stochastic dynamics (SD) simulations. IG is the random
number generator seed and TEMPI (overwritten) the initial temperature used to generate the
Maxwell-Boltzmann distribution for generation of initial velocities.

********************

The STEP block

********************

STEP

# NSTLIM T DT

10000 0.0 0.002

END

NSTLIM specifies how many steps we want to simulate, T the time offset at the start of the job,
and DT is the integration time step. Here, you want to start at time 0 and to carry out a 20 ps
simulation (10000 steps).

********************

The BOUNDCOND block

********************

BOUNDCOND

# NTB NDFMIN

1 3

END

Here the periodic boundary conditions are specified. With NTB =1, rectangular PBC is selected.
NTB is the number of uncoupled degrees of freedom.
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********************

The MULTIBATH block

********************

MULTIBATH

# ALGORITHM:

# weak-coupling(0): use weak-coupling scheme

# nose-hoover(1): use Nose Hoover scheme

# nose-hoover-chains(2): use Nose Hoover chains scheme

# NUM: number of chains in Nose Hoover chains scheme

# !! only specify NUM when needed !!

# NBATHS: number of temperature baths to couple to

# ALGORITHM

0

# NBATHS

2

# TEMP0(1 ... NBATHS) TAU(1 ... NBATHS)

60 0.1 60 0.1

# DOFSET: number of distinguishable sets of d.o.f.

2

# LAST(1 ... DOFSET) COMBATH(1 ... DOFSET) IRBATH(1 ... DOFSET)

592 1 1 16135 2 2

END

This block controls the thermostat. With ALGORITM=0, the weak-coupling scheme is selected.
NBATHS specifies the number of temperature baths to couple the system to (we want 2, one for
the solute and one for the solvent). TEMP0 (overwritten) specifies the temperature for each bath
and TAU the coupling time used in the weak-coupling method for each bath. DOFSET specifies the
number of distinguishable sets of degrees of freedom. LAST points to the last atom for the set
of degrees of freedom. COMBATH is the temperature bath to which the center of mass motion is
coupled of this set of degrees of freedom. IRBATH is the temperature bath to which the internal
and rotational degrees of freedom of this set of degrees of freedom are coupled.
(Q15) Why are the protein and solvent separately coupled to a heat bath?

*********************

The COMTRANSROT block

*********************

COMTRANSROT

# NSCM

-1000

END

This block is needed to remove the center of mass motion (here, translation and rotation).
Without this block it can happen that all the kinetic energy is converted to center of mass
translation (flying ice cube problem). With NSCM specifies how often the center-of-mass (COM)
motion is removed. If NSCM is < 0: translation and rotation motion are removed every NSCM

th step. If NSCM is > 0: only translation motion is removed every NSCM th step.
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**********************

The COVALENTFORM block

**********************

COVALENTFORM

# NTBBH: 0,1 controls bond-stretching potential

# 0: quartic form (default)

# 1: harmonic form

# NTBAH: 0,1 controls bond-angle bending potential

# 0: cosine-harmonic (default)

# 1: harmonic

# NTBDN: 0,1 controls torsional dihedral potential

# 0: arbitrary phase shifts (default)

# 1: phase shifts limited to 0 and 180 degrees.

# NTBBH NTBAH NTBDN

0 0 0

END

Here the functional forms are specified for bond-stretching (NTBBH), bond-angle bending (NTBAH)
and for torsional dihedral (NTBDN). The default options are chosen for all functional forms.

**********************

The WRITETRAJ block

**********************

WRITETRAJ

# NTWSE = configuration selection parameter

# =0: write normal trajectory

# >0: chose min energy for writing configurations

# NTWX NTWSE NTWV NTWF NTWE NTWG NTWB

100 0 0 0 100 0 0

END

MD++ produces a massive amount of data, too much to store every step of a simulation.
Therefore it is specified how often the coordinate trajectory (NTWX), the velocity trajectory
(NTWV), the force trajectory (NTWF), the energy trajectory (NTWE), the free energy trajectory
(NTWG) and the block averaged energy trajectory (NTWB) are written out. In the present case,
we are only interested in the coordinates and energies. These are written out every 100th step.
NTWSE functions as a ’second switch’, since it defines the selection criterion for trajectories: If
NTWSE = 0: the normal coordinate trajectory will be written, if NTWSE > 0: a minimum energy
trajectory will be written.

**********************

The PRINTOUT block

**********************

PRINTOUT

#NTPR: print out energies, etc. every NTPR steps

#NTPP: =1 perform dihedral angle transition monitoring

# NTPR NTPP

17

   [ex 3]



100 0

END

Similar to the WRITETRAJ block, NTPR specifies how often the information regarding the
energies is printed to the output file. NTPP specifies if the dihedral angle transitions are also
monitored and written to the output file.

**********************

The PAIRLIST block

**********************

PAIRLIST

# algorithm: standard(0) (gromos96 like pairlist)

# grid(1) (XX grid pairlist)

# SIZE: grid cell size (or auto = 0.5 * RCUTP)

# TYPE: chargegoup(0) (chargegroup based cutoff)

# atomic(1) (atom based cutoff)

#

# algorithm NSNB RCUTP RCUTL SIZE TYPE

0 5 0.8 1.4 0.4 0

END

Different algorithms can be selected for the generation of the pairlist (a list containing the atoms
interacting with each other). Here, the grid based pairlist generation ALGORITHM (0) is selected.
With this algorithm, the space is discretized into grid cells and only the neighboring cells are
searched for interacting partners. The use of this algorithm results in a significant speed increase
because the scaling of the algorithm is changed from O(N2) to O(N). The pairlist is generated
every 5th (NSNB) step. RCUTP and RCUTL are the cutoffs for the pairlist construction of the
short-range and the long-range interactions.

**********************

The POSITIONRES block

**********************

POSITIONRES

# values for NTPOR

# 0: no position re(con)straining

# 1: use CPOR

# 2: use CPOR/ ATOMIC B-FACTORS

# 3: position constraining

# NTPOR NTPORB NTPORS CPOR

1 1 0 2.5E4

END

The position restraining of the protein (solute) is handled here. NTPOR specifies the restraining
by mean of a harmonic spring, the force constant being given by CPOR (overwritten). All the
parameters indicated above as “overwritten” will be replaced by values specified in the job script.
Have a look at the equilibrium.jobs job script file

cat equilibrium.jobs
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The equilibration.jobs file lists the seven jobs that will be performed in a row. The switches
of the first job are selected appropriately to generate initial random velocities (NTIVEL=1,
TEMPI=60) appropriate for a temperature of 60 K. The job is then carried out at 60 K with
strong position restraints. The following three jobs progressively increase the temperature by
steps of 60 K and decrease the position restraint force constant by steps of one order of magni-
tude, down to zero. The next two jobs further raise the temperature to 298 K and the last one
to 348 K. The subdir column specifies the directory in which the job will run. The run_after

column specifies which order the jobs are run.
Now you should in principle run mk_script (mk_script @f eq_mkscript.arg) and run the

jobs (./job_submit.sh), but. . .

OUT OF TIME RESTRICTION
The thermalisation/equilibration step has already been performed for you. The rea-
son is that these 7 jobs would take around 14 h and we want to start the production
runs this week.

. . . so if you look at the content of the current directory, you already see all the files that would
be produced in these 14 hours. Now you have to decide together with your MD simulation
partner which of the two temperatures you will start your production MD with. Please choose
one of the two following equilibrated files

• 298 K: protein_6.cnf

• 348 K: protein_7.cnf

And in the following, replace the “TEM” in the directory/file names by the temperature (298 K
or 348 K) at which you are going to run your simulation
(Q16) Based upon the files generated by the 7 equilibration jobs, the two plots in Fig. 3 show

the system temperature as a function of time and total energy, total kinetic energy,
and total potential energy as a function of time. Briefly discuss them.

(Q17) What do you expect to happen during a longer MD simulation of both proteins at the
different temperatures?

Let’s continue with the start of the actual production runs

cd ../md

2.4.7 Molecular Dynamic Sampling Simulation

GROMOS++/MD++ PROGRAM NEEDED: mk_script md

INPUT FILES THERE: md_mkscript.arg md.imd

OUTPUT FILES THAT WILL BE CREATED:
md_protein_*.imd md_protein_*.run md_protein.cnf md_protein_*.trc.gz

md_protein_*.tre.gz

TO DO: complete the md_mkscript.arg and md.imd

Your protein is now ready to enter the production MD simulation! We will now change from
constant volume to constant pressure conditions. And again, the GROMOS++ mk_script is
used to prepare the job scripts.
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Figure 3: Left The temperature curve (black) is shown for the protein during the thermalisation
of 140 ps. Each 7 steps represent the increase of the temperature till 348 K and the coupling
of the temperature during this step. Right The overall energy (black line), Potential energy
(green) and kinetic energy (red) are shown for the protein during the thermalisation time of
140 ps. The 7 steps reflect the increase in temperature till 348 K.

⇒ A more detailed explanation regarding the procedure can be found in Exercise 2.

Edit the mk_script argument file

vim md_mkscript.arg

Instead of the @joblist, the @script argument is now used. Also, the position restraints and
joblist files are not needed anymore. Check and complement the file (missing fields which are
marked “TO_DO”). The @sys flag should be set to protein_298K or protein_348K depending on
the temperature you chose.

WATCH OUT: if you are going to run your simulation at 348 K, change the coord line from
protein_6.cnf to protein_7.cnf. If you are going to run at 298 K, no such change is needed.

Then edit the md input file

vim md.imd

Check and complement the file (missing fields which are marked “TO_DO”). Check in particular
the MULTIBATH block. Now you can create the 2 consecutive job scripts with the command

mk_script @f md_mkscript.arg

Now 2 protein*.run files are created. Have a look if all is ready for submission

vim job_submit.sh

Now submit the job scripts :-)

./job_submit_TEM.sh

(Q18) What are the main differences between the md.imd file and the equilibration.imd

(previous step) file?
(Q19) How many nanoseconds does one of your jobs lasts and how long do you think it will

take to run your simulations? (Hint: remember we told you above that the 140 ps
thermalisation took 14 hours)
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3 Week Two (Analysis)

For the analysis, REMEMBER to replace “TEM” by the simulation temperature, that is 298 K
or 348 K in the following section!!! Now let’s first go to the simulation folder to check your
simulations

cd md

3.1 State of the Simulations

After a week of simulation, you will find some more files in your simulation folder. They include
coordinate trajectory files (*.trc.gz), final configuration files (*.cnf), energy trajectory files
(*.tre.gz), and GROMOS standard output files (*.omd). Have a look at these files and answer
the following questions
(Q20) What is the length of each job? What is the total length of your simulation? What is

the time interval between your stored trajectory frames?

3.2 Thermodynamic Parameters

PROGRAMS NEEDED: ene_ana xmgrace

INPUT FILES THERE: ene_ana.arg

OUTPUT FILES THAT WILL BE CREATED: ene_ana_TEM.out solutemp.dat

solvtemp.dat totene.dat totpot.dat totkin.dat pressu.dat

cd ../ana_TEM/ene_ana

As a first step in the analysis, it is always good to check the convergence/fluctuation properties
of some basic thermodynamic parameters. Here, we will consider

• Temperature (solute and solvent separately)

• Pressure

• Total energy

• Potential energy

• Kinetic energy

The values of these properties were calculated during simulations and written out by GROMOS
in the energy trajectories files (*.tre.gz).They can be extracted by the program ene_ana (as
usual, have a quick look at ene_ana.arg before!).

ene_ana @f ene_ana.arg > ene_ana_TEM.out &

If you get warnings at this point about the topology and the Boltzmann constant, you can ignore
them and let ene_ana run. The topology would be needed for masses and molecule numbers,
which we do not need, and the hardcoded value of the Boltzmann constant is used if no other is
specified.
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The output file ene_ana_TEM.out (have a look at it in your editor!) includes the averages,
fluctuations, and estimated statistical uncertainties (by block averaging) of the thermodynamic
properties monitored. Furthermore, separate files are written in which the time series of each
property can be found: solutemp.dat, solvtemp.dat, pressu.dat, totene.dat, totpot.dat
and totkin.dat for solute and solvent temperature, pressure, total energy, total potential energy,
and total kinetic energy of the system, respectively.

(Q21) Look at the time series of the six quantities. Do they hint towards a proper equilibrium
situation (no systematic drifts)?

(Q22) Plot the solute and solvent temperatures of the system. Which of the two has the
larger fluctuations? Why?

(Q23) Compare your results with the ones of your colleague having the other temperature
choice (298 K vs. 348 K). What are the main differences?

A LITTLE PRESENT FROM YOUR ASSISTANT: At this point, we are going to offer you
a little present - 9 more ns of simulation! Then you can carry out all subsequent analyses
considering 10 ns trajectories instead of 1 ns one. Also, everyone can now have the trajectories
at the two temperatures if they wish (but you can also keep working with your colleague and
one temperature each).

To make a link to the 10 ns trajectory at 298 K, type

cd

cd ex3

ln -s /usr/local/CSBMS/ex3/md_298K_10ns md_298K_10ns

To make a link to the 10 ns trajectory at 348 K, go to the appropriate directory ( /ex3) and
type

ln -s /usr/local/CSBMS/ex3/md_348K_10ns md_348K_10ns

Now, you can go on working with the trajectory files of the assistant as if they were in your own
directory (note, however, that you can only read and not write into these linked directories).

3.3 RMSD

PROGRAMS NEEDED: rmsd xmgrace

INPUT FILES THERE: rmsd.arg

OUTPUT FILES THAT WILL BE CREATED: rmsd_TEM.dat

cd ana_TEM/rmsd

The atomic positional root mean square deviation (RMSD) with respect to a given reference
structure tells you how dissimilar the structure sampled in your simulation is to the reference
(after least-squares-fit superimposition to remove the effect of overall translation and rotation).
This property can be monitored as a function of time using the GROMOS++ program rmsd (as
usual, have a quick look at rmsd.arg before!).

rmsd @f rmsd.arg > rmsd_TEM.dat &

(Q24) What do we use here as a reference structure?
(Q25) What is the purpose of the @pbc argument?
(Q26) Plot the RMSD time series at 298 K and 348 K, and comment on the difference
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3.4 RMSF

PROGRAMS NEEDED: rmsf xmgrace

INPUT FILES THERE: rmsf.arg

OUTPUT FILES THAT WILL BE CREATED: rmsf_TEM.dat

cd ../rmsf

The atom-positional root mean square fluctuation (RMSF) gives us information about how
locally flexible the protein is, i.e. how the different atoms of the protein fluctuate around their
average positions. The results are typically averaged on a per residue basis. A reference structure
is also required, but it is only used for the least-squares-fit superimposition to remove the effect
of overall translation and rotation. This property can be monitored as a function of time using
the GROMOS++ program rmsf (as usual, have a quick look at rmsf.arg before!).

rmsf @f rmsf.arg > rmsf_TEM.dat &

(Q27) Plot the RMSF over 10 ns as a function of the residue sequence number at 298 K and
348 K, and comment on the difference.

3.5 Hydrogen Bonds

PROGRAMS NEEDED: hbond

INPUT FILES THERE: hbond.arg

OUTPUT FILES THAT WILL BE CREATED:
hbond_TEM.dat Hbts.out Hbnumts.out

cd ../hbond

Hydrogen bonds are very important for the structure of the protein. The program hbond analyses
the coordinate trajectories, and gives the information on the hydrogen bonds formed during your
simulation. A hydrogen bond is considered to be present if the distance between a hydrogen
atom (H) connected to a donor atom (D) is within 0.25 nm from an acceptor atom (A) and the
D-H-A angle is larger than 135 degrees. The program hbond calculates average angles, distances
and occurrences for all observed hydrogen bonds over the trajectories and prints out a time
series of the observed hydrogen bonds (as usual, have a quick look at hbond.arg before!)

hbond @f hbond.arg > hbond_TEM.dat &

Now have a look at hbond_TEM.dat in your editor!
(Q28) Which hydrogen bond is the most populated one. Which protein secondary structure

does this hydrogen bond reflect?
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3.6 Secondary Structure

PROGRAMS NEEDED: dssp xmgrace

INPUT FILES THERE: dssp.arg

OUTPUT FILES THAT WILL BE CREATED: dssp_TEM.dat 4-Helix.out Beta-

Strand.out...

cd ../dssp

The program dssp can monitor secondary structure elements of proteins over a simulated trajec-
tory. The amino acids are allocated to a secondary structure according to the Define Secondary
Structure of Proteins (DSSP) rules in Ref. [7]. The program summarizes the observed occur-
rences of the secondary structure elements including β-sheet/bridge, α-helix, π-helix, 310-helix,
turn and bend, and averages the different properties over the protein. In addition time series
for every type of secondary structure element are written to file (as usual, have a quick look at
dssp.arg before!).

dssp @f dssp.arg > dssp_TEM.dat &

Now have a look at dssp_TEM.dat in your editor!
(Q29) Have a look at dssp.dat file, how many α-helix and β-strand does your protein contain

during the simulation? Are they consistent with the experimental data?
To make a nice plot of the time series of the secondary structure element

xmgrace -p dssp_grace.prm *.out

(Q30) Insert this graph in your report and comment on it.

3.7 Ramachandran Map

PROGRAMS NEEDED: tser xmgrace

INPUT FILES THERE: tser_ramach.arg

OUTPUT FILES THAT WILL BE CREATED: phipsi.dat

cd ../ramachandran

A Ramachandran plot is a way to visualize the amino acids backbone dihedral angles ψ and
φ against each other. Backbone dihedral angles ψ is defined through the backbone C-N- Cα-
C atoms and φ is defined through the backbone N-Cα-C-N atoms. The Ramachandran plot
(Figure 4) of the native protein structure is shown in Figure 4:

For our analysis, the GRMOS++ program tser can be used to calculate the backbone
dihedral ψ and φ angles from the coordinate trajectories (as usual, have a quick look at
tser_ramach.sh before!).
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General case
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Figure 4: Ramachandran plot of the model 1 NMR structure of the protein.

./tser_ramach.sh &

This script calculates the backbone dihedral angles for all the residues except for the two terminal
ones. Because this analysis is very time-consuming, only the last coordinate trajectory (0.5 ns)
was analyzed. A file phipsi.dat is generated with ψ as the first column and φ as the second
column.
(Q31) Plot the Ramachandran plot. Do your simulations cover more or less the same region

of the Ramachandran plot compared with the native protein structure?
(Q32) From the plot, can you tell what the main secondary structures of your protein are?

Is there any difference between the plots from the simulations at two different temper-
atures?

3.8 Visualization

PROGRAMS NEEDED: pymol

INPUT FILES THERE: protein_TEM_movie.pdb

Beside the quite dry graphs analysis, visualizing the dynamics of the protein (molecular movie)
is also important and fun! It will often give you ideas on what properties are interesting to
monitor later in a numerical way. For this reason, you would normally do it right after finishing
the simulations. For this exercise, however, we left it for the end (cherry on top of the pie!)
because we can skip it if there is not enough time in the exercise session. Also, to save time,
the movie has already been prepared for you (10 ns trajectory at the two temperatures, solvent
removed). This was done using the GROMOS++ program frameout. To view it, just do

pymol /usr/local/CSBMS/ex3/movies/protein_TEMK_movie.pdb

To play the movie
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mplay

To adjust the speed of the movie, go into the movie menu and subsequently you can adjust the
frame rate to e.g. 5 FPS. You should now see your protein wiggling, diffusing and tumbling.
What is more interesting to see is the internal movement of the protein. To be able to see this,
all the time frames can be fit on the first frame by using the command

intra_fit protein

To center your protein use the command

orient

To get again the cartoon

hide all

show cartoon

However, this will not result in the nice secondary structure representation, instead it gives thick
tubes. This is due to the fact that there is no secondary structure information in the pdb file.
PyMOL can calculate for one frame the secondary structural elements and project this one on
all the other frames by using the command

dss

(Q33) Can you see any differences in behavior of the protein at the different temperatures?
(Q34) Which secondary structure elements have a higher fluctuation? (Alpha helix / beta-

sheets

26

   [ex 3]



4 Report

4.1 General Information

Just as for experimental approaches, mastering the technique is only one component in the
scientific investigation of a given problem. Equally important components - in experiment as
well as in simulation - are to:

• Formulate the question clearly

• Design an appropriate experiment to answer the question

• Interpret the results in terms of the question

• Be aware of the shortcomings and approximations of the employed method

To train these components (at least to some extent), we expect you to hand in a short report
after each exercise series. This report should be a bit like the “results and discussion” section
of a scientific article. No need to repeat all what you did. Just quote your main results and
observations, possibly using tables or/and graphs, and discuss what scientific message can be
extracted from them. To help you with this, at almost all the sections of the exercise one or
more questions are asked. Please keep you report short and precise. If possible:

• Keep the length to 2 pages but if you need more (max. 4 pages) this is fine (excluding
the space taken by possible graphs or tables).

• Please use Times New Roman and font size 11.

• The deadline to hand in your report is the end of the week following the second week of
the exercise!

• Hand in your report to the responsible assistant, either by e-mail (one single printable
PDF document!) or on paper.

• See front page of this document for the exact date and assistant’s contact details.

• Any suggestions/feedback for improving the exercise would be appreciated! (Likes, dislikes
or improvements/changes). Thanks a lot!

4.2 Simulation Results

Give your answers to the questions/tasks given throughout the document (week 1 and week 2).
Feel free to add any further material you consider useful/relevant.

4.3 Thinking Questions

(A) We start our simulations from an experimentally determined structure. But we could
in principle start from any arbitrary structure of the protein (random coil or entirely
extended chain) and equilibrate long enough. Why don’t we do that?

(B) In Section 2.4.2 we stressed that the PDB structure is inferred based on NMR data
and not determined by the NMR data. The NMR experiment [4] is able to determine
918 average proton-proton distances in the protein. These are the observables. The
protein Gb88 has N atoms (by now, you know N from the PDB file), so that we want
to determine 3N-6 Cartesian coordinates (the minus 6 is because we don’t care about
the position and orientation of the protein). These are the parameters. What is the
corresponding observable-to-parameter ratio?
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(C) The aliphatic-group geometry, the bond lengths, the bond angles and the im-
proper dihedrals are fairly unambiguous. Assuming that we can take “standard”
values for these, the number of parameters to be determined would actually be
3N ′ − M ′ − 6, where N ′ is the number (united) atoms and M ′ the total number of
bonds+angles+dihedrals+impropers. You can get both from the GROMOS molecular
topology file. How does the observable-to-parameter ratio look like in this case?

(D) In Section 2.4.2, we said that PDB files for X-ray structures typically lack hydrogen
atom coordinates, because these atoms have a too low electron density to be detected
using X-rays. Sometimes, however, X-ray scattering experiments are complemented
by neutron scattering experiments, and the PDB file contains then hydrogen-atom
coordinates too. Can you explain how neutrons help? And can you guess why far
fewer structures include such a neutron scattering determination of the hydrogen-
atom coordinates, compared to those which only involve X-rays and exclude these
coordinates?

(E) In Sections 2.4.3 and 2.4.5 we performed EM steps, once for the protein in vacuum and
once for the computational box containing the protein in water (following the protocol
of Ref. [4] and Ref. [5]). But one might argue that (1) the first EM is actually not
needed, and even that (2) it might be better to skip it. Still, someone else might reply
that (3) it does not really matter much. Can you formulate arguments in favor of (1),
(2) and (3) for this virtual discussion?

(F) In Section 2.4.6, we have set NDFMIN = 3 and NSCM = -1000, the minus sign
in the latter meaning that we remove both the overall (center-of-mass) translation
and rotation of the computational box. Can you explain why this combination is in
fact inconsistent? And why it is actually not very wise to remove the box rotation
every 1000 steps in a simulation under PBC? What would then be the appropriate
combination?

(G) In Section 2.4.6, we performed the thermalisation at constant volume, and in Section
2.4.7, we immediately switched to constant pressure. It might have made sense to
already perform the end of the thermalisation at constant pressure. Describe briefly
the changes you would need to make in eq_mkscript.arg and eq.imd in Section 2.4.6
so that the last three jobs are at constant pressure instead of constant volume.

(H) The following three graphs show the time evolutions of the temperature, total potential
energy and RMSD considering two situations: your 140 ps thermalisation (in black)
and a 140 ps simulation that was carried out by directly assigning random velocities
appropriate to 298 K and not using any position restraints (in red). Based on these
three curves, explain why the careful thermalisation is worth the effort.
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Figure 5: Equilibration step (150 ps) of the protein; protein with thermalisation (black), protein
without thermalisation (red).

Figure 6: Equilibration step (150 ps) of the protein; protein with thermalisation (black), protein
without thermalisation (red).
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Figure 7: Equilibration step (150 ps) of the protein; protein with thermalisation (black), protein
without thermalisation (red).

Figure 8: Additional RMSD plot - MD run at 373 K - protein does not unfold.
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Appendix A: Available files

In the main exercise directory, you will find ex3.pdf, the digital version of the document you
are reading and eight sub-directories:

• pdb/

Contains protein_model1.pdb the pdb coordinate file of the protein (model 1 from the
NMR based conformations)

• topo/

Contains the required file to build the proteins topology; make_top_protein.arg and the
force field building blocks and parameters: 54a7.mtb, 54a7.ifp

• coord/

Contains the required files to convert the protein starting coordinates to GROMOS format;
pdb2g96.arg, pdb2g96.lib

• min/

Contains the required files to perform an energy minimization of the configuration;
em_protein.imd, em_protein.run

• box/

Contains the required files to get the protein solvated in a box and a frameout input file
for visualization;
sim_box_protein.arg, h2o.cnf, frameout_box.arg

• min_h2o/

Contains the required files to perform an energy minimization of the configuration in SPC
water;
em_protein_box.run, em_protein_box.imd

• eq/

Contains the files for the thermalisation and equilibration of the protein;
protein_*.run, protein_*.imd, protein_*.omd, protein_*.trc.gz,

protein_*.tre.gz, equilibration.jobs, eq_mkscript.arg, eq.imd

• md/

Contains md_mkscript.arg, md.imd, job_submit_TEM.sh

Appendix B: Brief Overview of pH and pKa for non-Chemists

The pKa determines if a molecule keeps or gives its protons (H+) away. The pKa is in turn
dependent on the equilibrium acid dissociation constant, Ka, which expresses the acid/base
concentration ratio of the reaction

HA+H2O → H3O
+ +A− (1)

where HA represents the weak acid and A− the anion and the dissociation constant subsequently
describes the equilibrium in dilute solution (mol/L)

Ka =
[H3O

+][A−]
[HA]

(2)
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The scale of acidity is often expressed as negative logarithm of Ka

pKa = − log(Ka) (3)

The smaller the pKa value, the stronger the acid, and vice versa. The pKa values for the
termini and side chains of amino acids are thus determined by several factors, such as their
extend of hydrogen bonding, nature of their neighbours, etc. The pKa value can be determined
by experimental methods e.g. NMR. You find in Table 1 the pKa values of several amino acids,
which you can use in answering the questions.
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CSBMS: Exercise 4

Liquid Simulations & Properties
Document version: 27.08.2019

Exercises week 1: 05.11. or 07.11.
Exercises week 2: 12.11. or 14.11.
Deadline for the report: 24.11.
Contact: carmen.esposito@phys.chem.ethz.ch

Carmen Esposito - HCI G235

Summary
In this fourth exercise, we will focus on the calculation of a number of properties specific

to liquids using molecular dynamics (MD) simulations employing GROMOS. Four different
organic liquids (ketones) will be taken as examples. Six different types of liquid properties
will be monitored and, whenever possible, compared with experimental data. The main
focus of this exercise is on the new types of analyses (week 2). Considering the experience
you already acquired in Exercises 1-3, the setup of the simulations (week 1) should be
comparatively rapid and painless.

1 Introduction

Among the three common phases of matter (solid, liquid and gas), the liquid state (pure liquids
and solutions) plays a particularly important role in classical molecular simulations. There are
many reasons for this, but one may mention in particular the facts that:

• Most of the experimentally relevant (bio)chemical processes happen in the liquid phase.

• The intermolecular interactions in the gas and solid states are usually well described in
terms of approximate analytical theories (ideal gas, harmonic crystal), which is not the
case for the liquids.

• Many pure liquid properties (structural, thermodynamic, dielectric, transport and kinetic)
can be calculated accurately based on relatively short simulations (10 ns or less), and can
often be compared to equally accurate experimental values.

The last point is of particular interest in the context of force-field parameterization. Force-field
parameters can be optimized against experimental data in the context of liquids of simple organic
molecules, and then ported to more complicated systems using a transferability assumption in
terms of molecular fragments.

In this exercise, we will focus on the calculation of a number of properties specific to liquids
using MD simulations employing GROMOS. Four different organic liquids, the ketones listed
in Table 1, will be taken as examples. Building blocks (i.e. full molecular topologies including
force-field parameters) for these four compounds are available in the GROMOS 53A6OXY force
field,[1] which we will use in this exercise. Six different types of liquid properties will be moni-
tored and, whenever possible, compared with experimental data. These properties, referring to
atmospheric pressure and ambient temperature, include: (i) the liquid density ρ; (ii) the molar
enthalpy of vaporization ΔHvap; (iii) the molar isochoric heat capacity cV ; (iv) the pairwise ra-
dial distribution function (RDF) and coordination number (CN); (v) the static relative dielectric
permittivity ε; and (vi) the self-diffusion coefficient D.
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The main focus of this exercise is thus on the new types of analyses (week 2). And in
this context, we will also show you a few “tricks” how to do some simple data transformations
using xmgrace. Considering the experience you already acquired in Exercises 1-3, the setup
of the simulations (week 1) should be a piece of cake for you now (or almost). It is thus a
good opportunity to consolidate your knowledge concerning the GROMOS setup procedure, by
looking in some more details into the files and asking your assistants all sorts of smart, advanced
or/and unsettling questions! Along these lines, since you now followed the CSBMS lecture on
“electrostatic interactions”, we will also discuss a bit more the non-bonded interaction blocks
of the GROMOS input file. And we will briefly discuss things you can do when you are idle
because an equilibration job takes a few minutes to complete.

Note, finally, that each student will only carry out the simulation for one of the four liquids
of Table 1 (week 1), but the four trajectories will be made available to all students at the time
of analysis (week 2).

2 Week 1

2.1 Getting Started

Before we start the exercise we need to define which system you will run (Propanone, Butanone,
3-Pentanone or 3-Hexanone; see Table 1). In order to make sure that at least one student will
run each of the four systems, we will choose it according to a predefined rule. After that, you
need to copy the proper files to your home directory and you can start the exercise.

2.1.1 Choosing which System to Run

Please count the number of students sitting at the same row and located on your left . Calculate
the remainder of the division of this number by 4, e.g. 5 remainder 4 = 1. Then pick the
system related to this number according to Table 1. From there on, you should always replace
<mol-code> when written in this script by the molecule three-letter code corresponding to your
system according to Table 1. And <capitalized-mol-code> for the capitalized version of the
<mol-code>, e.g., PPN if your mol-code is ppn.

Table 1: Four liquids considered.

Index Compound Molecule Code

0 Propanone ppn
1 Butanone btn
2 3-Pentanone 3pn
3 3-Hexanone 3hn

2.1.2 Setting up your Directory

In this exercise, we will assume that you always work in the folder

∼/ex4/<mol-code>

within your home directory (∼), where <mol-code> is the molecule code of your system (Table 1).
To get this folder set-up with appropriate initial content, just do
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%mkdir ∼/csbms

mkdir ∼/ex4

cp -r /usr/local/CSBMS/ex4/<mol-code> ∼/ex4/

2.2 Creating the Molecular Topology File

As usual, before we start any simulation, we need to make a molecular topology file for our
system. We will simulate a pure liquid system consisting of 512 molecules of your selected
ketone. GROMOS formally offers three options to simulate N replicas of the same molecule in
a system:

1. Set up your topology so that it contains N replicas of the molecule as solute and use
NPM=1 (one solute copy) in the input files for the simulations.

2. Set up your topology so that it contains 1 replica of the molecule as solute and use NPM=N
(N solute copies) in the input files for the simulations (in practice not possible, see below).

3. Set up your topology so that it contains 1 replica of the molecule as solvent and use
NSM=N (N solvent copies) in the input files for the simulations (not possible for all types
of molecules, see below).

We are going to use the option (1) above. Option (2) above is no longer supported in the
GROMOS code.1 Option (3) would not work for us, because what is declared as a solvent in
GROMOS must obey two important constraints:2 (i) be an entirely rigid molecule; (ii) consist
of a single charge group. Our ketones do not satisfy these constraints, so they must belong to
the solute. Note, finally, that the solvent can only consist of one type of molecule, whereas the
solute can be anything.

Following option (1), we will proceed as described on Figure 1.

Verify make_top input file Create single molecule topology

Create 512 molecules topology

Figure 1: Scheme of Topology Creation Steps.

Here, the process of creating your molecular topology file for a single molecule using make_top

is quite trivial. Go to the folder ∼/ex4/<mol-code>/topo. There, we provide the required
molecular topology building block mtb file and the required force field parameter ifp files (taken
directly from the GROMOS distribution). In this exercise we will use the files 53a6_oxy.mtb and
53a6_oxy.ifp corresponding to the GROMOS 53A6OXY force field,[1] specifically optimized for
alcohols, ethers, aldehydes, ketones, carboxylic acids, and esters. Have a look in 53a6_oxy.mtb.

1 It was available in the 1996 version of GROMOS in Fortran77 and was never ported to the C++ version; if
you try NPM �=1 in the current code, you will get an error message “currently only NPM=1 allowed”.

2 The fullfilment of these constraints enables GROMOS to handle far more efficiently these molecules. Since
water is the most common solvent and most water models satisfy these constraints, you save a lot of time in
simulating aqueous systems by declaring water as a solvent rather than part of the solute. If you are picky there is
another small difference in the treatment of solute and solvent molecules in GROMOS: the charge-group centers
are defined as the center of geometry of the charge-group in the solute, but as the first atom in the solvent.
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It already contains the four molecules of Table 1 in the form of building blocks. Can you find
yours? (The name of the building blocks are in the form of <capitalized-mol-code>)

Type make_top (without arguments) to remind yourself of the available arguments for
make_top. We already made the required make_top_<mol-code>.arg file for you. It is quite
simple, and should look like

@build 53a6_oxy.mtb

@param 53a6_oxy.ifp

@seq <capitalized-mol-code>

@solv H2O

Now, run the program make_top using

make_top @f make_top_<mol-code>.arg > <mol-code>.top

Have a look in the generated <mol-code>.top file to make sure all looks healthy (in principle,
you should also consider checking it with check_top, but we’ll forget about this here).

Now, you need to create the topology for your entire system, which consists of 512 identical
molecules as a solute. For replicating the single molecule topology 512 times, we will use the
program com_top.3 Type com_top (without arguments) to remind yourself of the available
arguments for com_top. We will use the arguments @topo, @param and @solv, as

com_top @topo 512:<mol-code>.top @param 1 @solv 1 > <mol-code>_512.top

The arguments @param 1 and @solv 1 tells com_top to use the force field and solvent defined
on the the first topology, respectively. In our case, the 512 topologies are the same therefore any
value below 512 produces the same results.

Have a look in the generated <mol-code>_512.top file to make sure all looks healthy (in
principle, you could again check it with check_top). Maybe also consider updating the TITLE
block of this file so that it is more informative.

2.3 Creating the Initial Coordinate File

The process of create your initial coordinates, 512 molecules of your ketone in a simulation
box at a reasonable density, is also quite trivial. Because liquids, unlike biomolecular systems
such as proteins (see Exercise 3) loose very quickly the “memory” of the initial configuration,
typically within 10-100 ps or so, the initial coordinates do not matter much as long as we
equilibrate the system decently afterwards. We will use the program ran_box, which creates a
computational box with a specified number of randomly located and oriented molecules, avoiding
the most nasty overlaps and enforcing a specified density. It does so by rotating and translating
reference coordinates for one single molecule, that has to be provided to the program. Go to the
folder ∼/ex4/<mol-code>/coord, and type ran_box (without arguments) to check the available
arguments. We will use the arguments @topo, @pbc, @pos, @nsm and @dens. To choose these
artuments, note we that: (i) the topology file to be used here should be that of a single molecule
(not of the 512 molecule system); (ii) we want to generate a rectangular box (use @pbc r);
(iii) reference single-molecule coordinates are provided to you with the name <mol-code>.g96;
(iv) we want to generate 512 molecules in the box; (v) Each of the four liquids has its own
density,4 and you can find the corresponding experimental value for your specific ketone in
Table 2 (see Appendix A of this document). Now, run the program ran_box to create the
<mol-code>_512.g96 file, i.e. as (obviously, you have some replacement to do here!)

3 Note that we could alternatively bypass com_top by directly listing 512 times <mol-code> in the @seq
argument of make_top.

4 Note that ran_box expects a density in units of kg m−3.
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ran_box @topo <fill in the location of the topology file>

@pbc <fill in the right letter>

@pos <fill in the right file>

@nsm <fill in the right number>

@dens <fill in the correct target density> > <mol-code>_512.g96

Have a look in the generated <mol-code>_512.g96 file to make sure all looks healthy. In par-
ticular, it is a good idea to check out the dimensions of the generated box (be it only to make
sure it is larger than twice the cutoff distance we will use in the subsequent simulations!) Maybe
also consider updating the TITLE block of this file so that it is more informative.

2.4 Running the Simulations

The plan for the simulations is illustrated in Figure 2.

1. Energy Minimization

2. System Pre-Equilibration under NVT Conditions

3. Data Acquisition under NPT Conditions

4. Data Acquisition under NVT Conditions

Figure 2: Scheme of our Simulation Steps.

All steps displayed in the figure will be performed using GROMOS md program. To start the
chain, we will need the molecular topology file created in Section 2.2 and the initial coordinate file
created in Section 2.3. In addition, for each step, we will need a default md input file and a series
of job files (including small variations from the default input file) as generated automatically by
the program mk_script.

Steps 1 and 2 will be carried out during this session, as described in Sections 2.4.1 and 2.4.2.
Then, we will prepare the files and submit the simulations for Step 3, as described in Section
2.4.3. These will serve as a basis for the analysis of 5 liquid properties characteristic of the liquid
at 300 K and 1 bar. Finally, we will prepare the files for the simulations for Step 4, as described
in Section 2.4.4. These will serve as a basis for the analysis of the 6th liquid property, the
molar isochoric heat capacity, at 300 K and a volume corresponding to the equilibrium density
of the liquid considered. Since these simulations rely on the final configuration of Step 3, we will
arrange that the job of Step 3 automatically submits the calculations of Step 4.

2.4.1 Energy Minimization

As usual, we do not want to start MD with a high-energy initial configuration. To relax strain
and bad atom overlaps (which ran_box tries to avoid but not always entirely successfully), we
first need to perform an energy minimization (EM).

Go to the folder ∼/ex4/<mol-code>/min. We already provided you with a script min.bash
for the EM. Please open it and take a look. The input coordinate file of the minimization
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PAIRLIST

# algorithm: standard(0) (gromos96 like pairlist)

# grid(1) (XX grid pairlist)

# SIZE: grid cell size (or auto = 0.5 * RCUTP)

# TYPE: chargegoup(0) (chargegroup based cutoff)

# atomic(1) (atom based cutoff)

#

# algorithm NSNB RCUTP RCUTL SIZE TYPE

? ? ? ? 0.4 ?

END

Figure 3: The PARILIST block of the GROMOS input file

procedure, the one we generated with ran_box, is defined by the option @conf. The output
coordinate file of the minimization procedure, the one we will use for subsequent work, is defined
by the option @fin. The GROMOS input file for md is defined by the option @input.

Now, please open this input file min.imd and take a look. Obviously, we will use the steep
descent algorithm (in which block do you find this information?). Many of the blocks we have
already discussed in the previous exercises, so you should know what they contain and we won’t
repeat it here. But since you now followed the CSBMS lecture on “electrostatic interactions”,
we will discuss a bit more the non-bonded interaction blocks. These are the PAIRLIST and the
NONBONDED blocks.

Irrespective whether we use the reaction-field or a lattice-sum method to calculate electro-
static interactions, we need to determine a set of atom pairs in close proximity, called a pairlist,
as determined by a threshold distance, called a cutoff. For the reaction-field method, atoms in
close proximity interact via a modified Coulombic interaction, whereas atoms at larger distances
do not interact. The modification of the Coulombic interaction is designed so as to encom-
pass the mean effect of the neglected interactions beyond the cutoff distance. For lattice-sum
methods, atoms in close proximity interact via a so-called real-space interaction that is finite-
ranged (this range should be shorter than the cutoff). The rest of the interaction, including
the effect of periodic cells assumed to surround the reference cell, is calculated separately using
Fourier series (Ewald method) or fast Fourier transforms (P3M method), and referred to as the
reciprocal-space interaction. For the Lennard-Jones interactions, only pairs within the cutoff
distance interact.

The PAIRLIST block (Figure 3) controls how the pairlist is generated.
The algorithm switch determines whether the pairlist is generated using a standard (slow)

double-loop algorithm or using a (fast) grid-based pairlisting method, where SIZE determines
the grid-cell size.[2] The NSNB integer determines the frequency (number of steps) a new pairlist
is constructed. If atoms diffuse relatively slowly, it makes sense and saves time to keep the
same pairlist over a few timesteps. The RCUTP and RCUTL reals determine the short- and long-
range cutoffs for the twin-range scheme. If they are equal, there is only one cutoff. Otherwise,
the pairlist is evaluated every NSNB steps for atom pairs up to RCUTP. But at the same time,
the intermediate-range interaction (energy force) for atom pairs between RCUTP and RCUTL is
calculated. Between pairlist updates, both the pairlist and the intermediate-range interactions
are assumed constant, and only the short-range interaction is recalculated based on the current
pairlist. The effect is to effectively increase the cutoff to RCUTL at low computational cost,
by neglecting the high-frequency fluctuations in the intermediate-range interaction. Finally,
the TYPE switch determines if the pairlist is made based on distances between charge-groups
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# Longrange reaction field correction

NONBONDED

# NLRELE APPAK RCRF EPSRF NSLFEXCL

1 ? ? ? ?

# NSHAPE ASHAPE NA2CLC TOLA2 EPSLS

3 1.4 2 1e-10 0

# NKX NKY NKZ KCUT

10 10 10 100

# NGX NGY NGZ NASORD NFDORD NALIAS NSPORD

32 32 32 3 2 3 4

# NQEVAL FACCUR NRDGRD NWRGRD

100000 1.6 0 0

# NLRLJ SLVDNS

0 33.3

END

Figure 4: The NONBONDED block of the GROMOS input file

or atoms. The standard setup for GROMOS simulations, which we will use in the present
simulations, involves short- and long-range cutoffs of 0.8 and 1.4 nm, respectively, an update
frequency of 5 timesteps for the pairlist, and a charge-group cutoff. One should be very careful
about changing the pairlist parameters since some of these choices, especially regarding the
cutoff distances, are correlated with the choice of optimal force-field parameters! And because
both pairlist-generation algorithm provide the same pairlist we are going to use the fastest one.

The NONBONDED block (Figure 4), controls how the non-bonded interacions are calculated.
The NLRELE switch determines whether we use the reaction-field (value 1) or a lattice-sum

(values >1) method for the electrostatic interactions. The GROMOS community generally
prefers the reaction-field method. For this reason, the material specific to lattice-sum methods
(all parameters of the block except the first and last lines) is not discussed here but in Appendix
B at the end of this document. The RCRF real specifies where the dielectric continuum starts.
Obviously, this value should be close to RCUTL and we always set it this way. The EPSRF real
specifies the relative permittivity of the continuum surrounding the cutoff sphere. For self-
consistency, this value should be set equal to the relative permittivity of the liquid (or solvent)
model considered, which is in general the same as (or close to) the experimental value (Table 2).
The APPAK real the inverse-Debye screening length of the continuum if it is meant to include ions
at a certain ionic strength.[3] This is zero for a pure liquid, and is even generally not used when
there are ions in the system. Finally, the GROMOS force field requires the exclusion of first and
second covalent neighbors from electrostatic interactions. But the exclusion should only involve
the direct Coulombic interaction, not the indirect reaction-field component. These interactions
are included when the switch NSLFEXCL is set to 1.

You probably noticed that we have (intentionally!) inserted some question marks in Fig-
ures 3 and 4, which are also there in the PAIRLIST and NONBONDED blocks of your file min.imd.
Obviously, they won’t make GROMOS happy... So you should definitely replace the ’?’ by
appropriate values in the input file before proceeding further! (you should find all the required
information in the text above).

Now you can submit this script to the queueing system by typing

qsub -N min -j y -cwd ./min.bash

The minimization should not take more than a few seconds. If it takes longer please check the
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job status using the command qstat. Have a look in the output file min.omd to make sure
all looks healthy (e.g. that the potential energy went down and that the program terminated
normally).

2.4.2 Pre-Equilibration

Again as usual, before we start the production MD, we need to generate initial pseudo-random
velocities and to equilibrate the system so that is looses the “memory” of the initial random
configuration (ran_box generation) and velocities (pseudo-random Maxwell distribution). We
will do this using 5 simulations of 50 ps each, generating pseudo-random velocities at the start
of the first one. Although it would not be really necessary for such a pure-liquid system,5 we
will start at 60 K and increase the temperature by 60 K at every step.

Go to the folder ∼/ex4/<mol-code>/eq. In order to create the simulation chain correspond-
ing to the 5 jobs we will use the program mk_script with the argument file mk_script.arg.
Open this argument file and have a look. The argument @input specifies the GROMOS input
file containing the default parameters. The argument @joblist specifies a file eq.jobs defining
the parameter alterations for each of the successive jobs. Now open the eq.jobs file and check
that it indeed corresponds to the temperature ramp we want to use. Finally, open the eq.imd

file and check that the PAIRLIST and NONBONDED blocks are appropriately filled (this time, we
were nice and directly filled them for you). Also determine from the file whether we run the
equilibration at constant volume (NVT) or at constant pressure (NPT). Now run mk_script by
typing

mk_script @f mk_script.arg

And submit the first calculation by typing

qsub -N run_eq_1 -cwd -j y -o run_eq_1.o -pe mpi 4 ./run_eq_1.run

The equilibration should take about 20 minutes to complete.
Which brings us to an important topic: what can you do when you are idle because an

equilibration job takes a few minutes to complete? There are many options like reading the
newspaper, going for a coffee, or flirting with the guy/girl at the neighbor computer.6 Our
recommendation is to stand up and sing the Swiss National Anthem. It will pass the time in
a pleasant fashion and reinforce your patriotic feelings. So: let’s all stand up and sing the
Swiss National Anthem together! If you do not remember the lyrics, you will find them in
Appendix C.

2.4.3 NPT Simulations

We can now start with the production runs. If you checked the input file in the previous section
(as it was asked!) you will have noticed that we simulated at constant volume (NVT). Here,
we will simulate first at constant pressure NPT.7 We will use a temperature of 300 K and a

5 We might as well start directly at 300 K with little harm.
6 This is not guaranteed to succeed, as it requires a very specific combination between your gender and gender-

inclination, and those of the person at the next computer. Tip: start with the person on one side, and if it fails,
you may have more luck with the person on the other side. Second tip: synchronize your equilibration jobs with
those of the person in question to increase the likelihood of simultaneous idleness.

7 If we are picky, it would have been smarter to run the last pre-equilibration job already at constant pressure,
because now, the first NPT job will include a small volume relaxation - which would better have belonged to
the equilibration than to the production. But since the density was already chosen in a reasonable fashion when
running ran_box, this relaxation is minimal and it will be very fast, so it does not really make a problem here.
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pressure of 1 bar to match the thermodynamic standard conditions,8 so as to later compare to
experimental data under these conditions.

Go to the folder ∼/ex4/<mol-code>/npt and check the default GROMOS input file npt.imd.
Finally, open the npt.imd file and check that the PAIRLIST and NONBONDED blocks are appro-
priately filled (here also, we were nice and directly filled them for you). Also check in the STEP

block that the NSTLIM variable is 100000 and the DT variable to 0.002, and calculate what will
be the length of a job in ns. And finally check the PRESSURESCALE block to make sure we run
at a constane pressure of 1 bar.

Now open the file mk_script.arg and check the @script variable, which should indicate
that we will be runing 50 successive jobs. Now you can guess again what will be the total
simulation length. Note that the first job will receive the number 11.9

Now we can generate the job files by typing

mk_script @f mk_script.arg

and submit the first calculation by typing

qsub -N npt_11 -cwd -j y -o npt_11 -pe mpi 4 ./npt_11.run

These calculations should take about 3 days to complete. This is less than the full week sepa-
rating us from the next exercise session, so we will make sure beaver has some more work to do
until then. This is the goal of the next section.

2.4.4 NVT Simulations

The 50 jobs that are just starting are NPT simulations. But for next week, we will also need an
additional set of NVT calculations. More precisely, we are going to calculate the molar isochoric
heat capacity cV of the liquid using finite-difference in temperature, namely, by comparing the
average total potential energy of the system at 290, 300 and 310 K. Who says isochoric says
NVT, thus the need for NVT simulations. And because we want to calculate cV at a volume
corresponding to the equilibrium density of the liquid model at 300 K and 1 bar, we are going
to branch these calculations right after the 50th job of the previous NPT calculations, where the
box volume should long have reached the appropriate equilibrium value.

Go to the folder ∼/ex4/<mol-code>/nvt-300 and open the nvt.imd file. Here also, the
PAIRLIST and NONBONDED blocks are already appropriately filled. Still check whether the EPSRF

(NONBONDED block) and the TEMP0 (MULTIBATH block) variables are set to the correct values (the
last one should be 300 K for this directory), and that we will indeed run at constant volume
as planned. Now have a quick look at mk_script.arg. It should be a chain of 50 jobs of 200
ps each, initiated from the final coordinates of the last NPT job, numbered 60 in the directory
../npt.

Now do the very same operations in the folders ∼/ex4/<mol-code>/nvt-290 and ∼/ex4/<mol-code>/
  nvt-31 noting that the TEMP0 variable should now be 290 K and 300 K, respectively.
Go to the folder ∼/ex4/<mol-code>/npt. The last job file for the NPT calculation has been

generated by mk_script (see previous section) and is named npt_60.run. We need to include
instructions to submit the 3 NVT job chains as soon as this last NPT job is completed. For
this, append at the end of the file

8 In fact, the standard temperature is 298.15 K, but it does not make much difference in practice.
9 This is a little trick we use on the group. This way, when you use the UNIX ls command, the jobs will be

listed in the right order. Starting from 1, e.g. 10 would be listed before 2. This works provided you have no
more than 89 jobs. If you have between 90 and 899 jobs, you can start from 101.
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cd ∼/ex4/<mol-code>/nvt-290

/usr/local/gromos-1.3.2/bin/mk_script @f mk_script.arg

qsub -N nvt_11 -cwd -j y -o nvt_11.o -pe mpi 4 ./nvt_11.run

cd ∼/ex4/<mol-code>/nvt-300

/usr/local/gromos-1.3.2/bin/mk_script @f mk_script.arg

qsub -N nvt_11 -cwd -j y -o nvt_11.o -pe mpi 4 ./nvt_11.run

cd ∼/ex4/<mol-code>/nvt-310

/usr/local/gromos-1.3.2/bin/mk_script @f mk_script.arg

qsub -N nvt_11 -cwd -j y -o nvt_11.o -pe mpi 4 ./nvt_11.run

Note that the NPT chain will run the 50 jobs one after the other, whereas the 3 NVT chains
will start and run simultaneously as soon as npt_60.run reaches the above statements.

2.5 Checking the Calculations

We are now all done for week 1. But please, over the coming days, do not forget to check your
jobs from time to time. Since you run long job chains over a long time period, the likelihood
that a minor problem (short power outage, temporary network interruption between a node and
the filesystem, machine reboot for maintenance, etc...) causes one job to crash is non-negligible.
In this case, restarting the chain is normally very easy. But the time between the stop and the
restart is lost. If you check every day, this lost time is at most a day. If you check every week,
obviously, this lost time can be up to a week.

To check your jobs, login on realbeaver (you may need vpn if you do this from outside ETH)
and use the command qstat. If you want to check the directory in which a particular job is
running use the option ’-j’. This is very useful here because the NPT and NVT chains have
identical job names, but run in different directories.

If you don’t see the jobs you expect to be running, check the presence (and possibly the
length) of the already generated trajectory files, .trc (usually the last one is partially complete
if a job crashed while running) or .trc.gz (if the last one has a reasonable length, this may
indicate a failure at submission of the next job). Then remove the corrupted/incomplete files
that have been generated by the job that crashed, resubmit the corresponding job script to the
queue with qsub, and recheck that all is fine with qstat.

So far, so good. We are done for this week... If you still have difficulties with the singing of
the Swiss National Anthem, we recommend you to set aside a couple of hours this weekend for
practicing, because we might need it again at the next session (and for the following exercises).
See you next week!

3 Week 2

Welcome to Week 2. In this week we are analyzing our simulations.

3.1 Analyses

All the analyses performed here will depend on different programs from the GROMOS++ pack-
age and on xmgrace. The programs used and the properties calculated are shown in gray and
white boxes, respectively, in Figure 5.

These analyses are explained in turn in Sections 3.1.1-3.1.6.
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ene_ana Density, Box Volume, Total Energy, Potential Energy

Density Heat of Vaporization Heat Capacity

rdf Radial Distribution Function and Coordination Number

epsilon Static Dieletric Permitivity

diffus Einstein’s Diffusion coefficient

Figure 5: GROMOS analysis program and possible generated data.

3.1.1 Density

The equilibrium box volume, density, total energy and total potential energy (among other
quantities) can be calculated using the ene_ana program. The arguments are

%# Usage:

%#

%# ene_ana

@en_files <one or more energy files>

@fr_files <one or more free energy files>

@prop <properties to monitor>

[@topo <molecular topology file> (for MASS and NUMMOL)]

[@time <t and dt> (overwrites TIME in the trajectory files)]

[@library <library for property names> [print] ]

Note that one of @en_files or @fr_files is required, but not both (free energy calculations
will be discussed in Exercise 5). First, we will use ene_ana on the NPT trajectory in order to
extract all the average quantities listed above at 300 K and 1 bar.

Go to the folder ∼/ex4/<mol-code>/ana/ene/npt-300 and check whether the ene.arg file
is similar to

@prop boxvol densit totene totpot

@topo ../../../topo/<mol-code>_512.top

@library ../../ene_ana.md++.lib

@en_files

../../../npt/npt_21.tre.gz

../../../npt/npt_22.tre.gz

../../../npt/npt_23.tre.gz

...

(continues with the tre.gz files)

...

11

   [ex 4]



../../../npt/npt_58.tre.gz

../../../npt/npt_59.tre.gz

../../../npt/npt_60.tre.gz

Then run the analysis program by typing

ene_ana @f ene.arg > result.log

Have a look at the output file result.log. It should contain the average value of our properties,
along with standard deviations and an error estimate based on block averaging.

You now have the tools to answer Question A in Section 4.2

3.1.2 Heat of Vaporization

The molar heat of vaporization is the enthalpy change corresponding to the transfer of one mole
of the compound from the (pure) liquid phase to the (ideal) gas phase at a given temperature
and pressure. We can calculate it based on our liquid simulations at 300 K and 1 bar using

ΔHvap = Ugas − Uliq +RT +ΔQMHvap (1)

Here, Uliq is the molar total potential energy (total potential energy divided by the number of
molecules) in the liquid state, Ugas the corresponding value in the gas phase, and R the ideal gas
constant (8.314 J mol−1 K−1). The third term RT accounts for the pressure-volume contribution
to the enthalpy, and assumes that the molar volume of a liquid is negligible compared to that of
an ideal gas. The last term ΔQMHvap accounts for quantum corrections to the values calculated
using a classical model, predominantly correcting for the fact that the intramolecular degrees of
freedom are not treated very accurately by the GROMOS force field (bond constraints, approx-
imate force constants for the angles, torsional dihedrals and improper dihedrals). The nature of
this term is further discussed in Appendix D. This correction can be calculated on the basis of
quantum-mechanical (QM) calculations,[4] but it is typically very small and this term will be
neglected in the present exercise.

The total potential energy of the system of 512 molecules in the liquid state was calculated
in Section 3.1.1 (see file result.log), so that you know uliq. The calculation of ugas would
require an additional simulation of the isolated molecule in vacuum (or of a set of molecules
at very large [non-interacting] distances). Since we already did the corresponding calculation
in Exercise 1, we will not repeat it, and merely provide you with the resulting values for the
four ketones. These are ugas = 0.04, 3.54, 6.60 and 7.06 kJ mol−1 for ppn, btn, 3pn and 3hn,
respectively.

You now have the tools to answer Question B in Section 4.2

3.1.3 Molar Isochoric Heat Capacity

The molar isochoric heat capacity is the quantity of heat that must be transfered to one mole of
the substance for increasing its temperature by 1 K under constant-volume conditions. For the
liquids considered, we calculate it here, for a temperature of 300 K and at a volume determined
by the equilibrium density of the liquid for a pressure of 1 bar, based on three NVT simulations
performed at 290, 300 and 310 K. The equation used is

cV =
1

N

∂E

∂T
≈ 1

N

U(T1)− U(T0)

T1 − T0
+ αR+ΔQMcV (2)

where E is the total energy of the system, U(T ) is the total potential energy of the system
at temperature T , N the number of molecules in the system. The term αR accounts for the
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temperature derivative of the kinetic energy. Based on the equipartition principle, α is equal to
one-half the number of unconstrained degrees of freedom of the molecule. If the molecule has
Nat atoms and Nc constraints (here, we employ rigid bonds), one has α = (3Nat −Nc)/2. You
can find out the value of α by drawing structure of your ketone, counting the number of atoms
and counting the number of bonds. Alternatively, you can have a look in the corresponding
molecular topology file.10 The last term ΔQMcV accounts for quantum corrections to the values
calculated using a classical model, predominantly correcting for the fact that the intramolecular
degrees of freedom are not treated very accurately by the GROMOS force field (bond constraints,
approximate force constants for the angles, torsional dihedrals and improper dihedrals) and the
fact that a number of the unconstrained intramolecular degrees of freedom are still very “stiff”
(i.e. their approximation by a classical harmonic oscillator with a cV contribution of kB is not
appropriate at room temperature). The nature of this term is further discussed in Appendix
D. This correction can be calculated on the basis of experimental IR and Raman spectra of
the molecule, or of quantum-mechanical (QM) calculations.[5] Unlike for ΔQMHvap (previous
section) the correction term is sizeable and cannot be neglected. The calculations are given in
Appendix D and we simply provide you with the resulting estimates, namely 16.8 for ppn, 21.5
for btn, 26.3 for 3pn and 31.1 for 3hn, in units of J mol−1 K−1.

Equation 2 is written in a simple finite-difference form. But since we have results at three
tempertures, we can do better, by fitting a line to the potential energy as a function of temper-
ature curve, and extract the corresponding slope. And that’s exacly the way we are going to do
it here.

Go to the folder ∼/ex4/<mol-code>/ana/ene/nvt-290 and check whether the ene.arg file
looks like

@prop totpot

@topo ../../../topo/<mol-code>_512.top

@library ../../ene_ana.md++.lib

@en_files

../../../nvt-290/nvt_21.tre.gz

../../../nvt-290/nvt_22.tre.gz

../../../nvt-290/nvt_23.tre.gz

...

(continues with the tre.gz files)

...

../../../nvt-290/nvt_58.tre.gz

../../../nvt-290/nvt_59.tre.gz

../../../nvt-290/nvt_60.tre.gz

If not please modify it accordingly. Then run the ene_ana program by typing

ene_ana @f ene.arg > result.log

Do the very same procedure in the folders ∼/ex4/<mol-code>/ana/ene/nvt-300 and
∼/ex4/<mol-code>/ana/ene/nvt-310.
Now copy the potential energy values from each result.log file and create a file with the

temperature in the first column and the total potential energy as second column like this (of
course, your potential energy values will differ from those listed below)

10 An even simpler alternative would be to use the total energy instead of the total potential energy in the
equation, and omit the term αR. But this would add noise in the calculated results (kinetic energy fluctuations)
and the use of the αR variant is also more didactical.
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# temperature totpot

290 -19744.1234

300 -19571.5678

310 -19400.9876

Open this file with xmgrace.

xmgrace <your-file-here>

Perform the Linear Regression, by choosing Data→Transformations→Regression... as shown
on Figure 6a. And select the total energy set (probably S0) and click on Accept (Figure 6b) and
copy the slope of the least-squares-fit line.

(a) Regression analysis menu xmgrace. (b) Regression analysis dialog box xmgrace.

Figure 6: Regression analysis in xmgrace.

The slope you obtain is given in GROMOS units of kJ mol−1 K−1 and pertains to the full
system of 512 molecules. Use Equation 2 with the calculated α and the provided ΔQMcV values.
Do not forget the 1

N term, which converts the energy to a per molecule basis.
You now have the tools to answer Question C in Section 4.2

3.1.4 Radial Distribution Function and Coordination Number

The radial distribution function (RDF) gIJ(r) represents the local density of atoms of type I at
a certain distance r from atoms of type I, relative to the bulk density of atoms of type J . This
function will be zero at r = 0 (atoms cannot overlap) and tend towards one at large distances
(bulk behavior). In the liquid state, it will generally evidence a sudden rise from zero followed by
successive peaks of decreasing magnitudes corresponding to shells of excess density at favorable
interatomic distances (the first one typically corresponding to contact distance), and then level
off to one.

If NI and NJ are the total numbers of atoms of types I and J in your computational box of
volume V , the RDF for pairs IJ when J 	= I is given by

gIJ(r) =
V

NI (NJ − δIJ)

1

4πr2dr

NI∑
i∈I

NJ∑
j∈J,j �=i

dn(rij , r, dr) (3)
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where dr is the bin size for the histogram approximation of the RDF, dn(rij , r, dr) is one if the
(minimum-image) distance rij between atoms i and j and between r and r+dr, and δIJ is one if
I = J (RDF over the same atom types in different molecules, excluding an atom with itself [zero
distance]) and zero otherwise (RDF over different atom types in the same or different molecules).
The factor 4πr2dr accounts for the growth of the accessible volume at a distance r as a function
of r (volume of a shell). It is factored out in the RDF in such a way that this function provides
information on the excess density of atoms, rather than on the excess number of particles (i.e.
we remove the baseline corresponding the case of randomly distributed [non-interacting] atoms).
It is easily seen that a RDF obeys the normalization∫ ∞

0
dr 4πr2 gIJ(r) = V (4)

The RDF can be converted into a potential of mean force (PMF), providing information on the
mean intermolecular interactions. Experimentally RDF’s for liquids can be inferred (albeit with
a significant uncertainty) from X-ray or neutron scattering experiments.

The coordination number (CN) function GIJ(R) represents the average number of atoms
of type J that can be found within a certain distance R from an atom of type I (i.e. at any
distance equal to R or less). Obviously, it can be derived from the RDF by integration, as

GIJ(R) = ρJ

∫ R

0
dr 4πr2 gIJ(r) (5)

where ρJ = NJ/V (case I 	= J) or ρJ = (NI − 1)/V (case I = J). In particular, due to the
normalization, G(R) evaluates to NJ (case I 	= J) or (NI − 1) (case I = J) in the limit R → ∞.
In practice, the value of GIJ(R) at the location of the first (second) minimum in gIJ(r) is of
most interest, representing the number of atoms of type J in the first (first+second) cordination
shell of an atom of type I. For NVT simulations the number density is constant and for NPT
simulations where the fluctuation of the box volume is small the ρJ can be taken to be it’s
average value along the simulation.

In order to compute the gIJ(r) we will use the GROMOS program rdf, whose arguments
are:

# Usage:

#

# rdf

@topo <molecular topology file>

@pbc <boundary type> [<gather method>]

@centre <atoms to take as centre>

@with <atoms to calculate distances for>

@cut <maximum distance>

@grid <number of points>

[@nointra <skip intramolecular atoms>]

@traj <trajectory files>

The centre option defines the first atom type I. We will take the carbonyl oxygen atom of
the ketone. The with option defines the second atom type J . We will take the carbonyl carbon
atom of the ketone.

Now let’s compute the rdf. Go to the folder ∼/ex4/<mol-code>/ana/rdf and check whether
the rdf.arg file looks like
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@topo ../../topo/<mol-code>_512.top

@pbc r

@centre a:O

@with a:C

@cut 1.4

@grid 100

@nointra

@traj

../../npt/npt_21.trc.gz

../../npt/npt_22.trc.gz

../../npt/npt_23.trc.gz

...

(continues with the tre.gz files)

...

../../npt/npt_58.trc.gz

../../npt/npt_59.trc.gz

../../npt/npt_60.trc.gz

If not please modify it accordingly. Then run the rdf program by typing

rdf @f rdf.arg > rdf_o_c.log

Plot the rdf_o_c.log file containing the RDF gIJ(r) using xmgrace. The CN GIJ(R) we
will compute using xmgrace. But xmgrace cannot directly integrate 4πr2ρJgIJ(r). We must
first multiply our gIJ(r) by the function 4πr2ρJ ourselves. In order to do that, first get the box
volume value computed on Section 3.1.1.

Then, open the rdf_o_c.log file using xmgrace and perform the multiplication of gIJ(r)
by 4πρJr

2 using Evaluate expression... tool (Data→Transformations→Evaluate expression...)
as shown on Figure 7a. Notice that the last two values of the multiplication are the number
of molecules in the system and the box volume. In our case, you just have to change the box
volume to the value reported by ene_ana. After modifing the box volume accordingly, click on
Apply.

The last step is the integration of this new function. Select the integration tool by clicking
on Data→Transformations→Integration..., then select the new function data set (probably S1)
and click on Accept (Figure 7b). Save the graph with these modifications for you will need it to
write the report.

The last thing is to analyse the generated GIJ(R) curve to get the relevant first- and second-
shell CN’s. Move the mouse over the graph around the points shown on Figure 8 and mark the
corresponding r positions. Use this x positions now on the integrated curve and get the number
of carbonyl-carbons around the carbonyl-oxygens for each position.

Repeat this analysis now considering the carbonyl oxygen atom of the ketone as both atom
type I and J , i.e. replacing the @with argument of rdf also by a:O.

You now have the tools to answer Question D in Section 4.2

3.1.5 Static Dieletric Permitivity

The static relative dieletric permitivity ε of a liquid characterizes its ability to screen electrostatic
interactions (e.g. when placed between condensator plates or between ions embedded in it). This
quantity can be evaluated from a simulation of the pure liquid based on the fluctuations of the
total dipole moment of the computational box. When the reaction-field method is employed
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(a) Evaluate expression dialog xmgrace. (b) Integrate function dialog xmgrace.

Figure 7: Regression analysis in xmgrace.

to treat the electrostatic interactions (with a reaction-field permittivity εRF) the appropriate
Kirkwood-Fröhlich type of equation reads

(ε− 1)

(
2εRF + 1

2εRF + ε

)
=

〈
M2
〉− 〈M〉2

3ε0V kBT
, (6)

where ε0 is the vacuum permitivity, M the box dipole-moment vector, V is the box volume, kB
is the Boltzmann constant and T is the temperature. One can isolate ε to get

ε =
3 (2εRF + 1) ε0V kBT + 2εRF

(〈
M2
〉− 〈M〉2

)
3 (2εRF + 1) ε0V kBT −

(
〈M2〉 − 〈M〉2

) . (7)

Note that for a sufficiently long simulation, < M >= 0.
Equation 7 is used by GROMOS program epsilon to compute the model static permitivity.

The program accepts as arguments

%# Usage:

%#
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Figure 8: Position to compute the coordination number.

%# epsilon

@topo <molecular topology file>

@pbc <boundary type> [<gather method>]

[@time <time and dt>]

[@e_rf <reaction field epsilon>]

@temp <temperature>

@traj <trajectory files>

Now let’s compute the static dieletric permitivity of the target liquid. Go to the folder
∼/ex4/<mol-code>/ana/eps and check that the eps.arg file looks like

@topo ../../topo/<mol-code>_512.top

@pbc r nog

@e_rf <your system reaction field epsilon>

@temp 300

@traj

../../npt/npt_21.trc.gz

../../npt/npt_22.trc.gz

../../npt/npt_23.trc.gz

...

(continues with the tre.gz files)

...

../../npt/npt_58.trc.gz

../../npt/npt_59.trc.gz

../../npt/npt_60.trc.gz

If not please modify it accordingly. The static dieletric permitivity analysis can take sometime,
so it is a good practice to submit them to the queue system by typing

qsub -cwd -b y /usr/local/gromos-1.3.2/bin/epsilon @f eps.arg > result.log
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The result.log file should contain the box dipole moment and the cumulative static dieletric
permitivity ε. Open this file with your prefered text editor and go to the last line and take note
on the ε value. Plot this file using xmgrace using the option ‘-nxy’ and check whether the ε
value converged. The cumulative static dieletric permitivity should be the red curve.

You now have the tools to answer Question E in Section 4.2

3.1.6 Self-Diffusion Coefficient

The self-diffusion coefficient can be computed by Einstein relation as

D = lim
t→∞

〈
[r(t)− r(0)]2

〉
6t

, (8)

where the r(t) is the position of the particule of interest in a given time t and < ... > denotes
averaging over particles and time origins.

In order to compute the diffusion coefficient using Einstein’s formula we will use the GRO-
MOS program diffus, whose arguments are

@topo <molecular topology file>

@pbc <boundary type> [<gather method>]

[@time <time and dt>]

@dim <dimensions to consider>

@atoms <atoms to follow>

@traj <trajectory files>

Now let’s compute the model Einstein’s diffusion coefficient. Go to the analysis folder
∼/ex4/<mol-code>/ana/diffus and check whether the dif.arg file looks like

@topo ../../topo/<mol-code>_512.top

@pbc r

@dim x y z

@atoms a:a

@traj

../../npt/npt_21.trc.gz

../../npt/npt_22.trc.gz

../../npt/npt_23.trc.gz

...

(continues with the tre.gz files)

...

../../npt/npt_58.trc.gz

../../npt/npt_59.trc.gz

../../npt/npt_60.trc.gz

If not please modify it accordingly. The diffus analysis can take sometime, so it is a good practice
to submit them to the queue system by typing

qsub -cwd -b y /usr/local/gromos-1.3.2/bin/diffus @f dif.arg > result.log

The self-diffusion coefficient is given in GROMOS units which is nm2 ps−1, thus multiply
the number by 1000 to get the units in usual SI units of 10−9 m2 s−1.

The diffus program fits
〈
[r(t)− r(0)]2

〉
using the curve contained in the diffusdp.out

file. The Einstein’s relation is only valid in the limit of linear dependency. So check whether the
curve is linear (using xmgrace) and if not choose only the linear range and redo the fitting.

You now have the tools to answer Question F in Section 4.2
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4 Report

4.1 Format

Please refer to the corresponding section of Exercise 1 for information on the goal and expected
structure of the report.

4.2 Simulation Results

Answer the following questions:

A. Report the liquid density ρ calculated for your ketone at 300 K and 1 bar (including error
bar) and compare the result with the experimental value in Table 2.

B. Report the molar enthalpy of vaporization ΔHvap calculated for your ketone at 300 K and
1 bar (including error bar) and compare the result with the experimental value in Table 2.

C. Report the molar isochoric heat capacity cV calculated for your ketone at 300 K and a
liquid density appropriate for 1 bar (including error bar) and compare the result with the
experimental value in Table 2.

D. Report the graphs of the RDF and CN for the cases considered (I =carbonyl oxygen,
J =carbonyl carbon or I = J =carbonyl oxygen), and report the corresponding first- and
second-shell coordination numbers.

E. Report the graph of the cummulative estimate of static relative dielectric permittivity ε for
your ketone at 300 K and 1 bar (including error bar), report the final estimate (including
error bar), and compare the result with the experimental value in Table 2.

F. Report the graph of mean-square displacement as a function of time (including your linear
least-squares fit) for your ketone at 300 K and 1 bar, report your corresponding estimate
for the diffusion constant D (including error bar and regression coefficient).

4.3 Thinking Questions

Answer the following questions:

1. In Section 2.2, we explained the difference between the solute and solvent parts of the
GROMOS topology. Can you explain why a box of SPC water declared as solute or as
solvent have (very slightly) different simulated properties?

2. Considering again the solute-solvent distinction in GROMOS, how would you set up a
systems consisting of a protein dimer (two copies of the same protein) in a 1:10 or a 10:1
methanol-water mixture so that the simulation is most efficient? (both the water and
methanol models are assumed fully rigid and consisting of a single charge group).

3. In Section 3.1.2 we provided an equation for ΔHvap that involves an approximation, namely
that the molar volume of a liquid (vliq) is negligible compared to that of an ideal gas
(vgas = RT/P ). At 300 K and 1 bar, and using the value of the liquid density from
Table 2, calculate the corresponding error Pvliq for the compound ppn and show that it is
indeed negligible.
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4. In Section 3.1.3, we did the setup and analysis, respectively, of a series of MD simulations
to extract the molar isochoric heat capacity cV of a liquid. How would you set up corre-
sponding series of simulations to extract the molar isobaric heat capacity cP , the thermal
expansion coefficient γP , and the compressibility κT ?

5. Would you expect the molar isobaric heat capacity cP to differ significantly from the molar
isochoric heat capacity cV ?

6. We calculated cV by finite difference in temperature and chose an interval of 10 K between
the simulations considered. This is a good compromise. What could happen if we choose
the temperature interval too small or too large? (for too small, think about the effect of
the error on the two calculated potential energies; for too large, think about the nature of
the approxiation made in a finite-difference estimate)

7. Could we use classical MD simulations to extract the molar heat of formation ΔHf of the
liquid, i.e. the heat corresponding to the process of combining elements in their standard
states (most stable compound and phase of the element at 298.15 K and 1 bar) for forming
one mol of the liquid?

8. Assume I calibrate very carefully a force field for ketones and another force-field for al-
cohols. Clearly, I have no experimental information on the interaction between ketone
and alcohol molecules in my training set. Yet, I can do simulations of the mixtures with
GROMOS. What assumption is used within GROMOS to compensate for the absence of
information on these the cross-interactions?

9. Assume I want to test if the GROMOS implicit assumptions for the cross-interactions are
valid or not in the context of my ketone-alcohol mixtures (and maybe refine them if they
are not good). What kind of systems / properties should I look at and compare with
experiment?
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Appendix A: Experimental Data on the Liquids Considered

Table 2: Experimental properties of the four liquids considered.

Compound Molecule Code ρ εRF ΔHvap cV
†

[kg m−3] [kJ mol−1] [J mol−1 K−1]

Propanone ppn 784 19.1 31.3 125.2a

Butanone btn 800 17.7 34.5 127.2b

3-Pentanone 3pn 809 16.6 38.6 196.4c

3-Hexanone 3hn 815 14.5 42.5 217.4d

a Ref. [6]
b Ref. [7]
c Ref. [8]
d Ref. [9]
† cV is approximated here by cp (for liquids, the difference should be very small).

Appendix B: NONBONDED block

In the main text (Section 2.4.1), we only discussed the reaction-field method and the corre-
sponding input switches and parameters. The remaining parameters in Figure 4 are used for the
Ewald sum and P3M methods. The NSHAPE switch controls the charge-shaping function, where
-1 is Guassian and 3 is a harmonic polynomial. The ASHAPE real controls the width of the charge-
shaping function. The function should be zero beyond the cutoff, thus an appropiate ASHAPE

value must be chosen. Since a Gaussian only vanishes in the limit of larger (∞) exponents, we
tend to use other type of functions with better convergence.11 The more complex the function
the worse it is to compute it in the real-space. Therefore a compromise has to be made. In
general, we set the NSHAPE to 3 and the ASHAPE equal to RCUTL. The NA2CLC switch controls how
we compute the self interaction terms in the real-space A2 and in the reciprocal-space Â2. There
is not analytical solution for this term, except for a quasi-analytical solution for the cubic-box
case. So programs tend to solve this term numerically in both real- and reciprocal-spaces (switch
value 2). The TOLA2 real controls the tolerance in the numerical solution of the previous option
and it should be a very small number but greater than the machine precision. The EPSLS real
defines the lattice-sum permitivity used by the lattice-sum and emulated reaction-field method.
Zero means infinity or no emulated reaction-field method. The last four integers NKX, NKY, NKZ
and KCUT control the fast-fourier transformation in the Ewald’s sum. The former three define
maximum number k-vectors components in each direction and the latter controls the Ewald
k-space cutoff. The values listed in Figure 4 tend be the best trade-off of accuracy and speed
on GROMOS for most condensed phase systems.

Ewald’s sum scales as the square of the number of particles (O(N2)), which is not computa-
tionally efficient. Another way to solve Ewald’s sum is to perform the actual sum using the de-
scrite three-dimensional fast Fourier transform (3D-FFT) algorithm, which scales as O(N lnN).
The FFT requires the point charges to be represented as grid points (discrete coordinates). The
redistribution of this charge density in a grid and some more technical implementation details,

11If you use Gaussian type function good approximative values for ASHAPE would be 1/3 or 1/4 of the cutoff, in
order to account for at least 95-99% of the Guassian area.
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which are far away from the scope of this exercise, define the particle-particle-particle mesh or
P3M method.

The number of grid points around each point charge is controlled by the NGX, NGY, NGZ

options. More points implies in better accuracy but slower calculations. So a compromise has
to be made, and 32 points in each dimension is far better than the original 9 points in each
dimension of the particle-mesh Ewald (PME) method. The NASORD flag controls the order of
the mesh charge-assingnment function, NFDORD defines the order of the finite-difference operator
and NALIAS defines the number of mesh alias vectors. The NSPORD determines the order of the
B-spline function used to interpolate the grid points.

GROMOS allows for the reevaluation of the P3M method accuracy every NQEVAL steps and
it can impose a threshold on the force influence function through the option FACCUR. It also
allows for the read and write of the influence function to a file through the NRDGRD (read) and
NWRGRD (write) flags, where 1 turn on these options.

The last two options (NLRLJ and SLVDNS) are not related to long-range electrostatic correc-
tions, but to long-range Lennard-Jones correction. This correction can be turned on by setting
the NLRLJ flag to one and the SLVDNS flag defines the solvent density in molecules per nm3. The
value 33.3 molecules nm−3 corresponds to water with density of ≈ 1 g mL−1.
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Appendix C: Swiss National Anthem

1. Trittst im Morgenrot daher,
Seh’ ich dich im Strahlenmeer,
Dich, du Hocherhabener, Herrlicher!
Wenn der Alpen Firn sich rötet,
Betet, freie Schweizer, betet,
Eure fromme Seele ahnt,
Eure fromme Seele ahnt,
Gott im hehren Vaterland!
Gott, den Herrn, im hehren Vaterland!

2. Kommst im Abendglühn daher,
Find’ ich dich im Sternenheer,
Dich, du Menschenfreundlicher, Liebender!
In des Himmels lichten Räumen
Kann ich froh und selig träumen;
Denn die fromme Seele ahnt
Denn die fromme Seele ahnt
Gott im hehren Vaterland!
Gott, den Herrn, im hehren Vaterland!

3. Ziehst im Nebelflor daher,
Such’ ich dich im Wolkenmeer,
Dich, du Unergründlicher, Ewiger!
Aus dem grauen Luftgebilde
Bricht die Sonne klar und milde,
Und die fromme Seele ahnt
Und die fromme Seele ahnt
Gott im hehren Vaterland!
Gott, den Herrn, im hehren Vaterland!

4. Fährst im wilden Sturm daher,
Bist du selbst uns Hort und Wehr,
Du, allmächtig Waltender, Rettender!
In Gewitternacht und Grauen
Lasst uns kindlich ihm vertrauen!
Ja, die fromme Seele ahnt
Ja, die fromme Seele ahnt
Gott im hehren Vaterland!
Gott, den Herrn, im hehren Vaterland!

1. Sur nos monts, quand le soleil
Annonce un brillant réveil,
Et prédit d’un plus beau jour Le retour,
Les beautés de la patrie
Parlent à l’âme attendrie;
Au ciel montent plus joyeux
Au ciel montent plus joyeux
Les accents d’un coeur pieux,
Les accents émus d’un coeur pieux.

2. Lorsqu’un doux rayon du soir
Joue encore dans le bois noir,
Le coeur se sent plus heureux près de Dieu
Loin des vain bruits de la plaine
L’âme en paix est plus sereine;
Au ciel montent plus joyeux,
Au ciel montent plus joyeux,
Les accents d’un coeur pieux,
Les accents émus d’un coeur pieux.

3. Lorsque dans la sombre nuit
La foudre éclate avec bruit,
Notre coeur pressent encore le Dieu fort.
Dans l’orage et la détresse,
Il est notre forteresse.
Offrons-Lui de coeurs pieux
Offrons-Lui de coeurs pieux
Dieu nous bénira des cieux,
Dieu nous bénira du hauts des cieux.

4. Des grand monts vient le secours,
Suisse! espère en Dieu toujours!
Garde la foi des aëux, vis comme eux!
Sur l’autel de la partrie
Met tes biens, ton coeurs, ta vie!
C’est le trésor précieux
C’est le trésor précieux
Que Dieu nous bénira des cieux,
Que Dieu nous bénira du hauts des cieux.
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Appendix D: Vibrational Normal Modes for the Heat Capacity
Correction

In Sections 3.1.2 and 3.1.3, we introduced correction terms ΔQMHvap and ΔQMcV , respectively,
associated with quantum-mechanical (QM) corrections to the classically calculated values.

For ΔQMHvap we set
ΔQMHvap = Qint +Qext

where Qint and Qext are defined as

Qint = ΔH intra,vib
QM −ΔH intra,vib

classical (9)

Qext = ΔH inter,vib
QM −ΔH inter,vib

classical , (10)

where ΔH intra,vib
QM and ΔH intra,vib

classical are the difference of the intramolecular vibrational energies
of the molecule in the gas and liquid phases for the quantum-mechanical (QM) and classical
(classical) models, respectively (Figure 9). And the ΔH inter,vib

QM and ΔH inter,vib
classical are the difference

of the intermolecular vibrational energies of the molecule in the liquid phase for the quantum-
mechanical (QM) and classical (classical) models, respectively. Both values have opposite sign
and the sum of then results, in general, in a very small correction, which can be (and will be)
neglected.[4]12

QM model Classical model

Gas phase

Liquid phase

Gas phase

Liquid phase

ΔH intra,vib
classicalΔH intra,vib

QM

Figure 9: Difference of the intramolecular vibrational energies of the molecule in the gas and
liquid phases for the quantum-mechanical (QM) and classical (classical) models.

For ΔQMcV we set ΔQMcV = cV,QM − cV,classical where cV,QM and cV,classical refer to QM and
classical estimates of cV for the isolated molecule in the gas phase.

cV,QM is obtained by calculating the partition function for a QM harmonic oscillator repre-
senting the molecular vibrations. The harmonic oscillator vibrational energies can be computed
as

Evib =
∑
i

(
1

2
hνi +

hνi

e
hνi/kBT − 1

)
, (11)

where the h is Planck’s constant, ν is the vibrational frequency, kB is Boltzmann constant and
12Often this term is omitted due to the very small contribution of ΔQMHvap to the heat of vaporization and

the high cost to compute ΔH intra,vib
QM and ΔH inter,vib

QM terms. And it also assumes that the quantum mechanical
calculation is highly precise, which is not always true.
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T is the temperature. Thus its derivative relative to the temperature is

cV,QM =
∂Evib

∂T
= kB

∑
i

⎛
⎜⎝( hνi

kBT

)2 e
hνi/kBT(

e
hνi/kBT − 1

)2
⎞
⎟⎠ . (12)

If we use experimental data for the vibrational frequencies, we have to include both the ex-
perimental infrared (IR) and Raman frequencies.13 However, sometimes the experimental fre-
quencies are difficult to assing due to overlap between peaks or spectrum poor resolution. More
rarely for some molecules the IR and Raman spectra are not available. For these cases, quan-
tum calculations are employed in order to obtain the approximative IR and Raman spectra.14

The IR and Raman spectra of all liquids in this exercise have superpositioned peaks and thus
we will apply quantum calculations. It is not within the scope of this exercise to compute the
vibrational modes. So, Table 3 shows the wave number associated to each normal mode for the
different molecules.

cV,classical is obtained from gas-phase simulations of the classical model and a temperature
finite-difference analysis like the one we did for the liquid. This is not difficult, and the results
are 0.01 for ppn, 0.03 for btn, 0.04 for 3pn and 0.06 for 3hn, in units of J mol−1 K−1.

Table 3: Vibrational wave number of different compounds computed using B3LYP/6-31G(d)
level of theory.

System ν / cm−1 System ν / cm−1 System ν / cm−1 System ν / cm−1

ppn 36.3148 btn 7.0040 3pn 33.4469 3hn 20.4023
ppn 134.7888 btn 109.9742 3pn 67.4993 3hn 57.6768
ppn 375.5500 btn 205.1310 3pn 180.3786 3hn 93.8056
ppn 486.7620 btn 248.3861 3pn 194.8510 3hn 142.5249
ppn 531.4720 btn 401.0956 3pn 203.9486 3hn 200.5033
ppn 786.3179 btn 473.8448 3pn 310.0432 3hn 247.9813
ppn 894.6618 btn 588.8532 3pn 407.6554 3hn 278.5554
ppn 897.7198 btn 762.8954 3pn 467.0511 3hn 331.0470
ppn 1095.1964 btn 764.6922 3pn 624.0100 3hn 409.2050
ppn 1131.2039 btn 949.3396 3pn 721.8086 3hn 469.0414
ppn 1245.4742 btn 962.1255 3pn 784.6312 3hn 650.1399
ppn 1411.0683 btn 1006.8751 3pn 829.6853 3hn 710.9060
ppn 1413.0129 btn 1117.4596 3pn 971.3150 3hn 781.6880
ppn 1490.4339 btn 1144.0941 3pn 1013.5106 3hn 832.5015
ppn 1494.8987 btn 1199.7642 3pn 1020.9420 3hn 880.7439
ppn 1498.7802 btn 1295.5536 3pn 1026.3933 3hn 907.0739
ppn 1516.3611 btn 1389.3695 3pn 1124.8935 3hn 1005.7251
ppn 1823.7870 btn 1412.6907 3pn 1147.4339 3hn 1031.9319
ppn 3044.8902 btn 1440.2818 3pn 1152.5530 3hn 1032.4265
ppn 3051.8904 btn 1483.3869 3pn 1277.3906 3hn 1059.5684
ppn 3101.1524 btn 1497.1376 3pn 1319.7742 3hn 1134.1219

Continues on next page

13None of the IR and Raman spectra should be ignored. Due to selection rules some vibrational modes can be
not present in the IR or in the Raman spectra.

14Due to computational cost in general the frequencies are computed without anharmonic effects which should
(in general) shift the frequency by ≈ 10%.
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Table 3: continued from previous page

System ν / cm−1 System ν / cm−1 System ν / cm−1 System ν / cm−1

ppn 3108.5057 btn 1506.4167 3pn 1373.4029 3hn 1153.0349
ppn 3166.1486 btn 1524.0536 3pn 1403.8334 3hn 1159.5872
ppn 3166.9248 btn 1528.7107 3pn 1442.0674 3hn 1260.2971
ppn — btn 1817.5627 3pn 1442.9708 3hn 1303.7980
ppn — btn 3023.4873 3pn 1481.7052 3hn 1332.3249
ppn — btn 3048.0762 3pn 1493.5344 3hn 1342.0023
ppn — btn 3049.3907 3pn 1522.9916 3hn 1390.2569
ppn — btn 3065.2231 3pn 1523.1481 3hn 1419.9336
ppn — btn 3104.0560 3pn 1528.3113 3hn 1442.0931
ppn — btn 3132.9678 3pn 1528.5433 3hn 1443.2571
ppn — btn 3141.0795 3pn 1810.7233 3hn 1479.9670
ppn — btn 3163.7851 3pn 3021.9220 3hn 1492.4147
ppn — btn — 3pn 3032.0060 3hn 1517.4382
ppn — btn — 3pn 3047.1732 3hn 1523.6329
ppn — btn — 3pn 3058.9059 3hn 1528.9590
ppn — btn — 3pn 3065.3616 3hn 1530.7801
ppn — btn — 3pn 3065.8772 3hn 1537.3364
ppn — btn — 3pn 3133.1201 3hn 1808.7807
ppn — btn — 3pn 3133.4380 3hn 3013.7884
ppn — btn — 3pn 3140.9059 3hn 3028.4250
ppn — btn — 3pn 3141.2870 3hn 3038.4885
ppn — btn — 3pn — 3hn 3040.4170
ppn — btn — 3pn — 3hn 3055.0191
ppn — btn — 3pn — 3hn 3062.3216
ppn — btn — 3pn — 3hn 3065.6382
ppn — btn — 3pn — 3hn 3086.9050
ppn — btn — 3pn — 3hn 3111.3842
ppn — btn — 3pn — 3hn 3113.7612
ppn — btn — 3pn — 3hn 3133.3079
ppn — btn — 3pn — 3hn 3141.1393

Appendix E: List of files

ex4/ppn/npt/npt.imd

ex4/ppn/npt/mk_script.arg

ex4/ppn/npt/mk_script.4.procs.lib

ex4/ppn/coord/ppn.g96

ex4/ppn/eq/eq.jobs

ex4/ppn/eq/mk_script.arg

ex4/ppn/eq/eq.imd

ex4/ppn/eq/mk_script.4.procs.lib

ex4/ppn/nvt-300/mk_script.arg

ex4/ppn/nvt-300/nvt.imd

ex4/ppn/nvt-300/mk_script.4.procs.lib

ex4/ppn/topo/make_top_ppn.arg

ex4/ppn/topo/53a6_oxy.ifp

ex4/ppn/topo/53a6_oxy.mtb

ex4/ppn/nvt-290/mk_script.arg

ex4/ppn/nvt-290/nvt.imd

ex4/ppn/nvt-290/mk_script.4.procs.lib

ex4/ppn/ana/ene_ana.md++.lib

ex4/ppn/ana/diffusion/dif.arg

ex4/ppn/ana/eps/eps.arg

ex4/ppn/ana/ene/nvt-300/ene.arg

ex4/ppn/ana/ene/nvt-290/ene.arg

ex4/ppn/ana/ene/npt-300/ene.arg

ex4/ppn/ana/ene/nvt-310/ene.arg
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ex4/ppn/nvt-310/mk_script.arg

ex4/ppn/nvt-310/nvt.imd

ex4/ppn/nvt-310/mk_script.4.procs.lib

ex4/ppn/min/min.imd

ex4/ppn/min/min.bash

ex4/3pn/npt/npt.imd

ex4/3pn/npt/mk_script.arg

ex4/3pn/npt/mk_script.4.procs.lib

ex4/3pn/coord/3pn.g96

ex4/3pn/eq/eq.jobs

ex4/3pn/eq/mk_script.arg

ex4/3pn/eq/eq.imd

ex4/3pn/eq/mk_script.4.procs.lib

ex4/3pn/nvt-300/mk_script.arg

ex4/3pn/nvt-300/nvt.imd

ex4/3pn/nvt-300/mk_script.4.procs.lib

ex4/3pn/topo/make_top_3pn.arg

ex4/3pn/topo/53a6_oxy.ifp

ex4/3pn/topo/53a6_oxy.mtb

ex4/3pn/nvt-290/mk_script.arg

ex4/3pn/nvt-290/nvt.imd

ex4/3pn/nvt-290/mk_script.4.procs.lib

ex4/3pn/ana/ene_ana.md++.lib

ex4/3pn/ana/diffusion/dif.arg

ex4/3pn/ana/eps/eps.arg

ex4/3pn/ana/ene/nvt-300/ene.arg

ex4/3pn/ana/ene/nvt-290/ene.arg

ex4/3pn/ana/ene/npt-300/ene.arg

ex4/3pn/ana/ene/nvt-310/ene.arg

ex4/3pn/nvt-310/mk_script.arg

ex4/3pn/nvt-310/nvt.imd

ex4/3pn/nvt-310/mk_script.4.procs.lib

ex4/3pn/min/min.imd

ex4/3pn/min/min.bash

ex4/3hn/npt/npt.imd

ex4/3hn/npt/mk_script.arg

ex4/3hn/npt/mk_script.4.procs.lib

ex4/3hn/coord/3hn.g96

ex4/3hn/eq/eq.jobs

ex4/3hn/eq/mk_script.arg

ex4/3hn/eq/eq.imd

ex4/3hn/eq/mk_script.4.procs.lib

ex4/3hn/nvt-300/mk_script.arg

ex4/3hn/nvt-300/nvt.imd

ex4/3hn/nvt-300/mk_script.4.procs.lib

ex4/3hn/topo/make_top_3hn.arg

ex4/3hn/topo/53a6_oxy.ifp

ex4/3hn/topo/53a6_oxy.mtb

ex4/3hn/nvt-290/mk_script.arg

ex4/3hn/nvt-290/nvt.imd

ex4/3hn/nvt-290/mk_script.4.procs.lib

ex4/3hn/ana/ene_ana.md++.lib

ex4/3hn/ana/diffusion/dif.arg

ex4/3hn/ana/eps/eps.arg

ex4/3hn/ana/ene/nvt-300/ene.arg

ex4/3hn/ana/ene/nvt-290/ene.arg

ex4/3hn/ana/ene/npt-300/ene.arg

ex4/3hn/ana/ene/nvt-310/ene.arg

ex4/3hn/nvt-310/mk_script.arg

ex4/3hn/nvt-310/nvt.imd

ex4/3hn/nvt-310/mk_script.4.procs.lib

ex4/3hn/min/min.imd

ex4/3hn/min/min.bash

ex4/btn/npt/npt.imd

ex4/btn/npt/mk_script.arg

ex4/btn/npt/mk_script.4.procs.lib

ex4/btn/coord/btn.g96

ex4/btn/eq/eq.jobs

ex4/btn/eq/mk_script.arg

ex4/btn/eq/eq.imd

ex4/btn/eq/mk_script.4.procs.lib

ex4/btn/nvt-300/mk_script.arg

ex4/btn/nvt-300/nvt.imd

ex4/btn/nvt-300/mk_script.4.procs.lib

ex4/btn/topo/make_top_btn.arg

ex4/btn/topo/53a6_oxy.ifp

ex4/btn/topo/53a6_oxy.mtb

ex4/btn/nvt-290/mk_script.arg

ex4/btn/nvt-290/nvt.imd

ex4/btn/nvt-290/mk_script.4.procs.lib

ex4/btn/ana/ene_ana.md++.lib

ex4/btn/ana/diffusion/dif.arg

ex4/btn/ana/eps/eps.arg

ex4/btn/ana/ene/nvt-300/ene.arg

ex4/btn/ana/ene/nvt-290/ene.arg

ex4/btn/ana/ene/npt-300/ene.arg

ex4/btn/ana/ene/nvt-310/ene.arg

ex4/btn/nvt-310/mk_script.arg

ex4/btn/nvt-310/nvt.imd

ex4/btn/nvt-310/mk_script.4.procs.lib

ex4/btn/min/min.imd

ex4/btn/min/min.bash
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Free Energy Calculations
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Contact: alzbetak@phys.chem.ethz.ch

Alzbeta Kubincová - HCI G227

Summary
In this fifth exercise, we will focus on free-energy calculations using molecular dynamics

(MD) simulations employing GROMOS. You will move from chemists to alchemists, with the
thermodynamic integration (TI) method by calculating the relative hydration free energies
of benzene, toluene and phenol and comparing them with experimental data. The focus of
this tutorial is on: (i) the preparation of the perturbation topologies; (ii) the set-up of the
series of TI simulations; and (iii) the analysis of these simulations to obtain estimates for
the free-energy differences.

1 Introduction

Under isothermal-isobaric conditions, free-energy changes control the spontaneous evolution of
all macroscopic physical, chemical, and biological phenomena, as well as the maximal (reversible)
work that can be collected during this evolution. Consequently, it has for a long time been one
of the central tasks of molecular simulation to calculate free-energy differences associated with
specific processes, and to understand the cause of these differences at the microscopic level.
Free-energy simulations have been applied to numerous processes including phase transitions,
mixing, solvation, ligand-receptor binding, macromolecular folding, and many others. In order
to obtain accurate free-energy differences, two main challenges have to be met. First, a model
for the system (in MD, a classical force field) has to be defined that correctly describes its
thermodynamic properties. Second, an efficient scheme must be employed to sample relevant
microscopic configurations for all the macroscopic states of interest, and include a sufficient
number of transitions between these.

The processes for which free-energy differences can be calculated fall into three main cat-
egories: (i) thermodynamic processes, in which the states correspond to different values of a
specific boundary parameter of the system (e.g. pressure or temperature); (ii) conformational
processes, in which the states are defined as distinct regions of the configurational space of a
system (e.g. folded and unfolded conformations of a macromolecule, free and bound state of
a ligand-receptor complex); and (iii) alchemical processes, in which the states are defined by
different molecular topologies (i.e. Hamiltonian functions) for the same set of particles (e.g.
chlorobenzene vs. bromobenzene in water). The “traditional” free-energy calculation methods
include pressure- or temperature-integration for the thermodynamic case, direct counting (DC)
or umbrella sampling (US) for the conformational case, and thermodynamic integration (TI) or
free-energy perturbation (FEP) for the alchemical case. Although it would be fun to try out
one example for each category (of change as well as of method), for the sake of time the present
tutorial will only consider alchemical changes and the TI method.
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We will consider three closely-related molecules, displayed in Figure 1 (top) and very dear to
the heart of organic chemists, namely benzene (BNZ), toluene (TOL) and phenol (PHE). Well. . .

Figure 1: The molecules of benzene (BNZ), toluene (TOL), and phenol (PHE), in reality (top)
and as considered in this tutorial (bottom; BNZ and TOL including a dummy atom D).

in fact not exactly. True, we will consider PHE. But this molecule has one more atom (in the
GROMOS united-atom representation) compared to BNZ and TOL. So, we will actually consider
instead of the true benzene/toluene molecules strange entities consisting of a benzene/toluene
with a so-called dummy atom attached to the hydrogen/methyl atom, see Figure 1 (bottom).
These weird species will still be labelled BNZ and TOL. The dummy atom is covalently attached
to the rest of the molecule, but it has no non-bonded interactions whatsoever (neither intra-
nor intermolecular). The choice of intramolecular covalent interactions involving the dummy
atom is arbitrary, but must be the same throughout all calculations. Here, for BNZ, we will use
everywhere a H-D bond and a C-H-D angle identical to the O-H bond and C-O-H bond-angle
in PHE. For TOL, we will do the same for the CH3-D bond and the C-CH3-D bond-angle.

Using MD and TI, we will be able to calculate the relative free energies of the three com-
pounds, and we will do this in vacuum (isolated molecules) and in water (hydrated molecules).
On their own, the resulting numbers bear no meaning, for three reasons: (i) the GROMOS force
field is not engineered to produce the correct quantum-mechanical intramolecular (electronic)
energies of molecules; (ii) the mutations involve changes in the atom content of the molecule
(alchemy) and have no real-world (chemistry) counter-part; and (iii) the results will be affected
by the arbitrary choice of intramolecular interaction parameters for the dummy atoms. So, why
should we bother calculating these irrelevant numbers? Simply because all these effects cancel
out when we compare the free energies calculated in water to those calculated in vacuum, as
illustrated in the thermodynamic cycle of Figure 2, considering the change BNZ→PHE as an
example.

The vertical legs of the cycle represent the alchemical mutations BNZ→PHE in vacuum
(left) and in water (right). The horizontal legs represent the hydration processes of BNZ (top)
and PHE (bottom). Because free energy is a state function, we can write the difference in the
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BNZ in vacuum BNZ in water

PHE in vacuum PHE in water

ΔGvac→wat
BNZ

ΔGvac→wat
PHE

ΔGvac
BNZ→PHE ΔGwat

BNZ→PHE

Figure 2: Thermodynamic cycle used to calculate the relative hydration free energies of BNZ
and PHE.

hydration free energies of BNZ and PHE as

ΔΔGvac→wat
BNZ→PHE = ΔGvac→wat

PHE −ΔGvac→wat
BNZ = ΔGwat

BNZ→PHE −ΔGvac
BNZ→PHE . (1)

This approach to calculate the relative free energies of two physical processes using sim-
ulations of two alchemical processes is called the thermodynamic-cycle approach. Unlike the
alchemical free energies ΔGvac

BNZ→PHE and ΔGwat
BNZ→PHE, the hydration free energies ΔGvac→wat

PHE

and ΔGvac→wat
BNZ are physical quantities and could be compared with their experimental coun-

terparts. In particular, the dummy atom in BNZ has no influence on the hydration free energy
because it has no non-bonded interactions with the environment (so, in water, it does not “see”
the water molecules). However, these physical quantities may be difficult to calculate directly
with a high accuracy (we would have to “grow” full molecules from dummy-atom skeletons).
The drawback of the thermodynamic-cycle approach is that it only gives access to the difference
ΔΔGvac→wat

BNZ→PHE, not to the individual hydration free energies.
To calculate each of the alchemical free-energy changes, we will use TI, which relies on the

statistical-mechanically exact expression

ΔG0→1 =

∫ 1

0
dλ
〈
∂H (r,p, dλ′)

dλ′

〉
λ

, (2)

where H (r,p, dλ) is the hybrid Hamiltonian, equal to that of the initial state when λ = 0 and
to that of the final state when λ = 1, and 〈· · · 〉λ denotes Boltzmann (trajectory) averaging over
configurations generated at given value of λ. We will use a soft-core coupling scheme for the
hybrid Hamiltonian, and two approximations will be introduced in Equation 2: (i) the integral
will be replaced by a quadrature sum (trapezoidal rule) based on simulations at 11 λ-points;
and (ii) the infinite-ensemble averages in the integrand will be replaced by averages over 1 ns
simulations (discarding 0.05 ns equilibration).

For the sake of time, you will only be asked to set-up and perform the simulations for the
mutation BNZ→PHE in vacuum and in water. For the two other pairs of mutations, BNZ→TOL
and TOL→PHE, the simulations have already been set-up and performed for you.

The work for now is described in Part 1. It involves looking at the set-up for the BNZ→TOL
and TOL→PHE cases (final files already available), and setting-up the BNZ→PHE case (files
to create or modify yourself). The analyses of the generated trajectories are described in Part
2.
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2 Week 1

2.1 Simulation Set-up

Before we started, let’s login to the beaver cluster and copy a directory that was already prepared
for you.

cp -r /usr/local/CSBMS/ex5 ∼/

In the next section we will discuss the set-up of the simulations in water and in vacuum,
respectively.

2.1.1 Simulations in Water

There are three mutations involved here. The most logical directions for the TI simulations
would be BNZ→TOL, TOL→PHE and BNZ→PHE (left to right in Figure 1, i.e. every time
from a “simpler” to a “more complicated” compound), as suggested in Introduction.1

When you do TI, you obviously need in some way to have two molecular topologies, one for
the initial state (A) and one for the final state (B). There are two different ways to handle this.
In the so-called dual-topology implementation, you will set up two full-blown molecular topology
files with the same file structure, one for the state A and one for the state B topology. In the
so-called single-topology implementation, you only set up a full-blown topology for the state A.
And in a separate file, called a perturbation topology file, you will specify the topology changes
getting you from topology A to topology B. The single-topology approach is advantageous when
B is not very different from A because: (i) the perturbation topology file is small; and (ii) when
you calculate the energies and forces, it is most efficient to calculate the potential energy of
state A and then the terms contributing to the difference A-to-B (if you calculated the potential
energies of A and B separately, you would calculate twice all the common force-field terms!). For
these reasons and because GROMOS is smart, it relies on a single-topology implementation.2

As already stated in Introduction, the TOL→BNZ and PHE→TOL cases are already com-
pletely handled. All the files are in the directories: TI_TOL_BNZ and TI_PHE_TOL, respectively.
The case BNZ→PHE is left for you to handle, in directory TI_PHE_BNZ.

Now let’s have a look at the existing files, starting with the PHE→TOL case.

cd ∼/ex5/topo

Have a look at the topolgy file phe.top and convice yourself that this is indeed the appro-
priate topology file for a single PHE molecule (i.e. if you did not do a free-energy calculation,
you could use this file directly for a standard GROMOS simulation of PHE). To help you in
this check, have a look at Figure 3 (right column) where the topological information on PHE is
reported graphically.

cd ∼/ex5/TI_PHE_TOL

Then have a look at the perturbation topology file phe_to_tol.ptp (displayed below), where
the changes between the state A and the state B topologies are listed.

1We have actually set up everything for the reverse mutations, i.e. TOL→BNZ, PHE→TOL and PHE→BNZ.
2We have set-up the reverse mutations, simply because the A-state of the two latter mutations, PHE, is a

normal molecule without dummy atoms, for which a topology building block is already available in GROMOS. In
other words, we can set up the A-state topology for each of these two mutations with a single make_top command.
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TITLE

perturbation topology, phenol to toluene

END

PERTATOMPARAM

# number of perturbed atoms

3

#

# NR RES NAME IAC(A) MASS(A) CHARGE(A) IAC(B) MASS(B) CHARGE(B) ALJ ACRF

11 1 C6 12 12.011 0.203 12 12.011 0.00 0 0

12 1 O6 3 15.9994 -0.611 16 15.035 0.00 1 1

13 1 H6 21 1.008 0.408 22 1.008 0.00 1 1

END

PERTBONDSTRETCH

# number of perturbed bonds

1

# atom(i) atom(j) bond_type(A) bond_type(B)

11 12 13 27

END

The PERTATOMPARAM block specifies the perturbed atoms. NR is the sequence of the atom,
RES is the sequence of the residue, NAME is the name of the atom, IAC(A) is the integer atom
code in state A, MASS(A) is the mass of the atom in state A, CHARGE(A) is the atomic partial
charge of the atom in state A, IAC(B) is the integer atom code in state B, MASS(B) is the
mass of the atom in state B, CHARGE(B) is the atomic partial charge of the atom in state
B. Finally, ALJ and ACRF are scaling factors for the soft-core parameters involved in Lennard-
Jones and Coulombic interactions, respectively (see further below). The PERTBONDSTRETCH block
specifies the perturbed bonds, in which atom(i) and atom(j) are the sequences of the two atoms
defining the bond, while bond_type(A) and bond_type(B) are the bond types in states A and
B, respectively. Have a look again at Figure 3 (middle and right columns), and verify that the
changes listed in the file reflect the expected topology changes when going from PHE to TOL.
Note in particular that, as discussed in Introduction, the hydroxyl hydrogen atom of PHE has
not been deleted but transformed into a dummy atom (atom type 22 in GROMOS).

Next, have a look at the GROMOS input file TI.inp (displayed below). By now, you
certainly know the structure of these files by heart, but. . . there is a new type of block here, the
PERTURBATION block

PERTURBATION

# NTG: 0..1 controls use of free-energy calculation.

# 0: no free-energy calculation (default)

# 1: calculate dH/dRLAM

# NRDGL: 0,1 controls reading of initial value for RLAM.

# 0: use initial RLAM parameter from PERTURBATION block

# 1: read from configuration

# RLAM: 0.0..1.0 initial value for lambda

# DLAMT: >= 0.0 rate of lambda increase in time.

# ALPHLJ: >= 0.0 Lennard-Jones soft-core parameter

# ALPHC: >= 0.0 Coulomb-RF soft-core parameter

# NLAM: > 0 power dependence of lambda coupling

# NSCALE: 0..2 controls use of interaction scaling

# 0: no interaction scaling
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# 1: interaction scaling

# 2: perturbation for all atom pairs with scaled

# interactions. No perturbation for others.

#

# NTG NRDGL RLAM DLAMT

1 0 0.0 0.0

# ALPHLJ ALPHC NLAM NSCALE

0.5 0.5 1 0

END

NTG set to one switches on the perturbation code in GROMOS for a TI simulation, RLAM is
the value of the λ in the specific TI simulation (if NRDGL was set to one, the value would be
read from the initial configuration file instead), DLAMT is set to zero (so λ will be kept constant
at RLAM throughout the simulation), while ALPHLJ and ALPHC are the soft-core parameters for
Lennard-Jones and Coulombic interactions, respectively. Soft-core interactions are used to avoid
singularities when creating or deleting atoms (more precisely: when converting them from or to
dummy atoms). The soft-core interaction will only be applied for Lennard-Jones and Coulombic
interactions, respectively, to atoms for which the ALJ and ACRF parameters, respectively, differ
from 0 in the perturbation topology (see above). Note that NRDGL and DLAMT are useful if you
do slow growth (an alternative form of TI where you “sweep” λ from 0 to 1 over a run or a series
of runs; but TI at a series of fixed λ-points is more accurate). NLAM and NSCALE allow for more
variations in the form of the coupling scheme, which are not relevant for us here.

Finally, have a look at the mk_script job-list file joblist_TI.dat. Herein, we specify 11
different folders for the simulations at the 11 successive λ-points in water. For each λ-point,
25000 steps (0.05 ns) of equilibration and 500000 steps (1 ns) of sampling will be carried out.

Now let’s have a look at the second set of existing files, corresponding to the TOL→BNZ
case.

cd ∼/ex5/topo

And take a look at the state-A topology file tol.top to convince yourself that this is indeed
the appropriate topology file for a single TOL molecule (including a dummy atom) by comparison
with Figure 3 (middle column).

cd ∼/ex5/TI_TOL_BNZ

Then have a look at the perturbation topology file tol_to_bnz.ptp. In addition to the blocks
you already saw in the previous perturbation, you will find a new block PERTBONDANGLE for the
perturbed bond angles. Atom(i), atom(j), and atom(k) are the atoms defining the perturbed
angle, while type(A) and type(B) are the bond angle types in state A and B, respectively.

PERTBONDANGLE

# number of perturbed bond angles

2

# atom(i) atom(j) atom(k) type(A) type(B)

7 11 12 27 25

9 11 12 27 25

END

By comparison with Figure 3 (left and middle columns), verify that the changes listed in
the file (PERTATOMPARAM, PERTBONDSTRETCH and PERTBONDANGLE blocks) reflect the expected
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Figure 3: Relevant parameters in the topologies of BNZ, TOL, and PHE. Note that 5 explicit
hydrogen atoms on the benzene rings are not indicated. Upper panel: sequence numbers of the
atoms (black) and integer atom codes (red). Middle panel: atomic partial charges (green) and
charge-group boundary (dashed line). Lower panel: bond types (blue) and bond-angle types
(orange).

topology changes when going from TOL to BNZ. In particular can you figure out why the
PERTBONDANGLE block is needed here, whereas it was not in the previous perturbation?

Note that there are other blocks which are not needed here, but could be used in other
types of perturbations. For example, a PERTIMPROPERDIH block is used for perturbed improper
dihedrals, a PERTPROPERDIH block is used for perturbed dihedrals, a PERTPOLPARAM block is
used for perturbed polarizable atoms, and a MPERTATOM block is used for enveloping distribution
sampling (EDS) simulations.

The GROMOS input file TI.inp and the mk_script job-list file joblist_TI.dat are exactly
identical to the files used in the previous perturbation, so no need to look at them. Then, what
is left for us is to set-up the PHE→BNZ mutation in water. So let’s roll up our sleeves take a
deep breath and start working.

When you feel mentally ready for this big step, just type

cd ∼/ex5/TI_PHE_BNZ

Due to time constraints we will skip the molecular topology preparation steps today, but
in a free-energy calculation, the procedure for state A is exactly the same as for a plain MD
simulation. The topology and coordinates files are directly provided to you in the topo and
coord directories, respectively. The mk_script job-list file joblist_TI.dat is also the same as
in the two previous perturbations, so it is already prepared.

You first task is to complete the perturbation topology file phe_to_bnz.ptp (displayed be-
low).
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TITLE

TO_DO

END

PERTATOMPARAM

# number of perturbed atoms

3

#

# NR RES NAME IAC(A) MASS(A) CHARGE(A) IAC(B) MASS(B) CHARGE(B) ALJ ACRF

TO_DO

END

PERTBONDSTRETCH

# number of perturbed bonds

1

# atom(i) atom(j) bond_type(A) bond_type(B)

TO_DO

END

PERTBONDANGLE

# number of perturbed bond angles

2

# atom(i) atom(j) atom(k) type(A) type(B)

TO_DO

END

The number of perturbed atoms, bonds, and bond angles are already given. Based on
Figure 3, and what you have learned from the examples in the previous two TI simulations,
finalize the perturbation topology file.

The second task is to complete the parameter input file TI.inp by replacing the TO_DO with
the PERTURBATION block. In this case, you only need to insert in the following PERTURBATION

block with the correct parameters.

PERTURBATION

# NTG: 0..1 controls use of free-energy calculation.

# 0: no free-energy calculation (default)

# 1: calculate dH/dRLAM

# NRDGL: 0,1 controls reading of initial value for RLAM.

# 0: use initial RLAM parameter from PERTURBATION block

# 1: read from configuration

# RLAM: 0.0..1.0 initial value for lambda

# DLAMT: >= 0.0 rate of lambda increase in time.

# ALPHLJ: >= 0.0 Lennard-Jones soft-core parameter

# ALPHC: >= 0.0 Coulomb-RF soft-core parameter

# NLAM: > 0 power dependence of lambda coupling

# NSCALE: 0..2 controls use of interaction scaling

# 0: no interaction scaling

# 1: interaction scaling

# 2: perturbation for all atom pairs with scaled

# interactions. No perturbation for others.

#

# NTG NRDGL RLAM DLAMT

? ? ? ?
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# ALPHLJ ALPHC NLAM NSCALE

? ? ? ?

END

The last step is to finalize the mk_script_TI.arg file. In the @sys argument, give a name to
your first TI simulation (and keep it in mind, because you need to use this name several times
later). And there are several other entries you need to take care of as well.

@sys TO_DO

@joblist TO_DO

@bin /usr/local/gromos-1.3.2/bin/md_mpi

@dir $PWD

@files

topo ../topo/phe.top

input TO_DO

coord ../coord/phe.cnf

pttopo TO_DO

@template ../lib/mk_script.4.procs.lib

@version md++

Once you set up everything correctly, you can use mk_script to generate the job files for TI
simulations.

mk_script @f mk_script_TI.arg

Now you should have eleven folders called L_* in your directory. Look into these folders!!!
To submit your TI simulation, open the file job_submit.sh, and change TO_DO to the name

of your simulation, which should be the same as what you put in as @sys argument in the
mk_script_TI.arg file.

TI=TO_DO

cd L_0.0

qsub -N ${TI}_1 -cwd -j y -o ${TI}_1 -pe mpi 4 ./${TI}_1.run

Now you can submit your simulation by running

./job_submit.sh

Check whether your simulation is running properly on the cluster using

qstat

If so, you can move to the next step. If not, don’t swear, keep the faith, and just find out
what is wrong (in this tutorial, failure is not an option!).

2.1.2 Vacuum Simulations

In order to complete the thermodynamic cycle shown in Figure 2, three TI simulations in-
volving the same perturbations need to be carried out in vacuum. As for the aqueous sit-
uation, the TOL→BNZ and PHE→TOL cases are already completely handled in directories
TI_vacuum_TOL_BNZ and TI_vacuum_PHE_TOL, respectively. The case BNZ→PHE is left for you
to handle in directory TI_vacuum_PHE_BNZ. Look inside the completed folders, e.g.
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cd ∼/ex5/TI_vacuum_PHE_TOL

When you consider a single small molecule in vacuum, it is often unwise to use MD with
a Berendsen thermostat. There are two reasons for this. First, the Berendsen thermostat
maintains the correct average temperature, but does not lead to rigorously correct temperature
fluctuations. This is generally no problem for systems with hundreds of degrees of freedom or
more, but can lead to artifacts when considering a single molecule with very few atoms. Second,
small systems tend to be closer to being “harmonic”, and being trapped in long-timescale quasi-
harmonic oscillations may impair the sampling. We can solve the problem of representing a
molecule in vacuum by considering an “ideal gas” consisting of many copies of the molecules
at very large distances from each other, and all coupled to the same Berendsen thermostat (as
applied in the simulations in water). Here, we will use an alternative approach: consider a single
molecule, but replace the MD/Berendsen simulations by stochastic dynamics (SD) simulations.
In SD simulations, random kicks and frictional forces are introduced, which has the effect of
both randomizing (no long-timescale quasi-harmonic motions) and thermostating (temperature
determined by the balance between random and frictional forces) the system.

In the GROMOS input file TI.inp, have a look at the STOCHDYN block. NTSD set to one
switches on the stochastic dynamics, CFRIC sets the friction coefficient, and TEMPSD is the tem-
perature of the stochastic bath. The magnitude of the stochastic kicks will be automatically
determined from CFRIC and TEMPSD in such a way that we generate a canonical ensemble at
temperature TEMPSD. Note that the value of CFRIC influences the dynamics of the system but
not its thermodynamics (and thus the free-energy results). Here we arbitrarily took a value
mimicking friction in water (the only constraint is that the stochastic coupling should be strong
enough to kill possible quasi-harmonic motions in the molecule).

STOCHDYN

# NTSD 0,1 controls stochastic dynamics mode

# 0: do not do stochastic dynamics (default)

# 1: do stochastic dynamics

# NTFR 0..3 defines atomic friction coefficients gamma

# 0: set gamma to 0.0 (default)

# 1: set gamma to CFRIC

# 2: set gamma to CFRIC*GAM0

# 3: calculate gamma using subroutine FRIC (based on CFRIC)

# NSFR > 0 recalculate gamma every NSFR steps

# NBREF > 0 threshold number of neighbour atoms for a buried atom

# RCUTF >= 0.0 interatomic distance considered when calculating gamma

# CFRIC >= 0.0 global weighting for gamma

# TEMPSD >= 0.0 temperature of stochastic bath

#

# NTSD NTFR NSFR NBREF RCUTF CFRIC TEMPSD

1 1 1 6 0.3 91.0 300.0

END

As in the Section 2.1.1, you are asked to set up the TI simulations for the perturbation
PHE→BNZ in vacuum by yourself. So, go to the folder

cd ∼/ex5/TI_vacuum_PHE_BNZ

Here, you have to repeat what you did for the corresponding TI simulation in water.3 Pay
3Be smart before doing hard work. . . E.g. for the perturbation topology, do you think there will be any

difference between the file for a perturbation in vacuum and the one for the perturbation in water?

10

   [ex 5]



special attention to the STOCHDYN and PERTURBATION blocks in the parameter input file TI.inp.

STOCHDYN

# NTSD 0,1 controls stochastic dynamics mode

# 0: do not do stochastic dynamics (default)

# 1: do stochastic dynamics

# NTFR 0..3 defines atomic friction coefficients gamma

# 0: set gamma to 0.0 (default)

# 1: set gamma to CFRIC

# 2: set gamma to CFRIC*GAM0

# 3: calculate gamma using subroutine FRIC (based on CFRIC)

# NSFR > 0 recalculate gamma every NSFR steps

# NBREF > 0 threshold number of neighbour atoms for a buried atom

# RCUTF >= 0.0 interatomic distance considered when calculating gamma

# CFRIC >= 0.0 global weighting for gamma

# TEMPSD >= 0.0 temperature of stochastic bath

#

# NTSD NTFR NSFR NBREF RCUTF CFRIC TEMPSD

? ? ? ? ? ? ?

END

PERTURBATION

# NTG: 0..1 controls use of free-energy calculation.

# 0: no free-energy calculation (default)

# 1: calculate dH/dRLAM

# NRDGL: 0,1 controls reading of initial value for RLAM.

# 0: use initial RLAM parameter from PERTURBATION block

# 1: read from configuration

# RLAM: 0.0..1.0 initial value for lambda

# DLAMT: >= 0.0 rate of lambda increase in time.

# ALPHLJ: >= 0.0 Lennard-Jones soft-core parameter

# ALPHC: >= 0.0 Coulomb-RF soft-core parameter

# NLAM: > 0 power dependence of lambda coupling

# NSCALE: 0..2 controls use of interaction scaling

# 0: no interaction scaling

# 1: interaction scaling

# 2: perturbation for all atom pairs with scaled

# interactions. No perturbation for others.

#

# NTG NRDGL RLAM DLAMT

? ? ? ?

# ALPHLJ ALPHC NLAM NSCALE

? ? ? ?

END

After submitting, check whether your simulation is running properly on the cluster by

qstat
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3 Week 2

3.1 Analyses

First of all, let’s check whether all went smoothly with your simulations. Go in turn to the
folders TI_PHE_BNZ and TI_vacuum_PHE_BNZ, and try

ls *

Did your simulations finish successfully? If not, try to find out why or/and contact the
assistants (committing seppuku might be considered as a very last resort!). If all is well, you
can move on to the analysis part.

In the TI method, the alchemical free-energy differences are calculated using Equation 2.
During the TI simulations, ∂H/∂λ was calculated and written out to the energy trajectory files
(*.tre.gz) as well as to the GROMOS output files (*.omd). So the analysis involves the following
steps: (i) extract the values of ∂H/∂λ from the energy trajectory files and calculate the corre-
sponding averages and statistical uncertainties using the GROMOS++ program ene_ana for
all the simulations of different λ values; (ii) carry out the integral of the averages over λ using
numerical quadrature (trapezoidal rule), and estimate the associated overall uncertainty.

We have already prepared a script analyse.sh which does these tasks automatically for all
six simulations. Have a look at it.

cd ∼/ex5/scripts/

vi analyse.sh

Try to understand how the script works. For every line in dirfile, which is given as an
argument to the script, it changes to the specified directory (first column in dirfile) and newly
creates a directory ana (if it already exists, it will be deleted first (!)). In this directory ana, two
other scripts are executed: Firstly jdhdl.sh, which analyses the trajectories of the simulations
and secondly integrate_plot.sh, which integrates the average ∂H/∂λ values and creates plots
afterwards.

First have a look at jdhdl.sh. You should recognize a part running ene_ana for the second
trajectory of each λ value and therefore does not take into account of the equilibration period
and a part gathering the averages and uncertainties which are then written to a file called
ave_dhdl.dat. Then, script integrate_plot.py takes over, carries out the integration of both
the averages and uncertainties (trapezoidal quadrature), interpolates the data with cubic splines
and integrates these afterwards, too. The results are then appended to the file ave_dhdl.dat.
A plot of the average ∂H/∂λ values plus their statistical uncertainties, its splines and the two
running integrals as a function of λ is generated. If you have any questions about these scripts,
do not hesitate to ask the assistants. What you still need to do is to put the name of the
directory, the name of the corresponding simulation (@sys argument in the mk_script_TI.arg

file in Section 2.1.1) and the desired title of the plots (no blanks, only underscores to separate
words) to the file ∼/ex5/dir_list.txt. A first line is given as an example. Please fill out the
TO_DOs.

Now run the script using

cd ∼/ex5

./scripts/analyse.sh dir_list.txt

In every ana directory, you will see some outputs from the ene_ana program, and the
plot of ∂H/∂λ as a function of λ (average and estimated statistical uncertainties). Check the
ave_dhdl.dat file.
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Here, you will find the final estimate for the free-energy difference, along with the estimated
overall statistical uncertainty. What value do you get?

You could also do the integration using xmgrace, and it is actually a nice exercise to try this
out.

xmgrace -settype xydy ave_dhdl.dat

On the xmgrace plot, go to the menu Data/Transformations/Integration, then click on Ac-
cept. What value do you get? Now you can see one red curve on the plot, which is the running
integral.

We could also do a spline fitting of the curve before the integration. Click on the menu
Data/Transformations/Interpolation/splines and set the parameters according to Figure 4.

Figure 4: xmgrace setting for spline fitting

Now, we can do the integration of the fitted (smooth) curve by clicking on the menu Data/-
Transformations/Integration, selecting the set S1, and then clicking on Accept.What value do
you get now?

Collect the results and statistical error estimates for the six free-energy changes considered.
What about modifying the script analyse.sh so that it writes out the results of all six free-
energy changes into one file? When you have all of them, you can compare the values against
Table 1.
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4 Report

4.1 Format

Please refer to the corresponding section of Exercise 1 for information on the goal and expected
structure of the report.

4.2 Simulation Results

Answer the following questions:

A. Look at the GROMOS output files you generated (*.omd files). Which terms contribute
to ∂H/∂λ? Are the contributing terms different in vacuum and in water?

B. Plot the average ∂H/∂λ curves for the TI simulations, along with the running integral of
the curve.

C. Compare the integration results obtained from two different approaches: (1) trapezoidal
integration; (2) trapedzoidal integration after spline fitting. Comment on the differences.

Note that from here on, use the free energy values obtained from trapezoidal integration.

D. Give all the six values of the alchemical free-energy differences (including estimated error
bars) using the template shown in Figure 5.

Benzene Toluene

Phenol

in vacuum

Benzene Toluene

Phenol

in water

Figure 5: Template for free energy results.

E. Do the thermodynamic cycles in vacuum and in water close? (i.e. zero free-energy change
around the cycle, within the error bars).
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F. Calculate the hydration free energies of PHE and TOL relative to that of BNZ using the
results of the PHE→BNZ and TOL→BNZ mutations and Eq. 1. Are the results compatible
with the relative hydration free energy of PHE relative to TOL calculated based on the
PHE→TOL mutations?

G. Compare these calculated relative hydration free energies with the experimental values
provided in Table 1. Do the experimental differences make sense chemically? Are these
differences reproduced in the calculated numbers?

4.3 Thinking Questions

Answer the following questions:

1. In this exercise, you calculated relative hydration free energies (e.g. of TOL relative to
BNZ). What would you do if you needed to calculate an absolute hydration free energy (e.g.
for BNZ)? Why would the corresponding calculation require more effort to get converged
results (compared to that of a relative hydration free energy)?

2. Now imagine you want to calculate the absolute hydration free energies of 100 benzene
derivatives in an efficient way (more efficient than 100 times the procedure of question!).
How would you do it ?

3. When you calculate an absolute hydration free energy and want to compare with exper-
iment, you have to worry about standard states. In simulations, the value characterizes
the transfer of a molecule from a fixed point in vacuum to a fixed point in water. In
experiment, standard data refers to the transfer from an ideal gas at 1 bar to an infinitely
dilute solution extrapolated to 1 mol solute per kg solvent. Can you infer the form of the
standard-state correction term you must apply to the simulated value before comparing
with experiment? And can you explain why we don’t need to worry about this when
comparing relative hydration free energies to experiment?

4. For the simulations in vacuum, we used SD to overcome possible harmonic oscillation
and improper thermostating problems. But in Exercise 1, we instead used a collection of
molecules at large distances with MD/Berendsen. Could we also have applied a similar
approach here?

5. In the three perturbations considered in this exercise, we never discussed the situation
of improper dihedral angles and of torsional dihedral angles. In principle, the perturba-
tions might affect the improper dihedral controlling the planarity at the C bearing the
substituent (H, CH3 or O). Why is it not the case? Similarly, PHE has a dihedral angle
controlling the orientation of the OH group. What happens with this one when moving to
BNZ or TOL?

6. We have carried out the perturbations in the reverse direction (TOL→BNZ, PHE→TOL
and PHE→BNZ) because then, the A-state of the two latter mutations, PHE, is a “normal”
molecule without dummy atom which is directly available as a building block in GROMOS.
We could have benefitted from the same advantage by setting up the TOL→BNZ mutation
as converting a “normal” TOL to a “normal” BNZ (i.e. no dummy atoms involved). (1)
Can you explain why the final results in terms of hydration free energies would have been
the same; (2) what about the thermodynamic cycles in vacuum and in water (question E
above), would they still have closed exactly?
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7. One might introduce a sort of “hierarchy” in the types of perturbations converting a
molecule A into a molecule B: (1) the perturbation is chemically acceptable (i.e. it could
have an experimental counterpart); (2) the perturbation is alchemical (i.e. it has no ex-
perimental counterpart) but involves no dummy atoms; (3) the perturbation is alchemical
and requires using dummy atoms. What are the conditions on the molecules A and B for
the perturbation to be in category (1), (2) or (3). Why is the result of a calculation using
GROMOS still generally incorrect for category (1), i.e. only the difference of such results
calculated in different environments (e.g. vacuum vs. water) is likely to be correct?

8. There would in principle be no need for the dummy atom to be attached to the same site
as the atom to appear, or even to be attached to the molecule at all. Why is it still wise
to covalently attach the dummy to the molecule, and to do this where the new atom will
appear?

9. And here is a last one for the real hard-thinkers. In Section 1, we boldly stated that “the
choice of intramolecular covalent interactions involving the dummy atom is arbitrary” and
that it does not really matter “because all these effects cancel out when we compare the
free energies calculated in water to those calculated in vacuum”. In fact, this is not entirely
true. Can you explain why (think of the lecture discussion about free-energy components),
think of a (pathological) counterexample, and formulate a more accurate condition of the
allowed form of covalent interactions for the dummy atoms?
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Appendix A. Experimental Data

Table 1: Experimental relative hydration free energies [1] of TOL and PHE relative to BNZ. .

Compound Relative Hydration Free
[kJ mol−1]

BNZ 0.0
TOL -0.1
PHE -24.0

Appendix B. List of files

In the main exercise directory, you will find ex5.pdf, the digital version of the document you
are reading and nine sub-directories:

topo/ Contains the topology files for phenol and methylbenzene.

coord/ Contains the coordinate files for phenol and methylbenzene in both vacuum and water
box.

lib/ Contains the library file for the GROMOS++ program mk_script.

TI_TOL_BNZ/ Contains the TI simulation from toluene to benzene.

TI_PHE_TOL/ Contains the TI simulation from phenol to toluene.

TI_PHE_BNZ/ Contains some files required for the TI simulation from phenol to benzene.

TI_vacuum_TOL_BNZ/ Contains the TI simulation from toluene to benzene in vacuum.

TI_vacuum_PHE_TOL/ Contains the TI simulation from phenol to toluene in vacuum.

TI_vacuum_PHE_BNZ/ Contains some files required for the TI simulation from phenol
to benzene in vacuum.

References
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CSBMS: Exercise 6

Structure Refinement
Document version: 27.08.2019

Exercises week 1: 03.12. or 05.12.
Exercises week 2: 10.12. or 12.12.
Deadline for the report: 17.12 (shorter!).
Contact: shuwang@phys.chem.ethz.ch

Shuzhe Wang - HCI G238

Summary
In this sixth exercise, we will perform structure refinement of a peptide based on dis-

tance restraints derived from nuclear Overhauser enhancement (NOE) intensities observed
in nuclear magnetic resonance (NMR) experiments. You will run three different molecu-
lar dynamics (MD) simulations of the peptide using the GROMOS program: a standard
(unrestrained) simulation along with two simulations including NOE-derived distance re-
straints, applied either on an instantaneous or on a time-averaged basis. When analysing
the simulation results, you will find out how the restraints and their application modus
influence the simulation results, and the compatibility of the simulated ensemble with the
experimental data. The main focus is on: (i) understanding the two different restraining
methods, instantaneous restraints (IR) and time-averaged restraints (TAR); (ii) setting up
a MD simulation with IR or TAR restraining; and (iii) analysing the simulation results in
terms of agreement with the experimental NMR data, considering not only NOE-derived
distances but also 3J-coupling constants.

1 Introduction

Inspired by the beautiful structures displayed in biochemistry textbooks, we tend to think of
biomolecules like proteins and nucleic acids as entities presenting a unique and well-defined
three-dimensional structure. The truth is that biomolecules at equilibrium in solution exist as
ensembles of many different conformers. In some cases, the ensemble is relatively “compact”
around a given structure (at least in terms of backbone conformation), and the textbook pic-
ture may be reasonable. In many other cases, however, the ensemble is far less compact, and
experimental observables represent averages over a given timescale and over many molecules
that cannot be interpreted in terms of a unique structure. They must be explicitly related to a
conformational ensemble.

As the number-one experimental technique to investigate the conformational properties of
biomolecules in solution, nuclear magnetic resonance (NMR) spectroscopy does not escape this
rule. The two most important observables extracted from NMR experiments in this context are
nuclear Overhauser enhancement (NOE) intensities and three-bond scalar coupling constants
(3J-couplings). Given some interpretation model (e.g. the so-called model-free approach for
NOEs [1] or a Karplus equation for 3J-couplings [2]), NOE intensities can be related to the
distance between specific hydrogen atom (proton) pairs in the molecule and 3J-couplings to
the torsional angle defined by four covalently-linked atoms. However, since the NMR signal
accounts for an average over a sample of ∼1023 molecules and over a timescale on the order of
the nanosecond, conformational averaging must be taken into account when interpreting this
data. This means in practice that the NMR observables should be accounted for an ensemble
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of conformations at equilibrium rather than a single structure. And this observation has an
important corollary: it is impossible to do structure determination (refinement) based on the
NMR data alone, because the sole knowledge of a set of averages is never sufficient to determine
an underlying distribution.

The solution to this problem is to introduce an assumption on the form of the conformational
distribution. And a good way to formulate such an assumption is to say that the distribution
should be Boltzmann-weighted in terms of an underlying potential energy function, i.e. to use
a force field. In this case, molecular dynamics (MD) simulation based on the chosen force field
represents the method of choice to generate the required conformational ensemble. This is why
MD has become over the last three decades an essential tool in the area of NMR structure
refinement.

In a dream world where force fields would be exact and sampling times infinite, we would
merely need to run a simulation and calculate the averages corresponding to NMR observables.
They would (let’s dream on!) exactly match the experimental values and we would be done,
i.e. able to provide the NMR spectroscopist with a full conformational ensemble accounting for
her/his data. And indeed, in exceptional cases, it can be like this. But generally (now wake up!)
things are not that simple, and the ensemble generated by a standard (so-called unrestrained)
simulation only reproduces the NMR data with a limited accuracy. Because NMR spectroscopists
tend to trust their data more than they trust their colleagues, they will usually think that you
failed, and it won’t do any good to your reputation. The remedy is to try to get the best
from the two worlds: enforce the satisfaction of the average NMR observables in the simulated
ensemble, but let the force field decide for all the rest, i.e. the form of the conformational
distribution as well as the conformation of segments that are underdetermined by the NMR
data. In practice, this is typically done by adding a biasing (restraining) potential-energy term
V restr to the physical force field V phys during the simulation

V (r(t)) = V phys (r(t)) + V restr (r(t)) . (1)

This term penalizes conformations for which the NMR observables deviate from their exper-
imental reference values. A common way to define V restr is to use a sum of harmonic restraining
potentials

V restr (r(t)) =
1

2

Nrestr∑
i=1

kqr
i (qi (r(t))− q◦i )

2 , (2)

where kqr
i is the restraint force constant, qi is the current value of the observable in the simulation

and q◦i its experimentally-inferred reference value. For NOEs, qi is usually taken to be the
distance between two protons, and q◦i is the corresponding value inferred from the experimental
NOE intensity (typically precalculated using the so-called model-free approach [1]). In this case,
one often uses a half-harmonic restraint instead, i.e. the restraint is only active when qi > q◦i ,
possibly also linearizing the dependence above a certain deviation q1i (see Figure 1). For 3J-
couplings, qi is usually taken to be the J-value itself (calculated on the flight using a given
Karplus equation [2]), and q◦i is its corresponding experimental value.

One refers to the case where Equation 2 or its half-harmonic long-distance linearized analog
(Figure 1) is applied strictly as instantaneous restraining (IR). The problem with IR is that it
will enforce (when using sufficiently high force constants) the satisfaction of the experimentally-
derived restraints in every single configuration along the simulation. But in fact, the restraints
should rather apply to an average of the observable over the timescale of the NMR experiment,
i.e. ideally on the order of the nanosecond. For example, it may happen that two NOE-derived
distance restraints are incompatible within a single structure, but can still be satisfied along a

2

   [ex 6]



Distance

V
re

st
r
(r

)

q◦ q1

zero harmonic linear

Figure 1: Potential energy term for atom-atom distance restraining.

trajectory where structures visited over a certain time period fulfil the first one while structures
visited over another time period fulfil the second one.

To remedy this problem, Equation 2 or its half-harmonic long-distance linearized analog
(Figure 1) can be applied with replacement of qi by its (running) time average over a timescale.
One refers to this approach as time-averaged restraining (TAR).[3, 4, 5, 6, 7, 8] The averaging
over time is commonly achieved in practice using an exponential memory filter

qi (r(t)) =

{
1

τqr
[
1− exp

(−t/τqr

)] ∫ t

0
exp

(
t′ − t

τqr

)
q
(
r(t′)

)−n dt′
}−1/n

, (3)

where τqr is the averaging time, typically set to 10-100 ps in ns simulations (better would be
to set it to ns in multi-ns simulations if you can reach this timescale) and n is an exponent
defining the form of the averaging. Based on the model-free approach, [1] the NOE intensity is
(approximately) proportional to the inverse third power of the inter-proton distance for molecules
in a slow tumbling regime, and to the inverse sixth power for molecules in a fast tumbling regime
(where fast and slow refer to a comparison with the timescale of internal motions in the molecule).
So, for example, Equation 3 will typically be applied with n = 3 for a large protein and n = 6
for a small peptide (with a gray zone in intermediate situations!).

In this exercise, we apply and compare the three refinement procedures (unrestrained MD,
restrained MD with IR, restrained MD with TAR) in the context of a peptide in water, using
GROMOS and the 54A7 force field version. The peptide considered is the C-terminal coiled-coil
trigger sequence of the yeast transcriptional activator GCN4, denoted GCN4p16-31. [9] If you
are not a biochemistry freak, you might just content yourself with the information that it is
a hexadecapeptide with the sequence Asn-Tyr-His-Leu-Glu-Asn-Glu-Val-Ala-Arg-Leu-Lys-Lys-
Leu-Val-Gly. This peptide has been studied experimentally [9] by NMR in aqueous solution
at 278 K, 1 bar and pH 7.5. The investigation resulted in the determination (and full assign-
ment in terms of the involved atoms) of 179 NOE intensities and 15 3J-coupling constants. The
model-free approach [1] was used to convert the 172 (of 179) NOE intensities into corresponding
estimated inter-proton distances. Using their own non-GROMOS modelling tools,1 the exper-

1XPLOR refinement with simulated annealing, also including some information from measured chemical shifts.
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imentalists used this dataset to refine a bundle of 20 structures that they deposited into the
PDB under the entry code 2OVN. This peptide was already investigated in the group in terms
of NMR-based MD refinement with GROMOS, see Reference [10]. The present exercise follows
more or less the line of this study. Just as the authors of this work, you will use one of the
2OVN structures as starting configuration, and be provided with the files containing the 179
NOE-derived distances and 15 3J-coupling constants in the usual XPLOR format employed by
spectroscopists.

This exercise is divided in two parts. In the first one, we prepare and understand the NOE
files and submit the calculations. The second part, though is destined to the analyses of the
restraints.

2 Simulation Set-up

Since you are already familiar with the set-up of GROMOS simulations (making the topology
file, generating the initial coordinates, solvating the solute into a solvent box, energy minimizing
and equilibrating the system) from the previous exercises, these operations have already been
carried out for you. From there on, you need to set up and run three MD simulations: (i) a
standard unrestrained MD simulation; (ii) a MD simulation with instantaneous restraints (IR);
and (iii) a MD simulation with time-averaged restraints (TAR).

2.1 Getting Started

To get started, you have to login to realbeaver and copy a directory that was already prepared
for you by typing

cp -r /usr/local/CSBMS/ex6 ∼/ex6

There should be 9 subdirectories.

forcefield/ here, the GROMOS 54A7 force-field files are stored; two special terminal building
blocks named ACE and CONH2 have been added to the mtb file for representing the termini
of your peptide;

topo/ here you can find the topology file of the peptide, peptide.top, which is already prepared
for you;

coord/ here, you can find the coordinate file of the peptide in vacuum, peptide_gch.cnf, which
is already prepared for you;

min/ here, the energy minimization (EM) of the initial coordinates in vacuum has been per-
formed, resulting in the coordinate file peptide_min.cnf;

box/ here, the peptide was solvated into a box of water, and the EM of the box was performed,
resulting in the coordinate file peptide_H2O.cnf;

eq/ here, the equilibration/thermalization of the coordinates (solute+solvent) using MD has
been performed (to 278 K and 1 bar within 100 ps), resulting in the equilibrated initial
configuration file eq_peptide_5.cnf;

In addition, the structure was refined reling on MC calculations performed at very high temperature with a
simplified force field and without explicit consideration of the solvent degrees of freedom.
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prep_noe/ here, you will prepare the NOE distance-restraints file, to be used for carrying out
the restrained MD simulations and for performing the analysis in terms of NOE-derived
distances;

md/ here are 3 subdirectories that you will use to perform your own simulations:

unrestrained/ will be used for the MD simulation without restraints;

NOE_IR/ will be used for the MD simulation with IR; and

NOE_TAR/ will be used for the MD simulation TAR.

ana/ here, you will perform the analysis of the simulation results; there are 4 subdirectories:

rmsd/ will be used for root-mean-square-deviation (RMSD) calculation.

rmsf/ will be used for root-mean-square fluctuations (RMSF) calculation.

noe/ will be used for comparing the simulation results with experimental NOE-derived
distances.

jval/ will be used for comparing the simulation results with experimental 3J-coupling
values.

The work for the procedures corresponding to directories 1-6 has already been performed for
you, and all the files therein have their final form. The setup was performed exactly as described
in Reference [10], and we can just quote the article:

“The GCN4p16-31 peptide comprises the sequence: Ac-16Asn-17Tyr-18His-19Leu-20Glu-
21Asn-22Glu-23Val-24Ala-25Arg-26Leu-27Lys-28Lys-29Leu-30Val-31Gly-NH2. The His residue
is protonated at NE2, the Arg and Lys side chains are protonated with charge +e.2 Coordinates
of the first model structure of the NMR set of structures (PDB entry 2OVN) were taken as the
starting coordinates for MD simulations. The last residue (32Glu) of the model structure was
removed because it was not present in the NMR experiment.3 After steepest descent energy min-
imisation, the structure was solvated in a rectangular box of approximately 3000 pre-equilibrated
simple point charge (SPC) water molecules with a minimal solute-to-wall distance of 1.0 nm.
The system was relaxed by performing a steepest-descent energy minimisation with harmonic
positional restraints on all solute atoms (force constant 2.5 · 104 kJ mol−1 nm−2) followed by
a 100 ps long equilibration, in which the positional restraints were gradually released reducing
the force constant to 0.0 kJ mol−1 nm−2 and the temperature was raised from 60 to 278 K. The
initial atomic velocities were taken from a Maxwell distribution at 60 K.”

Here are a few additional questions that you can easily answer by reading the text above
and looking further into the files if needed (if time is short, save these questions for later and
first move on to the setup of your own simulations)

A. (1) Why are the residues numbered 16-31 (rather than 1-16) in the above piece of text? (2)
What do the “Ac-” and the “-NH2” at the start and end of the sequence mean exactly, and
are the termini charged or neutral? (3) What is the overall charge of the peptide in the
simulations? (4) What pH range does this correspond to? (5) Were counter-ions added?
(6) Was the initial configuration equilibrated at constant volume (if yes, what volume) or
at constant pressure (if yes, what pressure)?

2Although the text does not say it explicitly, the Glu residues were taken to be deprotonated with charge -1e.
3There are 17 residues (Asn16 - Glu32) in pdb files of 2OVN, but only 16 residues (Asn16 - Gly31) were

present in Reference [9]. Obviously, the 2OVN structures refer to an extended peptide, but the experimental
reference is unclear about this.

5

   [ex 6]



2.2 Preparing NOE-derived distance restraints file

To set-up an MD simulation with NOE-derived distance restraints (either IR or TAR), you need
a GROMOS NOE distance-restraints file which can be derived from the file provided by the
experimentalists, NOElist.exp.

So, please go into the folder ∼/ex6/prep_noe and have a look at the NOElist.exp file

TITLE

GCN4p16-31:

NOElist_02_02_2009

END

NOESPEC

1 16 HN 15 HA 1.8 0.0 1.7

2 16 HN 15 HN 1.8 0.0 3.2

3 15 HN 14 HA 1.8 0.0 1.7

4 15 HN 14 HN 1.8 0.0 3.2

5 15 HN 13 HN 1.8 0.0 1.7

6 14 HN 13 HA 1.8 0.0 1.7

...

(continues)

...

174 1 HA 4 HD@@ 1.8 0.0 3.2

175 8 HA 11 HB@ 1.8 0.0 3.2

176 8 HA 11 HG 1.8 0.0 3.2

177 8 HA 7 HG@ 1.8 0.0 3.2

178 8 HG@ 7 HG@ 1.8 0.0 3.2

179 8 HG@@ 5 HA 1.8 0.0 3.2

END

This file results from the processing of the NOE intensities using the program XPLOR,
slightly altered by adding a TITLE block and relocating the distance information within a NOESPEC

block. In the latter block, each line contains the sequential NOE number, the information on
the first proton I involved in this NOE (residue number from 1 to 16 and XPLOR atom name)
and the corresponding information on the second proton J . The last three entries stand for the
distance upper bounds derived from the NOE intensities. There are three rules to parse the last
three columns in the XPLOR file: (i) Upper bound = first column; (ii) Upper bound = first
+ third column; and (iii) Upper bound = first - second column. This file uses the second rule.
The atoms names involving an “@” refer to pseudo-sites (see below).

Converting the XPLOR list into a corresponding GROMOS file is not entirely trivial, which
is why GROMOS++ includes a program prep_noe to do this automatically for you. In the
normal case, you just have to map the XPLOR atom sequence information on the protons I
and J (residue number and XPLOR atom name) into a GROMOS atom sequence information
(atom number in the GROMOS topology file). But there are two types of special cases.

The first special case arises because the GROMOS force field uses a united-atom represen-
tation, so that aliphatic hydrogen atoms are not present in the GROMOS topology file. In this
case, one uses a so-called virtual atom, i.e. the position of the hydrogen “where it would be” is
defined relative to the positions of 3-4 other atoms as illustrated in Table 1 (cases ICDR=1, 2 or
4). In the MD simulation, the distance restraint involving this virtual site will generate a force
that will be redistributed onto the defining atoms. In effect, this is equivalent to reconstructing
the coordinates of the virtual site at each time step, and assuming that this site is rigidly fixed
to the defining atoms (constrained geometry). Because the distance calculation involves the
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position of the hydrogen “where it would be”, there is no distance correction to apply in this
case.

The second special case arises from the fact that multiple protons can be associated with
the same NOE intensity, because they are topologically indistinguishable (e.g. three hydrogens
of a methyl group, two hydrogens of a methylene group in a non-chiral molecule) or quasi-
indistinguishable (e.g. pro-R and pro-S hydrogens of a prochiral methylene group; these could
in principle be distinguished, in which case one speaks of a stereospecific assignment, but often
cannot be resolved in practice). Rapid conformational equilibria may also cause two protons
to become indistinguishable on the NMR timescale. In the XPLOR file, this is indicated by
an “@” (equivalent protons on one carbon, e.g. methyl or methylene group), “@@” (equivalent
proton on two carbons, e.g. isopropyl group) or “@@@” (equivalent proton on three carbons,
e.g. tert-butyl group). In this case, GROMOS uses the so-called center-average approach. One
again considers a virtual site, called in this case a pseudo atom. Its position is also defined
relative to the positions of 2-4 other atoms as illustrated in Table 1 (cases ICDR=3, 5, 6 or 7),
and corresponds to the mean position of all the equivalent protons.

In this case, however, the position of the site is not that of the individual hydrogens, and
a correction must be applied to the NOE-derived reference distance (an increase called pseudo-
atom correction; because the distance from a given proton to the most remote proton of the
group may actually be longer than the distance to the pseudo atom)

Now what you know what prep_noe does, let’s use the program. You will need the input files
noecor.gromosXX, noelib.54a7 and prepnoe.arg. And the procedure will create the following
output files prep_noe.out, noe.filter and noe.dsr. First have a look at the prep_noe.arg

file

@topo ../topo/peptide.top

@title GCN4-p1-32GLUU 54A7

@filter 10000

@factor 10

@noe ./NOElist.exp

@lib ./noelib.54a7

@parsetype 2

@action

@correction ./noecor.gromosXX

The topology file is given by the argument @topo. With @title one specifies the title in
the prep_noe output. The @filter argument determines the upper limit of the NOE distance
bounds which should be considered. By setting @filter to very large value (10000 nm), we make
sure that all distances will be taken into account. The NMR experimental data from XPLOR
is reported in Angstrom (Å) (e.g. 1.8 Å), whereas using the GROMOS program the standard
length unit is nanometer (nm) (e.g. 0.18 nm). Thus we have to give the program a @factor by
which it has to scale (divide) all the NOE distance bounds (e.g. 1.8/10 = 0.18). The argument
@noe specifies the input file NOElist.exp. The program will assign GROMOS atom sequence
numbers based on the XPLOR information for residue numbers and XPLOR atom names. Thus
we have to specify a library file which recognizes atom names specific to XPLOR. This is done
with the argument @lib. There are three ways to parse the last three columns in the XPLOR
file. This is selected using the @parsetype argument:
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Table 1: Virtual and pseudo hydrogen atoms, correction term on distance restraint and geometric
codes.

Group Configuration Atom type

Correction
term on
distance
restraint

Geometric
code

ICDR1 or
ICDR2

CH1 (aliphatic) virtual 0.00 1

CH1 (aromatic) virtual 0.00 2

CH2 (stereospecific) virtual 0.00 4

CH2
(non-stereospecific) pseudo 0.09 3

CH3 pseudo 0.10 5

two CH3

(non-stereospecific, Val,
Leu) pseudo 0.22 6

three CH3

(non-stereospecific,
t-butyl) pseudo 0.23 7

@parsetype=1: Upper bound = first number
@parsetype=2: Upper bound = first + third number (most com-
mon, default)
@parsetype=3: Upper bound = first - second number (commonly
the lower bound)

If you set @parsetype to either 2 or 3, you have to also use an argument called @action,
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which applies a correction to the reference distance, the correction is either added (default) for
@parsetype 2, or subtracted for @parsetype 3. Here, we use @parsetype 2. The argument
@correction specifies a file containing the information about types of correction that should be
taken into account by prep_noe.

Now you can finalize the prep_noe.arg for missing entries, and run the program

prep_noe @f prep_noe.arg > prep_noe.out

This produces three files, namely prep_noe.out (the redirected standard output), noe.filter
and noe.dsr. Have a look at noe.dsr file, which will be our GROMOS NOE-derived distance
restraints file for MD simulations in the next step.

TITLE

NOE distance restraints file for: GCN4-p1-32GLUU 54A7

END

DISTANCERESSPEC

# DISH DISC

0.1 0.153

#IDR1 JDR1 KDR1 LDR1 ICDR IDR2 JDR2 KDR2 LDR2 ICDR R0 W0 NRAH

#

# 1 1 16 GLY H HN 1 15 VAL CA HA

171 0 0 0 0 164 162 165 168 1 0.35 1 1

# 2 1 16 GLY H HN 1 15 VAL H HN

171 0 0 0 0 163 0 0 0 0 0.5 1 1

# 3 1 15 VAL H HN 1 14 LEU CA HA

163 0 0 0 0 155 153 156 160 1 0.35 1 1

...

(continues)

...

# 178 1 8 VAL CB HG@ 1 7 GLU CG HG@

90 91 92 0 6 81 80 82 0 3 0.81 1 1

# 179 1 8 VAL CB HG@@ 1 5 GLU CA HA

90 91 92 0 6 58 56 59 64 1 0.72 1 1

END

DISH carbon-hydrogen distance, used for virtual and pseudo atom geometries ICDR = 1-6;

DISC carbon-carbon distance, used for pseudo atom geometry ICDR = 6;

IDR1, JDR1, KDR1, LDR1 atom sequence numbers of the real atoms defining the geometric posi-
tion of the first atom of a distance restraint pair;

ICDR1 geometric code defining the position of the first atom of a distance restraint pair [-2, -1,
..., 7]

IDR2, JDR2, KDR2, LDR2 atom sequence numbers of the real atoms defining the geometric posi-
tion of the second atom of a distance restraint pair;

ICDR2 geometric code defining the position of the second atom of a distance restraint pair [-2,
-1, ..., 7];
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R0 in case of a full-harmonic distance restraint (NRAH = 0), R0 is the minimum-energy distance;
in case of an attractive or repulsive half-harmonic restraint (NRAH = ±1), R0 is the upper or
lower bound, respectively, beyond which the restraining forces become non-zero. When us-
ing distance restraints for NMR-NOE distance restraining, pseudo-atom corrections should
already be included in R0;

W0 individual distance restraint weight factor, by which the distance restraint interaction term
may be multiplied.

NRAH type of distance restraint; if NRAH = −1, a half-harmonic repulsive distance restraint is
applied; if NRAH = 0, a full harmonic distance restraint is applied; if NRAH = 1, a half-
harmonic attractive distance restraint is applied.

In this file, W0 is set to 1, but you can also set it to other value. When W0 is not 1, NTDIR
and CDIR should be set differently (see Sections 2.3.2 and 2.3.3).

Here are a few additional questions that you can easily answer by looking at the files and
having well understood the above procedure (if time is short, save this question for later and
first move on to the setup of your own simulations)

B. Compare specific lines in the XPLOR file (NOElist.exp) and the GROMOS file (noe.dsr),
and explain how the GROMOS line can be deduced from the XPLOR line, including the
calculation of the reference distance R0 (for this, you also need to look at a GROMOS
coordinate file e.g. coord/peptide_gch.cnf to relate the GROMOS atom numbers to
specific atoms). Do this for the restraints Nr. 2, 46, 64 and 179.

2.3 Setting up MD simulations

In the ∼/ex6/md directory, there are 3 subdirectories: unrestrained, NOE_IR and NOE_TAR, for
three different MD simulations, which will each be 10 ns long.

2.3.1 Unrestrained MD Simulation

Go into the unrestrained directory and have a look at the md input file md_unrestrained.imd.
You will find that some parameters are set to #TO_DO for you to fill. In the MULTIBATH block,
the temperature should be set to 278 K for both solute and solvent. Because we don’t need
coordinate trajectory of the solvent, we will set NTWX to a negative value in the WRITETRAJ block
to save disk space.

After finalizing the md_unrestrained.imd file, you can make the scripts for the MD sim-
ulation. Have a look at jmk_script.sh. You will find one #TO_DO for you to fill. You need
to specify the starting configuration file there. The file is the fifth .cnf in the equilibration
directory. Have a look for it! While filling the name in try to use the NAME variable defined in
the top of the script.

./jmk_script.sh

To run the calculation use the jsubmit.sh script. But first, have a look so you know what it
does! Then type

./jsubmit.sh

Don’t forget to check with qstat to see if the simulation is running happily.
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2.3.2 MD Simulation with Instantaneous Restraints (IR)

Go into the ∼/ex6/md/NOE_IR folder and have a look at the md input file md_NOE_IR.imd. Here,
you will find a new DISTANCERES block which (obviously) did not appear in the md_unrestrained.imd
file. Some parameters in this block are set to #TO_DO for you to fill in. The block specifies

DISTANCERES

# NTDIR -2..2 controls distance restraining

# 0: no distrance restraining (default)

# 1: instantaneous, using force constant CDIR

# 2: instantaneous, using force constant CDIR x W0

# -1: time-averaged, using force constant CDIR

# -2: time-averaged, using force constant CDIR x W0

# NTDIRA 0,1 controls values for initial distance averages

# 0: generate initial averages

# 1: read from configuration

# CDIR >= 0.0 force constant for distance restraining

# DIR0 >= 0.0 distance offset in restraining function

# TAUDIR > 0.0 coupling time for time averaging

# FORCESCALE 0..2 controls approximation of force scaling

# 0: approximate d<r>/dr = 1

# 1: approximate d<r>/dr = (1.0 - exp(-Dt/tau))

# 2: use d<r>/dr = (1.0 - exp(-Dt/tau))*(<r>/r)^4

# VDIR 0,1 controls contribution to virial

# 0: no contribution

# 1: distance restraints contribute to virial

# NTWDIR >= 0 write every NTWDIRth step dist. restr. information to external file

# NTDIR NTDIRA CDIR DIR0 TAUDIR FORCESCALE VDIR NTWDIR

1 0 2000 1 0 0 0 0

END

Here, we want to use instantaneous restraining (IR) using a force constant of 2000 kJ mol−1

nm−2. The distance offset is the reference distance beyond which we will linearize the restraining
potential (Figure 1). It is 1 nm. Because we don’t use time-averaged restraints, NTDIRA and
TAUDIR are irrelevant (we can set them to 0). Since we don’t need the detailed dist.restr infor-
mation in an external file, we can set NTWDIR to 0. VDIR controls addition of distance restraining
to virial in a case of intermolecular restraining and FORCESCALE controls approximation of force
scaling, we can set both parameters to 0.

After finalizing the md_NOE_IR.imd file, you can make the scripts for the MD simulation.
Have a look at jmk_script.sh You will find one blank (#TO_DO) for you to fill. You need to
specify the distance restraint file will be used in this MD simulation. This distance restraints
file noe.dsr you have already generated in Section 2.2. After finalizing the file jmk_script.sh,
you can now make the GROMOS scripts by typing

./jmk_script.sh

If there is no error message, you can submit the IR-restrained MD simulation again with
jsubmit.sh script. First, compare the script with the ../unrestrained/jsubmit.sh script.
What is different? Then just type

./jsubmit.sh

Don’t forget to check with qstat to see if the simulation is running happily.
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2.3.3 MD Simulation with Time-Averaged Restrains (TAR)

Go into the folder ∼/ex6/md/NOE_TAR and have a look at the md input file md_NOE_TAR.imd.
In the DISTANCERES block you will again find some parameters are set to #TO_DO for you to
fill. Here, we want to use time-averaged restraining (TAR) using a force constant of 6000 kJ
mol−1 nm−2. The coupling time for time averaging will be set to 20 ps. Distance offset in the
restraining function will be 1 nm as in IR. Because the TAR method relies on distance averages
calculated over the entire past of the simulation (Equation 3),4 we should not reset them to zero
at every new simulation job. Instead, current averages will be written at the end of each job
to the final configuration file, and they should be read from this file as initial values. For this
reason, we set NTDIRA to 1 (and will have to watch out that for the first job, we should reset the
value to 0 so that the averages are initialized to zero; see below).

After completing the md_NOE_TAR.imd file, you can make the scripts for the MD simula-
tion. Have a look at jmk_script.sh. The initial coordinates file is not same as we used in
unrestrained and IR-restrained MD simulations. There, we started the simulations from the
structure after equilibration. Here, we will start from the structure after 1 ns IR-restrained MD
simulation, because TAR-restrained MD simulation requests more reasonable (less violations)
starting structure. Since 1 ns IR-restrained MD simulation may take 10 hours, the structure
after 1 ns IR-restrained MD simulation md_NOE_IR_10.cnf is provided to you. You just need to
specify it on the place of #TO_DO. You can now make the GROMOS scripts by typing

./jmk_script.sh

But don’t run the simulation yet!
In the md_NOE_TAR.imd file, we set the parameter NTDIRA to 1 so that initial distance averages

are read from the starting configuration file at each job. But for the first job, there is no
DISTESEXPAVE block in the initial configuration file md_NOE_IR_10.cnf. So, we need to reset
NTDIRA to 0 for this first job in the corresponding input file md_NOE_TAR_1.imd.

After adapting file md_NOE_TAR_1.imd, you can now run your simulation jobs again with
jsubmit.sh script. Now, you should know what is going to be the difference in comparison to
the ../unrestrained/jsubmit.sh and ../NOE_IR/jsubmit.sh scripts. Check if you are right.
Then just type

./jsubmit.sh

Don’t forget to check with qstat to see if the simulation is running happily.

3 Analyses

3.1 Analyses

For each of the three MD simulations, four analyses will be performed: (i) atom-positional root-
mean-square-deviation (RMSD); (ii) atom-positional root-mean-square-fluctuations (RMSF);
(iii) NOE distance upper-bound violations (relative to the experimental data); and (iv) 3J-
coupling constant deviations (relative to the experimental data).

Because reaching the full 10 ns may take more than one week of computer time depending
on the load of the beaver cluster, we provide you the whole 10 ns trajectory for analysis in case
your own simulations did not complete yet.

4We should use ideally use
〈
r−6

〉−1/6 averaging for peptide, but
〈
r−3

〉−1/3 is hard coded in GROMOS program
of distance restrained MD simulation. It does not matter much.
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If your runs did not reach 10 ns, please, perform all analyses on the 10 ns simulation provided
to you. In addition, do also the first (RMSD) analysis for your own three unfinished simulations.
By comparing the curves, you can check that our 10 ns simulations are really the extension of
what you would have obtained with yours (i.e. that you did no mistake in your setup!).

To make a link to the 10 ns trajectory, please go to the appropriate directory (∼/ex6) and
type

ln -s /usr/local/CSBMS_assist/ex6/md ∼/ex6/md_10ns

3.1.1 RMSD

Go to the directory for RMSD analysis ∼/ex6/ana/rmsd. The trajectories of all MD simulations
should be analysed in terms of the time series of the RMSD relative to the energy-minimized
initial structure. The RMSD values are to be calculated for the heavy atoms of the backbone
(Cα, N, C) of non-terminal residues using the same atoms to perform the roto-translational
least-squares fit superposition of the successive structures onto the reference one. A script
jrmsd_unrestrained.sh has been provided to calculate RMSD time series for the unrestrained
MD simulation. Have a look at it and then execute it

./jrmsd_unrestrained.sh

Then you have to make two copies of this script and modify them to calculate RMSD time
series for the MD simulations with IR-restraining or TAR-restraining, i.e. do

cp jrmsd_unrestrained.sh jrmsd_NOE_IR.sh

cp jrmsd_unrestrained.sh jrmsd_NOE_TAR.sh

Then edit and adjust the two files, and then execute them

./jrmsd_NOE_IR.sh

./jrmsd_NOE_TAR.sh

You have to make three more copies of the script to analyse your own simulations if they
were incomplete (<10ns). The template script jrmsd_unrestrained_my.sh is provided to you.

After you get the output files of the three RMSD calculations, you can plot them in one figure
using xmgrace and compare them. You can also perform this using the script jxmgrace.sh

If the RMSD curves for your runs (<10ns) match the start of those for the assistant’s runs
(10ns), you set everything correctly last week, congratulation! If it doesn’t match try to find
the mistake in the setup and include it in your report. In both cases you can continue with the
assistant’s runs.

C. Print the figure with the RMSD time series and comment on the differences.

3.1.2 RMSF

The trajectories of all MD simulations should be analysed in terms of RMSF values as a function
of the atom sequence number for the full 10 ns time period. The RMSF values should be
calculated for the heavy atoms of the backbone (Cα, N, C) of all residues using the same atoms
to perform the roto-translational least-squares fit superposition of the successive structures onto
the reference one. A script jrmsf_unrestrained.sh has been provided to calculate RMSF
values for the unrestrained MD simulation. Have a look at it and then execute it

./jrmsf_unrestrained.sh
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Then you have to make two copies of this script and modify them to calculate RMSD time
series for the MD simulations with IR-restraining or TAR-restraining, i.e. do

cp jrmsf_unrestrained.sh jrmsf_NOE_IR.sh

cp jrmsf_unrestrained.sh jrmsf_NOE_TAR.sh

Then edit and adjust the two files, and then execute them

./jrmsf_NOE_IR.sh

./jrmsf_NOE_TAR.sh

After you get the output files of the three RMSF calculations, you can plot them in one figure
using xmgrace and compare them. You can also perform this using the script jxmgrace.sh

D. Print the figure of RMSF as a function of the atom sequence number and comment on the
differences.

3.1.3 NOE Distance Upper-Bound Violations

To compare simulation results with the experimental NOE data, we will calculate violations
relative to the NOE-derived distances, for each of the 172 proton pairs monitored experimentally
and based on average distances calculated over the full 10 ns trajectories. The NOE-derived
reference distances are already listed in the output file prep_noe.out we generated earlier with
prep_noe (see Section 2.2). We will use the program noe to calculate the violations based on this
information and the coordinate trajectories. The program will calculate the average distance in
the 10 ns simulations according to 〈r−p〉−1/p for values of p = 1, 3, 6. It will then calculate the
deviations of these distances from the NOE-derived reference distances, q◦. Note that a positive
violation (too long average distance in the simulation) is considered to be a discrepancy relative
to experiment, but a negative violation (too short average distance in the simulation) is not,
because experimental factors (e.g. spin diffusion) may be invoked to explain a NOE intensity that
is lower than “expected”. If we want to characterize the level of discrepancy between simulation
and experiment by a single number, we can use the average positive violation, i.e. the sum of
all positive violations divided by the total number of NOE distances considered in the analysis.
In practice, however, it is more informative to plot the individual violations as a function of the
NOE sequence number. The output of the program noe is very detailed and not highly “human
readable”, so that it will also be post-processed using the post_noe program. Go to the NOE
violation analysis directory

∼/ex6/ana/noe

To run noe and post_noe you will need the input files noe.arg, post_noe.arg, prep_noe.out
and noe.filter. And the procedure will create the following output files noe.out and post_noe.out.
For the unrestrained simulation, the scripts jnoe_unrestrained.sh and jpost_noe_unrestrained.sh

are already provided to you. First, have a look at the jnoe_unrestrained.sh file

...

@topo ../../topo/peptide.top

@pbc r

@noe #TO_DO

@traj

...
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Topology and periodic boundary conditions are given by @topo and @pbc, respectively. The
@noe argument points to the output file prep_noe.out we generated earlier with prep_noe (see
Section 2.2). With the argument @traj we specify the trajectories which will be analyzed. Now,
execute the script jnoe_unrestrained.sh

./jnoe_unrestrained.sh

It produces the file noe_unrestrained.out that contains the NOE violation information in
a “computer readable” format. To make it more “human readable” you have to process it. Have
a look at the jpost_noe_unrestrained.sh file

...

@topo ../../topo/peptide.top

@noe ../../prep_noe/prep_noe.out

@noeoutput #TO_DO

@filter ../../prep_noe/noe.filter

@averaging 6

...

The topology is given by @topo. The three following arguments @noe, @noeoutput, and
@filter are output files of the prep_noe (see Section 2.2) and noe (see above) programs. The
@noe and @noeoutput arguments serve here as input files, whereas the @filter filters the NOE
distances which we will not use. When you specify @noeoutput use a variable which is defined
in the beginning of the script. It will save you some time later. With @averaging 6 one specifies
which averaging should be used. Here we are using the r−6 averaging, as appropriate for a
peptide where tumbling is fast relative to internal motions.

Now, execute the script jpost_noe_unrestrained.sh

./jpost_noe_unrestrained.sh

It produces the file post_noe_unrestrained.out. Try to read it and understand each col-
umn.

Now, you have to repeat above steps to calculate the violations for the MD simulations with
IR-restraining or TAR-restraining, i.e. do

cp jnoe_unrestrained.sh jnoe_NOE_IR.sh

cp jnoe_unrestrained.sh jnoe_NOE_TAR.sh

cp jpost_noe_unrestrained.sh jpost_noe_NOE_IR.sh

cp jpost_noe_unrestrained.sh jpost_noe_NOE_TAR.sh

Then edit and adjust the two pairs of files, and then execute them

./jnoe_NOE_IR.sh

./jpost_noe_NOE_IR.sh

./jnoe_NOE_TAR.sh

./jpost_noe_NOE_TAR.sh

Plot the NOE distance upper-bound violations of the three MD simulations using script
jxmgrace.sh.

./jxmgrace.sh

E. Print the figure of NOE distance upper bound violations and comment on the difference.
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3.1.4 3J-coupling constants

Finally, we can compare simulation results with the experimental 3J-coupling. For this, we will
use the program jval. It uses a so-called Karplus relation [2] to relate the 3J-coupling constant
to the local molecular structure or torsional angle.

3J (HN,HCα) = a cos2 φ+ b cosφ+ c , (4)

where φ is the dihedral angle between the planes defined by the atoms (H, N, Cα) and the atoms
(N, Cα, Hα). There are many different parameterizations for Karplus equations (see Table 2),
inferred empirically by correlating molecular structures (e.g. from X-ray) to measured J-values
(from NMR), and possibly also using some QM calculations, for different types of dihedral angles
in different sets of compounds. In our calculations, we use parameters a, b, c equal to 6.4 Hz,
-1.4 Hz and 1.9 Hz, respectively [11].

Before we can calculate the 3J-coupling constants, we need to define the torsional angle(s)
that will be used for the calculation. For this we need a 3J-coupling constant restraints file. In
this exercise, the 3J-coupling constant restraints file p16-31_jval.dat is already prepared for
you (see below)

TITLE

K278.

J-coupling constant restraints specification file for new GROMOSXX.

jozi, Jan. 2009

END

JVALRESSPEC

#

# for each J-coupling constant restraint is to be specified:

# IPJR, JPJR, KPJR, LPJR: atom sequence numbers defining the angle phi

# WJWR: weight factor of interaction

# PJR0: reference J-coupling constant value

# PSJR: phase shift delta = theta-phi

# A, B, C: Karplus parameters

# H: 0 (harmonic), 1 (attractive), -1 (repulsive)

#

#IPJR JPJR KPJR LPJR WJVR PJR0 PSJR A B C H

# C N CA C ASN 16

2 4 6 13 1.00000 7.30000 -60.0000 6.40000 -1.40000 1.90000 0

# C N CA C TYR 17

13 15 17 31 1.00000 6.40000 -60.0000 6.40000 -1.40000 1.90000 0

# C N CA C HISB 18

31 33 35 43 1.00000 7.10000 -60.0000 6.40000 -1.40000 1.90000 0

...

(continues)

...

136 138 140 149 1.00000 6.50000 -60.0000 6.40000 -1.40000 1.90000 0

# C N CA C LEU 29

149 151 153 158 1.00000 6.90000 -60.0000 6.40000 -1.40000 1.90000 0

# C N CA C VAL 30

158 160 162 166 1.00000 6.80000 -60.0000 6.40000 -1.40000 1.90000 0

END
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The first four columns describe the dihedral angle η from which the 3J-value is derived using
the Karplus relation. The weight factor in the fifth column is only used for restraining and is
ignored in this case. The sixth column is used as reference 3J-value in order to calculate the
deviation from it. As the measured 3J-coupling constant may arise from a torsional angle φ
whose atoms, such as aliphatic hydrogens, are not explicilty represented in the GROMOS force
field, the torsional angle φ has to be related to the torsional angle η by a phase shift δ = φ− η
. This phase shift is read from the seventh column. In the following three columns you can
specify different parameters for the Karplus relation for every individual 3J-coupling constant.
Finally in the last column the type of the 3J-value restraining is specified. Relations between
3J-coupling constants and dihedral angles occurring in polypeptides are listed in Table 2.

Table 2: Relations between 3J-coupling constants and dihedral angles occurring in polypeptides.

φn ηn δn a b c
[◦] [Hz] [Hz] [Hz]

H - N - Cα - Hα H - N - Cα - C -60(L) +60(D) 6.4 -1.4 1.9
Hα - Cα - Cβ - Hβ2 N - Cα - Cβ - Cγ -120(L) 0(D) 9.5 -1.6 1.8
Hα - Cα - Cβ - Hβ3 N - Cα - Cβ - Cγ 0(L) +120(D) 9.5 -1.6 1.8
N - Cα - Cβ - Hβ2 N - Cα - Cβ - Cγ +120(L) -120(D) 4.4 -1.2 -0.1
N - Cα - Cβ - Hβ3 N - Cα - Cβ - Cγ -120(L) 0(D) 4.4 -1.2 -0.1
H - N - Cβ - Cβ C - N - Cα - C +60(L) -60(D) 4.7 -1.5 -0.2
H - N - Cβ - C C - N - Cα - C -180(L,D) 5.7 -2.7 0.1

Go to the J-value analysis directory (∼/ex6/ana/jval) and to run jval, you will need the
input files jval.arg and p16-31_jval.dat. And the procedure will create the following output
file jval.out. For the unrestrained simulation, the scripts jjval_unrestrained.sh is already
provided to you.

Have a look at it

...

@topo ../../topo/peptide.top

@pbc r

@jval #TO_DO

@traj

...

The argument @jval determines the file which contains the torsional angle specification
corresponding to the specific 3J-coupling constant. What is this file? It was mentioned above.
Have a look and fill it in the place of #TO_DO. Now execute the script jjval_unrestrained.sh

./jjval_unrestrained.sh

It produces the file jval_unrestrained.out. In the first columns it contains the information
that we gave in the p16-31_jval.dat file, and the last five columns give the information about
our calculated 3J-coupling constants.

As usual, you can make two copies of this script, and modify them to calculate 3J-coupling
constant for the MD simulations with IR-restraining or TAR-restraining, i.e. do

cp jjval_unrestrained.sh jjval_NOE_IR.sh

cp jjval_unrestrained.sh jjval_NOE_TAR.sh
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then edit and adjust the four files, and then execute them

./jjval_NOE_IR.sh

./jjval_NOE_TAR.sh

Plot the 3J-coupling constant of three MD simulations using script jxmgrace.sh.

./jxmgrace.sh

F. Print the figure of 3J-coupling constants and comment on the difference.
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4 Report

4.1 Format

Please refer to the corresponding section of Exercise 1 for information on the goal and expected
structure of the report.

4.2 Simulation Results

Perform the requests from text the questions A to F. Then proceed to the following questions.

G. Understanding of NOE distance restraints file: Open the noe.dsr file in the directory
prep_noe, find the restraints Nr. 3 and 70. For each restraint, please answer:

(a) Which two hydrogen atoms are restrained?

(b) What is the upper bound of this restraint?

(c) Which atoms are actually used to represent these two restrained hydrogen atoms in
GROMOS format coordinates file?

H. Understanding of 3J-coupling constants file: open jval_unrestrained.out in the direc-
tory ∼/ex6/ana/jval, find the 3J-value Nr.6. Please answer:

(a) What is the experimental measured 3J-coupling constant?

(b) What is the calculated 3J-coupling constant?

(c) Which atoms define the dihedral angle between the planes?

I. Now we know two NOE restraining method: instantaneous restraining (IR) and time-
averaged restraining (TAR). Which method do you think is better? Why?

J. In this exercise we only implement the NOE distance restraining to perform structure
refinement, however, we can also use 3J-coupling constant restraining to refine structure.
What will be the problem if we apply time-averaged restraints to 3J-coupling constant
refinement?

Hint: Have a look at Karplus curve (Eq. 4), think about it (Figure 2). Or you can find
answer in Reference [10].

4.3 Thinking Questions

Answer the following questions:

K. In the introduction, we said that the timescale of the NMR experiment is about a nanosec-
ond. How did we get to this (rough) estimate?

L. In Eq. 2, we use observables q defined as the distance for NOEs or the J-value for the J-
couplings. Alternative options would be to use r−n for the NOEs or dihedral angle for the
J-couplings. Comment on the feasibility/advantages/shortcomings of these two alternative
choices.

M. In Eq. 2 we generally use a half-harmonic (attractive) restraint only. Why is it preferable
to using a harmonic (attraction + repulsion) restraint?
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Figure 2: Example of a Karplus curve obtained using Eq. 4

N. When analysing the J-values, we saw that the source file can specify a different set of
Karplus coefficients (a, b, c) for each dihedral angle specifically. We did not use this
option (a, b, c set to the same values everywhere), but in which case do you think it would
be useful?

O. What is the statistical mechanical ensemble sampler in an unrestrained, IR-restrained and
TAR-restrained simulation? (considering a total potential energy including the distance-
restraint energy and omitting the thermostat/barostat)

P. An alternative to time averaging is ensemble averaging. Can you explain briefly how you
would implement such an approach?

Q. You have reached the last thinking question of the last CSBMS exercise. And this question
is “how do you feel now?”
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Appendix A. List of files

In the main exercise directory, you will find ex6.pdf, the digital version of the document you
are reading and nine sub-directories:

forcefield/ Contains the GROMOS 54A7 force field file 54a7_ACE_CONH2.mtb (two special
building block of terminus ACE and CONH2 were added) and 54a7.ifp

topo/ Contains make_top.arg, topology file peptide.top

coord/ Contains pdb file model1_4-32GLU.pdb, the library file to convert the protein start-
ing coordinates to GROMOS format pdb2g96.lib, the GROMOS format coordinates
peptide.cnf, and peptide_gch.cnf in which the coordinates of hydrogen are generated.

min/ Contains the required files to perform an energy minimization of the configuration em.imd,
jem.sh, output file em.omd, energy minimized configuration peptide_min.cnf

box/ Contains the required files to get the protein solvated in a box jsim_box.sh, spc.cnf, the
coordinates file after solvating sim_box_peptide.cnf, the requied files to perform an an en-
ergy minimization of the box jem_solvent.sh, em_solvent.imd, sim_box_peptide.por,
sim_box_peptide.rpr, the output file em_solvent.omd, energy minimized configuration
of the box peptide_H2O.cnf, the position restraints specification file peptide_H2O.por,
the reference position file peptide_H2O.rpr

eq/ Contains the files to perform the equilibration of the peptide equilibration.jobs, equilibration.imd,
eq_mk_script.arg, jmk_script.sh, jsubmit.sh eq_peptide_*.run, eq_peptide_*.imd,
and output file eq_peptide_*.omd, eq_peptide_*.trc.gz, eq_peptide_*.tre.gz, eq_peptide_*.cnf

prep_noe/ Contains the NMR experimental NOE data NOElist.exp, NOE library file noelib.54a7
which converts the XPLOR names into GROMOS format, NOE bound corrections noecor.gromosXX,
the argument file to perform preparation of NOE distance upper bound prep_noe.arg

md/ Contains three subdirectories unrestrained, NOE_IR, NOE_TAR.

unrestrained/ Contains the files to perform MD simulation md_unrestrained.imd, jmk_script.sh
and jsubmit.sh

NOE_IR/ Contains md_NOE_IR.imd, jmk_script.sh and jsubmit.sh

NOE_TAR/ Contains md_NOE_TAR.imd, jmk_script.sh, jsubmit.sh and initial con-
figuration file md_NOE_IR_10.cnf

ana/ Contains four subdirectories rmsd, rmsf, noe and jval.

rmsd/ Contains scripts to perform RMSD calculation for MD simulation without re-
straints jrmsd_unrestrained.sh, script to plot the RMSD calculation results jxmgrace.sh

rmsf/ Contains scripts to perform RMSF calculation for MD simulation without restraints
jrmsf_unrestrained.sh, script to plot the RMSF calculation results jxmgrace.sh

noe/ Contains scripts to calculate NOE distance upper bound violations for MD simula-
tion without restraints jnoe_unrestrained.sh, jprep_noe_unrestrained.sh, script
to plot the NOE distance upper bound violations jxmgrace.sh

jval/ Contains 3J-coupling constant restraints file p16-31_jval.dat, script to calculate
3J-coupling constants for MD simulation without restraints jjval_unrestrained.sh,
script to plot the NOE distance upper bound violations jxmgrace.sh
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